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INCISOR INTEGRITY OF NORTH AMERICAN MOOSE (ALCES ALCES) AND 

POSSIBLE EFFECTS ON POPULATION AGE STRUCTURE 

By Michael Jarrod Clough, July 2007 

ABSTRACT

For mammals, foraging efficiency and survivorship should be a function of tooth 

condition. There is evidence the teeth of moose from Cape Breton Island have 

abnormally high levels of tooth breakage. To address this issue, the objectives of this 

thesis were to: 1) collect, and quantitatively characterise tooth integrity from several 

North American moose populations; 2) relate trends in population tooth integrity to 

population age structure; and 3) determine whether chemistry of teeth affects tooth 

integrity. It was hypothesised that for moose: (i) decreased cropping efficiency, resulting 

from a loss of tooth integrity, would compromise energy budgets; therefore negatively 

affect survivorship; (ii) tooth integrity is influenced by the incorporation of elements into 

the hydroxyapatite crystal lattice during mineralization.

A total of 3602 individual moose incisors (II s) were collected from 7 North 

American jurisdictions from the 2004 and 2005 hunting seasons: New Brunswick (NB), 

New Hampshire (NH), Ontario (ON), Cape Breton Island (CBI) and Vermont (VT), 

Newfoundland (NL) and Yukon (YK). Each II was characterised in terms of damage, 

breakage, cracking, wear and incisal depth as an indicator of tooth integrity. A total of 

475 incisors from were selected for chemical analysis. Incisor integrity decreased with 

age at twice the rate for CBI moose relative to NB, NH, ON and VT. However, there was 

no relationship between loss of incisor integrity and survivorship. A Canonical Analysis 

of Discriminance demonstrated tooth condition may be influenced by mineral 

concentration within the enamel.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

Firstly I would like to thank Hugh Broders for providing me the opportunity to pursue 

this project academically, and for also providing many useful insights and contributions 

to project design and data analyses.

Completion of this project would not have been possible without the contributions 

made by the following area biologists/managers whom contributed samples, data and 

more importantly their time: Barry Adams, Cedric Alexander, Neil Dawson, Adrian 

McGinn, Tony Nette, Rob Otto, Kirby Punt, Kristine Rines, Dwayne Sabine and Rick 

Ward.

I would like to thank Dr. Alexander (Sandy) Grist and Dr Marcos Zentilli for 

providing lab space at Dalhousie University Fission Track Lab and for the time afforded 

to ensure I had quality polished sections for analysis. Also, I would like to thank Mike 

Tubrett for all his help on chemical data acquisition and allowing me to ‘takeover’ the 

probe lab for a week.

I’d like to thank my wife, Aminda, for her support and encouragement throughout 

the programme. Although I was fortunate enough not to have to spend a great deal of time 

away from her, many long hours were spent working on this degree rather than with her, 

and she was very understanding. Thank you.

I would like to thank the following organisations for funding support; Canadian 

Wildlife Federation, Cape Breton Highlands National Park, Natural Sciences and 

Engineering Research Council Canada Discovery Grant to HGB, Nova Scotia 

Department of Natural Resources and Saint Mary’s University.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



STATEMENT OF ORIGINALITY 

The work presented throughout this thesis is original and principally the work of the 

M.Sc. candidate, except where literature has been cited in the customary manner. I played 

the primary role in literature reviews, project proposals, lab work, data collection, 

analysis of data and writing up the research in thesis/publication format. My supervisor 

played a major role in securing the funds required for this project.

For chapter 3, Dr. Alexander (Sandy) Grist (Dalhousie University) provided the technical 

expertise for polished section preparation and Mike Tubrett (Memorial University of 

Newfoundland) provided technical expertise in the chemical analysis of teeth using Laser 

Ablation Inductively Coupled Plasma-Mass Spectrometry.

