STEADY-STATE CALCULATION OF COLUMN DENSITIES OF INTERSTELLAR SPECIES TOWARD & OPHIUCHI, O PERSEI AND LYNDS 134

BY

HIRONOBU FUNAKAWA

A THESIS SUBMITTED IN PARTIAL REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

IN

DEPARTMENT OF ASTRONOMY SAINT MARY'S UNIVERSITY

C HIRONOBU FUNAKAWA SAINT MARY S UNIVERSITY

MARCH, 1978

TERU DAVAL 2VISA DEC

ACKNOWLEDGEMENT

The completion of this thesis is due in large part to my thesis adviser, Dr. George F. Mitchell, who provided a great deal of help, guidance and understanding with great endurance and made his computer program available to me.

ABSTRACT

Calculations of column densities of some 100 interstellar species based on a steady-state analysis are carried out for interstellar clouds toward §Oph, oPer, and Lynds 134, using appropriate cloud models and physical conditions.

The observed column densities of CH, OH, and CO are well reproduced by calculations. However, the calculated column densities of CH^{\dagger} and C_2 show somewhat large discrepancies from the observed values. No explanation was found for these discrepancies. Column densities of species including ¹³C are also calculated for L13⁴.

TABLE OF CONTENTS

ACK	NOWLEDGEMENT	i
ABS	TRACT	.ii
I.	INTRODUCTION	1
II.	CHEMISTRY IN INTERSTELLAR CLOUDS	••7
10.1	(1) Hydrogen in interstellar clouds	8
	(2) Gas phase processes	.10
	(3) Photodestruction processes	.12
III.	THE METHOD OF CALCULATION	.14
IV.	ξ PHIUCHI CLOUD	.23
٧.	• PERSEI CLOUD	•37
VI.	LYNDS 134	.47
SUM	MARY	.56
REF	ERENCES	•59
APP	ENDIX A INTERSTELLAR MOLECULES DETECTED	.61
APP	ENDIX B CHEMICAL REACTIONS USED IN THE CALCULATIONS	62
1.	TABLE 1 ION-NEUTRAL REACTIONS	.63
	2 NEUTRAL-NEUTRAL REACTIONS	.80
	3 PHOTODESTRUCTION PROCESSES	. 83
	4 ION-ELFCTRON RECOMBINATION REACTIONS	. 86
	5 COSMIC RAY DESTRUCTION PROCESSES	.89
∆ PD	ENDIX C COMPLETER PROGRAM LISED	00
		- /\/

I. INTRODUCTION

It is already over 35 years since the first detection of the ultra-violet lines of interstellar CN, CH^+ , and CH in the 1930's and now we can count over 40 molecular species in the list of interstellar molecules detected (APPENDIX A). The size of molecules ranges from diatomic molecules such as CH, CN to nine-atomic ones such as $C_{25}^{H}OH$, ethylalcohol. These molecules have been observed from optical to the radio wavelength region: however, the majority has been discovered by means of radio telescopes in the centimeter and millimeter bands.

Molecular species sufficiently abundant for easy detection form more or less dense regions. Those regions are rich in dust grains which significantly reduce the transparency of the clouds to background star light. Therefore, frequently, the stellar radiation cannot be a source of interstellar absorption lines. On the other hand, radio waves can penetrate even through the dense clouds, so that they can be detected from the radio emission.

When we depict our Milky Way in our minds, the spiral

arms, the disk, and the halo are the large scale structures. If the material organized into this structure, which is mainly neutral hydrogen at^{oms}, were distributed uniformly, the mean density would be ~3 atoms/cm³ (Rank,et al. 1971). On the small scale, however, interstellar material is distributed irregularly. Dust grains and gas components are concentrated into small areas to form relatively cool, dense regions called 'clouds'.

The interstellar clouds have irregular shapes and occupy approximately 5% of the volume of our galaxy and are strongly concentrated to the galactic plane. The sizes of the clouds are 0.1 to 50 light years and the gas densities are 10 to 10^7 cm^{-3} (Rank, et al. 1971). Most clouds have kinetic temperatures of 10 to 200°K, except in HII regions, and contain ~1% mass of dust grains of approximately 0.1 microns in size (Rank, et al. 1971; Hollenbach, et al. 1971).

Relatively low density clouds of $10 \le n \le 10^3$ cm⁻³ (Snow 1976) are called diffuse interstellar clouds, and are relatively transparent to the background stellar radiation, while dark interstellar clouds with densities of 10^4-10^7 cm⁻³ and A_v \ge 5 mag are more opaque to the stellar radiation, but transparent to high energy cosmic ray protons. This difference of transparency is **closely** related to the chemistry in interstellar clouds.

- 2 -

Since the discovery of interstellar molecules, several general processes have been considered to interpret the observed **molecular lines and to understand the chemistry in the clouds.** Probably molecules are continuously produced in and removed from the clouds by various mechanisms. The relatively low density clouds are transparent to the background ultra-violet radiation field. Therefore, ionization and dissociation by ultra-violet radiation are important mechanisms for the destruction of molecules in the clouds. As the density of clouds increases, the clouds become opaque to the ultra-violet radiation, and hence photoionization and photodissociation become less important to the chemistry of the clouds. For these dense clouds, on the other hand, cosmic ray protons play an important role by ionizing H₂ and He. The cosmic ray ionization rate itself is small compared with photoionization in diffuse clouds, but this process creates reactive species, and hence is important to the chemistry of dense clouds.

Another process which may occur in interstellar clouds is the freezing out of molecules on the surface of dust grains. Although this process is slower than the photoionization of unshielded molecules (Herbst, et al. 1976), it may have non-negligible effects on the abundance of molecules since it can occur even in shielded dense clouds.

- 3 -

Chemical reactions such as ion-neutral reactions, recombination reactions with electrons, and neutral-neutral reactions are, of course, the major mechanisms for removing certain species from the clouds. Since molecules suffer destruction processes, one or several efficient formation mechanisms are essential to maintain the observed abundance of molecules.

In the first place, the gas phase chemical reactions mentioned above are probably the most important processes for the formation of molecules in the clouds. Since the densities of clouds are low compared with stellar atmospheres, many-body collisions are very unlikely and hence, two atomic or molecular collisions are the principal reaction schemes in the clouds. Secondaly, formation of molecular species on the surface of dust grains may take place efficiently. Interstellar grains have irregular shape (Abell 1974) and supply chemically active surfaces which act as catalysts to atomic or molecular species impinging on them. Molecules may be formed on these active sites and may be released into interstellar space. Molecules may also be formed in the atmospheres of stars which are much denser than interstellar clouds and can be blown off the stellar surface. It is, however, questionable whether the molecules formed in stellar atmospheres can survive the radiation of the star which formed the molecules.

- 4 -

Interstellar molecules are good indicators of the physical conditions at the place where the molecules are found: observed molecular line strengths directly give us information on the constitution, location, and radial velocities of the clouds. Careful analysis of these molecular lines, combined with quantities measured in the laboratory, provides indirect information on the physical conditions and dynamics of the clouds. Since the gaseous components of clouds are probably not in thermodynamic equilibrium, the interpretation of line intensities is not simple since many factors must be considered, such as cloud temperature, the radiation field, cosmic rays, ultra-violet radiation, the 2.7°K black body radiation, electron density,etc.

Several general models have been used to interpret the molecular observations. As a first approximation, timeindependent (steady-state) analysis have had considerable success in the interpretation of the abundances of molecules. Of molecular parameters, column densities are the only directly measurable quantities, and hence, to test models of clouds, it is best to consider the agreement between observed and calculated column densities of molecular species.

From this consideration, column density calculations based on the steady-state analysis were carried out using appro-

- 5 -

priate cloud models and physical conditions toward the interstellar clouds \$0ph, oPer, and Lynds 134, and some results are presented here. The method of calculation is found in Ehapter III, and the results are presented in Chapters IV (for \$0ph cloud), V (for oPer cloud), and VI (for Lynds 134).

II. CHEMISTRY IN INTERSTELLAR CLOUDS

Since the most abundant element in interstellar clouds is hydrogen, the form of hydrogen is important in describing the properties of the clouds.

In the calculation, only gas phase reactions have been considered, neglecting processes of acretion and release of molecules on the surface of dust grains except for hydrogen molecules. The reasons for this are described by Herbst and Klemperer (1973), i.e.

- The constituent(s) and the properties of the surfaces of dust grains are not well-studied.
- 2. The molecular ions N₂H⁺ and HCO⁺ have been detected, and hence even if surface catalysed reactions are considered, gas phase reactions must be involved in describing the chemistry of the interstellar medium.
- 3. The rate constants for gas phase reactions can sometimes be obtained through laboratory measurement or theoretical consideration. Gas phase processes including several important reactions are also described below.

- 7 -

(1) Hydrogen in interstellar clouds

Interstellar hydrogen mainly takes three forms, i.e. H^{+} , H, and H₂. Hydrogen ions, H^{+} , are found mainly near the hot stars as the constituents of HII regions. In cooler clouds, H and H₂ are the most abundant hydrogen species. Hollenbach, et al. (1971) demonstrated the formation of hydrogen molecules, H₂, on the surface of dust grains under the conditions usually found in interstellar clouds.

$$H + H + grain surface ----> H_{2}(gas)$$
 (418)

is the most efficient process to interpret the observed abundance of H_2 . Two properties of hydrogen make this process the most preferable for making hydrogen molecules; one is the mobility of hydrogen atom on the surface of grain even at low temperature; and the other is the low binding energy of H_2 to grain surfaces thich permit the release of H_2 from the surfaces of the grains. The rate, R; of the reaction 418 is expressed by the formula

$$R = 10^{-17} n n_H cm^{-3} sec^{-1}$$

where n and n_{H} are the number densities of the total hydrogen atom and the hydrogen atom in the atomic form (Hollenbach, et al.

The reaction numbers are those in APPENDIX B.

1971).

It is well established that hydrogen molecules are the **Dajor** constituent of dense clouds. In less dense $(n \le 10^3)$ clouds where ultra-violet radiation can penetrate, photodissociation of H₂ molecules is important:

The rate for this process is given by

Rate (D) =
$$2 \times 10^{-17}$$
 n $\frac{1-f}{f}$

where $f = \frac{x}{x + \sqrt{x} + 1}$

n is the total density: $n = n(H) + 2n(H_2) \text{ cm}^{-3}$ and $x = 10^{-4} n^2 \tau_c \exp(5\tau_c)$ (Hollenbach, et al. 1971).

In the above expressin τ_c is the optical depth measured at the **eloud** centre. Optical depth and visual absorption are related by

$$A_{\rm rr} = 1.086 \, \tau_{\rm rr}$$
 and hence

$$T_{c} = \frac{A_{v}}{1.086} = \frac{1}{2}$$
 (cloud centre)

Isual absorption for each cloud is taken from observed data.

In dense clouds where ultre-violet radiation cannot In dense of a large shielding effect, the major destrucion process of the H₂ molecule is the ionization caused by high Dergy cosmic rays which have the energy ≥ 100 Mev. The ionization te is well established and found to be $\sim 10^{-17}$ sec⁻¹ (Hollenbach, al. 1971; Mitchell, et al. 1977). In the dense clouds exposed these cosmic rays, hydrogen atoms suffer from ionizations:

$$H + p ----> H^{+} + e^{-} + p$$
 (596)

rogen molecules are destroyed in three ways:

$$H_2 + p ----> H_2^+ + e^- + p$$
 (601)

$$H_{2} + p ----> H^{+} + H + e^{-} + p$$
 (602)

$$H_2 + p ----> H + H + p$$
 (603)

rates for these processes are given by Hollenbach, et al. **Glassgold and Langer** (1974), and Watson (1974).

Gas phase processes

As described above, only two-body gas phase reactions

- 10 -

are assumed for formation of molecules other than H₂ in interstellar clouds. The low temperatures of clouds set another restriction to the chemistry of the clouds: Reactions must be inothermic (Herbst and Klemperer 1973). The rate constants for

 $K = Ae^{-Ea/kT} cm^{3}/sec$

where A is a constant,

Ea is called activation energy and is the minimum energy barrier to the reaction,

and k is the Boltzmann constant.

In the case of neutral-neutral reactions, the activation energy is often much greater than kT and hence K ---> 0, i.e. neutralneutral reactions are often of less importance. Only atomreactive species reactions are the exceptions.

Under the low density and low temperature conditions of clouds, exothermic ion-molecules reactions are the major processes in forming various species, as they hardly need activation energy.

TABLE 1 in APPENDIX B lists the ion-neutral reactions used in the calculations.

(3) Photodestruction (photoionization and photodissociation) processes

In diffuse cloud, the background radiation field is quite important in the ionization and dissociation of many species. In <u>TABLE 3</u> of APPENDIX B, photodestruction processes used in the calculation are listed. All these are taken from Mitchell et al. (1977b). Rates for photodestruction processes are calculated by Black and Dalgarno (1977).

The rate, R, of each photoionization or photodissociation is expressed as

$$R = \int_{\mathcal{U}}^{\mathcal{U}_{L}} \phi(\nu) \sigma(\nu) d\nu$$

where $\phi(\nu)$ is the intensity of the radiation field at frequency ν , $\sigma(\nu)$ is the cross section of that process in cm².

Integration is made from the threshold frequency, ν_t , to the Lyman limit of atomic hydrogen, ν_L . Intensity, $\phi(\nu)$, of the radiation penetrating through a cloud with no internal radiation Bource has the form using boundary intensity, $\phi_0(\nu)$,

 $\phi(\boldsymbol{\nu}) = \phi_{\boldsymbol{\sigma}}(\boldsymbol{\nu}) e^{-KT(\boldsymbol{\nu})}$

where τ is the optical depth,

and K is linear absorption coefficient.

In this expression, $\boldsymbol{\tau}$ is related to the corresponding absorption in magnitude by

$$A_{\nu} = 1.086 T_{\nu}$$

Using these expressions, Black and Dalgarno evaluated the rate of the photodestruction processes and obtained approximate expression of the rate as

 $R = A \exp(-B \times A_v) \sec^{-1}$

mhere A and B are constants, A_v is the visual absorption which is taken from observed data.

In <u>TABLE 3</u> in APPENDIX B, values of A and B are listed for various **Dactions.** These values are estimated for a background radiation **pnergy** normalized to 4×10^{-17} erg cm⁻³Å⁻¹ at 1000 Å.

TII. THE METHOD OF CALCULATION

In the calculation, the following quantities may be needed to specify the cloud properties. These quantities are usually taken from observed data for each cloud.

(1) Total Density, n

Hydrogen atoms and molecules are the most abundant species in any cloud and others are minor constituents compared with hydrogen. Thus the total density of clouds is defined by the number density of hydrogen nuclei, namely,

 $n = n(H) + 2n(H_2)$

where n(x) describes the number density of species x in cm⁻³.

(2) Element Abundances

In the calculation, nine elements are included except for the calculation of ¹³C abundances in Lynds 13⁴. Those are H, He, C, O, N, S, Mg, Fe, and Si.

- 14 -

Morton (1975) found depletion in the abundance of many elements compared with solar element abundances in the direction of ζ Oph. Snow (1976) has reported the depletion of element abundances toward o Per. The relative abundances of elements used in these calculations are listed in <u>TABLE 1</u>.

TABLE 1

ELEMENT ABUNDANCES (H = 1.00)

P PS

	Solar	ξ Oph	o Per
He	0.14	0.14	0.14
С	3.72(-4)	7.41(-5)	3.35(-5)
N	1.15(-4)	2.14(-5)	3.57(-6)
. 0	6.76(-4)	1.76(-4)	1.51(-5)
Mg	3.47(-5)	1.02(-6)	2.51(-6)
Si	3.55(-5)	8.32(-7)	3.72(-7)
S	1.62(-5)	8.32(-6)	1.22(-6)
Fe	2.51(-5)	2.69(-7)	1.35(-7)

Decording to the column density and the element depletion data presented by Morton and Snow, however, the element abundances observed have large uncertainties.

Since the element abundances toward L134 have not been **Deserved**, the same depleted abundances used for the calculation of **C**Oph are assumed in the L134 calculation. (3) Optical Depth

11-17S

Many photodestruction processes are involved in these calculations. By the rate equation described previously,

 $R = A \exp(-B \times A_v),$

the rate of photodestruction processes depends on the optical depth, i.e. the distance into the cloud. The optical depth at a particular point in the cloud is calculated from \mathcal{T}_c using the working model of each cloud which is described later.

When the visual extinction or the total optical depth is not available from the observations, the total optical depth is calculated by the relation (Hollenbach et al. 1971):

$$T_{c} = (-\frac{M}{500})^{1/3} (-\frac{n}{260})^{2/3}$$

where M is the cloud mass in M_{\odot} , and n is the total density of the cloud.

(-) Ultra-violet Radiation Field Strength

Probably the ultra-violet radiation field in inter **shallar** clouds is not simple, especially for clouds near hot **stars** (e.g. ξ Oph and o Per). In the calculation, however, all

- 16 -

effects of the radiation field caused by the stars are neglected even in the case of o Per in which the star is imbedded in the cloud. The radiation field considered is the mean isotropic intercloud radiation field. The unattenuated radiation field strength is expressed (Black and Dalgarno 1977) as

$$\phi_{0}(\nu) = 2.0 \times 10^{-17} \lambda^{3} I$$
 photons cm⁻² sec⁻¹ Hz⁻¹

for $\lambda = 912 - 3300$ Å, I is the radiation energy density normalized to 4 x 10⁻¹⁷ erg cm⁻³ Å⁻¹ at 1000 Å. All A and B values ppearing in <u>TABLE 3</u> in APPENDIX B are calculated for this value, i.e. I = 1.

From the method of derivation of A and B, photodestruction rates, R, are directly proportional to I (Black and Dalgarno 1976). Where a stronger radiation field is appropriate, the rate, R, is simply multiplied by a factor which differs from unity (for example, 2.5 for the ζ Oph cloud).

5) Cloud Temperature

In some reactions the reaction rate coefficients are perature dependent, and hence cloud temperature is needed. perature estimates are taken from the observed data for each loud. In the calculation, the temperature ranges from 10°K to 10°K. (6) Cloud Size

To compute the column densities of species, cloud size must be involved. The size is taken from the observed data, if available, or computed from the cloud mass and the total hydrogen density, n, assuming spherical shape.

- 18 -

The chemical reactions used and their rates are listed in <u>TABLE 1</u> to <u>TABLE 5</u> in APPENDIX B. These include ion-neutral reactions, neutral-neutral reactions, photodestruction processes, ion-electron recombinations and cosmic ray induced destructions. In these reactions 100 molecular and atomic species are concerned. They are listed in <u>TABLE 2</u>. Additional species including the **Lso**tope ¹³C are used in a calculation for the globule L134.

Steady-state column densities are calculated as follows: Bach species must appear at least once as a reactant and at least once as a product in the series of chemical reactions. Then a set of simultaneous equations can be set up. The method is llustrated in the example below.

brample:

Let the chemical reactions and their rate constants $\mathbf{x}_{\star}(\mathbf{cn}^3/\mathbf{sec})$ be given as follows:

TABLE 2

SPECIES USED FOR CALCULATIONS

H + + + + 2 + 3 H ₂	He He ⁺	C C [≁] C ₂ C [≁] CH	13 _C 13 _C * 13 _{CH} 13 _{CH} * 13 _{CH} *	0 0 ⁺ 0 ₂ 0H 0 ⁺ ₂	N N ⁺ NH NH ⁺	S SH [*] H ₂ S [*] SH	Si Si [†] H ₂ Si [†] Si0 [†] Si0	Mg Mg	Fe Fe⁺	e
		CH ⁺ CH ₂ CH ₂	13 _{CH2} 13 _{CH3} 13 _{CO}	он ⁺ со н ₂ о	NH [*] NH ₃ NH [*] 3	so [*] sn [*] so	HS10 ⁺			
		CH [*] 3	H ¹³ CO ⁺	H ₂ 0 ⁺	NH [*]	SN				
122.		C ₂ H	13 _{C0} ≁ H ¹³ C0	н ₃ о⁺ нсо⁺	NO NO [*]	H ₂ S HCS [≁]				
14		c₂H [≠] c₃	H ₂ ¹³ C0 ⁺	CO [*] HCO	N ₂ N ⁺ 2	H ₃ s⁺ cs⁺				
ŀ		C ⁺ 3 C ₃ H ⁺		co ₂ co [*] 2	CN CN [*]	CS OCS				
		сн ₃ сн [*]		н ₂ со 0 ₂ н [*]	n ₂ h [⁺] hcn	s02 s2				
I.	Ň	СН ₄ СН [*] 5		H ₂ C0 ⁺ HC0 ⁺ 2	hcn [≁] H ₂ cn [≁]	ch ₃ s⁺ h ₂ cs				
		,		н ₃ со ⁺ сн ₂ он ⁺	с ₂ n ⁺ сн ₄ n ⁺	H ₃ CS [≁] H ₂ CS [≁]				

- 19 -

a starter

$$H \xrightarrow{p}{-k_{1}} H^{+} + e^{-}$$

$$H_{2} \xrightarrow{p}{k_{2}} H^{+} + H + e^{-}$$

$$H_{2} \xrightarrow{p}{k_{3}} H^{+} + H + e^{-}$$

$$H_{2} \xrightarrow{p}{k_{3}} H^{+} + e^{-}$$

$$H^{+} + 0 \xrightarrow{k_{4}} e^{-}$$

$$H^{+} + 0 \xrightarrow{k_{4}} 0^{+} + H$$

$$H_{2}^{+} + 0 \xrightarrow{k_{5}} 0^{+} + H$$

$$H_{2}^{+} + H \xrightarrow{k_{6}} H^{+} + H_{2}$$

Then the simultaneous equations are as follows:

For H:
$$K_1 n(H) + K_6 n(H_2^+) n(H)$$

= $K_2 n(H_2) + K_4 n(H^+)n(0) + K_5 n(H_2^+) n(0)$

$$\frac{\mathbf{k} \cdot \mathbf{H}^{\dagger}}{\mathbf{k}_{4}} \cdot \mathbf{K}_{4} \cdot \mathbf{n}(\mathbf{H}^{\dagger}) \cdot \mathbf{n}(0) = \mathbf{K}_{1} \cdot \mathbf{n}(\mathbf{H}) + \mathbf{K}_{2} \cdot \mathbf{n}(\mathbf{H}_{2}) + \mathbf{K}_{6} \cdot \mathbf{n}(\mathbf{H}_{2}^{\dagger}) \cdot \mathbf{n}(\mathbf{H})$$

For H_2^+ : $K_5 n(H_2^+) n(0) + K_6 n(H_2^+) n(H) = K_3 n(H_2)$

and so on.

- 20 -

- Contract

These equations set up for each species are solved by Newton's method of iteration, and the abundance for each species is obtained as the converged value after several iterations. The computing program created by Drs. Kuntz, Mitchell, and Ginsburg was used. The detailed method of solution is described in Kuntz, Mitchell, and Ginsburg (1976). To obtain bolumn densities, a spherical, shell-divided, onion-like configuration was assumed as a cloud model. The parameters described above specify this simplified cloud. The division into 10 Demogeneous shells corresponds to the variation of optical depth at the various depths from the outside of the cloud to the centre. The optical depth is proportional to the distance (or depth).

If the actual cloud has revealed the existence of a **Menser** part, for example a dense core around the centre, then, the cloud model was assigned to have multiple-density components as shown in <u>FIGURE 1</u>. The computing program calculates the **Boundances** of the species for each shell which has corresponding **Dotical** depth and density n, multiplies by shell-thickness and **sums** up from one "edge" of the cloud to another "edge".

Thus, the working equation for species i is simply

 $N_{i} = \sum n_{ij} \cdot \Delta R_{j}$

- 21 -

where N_i is the column density of species i,

n_{ij} is the calculated abundance of species i in the shell j, and ΔR_j is the thickness of the shell j.

FIGURE 1

CLOUD MODEL FOR CALCULATION SHOWING AN EXAMPLE OF DENSITY AND OPTICAL DEPTH VARIATION

- 22 -

IV. \$ OPHIUCHI CLOUD

The § Ophiuchi and o Persei clouds are, perhaps, the cest-studied clouds over the infrared, ultraviolet, and radio begions. Extensive observations by the high-resolution ultra-Holet spectrometer on the Copernicus satellite have been carried out for these stars. § Ophiuchi (HD149757) itself is a bright 09.5V star with many absorption lines in the ultraviolet region. There is some evidence of continuous mass loss from this star Black and Dalgarno 1977). Other physical parameters about § Ophiuchi (Morton 1975) are:

 $m_{v} = 2.56$ B - V = +0.02 (B - V)_o = -0.30 for 09.5V Hence, $E_{B} - V = 0.32$ mag and $A_{v} = 3.0 \text{ x } E_{B-V} = 0.96$

This extinction is due to the interstellar medium between § Oph and the sun. The distance to the star is calculated as

200 pc for $M_v = -4.9$ (Morton 1975).

- 23 -

There exists a model of ζ Ophiuchi cloud in which the cloud is a thin disc with the thickness of 0.05 pc (Morton 1975). From the observations, there are at least 6 velocity components in the clouds. However, from the distribution of the excited states of CI and H₂, a two-component model with different total density for each component has been proposed (Black and Dalgarno 1976). This model consists of two regions <u>(FIGURE 2)</u>: one is a

> FIGURE 2 A CLOUD MODEL OF § OPHIUCHI WITH TWO-DENSITY-COMPONENT

- 24 -

pore-like region which occupy 1/10 of the total size with higher density and lower kinetic temperature, while another is a halolike region with lower density and higher temperature. The core size is 2.06×10^{17} cm along the line of sight, with a temperature of 22° K, and a density of 2500 cm⁻³. The total halo size is 1.71×10^{18} cm, its temperature is 110° K and its density is 500 cm⁻³. Black and Dalgarno also suggest that the radiation field intensity for this cloud is characterised by

$$I = 2.5$$
 instead of $I = 1.0$

Using this model, they achieved fairly good agreement between **Decoretical and observed values for column densities of some** species. In the present calculation, their model as well as a **Decomponent model is used.**

For a one-density-component model, it is possible to obtain a good guess of the conditions for calculation by plotting beveral calculated abundances, $n(\mathbf{x})$, divided by the H_2 abundance, $n(\mathbf{H}_2)$ (i.e. $n(\mathbf{x})/n(\mathbf{H}_2)$) against total density and by comparing the result with the observed values of $n(\mathbf{x})/n(\mathbf{H}_2)$. The plottings are shown on <u>FIGURE 3</u> to <u>FIGURE 6</u>. On the right hand side, the observed values of $n(\mathbf{x})/n(\mathbf{H}_2)$ are shown for various species.

- 25 -

FIGURE 2 1000 (P(*), n(H2)) 50 -6 WARIATION OF 100 Cm3 1000 NO. R T X1061 0 NOK 10 N N VALUES VAL OH H £ 60

FIGURE 5 LOG [m(X)) n(++) -10 6-6 Ó an of the var Milen Thefrom 22 K to Specient sture bar showed RIATION OF H2) FOR S heepraing to t appes, of the nova to the observed one his attained when 100 00 There remains 10°K. however, a difficulty 111 22 0.210 If we choose an η. appropris 1.100 construct a 3 clum densities he various erectes and The observed alts of the calulations carried of with the conditions 1000 cm and = 100 E are listed in the column 1250 table TABLE 3. liso contains the results stion for the Z-develops SiO -component and Daliga I Is obtain Banch 300 OBSE

FIGURE 6

 $L\Theta G_{n}(X)/n(H_{2})$ 0 0 0 rossing the curves vertically of leveral spicies show the tion of the value of LOG $(n(x)/n(H_{1}))$ when the temperature and from 22°K to 10°K at n = 2500 cm . Species having no rature bar showed in simificant temperature dependence. According to these waphs, the best it of the calcul inces to the observed one is attained when $n \approx 1000 \Omega^{-3}$ 00°K. There remains, however, a difficulty with C, and CH mitting. If we choose an appropriate size for the cloud one are to construct a good one-density-component model for J The observed column densities for various species and a sulss of the calculations carried out with the conditions m = 1000 cm⁻³ and T = 100 K are listed in the column 2 and 3 the TABLE 3. The table iso contains the results of the Olation for the two-dersity-component man a colume 4 Oand esults obtained by Blace and Dalgarno (and man 5) ...

Ears crossing the curves vertically of several species show the Dariation of the value of LOG $(n(x)/n(H_2))$ when the temperature litered from 22°K to 110°K at n = 2500 cm⁻³. Species having no temperature bar showed no significant temperature dependence.

According to these graphs, the best fit of the calculated **Dundances** to the observed ones is attained when $n \approx 1000 \text{ cm}^{-3}$ and $\mathbf{I} \geq 100^{\circ}\text{K}$. There remains, however, a difficulty with C₂ and CH⁺ fitting. If we choose an appropriate size for the cloud, we are **able** to construct a good one-density-component model for the \$ Oph **cloud**.

The observed column densities for various species and the results of the calculations carried out with the conditions of $n = 1000 \text{ cm}^{-3}$ and $T = 100^{\circ}\text{K}$ are listed in the column 2 and 3 of the <u>TABLE 3</u>. The table also contains the results of the **Calculation** for the two-density-component model (column 4) and the results obtained by Black and Dalgarno (column 5)...

