
/

COCiNITIVE MODEL AND
PROBl,EM-SOLVlNO PROCESSES
OF.COMPUTER PROGRAMMERS

BY

(c) D. M. BENOIT] 9 8 8

SUBMITTED IN PARTIAL FULFILLMENT OF
THE REÜU1REMENTS FOR A DEGREE IN

MASTER OF APPLIED SCIENCE (I/O PSYCHOLOGY)

DEPARTMENT OF PSYCHOLOGY
SAINT MARY’S UNIVERSITY

HA1 IFAX, NOVA SCOTIA
C MARCH 1088

\

Permission has been granted
|Lto the National Library of
^Canada to microfilm th i s

th es is and to .lend or s e l l
. copies of the film.

L'autorisation à 4té accordée
à la Bibliothèque nationale
du Canada de microfilmer
cette thèse et de prêter ou
de vendre des exemplaires du
film.

The aythor (copyright owner)
h a s . r e s e r v e d o t h e r
p u b l i c a t i o n r i g h t s , and
n e i t h e r the t h e s i s nor
extensive extracts from i t
may be printed or otherwise
reproduced without h is/her
written permission.

L’auteur (t i t u l a i r e du droit
d'auteur) se réserve l e s
autres dro its de publication;
ni l a thèse ni de longs
e x t r a i t s de c e l l e - c i ne
doivent Sktre imprimée ou
autrement reproduits sans son
autorisation éc r i te .

I S B N 0 3-j . 4 5 0 ^ 9 ? '

V

*

COGNITIVE MODEL AND
PROBLEM-SOLVING PRjOCESSEÜ
OF ('OMPUTER PROGRAMMERS

D M . BENOIT

SUBMITTED IN.PARTIAL FULM lLLM ENt OF
THE RBOUIREM ENjS FOR A DfeGREE IN

MASTER OF APPLIED SCIENCES (I/O PSYCHOLOGY)
SAINT MARY’S UNIVERSITY

HALIFAX Jn OVA SCOTIA

/

APPROVED:
TC. CATANO

THESIS ADVISOR

KEN HILL
COMMITTEE MEMBER

D. SHERIDAN
COMMITTEE MEMBER

..ilar-cja.„3.£l jL-.l ,
DATE

For Daniel, who behoved in me, .
For Paulette, who taught me courage,
For Cheryl and J J., who liclpcd me see this through, and
For Vic Catano, who made it worth reading.

V '

V

r - ;

Abstract

COr.NlTlVE MODEL AND

PROBLEM-SOLVWri PROCESSES OF-

COMPUTER PROGRAMMERS

;

|(D. M, Benoit

Although researchers have started concentrating on the programming

behavior of computer programmers, the material produced so far has not been
%

merged into a testable theory; each study focuses on a particular problem without

integrating the results into a workable overall model. In addition, most studies have

concentrated o n |h e measure of programming skills and aptitudes, rather than on

the underlying cognitive processes differentiating programmers from

non-programmers. While many studies focus on the human-system interaction, very

little has been attempted to specify which strategies computer programmers use to
' ' '

. solve problems, how they process and integrate information; whether these

strategies are specific to a certain type of people, or whether these processes can be

' 1
-i-

taught.and improve with experience. Two partial models were examined, the

syntactic/semantic model o f programmer behavior, and the heuristic/algonlhtnic

problem-solving model, in order to attempt to build a stronger base for the,

evaluation of programmer aptitudes.

Two major groups were compared: an Experienced Programmers Ciroup

(n = 31) and a General Population Group (n = 44), which was further divided into

three groups, a Control Group (n = 23), a Novice Programmers group (n = 11), and a
r •

Non-programmers group (n = 10). Experienced Programmers and General *“

Population were compared on two tests, the Semantic Ability Test, and the Master

Mind Game. The Control Group and the Novice Programmers were retested after '

treatment, which consisted of a PSYCH course for the Controls and a BASK'

programming course for the Novice Programmers.

Analyses indicated that: on Master Mind, Experienced Programmers

performed better than the General Population: Novice Programmers performed

better than the Control Group; aj^d Novice Programmers perfornfance was related

to their grade on the BASIC c o u rs^ On Semantic Ability Test, Experienced •

Programmers performed betteçahan General Population, although not significantly

so; Novice Programmers performance was related to their grade on the BASIC

course, âîthoïïgl^ not significantly so.

-n-

Results are discussed within the context of implications for the measure of

computer programming aptitudes. Tlie Master Mind game seems to tap into the

problem-solving processes, and seem to indicate that the hetirisiic/algorithmic

problem-solving model may be valid. On the other hand, the Semantic Ability Test

may have serious procedural limitations, being very sensitive to its manipulation.
j -

DutTto these difficulties with the Serharitic Ability test; results are inconclusive.

-111-

v -

)

Table of ('ontenis

page

Introduction I
Purpose of the Study... 5

Background........................ b
Problem-solving Process.................... r........................')

Concept learning.................... 9
Problem-solving.,.' L.....»i................

Language C.17
Syntactic rules...;.................................. IV

, Semantic rules 20
Sentence processing ,......... 22

Cognitive models o f computer programmers 26
Syntactic/semantic model of programmer
behavior..!........................ .-................................ ...27

Modal mode! of programmer bèhav^or....................... 20
Programmer’s internal program. ,.......33

Algorithmic vs. Heuristic pmblem-solving '
strategies..;......................... 40

Statement of the Problem ...43
Factors Influencing Programming Aptitude............................ 45
Tests of programming aptitude...46
Selection of measures 50

Measure of Semantic Ability...50
Measure of Problem-Solving Processes ;...51"

Research Methodology..55
M ethod .. .'...............................55

Subjects..................................:..55
M aterials ... 60

Test of Semantic Ability................... ;....;.... 60
Design and Procedure............................... "......... 60
Scoring M ethod.. 63

Master Mind Game... 63

-iv- ' * ^

\

'Si

c

Design and Procedure...................................... :t\.64"‘
Scoring Method.......;... 66

Experimental Design ..67
Coding... 69

i

Result!.. 70
Comparison of Major G roups................................ 70
Master Mind... 72
Semantic Ability Test................................ ..75

Predictive Potential of Measures....................... ,................... 78
Master Mind 79
Semantic Ability... .81

Psychometric Properties of M easures 82
General Population 82
Experienced Programmers 82

Discussion............................ i.............. ..84
Comparison of Major G roups...............................i.............84

Master Mind...^................. 85
Semantic Ability............................:...................................86

Psychometric Properties of M easures................................86
Discriminant Validity................. :............... 86
Test-fetesi Reliability .. 86

Semantic Ability Test 87

Overall Discussion...................... 90
Implications of Results..90
Semantic Ability,...91
Algorithmic Thinking.................................. 93
Limitations of the Study. .. 96

Conclusion........................... .99

References..........................;.. 100

Appendix A......................... .*....................... 107
Annex 1............................. ^................................ 107
Annex 2................................113 ^

Appendix B...117
Appendix C..;...................... .118 -
Appendix D............................ .'........ 122

-V-

C‘ ■

4

Tables and Figures

page

Table 1 Description of Major Gr,oiips.(N = 75)... 57

Table 2 Descripaiion of Sub-groups (N = 44)...5b
f

Table 3 Sample Test Set for Semantic Ability Measure........................... b I

Table 4 Experimental Design................ bH

Table 5 pTest Means and Standard Deviations for the Experienced
Programmers and General Population Groups........................... 7 1

Table 6 Semantic Ability Test—Answering Pattern in
Percentages 7b

Table 7 Difference in Answering Pattetns-Experienced
/ Programmers vs. General Population............................. '.............. 77

Table 8 Difference in Answering Patterns—Novice
Programmers vs. Control G roup................................... .̂........ 77

Table 9 Test Means and Standard Deviations for the
Novice Programmers and Control Groups 78

Table 10 Correlations Between Grade and Measures and
95% Confidence Intervals 80

Table 1T Significance of Differences Between ' ^
Correlations of Two Groups... 81

Table D-1 ANOVA of Rows Performance on Master Mind
for General Population and Experienced
Programmers ... 122

-VI-

Table !)-2 ANOVA of Time Performance on Master Mind
; for General Population and Experienced

Programmers.... ̂..........123

Table D-3 ANOVA of Overall Performance on Master
Mind for Control and Novice Programmers..................... 1^4

/
Table D-4 ANOVA of Overall Performance on Semantic

Ability for Control and Novice Programmers..! 124

I 'igur'e 1 Average Number of Row.s per Trial needed for
MM Solution for .Experienced Programmers and
General Population Group..................... 73

\.
\Figure 2 Average Time per Row per.Trial for MM

Solution .for Experienced Programmers and
- General Population..... ;..............7.4

Figure 3 Master Mind De-coding Board............. 117

-vu-

Introduction

In tlîe last few years, research has begun to focus on the human factors of

'computer programming instead of concentrating on the mechanicahaspecis of tlf«

discipline,'and such human-centered issues as programming skills are being isolated

from machine-centered issues. Tit is movement has enabled psychologists,

psycholinguists and computer scientists to study programmer.behavior separately

from programrning procedures.

W einberg’s book "Psychology^of Prtrgramming" (1471) has prompted

researchers to start concentrating on the cognitive processes of programmers. Thls '
V .

type of study has taken the form of examining programming tasks such as

composition, comprehension, debugging, and modification, as well as learning of .

programming skills (Shnei'derman and Mayer, 1979). The subjects widely range

from naive to highly experienced programmers, and the ta.sk.s from simple to %

complex. ' *

Notwithstandyig this shift in interest, the material produced so far has not

been merged into a testable theory; each paper focuses on a particular problem

without integrating the results into a workable overall model. In addition, most

.studies have concentrated on the measure of programming skills and aptitudes,

rather than on the underlying cognitive processes differentiating programmers from

non-programmers.

There is n,d-comprehensive theory or model, at this point, that specifies what

. strategies programmers use to solve problems and how they process information,

whether these s tra teg ic are specific to a certain type of people, or whether these

processes can be taught and improve with practice.

When writing a computer program, programmers start from a problem and

attempt to find the best solution. To do so, they use a programming language, and

apply some form of problem solving strategies to shape the solution. But how can

we determine if a particular strategy works best? And how is it possible to find '
-

whethenthe programmer has been .successful in this process? .

Shneiderman (1977) asserts that measuring the quality and ease of

comprehension of a computer program is very difficult; he cites G ilb’s description

of "Up to 40 metrics of program quality such as reliability, maintainability,

repairability, accuracy, generality, portability, logical complexity, modularity,
I ♦

efficiency, total system cast, operational cost and stability" (p. 465). It is argued that

these measures are faulty through their generality, their lack of validation and their

.7 .

\

potential lack of relevance. In addition, some of these measures may he mutually

exclusive; for example, a program that is very complex may be difficult to change or

maintain due to its nature. Shneiderman himself found that commenting,

mnemonic variable names and modular program design had significant impact on

comprehension and program quality (i.e. written code), whereas indentation and

flowcharting did not.

Factors such as programming techniques, the features of the various
. -f

programming languages, teaching procedures and difficulty of the problem may
' . .1 -

influence an individual’s ability to be successful at programming, both in terms of

program comprehension and program quality. (It is very important that a

programmer be able to understand an already written program, in order to make

approjJm te corrections or modifications).

Even accounting for these differences, the basic principles behind

programming are similar in any programming language. Better performance may

depend on the comprehension of these principles; certain individuals may have a

greater ability understanding them, thus making it easier to write good programs

(for example, transfer from one programming l.anguag<j^to the other would he less

Jb;

may be more extensive and better organized than the novice’s information, thus

difficult). On the other hand, the information acquired by computer programmers

-3-

J "

making it easer to arrive at an ideal solution (Mayer, 1981).
*

Taking for granted that everybody has a certain ability for solving problems,

the focus of this research has been to investigate whether computer programmers

need to use a specific type of problem solving strategy in order to write good

programs. Based on what has been discussed previously, two major questions can

be posed: .
\ .

■ I. Can the processes underlying programming aptitudes be identified?

2. Can the measure of these processes be a good predictor o f success in

computer programming? •

A review of the literature indicates that specific abilities are needed to be

successful at computer programming, although there is still contention as to which

ones are essential. In addition, cognitive processes appear to be a crucial factor in

enhancing these abilities; If these abilities could be measured, it would then

becoriie possible to predict who would be successful at programming, thus cutting

down training and labor costs. Therefore, the goal of this research is to outline the

design of a better predictive test (or test battery), by underlining the necessary

cognitive processes before the breakdown of the important elements of computer

-4-

programmer ability.

Purpose of the study. The purpose of this Study was to verify two partial

models; the syntactic/semantic model of programmer behavior, and the

heuristic/algorithmi.cproblem-solving model. By examirting both processes in

isolation, the study attem pted to build a stronger base for the evaluation of

programmer aptitudes. It must be noted, however, that this can only be part of a

long-term project; consequently, the present study is considered exploratory in

nature, ■

background research for this study indicates that programmers may have

better control over semantic elements in language comprehension and Over

algorithmic processes in problem-solving. It was considered desirable tr> measure

these two processes separately..The present research has attempted to do*so; by

frying to answer two main questions:

1. Are there separate measures that can differentiate the cognitive
■ ••

processes, such as semantic ability and algorithmic problem-solving, of

programmers and non-programmers?

2, Can these .semantic and algorithmic measures predict, in a general way,

-5-

success in a programming course?

What is needed is an approach starting with an approximation of the way in

which programmers process information, rather than one which is looking into

» / ’
special abilities.

/ -
This paper has five main sections. In the first, the fundamental notions

underlying the models are presented, including the basic assumptions for the

information-processing models of cognition. The second section describes the two

partial models, and discusses the validated measures of programming aptitudes

available as well as the theorems supporting this study. In the third section, the

problem is stated and the measures described. The Research Methodology,

including the discussion of the Results obtained is included in the fourth section.

The fifth section discusses in detail thcjresults obtained.

Background

The field of cognition is dedicated to the study of how individuals gather,

store, retrieve, and utilize information (Carroll, 1983). This is done through the

examination of cognitive processes such as language, perception, retention,

transfer and memory; these processes are interdependent and are often difficult to

-6-

separate of discuss in isolation. To illustrate, it would be impossible to explain

what is a dog if the concept, the memory of that concept, or the label "dog” were

not available to the individual. Similarly, solving a problem without thç use of

concepts and language is difficult to imagine. This study is concernc<l{vith three

important processes of cognition; concept formation, problern solving, and

language. They will be treated separately as much as possible.

The study of cognitive processes is performed usually through cognitive

tasks. A cognitive task is "one that critically requires the processing of information

— information from the outside world that can he perceived by the individual ami

placed in some kind of memory, and/or information derived from previous

experiences and retrieved from memory" (Carroll, f983, p.3). I 'ha l information

can be processed in many ways: it can be stored, compared with other similar

information, retrieved, modified, or "manipulated by complex procedures or
j

' algorithms" (Carroll, 1983, p.3). Cognitive tasks are tailor-made problems that

examine specific areas of a process. They enable the researchers to break down

the larger field of cognitioit.

Two basic classes of theories of copcept learning and problem solving have

made use of cognitive tasks to demonstrate their characteristics:

-7-,

The cnntinnity theory is an associationist mode!: it attempts to apply

classical and instrumental conditioning principles to concept formation. Associative

psychologists explain problem solving in terms of response hierarchy: specific

responses become associated with specific stimuli because of repeated pairings or

reinforcement (high strength response). When the previously learned responses are

inadequate to the situation, a problem is identified, and it stays unsolved until a

low probability response has been aroused (Lipman, 1979). For example, in a

classic experiment where a pair of scissors had to be used as a balancing weight

instead of what it is normally used for, it took longer for the subjects to arrive at

that solution due to its low association response (Meyer, 1979).

The noncontinuity theory derives from the Gestalt approach. It contends

that concept learning is a process whereby hypotheses are constructed and tested

until the appropriate one is found. The probletn solver makes a guess (a

hypothesis) as to the solution, in accordance with the information available. As

more information is gained, the individual either confirms the hypothesis, or

rejects it and selects a new one.

The noncontinuity theory also includes the information processing

approach, which defines the existence of a problem when a series of alternatives

exist for the same solution (Meyer, 1979). This approach elaborates the type of

"8“

■fArategies or procedures a problem solver chooses while adopting one of the

alternatives to the solution. The development of informal ion-processing, theories

has led researchers to break down prohlem-sblving oper«tions and write

computer programs that mimic human problem-solving strategics. One of the

most prominent and most quoted attempt to do so is Newell and Simon’s (I V72)

General Problem Solver (GPS) program, which uses heuristic-type methods for

solving problems.

In this study, the noncontinuity theory and the information processing

approach have been adopted.

Problem-solving Processes

Concept learning. Wheii an individual responds to several stimuli in the

same way, that person.has made a categorization, and is said to have acquired a

"concept". For instance, identifying animals that have a beak, wings and feathers

as being bikds is to have acquired the concept "bird". This type of categorization

reduces strain on memory (since not every instance of every object has to be kept

in memory) by developing an abstraction independent of any .particular object.