My supervisor and committee members offered many comments and suggestions 

throughout the project, but the interpretations and writing of this thesis are considered the 

work of the M.Sc. candidate. At this point, I acknowledge the support offered by my 

supervisor, Dr. Hugh Broders, for assisting in project design and also editorship 

throughout the entire project.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

Abstract.................................................................................................................................  ii

Acknowledgements.............................................................................................................  iii

Statement of originality.......................................................................................................  iv

Table of Contents.................................................................................................................. v

List of Tables........................................................................................................................  vii

List of Figures........................................................................................................................ viii

Chapter 1: Incisor integrity of North American moose (Alces alces) and possible effects 
on population dynamics: introduction...................................................................................  1

Chapter 2: Characterisation of incisor condition in North American moose populations 
and its affects on population age structure.......................................................................... 14

Chapter 3: Effects of element concentration on the integrity of moose (Alces alces) 
teeth....................................................................................................................................... 34

Chapter 4: Incisor integrity of North American moose (Alces alces) and possible effects 
on population dynamics: synthesis......................................................................................  64

Appendix A: Average concentrations observed within Durango apatite during the course 
of this study. Mean, SD, Min, Max and relative standard deviation are presented  71

Appendix B: Average run detection limit for the elements throughout the course of data 
collection. Also presented is the average relative standard deviation observed during the 
course of this study...............................................................................................................  73

Appendix C: Mean and SD concentrations for the outer and inner matrices of enamel of 
the 20 elements for NB. Two sample T-test were conducted to test significant differences 
(P<0.0025 after Bonferonni correction) between the means............................................  75

Appendix D: Mean and SD concentrations for the outer and inner matrices of enamel of 
the 20 elements for CBI. Two sample T-test were conducted to test significant differences 
(P<0.0025 after Bonferonni correction) between the means.............................................  78

Appendix E: Mean and SD concentrations for the outer and inner matrices of enamel of 
the 20 elements for VT. Two sample T-test were conducted to test significant differences 
(P<0.0025 after Bonferonni correction) between the means............................................  81

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Chapter 2:

Table 1.1. Explanation of how incisor condition was quantified. Damaged teeth were 

identified and not included in any further analyses. Teeth were examined for breakage,

wearing, cracking, and a standard measurement of incisal depth was recorded............. 29

Table 2.2. Incidence of cracking (C), wearing (W) and breakage (B) for all age classes for

seven different jurisdictions................................................................................................ 29

Table 2.3. Regression results from incisal depth vs age in moose from 5 North American 

jurisdictions. Results for the regression are not significant, and are intended Also shown

are the results for individual MMUs for CBI..................................................................... 30

Table 2.4. Moose density for each jurisdictions, presented as moose/km as provided by

wildlife officials from each jurisdiction.............................................................................  30

Chapter 3:

Table 3.1. Mean and SD of Zn concentrations for the outer and inner matrices of enamel 

for 3 different jurisdictions, CBI, NB and VT. Two sample T-test were conducted to test 

significant differences (P<0.0025 after Bonferonni correction) among the means for inner

and outer matrices................................................................................................................ 59

Table 3.2. Canonical scores plot illustrating the discriminatory power each element has 

for distinguishing jurisdiction/MMU. Values that approach zero have minimal

discriminatory pow er........................................................................................................... 59

Table 3.3. Regression results for incisal depth vs age and element concentration in moose 

from 4 North American jurisdictions.................................................................................  60

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES
Chapter 1:

Figure 1.1. The above conceptual model is a proposition to explain how changes in moose 

population structure may result from geochemistry via the effects on tooth ‘integrity’. 

Each step in the model is linked to another by a hypothesized cause and effect. The goal 

of this study is to test predictions of these specific hypotheses to assess the validity of the

conceptual model.................................................................................................................. 13

Chapter 2:

Figure 2.1. Map of Cape Breton Island illustrating the Moose Management Units where 

hunting is permitted. Reprinted with permission from Nova Scotia Department of Natural

Resources-Wildlife Division............................................................................................... 31

Figure 2.2. Mean incisal depth (+/- SD) of incisor teeth of moose from cohorts for 5 

jurisdictions. NL and YK data are not included due to lack of age data and sample size. 

