

Title of Thesis - Titre de ta these

- Computers and young chilorien
\qquad
University - Universite
Qt: Marys University, Halifax, Nova Scotia Canada. :
Degree for which thesis was presented - Grade pour lequel cett? thise fut prosentee
Master of Arts in Education:
Year this negree conterred - Anriea dobtentiqn de cu prade
$.1984^{4}$
Name pl Supervisor - Nom du directeur de these
\qquad Professor Glane a orveatt.

Permission is heraby ganted to the mational bemary of CNMADA to marbhm this thesis and to lend or stll copies of the film
The auther reserves olver publication rights and neither the thesta ror mexamive exmacts from it may be pinted or otherwion reproticed without the enuthors minten permisston
 OUE NATIONALE DU CANAUA de microhliner EEiA HBSA at de préter oy de vendre des oxempltires du him
 ni de lon'js extratis de celle-ci ne dowent etre impiness ou autromentreproduts sans l'automshond bothe de laméur.

'Computerg and Young children' is a practical approach to introducing childreth of $5-9$ years to computers. It is "divided into two partisn. Part $i{ }^{\prime}$ Steps Towards thercomputer", is a cuririculumi unift to introduce children to a range of 'farst Computer ekills, experiences and moncepts, inith the view that b familiarization with these actiyitieg will encoumage students to approach eqmputers and technology with confidencer It seeks to develop an interiest and excitement about computers" These stidils and concepts are designed to fit in with the normal work in the classmoom:

Part 2, "Reginning Logo", is designed to teach the students to feel comfortable with a compiter, and to feel in control of what, the computer does. The students learn the computer language Logo arid.learn to develop problem solving gki:ll.

Throughout the project emphasia is piaced on concimete experienceg, and the fhildren are encouraged'to learn through exploration, discovery, and discussion. Creativity and imagination are also enconfaged. This project does not require the students to have any previous knowledge of computers. an factit is aimed at the student who has never had any fontact witti computers or the technology involyed.

10. Mora Turtle Commands: 1.33
11. New Positions far the Turtle 136
12. Bugs and More Bugs 138
13: Color Logo 143
14. Some Loge Shofteuts 146
15. circles, curves, Variables 152.

动

INTRODUCTION.

AIM.
To introduce soling children to a range of concepts, skills, and experiences as a basis for future competence and success in computer womb; arid to make them aware of the existence of computers in their environment.

RATIONAL .
"Getting to know a domain of knowledge figs much lite coming into. a new community of people. Sometimes one is initially overwhelmed by a bewildering array of undifferentiated faces. (1)
\%
Entering the domain of computers is certainly like entering a new and strange community, a: community filled with many powerful ideas.

Early experience with some of the bait concepts and activities in this field is a good way of getting to know it's, powerful ideas. and ensuring that one is, pot overwhelmed. surf is the reason for this curriculum project.

Computers are one of the fastest grouping educational. resource x Pressures from society and from within the teaching;" community mean that Computer Aided instruction and computer literacy are increasingly becoming essential element e in the curriculum. Most of our students will encounter the computer at some time or other before. they leave school. This may be through
a computar science course, computer literacy, woto processing, or simply using the compiber as an aid to learning. "Teacter" can help their stupents make the greaterst possible progess towards the computér wor !t ${ }^{\prime}$. Introduring computers; and computer related concepts and skills to children in the junior classess is one way of aiding this process. Young children are quife capable of matering many of the basic. computer concepts, given adequate concrete experience. Children in the early elementary school years learn mppecially well from working with eqnerete objects, materials, and phenomena, Giving a dhild a fhance to manipulate, act, touch, see and feel things helps "him to'acquire an undersfanding of quite complex concepts and relationstips. Fiaget and Bruner both encourage ? discovery and other intuitive approaches to tearhing and learning. (2). In these approaches children acquire an understanding of concepts and principles through personal discavery. These methods have special value in teaching young children ment of the concepts and skills prerequisite to computer competence. It is for this reason that: this curriculcm unit will begin, with small, simple skills emphasising concrete learning and hands on' experitence. Children who get some early experience of computers in this way should be aurer that it is nejther too difficult nor out of reach, Familiarity witti the activities in this unit uisil remove invisible Barrierg'and encourage in students an interest' and define to learn more. This approach enables students to 1 eann these important skills, concepts and techitiques at their own pace and in an erivironment. free from the pressures they may

encounter later on.

This project preqents many skills useful ip everyday life as well as in the rlaseroom or in computer.mork. Guch skilla involve thinking out actions in sequence; problem golving, mating clear decisioms, organizing information, as well as coping witt digital time, teleptione and calculator keypads, and filling in forms for computer input.

This unit mas designed to fit in easily with the everyday aftivities of the ilfassroom; and perhars adding a iftle spice and excitement to them, and creating interest and a defore ta find out more it is a simple approach to encouraging competence and confidence in the students response to the computer revolution.

The topitis explored include : Sorting and Ordering . Decision Mäking and Floucharts; Dial and Digital Time; Telephone and Calculator Keypads; Visual Display; Graphicti The Keyboard; Computer Input; Processing arid Computer Outputs A Computer Model; and a look at. The World of Computers.

CONTEXT

This unit is intended to be incorporated into the everuday activities of the elementary, classmomi, and to be integrated into many subject areas; far example, art, mettiematicsy language, environmental studies! arid othens. The lifit is presented in such a way as to make it easf for a teacher to gelect an appropriate mection from the unit and. following the
quidelines in that Eection, to introdute the content to the studentes, while integrating it'into the megular. work'in 'that subject area. It ie almo intended.fo be spread over at least one 5chool yeiar.

- PERFORMANCE CRITERIA.

Mans of: fhe skilis taught in this unit will require much practice and repetition before the students become confident and comfortable with them. Gthers will not require mueh effart on the part of either student on teacher; as they may already be part of the child ex experifonce: The tearher should evaluate the childs's progress in terms of improved competence and understanding of the concepts over a long period.of time. It is hoped that the student will enjoy. these activities and gradually, through growing ease and familiarity, become aware that this:is an area of work that is funn enjoyable, and interesting, and that it is an area where he/she can succeed. It is elso hoped thiat students will show interest to learn more and will be prepared in knouledge; skills mad attitude to begin meali compuiter work Fuccessfully*

PROŨIEION FOR APTITUDE DIFFERENCES.
The activities offer flexibility in that they can easily be extended to offer a, greater challenge to the very bright

```
student* Tbere iff frope for individual and group work to expand upon the recommended content and activities. For the slow learner, the unit. can be modified in guch a way as to enable this student to his/ther oun pace and so achieve an adequate level mompenence without stress or anxiety. As most of the activities \(\mathrm{an}_{\text {, fractical, withemphasis on concrete }}\) experiences, it should be possible for all students to achieve an acceptable level of competence.
```


ENTRY CHARACTERISTICS.

This unit on first computer stills in intended for children of five years and upiards in the Elementary school, who have not bet begun working on a computer . It is suitable for students pt a, wide range of abilities interests and talents. The most impontant prerequisite is an eagerness to explore and dimcover, and if these attitudes are lacking initially, it is hoped that they will be cultivafed ar the unit progresses. Mant of the äctivities require a knowledge of the alphabet and the concept. of number - As this uint can easily be incorporated into regular learning situstionw, activities requiring alphemetical, numerical and uritten skills can be introduced when the student Has mastered these skillsm More complex skills are, required for
 sections should not be taught until the student has the necessary background. Some of the work with flawcharutw may prove

```
to be difficult for. mome chilldren and shouldonot be introduced
until the teacherr thinks the child is meady.. The winit is such
thiat sectionm, can easily be passed pover untili a time utien them
student is in"a position to tagkle them succesgfully.
```

INSTRUCTION STRATEGIES.
The teaching approach miqst appropriate to this unjt is the apprioach that will encourage discoveryy exploration and discussion. Great emphasis is placed on the use of, concretefred materials, and the mode of instruttion should ericourage ás much piractical work as possible. It is necessary that sturents have as much 'hands on' experience as possible. A flexible teaching approach will.greatly entiance-this unit as many of the activities can be extended or sffortened, depending on the students interests and abilities. If the teacher on कitudent Gan contribute extra idgas or activities melevant to the topicy then these too could be explored. This unit rifferg gópe for group work, interaction and shairing among sthdentis (and teacher), so the type of instruction should facilitate and encourage this: students should be made feelthat they are actively involved in the learning process, and thmough their acheivements experience a sense of molf-ubrith and guccess. The overall atmosphere should be positive and happy, encouraging the students to learn and grou.

SCHEDULE.

Before the unit begínsthe teafher must ensure that. the studentis have grasped the akills and knowledge prerequisite to the activities. It is eleo wise at. this time to begin collécting the materials and equipment that will be required in this unit. At this stage parent fupport. should be elicited as parerits might Prove to bé a gpod source of materials, e.g* toppumiters, calcilators, telephores, clocksy etć*, whether, on loan or as a donation. Also the pofrents ran be invplved in fostening a positive end supportive attitude in theim childien for the unit.

The teactier will be the judge as to the best time tombegin work on this unft/ The knowledge that the teacher has of the sa abilities, intemests; ant progress of/the children.in the chass wi 11 determine tife depth and extent to which the urit is explored, and the pace at which the students progress through the unit:

Many oppontunities will arise utere reference to, and

1. x Mevision of, materialis in the unit ban be taten advantage of It is through constarit practice of ottie shills arid"concopts tyat the Ftudents will become competent and okillfulw In this way tap, thepunte will not be seen as a set of activities and stills * isplated from the other work in the elassroam, but rather as a riommal and ongoing pent of the curriculum. The studertas stiould then be prepared to move easily and without anxiety into a program to introduce them to work on a real , "omputer.

LOGISTICS.

Equipment:

A collection of elocks and watches; dial, digital, and 24 hour:
Telephones: one with a dial, one witti a keypad.
Calculators: of varied sizes. - if possible, a suitable number -would be one betueen every two sturdents.

Typewizterg - to teach the keyboardy fyping small words and messages, etc. Mas be either. mecharical or electric. They need rot be modern as old-faghioned ones are also useful. A computer and. a yidea display terminal - needed for keyborm fracticer examining both text and graphic output displays. Most of'the equipment, except the computer and display terminal could perthapg be borrowed from friendg, parents; or pertiaps the school secretary.

Materialm:
An adequate supply of materials for sorting and classifining according to colour, shape, size and height,

Number lines, number stairs, other materials. for number work. A large. elasshoom alphapet and other materials suitable for alphlabetical order wort:

Pictorial 5 tories thiat Can be armanged in order bif sequence of events.

A supplu of timetables showing the times according to the 24 hour clock

Pictures of different keypads, Engn automatic bank, tellers.
Pegboards and elastit bands.

Squared papersof different sizem. Examples of computer printout, text and graptic.

Examples of bar kodes.
Pictures of, or if possible, real examples of computer input and output devices, e.g: disks, disk drives: tape recorder, Printer:

Piotures and "examples of omputers in the workplate, in banks etc. ${ }^{\circ}$ and pirtures of peopletusing them...

FACILITIES.

The students ragular classroom is the most suitable. The unit should be supplemented with some outings to see computers in the local envipronment.
\therefore

PERGONNEL.
Thís unit could be taught by any Elementary schod teacher "experienced in working with goung childmen and having. an understanding of the cognitive levels of this age group. It is - recommended that the teacher be the normal clatsroom teacher of the children: The teacher should have an interest. in computers and an interest in encouraging children to beprepared for formal computer work. It would be an advantage if the tefoher were computer literate, but a deficiency in this area rould' easily be compensated for by good preparation and a wijlingness to learn and explore with the children. The teacher should be
well organized and prepared for the unit and approath. it with a sense of enthusiasm and excitement.

1
TIME:
The length of time required for this unit will vary depending on. the age and ability of the class. However it is recommended thet the unit be spread over at least greacedemic year in order to give the children adequate"time to gain practice and familiarity with the skilis and concepts. The amount of time per day or week devoted to the activitties will depend on the depth to whicti the: unit. is being explored, the interest the sthdents shou in it, and hou it relateg to other classroom, activities at that timen It. is recommended that students be given gufficient time to explore, discuss and compare their. jdeas and interests uith fetlou sthdentis and the tearher. The tearher metst keep in mind thet. opportunities for revision of, skills and concepts should be availed of. Adequate teactrer.preparation time is alan an important factór for the success of the project:

PROGRAM EVALUATION.

a) Effectivenessis

The program could be regarded as effective if

- the students are interested in the artivities and enjoy themi
- over a period of time all students understand the concepts Presented and mester the skills they have been taught;

```
    *
    the mtudents can approach computer upmit eager IG and
confidently; . . . .
- the.students arre aumre of computers im. their envimonmenit and
seek to. learn mome for themselves*
```


b) Acceptability.

Thie cipurse could be regarded as acceptable if:
" the teacher involved believed that it was a vabuable learming experience for the stidents;

- thé students developed positivéattitudes towards computers and computer-related activities;
- the parents, teacher and principal. felt that it was a worthwhile unit and that it provided a stepping stone to many important learning situations.

IMPLEMENTATION.

The classroom teacher is the main factor in the imlementation of this curriculum unit. This teacher would have to. be eager amd interested in implementing ity and see its potentidel value to the students. Parents' ard principal's support would alsa be an advantage. This, would pertraps be forthcoming in view of the demand for computer literaig and the growth of computers in fduication.

REFERENCES:

(1) Papert 5, Mindetorms: Children, Computers and Powerful

I deas.
(Basic Books Inc. 1980) P. 137. '
(2) Gage and Berliner "'Educationai Psychology'. (Houghtan Mifflin (Co:/Boston, 177B).
13.

1. SORTING AND ORDERING.

Information for a computer must always be accurate and must be entered in logical order. To develop competence in arranging material in order or sequence, activities fo foster: understanding and skills an spiting fotderjng, making lists, and working in alphabetical order become important. Sorting is an important mental activity which consists of observing ag common attribute of certain members in a collection and in grouping together those objects which have the common attribute. Young children usually begin to sort according to colour and this can readily be extended to include other physical attributes Ordering is a thinking strategy which develops in children along with the ability to'sort and classify In ordering, the child first has to find a common characteristic and then order the objects in the set according to the magnitude of that characteristic in each object.

1
The following activities begin with objects and people in \because the child d^{2} s mediate environment and progress to levels uteri understanding and knowledge of number' (ala) and letters of the al haber are necessary.

1. . Sorting and Ordering.
(a) Vocabulary
behind beside
big. bigger biggest
short shorter shortest
long longer longest
small smaller smallest
tall taller tallest.

