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A bstract 1

A b s t r a c t

Effects of Rotation on Stellar Spectra

by Aaron Gillich

Abstract: Models have been produced to  study the spectral energy distributions (SEDs) and 
absorption lines for rapidly rotating B stars. A fully implicit 2D stellar structure and evolution 
code was used to generate the rotating structure models. The code PHOENIX was then used to 
generate non-LTE stellar atmospheres and spectra. An integrator code, CLIC, then created SEDs 
and absorption lines as viewed from 10 inclination angles. The SEDs were used to create a series of 
inclination curves, defining a rotating star’s possible positions on an HR diagram. It was found that 
uniform rotation creates a relatively straight line parallel to the main sequence. The line extends in 
length and moves away from the main sequence as the rate of rotation increases. Differential rotation 
creates a more extended and complex inclination curve. The effects of differential rotation on line 
profiles was explored. It was found that differential rotation creates a very different profile from 
uniform rotation, especially when viewed closer to  the pole. Both the SEDs and line profiles were 
used to  test the limits of von Zeipel’s theorem against more realistic models. The SEDs produced 
appreciably different inclination curves for rotation rates greater than around 0.76 of critical rotation. 
The difference in the line profiles produced by von Zeipel’s models and the more realistic models 
were small.

August 16, 2007
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C h a p t e r  1. Introduction 2

C h a p t e r  1

I n t r o d u c t i o n

The nature of rotating stars has long been studied by stellar theorists, yet continues to be a very 

elusive problem. Many of the tools, both observational and computational, that are used to  analyze 

non-rotating stars become less useful when rotation is included. As I will discuss, rotation not only 

introduces a series of new questions, but complicates a number of older ones as well. Everything 

from a star’s internal structure, its evolution, its chemical composition, and even its position on the 

HR diagram become challenging questions to  answer when the star is rotating sufficiently rapidly. 

Some new dilemmas introduced by rotation include determining the velocity at which it is rotating, 

determining the angular momentum distribution, and assessing how these factors affect the other 

properties of the star.

1 .1  B a c k g r o u n d

There are many different fronts from which the problem of rotating stars can be addressed. This work 

will focus on computational modelling and building synthetic spectra for rotating stars. Much of 

what is known about both rotating and non-rotating stars has come from models. Stellar evolution 

codes can create detailed models of a s ta r’s structure. This can give the pressure, density, and 

temperature distributions inside the star, as well as at its surface as it evolves. Stellar atmosphere 

codes can solve the equation of radiative transfer to give synthetic spectra for a star. This can be used 

to reproduce observables like a spectral energy distribution (SED), or individual spectral lines. The 

procedure is relatively straightforward in the case of non-rotating stars, but becomes significantly 

more complex when the star is rotating. I will therefore begin by outlining the key considerations 

in modelling rotation, such as velocity determination and rotation laws, followed by giving a history
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C h a p t e r  1. Introduction 3

of how these problems have been confronted in the past and what tools have been developed to 

overcome them. Finally I will introduce the present work and what it will be contributing to our 

knowledge of rotating stars.

A non-rotating star can, with a few basic assumptions, be modelled as a sphere, with the effective 

temperature and gravity constant everywhere on the surface. While the fundamental physics do not 

change when the star is rotating, several new variables are introduced.

As a star rotates, the centrifugal force stretches the star away from the rotation axis. This creates 

an oblate shape that does not emit flux equally at all locations on the surface. The flux leaving at 

the poles will be greater than the flux leaving at the equator, and the flux seen from a rotating star 

will vary depending on the inclination (i), the angle between the observer’s line of sight and the 

rotation axis, where i = 0° represents the pole-on view and i — 90° represents the equator-on view.

One must also consider how to determine observationally whether a star is rotating. The method 

for determining the rotation velocity of a star comes from analyzing individual spectral lines. As 

a star rotates, the light coming from the advancing and receding sides will be Doppler shifted, 

symmetrically broadening the line profile. Comparing a broadened line with an unbroadened one 

can therefore reveal the rotation rate that is observed for the star. The angle of inclination is 

unknown, therefore, only a component of the velocity is observed, which is expressed as v sin i. 

Early type stars are frequently rapid rotators, with v sin i as high as 400 km s” 1 (Slettebak, 1949). 

As the rotation rate increases, a spectral line will become broader and flatter as the wavelengths of 

light that create the line are shifted further away from line center. However, for rotational effects 

alone, the equivalent width, Wa, of the line stays the same. If a star is rotating sufficiently rapidly, 

some key lines can be broadened so much that they become indiscernible. This can make abundances, 

temperatures, and even the rotational velocity itself difficult to  determine.

Not only is the rotation rate as defined by the surface equatorial velocity important in determining 

observed features, but so is the internal angular momentum distribution. Stellar rotation laws can 

be divided into two main categories, conservative and non-conservative. A conservative rotation
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C h a p t e r  1. Introduction 4

law is any for which the force can be written as a gradient of the potential (Tassoul, 1978). A non

conservative rotation law might be one in which the angular velocity varied with both colatitude and 

distance from the rotation axis. Conservative rotation laws allow more mathematical simplifications 

and flexibility, and are far more frequently modelled. All the rotation laws considered in this thesis 

are conservative.

The only star for which the internal angular momentum distribution is even partially known is the 

Sun. Models of any other star must, therefore, have a rotation profile applied to them ad hoc. For a 

conservative rotation law, the star must be either rotating as a solid body or differentially rotating. 

In solid body, i.e. uniform, rotation the angular velocity is constant throughout the star, whereas 

for conservative differential rotation the angular velocity varies with distance from the rotation axis. 

One example of a differential rotation law has the angular velocity increasing with the distance from 

the rotation axis. This is the way in which the Sun rotates (Schou et al., 1998; Thompson, 2003), 

and will hereafter be referred to as increasing differential rotation. Another example of differential 

rotation is that in which the angular velocity decreases with distance from the rotation axis. This 

type will hereafter be referred to as decreasing differential rotation. Smith (1971) argued based 

on observations of the Praesepe and Hyades clusters that uniform rotation is likely unrealistic, but 

because of large uncertainties no particular non-uniform rotation law can be specified. More recent 

studies, as I will discuss, have only slightly improved on this idea. Given the lack of knowledge, 

uniform rotation laws are still frequently modelled because of their relative simplicity.

1 .2  M o d e l l in g  R o t a t in g  S t a r s

The modelling of the spectra of rotating stars can be treated with three distinct computational 

steps: the calculation of the interior stellar structure, the calculation of the atmosphere based on 

that structure, and then from those the calculation of the SEDs and line profiles. While this paper 

will primarily study the effects of rotation on the two observables, the SEDs and absorption lines,

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C h a p t e r  1. Introduction 5

the benefits of proper structure calculations will be discussed as well. It has been shown that the 

effects of rotation on the interior structure play a significant role in determining the emergent spectra 

(Collins et al, 1991). This section gives a brief history and evolution of the ideas behind modelling 

both rotating stellar structures and atmospheres, and the ways in which they have been used to 

create synthetic SEDs and line profiles for rotating stars.

1 .2 .1  I n t e r io r  S t r u c t u r e s  a n d  V o n  Z e i p e l ’s L a w

It is well understood that rotation distorts the shape of a star, making it asymmetrical. Such stars 

can still be treated as a one dimensional problem if certain conditions are met. Most calculations of 

the stellar structure of rotating stars rely on calculating an equipotential surface, along which density, 

pressure, and temperature are constant. Note that this will only be possible for conservative rotation 

laws. The problem can then be treated as ID with the equipotential surface being the independent 

variable. Determining the location of the equipotentials as functions of r and 6 then becomes a more 

manageable 2D aspect of the problem. While the nuances and methods have evolved significantly, 

this is the fundamental idea behind most modelling of rotating stars. Some more recent efforts make 

the considerable step of treating more elements of the problem in 2D.

The method of using an equipotential to describe the effects of rotation on stellar structure dates 

back to von Zeipel (1924). He designed a mathematical approach to treating rotating stellar masses, 

showing that in hydrostatic equilibrium, surfaces of constant total potential are also surfaces of 

constant pressure and density. From the ideal gas law, if pressure and density are constant across 

an equipotential surface then temperature must be as well. For a purely radiative star the flux can 

be expressed as the product of the temperature gradient and a radiative conductivity. This in turn 

means that for a purely radiative star, the flux is constant on an equipotential surface as well (F  oc 

V4>). The flux at the surface is proportional to which leads to the proportionality, Tef f  oc dl f f ,  

where Te/ /  is the effective temperature and gef f  is the effective gravity at the surface. The total 

potential for a rotating star is the sum of the gravitational potential and the rotational potential. By
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C h a p t e r  1. Introduction 6

defining the gravitational contribution at the surface as a Roche potential and specifying a radius 

somewhere on the star (usually the equator), one can then solve for R(9) everywhere on the surface 

of the star.

This then allows the effective gravity to  be found from,

9ef f  = + u 2R{d)sin26 (1.1)

where G is the gravitational constant, M  is the mass, u  is the angular velocity, and 6 is the colatitude. 

This in turn allows one to get Tef f ,  with the constant of proportionality usually determined by setting 

the total flux to be some desired value.

It is a very common tool used for simplifying the calculation of a rotating stellar structure. It 

provides a relatively simple way to determine the inputs for a stellar atmosphere calculation, Tef f  

and gef f , as they would appear at a given colatitude, 0, for a given rotation velocity, ui.