-9-

I

Four basic factors affect concept learning:

a. Number of attributes. The more attributes (or aspects, facets) a concept

has, the more difficult it is to learn (Bulgarella and Archer, 1962).

&
b. Positive and-negativeinstances. Learning is easier if only positive

instances are encountered. However, in order to role out irrelevant attributes,

negative instances are essential (Johnson, 1971).

c., Cue salience. The salience of an attribute (or how much it stands out

compared to. others) also affects concept learning. The more different attributes

are, the easier they are to learn (Trabasso, 1963). For instance, it is easier to

differentiate between a circle and a square, than between an hexagon and^n

octagon,

d. Feedback. Learning is easier if it is accompanied- by confirmation or

infirmation of the relevancy of an attribute (Bourne and Pendleton, 1958);
»

feedback also helps in the formulation of hypotheses. H ypotheses’’represent

systematic attempts to eliminate or confirm the role of the many varying

dimensions in a situation” (Meyer, 1979),

-1 0 -

The most often cited research in the area of concept learning and

hypothesis testing was done by Bruner, Goodnow and Austin (ld5(>). In their

experiment, they used a set of 8.1 stimuli, consisting of four dimensions with three

attributes per dimension (e.g., a card with two borders and three black crosses in

the center). ITiey presented one card at a time; their subjects had to decide on

which attribute was the correct concept (selected by the experimenters). The

experimenters then told the subjects it the card was a "positive instance” (a card

representing the concept) or a "negative instance" (a card without the concept).

By observing their subjects, Bruner et al. (1956) ■ arrived at two major types

of selection strategies for concept learning; scanning, where every instance is

examined and kept in memory, and focusing, where one instance is examined and

discarded if found unsuitable. They found that the focusing strategies were more

efficient, because scanning relies too heavily on memory. The more attributes there

are, the more complex the problem becomes. For example, while a three-attribute

problem has seven possible positive concepts, a six-attribute problem has 63

concepts. Consequently, it "is quite evident that the task of keeping track of

possible hypotheses increases considerably in difficulty with an increase in the

number of attributes in the array" (Bruner et al., 1956). The focusing strategies can

be divided in two:

-11-

a. Conservative focusing, where an individual picks one concept then

changes one attribute of tliat concept at a lime, thus eliminating uhusabie

attributes directly. With this strategy, the subject would always arrive at the right

answer;
»

Focus gambling, where an individual picks one good concept, then

changes several attributes at a time, thus trying to "guess" the right attributes.

Conservative focusing was the best strategy to use in solving a problem: the

information was more easily monitored, and it minimized the amoujicof risk

involved. However, thè more attributes there were, the more co.stly it was in

terms of time since only one attribute is changed a t . a time,

. ■ . -

On the other hand, focus gambling "provides a way of attaining the concept

in fewer trials" (Bruner et al., 1956). The individual is taking chances by changing

several attributes at a time, and may "get lucky". Bruner et al. found that most

people used focus gambling as a strategy.

As discussed, concept learning is based on hypothesis testing, which is an

essential process in problem solving.
, ■ . X

Problem solving. What is a problem? Glass et al. (1979) define a problem

•12-

as something which has no immediate solution. They identify three ha.sic

components to a problem; availability of specific information, the use of a series

of operations by the problem .solver to arrive at a solution, and the definition of the

solution to the problem, or the "goal". Prior learning, the complexity o f the

problem, and the embeddedness of clues (Lipman, in?*-)) - as opposed to their

salience — can all affect problem solving. In a general way, there are four major

steps t ^ h e problem-solving process (Polya, 1957): understanding the problem,
. * *

searching for a solution, implementing the solution, and checking the results.

When an individual is faced with a problem, the first step is to attempt to

understand that problem .'One way to attempt this is to arrive at an internal

representation of the problem. Thus an algebraic expression may lake the form of

more concrete objects such as apples and oranges (Luria, 1968). Of course, as a

problem becomes more complex, it also becomes more difficult to represent it

concretely: similarly, Pellegrino (1985) found that "the more elements and the

more transformations, the longer it will take to solve the problem" (p .51). In
$

addition, "a problem may have more than one representation...fandj some

problems can be solved much more easily with one form of representation than

another" (Glass ét al., 1979, p.400). Therefore, "understanding the nature of the

task and defining what is necessary for a solution is usually a major step toward

\ ■ ■

• -13-

I

finding a represenlalion that can be used effectively to solve the problem" (Glass et

al., 197V. p.403).

Planning the .solution, implementing it and verilS’ing the results often,

operate simultaneously. In order to arrive at a solution, the problem solver can use

two very different strategies or procedures: Heuristics or Algorithms.

Heuristic reasoning is "reasoning not regarded as final and s tri^ but as

provisional and plausible only, whose purpose is to discover the solution of the

present problem" {Newell and Simon, 1957), whereas algorithmic thinking is "a

search method which, with certainty, will produce the correct response for any

stimulus in the set of possible stimuli" (Hunt, 1962)» An algorithm is "an infallible,

step-by-step recipe for obtaining a prespecified result. ‘Infallible’ means the

procedure is guaranteed to succeed positively in a finite number of steps..."

(Haugeland, 1985); thus, an algorithmic strategy requires that every hypotheses he

tested until the best solution is found. This strategy can be costly in term s of time,

although it was found that "the best reasoners are often slower at encoding than are

less skilled rea.soners...Slower, more accurate encoding of information at the outset

speeds up subsequent processes" (Pellegrino, 1985, p.52). However, "solvers

- worked faster thait nonsolvers" (RoWe, 1985, p.335), suggesting that because

solvers are more careful at understanding the problem, they arrive at a solution

-14-

more quickly. The algorithm which works best at problem solving is the "branched

schedule" (or primitive) algorithm, because it works by arriving at the solution

i
based on conditional branches (or answering yes/no questions). Tflis means that:

an entire primitive algorithm could legitimately serve as a single
"primitive" instruction, in a more sophisticated algorithm. In other
words, if we think of primitive algorithms as ground level, then
second'level algorithms can use simple operations and directives that
are actually defined by whole ground-level algorithms; and third-level
algorithms could use second-level algorithms as their primitives, and
so forth.-.using these bricks, and algorithmic glue, there's no limit to
how high we can build (Haugeland, 1985, p.70-71).

This process, albeit slow, enables the problem solver to solve a problem

m ore quickly than if a "straight schedule" algorithm were used, where every

instance of a solution, regardless of its usefulness, is considered one after the '

other.

A heuristic strategy will usually find good, although not necessarily

optimum solutions; the individual is willing to accept any nontrivial approximate

solution that can be obtained in a reasonable arnount of time,

Newell and Simon (1972) give a larger definition to the heuristic strategy

through the means-end analysis method of problem-solving. This method rctjuires

the problem solver to determine the goal or the solution, then to decide on the

means to reach that solution. This is done through estab \is^ ig subgoafs, which

-15-

provide the information necessary.to reach the fmai tiolution. The heuristic

, component is the fact that the problem solver does not start to generate

hypotheses which are testetl one after the other; rather, the problem solver starts

by applying the "prqblem-reduction" approach (NilSson, 1971), eliminating the

hypotheses which arc obviously wrong or useless. The formation and testing of

subgoals, h o o v e r , has a definite algorithmic component.

■N

>jp̂ v

This is best demoristrated through Egan and Greeno\s (1974) experiment

with the three-disk Tower of Hanoi, problem, where it was demonstrated that
■ "

planning arid setting up subgoals were extremely important; in addition, the more

complex the problem, the more possibility of error. This is because soihe subgoals

often bring the problem solver away from the final goal (Thomas, 1974). Glass et
^ . -
al. (1979, p. 326) g^nfirm this by stating that .’’...people rely on a limited number o f

heuristic principles which reduce the complex task of assessing probabilities-and

predicting values to sirripler judgemental operations. In general, these heuristics

arc quite useful, but sometimes they lead to severe and systematic errors".

■ '
Newell and Sirnon concentrated on the problem-solving searclt, rather

than the actual solving of the problem; that is, they argued that the method for

solving a problem was "arrived at heurisiically - the actual solution was most often
« i*

done algorithmjcally.

-16-

Haugeland (1985) argues that GPS was based on two nnUn assumptions

which proved to be false. First, means-end analysis turned out to be more effective

for a very specialized form of problem-solving (i.e. for very narrow^^ppf^lems). ■
’ ■ ') .

- rather than having à single application for a wide range of problem types. Second,

the "...second unfulfilled assumption undermines not only GPS. but heuristic search

in general [...] It is That "formulating" a' . problem is the smaller job. compared to ■

solving it once formulated" (Haugeland, p. 183). •

Therefore, it can be advanced that although people use heuristics to

décide how.a problem is going to be solved, algorithmic procedures could be used

.. to apply the solution. In a sense, Newell and Simon’s argument is more on the

definition of an algorithm (an infallible, time-consuming, non-economic
. . -

procedure). However, when distinctions are mhdc between types o f algorithms, ■

such as what Haugeland (1985) has done, it becomes possible to apply a

'conditional' algorithm to GPS procedures. This approach is the underst.ruclurc in

, the development of a model of cognitive processes of computer programmers.

Language ̂ . -

-

One of the very complex and most controversial processes of cognition is

language, or more specifically language-comprehension. How do people

-17-

4

î

comprehend language, and in this cale, the English language? Because "speech

acts express thoughts...nearly all speech acts express corresponding cognitïvb states

or events..." (Haugeland, 1985, p.89). Nevertheless, speech must not only be

uttered, it must also be undeptood: "Order is the opposite of chaos. An ordered

text must have a systematic internal structure that is not accidental" (Haugeland,

' 1985, p. 94), thus delivering an internal representation of the concept to be

expressed. ,

A major linguistic breakthrough was the development of the theory of

transformational grammar by Noam Chomsky in 1957. Although Chomsky’s

theories no longer dominate linguistics, he revolutionized the field by developing a

generative grammar; This grammar contains a set of rules for the formation of any

grammatical sentence in a language; it takes the study of language away from a

descriptive grammar, that is, the .study of how sounds are understood to form

words. Chomsky's focus was the total competence, or the pure syntactic ^

formulation of language, without due concern about the meaning of texts (i.e.

semantics), or individual differences soch as motivational levels, sliort- term and

long-term memory or itiforniation retrieval capabilities (Kintsch, 1977).
'

Today, linguists realize that isolating language , competence from

performance is unrealistic, and current theories include both syntactic and

18-

i

semantic elements. Marks and Miller {1%4), for example, through scrambled and

unscrambled sentences, demonstrated that language processes were dependent on

both syntactic and semantic rules.

Syntactic rules. In Chomsky's theory, there are two types of syntactic rules:

phra.se structure rules and transformational rules (Kint.sch, 1977). '

The phrase structure rules group (or chunk) sentences into phrases and

determine the relationships between these phrases. For example, the sentence

"The small boy ate the red apple" consists of a noun phrase (The small boy) and a

verb phrase (ate the red apple) which also contains another noun phrase (the red
V ' '

apple). These rules are the basis for perception and memory of the sentence, since

they break it down into manageable components.

Transformational rules enable relationships between syntactically related

sentences; for example, the active ' transformation T h e boy ate the red apple" cart

be changed to the passive transfortnation "I he red apple was eaten by the boy".

These rules assume that a sentence has "an abstract underlying phrase

structure.-.the deep structure of the sentence" (Kintsch, 1977, p.311). 'Ibis deep

structure "determines the semantic interpretatirm of the sentence" (Paivio, 1971,

/■ -

-19-

V

p.399). Thus, transfonnational rules are mainly used to "convert the .deep structure ^

into the more concrete surface structure that describes the form of the sentence"

(Paivio, 1971, p.400). It was therefore argued that syntactic (both structure and

transformation) rules were essential to sentence comprehension. In other words,

while semantics were a complement to syntax for language competence, syntactic
%

elements formed the basis of expression.

Further study, however, showed the converse; meaning takes precedence to

sentence organisation. For example, Aaronson and Scarborough (1976) found that

semantics, rather than the syntactic structure, affected reading time when

comprehension was required of their subjects. Bever (1970) pointed out that

syntactic organisation was less important to people than semantic representation,

and that syntax was used merely as a support to h.elp determine the meaning of a

sentence. '

Semantic rules. Experiments by Gough (1965) and Slobin (1966) \

demonstrated that semantic elements were the most important for sentence

comprehension, sometimes even suppressing syntactic rules. Grammar, or syntax,

does not address meaning for lexical units of sentences. Consequently, two
) ■ '

syntactically identical sentences, such as 'The boy lü u h e girl” and 'T he girl hit the

boy", have different meanings (Gough, 1965). The words themselves, or the way

'20.

they are combined in text, can facilitate or hinder comprehension. Setvunnic cues

^ (or rtilôs) establish a basis for understanding. For instance, all words are not

semantically equal; some are more complex than others, and affect comprehension
' r " . , .

and memory. For example, the words "short", "bad", "narrow" (as opposed to "long",

"good", and "wide") cannot be used to ask a neutral question; in addition, the

"marked" word is part of a pair whose other htember is always "unmarked"

(Kintsch, 1977).

As a result, one can ask "How good is the meal?" without assuming that it is

bad or good; the opposite, however, "How bad is the meal?" assumes a degree of

, badness rather than a neutral quality. Clark (1%9) dem onstrated that the

unmarked words are easier to comprehend and remember, and that retrieval is

more rapid if the question is congruent with the statement in word problems (e.g.

"If John is better than Pete, then who is best?" as opposed to "If John is better

than Pete, then who is worse?")

Most studies on comprehension confirm the importance of grammar in

language. M ore importantly, however, they show "that word meaning plays a

crucial role in comprehension.,.a role that overrides syntactical information unless
i

care is taken to suppress relevant semantic cues" (Paivio, 1971, p.47).

-2 1 -

Sentence processing. Tite main purpose of syntactic and semantic rules is .to

assist comprehension o f language. Researchers have been interested in

determining how people process sentences for comprehension, and how Ipng-term

and short-term memory play a role in sentence processing. Begg and Wickelgren
S. ' -

(1974) established that semantic information was learned and retained better by
i 1\

their subjects than syntactic or lexical information. Sachs (196?) tested

syntactic/semantic recognition of sentences in text. Subjects listened to sections of

text; immediately after each section, a sentence from the text was repeated. The

repeated sentence was identical or changed slightly. The changes were either

syntactic or semantic in nature, and the subjects had to decide whether the

sentence was "changed" or "identical". If the sentence appeared early in the text,

only its semantic aspect (its meaning) could be remembered, and semantic changes

were detected better than syntactic changes.

Sachs concluded, that, when delayed recall was required, the subjects

transformed the sentences into an internalized semantic interpretation, while the

syntactic form was forgotten. As recall operated, reconstruction was done

through the remembered meaning. As the repeated sentences approached the end

of the text, the accuracy of recall increased. One way to determine if language

comprehension is an ability which'can be developed is to study individual

-22-

differences in the utilization of language. Perfetti (1983) notes differences In

language ability:

Some people read well, have large vocabularies, and score high on
verbal intelligence tests. O thers read with difficulty, have smaller
vocabularies, and .score lower on verbal intelligence tests. What
processes underlie such pervasive differences in verbal ability?
(p.65).

Perfetti advances that the differentiation between good and poor verbal

ability comes from the ability to retrieve information efficiently. Studies by

Jackson and MacLelland (1979) and Jackson p98()) confirm that name retrieval is

a major factorin adult verbal ability. Most studies, however, have been done with

simple verbal processes, processes which require only one step in the retrieval

process. They occur when semantic elements associated to a word are activated in

memory.

Complex verbal processes are components of verbal ability and are more

difficult to evaluate. A complex verbal process is "one which requires multiple

memory access and manipulations o f accessed units...decoding may sometimes be

complex and comprehension may sometimes be simple" (Perfetti, 1983, p.06).

Most studies, such as Perfetti and Goldman (1976), I^sgold and Perfetti

(1978), and Jackson and McLelland (l9 '/9) (cited in Perfetti, 1983), have

- 23-

concentrated on the study of simf>le verbal processes. However, Perfetti (1983)
il

claims that, since language is not unidimensional, complex processes reflect verbal

processing more accurately.

Perfelti’s discussion concurs with Paivio’s argument that current linguistic

theories are incomplete; Paivio has attempted to discuss psycholinguistics "with

special emphasis on the mediational role of imagery" (Paivio, 1971, p.394). He

developed the dual-coding model of psycholinguistics, in which concrete sentences

are stored in memory verbally and in the form of nonverbal imagery, whereas

abstract sentences are stored in verbal form only. He criticizes comprehension

studies using test sentences by stating that "the sentences, when concrete, may be .

decoded instead into nonverbal imagery and the information in the image

compared with the information in the referent picture or sentence" (p.417), the

measure being corrupted by an additional process. He adds that in language, the

more abstract the concept, the less nonverbal imagery plays a role:

...verbal descriptions of concrete situations and events from memory
and verbal expressions of the manipulation of spatial concepts are
likely to be mediated efficiently by nonverbal iihagery, whereas
abstract discourse and verbal expressions of abstract reasoning are
more likely to be mediated entirely by the verbal system (p.434).