- the same as
colour words
Develop the vacabulary by using familiar objects and take advantage of sets that crop up in the classroom.
\therefore (b)gort and cilassify Eollections of assorted objects acfording to colour, size, length, shape. Emphasise positional vocabilary; colour words etc, acrording to the maturity of the group.
(c) Ordering callections of objects according to lengtt, size, weight and crapacity: Activities could take the form'of -
i) copying patterns of shapes in a particular order.
ii) arranging objects'in order of size \rightarrow from largest to smallest, from smallest to largest.
iiit arranging collections in ascending or descending arder of size, etc.
iv) : grading childrens fopthength, lengths of string, wol, rope: *
v) arranging children in class in order of heighty from smallest to tallest, and viceversa.
Z. Ordering of Numbers. Vocabulary:
before aftermore than i. less than:-a) Activities to. teach that numbers follow each other insequence. . Thapigh experimenting with sets of objects they willlearn that one object added to the set will give the next numberon the number 1 in e. By usirig the number line and the number"ladder they will learn that each number in the sequence is onemore than the preceding number and one less than the nextnumber. For example:

Three is one GREATER THAN, two and one LESS THAN four. (b) Use of materials and activities (eq. Unific cubes) to build number lines and stairs to reinforce the concept of the number of. units represented behind the symbols. Making collections of objects, counting them and assigning the correct numeral. For example:

Various activities to encourage counting in sequence - number of boys and girls in the class, number of fingers on each hand.

3. Making Ordered Lists.
a) Children have to put many sets of things in spacial order.

For example, in getting ready for ofohool. putting ori a teestiort must. come before putting on a coat. Coristructing a ist of the best order for sumt everyday activities is a valuable exercigen.婪
\therefore b) Allow children t work out a set of instructions to perform a simple artivityr eng. painting a picturen They hucut make decisions about the sequence of these instructions. These. -instrictions are given onéat a time to a pupil who will carrut them out. Any gaps or faults in the pattern of instructions uill ber evideint.
(4) Making complete $x i s t s$ and putting titien in titie right or der for a mirte variety of familiar activities.
a) Telling a stors by putting events in the correct order: \therefore (i) Tris is best begun by using picturee, making decisions about the right sequence and them telling the story.
(ii) Allow children to cut pictures from magazines and arrange them in order as they compose a storyn (iv) Have ${ }^{\text {the chil dren create a mural: shoming all the important }}$ things they Ean do during the dig. Beceuse the.pictures must be in the order in which events ociur, the first pirture bhould probably Ghow a child getting up in the morning. (iv) Sentences not armanged in or der must be read and then put in sequencex: The pupil then reads the complete stomy. Bedtime.

Paul goes to slepen

```
Paul puts on his pyjamas.
It is time for. bed.
He gets into bed.
Mummy reads him a story. *
*
```

4. The Alphabet.

The following activities require a knowledge of all the letters of the alphabet. A large wallchart showing ali the letters in alphabetical order is also necessary.
a) Word Collections.

As the children encounter new or difficult. words they can be grouped açording to the initial letter and displayed ori ward charts around the room.
b) Names in Alphabetical Order.

This:activity should begin with familiar namesy for example a list of the family members in alphabetical ofder, friends nayes, class list, teacherg names, etcn Many of these lists tan be compiled according to first names or famjly names.
c) Examination of published materials whose content is arranged alphabeticalls, e.g. telephorie book or dictionary.

Discusion of questions fuch as" "Why ar"e they arranged in this way?". "How does this help us?".
d) Alphabet Games.

For those ghildmen who have mastered the previous activities, the following games will further reinforce the idea of alphabetical order.
(i) Counting along the all phemet- which is the tenth letter?
(ii) Arimal alphabets - \dot{A} for alligator, B for bull, C for cat...." Many games could be constructed in this way using * diferent groups of objects - objects at home, food and drink. These could be arranged into a pictorial or illustrated alphabet.
(iiii). Alphabetical anagrams. This game involves. a student selecting. a word well known to the others and rearinanging the letters in alphabetical order-- E. \boldsymbol{g}^{\prime} abll or aephlinpt, and presenting it in.this form for the others to solve.
(iv) i J packed my suitcase" game.

Each student afds an item to the list of objects. Variations:

- alphabetical. list of abjects;
- or each object to have an adjective (also alphabetical if you want : a blue bag, a crimson coat, a dirty dog).
$\because I$ went to the Zoo and I gaw.
"I went to a restacirant and I, ate....n
"I went to the store and I bouight.....
Activities like these are suitable for most levels and are good for vocabulary as well as for ordering alphabetically.

2. \quad DECISION MAKING and FLOWCHARTS.

Abstract

This chapter is an extension of the sorting and or dering activities and concepts of the previous chapter, which are: -fundamental steps in the declsion mating process. As the computer is a machine, all the information and instructions to be given must be arranged in advance'in completely accurate and unambiguous order. Flowctiarts are a good way for children to. illustrate in a glear and specific uay the ofder of instructions and decisions for the computer.


```
a) A simple beginning would be to.present the student with a set
of pictures depicting actions for a particular activity e.g.
'getting'ready for school', and requiring him/her to put them in
the corrert sequence.. See. Activity.1.
\therefore.Vocabulary: "START THEN STOP
%
B) Simplest Flowcharts.
    - A Flouchart alwass begins with a standard word, such as
    START, or ENTER.
    -There must be a fignal to:end, such. ass STOP, or EXITy or END.
    - These signal'u@rds are wrịten inside a horjzontal shaped
jracetrack' outline. (START) STOP
    - From the centre of 'the START qutline an arrow points
    downumeds to the first instruction, in a rettengular outline.
    - In the simplest flowcharts the pattern is very simple,
```

 ᄃ
 consisting onig of things. to do. For example:

c) In many bases questions must be answered before* the next step or instruction can be giver. Such questions are enclased in diamond shapes; "decision diamonds?'s: From this shape there are two arrous, ohe indicating YES and tie other. No. The students must bermade aware that YES and No are trie only possible ansuers -in any flowchart for. a computer befause of the way in which the computer functions. The erpous from a decision diemorid inild create loppg, but they must always return to the main stem of the program.

Abstract

All students, ghould be given an opportunity to develop their skills in making simple flownharts. Individual students. can compete with eath other to"make the most interesting'flownart, and also to make the most efficient one. Many of their first attempts may rontain mistakes or ambiguities and they may be of great help to eachother in . 戶poting these sifips and offering suggestions on how best to correct or improve thetu. Mang everyders materials can be used as subjects for a sorting process in a flourhart. See Activities 2 and 3.

d) Making Decisions.
Computers can only work on a ges-or -no basis, and for computer work children must leann to ask questions where only a yes/mo ansuer is possible. Games like Twenty questions, IAnimal, vegetable or mineral ${ }^{2}$. played with strict attention to the Mules, give the students good preparation for computer programming: This process of questaning seeks to establish or eliminate ciasses of things first, engn "Is it áperson?", with the whale paint of the activity being that the answer: is either yes or no. Such activities are gopd for stimutating concentration, obsérvation; änd logical thinking, as well as being good computer practice.

ACTIVITY 1.

objective* To give students experience in ordering sets of pictures.

Directions:

1. Give a copy of the set of pictures to each child. Provide scissoris. for students' use.
2. Go over the directions carefully; be sure students understand what to do and that earh row of pictures is a seperate set. 3. After each set of pictures has been put in order, discuss reasons for the set's order, using the key vocabulary words. 4. Provide strong paper and glue. Have students glue their sets of pictures in order on the paperi Display the mounted sets.

Activity I


```
Objective=-To provide students with experience in putting the
steps of a procedure in order on. a flowchart..
```

Directigns:

1. Provide each student with a copy of the wonksheet, scissory and pagte.
\mathcal{L}_{2} Be sure students inderstand the directions.
2. Check students' work before the rectangles are affixed to the flowchart.

Some Further Activities:

1. Hate 'students make a flowchart to show' the steps involved in making a teleptoné ċall.
2. Have students mate a flowchart to show the'mteps involved in getting out of bed and dressing in the morning.

$$
\text { Activity } 2
$$

Cut out each: direction. Pat the directions in proper order, then place then in the rectangles in the flowchart

3. TELLING THE TIME: DIAL and DIGITAL TIME*

Telling time is one of the most diffirult measurement skills for children to learn, yet can be one of the most enjoyable and rewarding topics to teach. Dealing with time is one of the most important and useful survival.skills for children as well as for adults. Most chilidren are introduced to the concept of time via the traditional dial cuoct, and read the time from the posjtion of the fands. Ruit increasingly, the childencounters digital clocks and watches in hishther environment. One of the most obvious thifles about most modern clocks and watikes is that they tell the, time in humbers. Also, timetables; T. V. and radio Programmes give the times of programmes in figures. Children have to learn to connect the two ways of teliting the time and should be able to relate one méthod to the other.
(a) The Traditional clock.

The standard dial clock is an essential. iten in any junior classropm. The children learn and become famid.iar uitro important times of the day mandy by recognition of the vigual pettern made by the hands on the clock dial. To get beyond this stage: the children need to comprehend that the time around the diad is. measured in countaple finutes, and that the figures: stand for minuter as well'as hours.

Consıder the following procedure to introdure students to telling the time:

4

- Prepare a classroiom set of clock faces that have only an hour hand and pass them out to the class. Explain to the children how the day is seperated into two parts of twelve hours each, and that the hour hand in the fiock tells us the particular hour pf the day: No other'hand is really needed. Begin a demonstration showing two o'chock, and 50 on, making certan that each child is responding correctly.
-- The next step might be initiated by asking à question; "Houb could. I show the time if it was a little past foum o'clock, but not yet five o'clock?". Encourage studenta to respond that the hour hand would need to point somewhere between the riumer al ${ }^{\prime} 4$ and the numeral 5.
- Through discussion, examination of their clork faces, and practice in moving the hour hand, students could be helped to make more and more precise judgements as to the exact timen for example, the clock tace pictured in Figure f could be discussed as shouing "half-past nine o'clock" since the hour hand is approximately halfuay between the numerals 9 and 10.

Figure 1

- Continue in this way with the etudents until such 'time as a ? quarter past" the hour becomes familiar to each child. At this. point, instruction on the function of tre minute hand may begin.
\rightarrow Discuss with the students how they have been able to tell the time with a fair degree of accuracy by estimating the distance the houn hand is from one numeral to another. Then explain that timekeppers have found a way to be even more precise - they have divided each hour into sixty partsy called ${ }^{7} m \mathrm{~m}$ mites', and have added another fiand to the clock.
- Pass out.a new. set of clock fares, so that each child has a face with thie "new hend' on it. Compare the tuo riands; observe how, they are different. Then explain that every time the hour hand goes from one rumeral. to the next, the new hand goes completely amound the face of the clock. It starts at 12 and goes around to 12 by the time the hour hand has made its joumey from. one numeral ta the next.
- Have every student put the new hand on the starting point and the hour hand at nine o'clock Show them how the new hand actually travels halfway around the clock while the hour hand moves to the now familiar midway position between .9. and 10.
- Help the children cpunt the intervals on the clock face to Show them that the new hand has actually gone 30 spares, and that each space is equal to one minute.
\therefore Through digcussion and examples, make further generalizations to surh foncepts as 'guarter past nine", and wo.
- Finally, ask students if they can shom eight minutes (spaces) past three o"clock and so on. Initially this. should be done by counting. As' they gain confirdence and experience they can use the shoritcut of counting each numeral as five minites. Revjas the whole process by asking the studenta to tell the

```
            t
approximate time as you maipulate the clock:
```

(b) A Clock Project. .

Students are required to make lists and illustrations of clocks they see in the enviromment, and tell what time the clocts show. This activity js bound to reveal digital clacks arid provides the opportumity to explore this type of time piece.
(c) Make a Model Digital Clock.

This can eacily be made from a horizontal rod, four large looseleaf file rings, and two sets of numbers, perhafs rut from an old calendar: One set, from 1 to 12 (initially) for the hours ran be hung on two rings on the left. The other set from on to 59, would hang from the second set of rings on the right hemid side. A dial clock beside this model makes it simple to correlate the two methods of"telfing the time. By colour-coding the hours of the digital clockwitt the hquir hand on the dial clocti, and likewise the mimutes on the digital clock with the mimute hand, a further. simplification of the time telling process is possible: ;
33.

Various activities can be devised whereby the children read the time from the real-dial riock and convert ft to digital time on the model clock, engn. lunch time, 12 or olock will be recorded as $^{\prime}$ - Zabl on the digital clock. This mey pose. problems for. some children who will ask; "Why zero zero and not sixty?" it will" have to be explained that zero sero and not sixty is trie end of a complete circuit for the minute hand on the diaf clpok.
(d) The 24-Hour clock.

Previously, time had been taught with the concept that the day was divided up into two 12 -hour parts. At thicstagethe idea of a complete unit of day-plus-night and the za four clock can be introduced. Instead of beginning another time unit at 12.59 we can continue to 13.00 ettr up to $\therefore 23.95$; before we begin the next Z4-hour unit.. The teacher: should provide a model or areal clock" face with the"second circle of mumerais, in order to reinforce the z4-hour concept. Pupils should be encoureapd to think about the times in the afternoon in terms of the 24 -tiour. system. Many activities can be constructed around this camcept to ensume that students understand and can use this sustem properly. For example, holiday brochures, train and airport
timetabies can lead to many exerciaes wherebu the students
interpret the times from the 24 -hour sustem, calculate the departure\%ampival times, length of journey, etc: Converting the digital model clock to the 24 -hour symtem is very easy - simply include theinumbers 13 through to 23 and zero in the left hand met of nutmbers: Many of the provious activities. can be adapted to $\begin{gathered}\text { this new gustem, and children should be given }\end{gathered}$ plenty, of ppportunities to .convert from the 12 and 24 -hour system on a dial clowk to the 24-hour digital clock.

$4 \times$ KEYPADS : (1). TELEPHONES.

(a) Pegin this section by looking at the dial on an ordinaris telephone: "In what order.are the numerals". "What. is the first numberị". "What is the last number"? etro. The students will notice that telephone numerals stant at. 1 and add the zeno at thie very end.
\therefore Children can drau the lagout of the the telephone dial and point to the numbers reáujed to dial treir oun phone number, or that of a friend. They should be qiven practice dialing numbers on the telephone.
(b) The Telephone keypad.

Many new telephones have press-button keypads instead; of the dial.

- Children should be given the opportunity to use a"telephoine keypad. "Is this way of using the telephone easier than the dial method?", "Whu?", etc." Idea tp be reanforced " Pressing keys is - a way of tellirig the telephone what mimber to connect you with.
- Exploration of the layout of the numerals:
"What number rqmes firpt?" "What is the last number?" "What position is the zers

- Children: ghibuld drem Blagrams of the keypad and fill in the cornect humbers. An additional activity at this stage upold be to add up the numerals down the midgle, and diagonally in both directions.
- Children can practice sputting their fingere on the corirert Ness in the correct order for their, own home telephone mumbers, oriany other phone numbers thes koow.
- When children have"a griasp of the position of the numerals, the following actiyity can serve, to reinforce the concept:
 'square at the bottom, ard then be asked to put-in a given numer al as quickly as ppesible, until the grid. is completed. (Students can 'refer ta a diagram or a real keypad to make. Certain of the positions")
- A collection of both real teleptones with keypads and iflustrations of this type of telephone can be made. Discussion may follourabobit which size, mhapey or style is better and the reasons for this.
- Childmen are to be encouraged: to look for keypads with. exactly the same layout as that of the telephone in the environmenty to find out their furiction and report back to the Class with their findings; e.g* automatic bank tellers.