TABLE 3

COLUMN DENSITIES TOWARD ZETA OPHIUCHI (LOG(X))

Calculated Values

Observed Values	One-density Component Model	Two-density- Component Model	Black and Dalgarno
20.62 (1)	20.90	20.74	20.38
15.45 (2)	15.28	15.54	15.02
<12.76 (1)	9.46	9.33	9.83
13.53 (1)	14.01	13.90	13.57
12.97 (1)	10.98	10.75	11.39
12.94 (1)	12.58	13.08	12.75
<12.72 (1)	13.84	14.30	13.14
<13.47 (3)	7.02	6:"66	
<13.87 (1)	10.61	10.47	10.14
<14.03	9.20	9.08	8.79
14.19-14.29(3)	13.57	13.46	13.69
<12.49 (3)	12.91	12.71	12.03
<12.51 (1)	11.14	10.83	
	Observed Values 20.62 (1) 15.45 (2) <12.76 (1) 13.53 (1) 12.97 (1) 12.94 (1) <12.72 (1) <13.47 (3) <13.47 (3) <13.87 (1) <14.03 14.19-14.29(3) <12.49 (3) <12.51 (1)	Observed Values One-density- Component Model 20.62 (1) 20.90 15.45 (2) 15.28 <12.76 (1)	Observed ValuesOne-density- Component ModelTwo-density- Component Model20.62 (1)20.9020.7415.45 (2)15.2815.54<12.76 (1)

(1) Morton (1975)

3.0

(2) Knapp and Jura (1976)

(3) Snow (1976)

- 31 -

These are discussed later. The chemical reactions which ignificantly contribute to the formation and destruction of bertain species at this density (1000 cm^{-3}) for ξ Oph cloud are listed in <u>TABLE 4</u>. The plus sign denotes the contribution to formation and the minus sign denotes destruction. The numbers outside the brackets are the chemical reaction numbers listed in <u>APPENDIX</u> B and the numbers appearing in the brackets are rates in units of molecules/cm³/sec relative to the largest formation or destruction rates.

TABLE 4

CONTRIBUTIONS OF INDIVIDUAL CHEMICAL REACTIONS TO FORMATION AND DESTRUCTION OF SPECIES FOR 5 OPH

> $n = 1000 \text{ cm}^{-3}$ $0.047 \le \tau \le 0.47$

$\tau = 0.047$	τ = 0.28	$\tau = 0.47$
201 (-1.00) 474 (+0.82)	201(-1.00)474(+0.82)	201 (-1.00) 474 (+0.73) 67 (+0.28)
-74 (-1.00) 544 (+0.90) -87 (+0.61) 475 (-0.52) -85 (+0.36) 66 (-0.23)	487 (+1.00) 474 (-0.86) 544 (+0.65) 475 (-0.61) 485 (+0.41) 66 (-0.40)	487 (+1.00) 474 (-0.57) 475 (-0.51) 66 (-0.45) 544 (+0.42) 485 (+0.31) 67 (-0.22)
502 (+ 1.00) 499 (-0.82) -76 (- 0.42)	502(+1.00) 499(-0.72) 476(-0.39)	502(+1.00) 499(-0.67) 476(-0.39)
As can be seen in column 2 and 3 of <u>TABLE 3</u>, agreement with the observed column densities is excellent for H_2 , CO, and CN, and fairly good for CH. However, the calculated column density of CH⁺ is somewhat low and C_2 column density is somewhat high Dompared with the observation. This discrepancy between the observed and calculated values of CH⁺ is difficult to understand (Mitchell, et al. 1977a;1977b). Although quite a number of factors are involved in the calculation of column densities, the possilities of obtaining better agreement whould be sought for.

At this density OH' is mainly removed by the reactions

$$CH^{+} + H_{2} -----> CH_{2}^{+} + H$$
 (201)
 $CH^{+} + e^{-} -----> C + H$ (535)

both for large and small τ , and formed mainly by the reactions of. <u>TABLE 4</u>.

$$CH + h\nu ----> CH^{+} + e^{-} \qquad (474)$$

$$C^{+} + CH ----> CH^{+} + C \qquad (67)$$

CH⁺ is directly formed by photoionization of CH through **Duction** 474 above. Thus CH, in turn, is mainly formed by the **Durious** photodestruction processes at this density, namely,

-- 33 -

$$CH_2 + h\nu ----> CH + H$$
 (485)

$$C_{2}H + h\nu ----> CH + C$$
 (487)

$$CH_3 + h\nu ----> CH + H_2$$
 (505)

It is, therefore, expected that if the radiation field strength is increased CH abundance and, in turn, CH⁺ abundance might be increased. At this point, it should be noted that CH formed by the above reactions suffers from photodestruction process to yield C and H instead of CH⁺, i.e.

$$CH + h\nu ----> C + H$$
 (475)

However, at this density (n=1000cm⁻³), the reaction 474 dominates for all values of τ (cf. TABLE 4).

Next, the possibility exists of increasing the CH⁺ bundance through the reaction 67:

 $C^{+} + CH ----> CH^{+} + C$ (67)

Since we have seen the reactions which increase the abundance of CH, the problem is to increase the abundance of C^+ . The

- 34 -

major formation process of C^+ at this density is the photoionization of carbon, i.e.

 $C + h\nu ----> C^{+} + e^{-}$ (469)

This reaction is also the major destruction process of carbon atoms. Hence, if the radiation field strength is increased, C⁺ boundance increases rapidly and after all CH⁺ abundance may be faised.

In spite of this expectation, however, attempts to raise significantly the abundance of CH⁺ by increasing the radiation field strength have failed (Mitchell, et al. 1977a). They could hot get sufficient CH⁺ to explain the observations. Black and Dalgarno (1977), who also could not get sufficient CH⁺, suggest that the observed CH⁺ abundance occurs in an EII region instead of in the §Oph cloud, the HII region consisting of the matter ejected from the star and surrounding the star.

The calculated abundance of C_2 is high compared with the **constant** value. At this density C_2 is removed from the cloud by the reactions

 $C_2 + h\nu ----> C_2^+ + e^-$ (499)

- 35 -

$$C_2 + h\nu ----> C + C$$
 (476)

and is formed mainly by the reactions

1.5

th

$$C_3 + h\nu ----> C_2 + C$$
 (502)
 $C_3^+ + e^- ----> C_2 + C$ (562)

Of these reactions, 499, 476 and 502 are photodestruction processes. 499 and 502 have the same rate. Hence, an increase in the radiation field may lower the abundance of C_2 : However, this has not yet been tested.

The two-component cloud model proposed by Black and Dalgarno (1977) is used here for calculation of column densities. The details of the model is described in the previous section.

<u>TABLE 3</u> includes the results of the calculation of the two-component model and those of Black and Dalgarno for comparison, too. Excellent agreement with the observed column densities is attained for H_2 , CO, CH, and CN, but the agreement with observation for CH⁺ and C₂ is again not satisfactory. The same tendency can be seen in the results of Black and Dalgarno.

- 36 -

V. O PERSEI CLOUD

This cloud has also been extensively investigated, especially in the ultra-violet region, by the Copernicus satellite (eg. Snow 1975, 1976). • Persei is a Bl III star imbedded in the Perseus complex region as a member of the Perseus II association. For • Per,

$$E_{B-V} = 0.32 \text{ mag}$$

and

$$\frac{A_v}{E_{B-V}}$$
 = 2.72 Hence, A_v = 0.87 (Snow, 1976)

This amount of extinction is produced by the cloud intervening between o Persei and the sun. However, there is some evidence that the star is located at the near edge of the molecular cloud. The radiation from the imbedded star might effect the chemistry of the cloud, although it is neglected in the calculations. There is another uncertainty for this cloud. As mentioned in the earlier section, observed values of element abundances, especially of C, O, and N, have large uncertainties compared with those reported for the § Ophiuchi cloud.

Snow (1976) suggests possible density variation in the cloud

- 37 -

and the existence of all molecules in a very dense portion. It is therefore, worthwhile to compute a two-component model for this cloud. The total density ($n=n(H) + 2n(H_2)$) for this cloud is not well-established.

Since the star \boldsymbol{o} Per is imbedded in the cloud, the column density calculation is somewhat different from that for $\boldsymbol{\xi}$ Oph cloud.

As mentioned in the previous chapter, only the intercloud radiation field is considered and the stellar radiation field is neglected, even from the star imbedded in the cloud. The cloud optical depth is highest at the point of the star and decreasing toward the "edge" of the cloud in the calculation (FIGURE 7).

Since the uncertainty of the observed total density, n, is somewhat large, the best fit condition is looked for as for § Oph cloud, by plotting

 $\log n(x)/n(H_2)$ vs. n

where n(x) is the calculated abundance of species x for various n with $\tau = 0.4$

n is the total density (= $n(H) + 2n(H_2)$).

- 38 -

FIGURE 8 and 9 show these plots. In this case, the effects of temperature variation are not checked since the kinetic temperature of the cloud is well estimated (Snow, 1976) and is $T = 20^{\circ}$ K. On the right side, observed values of log $n(x)/n(H_{o})$ are marked.

According to the graph, n = 1000-1200 is likely for some species except CH^+ and C_2 again for this cloud. The total density derived from the observed column density of H_2 is higher (Snow, 1976), i.e.

 $1120 \leq n(H) \leq 7450 \text{ cm}^{-3}$

 $n(H) = 1200 \text{ cm}^{-3}$ is chosen for the calculation. There is another uncertainty of the observation toward this cloud: Element abundances, especially those of C and O, have large uncertainties. Calculations are carried out both for C/O = 50 and C/O = 0.08 which approximately correspond to the extremes of the uncertainty (Snow, 1976).

In this calculation, the cloud size (from A to B in FIGURE 7) is estimated from the observed column density of H nuclei and the assumed total density, namely

 $\dot{N}(H) = N(H) + 2N(H_2) = 1.41 - 1.72 \times 10^{21} \text{ cm}^{-2}$

- 39 -

$$n(H) = n(H) + 2n(H_2) = 1200 \text{ cm}^{-3}$$

Then size = 1.18×10^{18} cm.

FIGURE 7

40

A CLOUD MODEL FOR O PER

The optical depth is highest at the position of the star.

TABLE 5

COLUMN DENSITIES TOWARD OPER

2

Species	Observed Values	C/0 = 50	C/0 = 0.08
H ₂	20.58-20.64	20.76	20.80
СН	13.44-13.62	13.88	12.70
CH	12.55-12.81	10.98	9.06
CO CO	14.68-14.95	15.72	13.31
COT	≤13,23	7.24	6.38
CN	12.34-12.70	13.95	11.83
C ₂	≤ 12.64	15.91	10.62
CH ₂	≤12.60	14.15	13.58
NO	₹14.43	4.59	8.14
OH	12.79-13.09	10.50	12.39
H20	≦11.99	8.54	11.23
SiO	<u>≤</u> 12.60	7.23	10.43
N ₂	≦13.32	8.53	9.72
02	≦ 13.54	7.28	9.96
SH	≤12.16	4.40	5.41
B H	21.15-21.24	20.30	

- 43 -

The results as well as the observed values are listed in **RLE 5.** It is interesting to see that in <u>TABLE 5</u>, CH and CO clumn densities decrease by a factor of ~100 and the OH column ensity increases by a factor of ~75 when the C/O ratio is inged from 50 to 0.08. For CH, CO, and CN, the observed lines lie between the values calculated for C/O = 50 and 0.08. For Example, in the case of CO, the observed value 14.68 $\leq \log N$ 14.95 is between the log N = 15.72 for C/O = 50 and the log N 13.31 for C/O = 0.08. Agreement with observations is, therefore, Factory in this case. Other species such as CH and CN also w satisfactory agreement with observed column densities. Again if this cloud, the calculated CH⁺ abundance is far below the wred value and the calculated C₂ abundance is too high.

In our chemical scheme, the majority of CN is removed at density (1200 cm⁻³) by the photodissociation process (cf. **LE** 6).

TABLE 6

CONTRIBUTIONS OF INDIVIDUAL CHEMICAL REACTIONS TO FORMATION AND DESTRUCTION OF SPECIES FOR **O** PER

> $n = 1200 \text{ cm}^{-3}$ 0.087 $\leq \tau \leq 0.87$

 $\tau = 0.087$ $\tau = 0.52$ $\tau = 0.87$ (-1.00) 421(+0.96) 482(-1.00) 421(+0.99) 421(+1.00) 482(-0.99)

$$CN + h\nu ----> C + N$$
 (482)
the majority is formed by

and

 $C_2 + N ----> CN + C$ (421)

Increasing the radiation field strength might not be the appropriate solution to lower the CN abundance for C/0 = 50because, as seen in previous section, C_2 might be increased by increasing the radiation field, and the CN abundance might be steady or at least moderately changed through 421 with increased C_2 and through 482 with the increased destruction rate.

The rate coefficient of 421 is uncertain (Solomon and Klemperer 1972). If the rate is decreased, the CN abundance may be lowered.

It is worth looking for a more efficient process for destroying CN. The following is proposed by Dalgarno and Black (1977):

$$CN + 0 ----> CO + N$$
 (439)

Putting this reaction into the chemical reaction scheme, Mitchell (1977) can decrease the CN abundance by a large factor.

- 45 -

The OH column density obtained from the calculation is somewhat low (TABLE 5). The OH abundance is sensitive to the primary cosmic ray ionization rate ζ_o , through (Mitchell, et al. 1977b; Black and Dalgarno 1977).

$$H + P ----> H^+ + e^- + p$$
 (596)

$$H^{+} + 0 ----> 0^{+} + H$$
 (1)

- $0^+ + H_2 ----> 0H^+ + H$ (109)
- $0H^{+} + H_{2} ----> H_{2}0^{+} + H$ (206)

$$H_20^+ + H_2^- - - - > H_30^+ + H$$
 (298)

$$H_{30}^{+} + e ----> OH + 2H$$
 (554)

Mitchell, et al. found that at high densities, the abundances of OH, CH, HCO^+ , and $N_2^{\text{H}^+}$ decreased with decreasing $\boldsymbol{\xi}_{\circ}$. However, to increase the cosmic ray ionization rate might not be a solution for increasing the OH column density because there is no good reason to believe that $\boldsymbol{\xi}_{\circ}$ is higher than 10^{-17} s^{-1} .

VI. LYNDS 134

Lynds (1962) has studied and listed a large number of interstellar clouds: This object is one of them. L13⁴ is a small, isolated dark globule with an opaque core. The lower limit of the absorption at the cloud centre is fairly large, $A_v \geq 8$ mag (Heiles 1968). This number, based on star counts, is rather poorly determined.

A lower limit of the cloud mass is estimated by the wirial theorem to be $18 M_{\odot}$ (Brooks, et al. 1976). However, another recent estimate of the lower mass limit (Dickman 1977) is

$$M \stackrel{2}{=} 66 M_{\odot}$$

In the calculation, 75 M_o is used. The total density, n, is not well known and n = 10⁴ cm⁻³ is assumed in the calculation as the standard value. Because of the very uncertain central extinction, the optical depth at the cloud centre, τ_c , is estimated from the assumed mass and the assumed total density using

 $\tau_{\rm c} = (-\frac{M}{500})^{1/3} (-\frac{n}{260})^{2/3}$

- 47 -

where M is the cloud mass in M.

Since a systematic velocity pattern has been observed, it has been suggested that the cloud is rotating in a solid body fashion. The distance estimate to the cloud (200 pc) is uncertain, and the proposed real size of the cloud (0.9 x 0.6 pc.) is also poorly known. The kinetic temperature determined from CO observations is $\sim 7^{\circ}$ K (Brooks, et al. 1976). While many molecular species have been detected in molecular clouds associated with HII region, fewer species have been found in dark clouds. The molecular species detected in L134 are OH, CH, H₂CO, CO, HCO⁺ and HCN (Snyder and Hollis 1976). In this cloud, three isotopic forms of CO have been detected (Mahoney, et al. 1976). Dickman, et al. (1976) studied the fractionation of CO and found that there is considerable enrichment of ${}^{13}{\rm C}{}^{16}$ O in the outer part of the cloud.

Using the isotope exchange reaction (Watson, et al. 1976)

$$13_{c}^{+} + 12_{c0} - - - > 13_{c0} + 12_{c}^{+}$$
 (107)

the abundances of various carbon isotope species across the cloud are calculated as well as column densities for ¹³CO.

- 48 -

Two cloud models are used: one is a one-densitycomponent model with total density $n = 10^4 \text{ cm}^{-3}$, and the other is a two-density-component model with an inner part of $n = 10^5 \text{ cm}^{-3}$ having half the mass and an outer part of $n = 10^4 \text{ cm}^{-3}$ having another half of the mass.

TABLE 7

COLUMN DENSITIES TOWARD LYNDS 134

Calculated values

Observed Species Values		One-Density- Component Model	Two-Density- Component Model
Н	21.8(1)	19.05	19.29
H ₂	21.04-21.83(1)	21.51	22.73
CH	14(2)	14.28	14.60
OH	15.11(3)	13.93	14.84
H ₂ CO	13(4)	11.87	13.90
CO	17.9(5)	17.63	18.89
HCN	11.87-12.41(5)	14.25	15.23
(1)	Sancisi (1971)		,
(2)	Rydbeck, et al. (1976	5)	
(3)	Turner (1973)		

(4) Dieter (1973)

20

(5) Milman, et al. (1975)

(6) Snyder and Hollis (1976)

<u>TABLE 7</u> lists the observed column densities and the calculated ones for the one- and the two-density-component models. As seen in the table, the two-density-component model reproduced fairly well the observed column densities. For example, Rydbeck, et al. (1976) reports the column density of CH toward L134 as 10^{14} cm⁻² from radio observation. The same order of column density is obtained from the two-density-component model. The one-density-component model also shows good agreement for the CH column density. However, the calculated column density of HCN is too high compared with the observed one.

TABLE 8

CONTRIBUTIONS OF INDIVIDUAL CHEMICAL REACTIONS TO FORMATION AND DESTRUCTION OF SPECIES FOR L134

> $n = 10^{4} \text{ cm}^{-3}$ $0.4 \le \tau \le 4.0$

τ = 0.4	T =	T = 2.4 T =		4.0	
443 (+1.00) 77 (-0.9	1) 443 (+1.00)	77 (-0.91)	77 (-1.00)	443 (+0.87)	
			569 (+0.27)		
469 (+1.00) 524 (-0.3	3) 32 (+1.00)	64 (-0.70)	32 (+1.00)	73 (-0.33)	
597 (+1.00) 32 (-0.9	+)		597 (+1.00)	32 (-0.92)	

The major destruction process of HCN (cf. <u>TABLE 8</u>) at this density $(n = 10^4 \text{ cm}^{-3})$ is

$$C^{+} + HCN ----> C_2 N^{+} + H$$
 (77)

C⁺ is, in turn, mainly formed by the reaction

$$He^+ + CO ----> C^+ + O + He$$
 (32)

In dense clouds such as L134, He⁺ is supplied by cosmic ray induced ionization

For L134, abundances of species including 13 C are calculated using the same one-density-component model. Dickman, et al (1977) point out that the ratio 12 C/ 13 C for L134 is approximately 104 and that the abundance of 13 C 16 O is considerably enriched in the outer regions of L134 where an exchange reaction

 $13_{c}^{+} + 12_{c0} - - - > 12_{c}^{+} + 13_{c0}$ (107)

proceeds effectively to give the observed column density.

The calculation is carried out to demonstrate this suggestion using the exchange reaction with a suggested reaction rate of $k = 2.0 \times 10^{-10} \text{ cm}^3 \text{ sec}^1$ as well as the reactions which contribute considerably to formation and destruction of carbon species.

- 51 -

CALCULATED ABUNDANCES OF SPECIES INCLUDING ¹³C FOR VARIOUS OPTICAL DEPTH

				T					
0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
0.21(-3)	0.45(-4)	0.13(-4)	0.57(-5)	0.37(-5)	0.32(-5)	0.30(-5)	0.26(-5)	0.20(-5)	0.14(-5)
0.69(-5)	0.17(-5)	0.54(-6)	0.23(-6)	0.15(-6)	0.13(-6)	0.12(-6)	0.11(-6)	0.80(-7)	0.58(-7)
0.46(-13))0.39(-14)0.70(-15)0.31(-15)0.29(-15)0.40(-15)0.67(-15)0.12(-14)	0.17(-14)0.23(-14)
0.29(-9)	0.63(-10)0.19(-10)0.80(-11)0.52(-11)0.45(-11))0.42(-11))0.37(-11)	0.28(-11)0.20(-11)
0.43(-4)	0.11(-4)	0.34(-5)	0.15(-5)	0.95(-6)	0.81(-6)	0.75(-6)	0.66(-6)	0.50(-6)	0.30(-6)
0.14(-7)	0.53(-8)	0.20(-8)	0.10(-8)	0.84(-9)	0.97(-9)	0.13(-8)	0.18(-8)	0.25(-8)	0.27(-8)
0.14(-1)	0.14(-1)	0.14(-1)	0.14(-1)	0.14(-1)	0.14(-1)	0.14(-1)	0.14(-1)	0.15(-1)	0.15(-1)
0.33(-8)	0.29(-8)	0.32(-8)	0.40(-8)	0.58(-8)	0.99(-8)	0.20(-7)	0.47(-7)	0.13(-6)	0.27(-6)
0.68(-12))0.45(- 12)0.25(-12)0.17(-12)0.18(-12)0.27(-12))0.50(-12)0.12(-11)	0.33(-11)0.63(-11)
0.11(-5)	0.41(-6)	0.20(-6)	0.13(-6)	0.13(-6)	0.18(-6)	0.30(-6)	0.52(-6)	0.11(-5)	0.26(-5)
0.45(-3)	0.34(-3)	0.26(-3)	0.21(-3)	0.17(-3)	0.14(-3)	0.13(-3)	0.95(-4)	0.48(-4)	0.30(-4)
	0.4 0.21(-3) 0.69(-5) 0.46(-13) 0.29(-9) 0.43(-4) 0.14(-7) 0.14(-7) 0.14(-1) 0.33(-8) 0.68(-12) 0.11(-5) 0.45(-3)	0.4 0.8 $0.21(-3)$ $0.45(-4)$ $0.69(-5)$ $0.17(-5)$ $0.46(-13)0.39(-14)$ $0.29(-9)$ $0.63(-10)$ $0.43(-4)$ $0.11(-4)$ $0.14(-7)$ $0.53(-8)$ $0.14(-1)$ $0.14(-1)$ $0.33(-8)$ $0.29(-8)$ $0.68(-12)0.45(-12)$ $0.11(-5)$ $0.41(-6)$ $0.45(-3)$ $0.34(-3)$	0.4 0.8 1.2 $0.21(-3)$ $0.45(-4)$ $0.13(-4)$ $0.69(-5)$ $0.17(-5)$ $0.54(-6)$ $0.46(-13)0.39(-14)0.70(-15)$ $0.29(-9)$ $0.63(-10)0.19(-10)$ $0.29(-9)$ $0.63(-10)0.19(-10)$ $0.43(-4)$ $0.11(-4)$ $0.34(-5)$ $0.14(-7)$ $0.53(-8)$ $0.20(-8)$ $0.14(-1)$ $0.14(-1)$ $0.14(-1)$ $0.33(-8)$ $0.29(-8)$ $0.32(-8)$ $0.68(-12)0.45(-12)0.25(-12)$ $0.11(-5)$ $0.41(-6)$ $0.20(-6)$ $0.45(-3)$ $0.34(-3)$ $0.26(-3)$	0.4 0.8 1.2 1.6 $0.21(-3)$ $0.45(-4)$ $0.13(-4)$ $0.57(-5)$ $0.69(-5)$ $0.17(-5)$ $0.54(-6)$ $0.23(-6)$ $0.46(-13)0.39(-14)0.70(-15)0.31(-15)$ $0.29(-9)$ $0.63(-10)0.19(-10)0.80(-11)$ $0.29(-9)$ $0.63(-10)0.19(-10)0.80(-11)$ $0.43(-4)$ $0.11(-4)$ $0.34(-5)$ $0.14(-7)$ $0.53(-8)$ $0.20(-8)$ $0.14(-7)$ $0.53(-8)$ $0.20(-8)$ $0.14(-1)$ $0.14(-1)$ $0.14(-1)$ $0.33(-8)$ $0.29(-8)$ $0.32(-8)$ $0.68(-12)0.45(-12)0.25(-12)0.17(-12)$ $0.11(-5)$ $0.41(-6)$ $0.20(-6)$ $0.11(-5)$ $0.41(-6)$ $0.20(-6)$ $0.45(-3)$ $0.34(-3)$ $0.26(-3)$ $0.21(-3)$	0.4 0.8 1.2 1.6 7 $0.21(-3)$ $0.45(-4)$ $0.13(-4)$ $0.57(-5)$ $0.37(-5)$ $0.69(-5)$ $0.17(-5)$ $0.54(-6)$ $0.23(-6)$ $0.15(-6)$ $0.46(-13)0.39(-14)0.70(-15)0.31(-15)0.29(-15)$ $0.29(-9)$ $0.63(-10)0.19(-10)0.80(-11)0.52(-11)$ $0.43(-4)$ $0.11(-4)$ $0.34(-5)$ $0.15(-5)$ $0.95(-6)$ $0.14(-7)$ $0.53(-8)$ $0.20(-8)$ $0.10(-8)$ $0.14(-1)$ $0.14(-1)$ $0.14(-1)$ $0.14(-1)$ $0.33(-8)$ $0.29(-8)$ $0.32(-8)$ $0.40(-8)$ $0.68(-12)0.45(-12)0.25(-12)0.17(-12)0.18(-12)$ $0.11(-5)$ $0.41(-6)$ $0.20(-6)$ $0.13(-6)$ $0.45(-3)$ $0.34(-3)$ $0.26(-3)$ $0.21(-3)$ $0.17(-3)$	0.4 0.8 1.2 1.6 7 2.0 2.4 $0.21(-3)$ $0.45(-4)$ $0.13(-4)$ $0.57(-5)$ $0.37(-5)$ $0.32(-5)$ $0.69(-5)$ $0.17(-5)$ $0.54(-6)$ $0.23(-6)$ $0.15(-6)$ $0.13(-6)$ $0.46(-13)0.39(-14)0.70(-15)0.31(-15)0.29(-15)0.40(-15)$ $0.29(-9)$ $0.63(-10)0.19(-10)0.80(-11)0.52(-11)0.45(-11)$ $0.43(-4)$ $0.11(-4)$ $0.34(-5)$ $0.15(-5)$ $0.95(-6)$ $0.81(-6)$ $0.14(-7)$ $0.53(-8)$ $0.20(-8)$ $0.10(-8)$ $0.84(-9)$ $0.97(-9)$ $0.14(-1)$ $0.14(-1)$ $0.14(-1)$ $0.14(-1)$ $0.14(-1)$ $0.33(-8)$ $0.29(-8)$ $0.32(-8)$ $0.40(-8)$ $0.58(-8)$ $0.99(-8)$ $0.68(-12)0.45(-12)0.25(-12)0.17(-12)0.18(-12)0.27(-12)$ $0.11(-5)$ $0.41(-6)$ $0.20(-6)$ $0.13(-6)$ $0.18(-6)$ $0.45(-3)$ $0.34(-3)$ $0.26(-3)$ $0.21(-3)$ $0.17(-3)$ $0.14(-3)$	0.4 0.8 1.2 1.6 7 2.0 2.4 2.8 $0.21(-3)$ $0.45(-4)$ $0.13(-4)$ $0.57(-5)$ $0.37(-5)$ $0.32(-5)$ $0.30(-5)$ $0.69(-5)$ $0.17(-5)$ $0.54(-6)$ $0.23(-6)$ $0.15(-6)$ $0.13(-6)$ $0.12(-6)$ $0.46(-13)0.39(-14)0.70(-15)0.31(-15)0.29(-15)0.40(-15)0.67(-15))$ $0.29(-9)$ $0.63(-10)0.19(-10)0.80(-11)0.52(-11)0.45(-11)0.42(-11))$ $0.29(-9)$ $0.63(-10)0.19(-10)0.80(-11)0.52(-11)0.45(-11)0.42(-11))$ $0.43(-4)$ $0.11(-4)$ $0.34(-5)$ $0.15(-5)$ $0.95(-6)$ $0.81(-6)$ $0.75(-6)$ $0.14(-7)$ $0.53(-8)$ $0.20(-8)$ $0.10(-8)$ $0.84(-9)$ $0.97(-9)$ $0.13(-8)$ $0.14(-1)$ $0.14(-1)$ $0.14(-1)$ $0.14(-1)$ $0.14(-1)$ $0.14(-1)$ $0.33(-8)$ $0.29(-8)$ $0.32(-8)$ $0.40(-8)$ $0.58(-8)$ $0.99(-8)$ $0.20(-7)$ $0.68(-12)0.45(-12)0.25(-12)0.17(-12)0.18(-12)0.27(-12)0.50(-12)$ $0.11(-5)$ $0.41(-6)$ $0.20(-6)$ $0.13(-6)$ $0.18(-6)$ $0.30(-6)$ $0.45(-3)$ $0.34(-3)$ $0.26(-3)$ $0.21(-3)$ $0.17(-3)$ $0.14(-3)$ $0.13(-3)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

`

- 52 -

Eleven ¹³C species listed in <u>TABLE 2</u> are used. The carbon isotope ratio is chosen as ${}^{12}C/{}^{13}C = 50$, which is approximately the middle of the observed range for this cloud. As a first approximation from which the iteration proceeds, it is assumed that all ¹³C species are fractionated in ¹³C and ${}^{12}C$ by the same ratio as ${}^{12}C/{}^{13}C$ i.e. 50. Because of computer capacity, all sulfur species were dropped in the calculation.

TABLE 10

CALCULATED COLUMN DENSITIES

OF SPECIES	INCLUDING 13C
Species	Log N
13 _C +	13.6
13 _{CH}	12.1
13 _{CH} +	3.9
13 _{CH2}	7.7
13 _{CH2}	12.9
13 _{CH3} +	9.6
13 _{CO}	16.3
H ¹³ CO ⁺	10.7
13 _{C0} +	6.1
H ¹³ co	11.8
13 _C	16.6

- 53 -

The calculated abundances in cm⁻³ for different τ (i.e. for different depths of the cloud) and the column densities are listed in <u>TABLE 9</u> and <u>TABLE 10</u>. As seen in the <u>TABLE 9</u>, the tendency of enrichment of ¹³C¹⁶O in the outer region is not reproduced. ¹³CO abundances at various depths of the cloud are fairly steady, and rather more abundant in the inner region.