-24-

Paivio’s theory is based in part on a stuity by Begg and Paivio {I %Q). in

which they investigated the relationship between concreteness and imagery, and

sentence meaning. Based on Sachs’ findings (1%7), they arrived at two majtir

■ hypotheses: '

1. Sachs found that the majority o f her subjects, could recognize semantic

changes more easily than syntactic changes, Begg and PaiviotinHiafirhltis was

because her texts were concrete, thus creating an image which wa^disturbed when

' the semantics were transformed. Therefore, by using concrete sentences, they

would be able to replicate Sachs’ findings. • ■

2. By testing subjects with abstract sentences, they would find a greater

difference among subjects. The more abstract the sentence, the lower the semantic

recognition.

Both hypotheses were confirmed, through a modification o f Sachs’

procedure. Begg and Paivio tested subjects with either concrete or abstract

sentences, modifying them semantically or syntactically. They found that subjects,

were able to recognize semantic changes easily in the concrete sentences (e.g.. The

sharp arrow pierced a frantic bird), but had more difficulty with the abstract

sentences (e.g.. The arbitrary regulation provoked a civil complaint). They

-25-

concluded that imagery was used to understand meaning in concrete sentences, but

that the abstract sentences were mediated mainly by verbal processes.

»

Paivio's dual-coding model has been supported by research. It iiiakes sense

in that it relies "on "knowledge of the world" as a crucial substrate of language

performance...imagery plays an important role in the comprehension, retention,

and production of concrete (descriptive) language in particular, whereas the

processing of abstract language is assumed to be tied more closely to the linguistic

representational system alone" (p.476). The model can be used to test language

acquisition, as well as language ability, which is of concern in this present study.

»

Cpgniiiyfi mackla of fompulsr pmsranmlers

The literature reviewed above forms the basis for the study of the cognitive

processes specific to computer programmers. Although a substantial body of

research relates to the use of application programs as tools, only a small portion

of it has considered the cognitive processes required to be .a good programmer. As ,

with the previous section, this review is divided in two parts, based on two partial

models: (a) the syntactic/semantic mode) of programmer behavior (Shnehdcrman

and Mayer, 1977), and (b) the heuristic/algorithmic model o f computer

programming behavior, The present study is based bn these two models.

-26-

According to Shneidernian and Mayer (1970), a model of cognitive

processes for programmers must address five main programming tasks; composition

(how to write a program), comprehension (how to understand a problem to

translate it into a program), debugging (how to find errors in an already written

program), and learning (how to acquire new programming skills) (p.221). The

model must account for the strategies and processes used to acquire, retain,

retrieve, and integrate the information necessary to pcrfi^xj^ifedftramming tasks

effectively. The following literature review summarizes the relRuch done to date

O n the cognitive processes of computer programmers.

Syntactic/semantic model of programmer behavior

Shneiderman and Mayer (1977) proposed the syntactic/semantic model

when they studied the recall scores of experienced and novice programmers with

two types of programs: one executable program and one shuffled program. They

found that, as the experience level of the programmers increased, there was also an
y .

increase in the ability to remember the executable program; there was minimal

change for the shuffled program. During the recall pha.se, the experienced

subjects would tend to retain the semantics of the program while writing a

syntactically different program than the original, whereas novices tried to

remember the exact lines of the program. That behavior led to the

-27-

syntactic/semantic model of programmer behavior.

Shneiderman and Mayer hypothesized that as programmers become

experienced, their capacity to recognize programming structures increases; this.
-

ability helps them to recode the syntax of the program into-a more abstract level of

internal semantic structure. ,

In the case of programming, syntactic knowledge is language dependent and

is acquired by rote memorization, whereas semantic knowledge depends on the

understanding of general concepts that are not related to any Specific

programming language. The knowledge is organized hierarchically from low level

constructs to a higher level problem domain. Kahney (1983) has found evidence

that " ‘average’ novices spend considerable time trying to come to grips with '

concepts like recursion ... the average novice commits a segment of code to memory

with the rule that the sdgment has a particular effect witlrout having a model of the

way the effect is achieved" (p. 127). So while a more "talented" programmer can

manipulate the recursion concept to write a program and determine its output, the

average programmer "...writes recursion procedures without a model of the behavior

of the program, and therefore needs to use the com puter to evaluate code" (p ,l2 9).,

Without understanding the structure, or the semantics, o f the program, the codé, or

syntax, is simply copied and less easily adaptable to more complex problems.

-28-

Shneiderman and Mayer's study relies on F-eigenbauni's (l')70).

"Information processing theory of memory". Fcigenbaum asserts that information

is channelled from short-term and long-term memory into "working mcmoiy".

where it is integrated before it is used. As an example, an individual would

extract (from short-term memory) the information necessary about a problem and

from long-term memory the strategies to solve i.t, transfer the two in working ,

memory and arrive at a solution. This process describes program composition, and

■ the five programming tasks mentioned above can also be described through the

working memory process. According to Shneiderman, the best definition of

program comprehension is "the recognition of the overall function of the program, /

an understanding of intermediate level processes including program organisation

and comprehension of the function pf each statement in a program". "

■ ■ '
Thus the semantic and syntactic information is stored in long-term memory,

albeit differently. Shneiderman and Mayer (1979) describe syntactic knowledge as

being "More precise, detailed and arbitrary" (p.222), with some points in common

but generally unique to each programming language. Semantic language, on the

other hand, is stacked in memory, the low level details being readily accessible, and

high level concepts requiring a more abstract understanding of programming

principles. Semantic knowledge can cut across several programming languages,

-29-

and is independent of syntactic knowledge. The syntactic/semantic model proposes

that once semantics have been applied to the problem, the use o f syntactic

elements to write the program becomes simple, the languages to he used

interchangeably. » •

’ ' ^
In program comprehension, syntax and semantics are uSed in the same way

' as in the comprehension of English text, the semantil^iiemeTits being more

important for conaprehension than syntax (see Gough (1965) in previous section).

Shneiderman and Mayer (1979), add that "the programmer, with the aid of his or

her syntactic knowledge of the language, constructs a multileveled internal

semantic structure to represent the program" (p.226). They parallelled their

‘ findings on recall of programs with Sachs’ study\l967) of syntactic/semantic

recognition of sentences in text; experienced prcjgrammers retained semantic

information better than syntactic elements, which is consistent with Sachs’ (1967)

and Begg and Paivio’s (1969) studies. Shneiderman and Mayer (1969) further

stressed their belief "that ability to memorize and recall a program is a strong

correlate of prdgram comprehension" (p.235).

Modal Model of Programmer Beftavlor. Kahney (1983) studied how novice
*

programmers transform thff verbal statement of a problem into a program. He

describes the "modal model of problem solving" which has three phases;

-30-

' V

' 1. A phase of problem understanding. Usually, a progranuuiiig problem i.s

not well defined, and some variables might he missing. Programmers have to be

able to recognize the important aspects of the problem statement. Kahney y l^ e s

that the resolution of the problem starts with the understanding of the problem,

sinoè a specific tactical plan must be adopted.

2. À phase somewhere between problem understanding and the running ol

"solution" processes, usually called "method finding". Chi, Feltovitch and Glaser

(cited in Kahney, 1983) found that novices are "stimulus bound": their problem

solving strategies are influenced more by each text than by the general principles '

underlying all similar problems, while the experts are capable to extract these

general principles from the problem. The ordered collection of information into

structured knowledge is essential to the, derivation of these general principles, and

is the first step toward solving the.problem. Kahney adds that to solve the

problem, it is essential that they develop "a mental model of a problem" (p. 127).

Kahney implies here that -certain novice programmers develop a hiodel usable in

more than one situation, while others commit a .segment of code to mcniory

without understanding its underlying principles. He further says that programming
1 '

and experience "interact to direct and constrain the mental models that are

% '
constructed". This mental model is ohvimWy very similar to Shneiderman and

;
-31-

Mayer's (1979) model of hierarchical semantic knowledge.

3. A solution phase. This phase is,often seen as a "solution-framework into

which elements of the problem are slotted" (Kahiiey, 1983, p. 123). Kahney found

that novices did not experience any difficulty with writing code, although they had

difficulty understanding code that was written by someone else. In the-case of the

written code the problem is reversed because the novice has the solution .'and
, ' . ' ■ • . - -

must determine the problem. Novices fail to react to the written code in the

appropriate way (i.e. by stating the purpose of the program), which may indicate

that a different type of problem-solving behavior may be required for solving

more complex problems. , ;

In ariother experiment by Kahney (1983), talented and average novices were

given a sample program to study, and, then had to write a similar but more difficult

program. Kahney found that talented novices worked problems the same way as

the experienced programmers. They developed a nienta' model of how the

principle of the sample program worked, generalized its applicationTtben solved

the more difficult program. Most of the average novices-were not abW to write

the more difficult program,.which could indicate that there may oe-certain "natural"

abilities, aptitudes or skills influencing a programmer’s ability to transfer a problem

into workable code.

. -32-

Kahney’s modal model of problem solving is similar'to Brcsnan's model

(1981) in which she equated cognitive processes ih the mental representation of

language to the solution of a problem of ni^ura! informatieMt^roeessing, where ■

computational theory (which establishes the constraints or limits imposed on the

representation), algorithm (which.properly interprets the information obtained),

and process (in which the mental representation is C()mpared with the "processes of

the natural system" (p.40-41) are integrated. '

In both models, before starting on the solution, the individual has (a) to

identify the problem and its elements, (b) compare those elements to already

acquired knowledge, then (c) code the answer.

»

These models, however, do not mention how these processes are

"internalized", how this knowledge is .structured within the individm'il, and how it is

retrieved. ' ‘ ”

Programmer's Internal Program. Sengler (1983) proposed a model o f

program understanding which is also concurrent with Shneiderman and Mayer’s

model. H e states that understanding a program requires two general capabiiilics:

individual must be able to predict what the program will do, and must he able

/ t o I^ recognize that a certain part of the effect is caijsed by a certain part of the

-33-

program. The latter is especially necessary for modification purposes and

, debugging. ̂ ,

When an individual is reading text, not every character is considered

separately: grouped together, they are seen as words; as groups of words are

fortned into sentences, the reader makes assumptions about what should follow.

The individual goes through the process of "mapping the text into a new structure

... that represents all aspects of the text the reader assumes to ^ e essential"

(Sengler, p. 93). The same type of structure seems to be formed when a

program is read by the experienced programmer. Sengler calls it the "internal

program" and the components of this internal program are the semantic units of

the programming language. S'engler’s description could be more accurately termed

as an "abstracted” program, since he is talking more about extracting general

principles from what is learned than about an internal process which may be

difficult to measure.

If we account for individual differences, it cannot be assumed that each

programmer ends up with exactly the same mapping of the internal program.
. . -

Similar to differences in the reader’s selection,of salient points from the text, it is

more likely that there would be a variety of similar mappings, possibly due to a

different repertoire of programming expériences.

>

-34-

In order lo understand a program. Sengler proposes five necessary abilities.

Tliese are the abilities to (a) find, (b) associate. (cVrecall, (d) evaluate and

(e) iihslrad... ’ ' •

Because most programs are long and complex, tht programmer must

separate them into portions and then link them together in order to he able to

understand what effect has the whole. The programmer portions out sections of

the program through it&syntactical separations (e.g. blocks such as "begin...end")

which are arranged into a hierarchy, thus simplifying the process. This hierarchy is ■

what the programmer calls the "structure" of the program.

In order to portion out the program, the programmer first has to find the

elem@qts of the portion. These elements are its "components | the .semantic units ol ^

the pfogrtrtnming language] and relations {the semantic relations between those

semantic units] as well as its inner portions [portions inside the currently analysed

portion] and its . outer relations [elements affecting the interface between

portions]" (Sengler, 1*)83, p. 95). •

After this is accomplished, the programmer can associate for connect) the '

semantics-of components and relations (from a knowledge of the language and the

system).

-35-

ITien the programmer can recall the previously understood and memorized

semantics of inner portions and outer relations, and "evaluate the resulting

semantics of the portion (which includes] an imagining of the effect ôf the portion

on the program's state space" (Sengler, 1983, p. 95).

Because the semantics derived from this general evaluation are very

complex and are difficult to process, the programmer has to develop a concept of ,

the portion in order to be able to "fit" it into the overall image of the whole

program, therefore abstracting the semantics. This whole process would be

impossible if the programmer attempted to recall portions of the syntax only.

Learner characteristics apd individual differences. Sengler (1983) purports

that although every experienced programrher internalizes programming concepts,

there are individual differences in how the internal prograrh is mapped.

Concurrently, van der Veer and van de Wolde (1983) studied individual

differences in the aspects of control flow notations. They started from the premise

(derived from llreir own research observations) that students who had avoided

math as a subject were more likely to u.se false or distorted imagery to solve

algorithms than those students enjoyed and were good at math (they "created

maximum sema'ntic transparency in the code", p.l09).

-36-

Van der Veer and van de Wolde determined four factors affecting the

learning process: • .

a. learner characteristics.

b. characteristics of the problem solution.

c. features of the programming language,

d. didactics. .

. This study concentrated on learner characteristics only. Van der Veer and

van de Wolde distinguished three sources of variability in the learning of computer

programming.

t
1. general abjJities fsuch as intelligencel which are con.sidered to Ire fairly

stable over time,

2. educational background, for example.ex tensive training in math,

3. cognitive style, or an individual’s typical problem-solving approach, lhat<is,
r . -

the way a person approaches a problem.

-37-

They stressed three important factors that enable the individual to acquire,

store and retrieve information: ■

-factor I: tendency to memorize (rote memory). This factor reflects a skill

rather than an ability. ' ' • . .

-factor II: "operation' learning". Tendency to derive ".specific rules and

procedural details" (p. 111). ■ ' • ,

-factor III: "comprehension learning". Tendency to derive "general rules .

and descriptions, and to record relations between different or even remote parts of

the domain" (p. 111).

As we can see, these factors are congruent with Shneiderman and Mayer’s

model: operation and comprehension learning can be equated to acquiring

semantics or conceptual levels, whereas only syntax can be acquired through rote

memory, • ■

Soloway, Ehrlich, Bonal and Greenspan (1982) parallelled the above

. models in their study of programming proficiency in novices. [They had novice and

intermediate prograrnmers write three programs in PASCAL, each problem

requiring a specific lopping construct; these constructs Were not a matter of

- 38-

individual taste, but were required logically, Soloway et al. started with the premise

that experts use a high-level plan knowledge (or again high-level concepts) to

manage their programming structure. Soloway uses Minsky's definition of a plan

as an "encoded frame". A frame represents "a template, which is customized to the '

particular features of the concept bcitlg represented" (p. 27). The plans are linked

together, forming specific relationships, reflecting a hierarchy of ordered relations.

The basic questions about the problem are asked through the Strategic

. plans. The programmer will (a) describe what the program should do,

(b) determine the variables, (c) decide what the program will do, (d) decide what is

to be tested, (e) determine the setup, (f) determine the action in the body of the

program and (g) decide on the conclusion. The code itself is written through the

Implementation plans; the specific technique used (regardless of the code) is

selected and developed during the Strategic plans.

Soloway et al. found that choosing the appropriate looping construct was
* f

not a predictor of success in writing the program, but choosing the appropriate .
'

looping strategy was. The looping strategy is a type of .strategic plan whereas a
/

looping construct specifies an implementation plan,

. \ -

This means that the technique must be not only used but understood.̂ In . ■

' • / - ,

- 39-

..î5 r»T ^

other words, one cannot only use tlte syntax properly and be guaranteed a correct

program. If the programmer knows why a certain technique is used and how it can

be applied in different situations, there is discrimination between different

concepts or, in this case, the strategic plans. The present research attempted to

demonstrate that computer programmers use semantics more efficiently than

non-programmers.

»

Algorithmic vs. Heuristic problem-solving strage gies

'ntrqughout the studies reviewed so far, the heuristic/algorithmic

problem-solving behavior model has been taking shape along with the

syntactic/semantic model. Along with the semantic interpretation of concepts, the

approach to problem solution has been addressed. But how is knowledge tapped

into and The theory of hypothesis testing by Bruner er al. (1957) becomes

the cornerstone of the algorithmic/heuristic model.

As discussed in a previous section, Bruner et al. (1957) found that the

efficient prohlem-solver used the focusing strategies rather than the scanning

strategies. Conservative focusing, where the individual changes one attribute at a

time, can be equated to the use of an algorithm for problem-solving; the algorithm

methodically considers every possible solution and always arrives at the right

-40-

answer. Focus gambling, where .the individual changes several attributes al a time,

can be equated to heuristic strategies; heuristics usually provide a nontrivial

approximate solution in a reasonable amount of time.