KEYPADS : (2) CALCUI ATORS.

(a) In their search for keypadm the children are bound to encounter calculatrís. Rut close eximination will show. that in
fact the nimber pad is arrmaged differently, and also that other keys are present which do not appear on a telephone kegpad. Gimilarities, exist in that pressing keys ean qive the calculator. figures to work with, uhile the other keys can tel? the ralcialator what to do with these numbers. lt is importent that the children become familiar with calculators and learn to use them jintelligentily.

- Every child should have access to a calculator for these activities. An jdeal situation would be to have one calculator between evers two or three children.
-- Begin the study of calculators by allowing each student to handle a calculator and to press various keys and wateh the display.

The arrangement of numeralm on the calculator may be confusing for the rhildren as the arrangement is diferent. from the telephone keypad mhich they hiave just learned. On calculators, and on the keyboard of many computers, the top line goes $7,8,9$, with $1,2,3$ along the bottom, and the b below titus The decimal point.is usually beside the zerio, but until the students know about decimel pointsy this one can wait.

- The best way to become familiar with the calculator keypad pattern if to drau it (numbers only) on paper" arid practice $\dot{\beta}$ pressing the numbers.

7	8	9
4	5	6
1	2	3
0		

- Activitiem similar to those ised for the telephone keypad can be used to get the children familiar with the arrangement. if the child adds the figurem up, and armoss the middle, the totals come out the same, and they are tre same as the totals on the telephone ketpad. Activjties like the those in Table. 1 help children to learn the key pattern by requiring them to fill in the formect number to complete the sentence. other. numbers they could "key" in eare house mumber, day in the mionth, number of people in family, etc.
- The Operations Keys = these tell the calculator what to do with the numbers you give it: The use of these keys will depend entirely on the stage the children have reached in their our number work. Chivdren will learn to identify and name each key and bdepending of their level) to understand their functions. The $=$ sign (whitch mats not appear on all calculators) should be called whatever it is called in the everyday mathematacs activities of the class. The best way to recognise the lofation of these keys isy once againy to draw a diagram.

- The ON/OFF Switch: Children will learn to suitch on the calculator when beginning to use it, and suitch it off when finished.
- Children can be presented withi a calculetor without the

```
batterxeslin it. When they switeri 1 t. on and proms some feys tirey should notice that there is mo visual displayy notiong has Fiappened. If ane of them Enoius, or can sere hou to open the. ralculator casey they widl discover that the battery is misising. A Ehild will, be guven the tagk of réplacing the battery into its proper place, checking to see that it is the right way round: Now, when turned on the calcuidator wall worta Children brould be awaré pf the concept that a calculator needs a beatery to workn They should be given practice.in putting in the batteries and switching the calculator on. Another paint to emphasise is that the batteries Ean be used up or 'run out', and therefore the calculator must be suitched off when not in use.
```

(b) Using The Calculator.

Some Vocabuilary
Iriput: GN, the numbercy we tey ing the five mathematical sumbials" (or offeration keys), ClEARy and OFF.

Output: ressuits stown in the Visual Displeis window.

There has been muth, debate about: the use of calculators in the clasmoom. Tearhers are concerned about how calculatorn will affert. gtudents", computational. stills (Palmer 197日). The calculator will not, replace these computational stillas and students utho are working on their basoic Eomputational skills should be encouraged to use a calculator. to. chetk their ancuers. Thmough guided activities in the colassmoom, the calculator can
be a very valuable teaching tool in exploring a variety of midthematical topics. In a survey by N. Lakariya (1980), problents which the vast majority of the class had beën unable to solve wifhout. a calculator were manageablé for all when they used a calculator. The calrulator mates it possible for students to
concentratéon analyzing how to solve a problem as they are
relieved of the cumbersome computation in arriving at the solution. The luterature also suggests that the calculator is a source of motivation (Lakarisa): whatever the teachers' feelings. about the calculator, orie fact that cannot be disputed ie that the cidculator is here to stay. The best way is to see fiou to make tuse of calculators, in ways that strengthery the pupils. knowledge of the required number work. at the same time ab their * ability to use these modern ards. Calculators can be theen as "little computers', and familiarization and ease of use will certainly prepare the student for future computer work. knowledge of calculators will also matie them aware that they can face and master other techincal gadgets, éng programmble radios, videp"recorders, or microwava overis. Thes will grow in: confjdence in learning how to chinquer new teftriology.

- The best way to become familiar with a calculator is of course to use it. The activities at the end of this chaptery and others of a similiar kind are useful iri fostering Eompetence in the rhill dren.

An important point to be grasped is that the 'instructions' have to be given in a very exact arid sperific form to the calmulator, Some caiculatore uge algetiraic.logic; i"en, the
grder. in which the numeralis and the mymple for the processes (t, - , etc.) are pressed ig the same as the order in which we Hfually" was them for mathematical purposen - eng* three plus (add, and) two, or eight minus (take away, subtract) four. Children should be encouraged to get into the habit of saying what they are doing 1π this standard way bermuse this 15 the way the calculator is built to work.

- 8

REFERENCES:

Lakaritya, N_{*}, The Calculator in thé, Classroomi' Arithmetic Tearher, Vol 27. (March 1980); pe. 12-15.

Palmer, Henry En, Minicalculators in the Classroom - What Do 'Teachers Think?' Arithmetic Teacher, Val 25 (April 197日), PFi" $27-28_{r}$

Meter, P:I:, 'When You Use a Calculator You Have To Think!' 'Arithmetic Teacher, Vol 27, (Jan 1980), p.19."

1 am

There are boys

and girls in my class.

1 have books

CALCUL.ATOR ACTIVITFES.

1. WHICH TARGET WILL YOU HIT?

Abstract

objective: To allow the students to get experience in using the calculator cormectly, and to give them some practice in problem. solving.

\section*{Directions:} 1. Providé each student with a worksheet. and a calculater. 2. 1 nstruct the students to look at the problem cametully, then to look at the target numbers. one of the targets is the correct answer - which one? Students record their guess and then fey the problem into the calculator to check the amsuer if the student guessed correctly then hedshe is awarded a point.. The total number of points is recorded at the end.

Which target will you hit?

1. Look at each problem.
2. Look of the forgets

3: Guess ishich torah is correct and record young guess
4. Use your calculator to check

2. ADDITION GAME.

Objective:
Eqperience in addition, in.using a calculator aridpractice in. estimation.
3. ADD OR GUBTRACT GAME.

Experience in estimating sums and differencesy and practice in using a calculator.

Dirmections for"Games 2 and $3:$

1. Group the students into teams, with two teams sharing a worksheet and a calculator.
2. Each team finds its anower on the game board arid puits the team's mark on it (x or 0). The game is won when a team has an un-broken path of marked answers that cormects the two sides on the game board:
3. Play the game more than once. At first students may pict: pairs of numbers at random, but as they play more often they uial start to develop strategies for using their estimation skills. to select the numbers.

An interesting modification of the geme is to require one plater to pick the first number and another flayer on the same team. tr pick the second number.

Addition Game. (2 tears)

1. Teams take turns Pick any of these numbers
2. Add the numbers you picked

3 If the answer is on the game board, mark. it with an \boldsymbol{X} or O

How to win

The first team to get a path of answers (thru es on mane) connecting its two sides of the game board wins:

Add or Subtract Game (2 tears),
1: Teams take turns Pick on. Five of these numbers
\bar{F} Add er subtract the
 numbers yous hour picked.
3. If the ansate is cr e then
gaia bosizi, ploce your team's
Mark on ,t. (Xor O)

How to win.
The first team to gT a path across the game hand wins
objective :
To help the students become familiar with performing successive operations on the calculator.

Directions:

i. At first the answers can be included on the card (card 1). Z., Then the students can find the final answers and compare. resulta with a partner, of the Task card can be self-checking uilth the answer on the batk (Carid 2).
3. Somé interesting problem-smiving fituationg can develop by omiting a fumber other than the final answer. Discuss hou the chifdren solved the problems? "What relationships do they see between operations? (Cards 3 and 4) . 4. In a similar way, open-ended Tagk, Cards.make "many solutians poislble. "How many different ways can the itilldren make Cards 5 and 6 urark?"

If this: activity is en joyabley you might suggest that childen make similar task. Cards of thefr own for others to solve, using the calculator to help, set up the problem and to verifty solutions.

S.
I.

2.

3.

4. Find the missing number.

5

5. CALCULATOR FUN.

Objectives:
To build competence in using the calculator
To encourage the students'to look very carefully at the a a visual display.

Dirertions:

1. Perform the indicated computations on a calculator.
z_{n} To, check wour answer turn the calculator upside doun and read
a word answer. A cilue is given for eact problem.

$$
\therefore \text { *ALCULATOR GAME. }
$$

Abjective ;
To gain practice in using the ralculator and to tiave fun.

Directions *

1. This is a game for tuo people and a calaulator. You take it: in turns to add 1,2 or 3 . You choose which mumbermjbut wou can only use these three teits.
2. The player who mates the total up to 21 (or more) as the one: who. loses.

Here is a sample game:

A	Etarts	with	1	B	- Adds	1		z
	presses		$+2$	B	"	$+2$	$=$	6
A	"		$+3$	- B	"	$+1$	$=$	1.0
A	"		$+2$	P.	"	$+2$	$=$	14
A	"		+1	B	$"$	$+3$	\cdots	$1 \cdot \dot{8}$

Nou A tas to thint : If A adds 2 then A tam to lose, because the totel is nou z 0 , "and the smallest mumer B ran add is 1. which brings it up to 21. If A had added 1 at his/her dast turn, P could have added another 1, miking it ab. Then A would hever had to lose.

Abstract

Calculator wark and digital clocks encouraged the. etudents to examine the vigual dimplaj. The ability to read and interpret the visual display is an. important function in computer wiorl. The alphanumeric characters seen in calculator or. in compuiter visual displays differ from familiar type and may be puzzining for the students at first sight. The objective of thics section is to give the students practice un reading the various kinde of displays fluently, and also to foster an interest. in these. alphamumerir characters as an example of modern tectinological design.

1. Numereals.

Childrens' attention should be draun to the shape of the numerais in electronic clocks, digital watches or calculator visual displays. Thes will be encouraged to discover that these numerals are made up of straight lines, and that short straght units are used to replace curves.

Observation Activities.
a) Collecting illustrations of numerals on visual displays. Each student can examje the straight-line structure by moving Hig/her finger along the numeral in a stratightine motion:

```
b) Copuing the actual shape from the vigual. display, enlarging
at the same time.
```


Six dots

5 moves 5 moves .2 moves 7 moves

Children utile discover that. when using these six dots to make Visual display numerals they can get in in moves, 7 in three moves, $3,5,6$ and 9 in five moves, while 0 needs six strokes, and Q show the complete pattern of these ?elements' or segments from which the numerals are built up. This in called a seven-, segment display. In some visual displays each segment is lit up separately, while in otherseoeg. most watches, each segment
goés dank againstla laghter. background. Children are encouraged to look for some examplen of theme.
e) Making dimplay numerals an pegboards; with six pegs per character and small, rubber bands to loop around the pegs to form vertical and homizantal lines:

Pegboard, pegs and rubber bands.

Using thig method the children fan make two , threer and fourn digit numbers, They can also make micidels of digital times as seen on digital wetches and colocks. A folbured peg could be used to seperate the hour. from the minute numerals.
f), In calculator work the students discovered that by inverting. the calculator some of the numerals could be read as letters. This fun activity can also be applied to the peg board where the

```
students make numerals 'with' pegs and rubber' bands, then invert
the board to gee the fettersm Activities to thint out and make
triee- .. four-, and fave-lettar ẅords are very enjoyablem and good
for their vocabulary work a's well.
```

9) Another activitu uhich can lead to even eloser esanination of the structure of these pumerals is looking for examples of summetry and mirror-imagery in the nimerals. This will be more suitable for students ulo have already worked on fymmetry and mirror imagesa Some of the numeralsy e.gn $\boldsymbol{\theta}_{\mathrm{g}} \mathrm{D}$ and 1 are stmmetrical, while 5 arid t, and 6 and g ame mirror images of each other.

解 Lettiers
The "students will discoyer that making letters by this straghtline method it more difficult than makang numerals, because of * the need for diagonals and curves. One way to make these letters is to use a larger number of segments eng. sixtgen segments. Activities isimilar th those for numerals can provide practice in, making these lettersy: eng.

58.
*

16 segments

3) Making all. the letters of the alphabet.
4) Making short words, students" own names etc.
5) Children are encouraged to experiment with the size of their segments, and a discussion may arise as to the pest design for certain letters.

Which. is better?

3". The DOT MATRIX method.
Although, the children will make acceptable letters using the sixteen segment method it will be obvious to them that. this is
not Frimemest indur for making letters. At this point the teacher could introduce the DOT MATRIX method. This method of crienting display uses many small dots, each of which. can be lit or darkened seperately.

Some suggested activitjes.
a) The students are encouraged to find examples of dot matrin letters and to copy the design onto paper. $/$
b) The students can make each. letter on a pegbofed using pegs. As'they become. adept at this the teacher could encourage them to make all the letters a standard size. Once again the best height and width can be agreed upon after experimentation and discussion. This activity can be done on squared paper toom

Now they should compare these letters and numerals wht those they made using the straight-line method. "Which kind ig easfer to readfi; easier. to make?', ett.
d) Lower-case letters.

The students could try to design lower-case letters on thexr pegboards or squared paper. This could prove to be more difficult then capital letters beralse of the 'tails'. on some of thie betters thiteh have to be flattened. This activity could lead to the students examining a computer print-, out using lower-case

e) Tmproving the designs.

An experiment: i] Crilldren are presented with two tinds of Equared paper, one with large squares, one with small squares. ii) They choose a letter that has at least one purve ini it e. 9 . S or B .
i.i.) Then they filil in the squares to make the letter then have chosen - the dot matrix method, using the two siaes of squares. The letter. must be the same height earh timen.
iv) Now examine the two desighs. Compaire them. Which one 3.5 clearer, "has smoother curves, is more accurate? Thes ehould digcover that the letter made with the smaller. squares is better.

The important abjective of this experiment as that the students will make the important discovery that the smeller the squanes, the better'the design. This is an important factor in the desigh of computer printouts and VDTs.
f) Exteriding the Dot Matrix.