The major formation process of ^{13}CO in the outer (small au) region of the cloud is

$$12_{c0} + 13_{c}^{+} - - - > 12_{c}^{+} + 13_{c0}$$
 (504)

and the major destruction process is the photodestruction of 13 CO, i.e.

$$^{13}co + h\nu ----> ^{13}c + o$$
 (505)

Since the radiation field is strong in the outer region, the photodestruction process (505) dominates the dest**ruction** process. Therefore, even if 13 CO is formed efficiently through the reaction (504), it suffers from the photodestruction.

As a result, it is expected from the reaction (505) that ^{13}C might accumulate in the outer region of the cloud.

This tendency is clearly seen in <u>TABLE 9</u>, where the ${}^{13}\text{C}$ abundance for small τ is more than 10 times larger than that for large τ . However, this is not consistent with the observation in which the enrichment of ${}^{13}\text{CO}$ in the outer region has been found. To interpret this observation, assumptions in the calculation, such as isotope ratio, fractionation, or reaction coefficient of isotope process might be altered.

SUMMARY

Under the assumption of a steady-state, column densities of some 100 interstellar species are calculated using the conditions Yound in three interstellar clouds, the cloud toward \$ 0ph, • Per and Lynds 13⁴. For the calculation, spherical cloud models are imployed which are divided into 10 homogeneous shells corresponding to the optical depth variation. For the clouds in which density ivariation has been observed, a two-component cloud model is used.

For the § Oph cloud, calculations are made for two cloud models. One is a one-density-component model which has a total density of n = 1000 cm⁻³ and temperature 100° K, and the other is a two-density-component model which has two regions of different densities and temperatures, namely n = 500 cm⁻³, T = 110° K for muter region and n = 2500 cm⁻³, T = 110° K for inner region. The bptical depth at the cloud centre is estimated from Av = 0.96 for this cloud and has the value of Tc = 0.4. The calculation showed good agreement with the observed values for the species of H₂, CO, CH, and OH. However, CH⁺ and C₂ showed considerable discrepancy between observed and calculated values. Uncertainties in the radiation field strength are unlikely to resolve these discrepancies. For the calculation of the \circ Per cloud, n = 1200 cm⁻³ and T = 20°K are assumed from the observed data. Observation toward this cloud has shown an uncertainty in [C] / [0] ratio which ranges from 76 to 0.06 (Snow, 1976). Two separate calculations with [C]/ [0] = 50 and 0.08 are used here. Since the star \circ Per is inbedded in the cloud, the optical depth in the calculation is highest at the position of the star.

Fairly good agreements are attained between the observed and the calculated column densities of various species; C_2 and CH^{\dagger} again are discrepant.

In the case of dark globule L134, there are several uncertainties. A lower limit of the mass of the cloud is proposed (Dickman, 1977) and 75 M_☉ is used as the cloud mass to estimate optical depth at the centre of the cloud. The total density is not well-known and $n = 10^{4}$ cm⁻³ is assumed. Calculations were carried out for one and two-density-component models. The calculated column densities of various species showed good agreement with observed values. One exception was the high column density of HCN compared with the observed value. This discrepancy cannot be understood from the chemistry used here.

For L134, abundances of species including ¹³C are also

- 57 -

calculated. Carbon isotope ratio is chosen as 12C/13C = 50. The isotope exchange reaction

$$13_{C}^{+} + 12_{CO} - 13_{CO} + 12_{C}^{+}$$

M-

ы.

14

which has been suggested as the mechanism leading to the observed enhancement of ¹³CO was included.

The calculated abundance of ^{13}CO did not reproduce the observed fact that ^{13}CO is enriched in the outer part of L134, casting doubt on this mechanism.

REFERENCES

Abell, G.O. Exploration of the Universe, third Edition, Holt, Rinehart and Winston, New York Black, J.H. and Dalgarno, A. 1977, Preprint Brooks, 1976, MNRAS 177 299 Dalgarno, A and Black, J.H. 1977, Preprint Dickman, R.L. 1977, Scientific American 236 No. 12, P67 Dickman, R.L., Langer, W.D., McCutcheon, W.H. and Shuter, W.L.H. 1977, CNO Isotopes in Astrophysics Dieter, N.H. 1973, Ap.J. 183 449 Glassgold, A.E. and Langer, W.D. 1974, Ap. J. 193 73 Heiles, C.E. 1968, Ap. J. 151 919 Herbst, E and Klemperer, W. 1976, Physics Today 29, No. 6, P32 Herbst, E. and Klemperer, W. 1973, Ap.J. <u>185</u> 505 Hollenbach, D.J., Werner, M.W. and Salpeter, E.E. 1971, Ap.J. 163 165 Knapp, G.R. and Jura, M. 1976, Ap.J. 209 782 Kuntz, P.J., Mitchell, G.F. and Ginsburg, J. 1976, Ap.J. 209 116 Lynds, B.T. 1962, Ap.J. Supp 7 1 Mahoney, M.J., McCutcheon, W.H., and Shuter, W.L.H. 1976, A.J. 81 508 Milman, A.S., Knapp, G.R. and Knapp, S.L. 1975, A.J. 80 101 Mitchell, G.F., Ginsburg, J.L. and Kuntz, P.J. 1977a, Ap.J. 212 71 Mitchell, G.F., Ginsburg, J.L. and Kuntz, P.J. 1977b, Submitted for publication

Mitchell, G.F. 1977, Private communication

Morton, D.C. 1975, Ap.J., 197 85

Rank, D.M., Townes, C.H. and Welch, W.J. 1971, Science 174 1083

Rydbeck, O.E.H., Kollberg, E., Hjalmarson, A., Sume, A. and

Ellder, J. 1976, Ap.J. Supp <u>31</u> 333 Sancisi, R. 1971, Ast. and Ap. <u>12</u> 323 Snow, T.P., Jr. 1976, Ap.J. <u>204</u> 759 Snow, T.P., Jr. 1975, Ap.J. (Lett) <u>201</u> L21 Snyder, L.E. and Hollis, J.M. 1976, Ap.J. (Lett) <u>204</u> L139 Solomon, P.M. and Klemperer, W. 1972, Ap.J. <u>178</u> 389 Turner, B.E. 1973, Ap.J. <u>186</u> 357 Watson, W.D. 1974, Ap.J. <u>188</u> 35

APPENDIX A

INTERSTELLAR MOLECULES DETECTED

н	Methyline	CH	methyline ion
12	cyanogen	CO	carbon monoxide
2	hydrogen	OH	hydroxyl
S	carbon monosulphide	SiO	silicon monoxide
0	sulphur monoxide	NS	nitrogen sulphide
15	silicon sulphide		
DO	heavy water	H ₂ S	hydrogen sulphide
CN	hydrogen cyanide	HNC	
CS	carbonyl sulphide	so ₂	sulphur dioxide
2H+	protonated nitrogen	HCO	protonated carbon monoxide
2 ^H	ethynyl	HCO	formyl
H ₃	ammonia	H ₂ CO	formaldehyde
L2CS	thioformaldehyde	HNCO	isocyanic acid
CO OH	formic acid	HC ₃ N	cyanoacetylene
2 ^{CN}	cyanamide	CH ₂ NH	methanimine
нзон	methanol	сн ₃ си	acetonitrile
H ₂ HCO	formamide		
H ₃ C ₂ H	methyl acetylene	снзнсо	acetaldehyde
H ₃ NH ₂	methylamine	HC 5N	cyanodiacetylene
H2CHCN	acrylonitrile	(CH ₂) ₂ 0	ethylene oxide
H ₃ C ₃ N	methyl cyanoacetylene	нсоосн	methyl formate
CH3)20	dimethyl ether	сн ₃ сн ₂ он	ethanol
		HC ₇ N	cyanotriacetylene

 \sim

- 61 -

APPENDIX B

CHEMICAL REACTIONS USED IN THE CALCULATIONS

All reactions are taken from Mitchell, et al. (1977b). Reactions marked with asterisk (*) are those used only for calculations of ^{13}C species in L13¹4.

TABLE 1 ION-NEUTRAL REACTIONS

- 2 NEUTRAL-NEUTRAL REACTIONS
- 3 PHOTODESTRUCTION PROCESSES
- 4 ION-ELECTRON RECOMBINATION REACTIONS
- 5 COSMIC RAY DESTRUCTION PROCESSES

TABLE 1.

ION-NEUTRAL REACTIONS

	Reaction	Rate $(cm^3 s^{-1})$
1.	$H^+ + 0> 0^+ + H$	$1.0 \times 10^{-9} e^{-232/T}$
2.	$H^{+} + 0_{2}^{+} - > 0_{2}^{+} + H$	1.2 (-9)
3.	$H^{+} + C_{2}> C_{2}^{+} + H$	1.0 (-9)
4.	H^+ + OH> OH^+ + H	1.0 (-9)
5.	H^+ + NO> NO ⁺ + H	1.9 (-9)
6.	H^+ + NH> NH^+ + H	1.0 (-9)
7.	H^+ + CH> CH ⁺ + H	1.0 (-9)
8.	$H^{+} + CH_{2}> CH_{2}^{+} + H$	1.0 (-9)
9.	$H^{+} + H_{2}O> H_{2}O^{+} + H$	8.2 (-9)
10.	$H^{+} + CO_{2}> HCO^{+} + O$	3.0 (-9)
11.	$H^{+} + C_{2}H> C_{2}H^{+} + H$	1.0 (-9)
12.	H^+ + HCO> HCO ⁺ + H	1.0 (-9)
13.	H^+ + NH_3 > NH_3^+ + H	5.2 (-9)
14.	$H^{+} + H_2CO> H_2CO^{+} + H$	1.0 (-9)
15.	H^+ + CH_{l_+} - $ CH_{l_+}^+$ + H	1.5 (-9)
16.	$H^+ + CH_{1_+}> CH_3^+ + H_2$	2.3 (-9)
17.	$H^+ + H_2S> H_2S^+ + H$	7.6 (-9)
18.	H^+ + OCS> SH^+ + CO	1.0 (-9)
19.	H^+ + SH> SH ⁺ + H	1.0 (-9)
20.	$H^+ + C_3> C_3^+ + H$	1.0 (-9)
21.	H^+ + CH_3 > CH_3^+ + H	1.0 (-9)
22.	He^{+} + $H> H^{+}$ + He	$1.9 \times 10^{-15}(1 + 5/T)$
23.	$He^+ H_2 \longrightarrow H^+ H H H$	1.0 (-13)
2 4 .	$He^+ C_2> C^+ + C + He$	1.0 (-9)

25. He⁺ + C₂ --> C₂⁺ + He 5.0 (-10) 26. $He^+ + N_2 - N^+ + N + He$ 7.5 (-10) 27. $He^+ + N_2 - N_2^+ + He$ 4.4 (-10) 28. $He^+ + 0_2 - > 0^+ + 0 + He$ 1.0(-9) $He^+ + CH --> CH^+ + He$ 5.0 (-10) 29. $He^+ + CH --> H^+ + C + He$ 3.0 (-10) 30. $He^+ + OH --> H^+ + O + He$ 3.0 (-10) 32. $He^+ + CO --> C^+ + O + He$ 1.6(-9)32. He^+ + CN --> C^+ + N + He 2.0 (-9) 33. He^+ + NO --> N⁺ + O + He 1.4(-9)34. He^+ + NO --> O^+ + N + He 2.2(-10)35. He^+ + CH_2 --> CH_2^+ + He 5.0 (-10) 36. $He^+ + C_2H --> C_2H^+ + He$ 5.0 (-10) 37. $He^{+} + H_{0}0 --> H_{0}0^{+} + He$ 38. 7.5 (-11) $He^{+} + H_{2}0 - -> 0H^{+} + H + He$ 3.6 (-10) 39. $He^{+} + CO_{2} --> CO^{+} + O + He$ 8.2 (-10) 40. $He^{+} + CO_{2} - > O^{+} + CO + He$ 1.4 (-10) 41. $He^{+} + CO_{2} --> C^{+} + O_{2} + He$ 4.0 (-11) 42. He^+ +NH₃ --> NH₃⁺ + He 2.6 (-10) 43. $He^+ + NH_3 - > NH_2^+ + H + He$ 1.8(-9)44. $He^+ + NH_3 - > NH^+ + H_2 + He$ 45. 1.8(-10) He^+ + HCN --> CN^+ + H + He 46. 1.6 (-9) He + HCN --> CH + N + He 5.9 (-10) 47. He^+ + HCN --> C⁺ + N + H + He 48. 6.8 (-10) He^+ + HCN --> N^+ + C + H + He 1.9(-10)49. $He^{+} + H_{2}CO --> CH_{2}^{+} + O + He$ 1.0(-9)50. $He^+ + CH_{1_{+}} --> CH_{2}^+ + H_{2} + He$ 9.3 (-10) 51. $He^+ + CH_{1_4} --> CH^+ + H_2^+ + H + He$ 2.4 (-10)

52.

- 64 -

53.	$He' + H_2S> S' + H_2 + He$	3.6	(-9)
54.	$He^+ + H_2S> SH^+ + H + He$	4.8	(-10)
55.	$He^+ + H_2S> H_2S^+ + He$	3.1	(-10)
56.	$He^+ + C_3> C_3^+ + He$	1.0	(-9)
57.	$He^+ + CS> CS^+ + He$	1.0	(-9)
58.	$He^+ + NH_2 - > NH_2^+ + He$	1.0	(-9)
59.	$He^+ + SiO> SiO^+ + He$	1.0	(-9)
60.	$He^+ + CH_3> CH_3^+ + He$	1.0	(-9)
61.	He^+ + HCO> HCO ⁺ + He	1.0	(-9)
*62.	$He^+ + {}^{13}CO> {}^{13}C^+ + O + He$	1.6	(-9)
63.	C^+ + H> CH^+ + $h\nu$	1.0	(-17)
64.	$C^+ + H_2> CH_2^+ + h\nu$	1.0	(-15)
65.	$C^{+} + 0_{2}> C0^{+} + 0$	1.1	(-9)
66.	$C^{+} + CH> C_{2}^{+} + H$	2.0	(-9)
67.	$C^+ + CH> CH^+ + C$	1.0	(-9)
68.	$C^+ + OH> H^+ + CO$	8.0	(-10)
69.	$C^+ + OH> CO^+ + H$	8.0	(-10)
70.	C^+ + NO> NO^+ + C	9.0	(-10)
71.	C^+ + NH> H^+ + CN	2.0	(-9)
72.	$C^+ + CH_2> C_2H^+ + H$	2.0	(-9)
73.	$C^{+} + H_{2}O> HCO^{+} + H$	2.0	(-9)
74.	$C^{+} + CO_{2}> CO^{+} + CO$	1.9	(-9)
75.	$C^{+} + C_{2}H> C_{3}^{+} + H$	1.0	(-9)
76.	C^+ + HCO> CH^+ + CO	1.0	(-9)
77.	C^+ + HCN> C_2N^+ + H	1.9	(9)
78.	$C^+ + NH_2> H^+ + HCN$	2.0	(-9)
79.	$C^+ + NH_3> H_2CN^+ + H$	1.1	(-9)
80.	$C^{+} + NH_{3} - > NH_{3}^{+} + C$	1.1	(-9)
81.	C^+ + NH ₃ > HCN ⁺ + H ₂	4.6	(-11)

82. $C^+ + H_2CO> CH_2^+ + CO$	1.0 (-9)
83. $C^+ + H_2CO> H_2CO^+ + C$	1.0 (-9)
84. $C^+ + CH_3> C_2H_2^+ + H$	1.0 (-9)
85. $C^{+} + H_{2}CS> H_{2}CS^{+} + C$	1.0 (-9)
86. $C^+ + H_2S> HCS^+ + H$	1.8 (-9)
87. $C^+ + SO^> S^+ + CO$	1.0 (-9)
88. $C^+ + SO> CO^+ + S$	1.0 (-9)
89. $C^+ + SN> S^+ + CN$	1.0 (-9)
90. $c^+ + so_2> so^+ + co$	1.0 (-9)
91. $C^+ + OCS> CS^+ + CO$	1.0 (-9)
92. C ⁺ + SH> CS ⁺ + H	1.0 (-9)
93. C ⁺ + SiO> Si ⁺ + CO	1.0 (-9)
94. $c^+ + 0_2> 0^+ + c_0$	4.4 (-10)
95. $C^+ + CH_4> C_2H_2^+ + H_2$	1.4 (-9)
96. $C^{+} + H_2 S> H_2 S^{+} + C$	5.6 (-10)
97. $C^+ + H_2 CO> HCO^+ + CH$	9.2 (-10)
98. $C^+ + CH_3> CH_3^+ + C$	1.0 (-9)
*99. $\frac{13}{C^+}$ + H ₂ > $\frac{13}{CH_2^+}$	1.0 (-15)
100. $^{13}C^{+} + 0_{2} - ^{13}C0^{+} + 0$	1.1 (-9)
101. $^{13}C^{+} + H_{2}0> H^{13}C0^{+} + H_{2}$	2.0 (-9)
102. $13C^{+} + H^{13}CO -> 13CH^{+} +$	¹³ co 1.0 (-9)
103. 13^{+}_{0} + NH ₃ > NH ₃ ⁺ + 13^{-}_{0}	1.1 (-9)
*104. $13C^{+}$ + NO> NO^{+} + $13C$	9.0 (-10)
105. 13_{C}^{+} + so> 13_{C0}^{+} + s	1.0 (-9)
106. $13c^+ + 0_2 - > 0^+ + 13c0$	4.4 (-10)
▶ 107. $13\tilde{c}^+$ + co> c^+ + $13c_0$	2.0 (-10)

- 66 -

1

108.	$0^+ + H> H^+ + 0$	1.0 (-9)
109.	$0^{+} + H_{2}> OH^{+} + H$	1.6 (-9)
110.	$0^{+} + C_{2}> C^{+} + CO$	1.0 (-9)
111.	$0^{+} + N_{2} - > N0^{+} + N$	1.0 (-13)
112.	$0^{+} + CN> N0^{+} + C$	1.0 (-9)
113.	$0^{+} + H_2 0^{-} -> H_2 0^{+} + 0$	2.3 (-9)
114.	$0^+ + NH_3 - > NH_3^+ + 0$	1.0 (-9)
115.	$N^+ + H_2> NH^+ + H$	4.8 (-10)
116.	$N^{+} + C_{2}> C^{+} + CN$	1.0 (-9)
117.	$N^{+} + 0_{2} - > N0^{+} + 0$	5.0 (-10)
118.	$N_{+} + CO> CO_{+} + N$	5.0 (-10)
119.	$N^+ + CN> C^+ + N_2$	1.0 (-9)
120.	$s^{+} + 0_{2}> s0^{+} + 0$	2.0 (-11)
121.	$S^{+} + H_2 S> H_2 S^{+} + S$	2.1 (-10)
122.	$s^{+} + H_2 s> s_2^{+} + H_2$	2.5 (-10)
123.	$S^+ + Fe> Fe^+ + S$	3.0 (-9)
124.	$S^{+} + CH_{4}> SCH_{3}^{+} + H$	1.4 (-10)
125.	$S^+ + NH_3> MH_3^+ + S$	1.3 (-9)
126.	$S^{+} + CH_{3}> CH_{3}^{+} + S$	1.0 (-9)
127.	$S^+ + NO> NO^+ + S$	1.0 (-9)
128.	S^+ + HCO> HCO ⁺ + S	1.0 (-9)
129.	$Si^{+} + 0_{2} - Si0^{+} + 0$	1.0 (-9)
130.	Si^{+} + H ₂ > SiH_{2} + h ν	1.0 (-16)
131.	Si ⁺ + OH> SiO ⁺ + H	1.0 (-9)
132.	Si^+ + Mg> Mg^+ + Si	2.0 (-9)
133.	$H_2^+ + H> H^+ + H_2$	5.8 (-10)
1 24	H^+ + C> CH^+ + H	1.0(-9)

- 67 -

135.	H ₂	÷	$N> NH^+ + H$	1.0 (-9)
136	H ₂ +	+	0> OH ⁺ + H	1.0 (-9)
137.	Н <mark>+</mark>	+	$H_2> H_3^+ + H$	2.1 (-9)
138.	H ₂	+	$N_2 \rightarrow N_2 H^+ + H$	2.0 (-9)
139.	H ₂	+	$0_2 - > 0_2 H^+ + H$	1.9 (-9)
140.	H ₂	+	$0_2> 0_2^+ + H_2$	7.8 (-10)
141.	H ₂ +	+	$CO> HCO^+ + H$	2.2 (-9)
142.	H_2^+	+	CO> CO ⁺ + H ₂	6.4 (-10)
143.	H2	+	H ₂ 0> H ₃ 0 ⁺ + H	3.4 (-9)
144.	H_2^+	+	$H_20> H_20^+ + H_2$	3.9 (-9)
145.	H2	+	$NH_3 \rightarrow NH_3^+ + H_2$	5.7 (-9)
146.	H2	+	$H_2S \longrightarrow H_2S^+ + H_2$	2.7 (-9)
147.	H2	+	$H_2S> SH^+ + H + H_2$	8.6 (-10)
148.	њ	+	$H_2S> S^+ + H_2 + H_2$	7.7 (-10)
149.	нţ	÷	$C \rightarrow CH^+ + H_2$	2.0 (-9)
150.	нţ	+	$C> CH_2^+ + H$	1.0 (-9)
151.	нţ	+	$S \rightarrow SH^+ + H_2$	2.0 (-9)
152.	нţ	+	$S> H_2S^+ + H$	2.0 (-9)
153.	нţ	+	$Mg> Mg^+ + H_2 + H$	1.0 (-9)
154.	H ₃ +	+	$Si> Si^+ + H_2 + H$	1.0 (-9)
155.	НĴ	+	$Fe> Fe^+ + H_2 + H$	1.0 (-9)
156.	НĴ	+	$N> NH_2^+ + H$	1.0 (-9)
157.	нţ	+	$0> H_2 0^+ + H$	4.0 (-10)
158.	щ	+	$N_2 \rightarrow N_2 H^+ + H_2$	1.7 (-9)
159.	ҧ	+	$CO> HCO^+ + H_2$	1.7 (-9)
160.	нţ	+	$OH> H_2O^+ + H_2$	2.0 (-9)
161	H		$CN \rightarrow HCN^{+} + H$	2.0(-9)

- 68 -

1
162.	$H_3^+ + H_2^0> H_3^0^+ + H_2$	5.9 (-9)
163.	$H_3^+ + CO_2> HCO_2^+ + H_2$	1.9 (-9)
164.	H_3^+ + HCO> H_2CO^+ + H_2	1.0 (-9)
165.	H_3^+ + HCN> H_2CN^+ + H_2	8.0 (-9)
166.	$H_3^+ + NH_3 - > NH_4^+ + H_2$	2.7 (-9)
167.	$H_3^+ + NH_3^> NH_3^+ + H_2^- + H_3^-$	2.0 (-9)
168.	$H_3^+ + H_2^{CO}> H_3^{CO^+} + H_2$	2.0 (-9)
169.	$H_3^+ + C_2> C_2 H^+ + H_2$	1.0 (-9)
170.	$H_3^+ + CH_3> CH_4^+ + H_2$	1.0 (-9)
171.	$H_3^+ + CH_4> CH_5^+ + H_2$	2.4 (-9)
172.	$H_3^+ + H_2^S - > H_3^S^+ + H_2$	3.7 (-9)
173.	$H_3^+ + SH> H_2S^+ + H_2$	1.0 (-9)
174.	$H_3^+ + NH> NH_2^+ + H_2$	1.0 (-9)
175.	$H_3^+ + CS> HCS^+ + H_2$	1.0 (-9)
176.	$H_3^+ + C_2 H> C_2 H_2^+ + H_2$	1.0 (-9)
177.	$H_3^+ + CH> CH_2^+ + H_2$	1.0 (-9)
178.	H_3^+ + NH_2 > NH_3^+ + H_2	1.0 (-9)
179.	$H_3^+ + CH_2> CH_3^+ + H_2$	1.0 (-9)
*180.	$H_3^+ + H^{13}CO> H_2^{13}CO^+ + H_2$	1.0 (-9)
*181.	$H_3^+ + 1_3^{>} 1_3^{-+} H_2^+ H_2^{>}$	1.0 (-9)
*182.	$H_3^+ + {}^{13}CO> H^{13}CO^+ + H_2$	1.7 (-9)
183.	$c_{2}^{+} + c> c^{+} + c_{2}$	1.0 (-9)
184.	$C_2^+ + N> C^+ + CN$	1.0 (-9)
185.	$C_2^+ + 0> C^+ + C0$	1.0 (-9)
186.	$C_{2}^{+} + H_{2}> C_{2}H^{+} + H$	1.0 (-9)

- 69 -

187.	02	+ $C> C^+ + O_2$	1.0 (-9)
188.	02	+ $N \rightarrow NO^+ + O$	1.8 (-10)
189.	02	+ $NH_3> NH_3^+ + O_2$	2.6 (-9)
190.	v ⁺ ₂	+ Mg> Mg ⁺ + 0 ₂	1.0 (-9)
191.	02	+ Si> Si ⁺ + 0 ₂	1.0 (-9)
192.	02	+ $S> S^+ + O_2$	1.0 (-9)
193.	02	+ Fe> $Fe^{+} + 0_{2}$	1.0 (-9)
194.	N_2^+	+ $H \rightarrow H^+ + N_2$	1.0 (-9)
195.	N_2^+	+ 0 \rightarrow NO ⁺ + N	2.5 (-10)
196.	N_2^+	+ $H_2 - N_2 H^+ + H$	1.7 (-9)
197.	CH	+ H> C ⁺ + H ₂	$7.5 \times 10^{-15} \times T^{1.25}$
198.	CH	$+ c> c_{2}^{+} + H$	1.0 (-9)
199.	CH	+ N $>$ H ⁺ + CN	1.0 (-9)
200.	CH+	$+ 0> C0^+ + H$	1.0 (-9)
201.	CH	+ $H_2> CH_2^+ + H$	1.0 (-9)
202.	CH ⁺	+ $H_2S \rightarrow HCS^+ + H_2$	6.6 (-10)
*203.	13 _{CH}	$t^{+} + H_2 - > {}^{13}CH_2^{+} + H$	1.0 (-9)
204.	0Ħ +	$+ C> H^+ + CO$	1.0 (-9)
205.	0H+	$+ 0> 0_2^+ + H$	1.0 (-9)
206.	OH	$+ H_2> H_2 0^+ + H$	1.0 (-9)
207.	OH	+ H ₂ 0> H ₂ 0 ⁺ + OH	1.6 (-9)
208.	OH	$+ H_{2}> H_{3} + 0$	1.3 (-9)
209.	0H	+ $H_2^{S} - H_3^{S^+} + 0$	9.1 (-10)
210.	OH	$+ co_2> Hco_2^+ + 0$	1.0 (-9)
211.	0H+	+ $CH_3> CH_{1_4}^+ + 0$	1.0 (-9)

- 70 -

212.	0H ⁺ +	$CH_{1_{4}}> CH_{5}^{+} + 0$	1.0	(-9)
213.	0H ⁺ +	$\text{NH} \rightarrow \text{NH}_2^+ + 0$	1.0	(-9)
214.	0H ⁺ +	$CO> HCO^+ + O$	1.0	(-9)
215.	OH ⁺ +	$OH> H_2 O^+ + O$	1.0	(-9)
216.	0H ⁺ +	$C \rightarrow CH^+ + O$	1.0	(-9)
.217.	0H ⁺ +	$CS> HCS^+ + 0$	1.0	(-9)
218.	0H ⁺ +	$HCO> H_2CO^+ + O$	1.0	(-9)
219.	0H ⁺ +	$S \longrightarrow SH^+ + 0$	1.0	(-9)
220.	0H ⁺ +	$\dot{C}_{2}H> C_{2}H_{2}^{+} + 0$	1.0	(-9)
221.	0H ⁺ +	$SH \longrightarrow H_2S^+ + 0$	1.0	(-9)
222.	0H ⁺ +	$C_2> C_2 H^+ + 0$	1.0	(-9)
223.	0H ⁺ +	$H_2CO> H_3CO^+ + O$	1.0	(-9)
224.	0H ⁺ +	$HCN> H_2CN^+ + 0$	1.0	(-9)
225.	0H ⁺ +	$CH> CH_{2}^{+} + 0$	1.0	(-9)
226	0H ⁺ +	$NH_2 \rightarrow NH_3^+ + 0$	1.0	(-9)
227.	0H ⁺ +	$CH_2> CH_3^+ + 0$	1.0	(-9)
228.	0H ⁺ +	$\operatorname{NH}_{3} - > \operatorname{NH}_{4}^{+} + 0$	1.0	(-9)
229.	C0 ⁺ +	$H \longrightarrow H^+ + CO$	1.0	(-9)
230.	C0 ⁺ +	$N \rightarrow NO^+ + C$	1.0	(-11
231.	C0 ⁺ +	H ₂ > HCO ⁺ + H	1.4	(-9)
232.	C0 ⁺ +	ОН> CO ⁺ ₂ + Н	1.0	(-9)
233.	C0 ⁺ +	$NO> NO^+ + CO$	6.0	(-10
234.	C0 ⁺ +	$H_2^0> H_2^0^+ + C0$	1.0	(-9)
235.	C0 ⁺ +	$\operatorname{NH}_3> \operatorname{NH}_3^+ + \operatorname{CO}$	2.1	(-9)
*236.	13 _{C0} +	+ $H_2> H^{13}CO^+ + H$	1.4	(-9)

1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-9)
1.0	(-11)
1.4	(-9)
1.0	(-9)
6.0	(-10)
1.0	(-9)
2.1	(-9)

237.	$NH^+ + C> H^+ + CN$	1.0	(-9)
238.	$\mathrm{NH}^+ + \mathrm{N} - \mathrm{H}^+ + \mathrm{N}_2$	1.0	(-9)
239.	$NH^+ + O> NO^+ + H$	1.0	(-9)
240.	NH^+ + H ₂ > NH_2^+ + H	9.5	(-10)
241.	CN^+ + H> H^+ + CN	1.0	(-9)
242.	$CN^+ + N> C^+ + N_2$	2.0	(-10)
243.	$CN^+ + O> NO^+ + C$	2.0	(-10)
244.	$CN^+ + H_2> HCN^+ + H$	1.2	(-9)
245.	$SH^+ + O> SO^+ + H$	1.0	(-9)
246.	$SH^+ + O> S^+ + OH$	1.0	(-9)
247.	$SH^+ + N> S^+ + NH$	1.0	(-9)
248.	$SH^+ + Mg> Mg^+ + SH$	1.0	(-10)
249.	$SH^+ + S> S^+ + SH$	1.0	(-10)
250.	SH ⁺ + Si> Si ⁺ + SH	1.0	(-10)
251.	$SH^{+} + C_{2}H> C_{2}H_{2}^{+} + S$	1.0	(-9)
252.	$SH^{+} + H_{2}0> H_{3}0^{+} + S$	1.0	(-9)
253.	$SH^+ + SH> H_2S^+ + S$	1.0	(-9)
254.	$SH^+ + C_2> C_2H^+ + S$	1.0	(-9)
255.	$SH^{+} + H_{2}CO> H_{3}CO^{+} + S$	1.0	(-9)
256.	$SH^+ + HCN> H_2CN^+ + S$	1.0	(-9)
257.	$SH^+ + H_2S> H_3S^+ + S$	1.0	(-9)
258.	$SH^+ + CH> CH_2^+ + S$	1.0	(-9)
259.	$SH^+ + NH_2 - NH_3^+ + S$	1.0	(-9)
260.	$SH^+ + CH_2> CH_3^+ + S$	1.0	(-9)
261.	$SH^+ + NH_2 - > NH_1^+ + S$	1.0	(-9)

1.