As computational capabilities evolved, the law was used very extensively for a number of diverse 

purposes. Sweet & Roy (1953) built models that treated rotation as a first order perturbation. 

Their approach could only handle slow rotation, and was improved upon by Roxburgh et al. (1965), 

who studied rapid rotation by dividing the star into two different sections. The interior section 

was designed to contain the bulk of the mass and hence the gravitational potential, so tha t the 

contribution of the exterior section to the potential could be given by an approximate solution to 

Laplace’s equation. Sackmann & Anand (1970) improved these models by incorporating radiation 

pressure.

These methods treat the problem as ID perpendicular to equipotential surfaces. That was suf

ficient provided tha t the star was uniformly rotating. To handle more diverse angular momentum 

distributions, such as differential rotation, Ostriker & Mark (1968) developed the self consistent field 

method (SFC). They divide the problem into two independent steps, solving for the density distribu

tion and the total potential, then iterating to converge to a solution. Jackson (1970) expanded the
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C h a p t e r  1. Introduction 7

idea to include the Henyey method, a powerful technique for solving systems of nonlinear differential 

equations. While Ostriker and Mark considered only barytropic stars, the Jackson method solves 

the full set of stellar structure equations.

Another method for describing rotating stars was developed by Clement (1974, 1978, 1979), 

who solved Poisson’s equation in two dimensions simultaneously with the equations of thermal and 

mechanical equilibrium using a finite difference technique. The method avoided the usual double 

series expansion for the gravitational potential, but was only valid for conservative rotation laws.

All of the above methods offer ways to  solve the internal structure of a rotating star. While some 

newer methods allow for a 2D treatment, the vast majority of stellar structure models today still 

make use of the ID treatment of equipotential surfaces offered by von Zeipel’s law and solve for a 

Roche potential a t the surface. There are, however, several shortcomings implicit in the method. 

The first is the assumption that the surface of the star can be represented as a Roche potential. It 

assumes that the mass is sufficiently concentrated towards the centre, which for uniformly rotating 

stars is a good assumption, but it becomes less accurate with more extreme angular momentum 

distributions. The next flaw arises from a contradiction in the von Zeipel model in that it does not 

couple the effective temperature and the surface temperature. As described, the von Zeipel model is 

based on the idea that the temperature is constant across an equipotential surface, yet the effective 

temperature clearly changes from pole to equator. That can only be true if the surface temperature 

and effective temperature are completely independent of one another, which should not be true 

(Lovekin et al., 2006). The von Zeipel model predicts that the equatorial effective temperature goes 

to zero as the model approaches critical rotation. Some of the limitations were tested by Lovekin et 

al. (2006) in her comparison of von Zeipel models with fully 2D structure models from ROTORC 

(Deupree, 1990).
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1 .2 .2  A t m o s p h e r e s , S E D s , a n d  L in e s

The surface parameters generated from the rotating structure model then become inputs for the 

atmosphere calculation. Among the first to study rotating atmospheres was Collins (1963). As he 

described it, the problem of deriving the spectrum of a rotating star can be divided into two parts. 

The first part is to  define the fundamental parameters determining a stellar atmosphere tha t is 

appropriate to  the physical conditions at a given point on the surface of the star, using the structure 

modelling described above. The second part is to determine the atmospheric structure and the 

specific intensity at a given point on the surface and to integrate it over the visible hemisphere of 

the star. The surface properties of the visible hemisphere will vary with the angle of inclination. All 

methods follow these concepts.

In his initial demonstration of the idea, Collins (1963) used a structure model based on von 

Zeipel’s law, uniform rotation, and a gray atmosphere. The gray atmosphere approximation greatly 

simplified the treatment of the radiative transfer equation and hence the integration of the specific 

intensity over the visible hemisphere of the star. He found that luminosity changed significantly, 

by up to a magnitude with inclination from i =  0° to i =  90°. He later improved on this work 

(Collins, 1965) by replacing the gray atmosphere approximation with a series of model atmospheres, 

and found the change in luminosity to be even greater. Roxburgh & Strittm atter (1965) supported 

these results with similar work.

Over the years, a number of refinements were added to the process of modelling rotating at

mospheres. For example, Hardorp & Strittm atter (1968a) showed tha t the energy transported by 

circulation is very small compared to the energy transported by radiation, and can thus be omitted 

from atmosphere calculations. Their results agreed qualitatively with Collins (1965) and Roxburgh 

& Strittm atter (1965). Maeder & Peytremann (1970) improved the realism of LTE atmospheres, 

which had thus far only included continuum opacities, by incorporating hydrogen line opacities for 

the Balmer and Lyman series.
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C h a p t e r  1. Introduction 9

With an extensive set of models, Collins et al. (1991), Collins (1974), and Collins & Sonneborn 

(1977) showed that the effects of rotation on the structure of the interior would likely play as large 

a role in determining the emergent spectrum as the rotational effects on the atmosphere. Slettebak 

et al. (1980) and Premat et al. (2005) were among the first to create spectra of rotating stars using a 

series of non-LTE atmospheres. It can be stated generally that every adjustment that has increased 

the realism of modelling has also increased the apparent effects of rotation on the luminosity of the 

star.

Atmospheres are generally created with two different outputs in mind, the SED and individual 

line profiles. These two outputs are fundamentally connected, and while many of the refinements 

in modelling techniques can be applied to both, they are often treated as independent topics. It is 

therefore of interest to discuss some of the previously developed techniques specific to modelling line 

profiles.

There are two fundamentally different ways to model a rotationally broadened line profile. An 

atmosphere can output the specific intensity, I, emerging at any angle with respect to the surface 

normal from the surface of an atmosphere. One can take the component of that intensity in the 

direction of the observer and integrate across the surface of the star. The appropriate intensities 

can be Doppler shifted the appropriate amount, giving the flux for the rotationally broadened line 

profile.

If intensities are not available, it is also possible to estimate the line profile from a non-rotating 

flux spectrum, F a, using a limb darkening law. This method is clearly far less computationally inten

sive. An observed spectral absorption line can be rotationally broadened using a limb darkening law 

completely mathematically, without ever modelling the star at all. The idea was initially described 

by Carroll (1928, 1933) and Shajn & Struve (1929). They treated the star as a circular disk, with 

a linear limb darkening law applied uniformly to all parts of the disk. Elvey (1930) then used the 

results in creating the first list of rotational velocities derived by comparing observed line contours 

with this simplified geometric approach.
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Treating the visible surface of a rotating star as a circular disk is clearly not ideal. Later studies 

would consider the effects of deformation at the equator, or gravitational darkening (Slettebak, 1949). 

Hardorp & Strittm atter (1968b) suggest that not including gravitational darkening effects could lead 

to underestimating v sin i by up to  40%. Collins & Truax (1995) looked at the classical treatment 

of rotational broadening and found that inappropriate values of limb darkening coefficients can lead 

to significant errors in even moderately rotating stars.

Any modelling of a rotationally broadened line profile that is generated from local surface in

tensities and integrated over the star will have both limb darkening and gravitational darkening 

automatically incorporated into the calculation. While this is a more direct way of calculating the 

line, as it does not require the tuning of any mathematical factors, it is much more computationally 

demanding. For that reason, even today, limb darkening laws are frequently employed to calculate 

rotationally broadened line profiles. All the work presented here however, is done by direct numerical 

integration of the intensities.

1 .3  P r e s e n t  W o r k

The goal of this thesis is to establish by improved methodology to  what extent observables like SEDs 

and spectral absorption lines hold clues describing a star’s rotation. As discussed in the previous 

section, this problem has been explored for decades; however the sophistication of our models allows 

a more realistic treatment than previous approaches. This section introduces the improvements 

made on previous ideas, and describes the work that was done with both SEDs and spectral line 

profiles.

The results presented in this thesis were generated using three computational tools. The rotating 

stellar structure models come from a fully implicit 2D stellar evolution code, ROTORC, eliminating 

the need to make simplifying assumptions using von Zeipel’s theorem. The atmospheres come 

from the atmosphere and spectrum synthesis code PHOENIX, which is capable of handling an
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unprecedented number of elements and atomic energy levels in non-LTE. The code, CLIC, combines 

the results of these tools by interpolating among a grid of plane parallel atmospheres and integrating 

the intensities over the surface of the star to produce a series of detailed and realistic spectra for 

rapidly rotating stars.

The SED for a rapidly rotating star appears approximately similar to tha t of a non-rotating 

star. However, a key idea is that the SED for a rotating star is affected by the angle from which 

it is being observed. Non-rotating stars have a luminosity and effective temperature th a t do not 

change with the inclination of the observer, allowing them to be represented as unique points on the 

HR diagram. For rotating stars, however, the luminosity and effective temperature deduced from 

observations depends on the angle of inclination to  the rotation axis. Therefore, rotating stars should 

appear on the theoretical HR diagram not as points, but as curves, with the angle of inclination as 

the free parameter. This will hereafter be referred to as an inclination curve. A principal goal of this 

work is to define the inclination curve and show how it changes with rotation velocity and rotation 

profile.

For decades the techniques described in the previous section were applied to  the question of a 

rotating star’s position on the HR diagram. Roxburgh & Strittm atter (1965) used a Roche model 

and gray atmospheres to estimate the effect of uniform rotation on broadening the main sequence. 