Following up on B r u n e i al.'s experiment, Wickens and Miliward (F)71)

tested subjects on a concept-'learning task, after giving them large amounts of

practice. They found that as a rule "subjects tend to consider a small number of

dimensions simultaneously, that a dimension paired inconsistently with the correct

response is eliminated, and that when all the dimensions in a set are eliminated the
?

subject samples a new set" (Mayer, 1983). This behavior is very similar to focus

gambling, or heuristic problem-solving, and supports the belief that most people

solve problems through heurisitics.

Computers work on algorithmic principles, and even "heuristic

programming" is based on algorithms, such as the trial and error algorithm, where

"the amount by %yhich the current approximation fails to satisfy the problem is used

to determine the next approximation" (Gear, 1978, p.6).

Several studies not only corroborate Shneiderman and Mayer’s

syntactic/semantic model of programmer behavior, but also go further in asserting

that experienced programmers have acquired a specific cognitive "set" with which

i'

-41-

they solve pr.oblems: Soloway et al. (1981) have found that the understanding and

judicious use of programming principles (or semantics) increase program quality;

Kahney (1983) developed a modal model of problem solving processes, where the

programmer builds a "solution framework into which the elements of the problem

are slotted"; Senglcf (1983) described the building of an "internal program", a

method of breaking down a problem into smaller pieces to make it easier to

manipulate, understand and remember; and yap de Veer and van de Wolde (1983)

identified a specific cognitive style where operations learning (the derivation of

rules and procedures) is one of the necessary abilities to the programmer.

From these studies, there is evidence that programmers operate in a manner

consistent with Shneiderman and Mayer’s syntactic/semantic model. This partial

model of programmer behavior explains how knowledge is generalized or

structured, but does not address its retrieval or utilization. The

algorithmic/heuristic problem-solving behavior model provides some answers to

the latter concern. Most of the studies discussed in this paper, however, have

addressed these concepts in an isolated fashion, and several questions have

remained unanswered. The next section discusses these problem areas, and

elaborates the statement of the problem.

-42-

Among the literature on programmers ahiiitics reviewed uhove, none of (he

studies have tried to determine the cognitive model of their subjects prior to their

first acquisition of a programming language, or tried to compare heuristically versus

algorithmically oriented indi\^iduals. In addition, no baseline has been obtained in

order to compare the general population with programmers to determine if there

is a difference in their cognitive functioning.

' i . , ■ . .

. Comparing novice and experienced programmfcrs is a good way to examine
' i • '

the structure of the cognitive processing. However, there has not been a consistent

measure of differentiation between levels of ability. Kahney’s discrimination

between average and talented students is vague, and there are no details on how to

measure,these differences. Van der Veer and van de Wolde (19H3) discriminate

between the alphas and the betas, the alphas being poor at math and disliking it,

and the betas being the converse. They determined the profile of a programmer

through the three learner characteristic (abilities, education, and cognitive style),

the emphasis being on educational background, intelligence and a score on the

three learning style factors. Unfortunately, it is difficult to sec how these scores

-43- '

I

»

were integrated together to form one of three categories, alpltûs, betas, and "?" (a

category where students were good at math but disliked it). Although these make
» -

intuitive sense, the measure of learner characteristics is still uncertain.

M()st studies were done wjth people that already knew programming.

_Shjieiderman’s research determined that recall performance increased with

experience, but no evidence was presented to verify if practice has an equal

positive influence on every programmer or if it only, enhances already present

abilities. Studies should also be conducted using naive individuals (i.e.

non-programmers) in order to be abl^ to predict performance prior to any training

in programming. _ •

Another difficulty encountered in these studies is the determination of the

programfncr's Ipvel of expertise. There are no established rules as to what is a .
'

novice, an intermediate or an experienced programfner. Although deciding on this

issue is beyond the scope 6f this paper, it is important to keep in mind that any

reserach will be influenced by the definitions given to the level of experience of

programmers. As with all other studies the definitions used to describe novice and

experienced programmers for this research are purely subjective.
!

In addition to a lack of definition for levels of experience, the studies have

-44-

not used the same programming languages, thus eomplicatlng the judgement as to

what exactly is an experienced programmer. There is also no indicaliim -jiilo how

many languages a programn%er knows or has worked with, and whether this factor

influences the programmers expertise.

• ■ ' ' ■ '

Factors Influencing Programming Aptitude. Several studies have he en

perfornied attempting to find fe to rs influencing programming aptitude. Pete.rsen

and Howe (1979) found that college GPA and general intelligence explained less
■ j t ■

than 40% of the variance in a programming course grtnlc. Kurtz (1980) "has found

little correlation between-major, class level, and previous college courses ... and

overall course performance" (p. 110). He found that measures of abstract

reasoning ability were a good predictor of low and high achievers, but could not

predict well the average score. Kurtz's test was based on Piaget’s theory of

intellectual development, and tests items were all verbal in .nature, although they
- - ?

tested abstract reasoning.

Cheney (1980) examined the "relationship between cognitive style and s
student programming ability". He defined cognitive style as "the problem-.solving

■

, methodology employed by an individual in a decision situation" (p. 285). Cheney

distinguishes between two different types of cognitive styles: (1) analytic, where a

structured approach is used to solve a problem, and (2) heuristic, where intuition

-45-

' .V

and arbitrary judgement is used to reach a decision. He found that students with

an analytic cognitive style tended to score higher on programming tçsts. Cheney

stresses that "cognitive style does not depend on the opportunity for education and

thus is not biased in favor of those applicants with an educational advantage in

math" (p.287). Cheney’s definition of analytical cognitive style is very similar to

inition of algorithmic thinking used in this study. ^
i ' '

Konvalina, Stephens and Wileman <1983) found that the best predictors of

success in a programming course were high school performance (20% of variance

■explained) and high school mathematics (23% of variance explained). Except for
I ' .

("heney's study, these results are.highly unsatisfactory and deTnonstrate that such .

factors are minimally useful in predicting success in programming.

Tests of Programming Aptitude. Several tests attempting to measure

aptitude for computer programming have been developed through the years.

However, none has satisfactorily predicted success consistently. McNamara and

1 Hughes (1961) found that the Programmer Aptitude Test (PAT) was a good

measure o f reasoning ability; the PAT is composed of three subtests: (1) Number

Series, (2) Figure Analogies, and (3) Arithmetic Reasoning. Howell, Vincent,

and Gay (1967) found, however, that the PAT was significantly correlated with

education level, indicating a "corruption" of the measure. Wileman, Konvalina,

-46-

\ ■ -

and Stephens (U)Sî) fo\vt\d that mathematical reasoning ahiliiy was an importani

factor in successful programming. The PAT might then measure mathematical'
> ■

knowledge rather than programming aptitude.

The "Aptitude Assessment Battery: Programming" was developed in l%d,

h purports to measure the abilities necessary for programming in business, such as

"accuracy, deductive ability, reading ctrmpfehension of a complicated and

ex te n d e d ex p la n a t io n o f a k ind fo u n d in 'p rogram m in g r e fe r e n c e m an u a ls , ability In

grasp new and difficuh concepts from a written explanation, and ability to reason

with .symbols" (Wolfe. 1969). The sample usad for validation was not

representative of the general population, since it came from a selected few

coibpanies. The test was developed in order to help companies select people in
»

their own organisation for training in programming. Those who scored the

highest on the test were professional engineers and pfofcs.sional mathematicians

and tho.se who scored the lowest were clerical and .secretarial workers. This .

indicates that the test is highly dependent on education; it possibly measures

factors such as a .level of knowledge in math, general intelligence, or again a

combination of factors, rather than programming aptitude by itself. ,

One of the best and most used test of programming ability is the ('omputer

Programming Aptitude Battery (CPAB)# The C.’FAB was developed in 1964 as a

'47-

sélection tool for computer programmers and systems analysts, t^ b e used by

managers of data-processing and computer programming Sections. Compared to

other tests. The CTAB was assessed as being the only one of "sufficient quality for

use in ‘.screening computer programmers for training" (BurOvS, 1978). Predictive

validity for job performance is low. Cronbach (1970) also argues that the validity

of the CPA'B is questionable. I le states that the sample used for validation may

* not be generalizable. that computer training may influence the test scores'of the

subjects, and that the rating criteria were affected by intervening variables such as

age or experience. In addition, the test has not been revalidated since its inception

in l%64.

Several.reasons can be proposed for the deficiencies of these tests. First, it

is difficult to develop accurate tests when the underlying cognitive processes have

• not been examined properly. Before one can develop an appropriate measure, it

is necessary to understand the constructs on which these aptitudes are based. In

the programmers case, the research done to date indicates that the programmer

must know how to utilize information in order to solve the problem, before that
*

problem is translated into a program. Nevertheless, there has been limited work

done on individual differences between programmers and non-programmers in

relation to their cognitive processes.

-48-

Second, the low predictive validity of most programming tests seems to be

due to the fact that two concepts are measured at the same time: verbal

comprehension (or syntactic/semantic ability) and reasoning ability (or^^^jp

heuristic/algorithmic ability). Although it can be argued that no test of reasoning

ability can be completely devoid of verbal components, it would be useful to test

each ability separately as much as possible in order to establish their scprfraie :rs

well as their combined influence. At this time, no test is available to measure these

■ two processes independently. .It,was therefore necessary to select new measures

in order to attempt to separate the verbal components from the reasoning

components when the cognitive processes of computer programmers are examined.

In other words, it was necessary, using new lest.s, to. determine if group

differences existed, in order to establish a baseline for both non-program mens and

programmers, and to verify if the tests selected had some predictive validity. Three

main theorems were derived from these arguments.

First, it was believed that, although each cognitive set may not be mutually

exclusive, one or the other (syntactic or .semantic,, and heuristic or algorithmic) is ■

more prominent in a person's cognitive style. Second, it was assumed that, although

practice may influence programming'efficiency, the inmviduaTs cognitive set would

have precedence. Hence, experienced programmers would .solve problems

I

-49-

through algorithmic procedures rather than heuristics, but an individual whose

main cognitive set is based on algorithmic problem-solving strategies may be a

better computer programmer than the individual whose main cognitive set is based

on heuristic problem-stdving strategies. Third, an individual who uses semantic and

algorithmic problem-solving strategies, rather than syntactic and heuristic

strategies, would learn com puter programming more easily.

Selection of measures

As discussed, above, the existing measures of programming ability are either

inadequate or defective. It was therefore necessary to select two tests which could

replace these ifeasures, by separating verbal and logical reasoning elements.

Measure of Semantic Ahility; In order to measure whether programmers

and fifture programmers have better control over semantic elements (i.e. can

understand meaning better), Begg and Paivio’s (1969) test of concretenas^ and ,

imagery in sentence meaning was selected. (Appendix A presents the test

sentences used in the experiment).

. Begg and Paivio used this test to demonstrate that subjects noticed semantic

changes better in concrete sentences, because it disturbed the image they had

-50-

formed when they biternalized the sentence. This effect, however, was weaker

with abstract sentences,, which led them to believe that abstract text was more

dependent on verbal components only.

In the context of this study, it was conjectured that their lest could'^rovitie

the possibility of differentiating between programmers and nom prograi^ners on

semantic aspects, by determining.the difference between the two populations on

semantic comprehension, and by determining the differences within the

programmer population (due to experience, as in the Shneiderman and Mayer

model). If a subject can determine whether a sentence is changed or identical, in

both abstract and concrete aspects,-then he/she has semantic control. ’litis

rationale leads to the first two hypotheses o f this research:

1. Experienced programmers will have more correct answers on the

semantic ability test than non-programmers,

2, Novice programmers who score high on the semantic ability test will

have a high grade on a BASIC programming c()urse, and those who score low on

the test will have a low grade.

Measure of Problem-Solving Processes. In order to tneasure algorithmic

-51-

thinking, it was necessary to separate, as much as possible, non-verljal and verbal .
A. , ■ ;

’ elements in the problem-solving process. Johnson-Laird (1977) describes a study -

by Whitfield (1951), who whas examining the effect of , negative information on

problem-solving. Johnson-laird indicated that a "variant of this task is a recently

available game known as ‘Master Mind’" (p. 172). l ^ e game of Master Mind;

developed by parker Bros., is a color coded equipment in which the subject must

"guess" a secret code of four different colors. ’

In his study on mediating processes during discrimination learning, Marvin

Ixwine (1963) developed a 'form ula to predict the minimum number of correct

res^ionses a subject could make to arrive at the right answer. This formula is based •

on the "Win-stay-Lose-shift" principle, where a subject stays with an attribute if

he/she is told i t , was correct but changes attributes if told it was incorrect. With

algorithmic thinking, since only One attribute is changed at a time, the answer

should.be arrived àt in minimum number of trials. Therefore, Levine’s formula

can be used to calculate the minimum amount of answers a subject would have to

make in order to get the right answer: if only one dimension is manipulated, but all .

• #others are presented, then each dimension is added together then divided by two: ~

. (a-i-b + c + d)/2 V-

-52-

\

In the case of Master Mind, two dimensions arc manipulated, that is, color

and position, among b colors (white, black, green, blue, red, yellow), 4 positions (1,

2, 3, 4) and 3 attributes (right color, right color and position,'wrong color and

position). Thus, we can calculate the average minimum of answers rcquireii:

(6 + 4 + 3)/3=4:3-

The dimensions are divided by three, because the subject has one chance in

three to be right every time. Therefore, it would take on average 4.3 answers for
' i ' .

the subjects using a perfect algorithmic problem-solving strategy to arrive at the

hidden code, while the subjects using heuristic problem-solving strategies would

t& e more answers.
V , . . ■

The game of Master Mind appeared to he a good test of the algorithmic

problem-solving strategy, since the problem includes a minimum of verbal,

elements. Using this measure, twT'additional hypotheses can be formulated:

1. Experienced^rogramm ers will solve the hidden code in fewer answers

than non-programmers.'

-53-

2. Novice programmers who have à low score in the game will have a high

grade on a BASIC programming course, and those who score high in the game will

have a low grade.

I

-54-

Research Methodology

Mfilhüil

SutÙÊCis

Table 1 gives a description of the two major groups used in the study.

Subjects were divided as follows:

(1) Experienced Programmers: this group of 31 subjects was composed of

12 males and 19 females who were between 19 and 35 years of age. Experience in

programming was defined as having worked for at least one year in programming

and/or having a working knowledge of three or more programming languages: five

had worked as a programmer for less than one year, one for one year, four for two

to three years and 22 for four or more years; two knew only one language, six knew

two, languages, and 24 knew three or more languages. All subjects had a Computer

Science-related degree or,diploma, and volunteered for the experiment.

Twenty-three of the subjects came from two software firms in Halifax; the other

eight subjects were programmers working at Saint Mary’s University, in Halifax,

Nova Scotia.

(2) General population group: this group of 44 subjects was composed

of 28 females and 16 males who ranged from 19 years to over 35 years of age. Their

, ' -55-

involvement with computers was minimal: 20 subject'^ had never used a computer.

ten were strictly system users (e.g. for word processing)^ nine had done

programming as an accessory to another task (e.g. writing a program for trend

analysis), and 5 had done some programming as a major task, but had not actively

programmed for more than six months. All subjects were o f university level,

ranging from first year to graduate school; they were ail volunteers for the

experiment.

\

'56- \

Table 1 '
O escripiionof Major Groups (N - 75)

Experienced Programmers

Demographic variables- of sample N

G en d e r, female 61.3 19
male 3H.7 12

Education graduate 32.3 10
undergraduate 2(>.(1 9
diploma 3.8.7 12

Age 19-24 22.6 7
25-34 67.8 21

.35 or o ld e r , 9.7 3

General Population

Demographic variables % .of sample N

Gender female 63.6 28
male 36.4 16

Education graduate 9.0 4
undergraduate 90.1 . 40
diploma 0.0 0

Age 39-24 . 77.3 34
25-34 20.5 9
35 or oldEr 2.2 1

The General Population group was separated into three sub-groups (sec

-57-

Tabic 2):
)

 ̂ — ’ ' ' ' ' '

a. Contrnl Ci roup: 23 subjects in this sub-group wcrS students enrolled

at Saint Mary's university, and were about to start an Introduction to Psychology

' -
course. There were 17 females and six males, between 19 and 25 years old. They

* were all volunteers. and \grccd to He retested after their course. They received one

y . credit for each testing .session.

■ b. Novice Programmer group: The 11 subjects in this sub-group were

■ students enrolled at Saint Mary's or Dalhousie universities, and were about to start

their first computer programming course (in this cage, with the programming

language BASIC). There were eight males and three females, between 19 and 25

years old. None of the subjects had undergone a selection or programming aptitude

test.prior to their enrolment into the BASIC course. Subjects received $5 for their
. ' . • '
participation, and all voluntarily agreed to be retested after their course. None were

in a computer science program.

c. Non-Frogrammers. Ten remaining subjects from the General Population

Group were added to the Control Group (to make up a group of 33 subjects) and

used in analyses against the Experienced Programmers Group. They were not given

a treatment, thus were trot retested. In addition, they were never used in isolation. *

:58- «

Table 2
Description of Sub-groups (N = 44)

Demographic variables % of sample N

Novice programmers
G ender female 27.3 3

male 72.7 8
Education Graduate 0.0 0

Undergraduate 100.0 • 11
Diploma 0.0 0

Age 19-24 81.N 9
25-34 18.2 .2 •
35 or older 0.0 0

Control Group
G ender female 73.9 ■ 17

male 26.1 . 6
Education graduate 0.0 0

undergraduate ■ 100.0 23
diploma 0.0 0

Age 19-24 ^ ■ 78.3 18
, 25-34 V 17.4 4 .