262.	S0+ 🕌	$N \longrightarrow SN^+ + 0$	5.0	(-11)
- 263.	S0 ⁺ +	$Mg> Mg^+ + SO$	1.0	(-10)
264.	C5+ +	$\mathbb{H}_2 \longrightarrow \mathrm{HCS}^+ + \mathrm{H}$	1.0	(-9)
265.	C5+ +	$H> H^+ + CS$	1.0	(-9)
266.	SN+ +	$0> N0^{+} + S$	1.0	(-10)
267.	Si0 ⁺ +	H ₂ > HSi0 ⁺ + H	1.0	(-9)
268.	Si0 ⁺ +	Mg> Mg ⁺ + SiO	1.0	(-9)
269.	Si0 ⁺ +	Fe> Fe ⁺ + Si0	1.0	(-9)
270.	CH ₂ +	$C \rightarrow C_2 H^+ + H$	1.0	(-9)
271.	CH ⁺ ₂ +	$N \rightarrow HCN^+ + H$	1.0	(-9)
272.	CH ₂ +	$O = -> HCO^+ + H$	1.0	(-9)
273.	CH ₂ +	H ₂ > CH ⁺ ₃ + H	7.1	(-10)
-274.	CH ₂ +	H ₂ 0> CH ₂ OH ⁺ + H	5.2	(-10)
275.	CH ⁺ ₂ +	$NH_3> NH_{1_4}^+ + CH$	3.1	(-10)
276.	CH ⁺ ₂ +	$NH_3> CH_2NH_2^+ + H$	1.2	(-9)
277.	CH ⁺ ₂ +	$H_2S> HCS^+ + H_2 + H$	2.0	(-10)
278.	CH ⁺ ₂ +	$H_2S> CH_2SH^+ + H$	3.9	(-10)
*279.	13 _{CH} +	+ H ₂ > ¹³ CH ₃ ⁺ + H	7.1	(-10)
280.	Сн ⁺ +	$C \rightarrow C_2 H^+ + H_2$	1.0	(-9)
281.	CH ⁺ 3 +	$N> H_2 CN^+ + H$	6.7	(-11)
282.	CH ⁺ ₃ +	$0> HCO^{+} + H_{2}$	4.4	(-10)
283.	CH ⁺ ₃ +	$\rm NH_3 - > \rm NH_4^+ + \rm CH_2$	1.7	(-10)
284.	CH ⁺ +	$\rm NH_3> \rm CH_2 \rm NH_2^+ + \rm H_2$	6.6	(-10)
285.	CH ⁺ ₃ +	$H_2> CH_5^+ + h$	1.0	(-16)
286.	CH2 +	$S> H_2 CS^+ + H$	1.0	(-9)

- 73 -

287. $CH_3^+ + H_2S --> CH_2SH^+ + H_2$ 5.0 (-10) 288. $CH_3^+ + Mg --> Mg^+ + CH_3$ 2.0(-9) $CH_{3}^{+} + Fe \longrightarrow Fe^{+} + CH_{3}$ 2.0(-9)289. $CH_3^+ + Si --> Si^+ + CH_3$ 2.0(-9)290. $CH_3^+ + O_2^- - -> HCO^+ + H_2^0$ 291. 4.3 (-11) $CH_3^+ + NO --> NO^+ + CH_3$ 292. 9.4 (-10) $CH_3^+ + H_2CO --> HCO^+ + CH_{L_1}$ 293. 1.0(-9) $^{13}CH_3^+ + 0 --> H^{13}CO^+ + H_2$ *294. 4.4 (-10) $CH_{4}^{+} + H_{2} --> CH_{5}^{+} + H$ 295. 4.1 (-11) $CH_{L}^{+} + 0 = -> CH_{3}^{+} + OH$ 296. 1.0 (-9) $H_00^+ + C --> HC0^+ + HC$ 1.0(-9)297. 298. $H_20^+ + H_2 --> H_30^+ + H_2$ 6.1 (-10) $H_20^+ + H_20 --> H_30^+ + 0H$ 299. 2.0 (-9) $H_20^+ + H_2S --> H_3S^+ + OH$ 300. 7.0 (-10) $H_20^+ + H_2S --> H_2S^+ + H_20$ 8.9 (-10) 301. 302. $H_20^+ + H_2S --> H_30^+ + SH$ 5.9 (-10) $H_20^+ + CS --> HCS^+ + OH$ 1.0(-9)303. $H_{20}^{+} + HC0 --> H_{2}C0^{+} + OH$ 304. 1.0(-9) $H_20^+ + S --> SH^+ + OH$ 305. 1.0(-9) $H_20^+ + C_2H --> C_2H_2^+ + OH$ 306. 1.0 (-9) $H_20^+ + SH --> H_2S^+ + OH$ 307. 1.0(-9)308. $H_20^+ + C_2 --> C_2H^+ + OH$ 1.0(-9)309. $H_20^+ + H_2C0 --> H_3C0^+ + 0H$ 1.0(-9) $H_{2}O^{+} + HCN -> H_{2}CN^{+} + OH$ 310. 1.0(-9) $H_20^+ + CH --> CH_2^+ + OH$ 311. 1.0 (-9)

- 74 -

312.	H ₂ 0 ⁺ ·	+	NH ₂ > MH ₃ + OH	1.0	(-9)
313.	H ₂ 0 ⁺ ·	t	CH ₂ > CH ₃ ⁺ + OH	1.0	(-9)
314.	H ₂ 0 ⁺	+	$NH_3> NH_3^+ + H_2^0$	2.2	(-9)
315.	H ₂ 0 ⁺ ·	+	$NH_3 \rightarrow NH_4 + OH$	9.4	(-10)
316.	H ₃ 0 ⁺ ·	+	$C \rightarrow HCO^+ + H_2$	2.0	(-9)
317.	H ₃ 0 ⁺	+	$NH_{3}> NH_{4}^{+} + H_{2}O$	2.3	(-9)
318.	H30+ .	+	SH> H ₂ S ⁺ + H ₂ O	1.0	(-9)
319.	H ₃ 0 ⁺	+	$C_2> C_2 H^+ + H_2 O$	1.0	(-9)
320.	H30+	+	$H_2CO> H_3CO^+ + H_2O$	1.0	(-9)
321.	H30+	+	$HCN> H_2 CN^+ + H_2 O$	1.0	(-9)
322.	H30+	+	$H_2S> H_3S^+ + H_2O$	1.0	(-9)
323.	H30+	t	$CH> CH_2^+ + H_2^0$	1.0	(-9)
324.	H ₃ 0+	+	$NH_2> NH_3^+ + H_2^0$	1.0	(-9)
325.	H30+	+	$CH_2> CH_3^+ + H_2^0$	1.0	(-9)
326.	HCO ⁺	+	$C> CH^+ + CO$	1.0	(-9)
327.	HCO+	+	$H_2> H_3 CO^+ + h$	2.0	(-17)
328.	HCO ⁺	+	ОН> HCO ⁺ ₂ + H	1.0	(-9)
329.	HCO+	+	$CH> CH_2^+ + CO$	1.0	(-9)
330.	HCO ⁺	+	$CH_2> CH_3^+ + CO$	1.0	(-9)
331.	HCO+	+	$\rm NH> \rm NH_2^+ + \rm CO$	1.0	(-9)
332.	HCO+	+	$\mathrm{NH}_2 \rightarrow \mathrm{NH}_3^+ + \mathrm{CO}$	1.0	(-9)
333.	HCO+	+	$\mathrm{NH}_3> \mathrm{NH}_4^+ + \mathrm{CO}$	2.6	(-9)
334.	HCO ⁺	+	$H_2CO> H_3CO^+ + CO$	1.0	(-9)
335.	HCO ⁺	+	$H_20> H_30 + C0$	2.7	(-9)
336.	HCO ⁺	+	HCN> H_CN ⁺ + CO	3.5	(-9)

- 75 -

337.	$HCO^{\dagger} + H_2S> H_3S^{\dagger} + CO$	1.6	(-9)
338.	$HCO^{\dagger} + H_{2}CS> H_{3}CS^{\dagger} + CO$	1.0	(-9)
339.	HCO ⁺ T Mg> Mg ⁺ + HCO	1.0	(-9)
340.	HCO ⁺ + Si> Si ⁺ + HCO	1.0	(-9)
341.	HCO^{\dagger} τ Fe> Fe ^{\dagger} τ HCO	1.0	(-9)
342.	$HCO^{+} + CS> HCS^{+} + CO$	1.0	(-9)
343.	$HCO^{+} + HCO> H_2CO^{+} + CO$	1.0	(-9)
344.	$HCO^{+} + S> SH^{+} + CO$	1.0	(-9)
*345.	$HCO^{\dagger} + C_2H> C_2H_2^{\dagger} + CO$	1.0	(-9)
346.	HCO^+ + SH> H_2S^+ + CO	1.0	(-9)
347.	$HCO^{+} + C_2> C_2 H^{+} + CO$	1.0	(-9)
*348.	$H^{13}CO^{+} + ^{13}C - ^{13}CH^{+} + ^{13}CO$	1.0	(-9)
*349.	$H^{13}CO^{\dagger} + Mg> Mg^{\dagger} + H^{13}CO$	1.0	(-9)
*350.	$H^{13}CO^{+}$ + Fe> Fe ⁺ + $H^{13}CO$	1.0	(-9)
*351.	$H^{13}CO^{+} + H^{13}CO> H_2^{13}CO^{+} + H^{13}CO$	1.9	(-9)
352.	$C_{3}^{+} + H_{2}> C_{3}H^{+} + H$	1.0	(-9)
353.	$\operatorname{CO}_2^{\dagger} + \operatorname{H}_2 - \to \operatorname{HCO}_2^{\dagger} + \operatorname{H}_2$	1.0	(-9)
354.	$\operatorname{NH}_{2}^{\dagger} + \operatorname{H}_{2} - > \operatorname{NH}_{3}^{\dagger} + \operatorname{H}_{1}$	1.2	(-10)
355.	NH_{2}^{+} + NH_{3} > NH_{3}^{+} + NH_{2}	1.4	(-9)
356	$\mathrm{NH}_{2}^{\pm} \pm \mathrm{NH}_{3} \longrightarrow \mathrm{NH}_{4}^{\pm} \pm \mathrm{NH}$	9.7	(-10)
357.	$NH_3^{\dagger} + CH> NH_4^{\dagger} + C$	1.0	(-9)
358.	NH_3^+ + NH> NH_{1}^+ + N	1.0	(-9)
359.	$\operatorname{NH}_{3}^{+} = \operatorname{OH}> \operatorname{NH}_{4}^{+} = O$	1.0	(-9)
360.	$NH_3^{\dagger} + HCO> NH_4^{\dagger} + CO -$	1.0	(-9)
361.	$NH_{3}^{+} + H_{2}^{0}> NH_{4}^{+} + OH$	4.3	(-10)

362.	NH_{3}^{+} + HCN> NH_{4}^{+} + CN	1.0 (-11)
363.	$NH_3^+ + H_2CO> NH_4^+ + HCO$	2.3 (-9)
364.	$\operatorname{NH}_{3}^{+} + \operatorname{NH}_{3} - > \operatorname{NH}_{4}^{+} + \operatorname{NH}_{2}$	2.3 (-9)
365.	$NH_3^+ + CH_4^> NH_4^+ + CH_3$	3.9 (-10)
366.	$NH_3^+ + H_2> NH_4^+ + H$	3.0 (-13)
367.	$\operatorname{NH}_{3}^{+} + \operatorname{CH}_{2} > \operatorname{CH}_{3}^{+} + \operatorname{NH}_{2}$	1.0 (-9)
368.	$HCN^{+} + H_2> H_2CN^{+} + H$	9.6 (-10)
369.	$HCN^+ + NH_3 - > NH_3^+ + HCN$	1.0 (-9)
370.	$N_2H^+ + CO> HCO^+ + N_2$	1.0 (-9)
371.	$N_2H^+ + CO_2> HCO_2^+ + N_2$	1.0 (-9)
372.	$N_2H^+ + CH_3> CH_4^+ + N_2$	1.0 (-9)
373.	$N_2H^+ + CH_4> CH_5^+ + N_2$	1.0 (-9)
374.	$N_2H^+ + NH> NH_2^+ + N_2$	1.0 (-9)
375.	$N_2H^{\dagger} + OH> HCO^{\dagger} + N_2$	1.0 (-9)
376.	$N_2H^{\dagger} + C> CH^{\dagger} + N_2$	1.0 (-9)
377.	$N_2 H^{\dagger} + CS> HCS^{\dagger} + N_2$	1.0 (-9)
378.	N_2H^* + HCO> H_2CO^* + N_2	1.0 (-9)
379.	$N_2H^+ + S> SH^+ + N_2$	1.0 (-9)
380.	$N_2H^{+} + C_2H> C_2H_2^{+} + N_2$	1.0 (-9)
381.	$N_2H^{+} + H_2O> H_3O^{+} + N_2$	1.0 (-9)
382.	$N_2H^+ + SH> H_2S^+ + N_2$	1.0 (-9)
383.	$N_2 H^{\dagger} \tau C_2 - C_2 H^{\dagger} + N_2$	1.0 (-9)
384.	$N_2H^+ + H_2CO> H_3CO^+ + N_2$	1.0 (-9)
385.	$N_{2}H^{\dagger}$ + HCN> $H_{2}CN^{\dagger}$ + N_{2}	1.0 (-9)

77 -

386.	$N_2H^{\dagger} + H_2S> H_3S^{\dagger} + N_2$	1.0 (-9)
387.	$N_2H^+ + CH> CH_2^+ + N_2$	1.0 (-9)
388.	$N_2H^+ + NH_2> NH_3^+ + N_2$	1.0 (-9)
389.	$N_2H^+ + CH_2> CH_3^+ + N_2$	1.0 (-9)
390.	$N_{2}H^{+} + NH_{3} - > NH_{4}^{+} + N_{2}$	1.0 (-9)
391.	$C_2 H_2^{+*} + H_2^{} > C_2 H_2^{+} + H_2^{}$	1.0 (-9)
392.	$C_2H_2^+ + N> C_2N^+ + H_2$	1.0 (-9)
393.	$C_2 H_2^+ + H_2 0> H_3 0^+ + C_2 H$	2.2 (-10)
394.	$C_2H_2^+ + SH> H_2S^+ + C_2H$	1.0 (-9)
39 5 .	$C_2H_2^+ + C_2^> C_2H^+ + C_2H$	1.0 (-9)
396.	$C_2H_2^{+} + H_2CO> H_3CO^{+} + C_2H$	1.0 (-9)
397.	$C_2H_2^{\dagger}$ + HCN> H_2CN^{\dagger} + C_2H	1.0 (-9)
398.	$C_2H_2^{+} + H_2S> H_3S^{+} + C_2H$	1.0 (-9)
399.	$C_2H_2^+ + CH> CH_2^+ + C_2H$	1.0 (-9)
400.	$C_2H_2^{+} + NH_2 - NH_3^{+} + C_2H$	1.0 (-9)
401.	$C_2H_2^+ + CH_2> CH_3^+ + C_2H$	1.0 (-9)
,402.	$C_2H_2^+$ + NH_3 > NH_4^+ + C_2H	1.0 (-9)
403.	H_2CN^+ + NH_3 > NH_4^+ + HCN	2.2 (-9)
404.	$H_2S^+ + H_2O> H_3O^+ + SH$	7.0 (-10)
405.	$H_2S^+ + 0> SH^+ + OH$	1.0 (-9)
406.	$H_2S^+ + Mg> Mg^+ + H_2S$	1.0 (-10)
407.	$H_2S^+ + S> S^+ + H_2S$	1.0 (-10)
408.	$H_2S^+ + Si> Si^+ + H_2S$	1.0 (-10)
409.	$HCS^{+} + H_2> H_3CS^{+} + h\nu$	2.0 (-17)
410.	$HCS^{+} + H_{2}O> H_{3}O^{+} + CS$	3.0 (-9)
411.	NH_3^+ + H_2S > NH_4^+ + SH	6.5 (-10)

-78 -

412.	$NH_3^{+} + H_2S> H_3S^{-} + NH_2$	1.1 (-10)
413.	$H_2 co^* + S> S^* + H_2 co$	2.0 (-9)
414.	$H_2CO^+ + Mg> Mg^+ + H_2CO$	2.0 (-9)
415.	$H_2CO^* + Fe> Fe^* + H_2CO$	2.0 (-9)
416.	H ₂ CO ⁺ + Si> Si ⁺ + H ₂ CO	2.0 (-9)
417.	$H_3^+ + 0> 0H^+ + H_2$	4.0 (-10)

- 79 -

2

TABLE 2. NEUTRAL-NEUTRAL REACTIONS

	Reaction	Rate $(cm^3 s^{-1})$
418.	$H + H> H_2$ (grains)	1.0 (-17)
419.	$C + H> CH + h\nu$	1.0 (-17)
420.	0 + H> OH + he	4.0 (-19)
421.	$C_2 + N> CN + C$	4.0 (-11)
422.	C ₂ + 0> CO + C	4.0 (-11)
423.	CH + H> C + H ₂	1.0 (-14)
424.	CH + C> C ₂ + H	4.0 (-11)
425.	CH + N> CN + H	4.0 (-11)
426.	CH + 0> CO + H	4.0 (-11)
427.	$CH + 0> HCO^+ + e$	1.0 (-11)
428.	NH + C> CN + H	4.0 (-11)
429.	$NH + N -> N_2 + H$	4.0 (-11)
430.	NH + 0> NO + H	4.0 (-11)
431.	OH + C> CO + H	4.0 (-11)
432.	OH + N> NO + H	7.0 (-11)
433.	ОН + 0> 0 ₂ + Н	5.0 (-11)
*434.	$OH + {}^{13}C> {}^{13}CO + H$	4.0 (-11)
435.	NO $+$ C $>$ CO $+$ N	4.0 (-11)
436.	$NO + N -> N_2 + O$	2.2 (-11)
*437.	$NO + {}^{13}C> {}^{13}CO + N$	4.0 (-11)
438.	CN + N - N + C	1.0 (-14)
439.	CN + O> CO + N	1.0 (-12)
440.	CO + OH> CO ₂ + H	$5.0 \times 10^{-13} e^{-300/T}$

441.	CH ₂ + 0> CH + OH	8.0 (-12)
442.	$CH_{2} + 0> HCO + H$	1.0 (-11)
443.	$CH_2 + N> HCN + H$	4.0 (-11)
*444.	13 _{CH2} + 0> ¹³ CH + OH	8.0 (-12)
*445.	$13_{\rm CH_2} + 0> H^{13}_{\rm CO} + H$	1.0 (-11)
446.	$C_{2}H + 0> CO + CH$	4.0 (-11)
447.	$NH_2 + 0> NH + OH$	4.0 (-11)
448.	HCO + C> CH + CO	1.0 (-11)
*449.	$H^{13}CO + 13_{C} - > 13_{CH} + 13_{CO}$	1.0 (-11)
450.	CH ₃ + 0> H ₂ CO + H	3.0 (-11)
451.	$H_{2}CO + O> HCO + OH$	1.8 (-13)
452.	SH + 0> SO + H	2.0 (-10)
453.	SH + N> SN + H	2.0 (-10)
454.	SO + N> NO + S	8.0 (-13)
455.	SO + N> SN + O	1.0 (-12)
456.	CH + S> CS + H	1.0 (-11)
*457.	$13_{CH} + 0> H^{13}C0^{+} + e$	1.0 (-11)
*458.	$13_{CH} + 0 - > 13_{CO} + H$	4.0 (-11)
459.	$CH_3 + S> H_2CS + H$	1.0 (-11)
460.	CS + OH> OCS + H	1.0 (-13)
461.	CO + SH> OCS + H	1.0 (-13)
462.	SO + OH> SO ₂ + H	5.0 (-11)
463.	CS + 0> CO + S	1.0 (-11)
464.	$SN + N> N_2 + S$	1.0 (-11)
465.	SN + O> NO + S	1.0 (-11)

- 81 -

CENSING: NAMES HAVE THE PORM

- 03 -

- 82 -

466.	NH +	s>	SN + H	1.0	(-11)
467.	SN +	C>	CS + N	1.0	(-11)
468.	S0 +	0>	$SO_2 + h\nu$	7.0	(-16)

- 83 -

TABLE 3

PHOTODESTRUCTION PROCESSES: RATES HAVE THE FORM

a exp $(-bA_v)s^{-1}$

	Reaction	a	b	
469.	$C + h\nu> C^+ + e$	1.31 (-10)	2.415	
470.	$S + h\nu> S^+ + e$	7.2 (-10)	2.39	
471.	$Mg + h\nu \longrightarrow Mg + e$	4.45 (-11)	1.435	
472.	Fe + h ν > Fe ⁺ + e	1.17 (-10)	1.536	
473.	$Si + h\nu> Si^+ + e$	1.20 (-9)	1.622	
474.	$CH + h\nu> CH^+ + e$	2.89 (-10)	2.75	
475.	$CH + h\nu> C + H$	1.4 (-10)	1.54	
476.	$C_{2} + h\nu \rightarrow C + C$	5.0 (-11)	1.72	
477.	$0_2 + h\nu> 0_2^+ + e$	6.2 (-12)	3.10	
478.	$0_{2} + h\nu> 0 + 0$	3.3 (-10)	1.4	
479.	$OH + h\nu> OH + e$	1.6 (-12)	3.09	
6 80.	$0H + h\nu -> 0 + H$	7.2 (-12)	1.81	
8 1.	$C0 + h\nu> C + 0$	5.0 (-12)	3.0	
i 82.	$CN + h\nu> C + N$	5.0 (-11)	1.72	
4 83.	$H_{2}0 + h\nu> H_{2}0^{+} + e$	2.1 (-11)	3.09	
4 84.	$H_{2}^{0} + h\nu> 0H + H$	3.2 (-10)	1.68	
485.	$CH_2 + h\nu> CH + H$	5.0 (-11)	1.72	
486.	$CH_2 + h\nu> CH_2^+ + e$	1.0 (-9)	2.28	
487.	$C_{2}H + h\nu \rightarrow CH + C$	1.4 (-10)	1.72	
488.	$HCO + h\nu \rightarrow CO + H$	8.8 (-10)	1.61	
489.	HCN + $h\nu$ > CN + H	1.0 (-10)	1.80	
490.	$MH_3 + h\nu \rightarrow MH_2 + H$	5.0 (-10)	2.0	

 NH_3 + h μ -> NH + H_2 491. $H_{2}CO + h\mu --> CO + H_{2}$ 492. $H_{2}CO + h\nu --> CO + 2H$ 493. $H_{2}CO + h\nu --> H_{2}CO^{+} + e$ 494. $NH + h\nu --> N + H$ 495. $\text{NH} + \text{h}\nu \rightarrow \text{NH}^+ + \text{e}$ 496. $NO + h\nu \rightarrow N + O$ 97. $NO + h\nu \rightarrow NO^+ + e$ 98. $C_2 + h\nu --> C_2^+ + e$ **199**. $N_2 + h\nu \rightarrow N + N$ 500. $CO_2 + h\nu --> CO + O$ 501. $C_3 + h\nu --> C_2 + C_2$ 502. $NH_2 + h\nu \rightarrow NH + H$ 503. $C_2H + h\nu \longrightarrow C_2H + e$ 504. $CH_3 + h\nu \rightarrow CH + H_2$ 505. $CH_3 + h\nu \rightarrow CH_2 + H$ 6. $CH_3 + h\nu \rightarrow CH_3 + e$ 07. $CH_{1_{+}} + h\nu \rightarrow CH + H_{2} + H$ 508. $CH_{4} + h\nu \rightarrow CH_{2} + H_{2}$ 509. $CH_{4} + h\nu \rightarrow CH_{3} + H$ 510. $SH + h\nu \rightarrow S + H$ 511. SO + hr --> S + 0 512. $SN + h\nu \rightarrow SN + e$ 513. $H_{2}S + h\nu \rightarrow SH + H$ 514. $CS + h\nu \rightarrow C + S$ 515. $OCS + h\nu --> CO + S$ 516.