Collins (1966), Collins & Harrington (1966), and Hardorp & Strittm atter (1968a) expanded the result 

with non-gray LTE atmospheres based on the interior structure models of Roxburgh et al. (1965). 

Bodenheimer (1971) worked with differentially rotating models based on the methods of Ostriker 

& Mark (1968) and Jackson (1970). The results all agreed qualitatively, and are demonstrated in 

Fig. 1.1, which is taken from Collins & Harrington (1966). This represents an example of an earlier 

version of the inclination curves I present here.

These studies have been done primarily with plane parallel LTE atmospheres and ID interior 

structures with surface parameters defined using von Zeipel’s law. The present work takes this type 

of analysis a step further. I will be using detailed 2D structure models, and non-LTE plane parallel
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atmospheres to establish inclination curves from zero to near critical uniform rotation, as well as 

several examples of differential rotation.

The next part of this thesis focuses on individual line profiles. Spectral absorption lines are 

very useful diagnostic tools that can reveal a number of things about the nature of a star, such as 

its temperature, luminosity, composition, and rotation velocity. As discussed, a comparison of a 

broadened line with an unbroadened one can reveal the rotation rate of the star. The next challenge 

is then to determine what else the broadening can tell us about the rotation. I will take a closer 

look at the dependence of an absorption line on the rotation law of the star by comparing the results 

from uniform rotation with those from varying degrees of differential rotation.

One of the primary methods of determining the rotational broadening in a line profile is with 

mathematical treatments that use limb darkening coefficients. Huang (1961) was among the first 

to extend this mathematical approach to defining the effects of differential rotation on line profiles. 

He focused on increasing differential rotation and found th a t it had the effect of narrowing the line, 

and extending its core. Decreasing differential rotation has the opposite effect, flattening the core, 

and further broadening the wings.

Stoeckley (1968) proposed a method of deducing v sin i, i, and the amount of differential rotation 

by plotting the half-widths of three different line profiles. He compared his calculations with high 

precision spectrometer data (3 A m m -1 ) taken with the Cambridge 36 inch reflector for 19 very 

bright early type stars. He found his uncertainties too high to make any definite conclusions, but 

noted that uniform rotation, or decreasing differential rotation, were likely in early type stars, as 

opposed to increasing differential rotation. He later supported the idea (Stoeckley & Buscombe, 

1987) using non-LTE line profiles generated from a gravity darkened Roche model star.

Gray (1977) pioneered the use of Fourier transforms in analyzing line profiles and searching 

for differential rotation. He found that many subtleties could be revealed in the Fourier domain 

that would otherwise be undetectable. His approach has since been followed by Garcia-Alegre et al. 

(1982), Reiners & Schmitt (2002), Reiners (2003). Their work was done using the analytical approach
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to line broadening rather than using integrated intensities, and focused primarily on increasing 

differential rotation.

For both the SED and line portions of this thesis, I will be focusing on decreasing differential 

rotation and ignoring increasing differential rotation altogether. There are several reasons for this. 

Despite some evidence th a t early type stars exhibit decreasing differential rotation, very little study 

has been put towards demonstrating the effects of decreasing differential rotation on spectral lines. 

The tendency towards modelling increasing differential rotation is understandable from an atmo

spheres point of view, as it is more readily observable in the Sun. However, any knowledge gained 

is not readily transferable to  early type stars. One motivation of choosing decreasing differential 

rotation is therefore to  help address this lack. Furthermore, increasing differential rotation takes the 

central parts of the star, which are already rotating slowly, and slows them down even more. It is 

therefore far more intriguing from a stellar structure point of view to study decreasing differential 

rotation.

Another subject tha t will be explored throughout this thesis is the applicability of von Zeipel’s 

law. Given the extensive degree to which von Zeipel’s law is used, it is very useful to  quantify its 

limitations, for both the inclination curves and for the spectral line profiles.
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C h a p t e r  2

T h e  C o d e s

The goal of this work is to determine what observables like SEDs and spectral lines can tell us about 

a star’s rotation. The previous chapter outlined the way in which such observables have typically 

been modelled. Both the SED and individual line profiles observed from a rotating star represent 

flux distributions that are the weighted sum of the intensities in the direction of the observer coming 

from everywhere on the visible hemisphere of the star. Because of rotation, the surface parameters 

of temperature and gravity, and hence intensity, vary with colatitude, and intensity coming from the 

surface of the star are Doppler shifted. A method is therefore needed to take the surface intensities 

at the appropriate temperature and gravity coming from each part of the star and integrate them 

over the visible surface. This calculation is done using the integrator code CLIC.

For CLIC to do the required tasks, it needs two sets of input. The first is a list of intensities at all 

the required angles with respect to the local surface normal as functions of effective temperature and 

gravity. That is provided by the atmosphere and spectrum synthesis code PHOENIX. The second 

piece of input CLIC requires is knowledge of the surface parameters such as effective temperature, 

effective gravity, radius, and rotation velocity. They come from the fully implicit 2D stellar evolution 

code ROTORC. The ROTORC results are also used to determine the grid of local surface parameters 

needed by PHOENIX. This chapter defines each of the three computational components in detail 

and describes the improvements offered over previous studies.

2.1 ROTORC

A ID stellar evolution code with the aid of 2D treatments of equipotential surfaces is useful for 

modelling non-rotating or slowly rotating stars, however it is not clear th a t it can accurately model
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rapidly rotating stars. Rapid rotation can significantly deform the star, and there are currently only 

two ways to determine its surface structure: using von Zeipel’s law, or using a multi-dimensional 

stellar evolution code such as ROTORC (Deupree, 1990, 1995). The Jackson (1970) method pre

sented earlier has the potential to  perform 2D calculations without referring to von Zeipel’s law, 

but it is limited by somewhat crude boundary conditions. Clement (1974, 1978, 1979) offered a 2D 

solution to  Poisson’s equation, though it was limited to conservative rotation laws so that suitably 

modified ID stellar structure equations could be used.

ROTORC is therefore the only fully implicit two dimensional stellar evolution and hydrodynam

ics code capable of handling arbitrary rotation laws. A fully implicit time dependent calculation 

includes the values at the advanced time step in all terms rather than just in the time derivative 

terms. There are several features that provide ROTORC with more realism than a typical structure 

code. A ID code handles four stellar structure equations: hydrostatic equilibrium, thermal equilib

rium, the stipulation of the temperature gradient as either the adiabatic or convective temperature 

gradient, and mass conservation. ROTORC uses the Henyey technique to implicitly solve seven 

conservation equations. The equation for hydrostatic equilibrium, which in ID cases is the conser

vation of momentum, becomes three independent momentum equations, which treat the r, 8, and 4> 

components separately. The (j> component is calculated, but constrained to  be axisymmetric, so that 

technically ROTORC is a 2.5D code. ROTORC also solves Poisson’s equation in two dimensions. 

The thermal equilibrium and temperature gradient are combined into one energy equation, and 

the mass conservation must be treated in 2D. Finally, the 2D hydrogen composition conservation 

equation must be solved implicitly for time dependent evolution.

The results from ROTORC that are required for the present work are the effective temperature, 

effective gravity, rotation velocity, and radius at the rotating surface. The key difference between 

ROTORC and other codes is that ROTORC allows them to be calculated directly from the equations 

described above, rather than from von Zeipel’s law and a Roche potential.

The present work is concerned with analyzing the effects of rotation on the SEDs and spectral
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lines of early B type stars. ZAMS models were therefore constructed for uniformly rotating 12 

M0 (approximately BO) stars ranging in equatorial surface velocity from 0 to 575 km s-1 , which 

approaches critical rotation of about 600 km s” 1. Differentially rotating models were also constructed 

for 10 M0 (approximately B l) stars with a rotational velocity of 120 km s-1 with /3 ranging from 

d — 0 to 2, and 240 km s ' 1 with /? ranging from /3 =  0 to 1.2, where /? is controls the amount of 

differential rotation according to  the following equation:

=  i  +  <2'1)

Here w  is the distance from the rotation axis, uj is the angular velocity, and uj0 and a  are 

constants. /? =  0 for uniform rotation and /? =  2 for the maximum possible amount of differential 

rotation. ROTORC models provide the effective temperature, radius, rotation velocity, and effective 

gravity in ten colatitudinal zones to be used later by the integrator code CLIC, when making the 

SED for the rotating star.

2.2 PHOENIX

The next step in synthesizing the spectrum of a rotating star is to create a grid of non-rotating model 

atmospheres covering the range in Tef f  and gef f  provided by the ROTORC surface structure. This 

grid was created using the non-LTE stellar atmosphere and spectrum synthesis code PHOENIX. The 

code models a stellar atmosphere by solving, among other things, the radiative transfer equation, 

which for a ID, static case, using plane-parallel geometry, along a ray is:

where j \  and k\  are the emission and absorption coefficients, respectively, and t\  is the optical 

depth, all at wavelength, A. The quantity j \ / n \  is defined to  be the source function, 5(A).
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The plane-parallel approximation means that the atmosphere is treated as a ID semi-infinite slab 

such that all the parameters vary only with depth. It is a valid assumption provided the horizontal 

mean photon path is small compared to the horizontal distance over which the atmosphere changes, 

and the atmospheric thickness is far less than the star’s radius. That is generally a fair assumption, 

as the radius of a star is so large the surface is effectively flat, and the horizon will appear the same 

in every direction. For a rotating star the assumption is least true at the equator, as it has lower 

effective gravity and the surface is more curved than anywhere else on the star. The combination of 

the two allows the horizontal mean photon path to be slightly greater relative to horizontal changes 

in the atmosphere. However, since the equator is cooler for the high rotation rates at which the 

curvature becomes significant, it contributes less to the integrated flux, and the effect on the SED 

is small.