The dot matris method involved filling mquaree with "dofs* to make a design. An extansion of this method would be for the

```
students t:Q create designs uging small blorkg or. Squares to make
a. design. Activityes 与uch as mosaic umore, collage or other
activities involving. small square mmits. can be fun and require
thought and plarinting of the student.
```


6. GRAPHICS.

Computer graphics will not be a new concept fror many of the students. They will have seen examples of "this graphic stule in viden games, televibion commercials and printadmaterial. Some objectives for this section are thiat the students unil became familian with and have fun making computer style graphics: that \therefore
Ithe students will understand the concept of every square häying Its own standard space; and that thay will be able to'name and
 Let's Make Gomputer Pictures.
a) Children are fencouraged to 'draw' pirtures using stieets of squared paper (or graph paper):

Draw a tréep a dog; a spacemañ a ball Children will discover that it is difficult to draumpaly detailsi ant that sthe smaller the fouarem the mone accurate their designs widy be.

At this point the teacher stiould try to emphasise the point thet o grit (a large number of repular spacesy or squares in this case) is important far the material we put into the computer as uell ess in the desion of the computer output.
b) We extend the arewing of pittures psing pquares on a gr id to naming the squares on the grad that he ugen
The profédure can take this form:In Givé eart child a small grid (see diagram I) with the squaresacróss numbered.2. Students are encouraged to fount the number of squares abrossthe grid, pointing to each square as they count. First count thenumber qf squares on the first row acrpss the number of squaresacross the botom row; acmoss the 'middle...
3. Next allow the students. to puit their finger on the first
square in a row. "How *mang squares have I Moved"across? None;berause I btajed on the first square. So we can say that we areon squiare $\boldsymbol{\theta}$ - a name for this squaré."
Students move theit finger onto the next square across."How many squares have I moved across? One. Look above you andyou will. see trie number $1 . "$ Continue dike this for all thesquares across the row.
4. To 'reinforce this the students could be asked tofind thesquare at 4 on the row across' the square called 8 , the square
at 3When students demonstrate an understianding of this system theycan nou begin to learn about the squares down the grid.5. Give each chiod a gri.d with the squares down the left handside numbered. Repeat the procedure for this grid naming thesquares doun the row (See diagram oi)6. Intriduce the students to the concept that the "neme" of thesquare is another name for its ? address - the place uhare itcan be found.
7. Give eactistudent a grid of squares with the numbers both on
top and down the sjde. (See diagrami3) They learn that to give the full address of a Equare they must give its address acrioss the grid first, and then its address down the grid. The teacher demonstrates by colouring in a square on the grid. "What is its address aeross the grid?" Children are encouraged. to fand this address ejther by moving their finger across the grid and counting the distance moved, or by looking. at the number of the square on the top. Then they ane requested to find its address down the grid. When they hiave been successful in findang the correct address across and doun they are bhown how to say it comertly, and how to write it. For example on diagram 3 , this square is four, five or (4,5).
G. Students can plot whole apictures dn squared paper, having \because. wintten down the rimbers across the top and down the left-hand side; and can then give their partner a list of addresses from which the drawing can be constructed by this student who has never seen. the picture: Students will digcover that it. is possible to reproduce the design exactly if the instructions or addresses are given correctly.
9. Another activity is to have a group of students contributing addresses of squares, one at a time, building up into a picture. 10. When the teacher feels that the students understand and have demonstrated compeyence in naming addresses of squares on a. grid, it may be an appropriate time to introduce the concept of naming points on a grid or a vou screens Instead of naming the squares they will jeam to name the points at which the lines of the grijd crossa:
1.. Give eactistudent a grid of squares. Demonstrate how to number the lines instead of the squares (diagram 5). Then show them how to mark in all the points on the grid, and give the addresses of each point.
12. Activities similar to those for addressing squares.can be used to give the students practice with plotting and addressing points.
1.

3

Find the addresses

7. THE KKEYBOARID.

Py pressing the keys on calculators and keypead thé children discovered that they unere in fact giving instructions to the calculator, telephorie or automatic teller. They almo discovered that these instructions must be given $1 . n$ a very exarit was, as this is the only way the machine can understand the instructions. . This. concept of specific instructions was reinforced uhen ther students explored 'addresses'. and hom to name points on a grid so that. a drawing could be ronstrutted from their instructions. Thos concept of exact instructions is a fundamental element.in preparation for computpr worki as it is the basis for all computer input. So far, the etudents have explored input or messages in terms of mumerals, mathematical sumbols, and addresses for creating 'graphics. Messages can also be given to the computer in letters and words. It is a combination of all these different kinds of messages or input t.hat form the basic contact between liser. and computer - they ane our means of telling the computer what to do with these words and figures that we give it. As the keyboard is a source of. inpuit into the computer, it is a worthuhile experience for the child to become familiar with the keyboard and to bećome confident in usirig one. This section will introdice the students: to the keyboard and encourage them to use it successfully, while helping them to become familiar. with reading tupeuritten
messiges.

The Keyboard.
a) Begin this bection by infroducing the gtudents to the typeuriter keyboard. A real tupeuriter is mecessary for this section. Typewriters may perhaps be borrowed from parents, friends, the school secretary.": Even old typeuriters are Valuable as they top provide the necessary experience for the stident.

- Instructions for students:

Aluays puit paper in;
Press only prie key at a timé
Don?t hit the keys toon hard.

Students stould be given time to explore the keyboard on their ouri initially, then encoureged to type letters going from left to: right along the rows: "How do you make capital letters"? "Find a, r,p"etc."

- Children tgpe their own name and the names of their friende.
- Children tupe words,
- and finally they type in sentenres and messeges. Thes are. encouraged to type messages to each other, and to read these. messages aloud.
- Other artivities.include finding the most-hised and the leastused letterss making patterins using juist one key/letter life a cross stitch pattern; typing classroom "notices, etc.
m Collecting different kinds. of typewmiter print innd comparing'

Abstract

them.". "Which is the relearest, the easiest to read....." These could also be compared to computer printouts that the children have already seen.

b). As the children gain experience in using the typewriter. keyboard they will discovei the regularity of the typewintten text. It is a valuable experience to allow them to first of all guess and then test the total number of characters, including spaces and punctuation marksy in a line of typingn This.stiould be developed into measuripg the length of a line of tepped. . letters, e.g. 50 times the letter ' ${ }^{\prime}$, and 50 times the leter. '?m'. They will most likely ghess that the letter " 1 " would tale up less width than a 'fat' letter such as un They will discover that both letters (all letters in fact) take up the seme epace. - A more complicated activity : Typing a single letter.as.a starter and then 48 spaces and a single ietter again at the ende. "Do spaces take up the same poom as letters"? Do this also for a line of fuil.stops or commas. The essential: point tóbe grasped is that all letters, punctuation marts, and spaces'have their own standard space.

- Chijidren idill be requined to look for examples of giving eacti Ietter or numeral its own standard space. Some examples might include crossword puzties and forme for filling in names and. addresses. Crassuord puzales cpuld be explored to great advantage in the clasproom as it would benefit vocabularg, spelling, definitions, ettra; as well as meinforcing the concept of standard space. Crossuords colld easily be adapted to the age
and abillty of the student and sq provide an enjoyable learning' activity.
- Collecting old forms and: tear-off slips with rows of boxes:
into which one is expected to urite one's name, letter by letter, will give the childmen more practice iof writing in standard spaces, as mell as giving them a little practice. in filling out this type of. form - a useful skill.

The students are familiar with giving information and jnstructions to the cqmputer by kending messages from the keybiard or number pad. They are aumare that theme instructions mist be coriect and in the right order. The computer is a machine and therefore cannot thint: 50 the thanking must be done by the person who gives the instructions. When the chilloren are comfortable with these ideas, it would be a valuable experimence to introduce them to. Hony differfent. ways we havo of guving information to the computer. This sectron will introduce the students to suich input devices as magnetir tape, magnetic diske, bar codes, kegboardsy light pens, graphic tablets, magnetic int: and pencil. marks. To use all of these devices would probably be beyond the sfope of the regular clastroom, but the teacher ran. make the students aware ofrotheir existance and function through. adlustrations, discussion, përtaps borrouing these devices and allouind stodents to experience them concretely for a short time, or" even planning air outing to see some of them in: operation in the environment:
(a) The keyboard.

The students uill hāve already been introduced to the kegboard
军s/a means of typing messages. They should be remirided that
tufing on the computer keyboard and watching them messages appanar $\%$
on the computer screen is acturdy sending messages to ther computer, and that when they press the ENTER or RETURN lieg on the keyboard, the messages that they have input are now stored in. the MEMORY of the computer.

The computer's memori is a new concept encountered by students', and pertiaps the teacher. could explan it as 'space' inside the computer where information is stored.

Children should be given plenty of time to practice typing messages on the keyboard, pressing'the ENTER key and reading the message from the soreen. This is great preparation for future . computer work as they ane building up familianity with the : harduare in a futh non-pressured atmosphere. The progression to formal cidmputer more 15 only a small step away.
(b) Magnetic Tape.

Becond to the keyboard, the magnetic tape input method is probably the most common input method in the clasisroom. Most of the students will be familiar whth the regular tape recorder and taper so the actual harduare will not seem so new. The teacher should load and rin a computer program from tape. He/she could allow the the children to look at the blank screen before the tape is iloaded, then put the tape into the tape recprder, connect it to the computer, loadit into the computer, titen rum the program and allow the students to use it.

Gqme questions: "What was on the screen before 1 began? What is on the screen now? How did it get there?"

Chilquen will be encouraged to discups what they observed' the
teacher doing, and phould make the connection between the tape recprder and the program in the computer.
'-. The teacher shoula nou explain that messages come from the tape in the tape recorder to the computer. These messages that make up a program are fitored in a sopecial way on the tape. It is much qujcker to stome many messages on tape than it is to tupe in all these messages on the keyboard every t ime we wanted to use that program.

- The students. should be shoun how to insert a tape in the tape reciorder and how to load the program into the Eqmputer. 3
As this is a fairlig simple tagk most students could master it With a little practice. To ajo this learning even more, a list of instructions could be posted above the computer, using simple words and illustrations thet all could understand.
(c). Magnetic Disk:

The teacher could use a similar process to introguce the difk as was used for the tape and tape recorder. Insert a disk in a diskdrive, load the program into the computer and rum it. "Where did the program come from? What dyd 1 do to purththe program in there?"....

Remave the Disk from the diskdrive and shou it to the students. Explain that it in called a digk and that information is motored on it:

- The diskdrive should also be explained. Like the tape recorder that getc, the iriformation from the tape and passes it on to the computer; the diskdrive sends the information. from the disk tb
sthe computem. The disk can store muctionge information than a tape, and with a diskdrive the information can bee sent very quictsy to the computer. $(d) *$ Par cotes.

Most of the moudents will have observed ber codecs on mant atems in their homes and in sctaol, eng. ting pt food, coke bottles, booksy. etc. y and mat wonder miliat thes are for these bar codes can be riead by special "readems' in computerg even thougli we cannot read them" The best way to explain their function would pertaps be to take the stuctents to a superiarket, select an itam or jotems with bar, codes and present themi to the person at then
 - permon there uill ruin a special sensor across.the set. of lines and the price witl automatically pe fed into the cagh register. Apother way to observe ber codes being used would be to : visit a i ibrary. Each bool: has a bai core and earh borrouter has a card uith a bar. code too. The lituarian uses a sensor to read the the bar code beldraing to thie borrower and the bar code on each boak that the person borrous. The computer" iss programmed to rerofrid the loani.
 the way the thick and thin lines are arranged. other activities might involve trifing to find a conmection between the bar codes or numbers on a small tin and a large tin af exactly the same
product. They could also intervieut a store ouner and isk himpher about the bar coden e "Do they use them? Why does 'he/she use them? Do they make wonking. in the shop basier? How eige da they hielp. the people who work in the stop?..."

A librarian could. also be interviewed in a similar way.
(e) Light Pens.

The best way, to make the studenta amare of this input device 15 to allow them to use it. We can communicate with the computer very easily using a light pan: We simply point ta the piaces on the screeri and the computer. reaponds. Thif will be highlighted for the students if they use a. light pen with a program désigned for this purpgse. Discussion could center around these questiong \therefore
"What happens when I touch this square with the pen? If I touph it with my pencil or with. mu finger what will happen? .."" Through erploration the studente.will discover that the light. pen inputs signals, to the computer.

(f) Magnetic Ink.

Examples of this type of compliter input can be found along the bottom of "cheques. Thees odd-lopicing figures are printed in special magnetic ink They haye a special Ehape so that. the ソ magnetie sengary or automatic reader. can identify each figume without histaken Students cen collect mamples of these and compare them. A magnifying glass would be very useful to show up
the finusual: shapes more clearly.
(g) Graphite Tablets.

This method of input will perhaps be the most popular with the
 discover that "whet they draw on the tablet will be input to the computer This device-sends messages to the computer and allows the computer to reproduce thefstudents designs: The students should" be allowed fer experimetit with this as much as possible as it. provides great scope for creativity and enjoyment as well as ? بorhtuhile learning.
.
(b) Pencil Marks.

This method of computer input also requires the completer to read marks This time the marks are made by pencil. This method is usually used for marking test questions, or for collecting answers to questionnaires the person filling in the spería form will use aperitif tofili in small squares or circles on the answer sheet, ard the machine is able to detect these marks Here is en example of a sheet requiring the person tefillin with a pencil, and based on these marks the computer bill k wu what information the person requites.

9. PROCESSING AND COMPUTER OUTPUT.

The previous section introduced the children to the various ways we input information into the computer, and that this information is stored in the competer's memory. This section seek to briefly inform the student what. happens to the information in memory, and to give the student an dpportunity to seé the different kinds of computer output.

(a) Computer Processing.

When people give instructions they expect these instructions to be carried out. When we give instructions to the computer we expect the computer to act upor these instructions and to give us' the results. "The information that we input into the computer goes into the memory. Here the romputer decides what it has to do with the information: The computer processes the dinformation in a Sperial area inside the compLiter - the PROCESSOR When it , is finished the results are sent back to memory and stored there until we request to see themn rhe 等eacher could explain this protess by simple iliustrations, eq. :

(b) GUTPUT.

i) Uideo Display Units" (VDUs).

One way the compliter shous lis results is on the voun The computer sends the results of the program in letters, numerals. and graphics to the computer sireen where we can read them. by this method of display we can read the results quickly and the VDUs leave no waste paper. But this also means that the output disappears qutckly. The students uill be asked to read the output from a program on the vDu.
"Is the output clear? Is it in numerals, letters and words, for in graphics? Is dot matrix used? Is it colourful? Does it move (animation)? Ifs there sound fo"accompany the text or graphics?" Such questighs and discussion will make them more critical, as well, as more appreciative, of what they seen Students uill bex
asked to lobk for other UDUs in their enviromment, e.g. travel agënt; bank: and to find out what the restults show".
2... Printéd Results.
*
The results of a program can alao be printed on ópapar: We need a printer if we want our qutput to be thped. To fully explain thís it would be best if the students could watch "a. printer in action in the cilassröom. They should.be given the opportunity to look. at the print $"!I f$ ịt dot matrix; imoi cleary can you read it: " ${ }^{\prime \prime}$?"