5.0 (-11)	2.0
4.4 (-10)	1.61
+.4 (-10)	1.61
1.4 (-11)	.3.09
1.4 (-10)	1.54
1.0 (-11)	2.0
1.0 (-11)	2.0
2.0 (-10)	2.0
1.0 (-10)	2.0
5.0 (-11)	2.0
1.0 (-10)	2.0
1.0 (-10)	2.0
1.0 (-10)	2.0
1.5 (-11)	2.0
3.0 (-11)	1.72
3.0 (-11)	1.72
1.0 (-10)	2.069
1.59 (-10)	2.17
4.78 (-10)	2.17
1.59 (-10)	2.17
1.5 (-10)	3.092
3.3 (-10)	1.4
1.0 (-11)	2.0
3.2 (-10)	1.677
1.0 (-11)	2.0
1.0 (-11)	2.0

- 84

, RUN BEC- 85 - TON REACTIONS

- 86 -

517.	$SO_2 + h\mu> SO + O$	1.0 (-11)	2.0
18.	$H_2CS + h\nu> H_2CS^+ + e$	8.0 (-11)	2.8
519.	$H_2CS + h\nu> HCS^+ + H + e$	1.4 (-11)	3.09
520.	$H_2CS + h\mu> CS + H_2$	8.0 (-10)	1.6
521.	$Si0 + h\mu> Si + 0$	1.0 (-10)	2.0

522. $H_2 + h\nu --> H + H$

TABLE 4 ION-ELECTRON RECOMBINATION REACTIONS

Í	Reaction	Rate (cm^3s^{-1})
523.	$H^+ + e> H + h$	$1.9 \times 10^{-10} T^{-0.7}$
524.	$C^{+} + e> C + h$	7.6 x $10^{-12}(100/T)^{0.7}$
*525.	$^{13}C_{7} + e - ^{->} ^{13}C + h\nu$	$7.8 \times 10^{-10} - 0.62$
526:	N + e - N + h	$1.3 \times 10^{-10} - 0.626$
527.	H_{e}^{+} + e_{-} H_{e} + h_{e}	$1.2 \times 10^{-10} - 0.67$
529.	$S^{\dagger} + e = S + h$	$1.4 \times 10^{-10} - 0.63$
530.	$Si^+ + e> Si + h$	$1.5 \times 10^{-10} T^{-0.641}$ $1.5 \times 10^{-10} T^{-0.65}$
532.	$Mg^+ + e^{>}Mg + h$	$3.7 \times 10^{-10} T^{-0.855}$
533.	$H_3^+ + e^{>} H_2 + H_3$	1.5 (-7)
534.	$H_3^{+} + e> 3H$	1.5 (-7)
535.	CH ⁺ + e> C + H	1.0 (-7)
536.	$C_2^+ + e> C + C$	2.0 (-7)
537.	0H ⁺ + e> 0 + H	1.0 (-7)
538.	$CO^{+} + e^{>} C + 0$	1.0 (-7)
539.	$0_2^{+} + e> 0 + 0$	2.1 (-7)
540.	$NH^+ + e> N + H$	1.0 (-7)
541.	$NO^+ + e> N + O$	4.1 (-7)
542.	$N_2^{\dagger} + e - > N + N$	3.0 (-7)
543.	CN^+ + e> C + N	3.0 (-7)
544.	CH ⁺ ₂ + e> CH + H	3.0 (-7)
545.	$CH_2^* + e> C + H_2$	3.0 (-7)

- 86 -

546.	$CH_{3}^{+} + e> CH_{2} + H$	3.0 (-7)
547.	¹³ CH [] ₃ + e> ¹³ CH ₂ + H	3.0 (-7)
548.	$C_2 H^+ + e> C_2 + H$	1.0 (-7)
549.	$C_2H_2^+ + e> C_2H + H$	3.0 (-7)
550.	H ₂ 0 ⁺ + e> 0H + H	3.0 (-7)
551.	HCO^+ + e> CO + H	3.0 (-7)
*552.	$H^{13}CO^{+} e> 13CO + H$	3.0 (-7)
553.	$H_{30}^{+} + e> H_{2}^{0} + H$	1.0 (-6)
554.	$H_{30}^{+} + e> OH + 2H$	1.0 (-6)
555.	$H_{3}CO^{+} + e> H_{2}CO + H$	1.0 (-6)
556.	$H_3C0^+ + e> C0 + H_2 + H$	1.0 (-6)
557.	$H_2CO^+ + e> CO + 2H$	6.0 (-7)
*558.	$H_3^{13}CO^+ + e^{> 13}CO + 2H$	6.0 (-7)
559.	$HCO_{2}^{+} + e> CO_{2} + H$	1.0 (-6)
560.	$HCO_2^+ + e> CO + O + H$	1.0 (-6)
561.	$C_{3}H^{+} + e> C_{3} + H$	3.0 (-7)
562.	$C_{3}^{+} + e> C_{2} + C$	3.0 (-7)
563.	CO_2^+ + e> CO + O	3.0 (-7)
564.	0 ₂ H ⁺ + e =→> 0 ₂ + H	3.0 (-7)
565.	CH ₂ OH ⁺ + e> CH ₂ + OH	3.0 (-7)
566.	$N_2H^+ + e> N_2 + H$	6.0 (-7
567.	$\operatorname{NH}_{3}^{+}$ + e> NH + 2H	6.0 (-7
568.	$H_2CN^+ + e> CH + 2H$	1.0 (-6
569.	$H_2CN^+ + e> HCN + H$	1.0 (-6
570.	$\operatorname{NH}_{4}^{+}$ + e> NH_{3} + H	1.8 (-6
571.	$NH_{l_{1}}^{+}$ + e> NH_{2} + 2H	2.0 (-7

- 87 -

572.	$CH_2NH_2^+ + e> HCN + H_2 + H$	3.0 (-7)
573.	$\dot{\mathrm{NH}}_{2}^{+}$ + e> NH + H	3.0 (-7)
.574.	HCN^+ + e> CN + H	3.0 (-7)
575.	$C_2 N^+ + e> C_2 + N$	3.0 (-7)
576.	$CH_{3}^{*} + e> CH_{3} + h$	3.0 (-10)
577.	$CH_{4}^{+} + e> CH_{3} + H$	6.0 (-7)
578.	$CH_{5}^{+} + e> CH_{4} + H$	6.0 (-7)
579.	$H_2S^+ + e> SH + H$	1.0 (-6)
580.	$H_2S^+ + e> H_2S + h$	1.0 (-10)
581.	SH ⁺ + e> S + H	1.0 (-7)
582.	$H_{3}S^{+} + e> H_{2}S + H$	1.0 (-6)
583.	$H_3S^+ + e> SH + H_2$	1.0 (-6)
584.	$HCS^+ + e> CS + H$	1.0 (-6)
585.	$s0^{+} + e> s + 0$	1.0 (-7)
586.	$SN^+ + e> S + N$	1.0 (-7)
587.	$s_2^{+} + e> s + s$	1.0 (-7)
588.	$CH_2SH^+ + e> CH_2 + SH$	1.0 (-6)
589.	$H_2CS^+ + e> CS + H_2$	1.0 (-6)
590.	$H_3CS^+ + e> H_2CS + H$	1.0 (-6)
591.	$H_3CS^+ + e> CS + H_2 + H$	1.0 (-6)
592.	$CS^+ + e> C + S$	1.0 (-7)
593.	HSi0 ⁺ + e> Si0 + H	1.0 (-6)
594.	$SiH_2^+ + e> Si + H_2$	3.0 (-7)
595.	Si0 ⁺ + e> Si + 0	3.0 (-7)

- 88 -

	Reaction	Rate (s ⁻¹)
596.	H + P> H + e + P	1.5 (-17)
597.	He + P> He + e + P	1.5 (-17)
598.	$C + P> C^+ + e + P$	1.8 (-17)
599.	N + P> N ⁺ + e + P	2.1 (-17)
600.	$0 + P> 0^{+} + e + P$	2.8 (-17)
601.	$H_2 + P> H_2^+ + e + P$	2.3 (-17)
602.	$H_2 + P> H^+ + H + e + P$	4.6 (-19)
603.	H ₂ + P> H + H + P	1.15 (-17)
604.	$C_3 + P> C_3^+ + e + P$	3.0 (-17)

TABLE 5 COSMIC RAY DESTRUCTION PROCESSES

AX(DAT, DUTPUT, DTL105, TAPE11=DAT, TAPE12=DUTPUT, 5) COMPUTES THE STEADY STATE ABUNDANCES CONC(I) PROGRAM +TAPE13=0 THIS PRO SCHEME D A STEADY SPECIES ON THE HALFAX(DAT, DUT TLIOS) GRAM CDMPUTES F NEQ CHEMICAL STATE, THE R ARE COMPUTED F LEFT HAND SIDE STEADY CTIONS OF APP A RATE THE CHE STATE ABUNDA ASSUMING EAC PEARANCE AND CONSTANT AND MICAL EQUATI THE RE ROM DF NCES CONC(I) F H SPECIES IS I DISAPPEARANCE THE NUMBER OF A AS THE FS P QUATIONS RESTRIC CHEMICAL SPECIES ELEMENTS EQUATION QUATION IST COME ITHER RAT TION REA LE 1 INC FOR FOR FIRS ES. AND CONVENTIONS SCOL NUMBER D NUMBER D NUMBER D RESTRAIN CHEMICAL SURFACE FROM ALL OF DUDING ELE ELEMENT FORMATION T, SINCE ECTRONS H MUST OF H2 ITS RAT BE DN E I A GRAIN S COMPUTED EH LAST FO T, MU DIFFERENTLY DATA CARD LIST KR,KW,KWS(FROM [DATA FOR SUBROU NDEN 314 DEN,KTP F1C CARD 4 AND 5 ARE SPE,CON IXA4 CARD 5 IS REPEAT TA NEEDED FORMAT M DEVICE 1) OUTINE REED 313 5 ARE RE 1XA4,E1 REPEATED I4 PEATED 2.5 NSS TI AS NEEDED TIMES AND IS ONLY USED IF. KTP IS NE 0 Y OF TERMS EVICE NUMBER DEVICE NUMBER OF DENSITIES AT WHICH CALCO AT WHICH CALCULATION IS TO REVIOUS VALUES OF SPECIES AS A FIRST APPROXIMATION NAME CONCENTRATION GLDSSA INPUT DUTPUT DUTPUT DENSIT =0 IF BE USE SPECIE SPECIE AR KR KW DEN KTP ULATION IS TO B O BE DONE CONCENTRATIONS TO THE SOLUTION BE DONE P ARE TD DSS SPE INES NEEDED PURPOSE THE DATA FOR THE SCHEME S RATE COEFFICIENTS AT THE G THEY ARE DENSITY DEPENDANT S THE CONCENTRATIONS OF THE IRAINT EQUATIONS THE STEADY STATE EQUATIONS B S THE CONTRIBUTIONS FROM EAC DESTRUCTION OR FORMATION OF STATE CONCENTRATION SUBRO UTI ROUTINE REED CRAT REED IN COMPUTE COMPUTE COMPUTE SOLVES COMPUTE TO THE STEADY S GIVEN DENSITY ST ELEMENTAL SPECIES FROM BOUND TH SDE ST ION AL CIE SOLVE Y ITERAT H CHEMIC EACH SPE ES QUATION AT THE G(100), RCONC(100), RCNCLG(100), CONCT(100, 10), 100,3), TLCON(100,3), FLLG(120), ICI(100), FLCON(100), FLCMD(100) TS, NURTS, NSS, NRES, NEQ, NITER, PTOL, NSPEC, NSING KW, KWS J, NTAU, XTAU(10), TAUC, NDEN, KTAUST (100), CRS(10), CRST(10), RATE(600), SPEC(100) 100, 600), ICODE(600) 00), IP(600), NEACT(600, 3), NPROD(600, 4), NRS(10, 125) .0), NUM(600) DIMENSION CONCLG +WTTAU(10),CLMND(+CMDLG(100,3),CDN COMMON/CNTRL/NER COMMON/DEVICE/KR COMMON/TTAU/KTAU COMMON/MAIN/CONC COMMON/MAIT/ASW(COMMON/SIZE/IR(6 1,IER(10),NPIER(1) KR=11

A

	KW=12
	KWS=13 WRITF(KW+1050)
1050 1	FURMAT(////20X"PROGRAM HALIFAX - STEADY STATE"IX"ANALYSIS - VERSI DN HALO2 - OCT 8/75") CALL REED(NCLD) DD 150 T#1+NE9
c 150	ICODE(I)=NUM(I) READ IN INITIAL GUESS FOR THE STEADY STATE SPECIES DO 440 NUMCD=1,NCLD DO 160 T=1,NSPEC
160	CONC(I)=0.
1060	READ(KR, 1060) NDEN, KTAUST, KTAUED FORMAT(317)
	DELR=1.11E17 TAUC=6.05 KTAU=10
330	IF (NTAU.NE.KTAUST) GD TO 340
1070	FORMAT (F8.1) IO
1080	WRITE(KWS,1080) DEN, DELR, TAUC, KTAU, KTAUST, KTAUED FORMAT(1H0, "TOT H DEN="E15.5,4X,"DELTA R=",E10.4,4X,
+	$\frac{1}{2} \frac{1}{2} \frac{1}$
170	CRS(I)=CRST(I)+DEN CALL CRAT(DEN,RATE,NEQ,NUM)
	IF(NTAU.NE.KTAUST) GD TO 200 WRITE(KW,1090)
1090	FORMAT(30X"RATES AT THIS DENSITY ARE") WRITE(KW.1100)(NUM(JI).RATE(JI).JI=1.NEQ)
1100	FORMAT(6(14,1XE12.5))
	DO 190 I=1,NSS
	DO 180 IS=1, NSPEC
1110	IF(SPE.NE.SPEC(IS))GU TU 180 FORMAT(1XA4,E12.5)
	CONC(IS)=CON GO TO 190
180 190	CONTINUE CONTINUE GD TD 220
200	DD 210 I=1,NSS CONC(I)=CONC(I)=DEN/PDEN
220	CALL BOUND
	WRITE(KW, 1120)(SPEC(I), CUNC(I), I=1, NSPEC)
1120	WRITE(KW, 1190)
1190	FORMAT(1H >2X,"INITIAL CONCENTRATIONS") DD 270 I100=1,20
	<pre>I110=I100+80 WRITE(KW.1180) ((SPEC(I).CONC(I)).I=I100.I110.20)</pre>
1180	FORMAT(5(3X)A4)1X)E12.5))
210	LTS=0 DD 230 T=1+NSPEC
	IF(CONC(I).GE.O.) GD TD 230
226	
230	IF(LTS.NE.O) WRITE(KW,1130)
1130	FORMAT(" NEGATIVE CONCS OCCUR")

- 91 -

TRAINER TO ALL AD TO	
WRITE(KW,1140)	1
CALL EXIT 240 IF (NURTS-FO.1) WRITE(KW.1150)	-
1150 FORMAT(" SUSPECT RESULTS POSSIBLE") LRITE=1	
CALL SOLVE(DEN,LRITE,LCONV) DO 350 I=1,NSPEC	
350 CONCT(I, NTAU)=CONC(I) WRITE(KW, 1160)(SPEC(IWR), CONC(IWR), IWR=1, NSPEC)	
WRITE(KW, 1220)	-
1220 FORMAT(1H , 2X, "FINAL CONCENTRATIONS")	
I130=I120+80 WRITE(KW+1270) ((SPEC(I)+CONC(I))+I=I120+I130+20)	
WRITE(KWS,1270) ((SPEC(1),CONC(1)),I=I120,I130,20) 1270 FURMAT(5(3X,A4,1X,E12.5))	
280 CONTINUE DD 290 I140=1,NSPEC	
290 CONTINUE HTTE/(KH-1230)	~
1230 FORMAT(1H ,2X, "RELATIVE CONCENTRATIONS TO H2"). DO 300 I150=1,20	
I160=I150+80 WRITE(KW,1240) ((SPEC(I),RCONC(I)),I=I150,I160,20)	
1240 FURMAT(5(3X,A4,1X,E12.5)) 300 CONTINUE 300 200 TUD-1, NSPEC	
CLOG=CONC(IWR) / DEN 250 CONC(IWR) = ALOG10(CLOG)	
WRITE(KW,1170)(SPEC(IWR),CONCLG(IWR),IWR=1,NSPEC) WRITE(KWS,1170)(SPEC(IWR),CONCLG(IWR),IWR=1,NSPEC)	_
1170 FORMAT(1H ,2X"LOG OF THE REDUCED CONCENTRATIONS"/(6(3X,A4,1XF10.5) 12X)))	
$\frac{DU}{RCNCLG} (1170) = CONCLG(1170) - CONCLG(4)$	
WRITE(KW,1250) 1250 FORMAT(1H, 2X, "LOG OF THE RELATIVE CONCENTRATIONS TO H2")	
DO 320 I180=1,20 I190=I180+80	
WRITE(KW, 1260) ((SPEC(I), RCNCLG(I)), I=I180, I190, 20) 1260 FURMAT(5(3X, A4, 1X, F12.5))	
320 CONTINUE CALL_NORMA(NSPEC, NEQ)	
$\frac{1}{NTAU=NTAU=1}$	
IF(KTP.EQ.0) GO TO 400 READ(KR,1280) (WTTAU(I),I=1,10)	
1280 FORMAT(1X,10(F6.4,1X)) 400 DD 360 I=1,NSPEC	
360 ILCUN(I)NUMCD)=0. DD 370 I=1,NSPEC	
DD 380 J=1, KTAU9 380 TLCON(I+NUMCD)+CONCT(I+J)+WTTAU(J)	_
TLCON(I,NUMCD)=2+TLCON(I,NUMCD)+CONCT(I,KTAU)+WTTAU(KTAU) CLMND(I,NUMCD)=TLCON(I,NUMCD)+DELR	
<pre>A CMDLG(I,NUMCD)=ALOG10(CLMND(I,NUMCD)) 370 CONTINUE </pre>	
DD 530 I=1,NSPEC	

- 92 -

E.

540 530	IF(WTTAU(J).EQ.0.0000) CONCT(I,J)=BLNK CONTINUE
1290	WRITE(KW, 1290) (WTTAU(I), I=1, 10) FORMAT(/, 3X, "COLUMN DENSITIES"/4X, "(", 10F9.3, ")")
1300	WRITE(KW,1300) FORMAT(50X,"TAU",45X,"TTL CONC",2X,"CLMN DEN",2X,"LOG N")
1310	WRITE(KW,1310) (XTAU(I), I=1, KTAU) FORMAT(7X,10(F6,4,3X))
	DO 390 I=1,NSPEC WRITE(KW,1320) SPEC(I),(CONCT(I,J),J=1,KTAU),TLCON(I,NUMCD),
1320	CLMND(I,NUMCD),CMDLG(I,NUMCD),SPEC(I) FORMAT(1X,A4,10E9,3,E11,4,E10,4,F7,2,2X,A4)
1350	WRITE(KWS,1350) SPEC(I), TLCON(I, NUMCD) FORMAT(1X+A4+E12,5)
390	CONTINUE
440	CONTINUE TE(NCLD.E0.1) CO TO 520
	DO 450 I=1,NSPEC
460	FLCON(I) = FLCON(I) + TLCON(I, NUMCD)
420	DO 470 I=1,NSPEC
470	FLLG(I)=ALDG10(FLCMD(I))
1330	WRITE(KW,1330) FORMAT(//,1X,3(" TTL CONC COLM DEN LOG N",10X))
	DD 480 I=1,40 J=I+80
	IF(I.GE.21)J=I+40 WRITE(KW,1340) ((SPEC(K),FLCDN(K),FLCMD(K),FLLG(K)),K=I,J,40)
1340	FORMAT(1X, 3(A4, 2E9.3, F6, 2, 10X)) CONTINUE
1360	WRITE(KWS,1360) ((SPEC(I),FLCON(I)),I=1,NSPEC) FORMAT(1X,44,F12,5)
520	STOP
	SUBROUTINE NORMA (NSPEC, NRATE)
ç	FINDS THE LARGEST ELEMENT IN ASW AND NORMALISES ALL ELEMENTS TO
č	ORDER, PRINTING THE RESULTS OF EACH ROW IN DECRESSING
	COMMON/DEVICE/KR, KW, KWS
ç	NSPEC IS THE TOTAL NUMBER OF SPECIES
C	ICODE (NRATE) LABELS THE VARIOUS RATES, NCODE THE VARIOUS SPECIES
1050	WRITE(KW,1050) Format(140)
	DD 160 I=1,NSPEC NCODE(I)=I
	BIG(I)=0. DD 150 J=1.NRATE
	TEST=ABS(ASW(I,J)) IF(TEST,GT,BIG(I)) BIG(I)=TEST
150	
C	NORMALISE EACH ROW TO BIG(I)
	ABIG=BIG(I)
170	$\frac{ASW(I_{j}) = ASW(I_{j}) / ABIG}{ASW(I_{j}) = BOUGED OF DEC(I)}$
	NM=NSPEC-1
	ID=I+1 DD TAD T=T>NW
	DU 190 J=IV>NSPEC

93 --

		IF(BIG(I).GE.BIG(J)) GO TO 19J TEMP=BIG(I) BIG(I)=BIG(J)
	180	BIG(J)=TEMP DO 180 K=1,NRATE TEMP=ASW(I,K) ASW(I,K)=ASW(J,K) ASW(J,K)=TEMP
	100	TEMP=NCODE(I) NCODE(I)=NCODE(J) NCODE(J)=TEMP
1	190	WRITE(KW,1080) FORMAT(1H0 1X"SPECIES"1X"UNIT FOR ROW" 10X"CONTRIBUTIONS" "TO FORMATION AND DESTRUCTION OF SPECIES FROM FACH FON."
с	1	ARRANGE ELEMENTS IN DECREASING ORDER FOR EACH ROW NM=NRATE-1 DO 240 K=1+NSPEC
	200	DD 200 I=1,NRATE IPCDD(I)=ICDDE(I) DD 210 I=1,NM IP=I+1
		DO 210 J=IP,NRATE IF(ABS(ASW(K,I)).GE.ABS(ASW(K,J))) GO TO 210 TEMP=ASW(K,I) ASW(K,I)=ASW(K,J)
	210	TEMP=IPCOD(I) IPCOD(I)=IPCOD(J) IPCOD(J)=TEMP CONTINUE
CC		FIND IMAX, THE NUMBER OF NON-ZERO ELEMENTS IN ROW K OF ASW
	220	IF(ABS(ASW(K)I)).LT.1.E-05) GD TD 220 IMAX=IMAX+1 CONTINUE
CC		CHECK THAT THE MATRIX CORRESPONDS TO A STEADY STATE SQLUTION TOTAL=0. DD 224 I=1.NRATE
	224	TOTAL = TOTAL + ASW(K, I) IF(ABS(TOTAL).LE.1.E-05) GO TO 230 WRITE(KW, 1090) TOTAL
1	230	FORMAT(8X"****NOT A STEADY STATE TO WITHIN"1XE15.591X"RELATIVE RATE UNITS") NSQ=7 TE(IMAY.IT.7)NSQ=TMAY
1	100	N=NCODE(K) WRITE(KW,1100)SPEC(N),BIG(K),(IPCOD(I),ASW(K,I),I=1,NSQ) FORMAT(3XA4,E13.5,7(1X"("I3,1XF8.5,")"))
1	120 240	IF(IMAX.LE.7) GU TU 240 WRITE(KW,1120)(IPCDD(I),ASW(K,I),I=8,IMAX) FORMAT((20X7(IX"("I3,IXF8.5,")"))) CONTINUE RETURN END
000		SUBROUTINE BOUND THIS ROUTINE CALCULATES THE RESTRAINT SPECIES CONCENTRATIONS FROM THE STEADY-STATE SPECIES CONCENTRATIONS AND THE ATOMIC ABUNDANCES CRS(I). THE RESTRAINT
UUU		SPECIES ARE ASSUMED TO BE THE ELEMENTS THEMSELVES OR THE ELECTRON.
C	NSS	NUMBER OF STADY-STATE SPECIES.

CC	NRES	(I)	NUMBER OF RESTRAINT SPECIES.	
C	CRSO	1)	ABUNDANCE OF THE ITH ELEMENT. NUMBER OF SPECIES ENTERING THE RESTRAINT EQUATION	
Č	NPIE	R	NUMBER OF THE IER WHICH ENTER THE RESTRAINT	
č	NRS	I,J)	CODE NUMBER LABELLING THE JTH SPECIES ENTERING	
9		COMMON/M COMMON/C COMMON/S	MAIN/CONC(100), CRS(10), CRST(10), RATE(600), SPEC(100) CNTRL/NERTS, NURTS, NSS, NRES, NEQ, NITER, PTOL, NSPEC, NSING SIZE/IR(600), IP(600), NEACT(600, 3), NPROD(600, 4), NRS(10, 12)	5)
c	1	NEND=NS NST=NSS+),NPIER(10),NUM(600) SS+NRES +1	
Č			SET THE RESTRAINT SPECIES CONCENTRATIONS TO	
C		DO 170 1	IS=NST, NEND	
~		CONCLIST	S=CRS(I)	
CC			IN THE CASE OF ELECTRONS, INCREMENT THE CONCENTRATION	
6		JKS=IER	(I)	E J •
		DU 160 . IF(J.GT.	NPIER(I)) GO TO 150	
		JC=NRS(] CONC(IS)	I,J))=CONC(IS)+CONC(JC)	70-
С		GO TO 16	60	
CC			DECREMENT THE CONCENTRATION BY THE CONCENTRATION OF ALL SPECIES CONTAINING THE ATOM IN QUESTION,	11-
Ċ	50	JC=NRS()	OR IN THE CASE OF ELECTRONS, BY ALL NEGATIVE IONS.	
1	60	CONCISS) = CONC(IS) - CONC(JC) E	13711-
1	70	IF(CONC)	(IS).LT.0.)CONC(IS)=1.E-31	
		RETURN	al leg	10)
0		SUBROUTI	INE SOLVE(DEN, LRITE, LCONV)	
č			THIS ROUTINE CALCULATES THE STEADY-STATE ABUNDANCES OF	LADOR
SOC			APPROXIMATION TO THE CONCENTRATIONS CONC(I)	
CC			THE PROCEDURE USED IS AN ITERATIVE NEWTON'S METHOD	
CC			CONCENTRATIONS BEING DETAINED AFTER EVERY ITERATION BY	0.5
C			SCANNED ONCE PER ITERATION, AND THE RATE OF CHANGE OF	RE
CC			W.R.T. THE CONCENTRATIONS, FIJ(1, J), ARE BUILT UP FROM	E
CC			A KNOWLEDGE OF THE REAGENTS AND PRODUCTS OCCURRING IN EACH REACTION. A SYSTEM OF SIMULTANEOUS LINEAR ALGE	BRAIC
CC			STATE SPECIES CONCENTRATIONS WHICH WOULD MAKE THE RATES	OF
CC			CHANGE OF ALL SPECIES VANISH IN FIRST ORDER. THIS SYSTEM OF EQUATIONS IS SOVED BY THE ROUTINE GAJODF. IF	
CC			NEGATIVE STEADY-STATE CONCENTRATIONS RESULT, THEY ARE P EQUAL TO 1.E-31 BEFORE COMPUATION OF THE RESTRAINT SPEC	IES.
Ĉ			***SUBROUTINES NEEDED**	
AC C				
ČC			***GLDSSARY OF TERMS***	
č	KW		OUTPUT DEVICE FOR MESSAGES.	

- 95 -

BONE. EACH ITERATION THE J. I IN IONS, STEAD T FI ADY-STATE EQUAT TIONS, Y-STATE FI DY-ROGRAN, IS FI J RESTRAINT EQUATION RATE QUATION F REACTION ITH RESTRA CIENT. DUCT SCHEME . INT SPECIES ENCOUNTERED. MUMBER OF NO CONVERGENCE CASES. IF NCON .GT. 50 STO M(I) CODE NUMBER OF THE ITH RATE EQUATION. PARAMETER TO TEST FOR CONVERGENCE OF THE STEADY-STATE CONCENTRATIONS. IF ABS(FI(I)/CONC(I)).LT.PTOL ALL I, THEN ITERATION IS DISCONTINUED. FE(KEQ) RATE COEFFICIENT FOR THE RATE EQUATION KEQ. YEC NUMBER OF SPECIES OCCURRING IN THE WHOLE SCHEME. COMMON/CNTRL/NERTS, NURTS, NSS, NRES, NEQ, NITER, PTOL, NSPEC, NSING COMMON/MAIN/CONC(100), CRS(10), CRST(10), RATE(600), SPEC(100) COMMON/SIZE/IR(600), IP(600), NEACT(600, 3), NPROD(600, 4), NRS(10) COMMON/MAIT/ASW(100, 600), ICODE(600) COMMON/MAIT/ASW(100, 600), ICODE(600) COMMON/MAIT/ASW(100, FIJ(10000), IT(10) DATA NOCON/O/ LCONV=0 8 TOP FOR RATE ING) (10,125) CC CHECK FD IF(NSS.LE.100.AN WRITE(KW,1040)NS FORMAT(20X"***AR STOP ARRAY OVER NRES LE.10 NRES AY OVERFLOW Y OVERFLOW •LE.10) GO RDSR 0 140 A 1040 NSS="1XI5, 3X"NRES="1XI5) C BEGIN NEWTON METHOD ITERATIONS.