In order to solve the equation of radiative transfer, an atmosphere code must manage thousands 

of energy levels for the various atomic elements. That can be done by assuming the energy levels are 

populated according to local thermodynamic equilibrium (LTE), or with a more realistic, but more 

complicated, treatment in non-LTE. In LTE, the radiation and m atter are assumed to  be in equi

librium with each other locally, everywhere throughout the atmosphere. The radiation, excitation, 

and ionization temperatures are set equal to the kinetic temperature of the gas, which allows the 

simplification of setting the source function to  be equal to the Planck function. Energy levels are 

thus populated according to Maxwell-Boltzmann statistics. It is a very powerful simplification; how

ever, LTE is known to be unrealistic in some cases (Mihalas & Athay, 1973). Non-LTE treatments 

overcome the assumption by decoupling the temperatures of m atter and radiation. PHOENIX uses 

an accelerated iteration procedure to  solve the coupled radiative transfer and non-LTE statistical 

equilibrium equations with many energy levels in non-LTE (Hauschildt & Baron, 1999).

One of the newer aspects of this work is the number of elements treated in non-LTE. Short et 

al. (1999) have greatly increased the number of species and ionization stages tha t can be handled 

in non-LTE. Non-LTE models can now be constructed with at least two ionization stages of 24
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elements, and the lowest six ionization stages of the 20 most important elements, including much of 

the Fe group. Short et al. (1999) contains details of the atomic data and formulae for the various 

processes.

While treatment of more species in non-LTE, particularly the Fe group, has been well studied 

(Short & Hauschildt, 2005), the work focused on solar type stars. Different ionization stages are 

present in different temperature ranges, and it was found that among the cooler models, for temper

atures below 24000 K, the code had trouble converging to a stable temperature structure throughout 

the atmosphere. From examination of the non-LTE departure coefficients, it was discovered that 

both silicon and phosphorus caused the lack of convergence. Therefore at 24000 K and below, every 

ionization stage for those two elements were treated in LTE.

Despite this adjustment, there were still some difficulties converging a temperature structure in 

some cooler models. Integrating the PHOENIX output flux and comparing it to  the flux obtained 

from the Stefan-Boltzmann law,

F  = o T t„ ,  (2.3)

yielded an estimate of the uncertainty caused by the inaccuracy. The error ranged to about 4%. 

However, a principal goal of this work is to analyze individual lines, for which the non-LTE treatment 

is extremely valuable.

While the errors might appear high, there are numerous advantages to a non-LTE treatment. 

Nature is not in LTE, and furthermore, it is known that the LTE assumption becomes less true for 

hotter stars (Hardorp & Strittm atter, 1968a). LTE by definition works best in a collision dominated 

atmosphere, however, as the temperature, and hence the radiation intensity, increase, radiative 

transitions become proportionally more significant. The Balmer series, for example, cannot be 

properly modelled in hot stars using LTE. Therefore, while the effects of non-LTE treatment on 

SEDs require more study, the benefits, and in particular the benefits for line calculations, still justify 

the non-LTE treatment for the present work. Table 2.1 shows the different species and ionization
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Table 2.1: List of species treated in non-LTE. Number of energy levels and line transitions included 
for each ionization stage are given. Note that only a subset of the total species that 
PHOENIX is capable of treating in non-LTE is listed.______ ______

Element I II III IV
H 50/1225 - - -

He 19/37 10/45 - -
Li 57/333 55/124 - -
C 228/1387 85/336 79/365 -
N 252/2313 152/1110 87/266 -
0 36/66 171/1304 137/765 -

Ne 26/37 - - -
Na 53/142 35/171 - -
Mg 273/835 72/340 91/656 -
A1 111/250 188/1674 58/297 31/142
Si* 329/1871 93/436 155/1027 52/292
P* 229/903 89/760 51/145 50/174
S 146/439 84/444 41/170 28/50
K 73/210 22/66 38/178 -
Ca 194/1029 87/455 150/1661 -
Fe 494/6903 620/13675 566/9721 243/2592

* Denotes elements included in non-LTE only at 26000K and above.

stages, as well as the number of energy levels and transitions, included in the rate equations. Note 

that only a subset of the total number of species and ionization stages that PHOENIX is capable of 

treating in non-LTE is listed.

PHOENIX converges to a solution if the star is in hydrostatic equilibrium. For cooler stars, the 

contribution of radiation pressure to the hydrostatic equilibrium equation is usually negligible and 

is hence omitted. For hotter stars, however, it can become relevant. At cooler temperatures the 

neglect is perfectly valid, however for sufficiently hot stars, stellar winds can make the hydrostatic 

equilibrium assumption invalid. When radiation pressure is included in the hydrostatic equilibrium 

equation, the gas pressure decreases to  maintain the total pressure required by hydrostatic equilib

rium. For temperatures greater than around 24000 K, radiation pressure becomes so large that it 

forces the gas pressure below zero, creating an unphysical situation and causing the code to fail. 

While PHOENIX is capable of modelling very diverse atmospheric conditions, the form used here 

simulates stable, static stellar atmospheres. The inclusion of radiatively driven stellar winds, while
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possible with PHOENIX, is not of critical importance in B stars, and was beyond the scope of this 

work. Rather than include radiation pressure in only part of the grid below 24000 K , it was decided 

to eliminate radiation pressure from the models altogether.

Lanz &; Hubeny (2007) built a grid of non-LTE model atmospheres covering a similar range to 

that used here. They also used plane parallel atmospheres in hydrostatic equilibrium. They solved 

the issue of radiation pressure by numerically limiting the radiative acceleration at the appropriate 

optical depths in order to ensure convergence of the model. They state tha t the model spectra are 

not affected by the approximation as those layers only influence strong resonance lines that form in 

a stellar wind.

A grid of model atmospheres was constructed from Tef f  = 20000K to 34000K at intervals of 

2000K and covering a surface gravity range of log(ge/ / )  — 2.5 to 4.3 at intervals of 0.3. The intervals 

provide enough resolution that the integrator code can interpolate to any desired temperature with 

very low uncertainty, as shown in the following section. Each spectrum was calculated from 900A 

to lOOOOA at a sampling, AA, of 0.02.4. The detailed sampling was required because the same 

grid of atmospheres was used to model not only the SEDs, but many individual lines as well. In 

addition, accurately computing a lower resolution SED requires a synthetic spectrum with fine 

enough sampling to critically sample individual spectral lines, which is then convolved to lower 

resolution. A lower limit of 900A was selected because there are no lines of interest below the 

Lyman limit, so a sampling of 0.02 A is clearly not required. In the regions of the spectrum outside 

the specified range (i.e. below 900 A and above 10000 A), PHOENIX models any lines that are 

treated in non-LTE, though at a non-uniform sampling. For the stars in the hotter part of the grid, 

there is a non-negligible amount of flux below 900 A that must be included in the integral of the flux, 

but a lower resolution is sufficient to  incorporate it. An upper limit of 10000 A was chosen because 

the corresponding range covers every spectral line needed, and is sufficiently far into the infrared 

that an analytic expression for the Rayleigh-Jeans tail can be applied seamlessly when integrated. 

Solar abundances of Z =  0.02 have been deemed appropriate for B stars (Brown et al,  1986; Lennon
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et al., 1990), and were thus used throughout this work.

Two different outputs from PHOENIX were used. The first is the flux spectrum, F*(A), which 

is the SED. It is the flux at every wavelength specified, with additional points for non-LTE lines 

where needed. The flux can be compared with the CLIC results for a spherically symmetric model. 

The second is a intensity spectra, I*(A), at the surface, sampled at every wavelength tha t appears 

in the flux spectrum. These intensities give the amount of light being emitted at 32 different angles, 

6, with respect to  the surface normal of the plane parallel atmosphere. It is this intensity file that 

the integrator code uses to evaluate the SED.

2.3 T h e  I n t e n s i t y  I n t e g r a t o r  C o d e  -  CLIC

Given the surface properties of a rotating star from ROTORC and the grid of intensity spectra from 

plane-parallel atmospheres covering the required range, a tool is needed to combine the two results 

and integrate the intensity over the surface of the star to obtain the flux seen by an observer. An 

atmosphere integrator code, CLIC, has been developed by Lovekin (2005). It divides the surface 

of the star into a 2-D mesh of 200 colatitudinal zones and 400 azimuthal zones. It reads in the 

ROTORC properties of the star being modelled, and interpolates among the intensity spectra to 

find the appropriate intensity in the direction of the observer. It does that for each zone of the 

mesh, then outputs the integrated flux for the rotating star as a function of inclination from pole to 

equator.