The speed of the printer. could alsa be a source of discussion. "Is it fast or mpow? Is at faster than a typewriter? . " Pupils. could be asked to compare the output fromi a VDU with the output from a printer. This colild be extended further to incilude boaks and TV - ad as sourcesiof information and data. This exertise shofld stimulate thpught and discussion and is worthwhile.
3. Tape ando Disk.

Just as ue input information and. data on tape and disk we can store results op them top In this way the rexpults will be availabie when we want to sede themin spme suggested topios for discustion:
"How will we look. at the restilts that we have stored?"
"Why is it a good idea fo etore our restits in this way?"
10. A COMPUTER MODE」-

Now that students know about giving instructionp, input and \because output, and have baen introduced to the concepts af memory and: غomputer processing, it would be a lyeful exercise"to combinefi? all of these and make a model computer. In.this kind of camputere model", individual students would play the role bif the yavious computer. components and carry out the instrutitions. required to. run a programı This wolidd make a computer opperation conder al ive for the students and gidve them direct oxperiente fothepracess
 understand and become involved in the prociess.

Making an Active Clastroom Model Conputer.

2. All the data and instructigh are printed ofigarge tards othe Fards for our puggested actifytywilltoé

INPUT PERSON, INPUT, MEMORY, PROCESSOR GUTRUT SOR VOUS OUTPUT REAZER PERSON.

Abstract

centre and one at each end. These. tables need to be clearly marked :

INPUT, MEMORY, PROCESSING, OUTPUT.

The Model At Work. :

1. The INPUT PEREON trands ta INPYT, across the iNPUT table, the cards with the data numerals and the operation symbols on them. These are: al ready sonted ifito the order in which they will be needed: thixs order will be : $\quad . \quad 2+.4$
 2. Input takem thems to MEMDRY at the MEMORY table. MEMORY puts them On the rikgthand siop of flie table and looks at them3. MEMORY hands the first four cards $2,+4,0$ to the PROCESSOR at. the PROCESSING tables Athése will be the material that the PROCEGSOR uil1 deal tith froto
4 Now INPUT PERGON handm to INPUT the card START whioh ja
then rianded to the RROCESSOR
 tagle, and urytes the tarfurer ob on a blank card, in large print po that the on hookers car see.
Gn PROCESBOR nqu Guves the used cards ($2,+4,4$) Barck, to MEMORY whondecpa them pn the righthend side, beporataf from the ciards from imput, Then MEMORY hands the rext three cards $(+, b,=)$ to yy the PRQCESSQR tith adde to the result finom the first step. (o) thtch heqche urote down
7having qonethe fecond addition ($6+6$) the/she wh tes his/tier
second result çard (12), and hands' the, uged cards back to MEMORY who puts them in the second pile.
B. Each .ftep involves collerting just the cards needed for that one step, and uriting the nesult card, which then becomes the starting point of the next step.
2. When the fROCESSOR has added $12+\theta$ and has uritten the result on a bliank card, the next card from MEMORY says STOP. "PROCESSOR can then fiand the result card (20) to MEMORY who places it on the left-hand side of the table. Then MEMORY gives this card to OUTPUT uho holds it up fa that the OUTPUT READER PERSQN can read it. Ta.simuiate a vDU, the output card could be held bebiry tMe, fropt window of an old TV set, making the output into a model of a• real UDU.
3. This whole process ehould go smogthly with a little practice and can be done without any speaking. "Preparation in the form of devising a program; uriting the data and instrucrion cardsy and putting the ciards in the cormect order (a flowchart might be used to' prepare for thisi, would involve the whole class. Each. child, shoult be given an apportuinty ta take partj in the umodel computer.

Classroom Model Computer.

1.: THE COMPUTER WORLD.

This section ains to have the children constantly learning more about the computer world around them, It seeks tọ be an ongoing process of makirig the students computer literate from a soung age. . This unit h/as so far introduced the students to skills. and concepts necesskry for a goód beginning with computer work. 'Some topics have encouraged the stydents to explore their environment to find examples of computer tectinology and modern equipment.

This is the beginning of an effort to make the btudents aware of the intluence of the computer in our society and the implications of that influence. Activities with these aims in mind might take the following form =

1. Outings to visit places 'in the environment where computeins are used. Students will be encouraged to discuss with the people involved the funcion of the computer; how it. helps in that office, shof.. . They will be encouraged to talk to the people who operate the computer and to those, who program it.

Fr talkirig to peqple fnvalved with computers, it is impoirtant 'that the'students learn' that without people computers are just bits of silicon, metal arid flastit. They ae invented ty people, programmed by peaple, and puitched on, arid off, by people: Pepple control cpmputers and everything they do.
3. Finding out through people, newspapers; magazines, books, TV, etc., ps many different uses for computers as possible. The depth to which this can be explored depends on the age and ability of the students. They should discuss as many advantages as possible and then list the disadvantages. Do the advantages outweigh the disadvantages?...

Such knowledge and awareness; as well as their growing skills in computer work, will give the studenta the confidence to know and feel that thes are part of tie computer"future.

BEGINNING LOGO.

\because

INTRODUCTION.

Teaching Logo (the computer language developedespecially for children by Semour Papprt (1) , , ta young children is more than introducing them to a programing language. They are teing introduced ta a whole philosophy of education. This philos̀ophy is strongly influenced by Piaget and his theory of how children learn. Piaget recognises that every learner takes an active role in tris/her own development, and that learning 15 a primary, natural function of the healthy mind (2). Papert supporits this theory inc claiming that a child learns partly by picking up specific facts and skills. But a more important kind of learning is the skill of learning itself, which involves building mental models of the environment through intellectual exploration. Lago provides a. sort of laboratory for loose lifelong learning about 'learntng, and gives theretiold the pppartunity to develop his/her cog̣itive abilities to full potential

As a computer: language; Logo is both" simple and pouer.ful. It'm gimplicity makes it'possible for 'beginners to write simple programs that. do interesting thingg. It"gives the children contrid ovari powerful computational resources, which they can
use as tools in learning, playing, and exploring. with tuntle graphics it ig veny easy tro to. start programming. The basif
 children explore uging Logo, they are constantly defining new procedures and modifying old ones. Learning is a gr'adual piocess of fami.liarization', finding problemf, and trying to resolvë these problems by proposing and testing simple.ideas in which. new. Problems resemble ottiers already understood. $\dot{W} i t r y$ few instructions from a'teacher', students can adopt Logo as a. personal and powerful problem solving tool with which thes can transiate abstract and complex problems ipto accessible, concretey and simiple forms.

Logo begins with what chiloren already know about moving themselves through spacex They use this knowledge to direct the turtle that moves on the computer's graphics screen. In attempiting to achieve particular effects, studentis. become. : engaged with estimation, matchingy rotation, prediction, and debugging. Logo enfourages the thudent to break doun complex problems intiomanageable parts, solving each seperately until. the whole problem is completed. The importance of suriti Exploration is the genuine sanee of dismoverv studentes get uitien w they pose their oun problems, devise their own methods to solve them, and perhaps recognise some pattern or relationship that they had never noticed beforen

Whén 'a child makes a mistake or has a "bug". in the.prograing he/she chn try another appromth or explore the mistakiq even further , This mbility to debug ideas ard to gradually uork
towards a nalution to problem reflects the Piagetian view of learning: The child if encouraged tó look on'* bug as a sour re of information goout what ta do next rather than as a proof of failure In this Logo makes a great contribitaion to tearfing children hou to probifem-solve. And, as Logo sharpens their. thinking t- k ilIs; it also develops a good foundation in programing and computer concepts: Logo teaches. the child to understand the under lying strut ure of proĝmminng and problem solving, and teades, good thinking habits, so the student will be able to apply these skills to ans problem, no imatter what coriputer language, they may be expressed inn

Teaching the Logo langlage and introducing Logo activitieg to young children can form the basis for severál different kinds of learning. The mator learning goals for teaching togo in this unit are

1. Learning to, feel comfortable uith a computer, and in control of what the computer does, The childwill learn that he/she can decide what the computer will do; and have the computer carry out a set of instructions.
Z. Learning the elements of the Logo language. This includes the Loga commands, hou to wnsite and mame procedures and subprocedures;' and how to "definey name and use variables.
2. Learning the subject matter" of turtle geometry. This includes concepts of measurement and ettimatipn of angles and
distances; and the melations among angles and distances necessary fomake shapes such ess a equare, triangle, cincle, etic.
'4. Learning to develop problem solving 5kills. Thif includes such things as promedural thinking, "plaging turtle', the
 program, and etrategies for debugging and planning; and the development of a anguage with which to discuss all these things:

- 1

The follquing Logo guidelines are designed to be flexible enough to serve as a vehicle for manu different patterns of learning. An important part of the design of the attivities was making decisiong about what students would learn and what strategies the teacher would adopt to bring this about. Part of the strategy is that while the teacher would exert sofe pressure for the stident to achieve the objectived set out for them, hejshe would albo aliow devietions if. he/bhe felt that a particular. student wiold not resporid to the pre-determined goals. Every student will learn in a different way, and the role of the teacher is to guide that leaming in such a way as to enatile each student to reach their full intellectual potential. The àtivities are flexible and can be adjusted to suit the needs *t the mindividual leanner and the rate at which'each student learns the neu Logo concepts. Some time guidelines arb suggested in a 1

```
feu
teacher, will me the bqut judpe astoo when emach individual
gtudent im ready to move on to tire next mtep. It may take up to
tuo years to cover the entire unit. 
```

:

REFERENCES.

(1) Papert, Seymour, CMimdstorms - Children, Computers and Pouerful Ideas: ' (Basic Books' New York 19日0).
(2) Piaget, Jean, and Inheider, Barbel. "The Psychology of the Child." 〈Basic Books, New York 1969\}.

Students are put in a Eituation where thes must informally invent their oun language for communicating geometrical ideas:

TIME
At least three helf-hour class periads.

FORMAT
Whole class dischission plus work in. pairs.

MATERIALLS
Sugiared paper.

Objectives:

1. Studentes should be able to communicate what a simple dirawing looks like to another student.
2. They should alen be able to follow the instructions of another student well engugh to make a reasonable copy of the other Etudent. 5 drawing*
(A) Activity.
$\because 5 t u d e n t s$ arite grouped in pairs in suct a way they cannot see what the ather member af the pair is doing, but that they can
:talk to each other in a low vaices They can sit opposite. one *nother with a mall of books between them.

- Each student is given two pieces of squared paper.
r Stugents are requented to make a simple, nonmpictorial drawing on the sauared paper: They must know that the drawings can only be made of straight 1 jines, and that the places where the linem:
begin and end must benon the intersection of the lines on the .Equared paper. The drawinges must be fairly simpleat first. Allow the students to work on their drawings for a short time, 5-6 ininutes.
- Then one student of each pait is to be the "commuridcator" and the other is to be the ${ }^{\circ}$ or awer". Withoutit looking at each othare? designs, the communicator instructs the drauer in drawing what he/she has just drawn. 'The'students ran question each other about what they have done or what they mean.
- When the students have draun the designs from. their partner"s instructions they can look at the results and compere this design with the original design.
- Then thes can awap positions and ón through the iprocess again.
- When all the students are finished this activity, the teacher mhould begin a group discussign on uhat had happened, and what the Etudents had notifed. They should be encouraged to discuss if uliat methipds they found useful and what words they used most often: Examples of methods used might be
- We numbered the points on the grid so we could talk about them (Gee first computery skilla).

```
    * I prqtend̈ed that I was driving.a car and I told him wheme I
        turned.
    Some words and phrases most used:
        on the same line, next to, move forward; up, down, left,
right, on the edge, Equare, larger, smaller, upside dawn,
do that 'again.....
(B) Activity.
- Students are once again grouped in pairs, and each student
makes a straight"Iine drawing on the squared paper,, whith the
Qther student does not see. 'In this activity the 'drawer'. now
becomes the 'mover", i.e. this stugent must move according to
the instructions of the communicator, Mqving one step on the
floor ís equivalent to moving one R&uare in the design.
-The communicator directs the mover as before; only this time
he/she moves along the floor.
```



```
chalk on the floor.
- When ald ingtructione arg given, the students compares the path
traced by the mover to the original design. ->
- The students swap roles and they repeat the activity"
- Discussion'could focus on whether 'it was more difficult to
follow instructiong by walking rather thah drawing. The
importance of clear ingtructions should be brought to the
students? attentipm.
```


The discussion at the end of this activity should be led to focus on these importrant points: i). A language allows un to communicate easily with others and to do useful things.
(ii) We learn a language quiEkly when we knou what we need to known.

LOGO ACTIVITY 2 : ME゙ETING THE TURṪLE

Abstract

Children firmi meat the turtle in the bOODLE mode. In DOODLE mode a minimum set of turtle commiands can be entered by single keystrakes from the keyboard. This children who cannot yet read < well or type reliably cari use the Logo langliade and earr learn how to thing in that language

ORJECTIVES.

1. To give the children the pipportünity to explore and have fun making their oun desighs.
2. To.introduce them to the. turtles how it.moves; and :hou to control. its movements in direction and distance. ${ }^{\text {i }}$
3. To shou the students how to give titles to their designs, and then to show them hou to run the procedure they have named.

EQUTPMENT.
A. Radio Shack TRS-80 Colbr Computen and a Color Logo cartridge, Gnd a kegboard overlay. A TV or computer moritor.

TIME:

A minimun of fifteen twentif-minute periods per student.

FORMAT.
Students working individually or in pairs.

TEACHER PREPARATION.

Load the color Logo program into the computer before ciass:
Place the keyboard overlay on .the keyboard. Enter DoDOLE mode by pressing RREAK, then typing $R(f o r$ RUN), then Aressing the a Key, and ENTER. An $د$ appeajis at the bottom of the screen, and the turtle $i s$ in the centre.

AC'TVITY.

- The students examine the smally shape in the centre of the screen. The teacher explains that this is called a turtle and encourages the students to press some of the top ten keys. What happens?. The students will observe that the turtle moved and drew a line on the screen as it:moved. Discussion could take the following form*
- "Does it look like a turtle? No - but like an ordinary.tiotle, the turtle on the screen can crawl foriwards and backwards, it can turn right and left. Unilike an ordinary turtie, thís turtle can drag its tail when it moves and leave a patho This turtle can Even be made invigible. We can control the movements of quir turtle by pressing these keys along the top. The tur.tle. understands these commands - these keys are part of the language the turtle utaes""
- Tha teacher allows the students to press these keys and experiment with making patterns. The keys command the turtle as folloug :
(1) Clearscreen.
(2) Home the turtle goeg back, to gtarting position:
(3) Penup $\underset{\text { (turtle does not }}{\text { (eave a track when it moves }}$
(4). Pen doun - turtle leaves a tracks
(5) RT 45 - turtle turns 45 degrees to the rigtit.
(b) 4 T $45 \div 45$ degreest to the left.
(7) : FD" 1 - turtle moves one turtle'step forward
(B) FD 10 - moves teni steps?
(9). RT 15 - turns fiftegn degrees to the right.
(0) : LT It -turns fifteen degrees to the left.