NH only had age data up to 7.5 years, and ON up to 8.5 years. Results for the regression

are presented in Table 2.3....................................................................................................  32

Figure 2.3 Static survivorship curves for moose populations plotted from hunter killed 

age data for 5 jurisdictions for the 2005 hunting season. Newfoundland and Yukon are

not included due to lack of age data and sample size respectively..................................  33

Chapter 3:

Figure 3.1. Polished incisor sections for LA-ICP-MS analysis, set in epoxy on standard

2.7 x 4.6 cm glass slide........................................................................................................  61

Figure 3.2. Count per second data from LAM-ICP-MS. The graphs shown do not 

represent absolute concentrations, but rather signal intensity over time which is converted 

to ppm or wt% using the program LAMTRACE. Beam movement was 5pm/sec (50

V ll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



seconds=250pm) (a) Shows the profile of a 10.5 year old male moose incisor from 

Vermont (MMU E2). Concentration spikes at the beginning of the run (~35sec), and 

levels off ~ 100pm from the enamel surface (~55sec) (b) Shows the profile of a 1.5 year 

old male moose incisor from Vermont (MMU D2). Notice the profile is identical to the

10.5 year old moose.............................................................................................................. 62

Figure 3.3. Canonical scores plot of moose from 5 jurisdictions depicting areas of high 

breakage frequency grouping closely based on the elements associated with canonical 1. 

Areas with low breakage frequency group closely on the x axis (Canonical 1), with

differentiation occurring the y axis (Canonical 2).............................................................  63

Figure. 3.4. Canonical scores plot for CBI moose depicting areas of high breakage 

frequency grouping closely, and areas of lower breakage frequency grouping closely, 

based on the elements associated with canonical 1. MMU 1 is north of Cape Breton 

Highlands N.P. and MMU 2 is immediately south of the park. MMU 3 and 4 are south of 

MMU 2 respectively............................................................................................................. 63

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1:

Incisor integrity of North American moose {Alces alces) and possible effects 
population dynamics: introduction
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Dentition varies among species, due in large part to variation in diet. Carnivores 

and herbivores have developed highly specialised dentition, with omnivores exhibiting 

a mixture of the two. Carnivores have developed specialised canine and camassial 

teeth, important for capturing, killing and tearing flesh from prey (Orr 1961; Romer 

1962; Hildebrand 1988). Herbivores have developed specialised incisors and molar 

teeth, used for cropping and chewing vegetation.

Organisms must have developed teeth of sufficient integrity to withstand the daily 

wear and tear associated with mastication (Van Valkenburgh 1988; Fenton et al.

1998). Tooth attrition has been observed in many species, including ungulates 

(Peterson et al. 1982; Young and Marty 1986; Smith 1992; Hindelang and Peterson 

1993; Kierdorf et al. 1993; Hindelang and Peterson 1994; Clough et al. 2006; Loe et 

al. 2006), primates (Bibby and Losee 1970; Shearer 1983; Oliveira et al. 2006), felids 

(Van Valkenburgh 1988; Stander 1997; Patterson et al. 2003), canids (Gipson et al. 

2000) and chiropteras (Fenton et al. 1998). Severe attrition is possibly related to diet, 

with carnivores having a higher probability of being affected due to a high intake of 

bone (Van Valkenburgh 1988), with severe attrition of canine teeth in carnivore 

species resulting in decreased predation efficiency (Van Valkenburgh 1988; Patterson 

et al. 2003). Others have suggested that severe attrition is of litde consequence to 

individual survival. This view assumes that natural selection would lead to teeth that 

are vital for survival be strengthened to meet demands of the lifestyle (Vila et al.

1993; Fenton et al. 1998). Therefore, if severe attrition does occur, those teeth affected 

must be of little consequence to survival so individuals are still able to maintain a 

satisfactory level of fitness through dietary intake.

Environmental factors, particularly major and trace elements, have been the focus 

of research on tooth condition within humans. It has been demonstrated that severe

2
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dental disease may be geographically isolated (Bibby and Losee 1970; Curzon and 

Cutress 1983; Driessens and Woltgens 1986; Brown et al. 2004). Distribution of the 

major and trace elements vary spatially, and therefore uptake of elements within the 

tissues of an organism will also vary spatially, and is generally a reflection of local 

environmental conditions (Maisironi 2000). The local environment will be influenced 

by conditions such as fluctuations in local geochemistry (bedrock geology), climatic 

conditions (rainfall and temperature), local biological conditions (soil pH and/or 

moisture retention) and anthropogenic conditions, such as those associated with 

industry (Pilgrim and Hughes 1994; Devkota and Schmidt 2000; Adriano 2001; 

Kabata-Pendias 2004; Telmer et al. 2004). Therefore, local physical environments will 

affect the structural integrity of teeth (Bibby and Losee 1970; Curzon and Cutress 

1983)

Enamel (hydroxyapatite) is the most important component of the tooth for 

structural integrity, forming a protective layer around less mineralised components, 

bearing the brunt of mastication and withstanding the effects of acid dissolution 

(Cutress 1983a; Bhaskar 1991). Strength and solubility of enamel is influenced by the 

concentration of major and trace elements, both within the enamel matrix and at the 

surface (Zimmerman 1976; Curzon 1983b). During enamel mineralization, elements 

are incorporated within the crystal structure of hydroxyapatite that are reflective of 

elements present within tissue fluids at the time of tooth development (Cutress 1983a). 