-	240	DD 320 ITER=1,NITER
č		INITIALISE ARRAYS.
		DU 150 I=1,NSPEC DU 150 J=1,NEQ
	150	$ASW(I_{j}J)=0.$ ICON=0
	160	DD 160 I=1,NSS
	100	NSSS=NSS+NSS DD 170 H=1-NSSS
-	170	FIJ(J)=0.
C		COMPUTE THE MATRIX FIJ BY SCANNING OVER ALL
Ç		RATE EQUATIONS
C		CONSULT THE SATE CONTRIBUTION FORM THE CHODENT
č		REACTION AND STORE THE REAGENT SPECIES LABELS IN IT.
		CUMD=RATE(KEQ) DO 180 LZ=1, IRKEQ
		JC=NEACT(KEQ,LZ)
		ÎF(LZ.EQ.L) GO TO 180
	180	CONTINUE
CC		SPECIAL TREATMENT FOR REACTION 1
C		IF(KEQ.EQ.1) CUMD=RATE(KEQ)*CRS(NRES)
Č		TPREOF TP(KED)
_		DD 190 LZ=1, 1PKEQ
	190	IT(JC)=NPROD(KEQ+LZ)
C		COMPUTE THE CONTRIBUTION TO FIJ FROM THE STEADY
C		-STATE SPECIES OCCURRING AMONG THE REAGENTS OF EQUATION KEQ.
		NIT=IR(KEQ)+IP(KEQ)
		DO 220 IS=1,NIT
		IF(ISUB.EQ.0.0R.JSUB.EQ.0) GD TO 220
		P=1. IF(IS.GT.IR(KEQ))P=-P
		IF(ISUB.GT.NSS) GD TD 220 IF(JSUB.GT.NSS) GD TD 200
		KSUB=ISUB+(JSUB-1)+NSS FTI(KSUB)=FTI(KSUB)+P*CUMD
~		GO TO 220
Č		COMPUTE THE CONTRIBUTION TO FIJ FROM THE RESTRAINT
CC		EQUATION KEQ.
	200	NSPC=JSUB-NSS TERNS=TER(NSPC)
		DD 210 NP=1, IERNS
		IF(NP.GT.NPIER(NSPC)) PZ=-P
<u>A</u>		KSUB=ISUB+(JS-1)*NSS
	210	CONTINUE
С	230	CONTINUE
-		

	1 1 10 10
po	CALCULATE THE CONTRIBUTION OF EQUATION KEG TO THE RATE OF CHANGE OF EACH STEADY-STATE SPECIES. CUM#RATE(KEO)
240	DU 240 L=1, IRKEQ JC=NEACT(KEQ,L) CUM=CUM*CONC(JC) IF(KEQ.EQ.1) CUM=RATE(KEQ)*CONC(NSPEC)*CRS(NRES) DU 250 IS=1,NIT
	ISUB=IT(IS) IF(ISUB.LE.0) GD TO 250 IF(IS.GT.IR(KEQ)) P=-P CUMP=CUM*P
250 260	IF(ISUB.GT.NSS) GO TO 250 FI(ISUB)=FI(ISUB)+CUMP CONTINUE CONTINUE
000	SOLVE THE SYSTEM OF SIMULTANEOUS EQUATIONS TO GET THE FIRST ODER CORRECTIONS TO THE CONCENTRATIONS.
-	IRANG=NSS CALL SIMQ(FIJ,FI,NSS,KS) IF (KS.GT.O)GD TU 270 GD TU 290
C	ERROR FLAG IS RETURNED FROM GAJODE
270 1050	WRITE(KW,1050) FORMAT(20X"SINGULAR MATRIX") LCONV=2
	IF(NSING.GT.30)STOP WRITE(KW,1060)
1060	FORMAT(30X"RATES AT THIS POINT ARE") WRITE(KW,1070)(NUM(JR),RATE(JR),JR=1,NEQ)
1070	FORMAT(6(I4,1XE15.7)) WRITE(KW,1080)(SPEC(JR),CONC(JR),JR=1,NSPEC) FORMAT(20X"CONCENTRATION"/(4X(8X,A4,1XE12.5)))
	DD 280 JR=1,NSS IF(CONC(JR).GT.1.E-30) GD TD 280 CONC(JR)=DEN*1.E-08
280	CALL BOUND
000	CORRECT THE STEADY-STATE SPECIES CONCENTRATIONS AND TEST
290	DD 300 I=1,NSS CONC(I)=CONC(I)-FI(I) IF(CONC(I).EQ.0.) GD TD 300 TEST=ABS(FI(I)/CONC(I))
300	IF(CONC(I).LT.O.) CONC(I)=1.E-31 CONTINUE
č	COMPUTE THE RESTRAINT SPECIES CONCENTRATIONS.
	ĬF(LRITĚ, ĚQ.O) GD TD 310 WRITE(KW.1090)ITER
1090	FORMAT(2X"CONCENTRATIONS AFTER"1X16,1X"ITERATIONS") WRITE(KW,1100)(SPEC(JR),CONC(JR),JR=1,NSPEC)
1100	FORMAT(6(3X,A4,1XE12.5)) IF(ICON.EQ.0) GO TO 330
△ 320	CONTINUE WRITE(KW,1110) NITER
1110	FORMAT(//," ","NO CONVERGENCE AFTER ",14," ITERATIONS") LCONV=1 STOP

- 98 -

330 PETIION	
END SUBROUTINE REED(NCLD)	
C C C C C C C C C C C C C C	
C ***** INPUT DATA **** C CARD NUMBER LIST FORMAT 1 TITLE(I), I=1, 15 2 NRES, NSS 3I4 C 3 SPEC(I), I=1, NSS C 4 LER, IER, NPIER, CRS, NSPR(I), I=1, 11 NSPR(I), I=12, IER NSPR(I), I=12, IER	
C ** CARD 4 IS REPEATED NRES TIMES. 5 NEQ C 6 NUM, IX, JX, RAT, (REACT(I), I=1, IX), C (PROD(I), I=1, JX) C ** CARD 6 IS REPEATED NEQ TIMES. 314 1XI4, 212, D12.55 6(1XA4) 6(1XA4)	
C TITLE A 60-LETTER CODE IDENTIFYING THE JOB. C NRES NUMBER OF RESTRAINT SPECIES (AND EQUATIONS) C NSS NUMBER OF STEADY-STATE SPECIES C SPEC(I) CODE NAME FOR SPECIES I C LER CODE NAME FOR THE CURRENT RESTRAINT SPECIES. C JER NUMBER OF TERMS ENTERING THE RHS OF THE ITH	2
C NPIER NUMBER OF POSITIVE TERMS ENTERING THE RHS C DF THE ITH RESTRAINT EQUATION. C CRS ABUNDANCE (RELATIVE TO H) OF THE ITH RESTRAINT	Rad-
C NSPR(I) CODE NAMES OF THE SPECIES FORMING THE TERMS C DN THE RHS OF THE CURRENT RESTRAINT EQUATION. C NEQ NUMBER OF CHEMICAL REACTIONS (RATE EQUATIONS) C NH THE CURRENT SCHEME.	5
C NUM CODE NUMBER OF THE CURRENT REACTION C IX NUMBER OF SPECIES ON THE LHS (REGENTS) C OF THE CURRENT RATE EQUATION.	EY LANO
C JS NUMBER OF SPECIES ON THE RHS (PRODUCTS) OF THE C URRENT RATE EQUATION. C NEACT(I) CODE NAME OF THE ITH REAGENT SPECIES.	
C DIMENSION NRFL(100), NPFL(100), REACT(3), PROD(4), NSPR(100) COMMON/CNTRL/NERTS, NURTS, NSS, NRES, NEQ, NITER, PTOL, NSPEC, NSIN COMMON/MAIN/CONC(100), CRS(10), CRST(10), RATE(600), SPEC(100)	G
1 JIER(10) NPIER(10) NUM(600) COMMON/DEVICE/KR,KW,KWS DIMENSION NTITLE(15) REAL LER,NSPR DATA TSTNB/" H"/	0,12,77
C INITIALISE ARRAYS. DO 150 I=1,600 DO 150 J=1,3 150 NEACT(I,J)=0 A DD 151 I=1.600	
DO 151 J=1,4 151 NPROD(I,J)=0 DO 160 I=1,100 NRFL(I)=0	

- 99 -

160	NPFL(1)=0 NURTS=0 NERTS=0
C C	READ THE TITLE AND THE SPECIES INFORMATION. READ(KR,1050)(NTITLE(I),I=1,15) WRITE(KW,1060)(NTITLE(I),I=1,15)
1060 C	FORMAT(25x15A4) IF NURTS BECOMES 1 SOMETHING IS FISHY WITH DATA BUT CALC IS DONE IF NERTS BECOMES 1 SOMETHING IS WRONG WITH DATA AND PROGRAM STOPS READ(KR.1070)NRES.NSS
1070	WRITE(KW,1070)NRES,NSS NSPEC=NRES+NSS NSTRT=NSS+1 FORMAT(214)
C	IF(NSPEC.LE.100) GD TD 180 NSPEC MAY BE LIMITED BY THE DIMENSION OF FI IN SOLVE WRITE(KW,1080) NSPEC FORMAT("_", "ARRAY OVERFLOW NSPEC= ",16)
170 180 2090 C	CALL EXIT READ(KR,1090) (SPEC(I),I=1,NSS) FORMAT(14(1XA4)) READ IN INFORMATION FOR THE RESTRAINT FOUATIONS.
	DD 240 KER=1, NRES READ(KR,1110) LER, IER(KER), NPIER(KER), CRS(KER), (NSPR(LC), LC=1,11) CRST(KER)=CRS(KER) IF(KER.NE.NRES) GD TD 190
CC	CHECK THAT THE LAST RESTRAINT EQUATION IS FOR HYDROGEN
1100	NERTS=1 WRITE(KW,1100) LER,TSTNB FORMAT("","SPECIES ",A4," IN LAST RESTRAINT EQ SHOULD BE ", 44]
1110	FORMAT(1XA4,2I3,E12.5,11(1XA4)) IERKE=IER(KER) IF(IERKE.LE.11) GO TO 200
1120 200 C	FORMAT(16(1XA4)) NSP=NSS+KER
c 1130	SPEC(NSP)=LER WRITE(KW,1130) NSP,SPEC(NSP) FORMAT(20X"SPEC(",14,")=",A4)
CCC	ASSIGN THE INTERNAL LABELS NRS TO THE SPECIES OCCURRING IN THE RESTRAINT EQUATIONS. DO 230 I=1, IERKE
A .	IF(NSPR(I).NE.SPEC(J)) GO TO 210 NRS(KER,I)=J GO TO 230
Č 210	CHECK THAT THE SPECIES IS A STEADY-STATE SPECIES. IF(J.LT.NSS) GO TO 220 NERTS=1
1140 220	WRITE(KW,1140) NSPR(1),KER FORMAT(" ","NON-STEADY-ST. VAR. ",A4," APPEARS ON RIGHT" 11X"SIDE OF ",I3," RESTRAINT EQ.") CONTINUE
1150	WRITE(KW,1150) LER,CRS(KER),(NSPR(LC),LC=1,IERKE) FORMAT(2XA4,"="E12.5/(19X20(1XA4))) WRITE(KW,1160) (NRS(KER,I),I=1,IERKE)
1100	FURNAT(1746V1)

- 100 -

	240	CONTINUE WRITE(KW, 1170) NSPEC
1	170	FORMAT(16, "SPECIES USED") WRITE(KW,1090) (SPEC(I),I=1,NSREC)
č 1	.180	READ IN INFORMATION FOR EACH RATE EQUATION. READ(KR,1070) NEQ FORMAT(I6, "EQUATIONS USED") WRITE(KW,1180) NEQ DD 600 KEQ=1,NEQ READ(KR,1190)NUM(KEQ),IX,JX,RAT,(REACT(I),I=1,IX),(PROD(I),I=1,JX) FORMAT(1XI4,2I2,E12.5,7(1XA4)) IR(KEQ)=IX PORMAT(1XI4,2I2,E12.5,7(1XA4))
C		RATE (KEQ) = RAT
Ĉ	660	ASSIGN INTERNAL LABELS NEACT TO THE SPECIES MAKING UP THE REAGENTS. DD 270 I=1,IX
		DO 260 IS=1,NSPEC IF(REACT(I).NE.SPEC(IS)) GO TO 250 NEACT(KEQ,I)=IS NRFL(IS)=NRFL(IS)+1
~	250	GD TD 270 IF(IS.LT.NSPEC) GD TD 260 NERTS=1
	220 260 270	ONE OF THE REAGENT SPECIES CANNUT BE IDENTIFIED WITH ANY OF THOSE IN THE ARRAY SPEC(I) WRITE(KW,1220) REACT(I),KEQ FORMAT(" ","UNKNOWN SPECIES ",A4," AMONG REACTANTS EQ ",I4) CONTINUE CONTINUE
500	280	ASSIGN INTERNAL LABELS NPROD TO THE SPECIES MAKING UP THE PRODUCTS. DO 300 I=1, JX DO 290 IS=1, NSPEC IF(PROD(I).NE.SPEC(IS)) GO TO 280 NPROD(KEQ, I)=IS NPFL(IS)=NPFL(IS)+1 GO TO 300 IF(IS-LT_NSPEC) GO TO 290
000	200	NURTS=1 ONE OF THE PRODUCT SPECIES CANNOT BE IDENTIFIED WITH ANY OF THOSE IN THE ARRAY SPEC. WRITE(KW.1230)PROD(I).KE9
1	230 290 300	FORMAT(" ", "UNKNOWN SPECIES ", A4," AMONG PRODUCTS IN EQ ", I4) Continue Continue
0000		SEGMENT TO CHECK THAT A SPECIES DOES NOT APPEAR ON BOTH SIDES OF AN EQUATION.
CC C		FIRST SUM OVER ALL SPECIES. DO 550 IS=1,NSPEC
Č		DOES THE SPECIES OCCUR AMONG THE REAGENTS? IF SO SET LRTEST=1 LPTEST=0 LRTEST=0 DD 510 I=1,IX IF(REACT(I).NE.SPEC(IS))GD TD 510
С	510	GD TD 520 CONTINUE