Point to emphasize: We urse these kevs to communicate with the turtle. We must use thie langulage the turtie understands." Exerciges 1 and. 2 (at end of this chapter) give the students practice in manipulating the turtle using these kejs.

- When the students have experimented with the command keys they can learn to name: a procedyres.

For a fresh start; go into BREAK mode by pressing BREAK; clear the procedure space by pressing SHIFT CLEAR; ard then back to DOODLE by R; then m^{0}.

To create a phocedure the students simply tupe the name that they want to Lise after the $=5 i g n$. The name can be as simple ass a single letter or number. After typing the name the students press ENTER, and then press the keys to control the turtle. Students. can be creative in both inventing names and in carrying out the design. Communi cation between the students is to be

Abstract

encouraged. When the teacher has explained the methoos to the students and observes that they understand what is requiredeof them, he/she bhould try to stay in the background and act ma guide only when the students experienfe difficulty. Etudent Gelf-exploration and self-learining is an important objective at this paint.

- Studentig should nou learn to run their procedure. The teacher shous them how to get into RUN mode (press RREAK, then R), and how to type in the title of the procedure and then ENTER- The students can now watch the turtlergo.through all the steps to execute their design. Through trial-andeerror the students uill discover that to pun their procedure they must follow the steps in exact order, and that the title of the procedure must be remembered and tiped in' correctly.
- To further encourage their meativity, the, ftudents could compose a story about the turtle fo accompany their procedure, and could telli it whije their procedure wo being run. For example "Tommy tuntle Builds a House" could accompany a procedure talled HousE, New wards and vocabulary work could be reinforced in this way.
\cdots Students should be given plenty of time to practice the Loga skills they have learned to date.

When the students beconle adept at naming their program, drawing the design, and then running it in RUN mode, they will - have mastered the first concepts of Logo, and, hopefill will
have endoyed the experience and be eager to learn more.

Exercise.
The teacher could copy ant enlarge a diagram of a maze like'tíis one onto a transparenţ sheet. This sheet could then be hung in front of the sereen with tape. The fotudent tries to move the turtle through the maze.

Ekercise 2. 'Dodge the Circles.
Ob, ject.ives:

1. To have fun manipulating the turtle.
Z. To enable the studente to practice controlling the turtie on
the screen.

Directions
Load this program into memory (EDIT mode: PREAKy.E.

OBSEC'TVES:
1.To give the students further opportunities to develop their skill in directing the turtle in Dopole mode.
2. To give them practice in making pre-defined shapes and designs,
3. To show then how to edit their procedures.
4. To taach them to look carefully at their. procedures and to relate the sumbol commands with the turtle's movements.

FORMAT, EQUIPMENT And TEACHER PREPARATION as for Activity 2 . 4

TIME:
Ten twenty-minute periods per itudent (minimum).

ACTIUITY:

1. Pegin by revising Activity Z Naming, drawing and running a procedire in DOODLE mode.
Z. Now the, teacher gives the students more definite directions for the procediures
"Call your program "LINE" and make the turtle walk a straight line up the rentre of the screen:

2.

. - a leng thin line in this direction;

- in a bhort thin lines
. $:$ a long widé line, a short wida, line...."
As the student works on each procedure giving one command at a time and watching the result before giving the nent command, hefshe may wish to remove the last command. The student will :. learin that to take abay that command héshe will have to remove the symbol that was typed for that command. students should equate the symbols with certain, turtle actionsm to remove that s. last command the students wi.ll be introduced to the delete key in pooDLE, the back-arrou kés: This will, give them evan more control over their oum procedures and requires them to make decisions
"Is that trie Eommand I want the turtle to obey?
Is the turtle facing in the right direction?
Is that ine too long or long enough?...."
When the ehildren are satisfied with their procedure they can xun it artuegin anothery giving it a different title.

3. A sef of work rards would enable the students to work independentiy and at their own pace. IN the type of work, eard sugqested here, the students select a card, type in the name of the phogram that is given on the card; and tru to copy the designs:

At theifend of the session the teacher could check each student's progress by looking at the procedure area in EDIT mode and running the programs. in RUN mode.
4. The student is given more complex directions

Reform, wing the turtle the commands for the first boxy the teacher, encourages the child to play at being the turtle himself/herself on the floor, and to take the steps the turtle would take to make the box. While moving the child should. say what he/she is doing. Hour steps fop this was, turn and face to the right. " Then the students tan apply what they learned. from moving themselves to moving the turtle on the screen:

- A pet of uorkcerds would work fere also. However the student need not be concerned about copying the example exactly, a rough copy will be very acceptable, from beginners
- Other designs migtit include rectangle, \because triangle, circle house, boat, mane sun, tree, etc Designs could reinforce
material learred in mathematics, reading and spelling, envimonmental studieg and other curricular areas. The complexity of the designs will depend upon the abilintmof the student.

$10 B$

LOGO ACTIVITY 4 : CHANGING the PROGRAM.

OEJECTIVES.

1. To show the students how to add toy and delete from their designs.
z_{*} To allou. themt to become capable of éntering EDIT mode and editing their procedures.

FORMAT and EOUIPMENT as for previous Activities. >

T.IME.

As long as it takes for the studente ta gain adequate experience and to work comfortably in EDIT, RUN and DOODLE modes.

ACTIVITY.

- The students were shoun how to edit their programs in DOQDLE by deleting the 1 ast command. Another type of editing the student may wish to do is to add on to the end of a previous procedure. To do this the student will run the current version of the program in RUN mode. The shape will be drawn on the scréen: The student will be shown to go into DoodiE mode (a) and当ive a second name. The studen's'原 attention should be drawn to. the present position of the turtle - it. is at the home position

Instead of at the end of the shape. The student begin m the new procedure with HOME (key 2), raises ' the pen (key 3), moves to " the end of the shape, and lowers the pen (key 4). Now the student can proceed faith completing the shape.

- To run the whole shape:

The student can run the two procedures in sequence or can enter EDIT mode (BREAK, then E) and find the two procedures. Then the student deletes the title and all the turtle commands from Home to PENDOBN at the start of the second procedure. This requires. the student to learn the. delete commands in EDIT, as well as to recognise the turtle commands for HOME and PENDOWN in symbol forme. When the student has finished editing he/she can rung this procedure (BREAK, then. R). Further editing or additions Can be made until the student iss satisfied with the end product.

The students will need plenty of practice to become familiar with this activity as many new keys and commands are encountered for the first time. Activity prould be done parallel to this activity as it gives the students more practice in working"in EDIT mode.

ACTIUITY, 5 SAVING and LOADING LOGO PROGRAMS On TAPE .

OQJECTIVES.

1. To show the students how to save their progratop on tape, and how to load their programs from tapeinto the computer.
2. To show them the correct wass to use and look after a tape recorder and tapes.
3. To give them first hand experience of an important computer input and output device.

EQUIPMENT : Microcomputer, VDU and COLok LOGO as before."A chmpatible tape recorder and blank tapes.

ACTIVITY

- Students now have some experience of, writing and editing. theim proceduresi. Their procedures are important to them and for this. reason they may dislike losing them when they turn the computer off. Most students will welcome the tape recorder as they will be able to.save their gopd procedures, end it will enable them to do more work on other unfinished onesn tearning to save their Procedures. on tape is very simpleg so simple that even young children should experience littlédifficulty after aome guidance.
- The students will be muare of the teperecorder and its
function (Firgt compinter skills), but gaving, their oun hork may

111.

```
be a new experience for them. When a student has finimhed
uroking on the computer, the teacher should .ask if he/she would
like to save the procedures that "are in menory and work with
them at agother time. If the, student wishes to save his/her
work, the teacher can demonstrate how to connect the tape
recorder correctly and ingert a blank. tape.
```

. 1

- To save procedures. on tape the computer must be in PREAK mode. The student could 90 irito EDIT and delete any procedures that. hesshe does not want to save. Then the student gete into RREAK mode and presses 5. The prompt will be Logo: SAVE: .-. The student reuinds the tape (Rewind, Stop). and then presses the RECORD, and PLAY buttons on the tape recorder down together. The volume setting should be at about hialf the maximum volume. Nous the student is ready to record. The student responds with T and ENTER to the SAVE prompt on the computer.

When the recording is finished, the RREAK: mode prompt will. appear, on the screen, But if a number and a question mark appear after the T; then the procedures were not saved properly, so the student should try aḍatim

- Learming to load phoprams from tape is also oimplex The tape will have to be rewound amd the PLAY button depressed. Again the student should be in PREAK mode and must press i. The prompt will mppear on the, streen, Logo : LoAD:- The student types in T and pregses ENTER to start the process. Then the student can get into EDIT' and look at the procedures that have been loaded from tapen
- A.set of instructions tellirg how to Load and Save could perhaps be posted near the computer until-all the students are familiar with the proćegs.
- Each student could begin to build up their own file of programs on tape. This would enable. the student to review previous work and allquthe teacher to observe each chilld's progress.
- gtudente should also learn hou to handle the tapes and the tape recorder carefully.

Abstract

This section can be taught in conjunction with ACTIVITY 4 as it requires the student to become familiar with all the edit commands. This section however, reinforpes the edit commands through writing. It is 'non-turtle' Logo. The students are required to have acquired same skill in, reading and writing in grder to benefit. fromi this simple wordprocessing. Familiarity with the keyboard would also give the children an advantage. (First computer skills)

FORMAT.
Stidents mork individually or in pairs.

EOUIPMENT.
Computer, VDU, logo cartridge, printer and paper.

TIME.
There can be, no recommended time limit.for this activity as it is an orgoing activity. The teacher inill see many ways to expand on the suggested activities. It can be incorporated into many reading and writing activities throughout the school day. Cbildren should be given adequate time to gain confidence and skill, and this will yary accordingoto the abilities and interests of the students.

ORJECTIVES.

i" To teach the studente some simple wordprocessing. skills. 2. To encourage them to be creative and accurate in their writing.

3: To develop their reading and writing skills.
4.. To show them that the computer has many purposes.

ACTIVITY.

- The computer is in EDIT modex Children are asked to locate the turtle on the screen. It ismot there. "We can do other things with the computer ae well as commanding the turtle to move: We can use the computer to urite messages, and to forrect any errors we make when we urite."
\because
- Students are introduiced to the cursor - a short horizontal line at the bottom of. the screen. The cursor shows where any typed let.ters, numbers, etc:, will appear.
-- Btudents begin by tuping in a very short seritence, engn i I am six years ald" Then ENTER. ENTER moves the cursor to the start of the next linen Repeat thim until the student can do it exsily.
- Students wite a short note, a few lines long. To stop editing they Press BREAK. To alter, the nate they must meturf to EDIT (press E) arid the first line of the note appeare with the ciursor

Abstract

at the start of the line. To change a letter"the "student must position the cursor under that letter. The cursor is moved by the arrow keys: Up-arrow (\uparrow) and doun-arrow (ψ) change lines, and left-armow. (*) and right-arrou (4) move the cursor within a. line. When the cursor is:in place thie student can replace the letter or word by overtyping. If sthe student needs more space for another letter he/she holds dpun the SHIFT key and presses the right-arrow key for every space needed. If the student wants to delete a letter ôr space he/she holds doun SHIFT and presses the left-arrow key.

The students should get plenty of practice in using these . ${ }^{\text {f }}$ keys. Typing in messages, stories or poems, and theṇ editing ' them will foster these skills.

```
- Other features likely to. prove useful to the'student in editing text is the ability to insert lines (cursor at beginning of the follouing. line, press SHIFT and doun-arrow); to break a line in two foursor where you warit the break, SHIFT and downarrow), and to scan the text (SHIFT and up-arrow). To interrupt the scan, just prese ang key; to restart the.scan-press SHIFT and up-arrow. To. jump back to the start of the text press CLEAR.
```

- A chart shouring all the editing commands. could be hung near the computep where the students could consult|it quickly and easily.
- Students could use the wordprocessing features of Logo to

```
urite class assignmentsr. If such assignments mere lengthy
students might perhape.save their work ongtape, relpad it at a
later date"and continue uriting or editing.
```

- The students uriting takes on a new meaning for them when they can produce neat correct printed text. Their wordprocessing skills will be enhanced when they are given the opportunity to Mave their work printed. They should have little difficulty in learning how to use the printer. Simply connect the printer correftly, laad the paper and turn it on. The computer ghould be in BREAK mode. Enter. P for single. space printing, or G for doublf spare and the text in memory will be printed. Students may have their uriting typed firstin single space, and then in double in order to compare them and to decide which for is most suited to their needs.
- Students printed work should be displayed around the classroom.

LOGO ACTIVITY.7. INTRODUCTION TO. TURTLE GEOMETRY.
$\dot{L} \gamma$
OBJECTIVES.

1. Students will be introducen to the Logo commands : Forward, Right.

2, Students will experiment with these commands" to create their own designs.
3. They will beciome familiar with turtle units of length "turtie steps ${ }^{7}$, and size of angles \cdots '- turtle turns. , through. explarationn

EQUIPMENT.
TRS 日0 Color Computer . Ioaded with Color. L申go.
Cards with Logo commands:
Gardboard turtley overtiead projector.
Logo worksheet 1 and z_{n}.

ACTIUITY.

1. A suitable introductapi wóuld be for the teartier. to make up a story about a turtle and tell it usinn a cardboard turtle which is moved around on the fhalkboard; or a clear phastic one that i could be moved around on the overhead projector. The gtidents need to understand that this yurtle, understands certain words and commands and that the teacher is now going to introduce mome of thesf words: Teacher poses the question:
```
Whatt luill the turtle do if. it gets these commands?"
    FORWARD 10
    RIGHT'90
    FORWARD 10
    RIGHT 90
    FORWARD 1 10
    RIGHT 90
    FORWARD 10
        RIGHT YD
```

There are some things the students have no wat of knowing: How. far will the turtle gq. formard? Hop fam right will the turtle turni andin what direction wilf the turtle start? They are also unaware that the values in some commands (FORWABD) refer to distanceg upiale other values (ég. RIGHT. 90) refer to angle size or. turtle turns? The students are encociraged to find these answers for themselves by givng these commendstathe computer. The teacher should display cares stowing the command in a prominent plete so that students can type it in correctly Points to emphasise " The comgter must be th RUN mode SBREAK, then R)

SThergemust be spape between FORWARD and 10. student can use thereft-armow keyto correct typing errors before they press ENTER and then zimply backspace to the teqinning of the error andretype the turtre instrucion. Or just presm ENTER and reenter the 1 ine corpectly

```
2. When they have entered and obserived the previous program they
are now free to experiment as' they 'wish with these, commandsy'
```



```
for them might be to compare the differences in : FORWARD 1
    FORWARD - 10
    FORWARD 50
```

'In FORWARD, 10 what does ' 10 , mean? It could be described as the
length of the turtle track or the number of turtle steps?.. If
the ftudents give a jarge value, like FORWARD 100 ; they will
observe that the turkle moved, bit it did not leave a track: The
number of turtle: steps was so great that the turtle left the
top of the screen. When the turtle goes off the top of the
ecreen it comes back at the bottomin This is'called 'urapping
around'. The thintle can wrap around only be liftirig up its tail.;
go no track appepris for any steps where töte turtie wraps arpund.
3. Gtudents can experiment with the angle size as well as uith
distance. No attempt should be made to explain degrees to the
student as tiehshe uill.learn by erperimenting.
4. Teach the abbreviations for the commands
$F D=F O R W A R D$
RT $=$ RIGHT

5n students should be given plenty of opporturity to experiment with these commands mating their own designs, and wopking at

their own face.