2 .3 .1  S E D  M o d e

CLIC can be used to calculate the entire spectrum, or any part of the spectrum in SED mode. For 

each wavelength, the code evaluates the following expression:
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where £ is the angle between the surface normal for that zone and the observer, 6 and <j) are the 

colatitude and the azimuthal angles, respectively, F  is the flux, I  is the intensity, d is the distance 

to the observer, and A pr0j  is the projection of the surface area of the zone. It performs the integral 

for a line of sight ranging from i — 0° to i =  90° with A i — 10°.

Each wavelength in a PHOENIX model atmosphere is presented as a table of intensities at 

32 different angles with respect to the surface normal, ranging from 6 — 0° to 180°. In order to 

determine a zonal contribution to the flux, the code must calculate the angle £ between the observer 

and the local surface normal for that zone. Such a calculation is complicated by the oblateness of 

the star, as the surface normal for each zone will not pass through the stars center. Erom the angle 

£, the appropriate component of the intensity is taken from the PHOENIX model atmosphere at 

each wavelength. The process is repeated at every wavelength with the correct value of £ for each 

zone in the 200 by 400 surface mesh, giving the total integrated flux for the star. The loop is then 

repeated for each desired inclination. The result is 10 separate integrated flux spectra showing how 

the spectra from a rotating star would appear as a function of inclination.

The range of models that can be calculated by CLIC is limited by the grid of non-rotating model 

atmospheres available. Spectra can be calculated for stars rotating at any velocity from zero up 

to critical rotation, provided neither the pole nor equatorial effective temperatures or gravities are 

outside the range of the grid. The resolution of the output spectra is limited only by the resolution 

of the original plane-parallel atmosphere grid.

There is one final limitation to consider. Stars that are both rapidly rotating and highly differ

ential with points close to the rotation axis rotating far more rapidly than at larger distances from 

the axis can tend to  expand at the equator and contract a t the poles, in comparison with uniformly 

rotating models. If the contraction becomes significant, the star can pinch in at the poles creating 

a slight doughnut shape. The surface of the star will subsequently have an inflection point near the 

pole, and the plane parallel approximation would cease to be valid, as the horizon would not appear 

the same in all directions.
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Because the SED covers a sufficiently large section of the spectrum, the effects of rotational 

broadening on individual lines are unnoticeable. The SED shows broad band effects where the 

width of the band is far greater than the width of a single line. As such it is unnecessary, as well 

as too computationally taxing, to calculate Doppler broadening for individual line profiles across 

the entire SED. CLIC was written to  be ’’embarrassingly parallel” , meaning that there is as little 

information as possible passed between the processors as infrequently as possible. For the SED 

calculation it is relatively straightforward since the code simply divides the spectrum into sections 

and passes an equal number of wavelengths to each processor. Each does its calculation and passes 

its portion of the spectrum back to the master processor. Each processor can handle its own group 

of wavelengths without any knowledge of the activities of the other processors because there is no 

interaction with the calculations at other wavelengths.

There are two separate sources of uncertainty to be considered for the integrated flux; the un

certainty from the integration itself and the uncertainty in interpolation between points in the 

PHOENIX grid. The integration itself carries an uncertainty of 0.2% tied to the resolution of the 

mesh. The interpolation between model atmospheres in the PHOENIX grid is linear in log T  and 

log g and has an uncertainty of about 1% to 4%. Both of the uncertainties were found by comparing 

non-rotating CLIC flux spectra with flux spectra calculated directly from PHOENIX. As such, some 

of the uncertainty arises from the uncertainties in the PHOENIX models themselves.

2 .3 .2  L in e  M o d e

The calculation of the individual lines incorporates the Doppler broadening from the rotation. This 

complicates the embarrassingly parallel nature of the code because some lines are broadened to 

wavelengths that were sent to a different processor. In order to allow the processors to  continue to 

act independently of one another, the code creates separate bins for the shifted wavelengths, which 

are then recombined into the complete flux by the master processor.

Apart from the Doppler broadening calculation, the code operates in exactly the same manner
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as for the SED calculation. The output is the Doppler broadened flux spectrum, showing the line 

as it would appear from 10 different inclinations from pole to  equator.
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C h a p t e r  3

I n c l in a t io n  C u r v e s

Rotating stars appear on the theoretical HR diagram not as points, but as curves, with the angle 

of inclination as the free parameter. This chapter computes inclination curves and shows how they 

change with rotation velocity as well as rotation profile. It is a very valuable tool when observing 

a rotating star. Any subsequent analysis or observation of a rotating star is contingent upon our 

understanding of its location on the theoretical HR diagram as a function of inclination. Many 

massive stars are also variable, often at several frequencies, and their frequencies can provide valuable 

information about the interior structure of the star. This is true only if the observable properties of 

the star can be related to  the star’s intrinsic properties. For rapidly rotating stars, the inclination 

curve is required to determine this relation. Work is also being done using synthetic star clusters 

to determine if the inclination curve can reveal anything about a star’s rotation purely from its 

perceived location on the HR diagram.

To generate an inclination curve, several pieces of information are required. First, a SED for the 

entire spectrum as a function of inclination is needed, and is obtained from CLIC as described in 

the previous section. Next, a method is needed to deduce the luminosity and temperature from the 

SEDs so that they can be plotted on an HR diagram. Because the flux is calculated at 10 different 

inclination angles from pole on to equator on, each inclination curve is composed of ten points. One 

inclination curve is generated for each rotation velocity or rotation profile.

3.1 S p e c t r a l  E n e r g y  D i s t r i b u t i o n s

An example of a surface structure is shown in Table 3.1 for a 12 M© star uniformly rotating with 

v=500 km s-1 . In this instance, CLIC chooses a rectangular grid of non-rotating atmospheres
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Table 3.1: ROTORC model file describing surface of 12 Mq star uniformly rotating with v=500 km

Colatitude [°] Radius [R©] T. / /  [K] log g [cgs] Rotation Velocity [km s L]
4.5 4.284 29118.0 4.2507 30
13.5 4.319 28888.0 4.2390 899
22.5 4.388 28422.0 4.2279 149.8
31.5 4.475 28013.0 4.1816 208.6
40.5 4.597 27407.0 4.1342 266.3
49.5 4.753 26696.0 4.0712 322.4
58.5 4.961 25646.0 3.9841 377.4
67.5 5.182 24759.0 3.8785 427.2
76.5 5.427 23594.0 3.7451 470.1
85.5 5.605 22608.0 3.6243 498.5

ranging from T ef f  =  22000 K to T ef f  =  30000 K and from log g = 3.4 to  log g — 4.3. A series of 

non-rotating spectra for increasing temperature at log g — 3.4 and 4.3 is shown in Fig. 3.1. The 

spectrum of a star clearly changes significantly with temperature, but the spectrum is sensitive to 

changes in log g as well.

CLIC combines the appropriate parts of each spectrum according to equation 2.4, which scales 

them as they would appear from Earth at a distance being set by the user. A distance of 40 pc 

was used throughout this work. CLIC then outputs the spectrum of the rotating star a t 10 different 

inclination angles, as shown in Fig. 3.2. The 10 spectra represent the flux one would observe from a 

12 M® star rotating uniformly at 500 km s-1 . Each spectrum must now be processed to determine 

its coordinates on an HR diagram. Each spectrum will provide one point on the inclination curve.

3.2 I n c l i n a t i o n  C u r v e s

A process must be applied to each spectrum to determine that star’s luminosity and effective tem

perature at each of the 10 inclination angles. The bolometric luminosity, Lj0j, is found by using the 

formula:

L  =  4nF(P, (3.1)
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Figure 3.1: PHOENIX plane parallel spectra for models from Tef f  = 20000 K to 34000 K at log 
<7=3.4 (top) and log g — 4.3 (bottom) showing dependence of spectra on effective gravity. 
Flux is given at the surface of the star.
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1500 2000 2500
Wavelength [A]

3500 4000

Figure 3.2: Output from CLIC code. Flux at Earth from 40 pc for 10 inclinations from pole to 
equator for 12M0 star uniformly rotating with v =  500 km s_1. The range in spec
tra  is similar to that shown in Fig. 3.1, which implies a significant range in effective 
temperature from pole to equator.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C h a p t e r  3. Inclination Curves 30

where d is the distance to the star, and F  is the bolometric flux, which is obtained by integrating 

the spectrum from 0 to 10000 A then adding an analytical expression for the Rayleigh-Jeans tail. 

Note that L  is independent of d when equations 2.4 and 3.1 are combined.

The temperature calculation is more complex. The temperature cannot simply be taken from

L = AirR2o T i  (3.2)

because for a rotating star the value of R  is not constant everywhere on the star’s surface. The 

temperature is therefore determined by taking a ratio of fluxes, i.e. colour indices, in two parts of 

the spectrum and then comparing it to the same flux ratios computed from a grid of flux spectra 

from non-rotating stars. This method is well known, and widely used. However, the presence of 

rotation again complicates matters. As we saw in Fig. 3.1, the spectrum is dependent on log g as 

well as effective temperature, so that the ratio of two fluxes does not offer a unique solution. It was 

necessary to use two different flux ratios to  develop a relationship between the flux ratio and the 

effective temperature, and a separate relationship between the flux ratio and the effective gravity.