- 101 -

<pre>C IF SPECIES DCCURSTANDNG PRODUCTS SET LPTEST=1 520 DD 300 T=1,JX IF (PRODIT).NE.SPEC(IS)) GD TD 530 C IF (PRODIT).NE.SPEC(IS)) GD TD 530 C IF (PRODIT).NE.SPEC(IS) GD TD 530 C IF (PRODIT).NE.SPEC(IS) PRODUCTS. 540 IF (PRODIT).SPECIES ANDNG REAGENTS AND PRODUCTS. 540 IF (PRODIT).SPECIES INA4, IX*APPEARS UN BOTH SIDES* 1140 F EGN*1415) 550 CONTINUE C C (PREACTHAT ALL SPECIES DCCUR AT LEAST ONCE AS 600 CONTINUE C C (PREACTHAT ALL SPECIES DCCUR AT LEAST ONCE AS 600 CONTINUE C C (PREACTHAT ALL SPECIES DCCUR AT LEAST ONCE AS 600 CONTINUE C C (PREACTHAT ALL SPECIES DCCUR AT LEAST ONCE AS 600 CONTINUE C C (PREACTHAT ALL SPECIES DCCUR AT LEAST ONCE AS 600 CONTINUE C C (PREACTHAT ALL SPECIES DCCUR AT LEAST ONCE AS 600 CONTINUE C C (PREACTHAT ALL SPECIES DCCUR AT LEAST ONCE AS 600 CONTINUE C C (PREACTHAT ALL SPECIES DCCUR AT LEAST ONCE AS 600 CONTINUE C C (PREACTION SPECIES TA4, IX*NEVER APPEARS AS A REACTANT*) NERTS= 11 (1), GT-0) GO TO 620 1300 FORMAT(10X*SPECIES TA4, IX*NEVER APPEARS AS A REACTANT*) NERTS= 12 (PRODIT) 620 SONTINUE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT 10 G30 (PROD 10 G30 (PL)3 11 (C), SI (C), SI</pre>	<pre>C IF SPECIES OCCURS AMONG PRODUCTS SET LPTEST=1 520 DD 305 f=1,3 530 CONTINUE C IEST FOR SPECIES AMONG REAGENTS AND PRODUCTS. 540 IF(LREST:E0:0) GO TO 530 1310 FIT(LREST:E0:0) GO TO 550 NERTS=1 1310 FIT(LREST:E0:0) GO TO 550 CONTINUE C C C C C FREXGER AND OR REAGENTS AND PRODUCT IN THE RATE SCHEME. C C C C C C FREXGER AND ONCE AS A PRODUCT IN THE RATE SCHEME. C C C C C C C FREXGER AND ONCE AS A PRODUCT IN THE RATE SCHEME. C C C C C C C C FREXGER AND ONCE AS A PRODUCT IN THE RATE SCHEME. C C C C C C FREXGER AND ONCE AS A PRODUCT IN THE RATE SCHEME. C C C C C C FREXGER AND ONCE AS A PRODUCT IN THE RATE SCHEME. C C C C C C FREXGER AND ONCE AS A PRODUCT IN THE RATE SCHEME. C C C C C C C FREXGER AND ONCE AS A PRODUCT IN THE RATE SCHEME. C C C C C C C FREXGER AND ONCE AS A PRODUCT IN THE RATE SCHEME. C C C C C C C C FREXGER AND ONCE AS A PRODUCT IN THE RATE SCHEME. C C C C C C C C C C C C C C C C C C C</pre>			
920 DJ 330 11,3,4,8,5,9,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	<pre>920 DD_2800 + 1.*.X. SPEC(IS)) GD TD 530 1 C TD = 1. CO TD = 40 530 CDNTINUE C 540 IEST FOR SPECIES AMONG REAGENTS AND PRODUCTS. 1310 IXMOF ECANALATEST.E0.01 GO TD 550 NERTS - 1. J. 301 SPECIES IS/KEO 1310 IXMOF ECANTXIS) 550 CDNTINUE C C C C C C CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS C C C C C CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS C C C C C CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS C C C C C CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS C C C C C CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS C C C C C CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS C C C C C CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS C C C C C CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS C C C C CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS C C C C CHECK THAT ALL SPECIES ALL SPECIES DCCUR AT LEAST ONCE AS C C C C C CHECK THAT AND ORCE AS A PRODUCT IN THE RATE SCHEME. C C AND THAT THE LABELS FOR ALL REACTION APPEARS AS A REACTANT*) NERTS - 10 CHECK THAT NO REACTION APPEARS TWICE C C C CONTINUE C C C C C C C C C C C C C C C C C C C</pre>	Č.		IF SPECIES OCCURS AMONG PRODUCTS SET LPTEST=1
LPTEST=1 530 CD TD 550 540 ICD 550 CT EST FDR SPECIES ANDNG REAGENTS AND PRODUCTS. NERRELAW 13101SPECIES ALONG REAGENTS AND PRODUCTS. NERRELAW 13101SPECIES ALONG REAGENTS AND PRODUCTS. 111070F EON"1X151 550 CONTINUE CC CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS CC CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS CC CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS CC CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS CC CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS CC CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS CC CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS CC CHECK THAT AND DNCE AS A PRODUCT IN THE RATE SCHEME. DF (DEC) DC 00 CONTINUE CC C CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS CC C CHECK THAT AND DNCE AS A PRODUCT IN THE RATE SCHEME. DF (DEC) DC 00 CONTINUE CC C CONTINUE CC C CONTINUE CC C CONTINUE CC SEGMENT TO CHECK THAT NO REACTION APPEARS AS A PRODUCT"3 000 GSO J=L,NGP DC 630 CONTINUE CC SEGMENT TO CHECK THAT NO REACTION APPEARS THICE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOMESCO I = 1 = 1, NGM DD 630 J= L,NGP DD 630 K= 1,3 1332 FORMAT(10X).NE.NPROD(J,K))GD TD 640 634 CFUTTRUE C32 DC 004 K= 1,3 1332 FORMAT(10X).NE.NPROD(J,K))GD TD 640 634 CFUTTRUE C440 CT (105).NE.NPROD(J,K))GD TD 640 634 CFUTTRUE C440 CT (105).NE.NPROD(J,K))GD TD 640 634 CFUTTRUE C50 CONTINUE C50 CONTINE C5	LPTEST=1. C 530 G CONTINUE C 10 540 C 11 C 10 540 C 1 EFI FDR SPECIES ANDNG REAGENTS AND PRODUCTS. MERTELKW 13101SPEC(15)/KCG MERTELKW 13101SPEC(15)/KCG STORE CONTINUE C 1 C 10 FE CONTINUE C 1 C C C C HECK THAT ALL SPECIES DCCUR AI LEAST ONCE AS A REAGENT AND DRCE AS A PRODUCT IN THE RATE SCHEME. C 1 C 0 C C 1 F1.NSPEC C C C C HECK THAT ALL SPECIES DCCUR AI LEAST ONCE AS A REAGENT AND DRCE AS A PRODUCT IN THE RATE SCHEME. C 1 C 0 C 0 T 1.NSPEC C C C C HECK THAT ALL SPECIES DCCUR AI LEAST ONCE AS A REAGENT AND DRCE AS A PRODUCT IN THE RATE SCHEME. C 1 C 0 C 0 T 1.NSPEC C C C C C C C C C C 0 T 0 C 10 C 10 C 10		520	IF(PROD(I).NE.SPEC(IS)) GO TO 530
<pre>530 CONTINUE 530 Continue c TEST FOR SPECIES AMONG REAGENTS AND PRODUCTS. 540 IF(L) TEST.E0.0.0.R.DTEST.E0.0) GD TD 550 NERTS=1.E0.0.0.R.DTEST.E0.0) GD TD 550 NERTS=1.E0.0.0.R.DTEST.E0.0) GD TD 550 SEC C C C FOR SPECIES TA44,1X*APPEARS ON BOTH SIDES" 11X0P EONTINUE c C C C ATTROPPED TO DOCE AS A PRODUCT IN THE RATE SCHEME. C C C C ATTROPPED TO GD TD 610 FRITE(KW11350) SPECIES "A4,1X*NEVER APPEARS AS A REACTANT") NERTS=1 610 IF (NPFL(1).GT.0) GD TD 620 WRITE(KW11350) SPECIES "A4,1X*NEVER APPEARS AS A PRODUCT") NERTS=1 620 CONTINUE c SEGMENT TO CHECK THAT NO REACTION APPEARS AS A PRODUCT") NERTS=1 620 CONTINUE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM*NE0=1 DD 650 T=1.NOM JL=1+1 622 CONTINUE 623 CONTINUE 624 CONTINUE 625 CONTINUE 625 CONTINUE 625 CONTINUE 626 CONTINUE 627 CONTINUE 628 CONTINUE 628 CONTINUE 629 CONTINUE 629 CONTINUE 629 CONTINUE 620 CONTINUE 620 CONTINUE 620 CONTINUE 621 DO 650 T=1.NOM JL=1+1 622 CONTINUE 623 CONTINUE 623 CONTINUE 624 CONTINUE 625 CONTINUE 625 CONTINUE 625 CONTINUE 626 CONTINUE 627 CONTINUE 628 CONTINUE 628 CONTINUE 629 CONTINUE 629 CONTINUE 629 CONTINUE 620 CONTINUE 620 CONTINUE 620 CONTINUE 621 CONTINUE 622 CONTINUE 622 CONTINUE 623 CONTINUE 624 CONTINUE 625 CONTINUE 625 CONTINUE 626 CONTINUE 626 CONTINUE 627 CONTINUE 628 CONTINUE 628 CONTINUE 628 CONTINUE 629 CONTINUE 629 CONTINUE 620 CONTINUE 6</pre>	<pre>530 CONTINUE C TEST FOR SPECIES AMONG REAGENTS AND PRODUCTS. 540 IFURTEST.EG.0.00.R.LPTEST.EG.010 GD TO 550 MERTS-1. 1310 FORMEST.1. 1310 FORMEST.1. 1320 FORMATION SPECIES TAA, 1X"NEVER APPEARS AS A REACTANT") 1320 FORMATION SPECIES TAA, 1X"NEVER APPEARS AS A REACTANT") 1320 FORMATION SPECIES TAA, 1X"NEVER APPEARS AS A REACTANT") 1320 FORMATION SPECIES TAA, 1X"NEVER APPEARS AS A REACTANT") 1330 FORMATION SPECIES TAA, 1X"NEVER APPEARS AS A PRODUCT"1 1330 FORMATION SPECIES TAA, 1X"NEVER APPEARS AS A PRODUCT"1 CO CONTINUE C SAMENS.1. C SAMENS.2. C SAMENS.1. C SAMENS.1. C SAMENS.2. C SAMENS.1. C SAMENS.2. C SAMENS.1. C SAMENS.1. C SAMENS.2. C SAMENS.2. C SAMENS.1. C SAMENS.2. C SAMENS.1. C SAMENS.1. C SAMENS.2. C SAMENS.1. C SAMENS.1. C SAMENS.2. C SAMENS</pre>			LPTEST=1
C TEST FOR SPECIES AMONG REAGENTS AND PRODUCTS. S40 IF(IRTET, 40,0) CR.LPTEST.EQ.0) GO TO 550 NETTINE 1310 LX F(110X*SPECIESTXA4,1X*APPEARS ON BOTH SIDES* 550 LXM1X15) 550 LXM1X102 C C C A REAGENT AND ONCE AS A PRODUCT IN THE RATE SCHEME. D 620 L1,NSPEC IF(NRFL(I),GT.O) GO TO 610 IF(NRFL(I),GT.O) SO TO 610 IF(NRFL(I),GT.O) SO CO IF(NRFL(I),GT.O) SO ALL REACTIONS ARE DISTINCT NOM-NRO-1 D 650 J=JL,NEQ NSUM-0 IF(IRTE(I,N),NE.NEACT(J,K)) GO TO 632 IF(NRRDD(I),K),NE.NEACT(J,K)) GO TO 640 634 CONTINUE 632 DO G34 K=1,3 IF((NRFRDD(I),K),NE.NEACT(J,K)) GO TO 640 634 CONTINUE 632 DO G34 K=1,3 IF((NRFRDD(I),K),NE.NEACT(J,K)) GO TO 640 634 CONTINUE 632 DO G34 K=1,3 IF(NRRDD(I),NE.NEACT(J,K)) GO TO 640 634 CONTINUE 632 DO G34 K=1,3 IF(NRRDD(I),NE.NEACT(IONS*IXI4,1X*AND*IXI4,1X*ARE*IX*IDENTICAL*) NERTEST 1334 HT(LX,NI332.NUM(J)) GO TO 650 IF(NRCD(I),NITER,NCLD 1344 HT(I),NE.NUM(J) GO TO 650 IF(NRCD(I),NITER,NCLD 1350 FORMAT((F7.5,217) NERTEST NERTEST NERTEST SECONTACLO, PTOL,NITER HXITE(IXX,1350) NCLD,PTOL,NITER HXITE(IXX,1350) NCLD,PTOL,NITER HXITE(IXX,1	C TEST FOR SPECIES AMONG REAGENTS AND PRODUCTS. NERTS-EC.O.D. OPTEST.EC.O) GO TO 550 WERTS-EC.O.D. OPTEST.EC.O) GO TO 550 WERTS-EC.O.D. OPTEST.EC.O.D. OPTEST.EC.O.D. OPTEST 11X10F ECMMAI(IDXMSPECIESMIXA4,1XMAPPEARS UN BUTH SIDESM 11X10F ECMMIXIS) 550 CONTINUE C C C A REAGENT AND ONCE AS A PRODUCT IN THE RATE SCHEME. DD 620 I=1,NSPEC C A REAGENT AND ONCE AS A PRODUCT IN THE RATE SCHEME. DD 620 I=1,NSPECIES M4-1XMNEVER APPEARS AS A REACTANT") 600 CONTINUE C A REAGENT AND ONCE AS A PRODUCT IN THE RATE SCHEME. DD 620 I=1,NSPECIES M4-1XMNEVER APPEARS AS A REACTANT") 610 HERTS-ELISS M4-1XMNEVER APPEARS AS A REACTANT") 610 HERTS-ELISS M4-1XMNEVER APPEARS AS A REACTANT") 610 HERTS-ELISS M4-1XMNEVER APPEARS AS A PRODUCT") 620 CONTINUE C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C SEGMENT TO CHECK THAT NO REACTION APPEARS THE STANCT 00 0 500 K=1,3 1304 FORMATCION THE LABELS FOR ALL REACTIONS ARE DISTINCT NOT THE CHECK 332 NUMH II, NUMH II 1322 FORMAT (20X ****THE LABELS TO KALL X***********************************		530	CONTINUE
<pre>540 IF [[k = 1 = 5 + 0.0, D = . L PT EST. E0.0] GD TD 550 WRITE [k + , 3 = 10 SPEC(IS), KE0 1310 FORMAT(10X"SPECIES "IXA4, IX"APPEARS UN BOTH SIDES" 11 x"DE EON"IXUE 600 CONTINUE 60</pre>	<pre>540 IF(LRTEST.EQ.O.DR.LPTEST.EQ.O) GD TD 550 NERTS-1 WRITE(W,1310)SPEC(IS)KE0 1310 FDRMATTIOXSPECTESTIX44,1X*MAPPEARS UN BOTH SIDES* 550 CONTINUE C C C C A REAGENT AND DNCE AS A PRODUCT IN THE RATE SCHEME. 11X*0F EQN*1X15) 1320 FDRMATTIOXSPECTES "A4,1X*NEVER APPEARS AS A REACTANT*) 1320 FDRMATIOXSPECTES "A4,1X*NEVER APPEARS AS A PRODUCT*) 1320 FDRMATIOXSPECTES "A4,1X*NEVER APPEARS TWICE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM*NEQ-1 DD 650 I=1,NOM JD 651 J=JL,NEQ NSUM=0 IRTST=0 DD 630 K*1,3 IF(MEACT(IFK).NE.NEACT(J,K)) GO TD 632 632 CD 034 K*1,3 IF(MEACT(IFK).NE.NPROD(J,K))GO TD 640 634 CDNTINUE 640 IF(NPRODUISC).NE.NPROD(J,K))GO TD 650 134 FORMATIC(N****REACTIONS'IXI4,1X*AND*IXI4,1X*ARE*IX*IDENTICAL*') NURTS-1 640 IF(NPRODUISC).NE.NPROD(J,K))GO TD 650 134 FORMATIC(X****REACTIONS'IXI4,1X*APPEARS MORE*IX 1 NTHE(K*,1334)NUM(J) 1332 FORMAT(Z), NE.NUMUJ) 650 FDRMAT(Z), NE.NUMEDED FORMATICAL*') NURTS-1 134 FORMAT(Z), NE.NUMEDED FOR ALL REACTIONS'') NURTS-1 134 FORMAT(Z), NE.NUMUJ) 135 135 135 135 135 135 135 135 135 135</pre>	C		TEST FOR SPECIES AMONG REAGENTS AND PRODUCTS.
<pre>NETITIE AW, 3100SPEC(IS), KEQ 1310 Diff(1(2)% SPECIES "IXA4, IX"APPEARS DN BOTH SIDES" 500 CONTINUE C C CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS C DD 600 L=1, NOPEC IF (NETLIT), GT.0) GD TD 610 WRITE(KW:1320) SPEC(IS) A4, IX"NEVER APPEARS AS A REACTANT") NERTS: 1320 FORMAT(100% SPECIES M44, IX"NEVER APPEARS AS A REACTANT") NERTS: 1330 FORMAT(100% SPECIES M44, IX"NEVER APPEARS AS A REACTANT") NERTS: 1330 FORMAT(100% SPECIES M44, IX"NEVER APPEARS AS A PRODUCT") NERTS: 620 CONTINUE C SIGNEALT DECHECK THAT NO REACTION APPEARS TWICE C AND HE LABELS FOR ALL REACTIONS ARE DISTINCT NOM SO I=1, NOM U G50 I=1, NOM U G50 J=JL, NE. NEACT(J,K)) GD TD 632 1332 FORMAT(10, NE.NE.NEACT(J,K)) GD TD 640 1332 FORMAT(10, NE.NENEACT(J,K)) GD TD 640 1332 FORMAT(10, NE.NENEACTIONS "IXI4, IX"AND"IXI4, IX"ARE"IX"IDENTICAL") NERTS: 640 CONTINUE 650 CONTINUE 750 CONTINUE 751 FORMAT(20, NELABER) FOR ALL REACTIONS") 751 FORMAT(10, NELABER) FOR ALL REACTIONS") 7550 CONTINUE 7550 CONTINUE 7550 CONTINUE 7550 CONTINUE 7550 CONTACL, PTOL, NITER 7550 CONTACL, PTOL, NITER 7550 CONTACL, Y, NUMBER OF CLOUD=", IZ, 4X, " ER TOL="F10.6, 755, "MAX ITER="I4] 7550 CONTACLES, NUMBER OF CLOUD=", IZ, 4X, " ER TOL="F10.6, 755, "MAX ITER="I4] 7550 CONTACLES, NUMBER OF CLOUD=", IZ, 4X, " ER TOL="F10.6, 7550 CONTACLES, NUMBER OF CLOUD=", IZ, 4X, " ER TOL="F10.6, 7550 C</pre>	<pre>Notifier W = 1310 SPEC(15)*KE0 1310 # DTM*T(16)*SPECTES*TXA4,1X**APPBEARS UN BOTH SIDES** 550 CONTINUE CC CHECK THAT ALL SPECIES OCCUR AT LEAST ONCE AS C DD 620 L=1.NSPEC C SEGMENT TO CHECK THAT NO REACTION APPEARS AS A PRODUCT** C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C SEGMENT TO CHECK THAT NO REACTIONS ARE DISTINCT NOM*NEQ-1 DD 650 I=1.NOM JL=11 DD 650 I=1.NOM JL=12 DD 650 I=1.NOM JL=13 DC 630 CNTINUE C SEGMENT TO CHECK THAT NO REACTIONS ARE DISTINCT NOM*NEQ-1 DD 650 I=1.NOM JL=141 DD 650 I=1.NOM JL=151 DD 650 I=1.NOM JL=151 DC 630 CNTINUE C SEGMENT TO CHECK THAT NO REACTIONS ARE DISTINCT NOM*NEQ-1 DO 630 (K=1,3) IF(REACTICINS') NE.NPROD(J,K))GO TO 632 C SEMENT TO CHECK THAT NO REACTIONS' NERTST=1 600 CONTINUE SEMENT CONTENT AND NOT TO 50 IS34 FORMAT(20X****REACTIONS') NERTST=1 NERTST=1 NERTST=1 SEMENTST NO NELL NOT NITER, NCLD 1340 FORMAT(20X****THE LABEL*!IX14,1X**AND*!IX14,1X**ARE*!IX1 NERTST=1 NERTST=1 SEMENTST NUMBER OF CLOUD=*, I2, 4X,*'' ER TOL=**F10.6, **XX** MAX THER***THE LABEL*!IX1,KOUT,KW) OTMENSION NCDDE CLOUD=*, I2, 4X,*'' ER TOL=**F10.6, **XX** MAX THER***THE SEMENTS CODED C BY THE ARRAY NCODE(I) FOR I==; NMAX,KIN, FOR A GIVEN C BY THE ARRAY NCODE(I) FOR I==; NMAX, FOR A GIVEN C BY THE ARRAY NCODE(I) FOR I==; NMAX, FOR A GIVEN C BY THE ARRAY NCODE(I) FOR I==; NMAX, FOR A GIVEN C BY THE ARRAY NCODE(I) FOR I==; NMAX, FOR A GIVEN C BY THE ARRAY NCODE(I) FOR I==; NMAX, FOR A GIVEN</pre>		540	IF(LRTEST.EQ.O.DR.LPTEST.EQ.O) GD TD 550
<pre>1310 FORMAT(10X"SPECTES"IXA4,1X"APPEARS ON BOTH SIDES" 11X"OF ECONTINUE 600 CONTINUE C C C C C C C C C C C C C C C C C C C</pre>	1310 FORMATION "SPECTES" 1XA4,1X"APPEARS UN BUTH SIDES" 1320 FORMINUE C C C A REAGENT AND ONCE AS A PRODUCT IN THE RATE SCHEME. DD 620 I=1.NSPEC I F(NFFLI):6T.0] GD TD 610 WRITE(KW,1320) SPECIES "A*,1X"NEVER APPEARS AS A REACTANT") NERTS=1 1320 FORMATIONSPECIES "A*,1X"NEVER APPEARS AS A REACTANT") NERTS=1 1330 FORMATIONSPECIES "A*,1X"NEVER APPEARS AS A REACTANT") NERTS=1 1330 FORMATIONSPECIES "A*,1X"NEVER APPEARS AS A PRODUCT") NERTS=1 1330 FORMATIONSPECIES "A*,1X"NEVER APPEARS AS A PRODUCT") NERTS=1 620 CEGMENT TO CHECK THAT NO REACTION APPEARS TWICE AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NON THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NON THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NON SO J=JL,NEQ NSUM=0 IRTST=0 C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NON THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NON SO J=JL,NEQ NSUM=0 IRTST=0 630 GFMITAUE 632 DD 634 K = 1,3 DD 650 J=JL,NEQ NSUM=0 IRTST=0 634 CONTINUE 635 CWITAUE 635 CWITAUE 634 CONTINUE 635 CWITAUE 635 CWITAUE 635 CWITAUE 636 CWITAUE 636 CWITAUE 637 FORMATIC STATE SCHEMENTER NUMPSOIN 1384 CWITE(STATES)=1 1394 CWITEST=1 1394 CWITEST			WRITE(KW,1310)SPEC(IS),KEQ
<pre>500 CONTINUE C C C A REAGENT AND ONCE AS A PRODUCT IN THE RATE SCHEME. TFINRPLITION OF CONTONE DD 620 IIINSPEC TFINRPLITION OF CONTONE HITCHWALINS OF SPECIES "A4,1X"NEVER APPEARS AS A REACTANT") HITCHWALING SOLONG TO 610 HITCHWALING SOLONG TO 620 HITCHWALING SOLONG TO 620 HITCHWALING SOLONG TO 620 HITCHWALING SOLONG SPECIES "A4,1X"NEVER APPEARS AS A REACTANT") 610 IF (NPEL (II).GT.O) GO TO 620 HITCHWALING SPECIES "A4,1X"NEVER APPEARS AS A PRODUCT") HITCHWALING SPECIES "A4,1X"NEVER APPEARS AS A PRODUCT") HITCHWALING SPECIES "A4,1X"NEVER APPEARS AS A PRODUCT") HITCHWALING SPECIES "A4,1X"NEVER APPEARS THICE C AND THE LABELS FOR ALL REACTION ARE DISTINCT NOM NOT II.NOM JEIGT J=JL,NEQ NGUYOO DD 660 K=1,3 G30 CONTINUE FF(NEACT(I)K).NE.NEACT(J,K)) GO TO 632 G30 CONTINUE FF(NEACT(I)K).NE.NEACT(J,K))GO TO 640 HITCHWALING IK).NE.NPROD(J,K))GO TO 640 HITCHWALING IKNINE NEACTIONS "IXI4,1X"AND "IXI4,1X"ARE "IX" IDENTICAL") NURTES I AND THE LABELS TOR NIXI4,1X"AND "IXI4,1X"ARE "IX" IDENTICAL") NURTES I AND THE KM, 1332 NUM(II) SO TO 650 WXITELKWA, 1334 NUM(J) 1334 (FORMAT (200 ****THE LABEL "IXI4,1X"AND "IXI4,1X"ARE "IX" IDENTICAL") NURTS I 650 CONTINUE INT HE KWALISSING TO 650 WXITELKWA, 1340) PTOL,NITER, NCLD 1340 FORMAT (77,2,217) WXITELKWA, 1350)NCLD, PTOL,NITER WXITELKWA, 1350) NCLD, PTOL,NITER WXITELKWA, 1350) NCLD, PTOL,NITER WXITELKWA, 1350)NCLD, PTOL,NITER WXITELKWA, 140000C</pre>	500 CONTINUE C C C CHECK THAT ALL SPECIES OCCUR AT LEAST ONCE AS A REAGENT AND ONCE AS A PRODUCT IN THE RATE SCHEME. D 600 CONTINUE C A REAGENT AND ONCE AS A PRODUCT IN THE RATE SCHEME. D 600 CONTINUE IF (NRFL(I).ST-0) GD TU 610 IF (NRFL(I).ST-0) GD TU 620 1320 FORMAT (10X"SPECIES "A4,1X"NEVER APPEARS AS A REACTANT") NETTING 610 IF (NPFL(I).GT-0) GD TU 620 If (NRFL(I).SOLO GD TU 620 1330 FORTS-1 10X"SPECIES "A4,1X"NEVER APPEARS AS A PRODUCT") 620 CONTINUE If (NRFL(I).SOLO GD TU 620 1330 FORTS-1 10X"SPECIES "A4,1X"NEVER APPEARS AS A PRODUCT") 620 CONTINUE If (NRFL(I).SOLO GD TU 620 1330 FORTS-1 10X CHECK THAT NO REACTION. APPEARS THICE C SOM TAT THE LABELS FOR ALL REACTIONS ARE DISTINCT 00 650 I=1,NOM JL.INEO 01 650 J=JL,NEO NSUM=0 02 0 CONTINUE IF (NACTII,K).NE.NEACT(J,K)) GD TO 632 632 DD 0 GSA K-1,3 IT (NAM JL) 01 GSA K.1,3 INM(J) 1332 FORMAT (20X"***REACTIONS "IXI4,1X"AND"IXI4,1X"ARE"IX"IDENTICAL") 1334 FORMAT (20X"***REACTIONS "IXI4,1X"AND"IXI4,1X"ARE"IX"IDENTICAL") 1334 FORMAT (20X"***REACTIONS "IXI4,1X"AND"IXI4,1X"ARE	1	1310	FORMAT(10X"SPECIES"1XA4,1X"APPEARS ON BOTH SIDES"
600 CUNTINUE C C CHECK THAT ALL SPECIES DCCUR AT LEAST ONCE AS A REACTANT ONCE AS A PRODUCT IN THE RATE SCHEME. If (NRFL1):G(1:0) GO (0) FE (1) 1320 FORMAT(10:X"SPECIES "A4;1X"NEVER APPEARS AS A REACTANT") NERTS: I: (NFL1):G(1:0) 1330 FORMAT(10:X"SPECIES "A4;1X"NEVER APPEARS AS A REACTANT") NERTS: I: (NFL1):G(1:0) 1330 FORMAT(10:X"SPECIES "A4;1X"NEVER APPEARS AS A PRODUCT") NERTS: I: (NFL1):G(1:0) 620 CUNTINUE SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C SEGMENT THE LABELS FOR ALL REACTIONS ARE DISTINCT NGM=NEC-1 NOM J=1+1 JL,NEO NSUM=0 NSUM=0 NSUM=0 NSUM=0 NSUM=0 NSUM=0 SEGMENTINUE SEGMENT SEGUENCE G20 CONTINUE SEGUENCI, NUM(J): G31 CONTINUE SEGUENCI, NUM(J): G32 DD 634 K=1,3 SEGUENCI, NUM(J): G334 FIEST=1 SEGUENCI, NUM(J): G335 FIEST=1 SEGUENCI, NUM(J): <t< td=""><td>CO CONTINUE C C C C C C C C C C C C C C C C C C C</td><td></td><td>550</td><td>CONTINUE</td></t<>	CO CONTINUE C C C C C C C C C C C C C C C C C C C		550	CONTINUE
C C C A REAGENT AND ONCE AS A PRODUCT IN THE RATE SCHEME. D 620 I=1,NSPEC IF(NFL(I):GT:O) GD TD 610 WRITE(KW.1320) SPECIES "A4,1X"NEVER APPEARS AS A REACTANT") 1320 FORMAT(10X"SPECIES "A4,1X"NEVER APPEARS AS A REACTANT") 610 IF INPFL(I).GT:O) GD TD 620 WRITE(KW.1330.) GD TD 620 WRITE(KW.1330.) SPECIES "A4,1X"NEVER APPEARS AS A PRODUCT") NEMAS (10X"SPECIES "A4,1X"NEVER APPEARS AS A PRODUCT") C 20 CONTINUE C 25 GMENT TD CHECK THAT NO REACTION APPEARS THICE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOR NECT D 630 (= 1,3) IF(NEACT(I),K).NE.NEACT(J,K)) GD TD 632 630 CONTINUE 1622 DD 634 K=1,3 IF(NEACT(I),K).NE.NEACT(J,K)) GD TD 640 634 CDNTINUE 1622 DD 634 K=1,3 IF(NEACT(I),K).NE.NPROD(J,K))GD TD 640 634 CDNTINUE 174 (I) 3321NUM(1),NUM(J) 1322 FORMAT(20X"**REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") 640 IF(NUM(I).NE.NUM(J))GD TD 650 WRITE(KW.1332)NUM(J), 1334 FORMAT(20X"**REACTIONS"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LABEL"1XI4,1X,2"APPEARS MORE"1X 1"THAN ONCE IN THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LABEL"1XI4,1X"APPE	C C C C C C C C C C C C C C C C C C C	C	600	CONTINUE
C C DO 620 TATKASSECT AND UNCE AS A PRODUCT IN THE KATE SCHENE. IF (NRFL(1).6T.OJ GD TD 610 I320 FORMAT(10X"SPECIES "A*,1X"NEVER APPEARS AS A REACTANT") 610 IF (NPFL(1).GT.OJ GD TD 620 I330 FORMAT(10X"SPECIES "A*,1X"NEVER APPEARS AS A PRODUCT") 1330 FORMAT(10X"SPECIES "A*,1X"NEVER APPEARS AS A PRODUCT") 620 CONTINUE C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM=NEO-1 DO 650 J=JL,NEQ NSUM=O IRTST=0 00 630 K=1,3 IF (MEACT(1,K).NE.NEACT(J,K)) GD TD 632 630 CONTINUE 1632 DO 634 K=1,3 IF (MEACT(1,K).NE.NEACT(J,K)) GD TD 640 634 CONTINUE 1640 IF (NTST.EO.O)GD TO 640 1640 IF (NTST.EO.O)GD TO 640 1640 IF (NTST.EO.O)GD TO 640 1640 IF (NMM I).NE.NUM(J))GD TD 650 WRITE(KW,1332)NUM(I),NUM(J) 1334 FORMAT(20X"**REACTIONS"1X14,1X"AND"1X14,1X"ARE"1X"IDENTICAL") 640 IF (NMM I).NE.NUM(J)]GD TD 650 WRITE(KW,1332)NUM(I),NITER,NCLD 1344 FORMAT(20X"**THE LABEL"1X14,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NETTEL 650 CONTINUE 650 CONTINUE 1344 FORMAT(20X"**THE LABEL"1X14,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NETTEL 650 CONTINUE 1340 FORMAT(F,2,2T) WRITE(KW,3350) NCLD, PTDL,NITER 1350 FORMAT(F,2X."NUMBER OF CLOUD=",12,4X," ER TDL="F10.6, +4X," MAX ITER="TA") REST 850 FORMAT(F,2X."NUMBER OF CLOUD=",12,4X," ER TDL="F10.6, +4X," MAX ITER="TA")	C C D G20 TATKASECT AND DATE AS A PRODUCT IN THE KATE SCHEDE. D G20 TATKASECT OF COTO 610 TRINKFL(1):6CT.0) GC TO 610 1320 FDRMS1100*SPECIES "#4*,1X*NEVER APPEARS AS A REACTANT") 610 IF THE KL(1):GT.0) GC TO 620 1330 FDRMS1100*SPECIES "#4*,1X*NEVER APPEARS AS A PRODUCT") 620 CGNTATT 620 CGNTTHLE C SGOMENT TO CHECK THAT NO REACTION APPEARS TWICE AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM=NEG-1 D 650 I=1,NOM D 650 J=L,NEQ NSUM=0 1875T=0 D 630 K=1,3 IF(NREACT(I;K).NE.NEACT(J,K)) GO TO 632 630 CONTINUE 632 DD 634 K=1,3 IF(NREACT(I;K).NE.NPROD(J,K))GO TO 640 634 CONTINUE 640 FNUM[1].NE.NUM(J) 1322 FORMAT(20X****REACTIONS"1XI4,1X**AND"1XI4,1X**ARE*1X**IDENTICAL") 640 FNUM[1].NE.NUM(J) GO TO 650 WRITE(KW,1332)NUM(I).NUM(J) 1334 FORMAT(20X****REACTIONS"1XI4,1X**AND*1XI4,1X**ARE*1X**IDENTICAL") 640 FNUM(I).NE.NUM(J) GO TO 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X*****REACTIONS"1XI4,1X**APPEARS MORE*1X 1***HAN_ONCE IN THE LABEL**IXI4,1X**APPEARS MORE*1X 1***HAN_ONCE IN THE LABEL***IXI4,1X**APPEARS MORE*1X 1***HAN_ONCE IN THE LABEL***IXI4,1X**APPEARS MORE*1X 1****HAX_ITER************************************	Č	~	CHECK THAT ALL SPECIES OCCUR AT LEAST ONCE AS
<pre>IF (NRFL(I).GT.0) GD TD 610 1320 FDRMAT(10X"SPECIES "A4,1X"NEVER APPEARS AS A REACTANT") 610 IF (NPFL(I).GT.0) GD TD 620 1330 FDRMAT(10X"SPECIES "A4,1X"NEVER APPEARS AS A PRODUCT") NERTS=1 620 CONTINUE 620 CONTINUE C SEGMENT TD CHECK THAT NO REACTION APPEARS TWICE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM=NEQ-1 DD 650 J=JL,NEQ NSUM=0 IRTST=0 DD 630 K=1.3 IF (NEACT(I)K).NE.NEACT(J,K)) GD TD 632 630 CONTINUE 1632 DD (34 K=1,3 IF (NEACT(I)K).NE.NPROD(J,K))GD TD 640 634 CONTINUE IF (IRTST.EQ.0)GD TD 640 WITE (KW,1332)NUM(I),NUM(J) 1332 FDRMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF (NUM(I).NE.NUM(J))GD TD 650 WRITE (KW,1332)NUM(J) 1334 FDRMAT(20X"***THE LABEL"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NERTS=1 650 CONTINUE THAN ONCE IN THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LABEL"1XI4,1X,1X"APPEARS MORE"1X 1"THAN ONCE IN THE COULD.FOLL,NITER HAXIE (KW,1350)NCLD, PTOL,NITER HAXIE (KW,1350)NCLD, PTOL,NITER HAXIE (KW,1350)NCLD, PTOL,NITER HAXIE (KW,1350)NCLD, PTOL,NITER HAXIE</pre>	<pre>IF (NRFL(I), GT.O) GD TD 610 HIE (KW, H32O) SPECIES "A4, 1X"NEVER APPEARS AS A REACTANT") 610 FF (NPFL(I), GT.O) GD TD 620 HIE (KW, H33O) SPECIES "A4, 1X"NEVER APPEARS AS A PRODUCT") HIE (KW, H33O) SPECIES "A4, 1X"NEVER APPEARS AS A PRODUCT") HIE (KW, H33O) SPECIES "A4, 1X"NEVER APPEARS AS A PRODUCT") HIE (KW, H33O) SPECIES "A4, 1X"NEVER APPEARS AS A PRODUCT") HIE (KW, H33O) SPECIES "A4, 1X"NEVER APPEARS AS A PRODUCT") HIE (KW, H33O) SPECIES "A4, 1X"NEVER APPEARS AS A PRODUCT") HIE (KW, H33O) SPECIES "A4, 1X"NEVER APPEARS AS A PRODUCT") HIE (KW, H33O) SPECIES "A4, 1X"NEVER APPEARS TWICE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT HOD 650 I=1, NOM HIE (KW, H30O) SPECIES (KW, KW, KW, KW, KW, KW, KW, KW, KW, KW,</pre>	6	C	DO 620 I=1,NSPEC
1320 "RATIOX"SPECIES "A4,1X"NEVER APPEARS AS A REACTANT") NERTS=1 610 IF (NPFL(I),GT.0) GO TU 620 WRITE(KW,1330) SPECIES "A4,1X"NEVER APPEARS AS A PRODUCT") NERTS=1 620 CONTINUE C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM=NEO-1 DD 650 I=1,NOM JL=I+1 DD 650 J=JL,NEQ NSUM=0 0 D0 630 K=1,3 IF (NEACT(I,K).NE.NEACT(J,K)) GO TO 632 630 CONTINUE 632 CONTINUE 16 (NPRIOD(I,K).NE.NPROD(J,K))GO TO 640 634 CONTINUE 17 (INTS:=2 640 IF (NUMTI).NE.NUM(J))GO TO 650 WRITE(KW,1332)NUM(I),MUM(J) 1322 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF (NUMTI).NE.NUM(J)]GO TO 650 WRITE(KW,1334)NUM(J) 1324 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1 THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(7,52,2T7) WRITE(KW,1350) NCLDPTOL,NITER HERTE(KW,1350) NCLDPTOL,N	1320 "DAMAT(TIOX"SDECJES'"A4,1X"NEVER APPEARS AS A REACTANT") 610 IF (INDALISTICATION SPECIAL STREET STREE			IF(NRFL(I).GT.O) GD TD 610
<pre>NERTS=1 NERTS=1 NERTS=1 NERTS=1 NERTS=1 NERTS=1 C SEGMENT TO CHECK THAT NO REACTION APPEARS AS A PRODUCT") NERTS=1 C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM=NEQ-1 D0 650 I=1,NQM JL=I+1 D0 650 J=JL,NEQ NSUM=0 IRTSI=0 C SO CONTINUE C SEGMENT TO CHECK THAT NO REACT(J,K)) GO TO 632 SO CONTINUE SIM=0 IRTSI=0 SO CONTINUE C SO CO</pre>	<pre>NER [S=1 L(I).GT.0) GD TU 620 write (Kw 1330) SPECIES "A4,1X"NEVER APPEARS AS A PRODUCT") NERTS=1 620 CONTINUE C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM=NEQ-1 DD 650 I=1,NQM DD 650 J=JL,NEQ NSUM=0 IRTST=0 1630 CDVTINUE 17(NEACT(I;K).NE.NEACT(J,K)) GO TU 632 630 CDVTINUE 17(NEACT(I;K).NE.NPROD(J,K))GO TU 640 634 CDVTINUE 17(NEACT(I;K).NE.NPROD(J,K))GO TU 640 634 CDVTINUE 17(NEACT(I;K).NE.NPROD(J,K))GO TU 640 187 ST=0 640 AFT(ST=C0.0)GO TU 640 WRITE (KW 1332)NUM(1),NUH(J) 1322 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NERTS=1 640 IF(NUMTI).NE.NUM(J))GO TU 650 WRITE (KW 1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X NERTS=1 640 IF(NUMTI).NE.NUM(J))GO TU 650 WRITE (KW 1334)DVD(L), PTOL,NITER,NCLD 1340 FORMAT(7,5,2IT) WRITE (KW 1345)DVCLD, PTOL,NITER 1350 FORMAT(1,2X,","ER TOL="F10.6, *4X," MAX ITER="14") RED 1350 FORMAT(1,2X,","CDDE(J,K),KUN,KUUT,KW) DIMENSION NCODE(GOO) A SERIAL ARRAY NCODE(I), FOR I=1,NMAX,FIS ELEMENTS CODED BY THE ARRAY NCODE(I), FOR I=1,NMAX,FIS AGNER C A SERIAL ARRAY NCODE(I), FOR I=1,NMAX,FIR A GIVEN C A SERIAL ARR</pre>	1	1320	FORMAT(10X"SPECIES "A4,1X"NEVER APPEARS AS A REACTANT")
<pre>1330 FDRMAT(10X"SPECIES "A4,1X"NEVER APPEARS AS A PRODUCT") 1330 FDRMAT(10X"SPECIES "A4,1X"NEVER APPEARS AS A PRODUCT") 620 CONTINUE 62 AND THAT THE LABELS FOR ALL REACTION APPEARS TWICE 7 AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT 7 NOM=NEQ-1 7 D0 650 J=JL,NEQ 7 NSUM=0 7 IRTSI=0 7 D0 650 J=JL,NE,NE,NEACT(J,K)) GD TD 632 630 CONTINUE 632 D0 634 K=1,3 7 IF(NEACT(J,K).NE.NEACT(J,K)) GD TD 632 630 CONTINUE 632 D0 634 K=1,3 7 IF(NEACT(J,K).NE.NPROD(J,K))GD TD 640 634 CONTINUE 7 IRTEST=1 7 00 050 TD 640 7 IRTE(KW,1332)NUM(1),NUM(J) 1332 FORMAT(20X"**REACTIONS"1XI4,1X"AND"1XI4,1X"ARE*IX"IDENTICAL") 7 NURTS=1 7 00 07 INUE 7 NUM(1).NE.NUM(J)16D TD 650 7 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE*1X 7 THAN ONCE IN THE LIST OF REACTIONS" 7 NERTS=1 7 00 00 00 NCL NITER,NCLD 7 1340 PTOL,NITER,NCLD 7 1340 PTOL,NITER,NCLD 7 1350 FORMAT(7,2X,"NUMBER OF CLOUD=",12,4X," ER TOL="F10.6, 7 4X," MAX ITER="I4] 7 14 14 7 15 14 7 15 14 7 15 14 7 15 14 7 15 14 7 15 14 7 15 14 7 15 14 7 15 15 15 7 15 1 7 15 15 7 15</pre>	<pre>1330 DITERROR 11 (10X**SPECIES **A*,1X**NEVER APPEARS AS A PRODUCT**) 1330 FORMAT(10X**SPECIES **A*,1X**NEVER APPEARS AS A PRODUCT**) C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM**NE0-1,NOM JL=*+1 DD 6500 J=-L,NEQ NSUM*00 IRTST=0 DD 6500 K=1,3 IF(NEACT(1,K).NE.NEACT(J,K)) GD TD 632 630 CDNTINUE IRTST=0 DC 630 K=1,3 IF(NEACT(1,K).NE.NEACT(J,K)) GD TD 632 630 CDNTINUE 1622 DD 634 K=1,3 IF(NEACT(1,K).NE.NEACT(J,K)) GD TD 640 634 CDNTINUE 1622 DD 634 K=1,3 IF(NEACT(1,K).NE.NPROD((J,K)) GD TD 640 634 CDNTINUE 1622 DD 634 K=1,3 IF(NEACT(1,K).NE.NPROD((J,K)) GD TD 640 634 CDNTINUE 1332 FORMAT(20X****REACTIONS*1XI4,1X**AND*1XI4,1X**ARE*1X**IDENTICAL**) 640 IF(NUM(1).NE.NUM(J))GO TD 650 WRITE(KW,1332)NUM(J) 1334 FORMAT(20X***THE LABEL**IXI4,1X**APPEARS MORE**1X INTTS*1 640 IF(NUM(1).NE.NUM(J))GO TD 650 NRTTE(KW,1336)) PTDL,NITER,NCLD 1340 FORMAT(2,5217) 1550 CONTINUE 1550 CONTINUE 1560 CONTINUE 1575 CONTINUE 1575</pre>		610	NERTS=1 TE (NPEL(T).GT.0) GD TO 620
1330 FURMAT(10X"SPECIES "A&\$,1X"NEVER APPEARS AS A PRODUCT") 620 CONTINUE C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM=NEQ-1 DO 650 J=1,NOM JL=I+1 DO 650 J=JL,NEQ NSUM=0 IRTST=0 DO 630 K=1,3 IF(NFACT(I,K).NE.NEACT(J,K)) GO TO 632 630 CONTINUE IRTEST=1 632 DO 634 K=1,3 IF(NPROD(I,K).NE.NPROD(J,K))GO TO 640 634 CONTINUE IRTE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"**REACTIONS"1X14,1X"AND"1X14,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF (NUM(I).NE.NUM(J))GO TO 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"**THE LABEL"1X14,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(7.5,217) WRITE(KW,51350) NCLD, PTOL,NITER WRITE(KW,51350) NCLD, PTO	1330 FURMATION SPECIES "AN, IX "NEVER APPEARS AS A PRODUCT" 620 CONTINUE C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM=NEO-1 DD 650 J=JL,NEQ NSUM=0 DD 650 J=JL,NEQ NSUM=0 DD 650 J=JL,NEQ NSUM=0 DD 630 K=1,3 IF(NEACT(I;K).NE.NEACT(J,K)) GD TO 632 630 CONTINUE 1632 DD 634 K=1,3 IF(NPROD(I;K).NE.NPROD(J,K))GD TO 640 634 CONTINUE 1757 FOR MATICOX"***REACTIONS"IXI4,1X"AND"IXI4,1X"ARE"IX"IDENTICAL") 1322 FORMATICOX"***REACTIONS"IXI4,1X"AND"IXI4,1X"ARE"IX"IDENTICAL") 640 IF(NUMTI).NE.NUM(J)]GD TO 650 WRITE(KW,1334)NUM(J) 1334 FORMATICOX"***THE LABEL"IXI4,1X"ANDFEARS MORE"IX 1"THAN ONCE IN THE LIBEL"IXI4,1X"APPEARS MORE"IX 1"THAN ONCE IN THE LIBEL"IXI4,1X"APPEARS MORE"IX 1"THAN ONCE IN THE LIBEL"IXI4,1X"APPEARS MORE"IX 1"THAN ONCE IN THE LIBEL OF REACTIONS"] 1340 FORMAT(7:5,2IT) WRITE(KW,13350)NCLD, PTOL,NITER,NCLD 1340 FORMAT(7:5,2IT) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KW,1350)NCLD, PTOL,NIT			WRITE(KW,1330) SPEC(I)
620 CONTINUE C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE C AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM=NEQ-1 DD 650 J=JL,NEQ ISUM=0 IRTST=0 0 630 K=1,3 IF(NEACT(I,K).NE.NEACT(J,K)) GD TD 632 630 CONTINUE IRTEST=1 632 DD 634 K=1,3 IF(NPROP(I,K).NE.NPROD(J,K))GD TD 640 634 CONTINUE IF(NPROP(I,K).NE.NPROD(J,K))GD TD 640 WITTE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"IXI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TD 650 WITTE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1350) NCLD, PTOL,NITER,NCLD 1340 FORMAT(7,2X,"NUMBER OF CLOUD=",12,4X," ER TOL="F10.6, *4X," MAX ITER="I4) ELTURN	<pre>620 CONTINUE C SEGMENT TO CHECK THAT NO REACTION APPEARS TWICE AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM=NEO-1 DO 650 J=1,NOM JL=I+1 DD 650 J=JL,NEQ NSUM=0 IRTST=0 DO 630 K=1,3 IF(NEACT(I;K).NE.NEACT(J,K)) GD TD 632 630 CONTINUE 632 CD 634 K=1,3 IF(NPRDD(I;K).NE.NPRDD(J,K))GD TD 640 634 CONTINUE IF(IRTST=000)GD TD 640 WRITE(KW,1332)NM(I),NUM(J) 1332 FORMAT(202****REACTIONS*1XI4,1X**AND*1XI4,1X**ARE*1X**IDENTICAL**) 040 IF(NUM(I).NE.NUM(J))GD TD 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(202*****REACTIONS*1XI4,1X**AND*1XI4,1X**ARE*1X**IDENTICAL**) 040 IF(NUM(I).NE.NUM(J))GD TD 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(202*****HE LABEL**1XI4,1X**APPEARS MORE*1X 1**THAN ONCE IN THE LIST OF REACTIONS**) NETTS=1 650 CONTINUE 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTDL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTDL,NITER WRITE(KW,1350)NCLD, PTDL,NITER WRITE(KW,1350)NCLD,</pre>		1330	NERTS=1
C SEGRENT TOME LABELS FOR ALL REACTIONS ARE DISTINCT NOM=NEQ-1 DO 650 I=1,NQM JL=I+1 DO 650 J=JL,NEQ NSUM=0 IRTST=0 IRTST=1 632 DD 634 K=1,3 IF(NEACT(I)K).NE.NEACT(J,K)) GD TD 632 630 CONTINUE IRTEST=1 632 DD 634 K=1,3 IF(NPRDD(I)K).NE.NPROD(J,K))GD TD 640 634 CONTINUE IF(IRTST.eQ.0)GD TD 640 WRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TD 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE NERTS=1 650 CONTINUE WRITE(KW,1350) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KWS,1350) NCLD, PTDL,NITER WRITE(KWS,1350) N	C ALC SECOND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT NOM=NEO-1 DO 650 J=JL,NEQ NSUM=0 IRTST=0 DO 630 K=1,3 IF (NEACT (I; K).NE.NEACT (J,K)) GO TO 632 630 CONTINUE IRTEST=1 632 DO 634 K=1,3 IF (NPROD (I;K).NE.NPROD (J,K))GO TO 640 634 CONTINUE 1332 FORMAT (20X"**REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") 1332 FORMAT (20X"**REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") 640 IF (NUM(I).NE.NUM(J))GO TO 650 WRITE (KW,1332,NUM(J))GO TO 650 WRITE (KW,1334,NUM(J))GO TO 650 WRITE (KW,1334,NUM(J)) 1334 FORMAT (20X"**THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NETTS=1 650 CONTINUE 1340 FORMAT (F7.5,2I7) WRITE (KW,1350) NCLD, PTOL,NITER MITE (KW,1350) NCLD, PTOL	0	620	CONTINUE
NQM=NEQ-1 D0 650 I=1,NQM JL=I+1 D0 650 J=JL,NEQ NSUM=0 IRTST=0 D0 630 K=1,3 IF(NEACT(IJK).NE.NEACT(J,K)) GD TD 632 630 CONTINUE 1RTEST=1 632 DD 634 K=1,3 IF(NPRDD(IJK).NE.NPROD(J,K))GD TD 640 634 CONTINUE IF(IRTST.EQ.0)GD TD 640 WRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"**REACTIONS"1XI4,1X"AND"1XI4,1X"ARE*1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TD 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"**THE LABEL"1XI4,1X"APPEARS MORE*1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350) NCLD, PTOL,NITER WRITE(KW,1350) NCLD, PTOL,NITER	NOM=NEQ-1 DO 650 J=J,NQM J=I+1 DD 650 J=JL,NEQ NSUM=0 IRTST=0 DO 630 K=1,3 IF(NEACT(I,K).NE.NEACT(J,K)) GO TO 632 630 COMTINUE IRTEST=1 632 DO 634 K=1,3 IF(NPROD(I,K).NE.NPROD(J,K))GO TO 640 634 CONTINUE IF(NPROD(I,K).NE.NPROD(J,K))GO TO 640 MRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GO TO 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,MCLD 1340 FORMAT(F7.5,217) WRITE(KW,13350) NCLD,PTOL,NITER WRITE(KW,1350) NCDDE(1),PTOL,NITER WRITE(KW,1350) NCDDE(1),PTOL,NITER WRITE(KW,1350) NCDDE(1),PTOL,NITER WRITE(KW,1350) NCDDE(1),PTOL,NITER WRITE(KW,130) NCDDE(1),PTOL,NITER WRITE(KW,130) NCDDE(1),PTOL,NITER WRITE(KW,130) NCDDE(1),PTOL,NITER WRITE(KW,130) NCDDE(1),PTOL,NITER WRITE(KW,130) NCDDE(1),PTOL,NITER WRITE(KW,130) N	č		AND THAT THE LABELS FOR ALL REACTIONS ARE DISTINCT
JL = I + I + I + I + I + I + I + I + I + I	JE J			NQM=NEQ-1 DD 650 I=I=NOM
DU 650 J=JL,NEQ NSUM=0 IRTST=0 DD 630 K=1,3 IF(NEACT(I;K).NE.NEACT(J,K)) GD TD 632 630 CDNTINUE IRTEST=1 632 DD 634 K=1,3 IF(NPRDD(I;K).NE.NPROD(J,K))GD TD 640 634 CONTINUE IF(IRTST.EQ.0)GD TD 640 WRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TD 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350) NCLD, PTOL,NITER WRITE(KW,1350) NCLD, PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",12,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN	DD 650 J=JL,NEQ NSUM=0 IRTST=0 DD 630 K=1,3 IF (NEACT(I,K).NE.NEACT(J,K)) GD TD 632 630 CDNTINUE IRTEST=1 632 DD 634 K=1,3 IF (NPRDD(I,K).NE.NPROD(J,K))GD TD 640 634 CDNTINUE IF (IRTST.EC0.0)GD TD 640 WRITE(KW.51322)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF (NUM(I).NE.NUM(J))GD TD 650 WRITE(KW.51334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW.5,1350) NCLD, PTOL,NITER WRITE(KW.5,1350) NCLD, PTOL,NITER BO SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED BY THE ARRAY NCODE(I) FOR I=1,NMAX.FDR.A GIVEN			JL=I+1
<pre>IRTST=0 DD 630 K=1,3 IF (NEACT(I)K).NE.NEACT(J,K)) GD TD 632 630 CONTINUE IRTEST=1 632 DD 634 K=1,3 IF (NPROD(I)K).NE.NPROD(J,K))GD TD 640 634 CONTINUE IF (IRTST.EQ.0)GD TD 640 WRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X****REACTIONS*1XI4,1X**AND*1XI4,1X**ARE*1X**IDENTICAL**) NURTS=1 640 IF (NUM(I).NE.NUM(J))GD TD 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X****THE LABEL*1XI4,1X**APPEARS MORE**1X 1**THAN ONCE IN THE LIST OF REACTIONS**) NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KW,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,*NUMBER OF CLOUD=**,12,4X,** ER TOL=**F10.6, *4X,*** MAX ITER=**I4) RETURN</pre>	<pre>IRTST=0 D0 630 K=1,3 IF (NEACT(I,K).NE.NEACT(J,K)) GD TD 632 630 CONTINUE IRTEST=1 632 DD 634 K=1,3 IF (NPROD(I,K).NE.NPROD(J,K))GD TD 640 634 CONTINUE IF (IRTST.EQ.0)GD TD 640 WRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF (NUM(I).NE.NUM(J))GD TD 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LOF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KW,1350)NCD, PTOL,NITER WRITE(KW,1350)NCD, PTOL,NITER WRITE(KW,1350)NCD, PTOL,NITER WRITE(KW,1350)NCD, PTOL,NITER WRITE(KW,1350)NCD, PTOL,NITER WRITE(KW,1350)NCD, PTOL,NITER WR</pre>			DU 650 J=JL/NEQ NSUM=0
<pre>bub osd crijst).NE.NEACT(J,K)) GD TD 632 630 CONTINUE IRTEST=1 632 DD 634 K=1,3 IF(NPROD(I;K).NE.NPROD(J,K))GD TD 640 634 CONTINUE IF(IRTST.EQ.O)GD TD 640 wRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TD 650 wRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) wRITE(KW,1350)NCLD, PTOL,NITER wRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, *4X," MAX ITER="I4) RETURN</pre>	DUG 030 CTIPS).NE.NEACT(J,K)) GD TD 632 630 CONTINUE IRTEST=1 632 DD 634 K=1,3 IF(NPROD(I,K).NE.NPROD(J,K))GD TD 640 634 CONTINUE IF(IRTST.EQ.0)GD TD 640 wRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TD 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER HRITE(KW,1350) NCLD, PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(GO)			IRTST=0
630 CONTINUE IRTEST=1 632 DD 634 K=1,3 IF(NPROD(I,K).NE.NPROD(J,K))GD TD 640 634 CONTINUE IF(IRTST.EQ.0)GD TD 640 WRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TD 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F75,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN	630 CONTINUE IRTEST=1 632 D0 634 K=1,3 IF(NPRDD(I,K).NE.NPROD(J,K))GD TD 640 634 CONTINUE IF(IRTST.EQ.0)GD TD 640 wRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TD 650 wRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER HRITE(KW,1350)NCLD, PTOL,NITER HRITE(KW,1350) NCLD, PTOL,NITER RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE((OO) C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED BY THE ARRAY NCODE(I) FOR I=1,NMAX, FOR A GIVEN			IF(NEACT(I)K).NE.NEACT(J)K)) GO TO 632
632 DD 634 K=1,3 IF(NPRDD(I,K).NE.NPROD(J,K))GD TO 640 634 CONTINUE IF(IRTST.EQ.O)GD TO 640 WRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TO 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KW,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN	632 D0 634 K=1,3 IF(IPRDD (I,K).NE.NPROD(J,K))GD TO 640 634 CONTINUE IF(IRTST.EQ.0)GD TO 640 WRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TO 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KW,1350) NCLD, PTOL,NITER WRITE(KW,1350) NCLD, PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",12,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED BY THE ARRAY NCODE(I) FOR I=1,NMAX.FOR_A GIVEN		630	CONTINUE
<pre>IF(NPROD(I,K).NE.NPROD(J,K))GU TU 640 634 CONTINUE IF(IRTST.EQ.0)GO TO 640 wRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GO TO 650 wRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) wRITE(KW,1350)NCLD, PTOL,NITER wRITE(KW,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN</pre>	IF (NPROD(I,K).NE.NPROD(J,K))GU TU 640 634 CONTINUE IF (ITST.EQ.0)GO TO 640 WRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF (NUM(I).NE.NUM(J))GO TO 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KW,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED BY THE ARRAY NCODE(I) FOR I=12,NMAX.FOR A GIVEN		632	DO 634 K=1,3
<pre>US1 US1 (IRTST EQ.0)GD TD 640 WRITE(KW,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TD 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"**THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KW,1350) NCLD,PTOL,NITER HATTE(KW,1350)NCLD, PTOL,NITER READ(KR,1350) NCLD,PTOL,NITER WRITE(KW,1350)NCLD,PTOL,NITER RETURN</pre>	<pre>Dif Intite = Eq.00 (CD TO 640 WRITE(KW, 1332)NUM(I), NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4, 1X"AND"1XI4, 1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TO 650 WRITE(KW, 1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4, 1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR, 1340) PTOL, NITER, NCLD 1340 FORMAT(F7.5, 2I7) WRITE(KW, 1350)NCLD, PTOL, NITER WRITE(KW, 1350)NCLD, PTOL, NITER 1350 FORMAT(F7.5, 2I7) WRITE(KW, 1350) NCLD, PTOL, NITER 1350 FORMAT(Z, "NUMBER OF CLOUD=", I2, 4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE, NMAX, KIN, KOUT, KW) DIMENSION NCODE(600) CC A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED BY THE ARRAY NCODE(I) FOR I=12, NMAX. FOR A GIVEN</pre>		634	IF(NPROD(I,K).NE.NPROD(J,K))GU TU 640
WRITE(KW,1332)NUM(1),NUM(3) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GO TO 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KW,1350) NCLD,PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN	<pre>WkITE(kw,1332)NUM(I),NUM(J) 1332 FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL") NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TO 650 WkITE(kw,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WkITE(KW,1350)NCLD, PTOL,NITER WKITE(KW,1350) NCLD,PTOL,NITER 1350 FORMAT(F7.5,2I7) WkITE(KW,1350) NCLD,PTOL,NITER 1350 FORMAT(F7.5,2I7) WkITE(KW,1350) NCLD,PTOL,NITER 1350 FORMAT(F7.5,2I7) WkITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(J,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED BY THE ARRAY NCODE(I) FOR I=1,NMAX.FOR A GIVEN</pre>		031	IF(IRTST.EQ.0)GD TD 640
NURTS=1 640 IF(NUM(I).NE.NUM(J))GD TO 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN	NURTS=1 640 IF (NUM(I).NE.NUM(J))GD TO 650 WRITE(KW,1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED BY THE ARRAY NCODE(I) FOR I=12,NMAX, FOR A GIVEN	i	1332	FORMAT(20X"***REACTIONS"1XI4,1X"AND"1XI4,1X"ARE"1X"IDENTICAL")
WRITE(KW, 1334)NUM(J) 1334 FORMAT(20X"***THE LABEL"1X14,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN	<pre>New ite (KW, 1334) NUM(J) 1334 FORMAT(20X"***THE LABEL"1X14,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR, 1340) PTOL, NITER, NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW, 1350) NCLD, PTOL, NITER WRITE(KW, 1350) NCLD, PTOL, NITER 1350 FORMAT(/,2X, "NUMBER OF CLOUD=", 12,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE, NMAX, KIN, KOUT, KW) DIMENSION NCODE(600) C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED C BY THE ARRAY NCODE(I) FOR I=12NMAX. FOR A GIVEN</pre>		440	NURTS=1
1334 FORMAT(20X"***THE LABEL"1X14,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",12,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN	1334 FORMAT(20X"***THE LABEL"IXI4,1X"APPEARS MORE"IX 1"THAN ONCE IN THE LIST OF REACTIONS") NERTS=1 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED C BY THE ARRAY NCODE(I) FOR I=1,NMAX, FOR A GIVEN		040	WRITE(KW,1334)NUM(J)
NERTS = I 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN	NERTS = I 650 CONTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED BY THE ARRAY NCODE(I) FOR I=1,NMAX, FOR A GIVEN		1334	FORMAT(20X"***THE LABEL"1XI4,1X"APPEARS MORE"1X 1"THAN ONCE IN THE LIST OF REACTIONS")
650 CUNTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",12,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN	650 CUNTINUE READ(KR,1340) PTOL,NITER,NCLD 1340 FORMAT(F7.5,2I7) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",12,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED BY THE ARRAY NCODE(I) FOR I=1,NMAX, FOR A GIVEN			NERTS=1
1340 FORMAT(F7.5,217) WRITE(KW,1350)NCLD, PTOL,NITER WRITE(KWS,1350) NCLD,PTOL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",12,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN	1340 FORMAT(F7.5,217) WRITE(KW,1350)NCLD, PTDL,NITER WRITE(KWS,1350) NCLD,PTDL,NITER 1350 FORMAT(/,2X,"NUMBER OF CLOUD=",12,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED C BY THE ARRAY NCODE(I) FOR I=1,NMAX, FOR A GIVEN		650	READ(KR+1340) PTOL+NITER+NCLD
WRITE(KWS,1350) NCLD, PTOL, NITER 1350 FORMAT(/,2X, "NUMBER OF CLOUD=",12,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN	WRITE(KWS,1350) NCLD, PTOL, NITER 1350 FORMAT(/,2X, "NUMBER OF CLOUD=",12,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED C BY THE ARRAY NCODE(I) FOR I=1,NMAX, FOR A GIVEN		1340	FORMAT(F7.5,217)
1350 FORMAT(/,2X,"NUMBER OF CLOUD=",12,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN	1350 FORMAT(/,2X,"NUMBER OF CLOUD=",I2,4X," ER TOL="F10.6, +4X," MAX ITER="I4) RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED C BY THE ARRAY NCODE(I) FOR I=1,NMAX, FOR A GIVEN			WRITE(KWS,1350) NCLD, PTOL, NITER
RETURN	RETURN END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C C C C C C C S C C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED C BY THE ARRAY NCODE(I) FOR I=1,NMAX, FOR A GIVEN		1350	FORMAT(/,2X,"NUMBER OF CLOUD=",12,4X," ER TOL="F10.6,
	END SUBROUTINE SERIAL(NCODE,NMAX,KIN,KOUT,KW) DIMENSION NCODE(600) C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED C BY THE ARRAY NCODE(I) FOR I=1,NMAX, FOR A GIVEN	-		RETURN
SUBBOUTINE SERIAL (NCODE • NMAX • KIN • KOUT • KW)	DIMENSION NCODE(600) C C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED C BY THE ARRAY NCODE(I) FOR I=12NMAX. FOR A GIVEN			SUBROUTINE SERIAL (NCODE • NMAX • KIN • KOUT • KW)
DIMENSION NCODE(600)	C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED C BY THE ARRAY NCODE(I) FOR I=1, NMAX, FOR A GIVEN	~		DIMENSION NCODE (600)
C A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED	C BY THE ARRAY NCODE(I) FOR I=1, NMAX. FOR A GIVEN	C		A SERIAL ARRAY 1 TO NMAX HAS ITS ELEMENTS CODED
C BY THE ARRAY NCODE(I) FOR I=1, NMAX. FOR A GIVEN	CODE NUMPER VIN, THIS POULTINE EINIG THE	Č		BY THE ARRAY NCODE(I) FOR I=1, NMAX. FOR A GIVEN
CODE NUMBED VIN, THIS DINITING EINING THE	C CORRESPONDING SERIAL INDEX KOUT. THAT IS, GIVEN KIN,	C		CORRESPONDING SERIAL INDEX KOUT. THAT IS, GIVEN KIN,