6. Those who have mastered the concepts. so far could now be i given Worksheets 1 and 2 It is not Recessing for every student to use the worksheets, home students will need math more practice and experience ut Logo before they can tackle them successfully. Accuracy i worksheets. Estimating, wi ch shows an understanding of the concepts is what is required...
y

WORKSHEET 1

1. If it took a turtle 100 steps to make this line

1 hou many steps did it take to make these lines?

(c)
2. Draur a line which you think wisl be
(e) 150
(f) 90
(9) 50.

WORFSHEET 2

NAME \qquad

1. If the turtie turned $k I G H T$ 40 to make this corner : $\quad 5$

hou far did he turn to make these?

(b)

LOGO ACT PUTTY B : MORE LOGO COMMANDS \& BACK, LEFT And CLEAR.

OBJECTIVES.

1. The students will learn the Logo commands RACK y LEFT and CLEAR.
2. Students will experiment with these commands to create their own designs.
3. Students will combine these commands with those. learned. $r_{\text {a }}$ previously to ereate"shapes on the computer.

EQUIPMENT.
: As for Activity 7 , and workstieete, 3,4 and 5.

ACTIVITY:-

Zn Introduce the commands BACK and LEFT Lying a method similar to that used for FORWARD and RIGHT.
t

- Give the students plenty of time to experiment with these commands and to discover that the measure of distance in BACK is the same as that in FORWARD, and that measurement of angles, or corners. or turtle turns is the same in RIGHT and LEFT. .

3. Teach the abbreviations 'BK and LT.

1
f.. Teach the comand clear and mow them that entering thits woind (not the single key) will clear the pcreen and make it ready for a fresh start.
5....Encourage the students to give the turtle a series of. $\cdot\}$ ingtructions using all the: commands learned so far.
6. Worksheet 3 : Students can solve the problems using paper and pencil, commanding the turtle and examining the end result. an the computer, of (and preferably) using a combination of these methods.
1.
7. Womksheet 4 :This gives the students practice.in plannimg a path and in giving the instructions needed to make that path. This workstieet can be done at two levels of difficulty? (a) The student describes, the pattr taken in generad terms, eng. "Go straight for two blocks, turn right.....".
(b). The student can give directions. in 'turtle terms', where each squire on the paper is equal to lo turtle steps, andeach corner angle is 90.

日. Workcard 5 : This workcard gives the children practice in estimating, predicting and planming, important, gkills in Logo.

125

WORKSHEET 3.

NAME :

Here is a list of instructions for the turtle. Can you give the turtle just, one command that would be the same ms the list?

EXAMPLE:

(a) FD. 30, FD 40, FD $30 \cdots \cdots+\cdots$
(b) ${ }^{\circ} \mathrm{FD}$ 60, FD BO

(t) FD 日Q, BK 20 ; FD $30-\cdots \rightarrow+\rightarrow$
(d) $\mathrm{FD}, 50, \mathrm{BK} 40, \mathrm{FD}, 50 \mathrm{BH}, 40, F D, 40 \rightarrow-$
(e) RT 20, RT 40, RT 25

(f) LT: 1日, LT 40, LT, 54, ———————)
(g) RT 100, LT 70, RT $60 \cdots+\cdots$
(() LT 40, RT 75, LT $35,--\longrightarrow \rightarrow$

1. Start of the arrow and go the (Q) Draw a line along your path
12 Describe your path saying thou many block you go before turning, and which way to turin and how to go pr; from there:

3 Describe your pot in turte language Each is equal to to turtle step, and each conner Lis 90

WORKSHEET 5.

NAME :

1. Tilly and the Rock.

One day Tilly Turtle was out for a walk. But there was a rock in
Tilly's way. Here is how Tilly moved a
RT 90
FD 20

RT 90 Tt!e Rock.
FD 20 . . x
$L T 90$
FD 20 Tilly, Turitle
LT 90
$F, D \quad 20$
RT 90
$F D \geq 0$
(a) Draw the path that Tilly took.
(b) Give the computer the instructions and look at the pathr. Is it tha same as yours?
2. . Tommy's Triangles.

Tommy Turtlá loves triangles: He.is also very lazy. Here is how Tommy made two triangles uith very little effort.

FD 30

RT 120
FD 30
RT 120
FD' 30 tomms stants heren.

RT 60
FD 30
RT 120
FD 30

Can you draw Tommy 5 triangles?
Have Tommy draw them on the computer.
3. : Your Initial in Turtle Steps.

Driaw your first initial here using only straight lines:
Write imstructions for the turtle to make that letter. INITIAL

INSTRUCTIONS.

Now give the instructions to the computer. Does the turtle:make
your initial correctly?
5. \quad MORE TRIANGLES.

Can you think of a way to have Tommy jurtle draw thee triangles with only a feu more instructions?

ACTIVITY 9 : PROCEDURES.

OBJECTIVES.

1. The students will be able to combine the commands learned 50 far into units called procedures.
2. The students will understand procedures both by using them and constructing them.

ACTIVITY.

- The students make the turtie drau something by giving a series. of commands. Then they think of a name for the picture (for Exampie, HOUSE). In order for the turtle to draw this picture again we need to teach this name to the computer. This can be done bé creating a procedure. But first' the student must urite down the commands to make the picture, or remember them. The steps to be learned to creaté a procedure are as follows. : (1) Get into EDIT mode (BREAK; then E).
(2) Jhe first line of the procedure contains the namen. We use the word "To" to tejl the computer that we arie naming a profeduren, After .TO* uie type int the name:

TO HOUISE
(space)
Then ENTER:
(3) Next we type in all the commands to the turtle to draw the HOUSE :

```
                            131.
to House
\(F D-50\)
RT 45 *"~etc.
(4) To end off.the procedure we tipe END on a new line and then ENTER:
To try out the HQUSE procedure we must.go into RUN mode (BREAK, R), and enter the name of thie procedure. The. turtle goes through all'the steps to make 'HOUSE. The protedure HOUSE iw now in the computer"s memory, and the turtle understands the word 'HOUSE'.
```

```
    If the gtudents want to change the.procedure they can edit
```

 If the gtudents want to change the.procedure they can edit
 it in EDIT mode. (Revise editing)
it in EDIT mode. (Revise editing)

- !
-.Students should be given plenty of practice in creating
0
procedureg, ramning them, debugging them; 'ete. They can save
their pest procedures on tape and ulse them again.
- Students can experiment as to thie best strurture for uriting
the commandp in a procedure, e-g.

```

TO M
FD 30

LT. 45
FD 20

RT 45
FD 20
LT. 45
\(F D=30\).
END*

TOM-
FD 30 LT \(45 . \mathrm{FD} 20 \mathrm{RT} 45\)
FD 20 LT: 45 FD 30
END

TO:M
\(<\dot{F D} 130\) LT4S END \(\therefore\) ar. cort.

\title{
FD: 20 ORT 4.5 \\ FD 20 LT 45 \\ AFD. 3 \\ END
}

Which is easier to follpw; easier to changes takes less space?

Students can decide which mtructure.they would prefer to use.

\section*{ORUECTIVES.}
1. To introduce the students to the commands:
PENUP . PENDOWN ...
hideturtle . SHÓWTURTLE.
2. To give them an underetanding of these commands through repeated and ereative use.

\section*{:ACTIVITTY:}
1.
"Try thie - clear the screen (CLEAR) ard make the turtle mover Back 40 steps (BK 40 ). Where if the turtle gnow? He is on the : linem In fact he is covering up some of the line, but we can see -through him" Wouldn't it be better if the turtle uas invisible? Then we could fee the line more ciearly. To:make him inviaible ar to hide him we can ume the command

HIDETURTLE : or \(H T\)
Even though the turtlenis invisible he ittill makes a track. Try this:

CLEAR
HT
\(\mathrm{BK}: 50\)
We can see the trafk the turtle made but we cannot see the turtien to make the turtle appear again we use

\section*{SHOWTURTLE . or ST:}

Try. it and seer Nou write some procedures of your own using HT and ST. Perhaps you fould Eave"the best one"on tape. "
2. "The turtie can also move without making a treck. We can command himito raise his tail when we dorit want him to leavé a. track, and to lower it when we want him to make a track. Can you guess. what commands we would give to do fhis? The commands are :.

PENUP - or PU for no track; and
PENDOWN or PD Po leave a track.
Try these new commands on the computer; write a prociedure'and run it.
- Write instructions to drau
a) your initials,
b your firet name. To dothis you will nead to have the turtle Etop drawing while you move between letters. Use PENUP and PENDOWN.
- Dram these pictures on the screen together, Use: HT, ST, PU, and PD; RT, LT, FD; BK and CLEAR. Write down the instructions as Hou give them Then use them in a procedure 'TWO' to dram the pictures again."

3. To the Teactien.

Accuraciy in drawing is not important in these ativities. Rather,
their purpose is to reinforce an understanding of the commands and to encourage problem-sqlvingn creativity and planning in the student. A suggestion would be for the teacher to write down the commands as the student debugs them and to read them to the student. as he/she is uniting the pröceduré, or the students could copy down all their om commands as each command is guccestafl. Then the students could run the procedure to see if there are any more bugs. The kinds of debugging. situations encountered will vary according to each'studert, and the teacher should be ready to intervene if the situation becomes too difficult for the. student.
- Some procedure suggestions :
f skyscrapers
- rockets
- a fabric pattern


OBJECTIVEG .
1. To introduce the students to the commands for changing the position or direction of the turtie on the screen. The commands
are.

SETX
\(\$\)
SETY or: SY
HOME ". . . and.
SETHEABING :or . SH

\section*{ACTIUITY.}
1. In our designs the turtle begins to move from a position in the centre of the screen. This position is called HOME. If we want the tuintle to begin from a different position we uge the Comimands:
\[
\text { SETX } \quad \text { or } \text {, and }
\]

SETY . or SY.
For example :
TO BOX
EETX 60
FD \(50 . R T 90\)
FD \(40 \mathrm{RT}^{\prime} 90\)
FD 50 RT 90
- cont.

FD 40.
END
The turtle moves to the position we have rampd regardless of where it was before thin. No line or track. is drewn as it moves to the position, and tha turtle gtill points in the same direction af it pointed before it moved. Students should experiment with different values for these commands, and ingert these commands into other procedures and observe how they will effect the design of the procedure when it is ruh.

Zopo send the turtle back to the original starting position in the centre of the screen we use

HOME.
\(-\)
3. To point the thirtle in a certain direction ue use \(\therefore\) SETHEADING \% or SH

For example : .. SH 90
The value of the direction can béany number from 0 to 359. When the turtle gets this instruction it points in the given direction regardess of where it. was pointing previbusly.
4. Students are requested to create a design and write a procedure with the following guidelines
a) Using the command \(s x\);
b) Using, the command SY;
c) Using the commands \(\operatorname{sX}\) and sy"
d) UFing the command HOME
e) Using the command SH:
f) Using as many of these new commands in one procedure as you cany exg. - a design that has a triangle in each of the four comers of the screen.
is
\(\cdot 1\)

LOGO ACTIUITY 12: BUGS and MORE BUGS.

The students have acquired an extensive logo vocabulary and can now communicate effectively uith the turtle. So far, the emphasis has been on exploration and imagination to uriderstand the new commands and to apply them. The students. were free to degign their oun programs using the given commands. in this section there is a slight rhange of approarh in thiat the student is expected to follow specific instructions in designing a programi. The students might be required to draw a certain shape, to copy a diagram, or to use cemtain commands in a spacial wayn. All these require the student to. think more carefully about what hejshe is doing. The students will encounter 'bugs'. in their attempts to follow instructions; and it is through correcting these that the student engages in such activities as estimating, calculating, predicting, planimg, thinking and learning. Thé students will apply what they learned by discovery and by triali-. and -eriror. They could also refer to features used in previous procedures as a source of information. It js almost impossible to inst the benefits of working in such a learning environment as Logo. However, some of the objectives for this exercise are a 1. Situdente wi.ll learn to dmam upan thedr logo vocabulary to. follow as best they can the instructions that they are giveri. 2. Studentes will learn to look upon an error br bug as a
challenge, and will seek to debug it if an intelligent way, and so. develop goad problem solving skills.

ACTIVITY.
For the Student:
- 'Write procedures to draw the follouing designs. You cian experiment first. If you have, bug in your program see if yqui can solve it. " If it is too difficult. ask. नि friend, or maybe your teacher: Good luck:'

For the Teacher :
- The teacher should be able to judge the rapabilities of each. student and so assign activities based on the student"s ability. Logo offers many opportuinities for foibility so that the learning needs of every student can be met. Theré is no specific order, in which the students could work through the designs, and each student will differ in the length of time it takes to grasp all. the confepts. A flexible, imaginative, and helpful approarch. is possibly the best way for the teacher to art as a guite in helping the students learri with Logo.

1. "The students will learn the commands'to change the color of the screen and the color of the turtle tracks. 2. Students will be able to experiment with the different colors to make their designs mare colorful and fun.

EQUIPMENT:
It is necessary to have a color monitor or. a color TV set. Computer and Color Logo as before. If a black-änd white TV ís the wsual classroom equipment, perhaps a color set could be borrowed for a short peripd of time to give the students an opportunity to learn a ittle more about, the computer, and also to allow them to enhance their designs.

9

\section*{ACTIVITY.}
\(\rightarrow\) Students are asked to comment on the color of their screens and on the color of the lines.
"Di you like the color? Is the contrast betwen background and lines good? Why do we need , good contrast?...

The turtle can draw colored i ines and we can change the color of those lines if we want to. We have a choice of two sets of colors - COLORSET or 1. So far we have been working in

COLORSET D．There are four colors for ench set；These colors are numbered \(0,1,2\) and 3 ．To change to a different color set wesuse COLORSET 1 or COLORSET O．

Students can experiment orith these commands．For extmple，they ： could，run a＂Procedure（in RUN node）and then change the color马et．

HOUSE
COLORSET 1 ．．and then bafk to
COLORSET．©，Which is clearer？Whis？＂
In each color set the normal background color is 3 and the normal drawing color is colpr 0 ．Students can easily change the drawing（or pen）color py giving the command

PENCOLOR ．or．PC
e．g．In the procedure Box they could have
TO BOX
PC \(2 F \dot{F}=50\) RT 90 FD 40 RT 90
PC． 1 FD 50 RT 90 FD 40
－To charge the background calor students use the command BACKGROUND Or BG followed by the number of the folor they wish to use．For example，郜

TO BOX
PC 1 BG解 FD \(50 . \mathrm{RT} 90 \mathrm{FD} .40 \cdot \mathrm{RT} .90\)
FD 50 RT 90 FD 40
－Students can introdure many color variations their the procedumes．By experimenting；they will discover which colors：
```

look best. together, and whith add to their designts tha colors
can be:mproved by adjusting the codor and tint controlm on the
TV or.monitor.