The procedure involved multiple steps. First the two flux ratios A and B were chosen. Each was 

the ratio of the flux in one band of the UV to the flux in a band of the visual. Ratio A compares 

the fluxes at 2650 A - 2732 A to those at 5184 A - 5239 A, and ratio B compares the fluxes at 1972 

A - 2054 A to those at 5506 A - 5575 A. The wavelengths are somewhat flexible and were chosen to 

give the greatest sensitivity over the largest range of temperatures. However, because I use two flux 

ratios and find the intersection point of two different relationships, many different flux ratios could 

be used, provided that ratio A was not equal to  ratio B.

In order to  determine a spectrum’s dependence on log g, the next step was to take two sets of 

models of constant log g from the grid of non-rotating atmospheres at log g — 3.4 and log g =  4.3. 

Flux ratios A and B were derived for models of all eight T e/ /  values at both log g values. The four 

different flux ratios are plotted in Fig. 3.4 as a function of temperature. There are now two curves
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Figure 3.3: Flux bands used for ratios A (solid) and B (dotted), shown with spectra for T eff  -  
20000 and 34000 K and log g = 3.4 and 4.3 representing the four corners of the grid.
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for each colour, one showing the change in the ratio as a function of temperature for log g = 3.4 

and one for log g = 4.3. The true log g of the spectrum being analyzed will be linearly interpolated 

from the two.

The flux ratios A and B from the rotating model for which the effective temperature is being 

sought are shown by horizontal dotted lines. The correct temperature, shown with the vertical dot- 

dash line can be found by moving across the horizontal ratio lines until the value of log g determined 

by the interpolation is reached. It can be solved as a system of two linear equations in the unknowns 

T ef f  and log g. The assumption of a linear relationship was deemed to be sufficiently accurate, given 

that the distances between points in the grid are sufficiently small. As will be shown, the resulting 

uncertainties are small. If the value of log g a t any inclination angle is outside the range of 3.4-4.3 

the linear relationship allows extrapolation to find a solution. The log g values 3.4 and 4.3 were 

chosen because they cover the most significant range of log g space in the grid. Intermediate values 

could have been used to increase the accuracy of the interpolation, however, the linear relationship 

between 3.4 and 4.3 was sufficient, as the resulting uncertainties demonstrate.

W ith this approach, one obtains the luminosity and effective temperature for a rotating star 

at 10 different inclinations from pole to  equator, making up one inclination curve. Fig. 3.5 shows 

several such curves as they would appear on the HR diagram. The increasing rate of rotation clearly 

makes a significant difference to the star’s possible location on the HR diagram.

In assessing the uncertainties present in the method, one must consider several different sources, 

some of which have already been explained in detail. There will be uncertainties in the spectra 

themselves attributable to the difficulty of converging non-LTE models, the uncertainty from the 

integrator code when combining the models into a spectrum from a rotating star, and finally the 

uncertainties in calculating a luminosity and temperature based on that spectrum. As discussed, 

the errors from the PHOENIX spectra range from 0% to 4%, and the integrator code uncertainties 

are 0.2% for the integration and 1% to 4% for the interpolation. The uncertainties in extracting 

the luminosity and temperature were found by applying the method to  several non-rotating stars of
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Flux ratios A and B as functions of temperature for both log g =  3.4 and 4.3. Horizontal 
dotted lines give the flux ratios for the model being determined. The vertical dot-dash 
line represents the final calculated T ef f  and log g for the rotating SED.
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V=255
- 0 -  V=310
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4.34 4.324.364.42 4.4 4.384.46 4.44

Figure 3.5: Inclination curves for uniformly rotating 12 M© models at v =  255-575 km s_1. Note 
that critical rotation is approximately 600 km s_1. ZAMS models at 11, 12, 13 M© are 
given for scale, show that a uniform rotation rate of only 255 km s_1 can shift a star’s 
apparent location by up to the equivalent of a solar mass.
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known luminosity and temperature. It was found tha t the uncertainties in luminosity decreased as 

the luminosity increased, ranging from around 1% to 6%, whereas the uncertainties for temperature 

increased as the temperature increased, ranging from around 0.1% to 0.6%. The reason that the 

uncertainties in luminosity were an order of magnitude larger is likely because the luminosity was 

taken from the integral of the whole SED, which contained the PHOENIX uncertainties. The 

temperature, however, was found by comparing flux ratios calibrated against spectra containing the 

same uncertainties. Fig. 3.6 shows selected inclination curves, along with the uncertainties varying 

with temperature and gravity.

3 .2 .1  U n if o r m  R o t a t io n

Fig. 3.7 shows inclination curves for 13 uniformly rotating models of 12 M©. Models were calculated 

for rotational velocities of 0, 50, 100, 150, 210, 255, 310, 350, 405, 450, 500, 550, and 575 km s-1 . 

Some non-rotating ZAMS models of various sizes are shown to lend a scale to the curves, and as can 

be seen, even rotation rates as low as 255 km s-1 can change a star’s position on the HR diagram by 

the equivalent of an entire solar mass. The length of the 575 km s_1 curve is a shift of approximately 

6 or 7 M© along the ZAMS. At this velocity the luminosity changes from approximately 3000 L© to 

20500 L©, or by a factor of about 7. The change in T ef f  is from approximately 21300 K to 27400 

K, which corresponds to a range in spectral type from approximately B0.5 to B2 (Boehm-Vitense, 

1981), or a change in U-B of approximately 0.14 (Cramer, 1984).

For small rotation velocities, the differences from one inclination to the next are small, resulting 

in a relatively straight line on the HR diagram. The straight line becomes curved as the rotation 

rate increases and the differences between points become larger.

Another feature of note is that the lines all appear parallel and quite close to the ZAMS. Rotation 

increases the component of centrifugal acceleration and lowers the effective gravity of the star, and 

hence the apparent mass. Therefore, to first order, a rotating star appears much like a non-rotating 

star of smaller mass, hence occupying a similar location near the ZAMS.
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Figure 3.6: Selected inclination curves from Fig. 3.5 given with error bars. Uncertainties in luminos
ity increased with decreasing luminosity, while uncertainties in temperature increased 
with increasing temperature.
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Figure 3.7: 13 inclination curves calculated for 12 Ms  uniformly rotating stars from v =  0 to 575 
km s-1 . As the distance between points increases, the curves become less linear. Note 
th a t the most significant changes are evident when the star is viewed nearly equator-on, 
where the star becomes much cooler.
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The rotational velocity curves shown in Fig. 3.8 use the same models, but follow each inclination 

as the rotation rate increases. The most pronounced changes in the apparent location on the HR 

diagram are evident when viewed from the star’s equator. As the star’s rate of rotation increases, 

the equatorial radius also increases and the effective temperature there drops significantly. Because 

F  oc T 4, that in turn creates a significant drop in luminosity. Pole-on, the luminosity increases 

steadily with increasing rotation, as more and more of the flux is directed towards the poles by 

the increasingly oblate shape. Equator-on, one sees the most drastic changes, as that is where the 

temperature changes from the oblate shape are the most apparent.

3 .2 .2  D if f e r e n t ia l  R o t a t io n

While there has been evidence put forward to suggest tha t B stars are differentially rotating (Stoeck- 

ley, 1968), no solid conclusions have ever been reached. That differential rotation creates a bigger 

spread in luminosity than uniform rotation was a well known qualitative result that was confirmed 

by Collins & Smith (1985).

I will first compare three 10 M0 models rotating at 120 km s_1 with /3 =  0, 1, and 2 (as defined 

in Eqn. 2.1). /? =  0 signifies uniform rotation, while /? =  2 is the maximum possible amount of stable 

differential rotation. Fig. 3.9 shows that differential rotation can have very interesting effects on 

the inclination curve. The variation in both luminosity and effective temperature with inclination, 

greatly increases with /?, and the curve is no longer a straight line in the HR diagram, as it was for 

uniform rotation. A decreasing differential rotation law thus has the effect of making a star appear 

to be rotating much faster than it actually is if one assumed uniform rotation.

Fig. 3.10 shows three 10 M0 models rotating at 240 km s-1 with p  — 0, 0.6, and 1.2. The same 

trends indicated by Fig. 3.9 are apparent, though to a lesser extent. While smaller changes in p  will 

clearly produce smaller effects on the inclination curve, it can be stated that the inclination curve, 

and hence a rotating star’s observed location on the HR diagram is very sensitive to the amount of 

differential rotation.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



log
 

(L
/L

o)

C h a p te r  3. Inclination Curves 39

4.4

=10
=20
=30
=40
=50
=60
=70
=80
=90

4.46 4.44 4.38 4.34 4.324.42
logT

Figure 3.8: Rotational velocity curves showing each inclination as a function of velocity. Models are 
the same as for Fig. 3.7.
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Figure 3.9: Inclination curves for 10 M0 models differentially rotating at v =  120 km s” 1 with /3 
increasing from 0 to 2. Non-rotating 9, 10, and 11 M® models are shown for scale. 
Differential rotation makes the star appear to be rotating much more rapidly than it is 
if one assumed uniform rotation.
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Figure 3.10: Inclination curves for 10 M0 models differentially rotating at v =  240 km s 1 with /?

increasing from 0 to 1.2. Non-rotating 9, 10, and 11 M0 models are shown for scale. 
Smaller differences in /? have a smaller, but still distinctive effect on the inclination 
curve.
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3 .2 .3  v o n  Z e ip e l  C o m p a r is o n

Since von Zeipel’s law is a frequently used approximation to 2D modelling, it is useful to  determine its 

effects on the inclination curves. Lovekin et al. (2006) showed that von Zeipel’s approximation breaks 

down as the rotational velocity gets large. The reason can be seen in Fig. 3.11, which compares 

the temperature profiles from the von Zeipel law to those from 2D calculations of ROTORC. In 

order to see how the differences affect the inclination curves, I followed the same procedure outlined 

in Section 3.2. The input for the integrator code was the same grid of non-LTE plane-parallel 

PHOENIX atmospheres. The only difference was that, instead of being shaped by a 2D ROTORC 

structure model, the spectrum of the rotating model was determined using a surface structure 

calculated from von Zeipel’s theorem, i.e. Te/ /  oc .%ff,  and a Roche surface potential. The constant 

of proportionality was set by forcing the von Zeipel and ROTORC temperatures curves to  match 

at a colatitude of 58°. The von Zeipel model temperatures go much lower at the equator at high 

rotation velocities because the von Zeipel law predicts T ef f  goes to zero as the star approaches 

critical rotation.