35 or older \ ' 4.3 . 1

Non-Pr-ogrammeis
G ender female

^ male
Education graduate

undergraduate
diploma

Age 19-24
25-34
35 or older

80.0 ' .« .
20.0 2
40.0 ■ 4
60.0 6 ■

0.0 0
70.0 7

30.0 . 3 '
0.f) 0

-59-

Materials

Tf.s< nf Semantic Abiiiiv. In Order to test semantic ability, Begg and Paivio’s

(1969) test of concreteness and imagery in sentence meaning was selected. This test

appeared to provide the possibility of differentiating between programmers and

non-programmers on semantic aspects, by determining the difference between the

two populations on semantic comprehension, and by determining the differences

: -
within the programmer population (due to experience, as in the Shneiderman and

Mayer model).

s , Design and Procedure. Begg and Paivio’s design and procedure was

followed, for the most part, with some slight modifications.
' ;

Kach subject heard 25 sets of sentences with five sentences in each set; the
'

25 sets were divided into sixteen test sets and nine filler sets. There were two types

of sentences (concrete and abstract) and two types of changes (non-semantic change

and semantic change). After each set of five sentences was presented, another

sentence was given to the subjects. This sentence was one of the original five in the

set, or one that was similar to it. Subjects judged whether the test sentence was

either changed from, or identical to the original sentence. Table 3 presents a sample

-60-

test set and its repeated sentence.

Tables
Sample l est Set for Semantic Ability Measure

(Concrete Non-Semantic Change, Changed Sentence)

a. The vicious hound chased a wild animal*
b. The tortured slave uttered a deafening shriek
c. Th,e destructive army pillaged a prosperous village ,
d. The talkative admiral attended à costume party
Test: The vicious dog chased a wild animal

The test sentence was either the first or second sentence (to avoid recency

\ effects) in the set. In the filler sets; the sentences to be played back for comparison

were the third,.fourth or fifth sentence in the .set, selected in random fashion. I he

sentence that was played back was identical to the original in eight sets and changed

from the original in eight sets. More explicitly, there were two changed and two

identical concrete "non-semantic change" sentences, iwo.changed and two identical

concrete "semantic change" sentences; the design was the .same for the abstract

sentences. Sentences were not changed, in the nine filler .sets. ,

•Once they heard each set of sentences, the subjects had fO seconds to

respond by marking the answer sheet', following each' playback. The subjects were

-61-

given the following instructions:

' 'The purpose of this experiment is to find out how well people can
remember what they have just listened to. The experiment will take
about one half hour. You will hear on tape 25 sets of sentences,
with five sentences in each set. At. the end of each set of five, you
will hear the worxl ‘test’, and then one sentence from the set will be
repeated. 7 en seconds will separate each set of sentences, giving
you time to write your answer.

Sometimes the test sentence will be repeated with exactly the same
words as the original. Buttkometimes it will be changed in some
small way. In some instances, the meaning of the sentence will be
changed. For example, if you had heard ‘The whiskered priest
entered an ornate temple’, and then ‘The bearded priest entered an
ornate temple’, this would be a change, but not in meaning, since
whiskered and bearded mean the same thing. If you had heard
‘The innocent occasion promoted a useless illusion’, and then ‘The
useless occasion promoted an innocent illusion’, this would be a
change in meaning.

■

If the words are just as they were in the original sentence from the
set, put a check mark beside "Identical" on your answer sheet. (The
experimenter points to the sheet). If there is a change,, but the
me,aning is the same, check "Ghanged-Same Meaning". If there is a
change, but the meaning is different. Check "Changed-Different
Meaning". Listen normally to the sentences. They go too fast to
memorize anything,.and anyway, you rmist attend to the meaning
fully, as well as to the words used. Rem ember to pay close
attention to both the meaning of the sentences and the words used
in the sentences. Any of the five sentences in a set may be the test
sentence, and any words in that sentence may be changed. Do not
take notes, just listen carefully. I will play two examples to.help you
familiarize yourself with the format. (The experimenter plays the
two sets of sentences, and the subject attempts to find the answer.)

Are there any questions? "

-62-

To summarize, the subjects had to contend with five elements in the test:

whether the sentences were concrete or abstract, and whether the test sentence was

either identical, changed semantically or non-semantically. The following are

examples of changes in test sentences:

1. Non-semahtic change (Concrete): T h e whiskered priest entered an ornate

temple', changed .to T he bearded priest entered an ornate temple'.

2. Semantic change (Abstract): ‘The innocent occasion promoted a useless

illusion’, changed to T h e useless occasion promoted an.innocent illusion’.

Tlte original sentences were obtained from Dr. Begg, and are included in

Appendix A, which presents the test sentences and their code. Ten filler sentences

were constructed to complement the actual test sentences given by Dr. Begg.

Scoring M ethod: The scores obtained from both types of changes from both
*

types of .sentences were added together, giving one -overall score of semantic ability.

A perfect score was 16, since there were 16 test sets, corresponding to the number of

"hits" or correct responses o f semantic similarity or semantic change.

Master Mind Game. In order to measure algorithmic thinking, it wa.s

necessary to separate, as much as possible, non-verbal and verbal elemehts in the

problem-solving process. The game of Master Mind appeared to have the potential

4)3-

to meet, this requirerneni. In the game of "Master Mind".,one of the two players must

"guess" a secret code of four different colors that has been selected by the other

player. It is composed of: , ■

1. a de-coding board, with ten rows of large holes (Code Peg holes) and ten

groups of small holes {Key Peg holes), and four shielded holes (for the hidden

code), '

2. a shield, to hide the hidden code,

3. code pegs, round-headed, of six different colors (twelve each): white,

black, blue, red, green, yellOw,

V
4. key pegs, 40 thin flat-headed pegs(20 each black and white).

Appendix B shows the organisation of the de-coding board.

Design and Proçednre. The experimenter explained the rationale behind

the experiment to the subject, then explained the rules of the game, by giving the

following instructions;

'The purpose of this game is for you to duplicate the secret code
of colored pegs behind this shield. Any combination of six colors
(blue, yellow, white, black, green and red) can be used, although
no color can be repeated twice in the secret code. You must
duplicate the exact color and position of each colored peg.

-64-

\

To begin, you place any combination of pegs you want in the
first row close to the shield. Each time you will place a row of code
pegs, I will give you the following information beside that row by
placing white or black key pegs for a hit, or nothing: ,

a. white key pegs mean that you have a right color but it is not in
the right position;

b. black key pegs mean that you have a right color and a right
position;

c. nothing means that you do not have the right color or right
position.

For example, if th^.sécret combination was blue, red,.yellow and
green, and you plactfd blue, black, green, and yellow, 1 would leave

. one whole empty (for-the black peg), give you two white key pegs
(for the misplaced yellow and green) and one black key peg. You
can then use the colored pegs, which stay on the board and the-
feedback I gave you to place your second row of colored pegs, and ^
soon.

Your answers will be timed, but there is no penalty for the time
. you take. Therefore, take as much time as you need to select your

colored pegs after you have had feedback from me. The maximum
number of rows you can fill is ten. If you have not found the
solution by then, 1 wifi reveal to you the secret code.

You will attempt to duplicate four different secret codes. This
should take approximately one half houb, but do.not worry if you
lake longer, ' .

Are there any questions?"

After the experimenter selected a combination of four colors for the hidden

code (from a set o f four combinations, used in a counterbalanced fashion) the

subject was told to start "guessing" the right combination of colors. Immediately

k ' -65-

after the subject had decided on four,colors for a row, he/she was'given feedback

through white and black key pegs as outlined in the instructions.
' .

The experimenter repeated this procedure until the subject had guessed

the right combination of colors, and the experimenter revealed the hidden code.

Subject’s reaction time was timed between feedback periods, and the number of

rows it took to arrive at the combination was recorded.. The "game" was repeated

four times for each subject, each time with a different combination of colors.

Scoring Method. Two dependent measures were obtained from the

Master Mind Game:

. (a) Number of Rows. The number of rows it took each subject to solve the

code on each trial, and the mean number of rows over the four trials were recorded.
$.

The average scores were compared over groups to determine differences in overall

performance; the scores for each trial were also used in a repeated rrieasure analysis

to determine if there was an interaction between experience level and/or practice. If

practice played a role in solving the problem, then the subjects would lake less rows

to arrive at the solution at the end of the four games; '

\

(b) Response Time. The mean response time per "game" (each trial time

divided by the number of rows) and the average time it took to respond for each

-66-

subject (total time divided by four) was also measured. Repeated measures analyses

were performed on time in order to determine whether the time taken to arrive at a

solution changed with experience and/or practice.

Experimental Design

■ . I
As was mentioned in the statement of the problem in the previous section,

the aim of the present study was twofold: first, to determine whether experienced

programmers would perform better than the nonmrogrammers on the Master Mind

game and the Semantic Ability test; second, to dejermme if those two tests could
. \

predict success on a BASIC programming counp.

To achieve this, the experiment was divided into two sections: comparisons

were made first between the General Population and the Experienced Programmers

Groups, then between the Novice Programmers and the C'ontrol Groups.

! ' ■
Both the General Population and the Experienced Programmers were

I
; administered the Master Mind Game (MM) and the Semantic Ability I est

/ '

/ (SEMAB). The Novice Programmers and Control sub-groups were retested after

-67-

treatment, which was either a course in BASIC programming language for the

Novice Programmers, or in Introduction to Psychology for the Controls. Table 4

presents the design of the experiment.

Table 4
Expérimental Design

jjL üüp. H I t s i Treaimeni R êIê si

Genera) Pop. 44 MM/SHMAB

a. Novice 11 Cr.se in BASIC MM/SEMAB
h. Control 23 . Crse in PSYCH MM/SEMAB
c. Non-progr! 10 ;

Exper. Progr. 31 MM/SEMAB

The first part of the experiment compared the General Population td the

Experienced Programmers to determine if their performance differed on the two

measures; the Novice Prr^ram m er and Control sub-groups were then used to
\ ' '

attempt .to predict success in a Computer Programming course. The Novice

Programmers were therefore tested after having taken a course in BASIC, and the
'

Controls after a course in Psychology. In addition to test scores, academic grades

-68-

were obtained for the subjects course performance. The methodology' also permitted

a partial analysis of the validity and reliability of the two test measures. In addition

to the Master Mind game and the Semantic ability test, a Background l^orm ation

questionnaire (included at Appendix C) was filled out by all subjects; it consisted of

seventeen questions on demographics, education and cohipurer experience.

Coding. T here‘were three dependent variables in this experiment: Semantic

Ability Scores, M aster Mind Game Scores, and C'our.se Grade. Semantic Ability test

scores ranged from 1 to 1-6,• in increments of one integer, 16 being the maximum

number of correct answers possible. Master Mind game test scdres ranger! from 1 to

10, for the number of rows it took to solve the problem, 10 being the worst score.

Test scores were an average of the sum of the number of rows per trial for four - ■

I r i ^ for a m.aximum of 10. Grades were coded from I to <H, 1 being equivalent to ;in

"A", 8 to an "F". Thus, grade and Master Mind .scores went in the same direction,

and Semantic Ability scores ran contrary to grade. Grades from the two courses

were considered equivalent.

69-

Results

This results section is cjividecl into three parts. The first analysis compares

lixperienceü Programmers and General Population groups and examines the

response patterns of the major groups on the two performance measures. The

second part examinés the two measures for their predictive potential-as measures of

computer programming ability; IT e third analysis evaluates the psychometric

properties ofthe tests (reliability and validity).
;

ComparisQiLQC Majoj G joups

Based on an analysis of demographics, the General Population and

Experienced Programmers groups were considéred acceptable samples. The

nilrnl:^r of female and male subjects in both groups was essentially the same (X =

.042, p. >25) although the Experienced Programmers group was generally older titan

the General Population Group (X^ = 19.3, p. < 001); coq.currently, there were more

subjects having completed a degree (i.e. holding a diploma or attending graduate

school) in the Experienced Programmers Group (X^ = 25.91, p. <(K)1), -However,

because of the nature'of the experiment, where experience was a differentiating

factor, it was decided that the differences were inherent to the groups studied.

(Results weje tested for gender differences which were all non significant.)

-70-

Test means shown in Table 5 indicate that the HKpericnced.Prograinmcrs

performed better on both tests than the General Population, as the first two

hyjiotheses predicted. SEMAB results for the Experienced Programmers group

were not significantly different from those of the General Population (1(73) - -l.lt),

p .>16). - / .

T ab les .

Test Means and Standard Deviations for the Experienced Progriiinmcrs and
General Population Groups .

N Ml Ran SI)

Experienced Programmers 31 '

MM 5.16H .K62
SEMAB 7.X55 2.241

Qçnçral Papulation 44

MM 5.743 I.IIO
SEMAB 7.330 I.V30 . 4

''

-71-

• J

, Muster Mind Gaijie »

ANOVAs with repeated measures were used to compare the performance of

the General Population and the Experienced Programmers. (All AND VA tables

are included in Appendix D). Separate analyses were performed for the number of

rows per friahand for the average time per trial to solvç^he color code problem.

These analyses revealed that although there was a significant difference between

their performance (F(1,74) = 9.42, p < .003), both groups performed similarly from

one trial to another in the number of rows they topk to solve the problern (F(3,219)

= .06, p > .98), and their perforrnance remained the same between triate, regatdless ’

of experience (F(3.219) - .82; p > .49). Notwithstanding th%se results, MM mean ■

scores.were significantly different from the projected 4.3 discussed in the literature

(Experienced Programmers: t(30) = 5.5, p ;< 01, G eneral Population; t(43) = 8.52 ̂

p. < 1)1). Figure 1 shows the-average number o f rows needed for the solution for

each trial. The average lithe per row per trial was the same fo^ each group (F(1,74) .

= .90, p 5^.34). The average time per rOw per trial decreased over successive trials

(F(3,219) = 2.53, p. < 06); However, the decrease in average time per row per. trial

was not the same for each group. The Experienced Programmers remained more

constant across trials, while the General Population decreased (F(3,219) = 2.63,

p. < 05). Figure 2 represents the average time per row per trial needed for the

solution. ' ' '

a"'' c ,

■ ■ '22- j , '

!
g
« r i•
6
c
#
)u
>«

A experienced frogreHmere
Cenerel F o p u ie t lo n

1----------------------- r

T r ia l Nunker
1

Figure 1. Average N um ber'of Rows Per Trial needed
for MM Solution for Experienced Programmers
and G eneral Population Groups.

-73-■

Ex»#ri#mo*d Fro«raMH*rs
f*yulm$*on

Figure 2. Average Time per Row per Trial for MM
Solution for Experienced Programmers and General Population

-74-

Semantic Ability Test

Answering patterns on the Semantic ability test were examined.
' •

Crosstabulations on every question for the entire group (n = 74) were performeil

to determine the most difficult questions in the questionnaire^ and to establish

whether answering patterns exista^kptwilhstanding the lack of significant

difference between the groups. Scvewout of the 16 test sentences were missed iiy

over 60% of the whole group. Five were from identical sets and one was a semantic

change. T hree were concrete and fo.ur were abstract. Only two .sentence's were

answered correctly by over 60% of the group; Both sentences were concrete

semantic changes. A summary <if these results is shown in Table 6.

-75-

Table 6
Semantic Ability Test-Answering Pattern (Filler Sentences Excluded) in
Percentages (n = 74)

Question no. Type > Miss Hit

1 Abstract non-semahtic change 55 .45
2 Concrete identical 65* 35
4 Concrete semantic change 19 81*
6 , Abstract non-semantic change 45 '55
7 ' Abstract, identical 66* 34

8 Abstract semantic change 61* 39
10 Concrete non-semantic change ■ 53 47
13 Concrete identical 61* 39
16 Abstract ideiiticSb 74* 26
17 Abstract identical 55 45
1<) Concrete semantic change 24 76*
20 Concrete identical 69* 31
21 Concrete non-semantic change 42 58
23 Abstract semantic change 41 59
24 Concrete identical 56 44
25 Abstract identical 66* .34

indicates percentage of answers 60% p r higher

In addition, differences in sudcess of responses (i.e. how many hits) were

examined by group. The Experienced Programmers and General Population groups

differed significantly on three questions; each involved à concrete test sentence. In

two cases, the Experienced Programmers performed better. Table 7 describes,the

findings for these groups. % - , - '

-76-

Table 7 ,
Difference in Answering Patterns—Experienced Pmgrammers vs. General
Population, .

Question no. Type t-test
4 Concrete semantic change -1.82'

19 Concrete semantic change
21 Concrete non-semantic change 2 .2 2 " . .

* .05 level, '** .01 level, .001 level of significance .