- 102 -

CCC	KW IS THE OUTPUT DEVICE FOR THE ERROR MESSAGE.
	CODE NUMBER KIN, THIS ROUTINE FINDS THE CODES IN THE ARRAY NCODE(I). IF AN EQUALITY IS FOUND FOR A PARTICULAR I, THEN KOUT IS SET=I. IF NO EQUALITY IS FOUND FOR ALL I, A MESSAGE IS GIVEN.
6	DD 150 I=1,NMAX IF(NCODE(I).NE.KIN)GD TD 150 KOUT=I
150 2050 2060 170	GD TD 170 CONTINUE WRITE(KW,2050)KIN FORMAT(20X"***THE CODE"1XI4,1X"DOES NOT" 11X"CORRESPOND TD ANY OF THE FJLLOWING") WRITE(KW,2060)(NCODE(I),I=1,NMAX) FORMAT((5X20(1XI4))) RETURN
	END SUBROUTINE SIMQ(A,B,N,KS) DIMENSION A(1),B(1) TOL=0.0
	KS=0 JJ=-N DD 65 J=1,N JY=J+1
	JJ=JJ+N+1 BIGA=0.0 IT=JJ-J DO 30 I=J.N
20	IJ=IT+I IF(ABS(BIGA)-ABS(A(IJ))) 20,30,30 BIGA=A(IJ) IMAX=I
30 35	CONTINUE IF(ABS(BIGA)-TOL) 35,35,40 KS=1 RETURN
40	I1=J+N*(J-2) IT=IMAX-J DD 50 K=J,N I1=I1+N
	12=11+1T SAVE=A(11) A(11)=A(12) A(12)=SAVE
50	A(11)=A(11)/BIGA SAVE=B(IMAX) B(IMAX)=B(J) B(J)=SAVE/BIGA
55	IQS=N*(J-1) DO 65 IX=JY>N IXJ=IQS+IX
60	LI=J-IX DD 60 JX=JY9N IXJX=N*(JX-1)+IX JJX=IXJX+IT A(IXJX)=A(IXJX)-(A(IXJ)*A(JJX))
65 70	B(IX)=B(IX)-(B(J)*A(IXJ)) NY=N-1 IT=N*N
	IA=IT-J IB=N-J IC=N DO 30 K=1,J

	B(IB)=B(IB)-(A(IA)*B(IC)) $IA=IA-N$ $C=IC-1$	6
00	RETURN	
	END SUBBOUTINE CRAT(DEN+RATE+NEQ+NUM)	
	DIMENSION RATE (600), NUM (600), A (700), B (700)	
	COMMON/TTAU/KTAU/NTAU/XTAU(10), TAUC, NDEN, KTAUST	
	IF(NTAU.NE.KTAUST) GO TO 14 READ(KR.100)CLDM.T.RAD	
100	0 FURMAT(E8.1, F7.0, F8.1)	
14	<pre>* IF(NDEN.EQ.I) G0 T0 IS XTAU(NTAU)=((CLDM/500.)**.33333333)*((DEN/260.)**.666666666)</pre>	
15	GO TO 16 5 XTAU(NTAU)=(TAUC+NTAU)/KTAU	
16	6 AV=1.086*XTAU(NTAU)	
101	1 FORMAT(/>5X"CLDM="E10.3,5X"TAU="E10.3,4X,"T=">F4.0,4X,	
	$+$ ^{μ} RAD= ^{μ} _p F3.1 _p /) WRTTF(KWS.102) CLDM.XTAH(NTAH).T.RAD	
102	2 FORMAT (5X, "CLDM=", E10.3, 5X, "TAU=", E10.3,4X, "T=", F4.0,4X,	
	CALL SERIAL (NUM, NEQ, 2, KOUT, KW)	-
	RATE(KOUT)=0.1E-08*EXP(-232./T) CALL SERIAL(NUM.NEQ.8.KOUT.KW)	
	RATE(KOUT)=0.19E-14*(1.+(5./T))	10
	RATE(KOUT) = 0.16E - 12 * EXP(-160./T)	8
	CALL SERIAL(NUM)NEQ)480KOUT0KW) RATE(KOUT)=0.75E-14*(T**1.25)	100
	CALL SERIAL (NUM, NEQ, 200, KOUT, KW)	
	$CALL SERIAL(NUM_{9}NEQ_{9}201_{9}KUUT_{9}KW)$	57
	$\frac{RATE(KOUT) = 0.21E - 0.9/(T + * 0.67)}{CALL SERTAL(NUM + NE0.202 + KOUT + KW)}$	e311-
	RATE(KOUT)=0.76E-11*((100./T)**0.7)	PIL
	RATE(KOUT) = 0.12E - 0.09/(T + *0.626)	2071
	CALL SERIAL (NUM, NEQ, 231, KOUT, KW) RATE(KOUT)=0, 13E-09/(T \pm +0, 62)	1
	CALL SERIAL (NUM, NEQ, 280, KOUT, KW)	
	CALL SERIAL (NUM) NEQ, 357, KUUT, KW)	CABO
	RATE(KOUT)=0.1E-17*DEN CALL SERTAL(NUM.NE0.412.KOUT.KW)	
	RATE(KOUT)=0.5E-12*(EXP(-300./T))	
	RATE (KOUT) = $1.5E - 10/(T + *0.641)$	
	CALL SERIAL(NUM, NEQ, 603, KOUT, KW) RATE(KOUT)=1,5E-10/(T++0,65)	
	CALL SERIAL (NUM, NEQ, 604, KOUT, KW)	
	IF(XTAU(NTAU) - 50.)11, 11, 12	
11	1 A(262)=3.0E-11 B(262)=1.72	
	$A(263) = 3 \cdot 0E - 11$	
	A(264) = 1.0E - 10	
	B(264)=2.069 A(265)=1.59E-10	
	B(265)=2.17	
	B(266)=2.17	
	A(267)=1.59E-10 B(267)=2.17	
	A(270)=7.2E-10	
	D16/V1-6037	

- 104 -
| A(271) = 1.5E - 10
B(271) = 3.092 | |
|--------------------------------------|--|
| (272)=3.3E-10 | |
| 3(272) = 1.4 | |
| A(2/3)=1.0C=11
B(273)=2.0 | |
| A(274) = 3.2E - 10 | |
| 8(274)=1.677 | |
| A(275) = 1.0E - 11 | |
| $5(275)=2 \cdot 0$ | |
| 8(276)=2.0 | |
| Á(277)=1.0E-11 | |
| $3(277) = 2 \cdot 0$ | |
| A(278)=2.8 | |
| (279) = 1.4E - 11 | |
| 3(279) = 3.09 | |
| A (294) = 8.0E-10 | |
| $A(307) = 1 \cdot 31F - 10$ | |
| B(307) = 2.416 | |
| $A(309) = 2 \cdot 89E - 10$ | |
| $B(309) = 2 \cdot 75$ | |
| B(310) = 1.544 | |
| A(312)=5.0E-11 | |
| B(312)=1.72 | 2.80 |
| A(315)=0.2t-12 | |
| A(316) = 3.3E - 10 | · bostinger |
| 8(316)=1.4 | - Contraction - |
| A(317) = 1.5E - 10 | Contraction of the second |
| D(317)=3.092
A(318)=1.6F-12 | 10000 |
| B(318)=3.092 | NA AG |
| A(320)=5.0E-12 | |
| 5(320)=3.0
A/321)=3.2E-10 | A DESCRIPTION OF |
| B(321)=1.677 | |
| A(322)=2.1E-11 | |
| $3(322) = 3 \cdot 0.94$ | 200 |
| A(327)=1,72 | EFLAT |
| A(328) = 1.0E - 09 | |
| B(328)=2.284 | |
| A(332) = 1.4E - 10 | terre and the destination of the party of th |
| $\Delta(333) = 4.39E - 10$ | |
| B(333)=1.613 | |
| A(334)=4.39E-10 | |
| 8(554)=1.015
A/325)=8.05-11 | |
| 8(335)=2.812 | |
| A (337) = 8.8E-10 | |
| B(337) = 1.613 | |
| R(338) = 2.0 | |
| A(339)=1.0E-10 | |
| 8(339)=2.0 | • |
| A (341)=5.0E-11 | |
| D(3+1)=1 + 12
A(342)=1 + 0F-10 | |
| 8(342)=1.8 | |
| A(343)=5.0E-10 | |
| B(343)=2.0 | |
| B (344) = 2.0 | |
| | |

-105 -

	A(345)=1.4E=10	
	B(345)=1.54 A(346)=1.05-10	
	B (346) = 2.0	
	A(347) = 1.0E - 11 B(347) = 2.0	
	A(348)=5.0E-11	
	B(348)=2.0 A(368)=1.0F-11	
	B(368)=2.0	
	A(359)=1.0t-10 B(369)=2.0	
	A(370) = 2.0E - 10	
	A(371)=1.5E-11	
	B(371)=2.0	
	$B(610) = 1 \cdot 435$	
	A(611)=1.17E-10	25.0
	$A(612) = 1 \cdot 20E - 09$	
	B(612) = 1.622	
	B(613)=2.0	
12	$DD_{13} I = 262,613$	
13	DU 1 I=262,267	Gerle
1	CALL SERIAL (NUM, NEQ, I, KOUT, KW)	12
*	DO 2 I=270,279	and the second s
2	CALL SERIAL (NUM, NEQ, I, KOUT, KW)	
2	DO 3 I=315,318	the state of
3	CALL SERIAL(NUM) NEQ J J KOUT J KW) $RATE(KOUT) = A(T) + EXP(-AV + B(T))$	1
	DO 4 I=320,322	AB
4	CALL SERIAL (NUM) NEQ) I $(UUT) KW$ RATE (KOUT) = $\Delta(T) = EXP(-\Delta V = B(T))$	
	DO 5 I=332,335	-ni (noten)
5	CALL SERIAL(NUM) NEQ J KUU J KWJRATE(KOUT) = A(T) + EXP(-AV+B(T))	No.
	$DO_{6} I = 610, 613$	100
6	$\frac{CALL SEXIAL(NUM)NEQ(1)(VM)}{RATE(KOUT)=A(T)+EXP(-AV+B(T))}$	ET LABO
•	DO 7 I=337,339	
7	CALL SERIAL (NUM) NEQUIDENUMRATE(KOUT) = A(I) + EXP(-AV+B(I))	
	DO 8 1=341,348	Manafacetare
8	RATE(KOUT) = A(I) + EXP(-AV+B(I))	
	D0 9 I = 368,371	
9	RATE(KOUT) = A(I) + EXP(-AV+B(I))	
	CALL SERIAL (NUM, NEQ, 294, KOUT, KW)	
	X=0.1E-03*(DEN**2)*XTAU(NTAU)*EXP(5.*XTAU(NTAU))	
	F = X/(1 + SQRT(X) + X)	
	RATE(KOUT)=A(307)+EXP(-AV+B(307))	
	CALL SERIAL (NUM, NEQ, 308, KOUT, KW) PATE (KOUT) = 0.2E=16#DEN#PAD#((1, =E)/E)	
	CALL SERIAL (NUM, NEQ, 309, KOUT, KW)	
	RATE(KOUT)=A(309)*EXP(-AV*B(309))	
	RATE(KOUT)=A(310)*EXP(-AV*B(310))	
	CALL SERIAL (NUM, NEQ, 312, KOUT, KW) PATE (KOUT) = A (312) * EXP (= AV + B (312))	
	CALL SERIAL (NUM, NEQ, 327, KOUT, KW)	

2

-107 -RATE(KOUT) = A(327) * EXP(-AV*B(327)) CALL SERIAL(NUM, NEQ, 328, KOUT, KW) RATE(KOUT) = A(328) * EXP(-AV*B(328)) CALL SERIAL(NUM, NEQ, 337, KOUT, KW) RATE(KOUT) = A(337) * EXP(-AV*B(337)) CALL SERIAL(NUM, NEQ, 339, KOUT, KW) RATE(KOUT) = A(339) * EXP(-AV*B(339)) CALL SERIAL(NUM, NEQ, 339, KOUT, KW) RATE(KOUT) = A(339) * EXP(-AV*B(339)) CONTINUE RETURN END 12 BKDQMZV. 77/08/24. DALHOUSIE UNIVERSITY NUS 1.2-445 NB 16.26.42.BMIT,T15. 16.26.43.ACCDUNT,SMASOO2,. 16.26.43.GET,HF1. 16.26.45.CDPYSBF(HF1) 16.26.47.END DF INFORMATION ENCOUNTERED. 16.26.47.EXIT. 16.26.48.UEAD, 0.001KUNS. 16.26.48.UEAD, 0.037KUNS. 16.26.48.UEPF, 0.037KUNS. 16.26.48.UECP, 0.655KUNS. 16.26.48.UECP, 0.605SECS. 16.26.48.AESR, 4.000UNTS. 16.26.48.AESR, 0.290 DDLLARS. 16.29.06.UCLP, 54, 1.216 KLNS. LABO A