The effect such differences have on the deduced SEDs can be seen in Fig. 3.12. The SEDs plotted 

there were again used to  generate inclination curves using the method previously described. The 

final inclination curves are shown in Fig. 3.13. As expected from Fig. 3.11, the largest differences 

in the inclination curves between ROTORC and von Zeipel models occur for pole-on and equator- 

on orientations. The discrepancies between the two models are outside the uncertainties described 

above for any rotation velocity greater than about 350 km s-1 . Therefore, one should avoid using 

von Zeipel’s law to calculate inclination curves for rapidly rotating stars.
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Figure 3.11: Differences between ROTORC and von Zeipel temperature profiles for 12 M0 mod

els with increasing uniform rotation velocities. The differences become significant for 
rotational velocities above about 350 km s-1 .
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Figure 3.12: Differences between integrated ROTORC and von Zeipel model fluxes for v 500 km
s-1 , for 12 M© models at i =  0, 30, 60, and 90°. Flux is given at Earth from a distance 
of 40 pc. As shown in the tem perature differences of Fig. 3.11 the differences between 
ROTORC and von Zeipel model become more pronounced at the equator.
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Figure 3.13: ROTORC vs. von Zeipel model inclination curves for 12 M© uniformly rotating mod
els. The differences between them exceed the uncertainties for any rotational velocity 
greater than around 350 km s-1 .
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C h a p t e r  4

L i n e  P r o f i l e s

This section uses the line mode option in CLIC to synthesize individual spectral lines. The intensity 

spectra, 1  ̂(A), files created by PHOENIX were used by CLIC to generate rotationally broadened line 

profiles without the need for any mathematical approximations. Limb darkening is automatically 

incorporated by CLIC because it integrates over the surface of the star and takes the appropriate 

components of the intensity in the direction of the observer. It does it at every wavelength, eliminat

ing the uncertainties arising from a wavelength dependent limb darkening law. Gravity darkening is 

accounted for by the shape of the structure model given by ROTORC. It therefore allows the direct 

calculation of the rotational broadening of a line profile.

This chapter first compares the effects of differential rotation on line profiles, and then compares 

lines calculated from a von Zeipel structure model with those from a ROTORC model.

4 .1  E f f e c t s  o f  D if f e r e n t ia l  R o t a t io n

Determining a star’s rotation law is a challenge that has long faced stellar astrophysicists. While 

no rotation law can be determined definitively, there has been much effort to determine the effects 

that differential rotation might have on line profiles. I have discussed previously how increasing 

differential rotation tends to pinch in the wings of a spectral line and deepen its core. Previous 

studies (e.g. Stoeckley (1968); Reiners & Schmitt (2002)) have suggested, reasonably, that decreasing 

differential rotation does the exact opposite, flattening the core and broadening the wings. However, 

those studies featured primarily mathematical approximations for limb darkening and gravitational 

darkening, and focused more on increasing differential rotation, with only mild cases of decreasing 

differential rotation. This chapter not only improves on the method of calculation by using integrated
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intensities, but also explores more extreme cases of decreasing differential rotation.

The spectral lines calculated use the same set of differentially rotating structure models that 

were used to generate the inclination curves in the previous chapter. Two different surface equatorial 

rotation velocities were considered, and three different rotation profiles were compared for each. The 

quantity of most interest is the surface rotation velocity as a function of colatitude shown in Fig. 4.1 

for the 10 M@, v=120 km s-1 case. Note that for very high values of [i the largest surface rotational 

velocity need not be at the equator.

There are slight differences in temperature between the models, as well as differences at each 

rotation rate, which make the continuum flux slightly different. All the lines were therefore shifted 

to have the same continuum value so that the effects of the rotational broadening alone could be 

considered. The amount of shifting was generally quite small.

Fig. 4.2 shows the relatively weak C II A4268 line for the star viewed equator on, rotating at 

120 km s_1 with differential rotation parameters of /? =  0, 1, and 2. Also shown in Fig. 4.2 is the 

C II A4268 line broadened for a uniformly rotating star at 150 and 180 km s_1. It can be seen that 

differential rotation broadens the wings of the line and flattens and brightens the core. No amount 

of uniform rotation will create a line profile that fits the differentially rotating ones. That is the 

expected behaviour of a line broadened by decreasing differential rotation, and represents the type 

of result typically seen in the past. The differences seen in Fig. 4.2, while distinct, are not so strong 

as to be easily detected. The principal reason is that previous studies were not concerned with more 

extreme decreasing differential rotation, and the cases they did study focused mainly on equator-on 

views. Many researchers detailed in the introduction found that the subtle effects of differential 

rotation on line profiles only became significant when observed in the Fourier domain.

Here the advantages of the present research become clear, for with the combination of ROTORC, 

PHOENIX, and CLIC, it is possible to create a detailed view of a line from any inclination angle, 

broadened by nearly any rotation law. I will show, observing a line from a strongly differentially 

rotating star from higher inclination angles can reveal distinct features of the line profile th a t do
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Figure 4.1: Surface rotation velocity as a function of colatitude for various rotation profiles. All 
models are 10 M© and have surface rotational velocities of 120 km s-1 . The most 
significant differences in rotation profiles occur between colatitudes of 10° and 60°.
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Figure 4.2: CII A4268 doublet for a 10 M q  model viewed equator on. It is a commonly seen view 
demonstrating the effects of differential rotation on line profiles.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C h a p te r  4. Line Profiles 50

not require a Fourier treatment. As can be seen in Fig. 4.1, the key differences between the rotation 

laws occur at the lower colatitudes, from about 10° to 60°.

C II A4268 is a doublet, therefore the remainder of the analysis focuses on the single line He I 

A4923 to show the effects arising from rotation alone.

Figs. 4.3 through 4.6 show how the He I A4923 line appears when unbroadened, and then at 

each inclination angle for v=120 km s-1 with the rotation profiles given in Fig. 4.1. Fig. 4.3 shows 

the unbroadened He I A4923 with the neighbouring O II A4926 line. Because the two lines are close 

together, they become blended as the star rotates. That accounts for the asymmetries in the lines 

shown in Figs. 4.4 through 4.6. It can been seen in Fig. 4.6 that lines viewed equator-on show 

the expected trends, however the more interesting features become apparent as the view becomes 

more pole-on. The lines for j3 — 2, and, to a lesser degree for /3 =  1, viewed from 10° to about 40° 

all show a central reversal, with the deepest parts of the lines migrating towards the wings. The 

shape is caused by the sections of the star closer to  the rotation axis rotating faster than the parts 

at the equator. The parts of the star that produce the absorption in the core of the line are rotating 

faster than they would be under a uniform rotation law, and thus are absorbing further into the 

wings. This decreases the core absorption and increases the wing absorption sufficiently to produce 

a central reversal.

In probing the effects of differential rotation, I considered lines from different parts of the spec

trum. It was found that stronger lines were not very sensitive to small changes in the surface 

structure of the models. Fig. 4.7 illustrates the effect for three inclination angles (30°, 60°, and 90°) 

for the H<5 line from the same 10 M©, V=120 km s-1 models shown above. The same trends are 

present, but to such a modest degree tha t no decisive conclusions could be extracted from them. It 

was found that all Balmer series lines and most lines in the UV were too strong, and displayed very 

little sensitivity to  differential rotation. However, many other weaker lines in the visual displayed the 

same trends as He I A4923. The differences in the Doppler width of the line profiles demonstrated in 

Figs. 4.4 through 4.6 are at most 0.5 A . Such a shift is quite prominent for weaker lines, but is not
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Figure 4.3: He I A4923 and O II A4926 for 10 M© non-rotating model.
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Figure 4.4: He I A4923 for a  10 M0 model rotating at 120 km s . Top: i—0°, middle: *=10°
bottom: i=20°. Note that the wavelength scale is constant but the flux scale varies from 
Figs. 4.4 to 4.6.
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Figure 4.5: He I A4923 for a 10 M© model rotating at 120 km s . Top: *=30°, middle: «=40°, 
bottom: i=50°.
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for lines like H6 that are 10 to 20 A wide. Furthermore, lines like H<5 are considerably broadened by 

other mechanisms such as pressure broadening, which dominate the effects of rotation.

Figs. 4.8 and 4.9 show He I A4923 and HJ line profiles respectively, for 10 M0 models, rotating 

at v=240 km s_1 with 0 = 0, 0.6, and 1.2. In Fig. 4.8 the trends seen at 120 km s " 1 are still present. 