: The response patterns were also explored for the Novice Programmers and ■

the Control Groups. There were three sentences on which these two groups differed

significantly. Two abstract identical sentences were answered better by the Control

group, and one concrete non-semantic change was answered correctly more often

by the Novice programmers. Table 8 describes the findings for this group.

Table 8
•Difference in Answering Patterns—Novice Programmers vs. ('ontrol Groups

Question no. Type t-test
16 Abstract identical • 1.97* .
17 Abstract identical 2.87**
21 Concrete non-semantic change -4.11***

.05 level, ** .01 level, *** .001 level of significance

-77-

\
Predictive Potential of Measures

The second part of tfie study attempted to show that a grade in a computer

programming course could be predicted by the MM and SEMAB tests. The two

.sub-groups from the General Population, the Novice Programmers and the Control

Groups, were used for these specific analyses.

Table 9 represents test means and standard deviations for test (M M l,

SKMABl) and rete.st (MM2, SEMAB2).

Table 9 ^ • 4 ,
Test Means and Standard Deviations for the Novice^Programmers and Control
Groups . ■ •

N Mean SD

N.o_vke Programmers 11
MMl 5.705 1.224
MM2 5.068 .936
SEMABi , 7.545 2.115
SEMAB2 7.091 .831 .
GRADE (GPA). 5.273 1.737

Contrftl Group ; 23
MMl 5.717 .945
MM2 ■ 5.728 .86 J
SEMABl 7.000 2.000
SEMAB2 7.937 1.522
GRADE (GPA) 3.7826 1.6776

I ■

-78-

ANOVAs with repeated measures were used to compare the pertomiance of

the Novice Programmers and Control Group. Separate, univariate analyses were

carried out for the MM'and SEiMAB data. These analyses revealed that the Novjcc

Programmers performed at a significantly better level rui the MM. test thanvthe . ,■

Corttroi Group (F(1,33) = 1548.9, p < .0(H).-With regard to .SI-MAH data; the - •

Contfol group performed at a higher level, on average. (F(1,33) - 917.87’ p < .001);

however, in this case, while both groups started at about the same level, the cohlrol ;

group improved while the Novice progra.mrrters did not (F(1..33) = 3.%, p< .03).

For both interactions, conipai;isons showed that the différences between groups mi

M M l and SEM ABl were not significant (t(32) ^ .03;.p> .48, t(32) =■ -.73, p > .23), • ■

but were on MM2 and SEMAB2.(t(33) “ 2.03, p < .025; .1(32) = 1.76, p < .1)4). ' '

Master Mind. A significant relationship wds found between the secptrd MM . .

. ' ̂ - ' . : . ' ? ' A '
score and the final course grade for the Novice Programmers (r ,71, p < .01;).

Ndvice Programmers who pei;forrn'edwéUon MM2 also did well in the BASIC >-

programming coyme. No other'relationships, including thtise taken at .the beginniiig

of the course, were significant- Similarly, (.his.correlation was the only One whose

95% confidenct interval did not include zero. ' - • .

Inspection of Table 10 also shows that the magnitude of the correlations for.

the Novice Programmers Group vi^ere greater than thosè for the Cphtrol Group,

reaching an acceptable level., r - .30, in the case of MM 1. -

Table 10
Correlations Between Grade and Measures
and 95% Confidence Intervals /

 ̂ '
Measures

Groups
Master M ind- Semantic Ability

pre post pre post
------------------------------ --. — f
N ovice, . •
Progr. r = .30 r = .71* r = -.26 f = -.23

(:.36,.77)'' (.I9..92) (:.74,.40) (-.4?,.72) .

Control r .= .20 r = -.13 r = -.11 r = -.09
(-.24..55) (-.51..29) (-.5Q,31)(-.48,.33) .' 4̂

* indicates significance at the .05 level
^ intervals are separated by a comma

#
Fisher z’ transformations (Table 11) were used to compare the difference

\
between the Novice and Control groups for each correlation. The only significant

difference between correlations for the two groups was found .for MM2 scores.

-80-

Table 1.1
Significance,of Differences Between Correlations of Two Groups

Measures • '
. Groups .

I Mastgr Mind Semantic Ability
pre • post pre post

Fisher z’.
Novice
programmers
with. , .61 .97» .64 .63.

Control • -
____________________________ . j

» indicates significance at the .05 level

Further analysis revealed that the Novice Programmers improved their

performance from X = 5.7 to X = 5.1, on the second Master Mind task (t(10) =

: . 1.89, p < .04), but that the Control group did not improve (t(22) = -.06, p > .48).

T he scores for both groups at the beginning of the study on MM 1 were

approximately the same. This interaction can be .seen in Table 9.

Semantic Al>iliiy. Although none of the correlation coefficients were significant,

’ Table 10 shows that the relationship between grade and SEMAB was stronger for

the Novice Programmers (r = -.23) than for the Control group (r = -.09). In

.comparing pre- and post-test differences, the Control G roup’s SEMAB scores

improved (t(22) = -2.33, p < .01), while those for the Novice Programmers Group
■ “ i ' ■ . •

did not (t(10) = .81, p < .21).

-8 1 -

A stepwise multiple regression analysis was performed using M M l,

vSHMABl, age, performance in high school, performance in university, number of

math courses iq high school, and number of ma^h courses at university as predictors

of course performance. None of the variables entered in the equation predicted

grade in either the Novice Programmers or the Control groups.

Psychonielric Properties of Measures

This section of the study attempted to assess w hether‘the two tests do in fact

measure different constructs (a partial discriminant validation)'and whether they are

reliable. Some of these analyses have been performed on data obtained from all

the subjects used in this study, that is, all of the groups from the two experiments

(n = 75).

(kncral Population. There were no.gender dilTeiences in MM performance

(l(5 l) - -1.03, p > .31) or in SEMAB results (t(31) = .44, p > .67) for the General

Population group. However, those who were in graduate school (n = 4) scored

better on MM (t(3 l) = -2.52, p > .04) but not on SEMAB (1(31) = 2.48, p > .07). .

Experienced Programmers. Although males were significantly older than females

(= 9.32, p < .05), both genders performed equally well on MM (t(29) = -1.19,

p > .24) and on SEMAB (t(29) = -.86, p > .43). Subjects without a degree or with a

-«2- ■ a

\

diploma in computer programming (n = 12) performed as well as subjects holding a,

university degree (n = 19) on both MM (t{29) = -.74. p > ,47) and Sl-MAB (t{29) ■.

.64, p > .53) ,

There was no significant relationship between MM 1 and SHMABl (r = .115,

p > .20) over all the subjects or for each of the Experienced Programmers and

General Population groups considered separately (Experienced programmers: r -

.072. p > .35; General Population: r = -.257, p > ,07). in addition, there was no

relatronship,between the MM2 and SEMAB2 sciires obtained for the (,'ontrol

Group (r = 0.1984, p > .182) for Controls, or for the Novice Programmers group

(r= .0 8 7 6 ,p > .4 0) ,

The reliability coefficient, r = .49, between pre- and post-test (n = 35) on

. MM was significant (p < ,001); as was that, r = .36, on the SEMAB-test (p < .018).

W hen the data was analysed separately for,Controls and Novice Programmers, the

reliability of both tests remained significant for the Control group (Master Mind;

r = .487, p < .009; Semantic ability: r = .403, p < .03). Although the magnitude

of the reliability coefficients for both tests for the Novice Programmers remained

constant, the significance of the coefficients was only marginal (p > .06 and p < .07

respectively). - . .

-83-

Discussion

. Comparison of Major Groups

The first part of the experiment attempted to show that Experienced

Programmers would perform better than the General Population on the MM and

SEMAB tests. This relationship was found for MM but not'for SEMAB. Although

the Experienced Programmers solved the problem in more rows than the minimum

, number 4.3 that was needed, their overall score on MM was higher than the General

Population’s score. However, the Experienced Programmers tpok longer on average

to solve the problem than the General Population. Thèse results confirm

Pellegrino’s argument (1985) about individuals using algorithmic thinking to solve a

problem: "...the best reasoners are often slower at encoding...slower, more accurate,

encoding of information at the outset speeds up subsequent processes" (p.S2). The ̂

absence of variation between the average number of rows per trial and between the

average time per row per trial indicates that the test was-not affected by intervening

variables. If the number of rows had decreased, or if'it had taken less time per row

for the subjects to solve the problem from one trial to the next, practice would have

influenced the results. If the number of rows per trial had fluctuated, or if the time

_ pe^riü^ had increased, results could have been influenced by fatigue or boredom.

-84-

However, scores from one trial to the.next were simflar enough to show tliat the lest

may not be sensitive to external or internal factors,

On the other hand. Sernantic Ability test results were inconclusive; both
. . .

majôr groups performed similarly. "

The second part attem pted to.determine if a grade in a computer

programming course could be predicted by the.MM and SEMAli tests. Although

some of the results were encouraging, the relationship could not he fully ètWdWtcd.
• ̂ 7

Master fdijid. Novice Programmers performed better on MM than the

Controls, although it is their improvement .On the second testing of (MM2)

which determined their better performante. This stem s to indicate that the
- - . .. - ̂ V - - ,

treatm ent given to the Novice Programmers (the BASIC programming language

coarse), may have had an effect on MM scores. It .could also he conjectured that the

Novice Programmers used the pfoblem-solvittg strategies acquired through

programming in BASIC and transferred them to the Master Mind problem. The
. - . .. '

interaction supports this argument by showing a significant treatment effect for tli^

Novice Programmers. . ■

' Therefore, although.the M M l score did not predict grade, a definite

relationship between the MM score a n d h e type of coursé was established. It

iü
s

$
appears that learning how to program could have Ijelped the Novice Programmers to

solve a logical reasoning problem such as Master Mind. The instruction in

Introduction to Psychology appareSHy had no effect on MM performance.These '

results are in agreement with Mayer, Dyck and Vilberg (1986), who found that

"there is an intportant.-.relationship between a person’s thinking skills and ability to

learn Basic" (p.610).

Seiteaniic Ability. Test results indicate that although the Control group’s M M

scores stayed the same, their SEMAB scores improved. It could be argued that

Introduction to Psychology leads to improvement in verbal ski Its, while a course in

BASIC does not. However, this interaction could be an artifact due to the nature of

the test. '

Psydmmetrie Properties of Measures

Discriminant validity. The MM game and SEMAB tests show good discriminant

validity: data analysis seems to indicate that two different processes are tested, since

the correlation coefficients between the two tests at e ither testing .session for the

four groups are all below 30 percent and are not significant.

 ̂ Test-rctcst Reliability. Both measures have good test-retest reliability: 49 })er

cent for MM and and between 36 and 48 per cent for SEMAB. These reliability

-86“

î

measures are applicable Wall groups. These results are encouraging, because

although-treatment may have caused an increase in results, this increasdwas similar
■< '

for each individual in the group, rather than being haphazard. Thus, it supports the

discriminant validity data by suggesting that a particular process is measured through

each test, although in the case o f the SEMAB test these results are more doubtful. '

Semantic Ability Test. ^

The results obtairied in this siudycontradict Begg and faivio's results who

had found that subjects have more difficulty detecting semantic changes in abstract
*

sentences thdn in concrete sentences. These findings were not duplicated; subjects

were equally successful with both types of senterices, although they generally all

performed poorly. The results also seem to indicate that this test is difficult (group

X = 7.5), less sensitive to change, and less able to differentiate between individuals

than the Master Mind game.

. •

Three main arguments can be proposed for the results obtained with this

test. First, the test may not be able to discriminate betweeif levels of ability because

the subjects used for the study "may essentially represent the upper ranges..." of

language ability (Dillon, p.91), and they may have already mastered the processes

implied in the differentiation of levels o f language comprehension. Dillon states:

-87-

, Those whose only o r main problem in elementary scho<)l was
decoding are either not in the college population o r they have
mastered decoding-related processes to an extent that the limiting
performance factor lies elsewhere...in a sense, their reading ability
matches their general intellectual ability and within the latter, there
is a fairly narrow range—above' average to supèrior...Studies o f
adult readers have seldom used sufficiently difficult decoding tasks.
The sensitivity of the tasks thus are in question,(p.87). Considering
the above, the Semantic Ability Test may not be sensitive enough
to^ap into distinct abilities. '

A second argument could be that the test is a good test, and that the (’ontrol

G roup’s language ability did in fact improve; it may be that by learning

psychological concepts, the subjects reinforced .their ability to differentiate concrete

sentences from abstract sentences!* Clark (1974) .states that "concepts are organized

into semantic fields that have a "conceptual core". A conceptual core is "an abstract

entity that in reflecting a deeper conceptualisation of the world integrates the

different .concepts within the semantic fields" (p.183). The subjects may therefore

' have acquired experience in using semantics to understand concepts, thus being able

to transfer tAls experience to the SEMAB test. This argument,'however, does not

explain why the Novice Programmers group did not improve, since they were also
)

learning concepts, albeit of another nature.

A third argument seems to explain somewhat better the results that were

obtained. In this study, Begg and Paivio’s test was adapted to the purpose of this

-88-

particular research. Similar instructions as in Begg and Paivio’s experiment were

used, but instead of being aske>üf the sentences had been changed in terms o f words

V .

or of meaning, the subjects were asked to indicate if the sentence was changed

from the original. If the subjects answered yes, then they were required to indicate

if it was a change in meaning. Begg and Paivio also asked their subjects to

recognize lexical changes. In this case, however, recognizing a change as

non-semantic was considered identical as recognizing semantical similarity

through the change. Therefore, recognizing that difference was also considered a
• ,

test of semantic recognition and ability.'
. <

' . ' . '
The format of the test was also modified slightly. In Begg and Paivio’s

(»
experiment, subjects were tested separately on concrete and abstract seiitences; that

is, one group Ijstened to changes in concrete sentences dh^y, and another group

listened to changes in abstract sentences only. In this expérimenM Îie'hvo types of

sentence sets were combined and mixed in a random fashion.

By modifying the test in this fashion, the results were not duplicated in either

testing session; they also seemed to be affected by the type of treatm ent applied to

the subjects. These results are confusing, since it seems difficult to imagine that

language ability would significantly improve in a short time, especially at the age

level o f the subjects. A more plausible explanation could be that the Semantic

Ability Test suffers from important procedural limitations, and that the apparent

i -89-

effects are due simply to the manipulation of the test, that is, the combination of

concrete and abstract set o f sentences into one test. The test then becomes
V s .

unreliable in testing the syntactic/semantic behavior of subjects, although to

determine whether it still can test concrete imagery wohid be the subject o f another

study .

. . . \ , . ■ ■■
Overall Discussion *

Only one of the four hypotheses has beenfconfirmed through this study;

however, the results obtained are co n s id ere ïï^ co u raging.

- ' . ' ■

Implications of Results

Part of Shneiderman and Mayer’s results have been confirmed: Experienced

Programmers did perform better than Novices, albeit not in their ability to recognize

semantic changes. It may be that semantic elements -and their comprehension-

have less importance than their.hierârchical organisation. The results raise the

possibility that, as programmers gain experience, their capacity to reorganize

programming structures also increases. Consequently, experienced programmers

may be better able to recognize the need for an algorithm in solving problems. (In

fact, it may be interesting to research whether experienced programmers approach

-90-

all problems in the same manner, or whether they choose an algorithmic strategy

only for specific problems.)

Semamk Ability . y '

] Begg and Paivio’s (1969) test of concreteness and im aged in sentence

rrteaning did not provide an adequate measure o f verbal ability. This problem does

not negate the necessity to ̂ nd or develop a test which measures this ability (to

which we intuitively can agree), perhaps through the use of complex processes for

which Perfetti (1983) has,argued. The complex processes would tap into the

different levels o f language ability and confirm Shneiderman and Mayer’s

hierarchical organisation from low level constructs to a higher level domain.

Abstracts constructs vary in difficulty, and although most people can understand

some of them, others are more subtle and intricate to grasp: accordingly, individuals

with superior verbal ability Would be able to better manipulate and understand the

more complex concepts.

, '

This research into complex processes raises another question; Can a ^

measure of verbal ability be separated from problem-solving processes? Once

language becomes more complex, its comprehension may always involve a form of

problem-solving, with the information gathered and integrated into the "working

memory" (Feigenbaum, 1970). The quality o f the integration may be what should be

-91-

\

measured; it may be an elemental process, underlying botji verbal and
I .

problem-solving abilities. In other words, a problem may not be undersiable •

without the integration and redefinition o f its setnantics. The hierarchical

organisation o f semantics may mean that existing verbal ability tests tap the low level

details, but never touch the high level concepts which require a more abstract

understanding. This could mean that the integration of the semantics is more

important for language manipulation than the imagery or concreteness aspects of

language.

Throughout the literature review, it was stressed that understanding (and in

this case integration of information) is crucial to the cognitive process. When the

argument of hierarchical organisation is taken into account, results on SEMAB ■

could be interpreted two additional wayg: either the abstract level was low enough

that it did not need to be understood to be remembered, or the sentences were easy

to understand and were measuring a low level of integration, a level which would
'

have been attained by all subjects in the study simply because o fth e pre-selection

(university) they had gone through (Dillon, 1983). Either way, it is difficult to reject

the hypotheses formulated on language ability on the basis of this test, although it is

also impossible to conAqn them.