- Some paints for discussion.:
"Whet happene if the color of the pen and the color of tre
background are close together in number, e.g.

```
PC 1 mg 2 ?
- Through exploration they may discover thet an unwanted portion of a design could be erased by having the pen color af the unwanted part set to the same color as the backgrourid color
- Use of color commands should be encouraged ass it develaps an aumeness of color and cpntrast in: the children, adds excitement to their designs, and allous for an expression of individality and creativity in the students programming.


ACTIUITY 14 : SOME LOGO SHORTCUTS.

\section*{ORJECTIVES.}
I. "Thestudents will understand and use gubprocededures in their programe.
2. The students uill'understand and use the REPEAT command.

ACTIUITY.
(A) Begin by requesting students to review the procedure they urote to draw a square, and to ruin it.
"What name did you give the procedure?" Revieu the idea that naming a procedure, en square, is like teaching the turtle a nei word. To rum that procedure we simply type in the name and the turtle will krow what to orrawn
( B ) TO EQUARE

FD S0 RT 90
\(F D-50\) RT \(Q 0\)
FD 50 RT 96
\(F D: S 0\)
END
Encouragethe students to type in SQUARE, ENTER onte, twice, thie times foum times. What do they have now? Invent a name forthis four-stuare design, e.g GquuARE Teacher could urite this name on the hal oboprd and the elasp cent revieu the
process of how they areated thig derign, eng.
"It im made up of four GQuAREs.
WE told the turtle to draw one SQUARE after the other until we had our désign. We typed in SQUARE" SQUARE, SQUARE and SQUARE " Teacher should elịcit ideas from the students ms to a way to simplify this process. "How abouit teaching the turtle one wond for this design: It would be easier to type 'FGQUARE" than toa type SQUARE four times. To teach the turtle this word we must urite a procedure FSQUARE.

TO FSQUARE (ENTER)
What comes next? The commands. Is there an easier way than writing \(F D 50\) RT 90. .etc., as this way would be long and it would be easy to make a mistake. How could we break this procedure into simple steps? What four steps did the turtle make to draw thig? The turtle drew four squares. Since the turtle already knows how to SQUARE we could urite :

TO FSQUARE
GQUARE
gQUARE
GQUARE
gQUARE
END
Students should write this new orocedure in EDIT mode and run it * (SQUARE must already be in memory.)
"I it the samed dexfon af we hed before? Whach method is ensier 7. M. "

Using procedures to write procedures \(j\) a a good way to work in

Logo. We can preak down large tasks into. a number of smalier, simpler ones. We make the task easier to do; and we.make less mistakes. If we want to change our program we might only have to Change one of the smaller parts, Our program is also neater, and easier to raad and understand.

\section*{- Some activitieg.}
1. Write a procedure to draw this ;

Now write a procedure to draw this;
*


then this

3. 'Draw this hat.


Now this
\(\alpha\)


As the programs increase in complexity it becomes necessary ta make some changes or add to the existing subprocedures. Students will discover this through experimenting by themselves.

Students can also combine procedures. drawn in noode mode ! with those uritten in EDIT mode. Some revision of DOODLE mode might bu worhtwhile.
5. Get into DOODLE and draw EOme CLouDS and run it (RUN mode).


Nou get the thertae to draw this PICTURE:


Perhape you could add a TREE, or a GATE. What is your picture. lik'e now?

Students will. learn that they can use many different subprocedures to rreate a large program. The students will invent many different' designs and will develop skills in modular programming.
(c) Students' attention is again drawn to the. progiram SQUARE and then FSQUARE:

TO FSQUARE
SQUARE
SQUARE
GQUARE
SQUARE
END
There is a ohorter way to write FSQUARE and to aet the same result, Can you guess hou to do it? Py using the command REPEAT, we can urite

TO FSQUARE
REPEAT U (SQUARE)
END
Students are requiredita erase the old FSGUARE protedure and to

\section*{151.}
```

urite the new qne, and tor run it...They will observe that the end
result is the.same.
The REPEAT command tells the turtle tor repeat whatever im
enclosed (,) the number pf times indicated; Commands and
subprocedure names can be included in the parentheses. students
sholild try this program::
TO. TSQUARE
REPEAT 10 (SQUARE RT 4(4)
END
In this program the turtle draws the first squiare as before; and
then turns 4egrees to. the right before drawing the next
square. As the program "says, this is repeated 10 times. Students
uillllearn thet the number of repetitions, and extra commands in
Parentheses will greatly influence the resulting pattern. Thes
can experiment unth Nege commands to Ereate some spectacular
designs:

```

\section*{LOGO ACTIUITY 15: CIRCLES' CURVES and VARIABLES.}

\section*{OBJECTIVES.}
1. The students will learn hoi to draw curved shapes, through exploration, in .DoODLE•mode.
2. Students will learn how to draw circles by giving commands to the turtele in RUN mode They will learn•first througt experimentation, then by following an outline, and then by using, the pre-written program designed to encourage fifem to see the relationship between the number of sides in a shape and the: size of the angles.
3. Students will make patterns using circlesy arcs, and the REPEAT command.
4. Students will understand and use variables in their procedures.

5' Students wi. \(1 \cdot\) compine all they have learned in logo to create a MASTERPIECE

ADDITIONAL EQUIPMENT.
Thie programs CIRCLES, BOX, SHAPES, DESIGN, ROUND anH MORE recorded on tape or uritten on the chalkboard, for gtudents to enter into mémbry.

\section*{ACTIUITY}
1. The turtle can dram circles.

Students' are encouraged to 'plas turtle? to try. and figure out how the turtle would move to draw a. circle. They could walk in a circle and thirk of what they are doing in terms of tirtle movements. They will discover that to make a circle they go forward a little and turn a little until they go all the way around.


A large circle will appear on the screen. Then students get into. POODLE mode (a), name their own circle, and by using the onerkey commandsy make the turtle follow the outline to draw trieir oun circle: They can examine their own circle fin RUN. This activity cam be repeated untily the student can arawra fairly accurate tipele. The student can then progress to drauing a circie without the outline A pet of workcards would be fiseful at this stage to give, the students some guidelines, but imagination and creativity shouild be encouraged too.

Some guggestions for: piorkcards :
\[
\left\lvert\, \begin{aligned}
& 0 \\
& \theta_{0} \\
& 9
\end{aligned}\right.
\]
3. Ciricles in RUN mode.


Students can experiment with Logo commands to make a circlen.
They will find it useful to loge the REPEAT command, as dramimg the circle consists of going forward and turning'a little many times untill a circle is. made. Students will need plenty of time to experiment at this point. Some guidance could be given with the following erogram *SHAPES' where the students put in their oun values for the nimber of sides (:N), and the length of each side (:L). *

TO SHAPES :N ML
REPEAT \(: N\) (FD :L RT \(360 /: N\) )
END
Students iould run SHAPES 10.5 or
SHAPES 5 15 etc.
They can experiment. With this program untily they have found the best combination of values for circle.

The students should gradually come to an awareness that.
there is a relatignship between. the number of sides and the size of the angles in a circle. An informal way to reinforce this Concept is to give them the opportunity to experiment with different Variable Eqmbinations in the program DRAW.

TO DRAW :N A

REPEAT :N (FD 10 RT : A).
-END
```

N represents the number of. sides, and A is the size of the
anglemphen the students have tried mandy different values the
teacher gould introduce some "MAGIC COMPINATIONS" :eng*

```

```

$=N($
36
30
20
Students will discover that by using these combinations they ran draw penfectorircles. observant students will notice that in each case the product of the two variables equals 360. Such students can be encouraged to find more 'MAGIC COMPINATIONS', and to use them. in the programing

```
```

When the students have grasped the method for drawing a circte

```
When the students have grasped the method for drawing a circte
they can now draw many desigrrs using cirroles, and combining
they can now draw many desigrrs using cirroles, and combining
circleswith other.shapes: Even simple additions to avcircle
circleswith other.shapes: Even simple additions to avcircle
program can have fabulous results. For example:
program can have fabulous results. For example:
    TO ROUND
    REPEAT 36 (FD 8 RT 10)
    END
```

 TO DESIGN
 REPEAT 20 (ROUND RT 18)
 END
 The use of subprocedures should be encouraged. There is almost
no limit to thervarigty of designs the students can produce when they combine all they have learned about Logo with their oum imagination and gense of adyenture. Teacher guidance should tafe the form of ensuring that each student is engaged in worthwhile learning, and is being challanged at a level suitable to his/her ability
4. Students can expand their experienceof constant curvature in a. circle by drawing arcs and curved lines of different:sizes. This could begin by exper imenting with different. commands, but students could quickly move to writing procedures.using REPEAT and specifying angle size. Many may have graspet the idaa of variables in previous programs (more on this in next section), and should be encouraged to use them in their. procedures. For example :

TO CURVE:T : A
REPEAT :T (FD 5.RT :A)
END
Some suggestions for curves:
a_{n}

b.


```
Tri MORE, changing the variables each time you run it:
    TO MORE: EN :L IT
    REPEAT :T (SHAPES:N: \(:\) RT \(36 \square /: T\) )
    END
```

Studentis can experiment with different values in these programs,
as welf as writing propedures of their own using variables.
B. Máking a Masterpiece.

This exercise requires the student to use several procedures, uritten in both Dooble and RUN mbdes, uhich combine all they have learned in Logoy in order to ereate their our ?masterpiece? . Tfis would be a complex picture, incomporating many shapes and desigris: It could be drawn as a. visual arcompaniment to a story or popm the ftudent had wititen. or the student could use his/her imaganaton ta create a"masterpiece and then urite, a stary describing the scene. The "masterpiece. cruld be given titie, and a feu sentences could be displaged on screen describing the picture.

TO MASTERPIECE

SY 180 PRINT MMY NEW BICYCLE
BY TSU PRINT I LOUE TO CYCLE IN THE WOODS"
BICYCLE
TREES
HLES
SKY
ENDD

MY NEW B'ICYCLE
I LOVE TO CYCLE IN THE WOODS.

\ddot{v}

The final procedure, MASTERPTECE would combine a set of subprocedures which thie student would have written and run previously, and when combined in the final procedure wouldmake * up a picture or scene. ThiE should be fun and Ehould provide a challenge to the students? imagination and programming ability, and alfo entiance their creative writing. The teadher could use this as an ppportunity to incorporate different areas of the curriculum.

Abelson. Harold, 'Logo is Not Just For Kids.' BYTE, Vol. 7, No. B, Aug 1982 pp: B8-100

BÄrnhold, Donald L. .and Lindermere Linda, 'Starting Point in Mathematics; "Teachers Edition (Gino and Coss Educational Publishers, Canada)
'Bentley, Emmalyn. "The Silicon Blackboard.' MICRO, No. G4, Sept 1983, PP. 39-43.

Roman, Barbara $T_{*}{ }^{2} D 0$ Computers Have a Place in Preschools." * . ERICED 231.504 (FOb 19日4).

Burnett; Dale J. ${ }^{\prime}$ Lo do, An Introduction. (Creative Computing Press, N.J. 1982.).
λ
Coburn, P. et al. Practical Guide to Computers in Education. " (Don mitis, Ontario: Addisan-Wesley Publishing Co. 1993.)
 $\therefore 34-36 i$

Duncan," Ernest, R. et'al.
Mathematics Teachers Edition, Rooks
K, 1 and 2. Houghton Muffin Co. Boston.)

Gage and Berliner，＂Educational Psuchology：＂（Houghton Mifflin Co．Bostonn）197日，

Geoffrion．Leo and Geaffrion，olga，＇Computers and Reading Inptructionn＇Gon Millis，Ontario＝addison －Wesley Publishing Co．19日3．）．

Goldenbergi，En Paul．＇Logo－a Cultural Glossary，＇PYTE，Vol 7, Non 日，ALig 1982．PP．210－212．

Goldenburg，E．，et al．Cqmputers，Education and Special Needs． ZDon Millis，Ontario Addison－Wesley 1983．）
d
Harves，Brian．＂Why LOgo．＇BYTE，Vol 7，No 日，ALIg 1982，Pp．． 163－193．

Jones＇R_{n} ？Microcomputers＇：Their Use in Primery Educatiorin， （Countil for Educational Tecthology，Erigland；1980）：

Kelman，P，et al＇Computers in Teaching Mathematics．＇X dpri M11is，Ontario＇Addison Wesley，1983）．

1
Lamier，R．W．Pesioning Computer－Based Mitroworlds．BYTE，Vol． 7；No．日，Aug：198？PP．138－160．

Lee，$M_{n} W_{n}$ ：Early childhood Education and Microcomputers．n＇？

```
ERIC ad 231 '903; April 1983.
```

```
Meter, P. I.. *Wheri You Use a Calculatpr You Have To Think!'
ARITHMETIC TEACHER, VOI. 27, (Jan 1980), p. 19.
```

MeNaily, D. W. "Piaget, Education and. Teaching:" (Angus and Roberts; Sydney, 1973.)Ideas" (Basic Books INc. igBO)Piaget, Jean. "Play, Dreams, and Imitation in chilldrood.".(W.Binman, LoNdon:1951),Piaget, Jean. :Science of Education and the Psychology of theChild.' (orion Press, new, York, 1.970.).Piaget, Jean and Inhelder Barbel. "The Psychology of the Child."(Basic Books, New York 1968).Soiomorig Cynthia. ${ }^{\prime}$ Introducing Logo to Children. ${ }^{\prime}$ BYTE, Vol. 7,no. 日, Alg. 1982, Rp -196-208.Solomon, Cynthia and Papertn s. 'A. Case Study of a Young ChileDoing Turtle Graphics in Logo, ${ }^{\prime}$ ERIC, ed$207578(1976)$.

Teachers Handbook ${ }_{*}$ PArti and $z_{\text {. }}$ Irish Primary. GChool Cuirriculum. (Dept, of Education, Dubliny Ireland.)

Palmer; H. A-m Minicalculatormin the Classrom-What Do TEachers THink? ARITHMETIC Teacher, Vol: 25, (April 1979) Pp 27+8B.

Watt, d. 'Logo in the Schools.' BYTE, Vol 7, Nט. B, Aug 19日z', $P 1116-134$.

Weston, Dan. ?Hi-Res Characters for Logo."MICRO; No. 64, Sept 1983; P. 50-52.

William, G. PDgo for the Apple 11 , the T I- 9 G/4A, and the TRS. $\because-80$ Encm, BYTE, Vol 7, No, B, PPP $230-290:$

7akariya; N. ${ }^{7}$ the Calculator in the Classroon: ARITHMETIC TEACHER, VOl 27, (March 1980), PP. $12 \div 15$.