However, the line has now been broadened and flattened significantly. For any rotation velocities 

above ~  350 km s_1 the line will be almost unrecognizable. The HJ line shown in Fig. 4.9, again 

shows the same trends but to a nearly insignificant degree.

While the results offer many new and unique ideas, it is necessary to  analyze their limitations in 

order to put them into perspective. One limitation is the rotation velocity itself, as there is a distinct 

range of Y rot within which the diagnostic studied here is useful. If the star rotates slowly, then the 

rotational broadening will be negligible for any rotation law, and if it rotates too quickly, then the 

lines for which the traces of differential rotation are discernable will be blended into obscurity.

The next limitation is tha t the differences seen in the line profiles of the differentially rotating 

models may be too subtle to be practically observed. The differences in the Doppler widths of the 

line profiles arising from the effects of differential rotation range from about 0.1 A to 0.5 A. A spec

trograph resolution of about R =  10000 - 50000 is therefore required. Stars brighter than an apparent 

visual magnitude of 14 observed with the ESPaDOnS spectrograph on the Canada-France-Hawaii 

Telescope can obtain a resolution of approximately R =  70000 for a one hour exposure (Donati, 

2003). Therefore, a reasonable resolution within the abilities of present day optical telescopes could 

detect the effects predicted here.

I also investigate how distinguishable different values of 0  are. Figs. 4.4 through 4.6 show line 

profiles for 0  values of 0, 1, and 2. Because 0=2 represents an extreme case of differential rotation, 

it is useful to examine further the range from 0  = 0 to  1. Fig. 4.10 shows the line profiles for a 10 

M0 model rotating at 120 km s-1 for values of 0 = 0, 0.2, 0.4, 0.6, 0.8, and 1. Uniform changes in 0  

produce relatively uniform changes in the line profile. While it is difficult to  determine a precise value 

of 0  a t which differential rotation is clearly present, the broadening of the wings becomes significant
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somewhere between j3 =  0.4 and 0.6. That is a very realistic amount of differential rotation, which 

suggests that with further refinement, the method has the potential to be a powerful diagnostic for 

rotating stars.

A careful distinction must also be made at this point. A significant difference between the line 

profiles shown in Fig. 4.3 and Figs. 4.4 through 4.6 is the inclusion of Doppler broadening. In par

ticular, the central reversals in the line profiles presented therefore arise from rotation alone. While 

that is certainly true for the work shown here, it does not necessarily follow that the observation of 

such features in a real star must be attributed to  Doppler broadening. The preferential broadening 

in the core of the line, and even the central reversal could theoretically originate in another mecha

nism such as Zeeman splitting. This comment is put forward only as a caution, the investigation of 

which is beyond the scope of this work.

It is also of note tha t the lines become less smooth as the rotation rate increases. That can 

be attributed entirely to the quantized nature of the calculation. The sampling of our synthetic 

spectrum is 0.02 A, the same as the noise in the highly broadened lines (e.g. Fig. 4.8). A comparison 

of the highly broadened lines of Fig. 4.8 with the unblended lines of Fig. 4.3 confirms tha t the 

coarseness is a product of the rotation calculation, and not inherent to  the line itself.

4 .2  v o n  Ze ip e l ’s L aw

Compared here are spectral lines calculated using the 2D ROTORC structure models with those 

calculated using von Zeipel’s law. All models shown in this section are for a 12 M0 star and are 

uniformly rotating. The only differences in the calculation are the log g and Tej j  as functions of 

colatitude between von Zeipel’s law and ROTORC. Because the differences between von Zeipel’s law 

and ROTORC are most apparent at the equator, only the i — 90° views are shown.

Fig. 4.11 shows He I A4923 at five different rotational velocities: 50, 100, 210, 350, and 500 km 

s-1 . The differences between von Zeipel’s law and ROTORC are so negligible tha t the solid and
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Figure 4.11: He I A4923 generated from ROTORC (solid) and Von Zeipel (dotted) structures for 
uniformly rotating 12 M© models viewed equator on.
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dotted lines are almost indistinguishable. As seen in the previous chapter, the structural differences 

between von Zeipel’s law and ROTORC are very small for rotational velocities below about 350 

km s_1. In the case of He I A4923, for rotational velocities above about 350 km s_1 the line is 

significantly broadened to  a degree tha t it is nearly indistinguishable from the continuum.

Fig. 4.12, which shows the H5 profiles, also shows virtually no discrepancies between the two 

models at lower rotational velocities, and only slight changes at very high rotational velocities. As 

mentioned, the only differences that von ZeipePs law makes to  the surface structure are in gravity 

and temperature, which modestly affect the core of the line, but not the broadening. Another result 

is that the differences only become apparent in the structure at very high rotational velocities. At 

such velocities, all the weaker lines have been washed out. The only lines left for comparison are some 

of the stronger lines in either the UV, or the Balmer series. As seen in the previous section, stronger 

lines do not show much response to subtle changes in the models. In short, while von Zeipel’s law 

fails to match more realistic SED calculations at high rotation, it gives an adequate representation 

for line profile calculations because all but the strongest lines have already been broadened into near 

invisibility by rapid rotation.
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Figure 4.12: H<5 generated from ROTORC (solid) and Von Zeipel (dotted) structures for uniformly 
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C h a p t e r  5

C o n c l u s i o n s

The goal of this work has been to analyze the effects of rapid rotation on SEDs and line profiles. Most 

of the improvements upon previous studies can be attributed to the more sophisticated modelling 

tools used. The fully implicit 2D stellar structure code ROTORC was used to generate a series of 

interior structure models for uniformly and differentially rotating stars. The non-LTE stellar atmo

sphere and spectrum synthesis code PHOENIX was used to  generate a grid of plane-parallel stellar 

atmospheres. An intensity integrator code, CLIC, was then used to create SEDs and absorption line 

profiles for a series of rotating stellar models.

The first part of this work focused on using SEDs to  define a rotating star’s possible locations 

in the HR diagram. While previous studies have explored the idea, this work introduced the idea 

of the inclination curve. The primary purpose was to establish a consistent and accurate method of 

defining the inclination curve that can be repeated and expanded upon in future work. I created a 

set of inclination curves for 12 M0 models uniformly rotating from 0 to 575 km s-1 or near critical 

rotation. It was found that uniform rotation creates a relatively straight line parallel to the main 

sequence. The line extended in length and moved away from the main sequence as the rotation rate 

increased. The results agreed qualitatively with previous studies.

I also created a series of inclination curves for 10 M0 models at 120 and 240 km s-1 with varying 

degrees of differential rotation. The curve was no longer a straight line on the HR diagram, but rather 

an arc that passed through the main sequence. Increasing the amount of differential rotation had 

the effect of extending the inclination curve in both the luminosity and the temperature directions. 

As a result, increasing the amount of differential rotation makes the star appear to be rotating more 

rapidly.
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Inclination curves generated from ROTORC structure models were also compared to  structures 

generated from von Zeipel’s law. All other factors, including the grid of atmospheres used, remained 

the same. The temperature structure of the von Zeipel models began to  diverge significantly from 

the ROTORC models for rotational velocities above ~  350 km s_1 or 0.76wc, where u)c is the critical 

rotation velocity. It was around this velocity that the von Zeipel model based inclination curves also 

diverged from the ROTORC based inclination curves beyond the uncertainties given. It is therefore 

recommended not to use von Zeipel’s law to calculate inclination curves for stars rotating faster than 

approximately 0.76wc.

The next part of this work explored the effect of differential rotation on line profiles. Most studies 

had explored increasing differential rotation or only mild cases of decreasing differential rotation, 

which often focused on equatorial views with little exploration of other inclination angles.

The combination of tools used in this work allowed the modelling of very strongly decreasing 

differential rotation, and produced line profiles for a star viewed from any inclination. It was found 

that the line profiles created by decreasing differential rotation were very distinct from those created 

by uniform rotation. The equator-on view of the line profiles created by differential rotation were 

broadened at the wings and had flattened cores. That agrees with the results of previous studies. 

However, the more intriguing results were found as the observer’s line of sight became more pole- 

on. At low inclinations, the increasingly flattened core of the line became inverted, creating central 

reversal at the base of the wings.

Such features created very distinctive line profiles for the strongly differentially rotating models. 

For more mild cases the features were more subtle, but nonetheless present to a degree that is 

observable with today’s telescopes.

Other studies have often found significant differences between uniform and differential rotation 

in line profiles examined in the Fourier domain. While the differences presented in this thesis were 

found to be distinctive without the need for a Fourier analysis, it is suggested that the technique be 

adopted in future work, particularly for finer variations of differential rotation.
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Work was also done to test the effects of von Zeipel’s law on rotationally broadened line profiles. It 

was found that, while von Zeipel models have less accurate surface properties and hence inclination 

curves at high rotation velocities, there is no detectable effect on line profiles. Weaker lines are 

broadened to a degree that they are nearly indistinguishable from the continuum at rotational 

velocities of significance, and stronger lines were too broad to  be very significantly affected by the 

differences in structural models.

Rotating stars present us with a myriad of problems that will never be adequately addressed by 

a single line of research. This work presents some unique new results that illustrate the benefits 

of a strong collaboration between stellar structure modelling and stellar atmospheres in tackling 

multidisciplinary problems like rotating stars.
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