In short, it cannot be established whether the Semantic Ability Test is an

accurate measure, whether it is too sensitive, or whether it is not discriminative
 ̂ ' -

t
-92-

I
enough due to the language sophistication o f the subjects. The results are intriguing

enough, however, to lyarrant further examination.

• $

Algorithmic Thinking

The integration o f information has not been tested adequately, but its

retrieval and utilisation was measured fairly well through MM. A nother research

question raised by MM results stems from observations made by the experimenter

while subjects were solving the colpr code.
 ̂ .

Bruner e t al.'s findings thgt most people use focus gambling (or heuristics) to
■ ■ . -

solve a problem were confirmed. Most subjects had no discernible method,

were taking chances in changing several attributes a t a time, sometimes without

using the feedback given by the experimenter. This resulted o f t ^ in repeating

wrong color combinations, although, in general subjects succeeded in '"guessing" the

code.

Those who used a meîhod used an approach closer to conservative focusing.

However, although m eydid use some type o f method, they did so with various
p

degrees of efficiency. For example, instead of starting with four different colors

(which is the best way to start), some subjects would start with four pegs of the same

color, or two pegs of one color and two pegs of another color. By process o f

-93-

\
\

\

\

I
VX

elimination, they would know which colors were hot included in the code; this <Jid

not eliminate position at the same time as color, however. These procedures wprk,

and one can arrivent the solution more easily than with no method, but they ar^

costly in terms of rows; they seem to be non-opiimal algorithms combined with

heuristic,thinking, because they are more dependent on chance for arriving at the

solution in the minimum num ber of rows (4.3). They used the feedback given to
/ '

y, and generally tc/ok less rows to srthem to change attributes methodically, and generally to«)k less rows to solve the

problem. From a qualitative and observational point of view, it was clear that

certain subjects attempted to find the secref code in a methodical -even if imperfect-

way, whereas others just tried out some combinations until they "happened" on the

right one. The use of a method, rather than guessing, would also explain why the

experienced programmers took longer b n average to solve the problem: the method

in itself is time-ct^suming but more accurate, which is the way they may have

learned to work in order to write computer programs.

The Master Mind Game seems to measure a process related to the

problem-solving strategies required to program:.the Novice Programmers did better

on that test after learning how to program in BASIC, and the Experienced
'

Programmers did better than the Generdî Population. Master Mind is reliable;

however, whether it can predict success in a programming course has not been

posrible to establish.

-94- .
■ ' f.

These observations raise other questions worthy of study: Can the use of any

algorithm to solve a problem determine an ability in computer programihing, or

must the subject use the optimal algorithm? Is the use of non-optimal vs. optimal

algorithms an indication of levels o f programming ability? If the first question can

he answered by stating that the use of any algorithm can predict computer

programming ability, then Master W nd is not a good test, since it does not

differentiate between the types oflalgorithms used. However, an observation on

how people play the game jnay give indications as to the types o f algorithms the

subjects use., This could also be obtained by having the subjects think aloud while

thay are solving the problem.
» ' ' '

One way of alleviating these problems would be to raise the difficulty level of

th e task. By having a six color instead of a four-color code (with ten colors to chose

from), the problem becomes more complex, in the same way the Towers of Hanoi

problem becomes more difficult by the addition of rings. Glass (1979) indicates that

the more complex the problem, the more difficult it is to solve because of the

"backtracking" (that is, the algorithm requiring an ap^jarent-reversal of the steps
/i .

going towards solving the problem) necessary to arrive at the solution.

*

Using a more difficult problem may better separate the heuristically- vs.

algorithmically- oriented individuals by tem ovingihe element of chance.

Nevertheless, an important advantage to the MM game as a measure of algorithmic

-95- •

I
\ ̂ '

process is that it takes only approximately 30 m inutes^j^dm inisier (for 4 trials). In

addition, it has proven to be resistant to practice effects; it is also an interesting test

for the subject because it gives immediate feedback, and is fun to play.

Finally, although results have been somewhat inconclusive, the Master Mind f

game is considered to be a worthwiletqpl for measuring algorithmic ;

problem-solving processes, and merits further study.

Limitatlans nf Study

^ ' . . . '

The major lirnitati on of this study was the small number of subjects obtained
» f

for the various groups, and especially for the Novice Programmers group. Because

of this, it was not possible to determine if the tests selected could predict computer

programming. It was also impossible to determine if practice had an equal influence

on every subject in either group, or if it only enhanced already present abilities,

because there were too few people to be able to perform solid comparisons. Since

there seems to be a connection between programming and MM, further study

should be conducted with larger groups of Novice Programmers to attempt to

• determine if MM can predict programming ability. In this study, it was fell thaii the

groups were too small to obtain predictive data on either test.

A second difficulty was the lack of control over what was being taught in the

-96-

’ V _
BASIC course, for example, which principles and concepts, or which

problem-solving procedures or techniques were given in order to transfer a problem

into code. Because the course was not lightly controlled ^and the same can be said

for the Introduction to Psychology course), it is difficult to replicate results based on

similar treatments. It cannot be taken for granted that all BASIC or Psychology

courses are the same. However, a ll^ud ies that were reviewed for the pm pt5^ of

this study and who used a programming course as treatm ent have this same .

deficiency. .

For the purpose of further research, the content of a programming course ,

should be controlled in order to establish what concepts are taught, and to

determine if teaching these concepts improve algorithmic thinking. If this were the

case, the implications for teaching computer programming are great, since it could

be argued that if the proper problem-solving strategies and concepts were taught,

■—\
then programming could be learned by anybody who has the intellectual capacity to j

understand these concepts.

A third limitation was4he lack of commonality between the treatment for

hfovice Programmers and the treatm ent for the Controls, Treatm ent for the controls

should have been a computer-related but non-programming course, such as learning

how to use a word-processing program. Tying the Control treatment to a

computer-related task would eliminate the intervening variables of learning how to

-97-

<

use a computer system.

Another deficiency which has been experienced throughout the literature as

well as in this study is the lack of more solid definitions for the levels of experience

for programmer, which make it difficult to classify subjects as well as leplicate

.studies. The definitions given to the bxpericnga levels of the subjects in this study
'

may have influenced, .since the differences between experience, levels were, ‘

sometimes obscure or very slim.

.

The modifications made to Begg and Paivio's test of concreteness and

imagery in sentence meaning have had drastic effects on the results ex^rccted. It is
I

difficult to determine at this point whether the data obtained were an accurate

reflection of the groups and the effects of the treatment, or .whether they are due

solely to the changes in the test. Before thi^ measure is used again, an attempt to •

replicate Begg and Paivio’s results with the original test should be made. The two ̂ . '

test versions (one abstract and one concrete) should then be mixed together: similar

results should be obtained, if the tests are not sensitive to procedural manipulation.

These studies would establlsh>ii baseline and give credence --or infirm - the

hypothesis that semantic ability, and this test in particular,'can help predict

programming ability. In fact, a preliminary study should have examined this point

before the test was used in its present form.

-

-98-

Conclusion

The results of this study have shown that the Master Mind game

differentiates Experienced Programmers from the General Population, and that it

seems to measure algorithmic thinking, albeit imperfectly. It is therefore considered

a promising meaSure, that should be used in further studies on the cognitive model

of computer programmers.

' The Semantic Ability test, on the other hand, has provided doubtful results.

It is felt that the hypotheses based on that test have not been disproved, and that a

serious study on the validity o f the test must be performed.

Although the study has limitations in several respects, it is felt that it served

to reinforce the need to explore the processes underlying the com puter ̂

programmers abilities to program. If these processes are essential, then the need for

solid, reliable test's of programming abilities is imperative. But if these processes

can be taught, the measure of computer programming ability becomes redundant.

The implications are great antkfar reaching, and the consequences would affect a
■ tjr

great number of domains.

-99-

References

Aaronson» D . and Scarborough, H.S. (1976). Performance theories for
sentence coding: some quantitative evidence. Journal of Experimental Psychology:
Human Perception and Performance. 2,56-70

Adelsori, Beth (1981). Probleming and the development of abstract
categories in programming languages. Memory and rognitinn, 9(4), 427-411 ■

Allen, Robert B. (1982). Cognitive'actors in human interaction with
computers. In Badre, Alberj, and Shneiderman, Ben (Eds.). Directions in
human/computer interaction, (pp. 1-24) Norwood, New Jersey: Ablex Publishing
Corporation. \

Badre, A lbert and Shneiderman, Ben (Eds.) (1,982). Directions in
Hiitpan/Computer Interaction. Norwood, NJ; AblexIPubl. Corp.

Begg, Ian and Paivio, Allan (1969). Concreteness and imagery in sentence
meanîîfts^ u r n a l o f Verbal Learning and Verbal Behavior. &, 821 -827.

Begg, I. Wickelgren, W.A. (1974). Retention functions for syntactic and
lexical versus semantic information in recognition membry. Memory and Cognition,
2, $53-359.

Benbasat, Isak, Dexter, Albert S. and Mâsul % Paul S. (1981, Noyembe r).
An experimental study of the human/computer interface. Communications of the
ACM. 24,752-762. ' ,

Bever, T.G. (1970^ The cognitive basis for linguistic structures. In J.R.
Hayes (Ed.). Cognition and the Development o f language, New York, Wiley.

Bourne, L.E. Jr. (1975) Human Conceptual Behavior^ B ^ to n , Mass.: Allyn
and Baron, 175,213,513.

Bresnan, J. (1981). An approach to universal grammar and the mental
representation of language. Cognition, IÛ, 39-52.

-100-

Briars, Diane J. (3988). An information-processing analysis o f mathematical
ability, 181-204, In Dillon, Ronna R. and Schmeck, Ronald R (1983). Individual ,
Differences in Cognition. Vol 1, New York: Academic Press.

Brooks, R. (1977). Towards a theory of the cognitive processes in computer
programming. International Innrnal of Man- Machine Studies. 9.737-751.

* ' ’ ' .
Bruner, Jerome S., Goodnow, Jacqueline J. and Austin, George A. (1956).

A study of thinking. New York: Wiley & Sons.

Buros, O.K. (1978). The Eight.Mental jtleasuremeat Xsarbaok (Vol.^).
New Jersey:'*Gryphon Press, 1690-1695.

Card. Stuart K.. Moran. Thomas P. and Newell. Allen. (19831. The
Psychology of Human-Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum
Associates, 469 p. ,
' '

Carroll, John B. (1983). Studying individual differences in cognitive abilities:
through and beyond factor analysis, 1-35. In Dillon, Ronna R . and Schmeck, Ronald
R. (1983). Intjijvidual Differences in Cognition. Vol 1. New York: Academic Press.

Cheney, Paul. (1980). Cpgnitive style and student programming ability; an
investigation. AEDS. 285-291. ' .

Clark, H.H. (1969). Linguistic processes in deductive reasoning, from:
Psychological Review, vol.76,387-404. In Johnson-Laird, P.N. (1977), Thinking:
Reading in Cognitive Science. Cambridge: Cambridge University Press.

Cook, Thomas D., Campbell Donald T. (1976). The design and _ conduct
of quasi-experiments and true experiments in field settings. In Dunnette, Marvin D.
(Ed.) Handbook of industrial ahd organizational psychology. New York: John
Wiley and Sons, (pp.223-326).

Cronbach, Lee J. (1970). Essentials of Psychological Testing. New York: ,
H a rp e ra n d l^ w , 417-421.

Dillon, Ronna R. and Schmeck, Ronald R. (1983). Individual Differences ip
Cognition. Vol I. New York: Academic Press.

-1 0 1 -

Di P ersio ,lom , Isbister, Dan and Shneiderman, Ben. (1980). An
experiment using memorization/reconstruction as a measure of prograinmer ability.
Intem atkm al Journal of Man-Machine Studies. 12. 339-354.

Dovle. Lauren B. (1975). Information retrieval and processing. Dis
Angeles, Ca.: Melville Publishing Co.

if
Feigenbaum, Edward A. and Feldman, Julian (Eds;) (1963). Computers and

thought. New York: McGraw-Hill, 257p.

Feingertbaum, Edward A. (1970). Information processing and memory,
(451-468). In Norman, Donald A. Models of Huihan Memory. New York:
Academic press, 537 p. .

' ^
Glass, Arnold Lewis, Holyoak, Keith James and Sant, John l^ester (Eds.)

(1979). Cognition. Reading, Mas^: Addison-Wesley, 391-433.

Garrett, jM. and Fodor, J.‘A..(1968). Psychological thectries and linguistic
constructs. In Dixon, T.R. and Horton, D.L. (Eds.). Verbal Behavior and General
B e b q s^ T h e o ry . Englewood Cliffs-NJ: Frenljce-Hall, 451.

Gear,.William C. (1978). Applications and Algonthms in Computer Science.
Module A. Chicago: Science Research Associates Inc., 179 p.

Gough, P.B. (1965). Grammatical transformations and speed of
understanding. Journal of Verbal I.^arning and Verbal Behavior, i , 11)7-111.

Greeno, Jam es G. (1974). Hobbits and Ores: acquisition of a sequenlial
concept. Cognitive Psychology. 6.270-292.

Gregg, Lee W. (1974). Knowledge and Cognition. New York: John
Wiley and Sons.

Johnson-Laird. P.N'. (1977). TTiinking: Reading in Cognitive Science.
Cambridge: Cambridge University Press.

Johnson-Laird, P.N. (1975). Reasoning with quantifiers. In John.son-I.aird,
P.N. (1977), Thinking: Reading in Cognitive Science. Cambridge: Cambridge
University Press.

-1 0 2 -

Johnson-Laird, P.N. (1977). A theoretical analysis o f insight into a reasoning
task. 150-153. In Johnson-Laird; P.N. (1977). Thinking: Reading in Cognitive
Science. Cambridge: Cambridge University Press.

Howell, Margaret A., Vincent, John W., and Gay, Richard A. (1967).
Testing aptitude for computer programming. Psycholqgica] Reports, 2Ü, 1251-1256.

Kahney, H. (1983). Problem solving by novice programmers. In Psychology
of Computer Use, (pp.121-141). London: Academic Press.

Kintsch, Walter (1977). Memory and Cognition. New York: John Wiley and
Sons., 490 p.

*
K t^ a lin a , John, Stephens, Larry J. and Wileinan, Stanley A. (1983).

Identifying factors influencing computer science aptitude and achievement. AEDS
Jm im l,1 6 (2), 106-112.

Konvalina, John, Wileman, Stanley A. and Stephens, Larry J. (May 1983).
Math proficiency: a key to success for com puter science students. Communications

Kurtz, Barry L (1980) Investigating the relationship between the
development of abstract reasoning and performance in an introductory
programming c l ^ . Communications of the ACM. 110-117.

Larkin, Jill, McDermott, John, Sirnon, Dorothea P. and Simon H erbert A.
(Jun 1980). Expert and novice performance in solving physics problems. Science,
2M, 1335-1342.

Levine, Marvin (1963). M e d ia ti^ processes in humans at the outset of
discrimination learning. Psychological l^view . 20(3), 254-276.

, Levine. Marvin (19751. A Cognitive Theory of Learning: Research of
Hypothesis Testing. Hillsdale, NJ: Erlbaum. 175-260.

Marks, L.E. and Miller, G.A. (1964). The role of semantic and syntactic
constraints in the memorization of English sentences. Journal o f Verbal learning
and Verbal BehavionS, i-5.

-103-

Mayer, Richard E., Dyck, Jennifer L. and Vilberg, William (1986, Jyl).
Learning to program and learning to think; W hat’s the connection?
Communications of the ACM. 29f7). 6Q5-61Q.

McNamara, W.J. and Hughes, J.L. (1961). A review of research on the
selection of computer programmers. Personnel Psychology, 11(1), 39-51.

Newell, Allen and Simon, H erbert A. (1972). Human Problem Solving.
Englewood Cliffs, New Jersey: Prentice-Hall.

, Norman; Donald A. (1970). Models o f Human Memory. New York:
Academic Press, 537p.

Paivio, Allan (1^71). Imagery and Verbal Processes. New York: Holt,
Rinehart and Winston, 596 p.

Pask, G. (1976). Styles and strategies of learning. British Journal of
Educational Psychology, 1 4 128-148.

Perfetti, Charles A. (1983). Individual differences in verbal processes,65-104.
In Dillon, Ronna R. and Schmeck, Ronald R. (1983). Individual Differences in
Cognition. Vol 1. New York: Academic Press.

Petersen, Charles G. and Howe, Trevor G. (1979). Predicting academic
success in introduction to computers. AEDS. 183-191.

Reed, Stephen K., Ernst, George W., and Banerji, Ranan. (1974). The role
of analogy in transfer between similar problem states. Cognitive Psychology, 4
436-450.

Rowe. Helga A.H. (1985). Problem Solving and Intelligence. Hillsdale NJ:
Lawrence Erlbaum, 392 p.

. •
Sachs, J. (1967). Recognition memory for syntactic and semanlic aspects of

connected discourse. Perception and Psychophysics. 2,437-442.

Sengler, H.E. (1983). A model of the understanding o f a program and its
impact on the design o f the programming language Grade. In Psychology of
computer use 191-106). London: Academic Press.

-104-

Shneiderman, B (1977). Measuring computer program quality and
compréhension. International Journal of Man-Machine Studies. 2,465-478.

Shneiderman, Ben. (1980). Software Psychology- Human Factors in i
p m ip u te r and Information Systems. Cambridge, Mass.: W inthrop Publishers, Im U

Shneiderman, Ben and Mayer, Richard (1979). Syntactit^Semantic
interactions in programmer behavior: a model and experimental results.
International Journal of Computer and Information Sciences. 8(31 219-238.

Slobin, D.L (1966). Grammatical transformations and sentence ̂
comprehension in childhood and adulthood, .journal o f Verbal learn ing and Verbal-
Behavior. 5.219-227. • '

Soloway, Elliot <1986, Sep). Learning to program = learning to construct
mechanisms and explanations. Communications o f thé ACM. 22(9), 850-858.

.. Soloway, Elliot, Ehrlich, Kate, Bonal, Jeffrey, and Greenspan, Judith. (1982).
What do novices know about programming? in Badre, A lbert and Shneirderrhan,
B. (Eds.), Directions in Human/Computer Interaction. (27-54). Norwood, New
Jersey: Ablex Publishing Corporation.

' :
Thomas, John C. Jr., (1974). An analysis of behavior in the Hobbits-Orcs

problem. Cognitive Psychology. 6,257-269.

Van der Veer, G errit C„ and van de Wolde, Jan E. (1983). Individual
differences and aspects of control ffow notations. In Psychology o f computer use.
(107-120). London: Academic Press.

Vassiliou, Yannis (Ed.) <1984). Human FactorA nd Interactive Computer
Systems. Norwood, NJ: Ablex Publ. Corp. 287 p. ' ^

Weinberg, G.M. (1971). The Psychology of Computer Programming. New
York: Van Nostrand Rheinhold.

Whitfield, J.W. (1978). An experiment in problem solving. Quarterly
Journal of Expérimental,Psychology, â, i7 2 ,184-97.

-105-

Wickens, T.D., and MiHward, R.B. (1971), Attribute elimination strategies
for concept identification with practiced subjects. Journal of Mathematical
Psychology, & 453-480.

I

Wolfe Jack M. (Apr. 1969). Testing for programming aptitude.
Datamation. 4. 67-72.

-106-

Appendix A

Annex 1

Semantic Ability -- Xest-sentence Sets

(ANSC-C) .
1. a. The adoitional fact settled a major disagreement-

b. The arbitrary regulation provoked a civil complaint*
c. The remaining duty involved a standard payment
d. The impartial source identified a hidden fault
e. The national election indicated a secure future

T: Thé arbitrary regulation provoked a civil grievance
I-

(CNSC-I)
2. a. The wonderful gift preceded an exciting kiss*

b. The raging fire gutted a condemned building
c. TTte young singer carre^ed a pretty girl
d. Tbe enthusiastic painter sketched an ancient temple
e. TTie polite child presented an aromatic bouquet

T; The wonderful gift preceded an exciting kiss

(F C) ,
3. a. The incredible machine produced a screeching noise

, b. TTre playful kittens shredded a new slipper
c. TTie dying man blessed a mournful daughter
d. The thunderous explosion shook a fragile hut*
e. The ferocious dog devoured, a meaty bone

T: The thunderous explosion shook a fragile hut

(CSC-C)
4. a. The cheerful artist entertained a lonely damsel*

b. The stubborn proprietor opened an expensive restaurant
c. TTie poor musician played a rusty trum pet
d The greedy attendant devoured a soft pudding
e. The old professor occupied a comfortable seat

T: The cheerful damsel entertained a lonely artist

-107- ,

(F-A)
5. a. The revised procedure facilitated an expected outcome

b. The latest evidence suggested an alternative version
c. The m inor change modified a basic measure
d. The final decision nullified a,prior commitment
e. The current effort coiicluded a productive program*

T: The current effort concluded a productive program

(ANSC-C)
6. a. The dull description constituted a boring chapter*

b. The advanced technology obtained a respectable reputation
c. The main assembly noticed an unnatural pause
dv The solemn creed encouraged an excessive devotion
e. The awkward incident prevented a possible agreement

T : T he dull account constituted a boring chapter

(ANSC-I)
7. a. The limited text explained a complicated formula

b. The plausible, address answered a contradictory reply*
c. The mediocre demonstration inspired a select few
d. The annual report recommended a complete renovation
e. The tentative reason supplied an adequate explanation

T: The plausible address answered a contradictory reply

(ASC-C)
8. a. The entire episode prefaced a foreign affair*

b. The strange mistake altered an established conclusion
c. The recent speculation provided an acceptable solution
d. The careful study resolved an open question
e. The constant hope endured an attempted extinction

T: The entire affair prefaced a foreign episode

(F-A)
9. a. The indecisive argument depressed a waiting group

b. The analytic review maintained an objective position
c. The early civilization originated a feudal system*
d. The habitual behavior acquired a noble quality
e. The popular view raised a considerable discrepancy

T: The early civilization originated a feudal system

-108-

(CNSCCX
10. a. The rich physician carried a bfeck umbrella

b. ITie pompous monarch married a triumphant queen* '
d. The skillful doctor toothed a flaming sunburn
d. The sharp arrow pierced a frantic bird
e. The rickety stagecoach crossed a winding river

T: "the pompous sovereign married a triumphant queen '

(F - A) \ . ,

11. a. Tlieinital attempt provoked a general’tmthusiasm’
b. The shameful event induced a subtle change

 ̂ c. The incredible exhilaration created a considerable incentive*
d̂. The sovereign authority rejected a civil exchange
e. The fêrceful declaration, inspired a renewed interest

T: The unnatural exhilaration created a formidable incentive

<p-c, ■ ■ - : . . ^
12. à. The marching company attracted a noisy crowd

b. The thirsty traveler noticed a remote inn
c. The exhausted boxer administered a decisive blow* ' .
d. The elegant gentleman cut a fine figure
e. The shining water reflected an early sunlight

T; The exhausted boxer administered a decisive blow ^

(CNSC-I)
13. a. The strong policeman ousted a seedy beggar

b. The loving mother served # d excellent family*
c. The impulsive builder decorated a stylish cottage
d. The active volcano destroyed a majestic forest
e. The aggressive settler felled an immense tree

T: The loving m other served and excellent family

(F-C)
14.. a. The tired passenger lifted a heavy suitcase

b. The small band played a colorful tune
, c. The commanding beauty ignored an elegant dhndy

d -T h e tall girl wore a green dress*
e. The brutal policemen arrested a drunk sailor

T: The tall girl wore a green dress

-109-

(F-A) '
15. a. The foreign custom elicited a strained conmct

b. The uncertain eventuality unnerved a selected few
c. Thelegitimateconcernsindicatedarespe^ctable intellect '
d. The impartial judgement avoided a disloyal solution*
e. The upstanding citizens eliminated a troublesome alternative

T: The impartial judgement avoided a disloyal solution

(ANSC-I),
16. a. TTie absolute faith aroused an enduring interest* ■

b. The previous calculation contributed a significant result
c. Tlie extensive investigation furnished a reasonable criticism
d. The vague notion survived a renewed concern
e. The original location fulfilled a customary requirement

T: The absolute faith aroused an enduring interest

(Asc-n
17. a. The passive majority defeated a listless opposition*

b. The unfair attitude destroyed a promising idea
c. The free country organized a private venture
d. The actual quotation lacked a rational foundation
e. The unpleasant atmosphère replaced a dismal silence

T: The passive majority defeated a listless opposition

(F-C)
18. a. The arrogant gentleman smoked a rancid cigar

b. The buoyant steam er sailed a tossing ocean
c. The carefree student climbed a high tower
d. The,dynamic lecturer captivated an energetic committee
e. The noisy priest amused a lively infant*

T: The noisy priest amused a lively infant

(CSC-C) .
19. a. The hollow tomb housed'a decaying corp.se

b. The rolling hillside surrounded a muddy valley*
c. The reckless baron flicked a shining coin
d. The caystic prosecutor accused a frightened prisoner
e. The rampaging caravan trampled an orderly caravan

T: The rolling valley surrounded a muddy hillside

-110-

/

(C SC !) '
20. a. The fat woman polished a red apple ,

b. The offensive performer cheered a zealous speaker*
c. The crippled juggler sported a gaudy costume
d. The fidgety wife folded a crinkled newspaper

^ e. The alert fisherman swatted a buzzing mosquito
T; 'The offensive performer cheered a zealous speaker .

(CNSC-C)
21. a. The vicious hound chased a wild animal*

b. The. tortured slave uttered a deafening shriek
c. The destructive army pillaged a prosperous village
d. The colorful snake crushed a screaming beast
e. The talkative admiral attended a costume party

'r: The vicious dog chased a wild animal

(F'C) '
.22, a. The friendly banker purchased a blue automobile

Ix 'The savage storm flattened a-beautiful flower !
c. The bright headlight illumined a gloomy street-
d. The falling rock killed a sinful captive
e. The muscular blacksmith lifted a bulky hammer*

T; The miisculanblacksmith lifted a bulky hammer

(A ScJc)
23. a. The plain alteration introduced an essential balance

b. The mistaken assumption preserved a.naive rationale *
c. The thrifty business registered an average profit
d. The preliminary hypothesis predicted an unstable relationship
e. The available literature cited a useful article

T: The mistaken rationale preserved a naive assumption

(CSCd) *
24. a. The spirited leader slapped a mournful hostage*

b. The white foam topped a restless sea
c. The ja ^ e d stone sh a tte rp t^ clear window
d. The brutal officer snapped an abrupt salute
e. The delicate maiden watched a golden sunset

'F; The spirited leader slapped a mournful hostage

-1 1 1 -

(ASC-I)
25, a. The former custom abused a moral principle ^

b. The introductory statement promised a logicaAreatmcnb
c. The rural community ensured a deprived childhood
d. The last crisis created a real necessity
e. The close supervision guaranteed a strict obedience

T; The introductory statement promised a logical treatment

Codes for Test Sets

CNSC-C: Concrete, Non-semantic Change, Concrete. ' '
CSC-C: Concrete, Semantic Change, Changed
CNSC-T. Concrete, Non-semantic Change, Identical
CSC-I: Concrete, Semantic Change, Identical
ANSC-I: Abstract, Non-semantic Change, Identical'
ASC-I; Abstract, Semantic phange. Identical
ASC-C; Abstract, Semantic Change, Changed * ■ .
ANSC-C: Abstract, Non-semantic.Change, Changed
F-C: Filler, Concrete
F-A: Filler, Abstract

-112-

Annex 2

SEMANTIC ABILITY TEST-AN SW ER SHEET.

-
1. IdenlicaE ■ '

Changed-Same Meani ng
Changed-Different Meaning

2. IdeHical
Changed-Same Meaning
Changfed-Different Meaning

3. • Identical
Changed-Same Meani#§^
Changed-Different Meaning

4. Identical
Changed-Same Meaning

^ Changed-Different Meaning

5. Identical
Changed-Same Meaning
Chlïnged-Different Meaning

(j. Identical
, Changed-Same Meaning

ChaAged-Different Meaning

\
/

-113-

1. Identical
Change&Same Meaning
Changed-Different Meaning

8. Identical •
Changed-Same Meaning
Changed-Different Meaning

9. Identical
Changed-Same Meaning
Changed-Different Meaning

t
10. Identical

Changed-Same Meaning
Changed-Different Meaning

11. Identical
Chang^jJ-Same Meaning
Changed-Different Meaning

12. id e n tic a l '
Qhanged-Saihe Meaning
Cranged-Different Meaning

4

13. Identical
Changed-Same Meaning

■' Changed-Different Meaning

,14. Identical
Changed-Same Meaning
Changed-Different Meaning

- m - ' V , V

' ' ' - ■ V '

15. Identical
Changed-Same Meaning
Changed-Different Meaning

16. Identical
Changed-Same Meaning .
Changed-Different Meaning

17. Identical
Changed-Same. Meaning
Changed-Different Meaning

18. Identical
Changed-Same Meaning
Changed-Different Meaning

16. ’ Identical
Changed-Same Meaning
Changed-Different Meaning

20. Identical
Changed-Same Meaning
Changed-Different Meaning

21. Identical
Changed-Same Meaning
Changed-Different Meaning

22. Identical
Changed-Same Meaning
Changed-Different Meaning

23. Identical '
Changed-Same Meaning
Changed-DifferentM eaning

-115-

24, Identical
Changed-Same Meaning
Changed-Different Meaning

25. Identical
Changed-Same Meaning
Changed-Different Meaning

-1 1 6 -

Appendix B ,

M aîerials-M aster Mind Game

Figure 3 shows the organisation of the de-coding board.

Key *
H t i l e s

O O
O O

O o
O «

O O
o O

p O
o O
o o
O O
O €>
o o
O O
o a
O o
o ©

o o o cy
o o o o
o o o o .
0 . 0 D O

o o o o
o o o o
o o o o

o o o o
D O D O

Shield

Code I'cg !lolc%

Start

Figure 3. Master Mind D e-coding Board.

-117*

Appendix C

M aterlals-Q uestionnaire

.1. What is your gender?
a)Male
b)Feinale

2. What is your age?
a)19 or younger ' ,
b)20to24
c)2Sto29
d)30 to34
e)35 or older

3. Rate your high school performance using the following,
categories;
a)A (86-100%)
b)B (76-85%)
c)C(6& 75%) .
d)D (65% or below).

4. J ^ a t is your current university level?-
a)]First year
1))Secônd year
c)Third year .
d)Honors year
e)G raduate School
f)Gfaduated
g)No Degree (give education level)___

118-

5. What is your degree major? (please write down major beside
main area)

 ̂ a)A rts________2_______________________ :________ _
bjScience __________________________________•
cjCojjjimerce _____________ ;_____________ _

6. If you are still in university, rate your current academic
performance using the following categories;
a)A (8 6 -1 0 0 %)

b)B (76-85%)
c)C (66-75%) ,
d)D (65% or below) •

7. Have you ever used a computer?
a) Yes
b)No

*If you have answered yes to question 7, please go on to question
8. If you have answered no, please go to question 14.

8. What type of experience do you have?
a)user only
b)programming as.an accessory to other tasks
c)programming as a major task and/or as a job

What type of computer do you usually use?
a)a mainframe computer (such as VAX or CYBER)
b)a mini or microcomputer • -
c)both types

10. How much prior education have you had in computer
programming?

a)None
b)l to 2 courses
c)3 to 5 courses
d)degree in computer science

-119-

11. How many programming language can you use?
. a)None

b)One
, c)Two

d)Three or more

12. Please name the programming language(s) you know and can use:

13. How much work experience have you had that involved
programming aspects of computers?
a)None
b)A few months
c)One year
d)Two to three years
e)Four years or more

14. How many years of high school math have you had?
a)0
b) l

. c)2

e)4 or more

15. How many math courses have you had at the college or
university level?

a)0

b)l
c)2
d)3
e)4 o r more

•120-

16. Have you ever played the game of Master Mind before?
a)Yes
b)No

17. What is your mother tongue? .
a)English
b)French
c)Other (Please Specify)

(Adapted from Konvaliiia et al., 1983)

-1 2 1 -
&

Appendix D

Table D-1 -
ANOVA of Rows Performance on Master Mint! for General Population and
Experienced Programmers

Source df ss Mean Square F

G roup 1 ' 44.49 44.49 ' 9,42**

Error ■74 344.65 . 4.72

Trials 3 .63 .21 . .06

Trials x
Group ■ 3 7.98 165 . .82

Error ■ 219 713.76 326.

■* .05, ,01, .*** .001 •

-1 2 2 -

Table D-2 ,
ANOVA of Time Performance on Master Mind for General Population and
Experienced Programmers

Source df SS Mean Square F

Group ■ 1

Error 73

Trials 3

1923.2

155491.3

1923.2

2130.0

8526.76 2842Z)

.9

2.53"

Trials x
Group

Error

■ 3

219

8847.31

245602.86

2949.10

1121.47

2.63*

' .05, »» ,01,**‘ .001

-̂ 4

-12.3-

rableD -3
ANOVA of Overall Performance on Master Mind for Coif^rol and Nin ico
Programmers

Source df SS Mean Square E

Group 1 2143.13 2143.13 1548.93'**

Error 33 44.27 1.38

Experience x
Performance 1 .67 .67 1.38

Error 33 15.49 .48

*.05, .001 '

Table D-4 , ,
ANOVA of Overall Performance on Semantic Ability Test for ('ontrol and Novice
Programmers

Source ■ df SS Mean Square 1

Grottp 1 3750.37 3750.37 917.86*"

Error 33 130.75 . 4.09

Experience x
Performance 1 4.25 4.25 2.27*

■Error 33 59.84 1.X7

* .05, »* .01, .001

124-