Due to the semi-permeable nature of hydroxyapatite, the enamel surface (outer 30- 

50|xm) can incorporate major and trace elements from the oral environment (Dreizen 

1976; Lazzari 1976; Cutress 1983a). Elements with a high affinity for calcium (i.e. 

the ‘bone-seeking’ elements such as fluorine, strontium or lead) accumulate at the 

enamel surface, whereby a tendency towards chemical equilibrium between the

3
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enamel surface and oral environment is thought to occur (Dreizen 1976; Lazzari 1976; 

Cutress 1983b).

Moose (Alces alces) belong to the Family Cervidae, are found exclusively in the 

Northern Hemisphere and occur in a variety of habitats such as montane forests, 

mixed deciduous hardwood forests, and boreal forests (Bubenik 1997; Kams 1997; 

Renecker and Schwartz 1997). They are non-migratory and have distinct areas in 

which they inhabit over their lifetime, known as home range (Cederlund and Okarma 

1988; Lepitch and Gilbert 1989; Hundertmark 1997). The home range for moose 

represents a familiar area where they can meet their daily life requirements such as 

eating, resting or escaping from predators (Hundertmark 1997). Moose are generalist 

browsers, consuming a wide variety of plant species and plant parts (Renecker and 

Schwartz 1997). The type of vegetation a moose ingests is dependant on seasons and 

geographical location. Woody vegetation from deciduous trees, shrubs and some 

conifers is a major component of their winter diet, and it is this woody vegetation 

which is the common link between different ecoregions in which moose inhabit 

(Renecker and Schwartz 1997; Schwartz and Renecker 1997). This is especially true 

in winter months, when highly nutritive lush green vegetation is not available 

(Schwartz and Renecker 1997). Moose will primarily eat twigs in the winter and 

stripped leaves, newly emerging buds and aquatic plants in the spring/summer 

(Renecker and Schwartz 1997).

Incisors are important for moose to meet their daily requirements. A moose can 

spend up to a maximum of 7-10hrs/day foraging (Renecker and Schwartz 1997). 

Moose crop their food by placing the woody vegetation between the incisors (lower 

mandible) and the upper prehensile lip. Attrition of moose incisors has been 

documented only within a few North American moose populations, with the most

4
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severe documented within Alaska, U.S.A and Cape Breton, Canada (Peterson et al. 

1982; Young and Marty 1986; Smith 1992; Hindelang and Peterson 1993; 1994; 

Clough et al. 2006). It seems likely that attrition of incisors could decrease cropping 

efficiency, which may have a negative effect on individual survivorship, therefore 

affecting population age structure (Fig 1.1).

The goal of this project was to: (i) quantitatively assess the validity of the 

conceptual model (Fig 1.1) by quantifying the structural integrity of moose incisors 

for a number of populations and compare these data to population age structure (ii) 

quantify chemical composition of the enamel of incisors from several North American 

moose populations to determine whether a mineral deficiency can account for severe 

attrition. Specifically, the following hypotheses and predictions are tested in this 

thesis:

Chapter 2, Hypothesis III: Decreased cropping efficiency compromises budgets 

results in a loss of incisor integrity and longevity of individuals will be negatively 

affected. Prediction: a decrease in incisor integrity (i.e., increased attrition) will 

negatively affect survivorship within populations.

Chapter 3, Hypothesis I: Structural integrity of teeth is influenced by the 

incorporation of major and trace elements into the hydroxyapatite crystal lattice 

during mineralization. Prediction: Moose populations exhibiting severe attrition will 

display excessive/deficient concentrations of various major and/or trace elements.

Both chapters are written as standalone manuscripts, formatted with the 

intention of peer reviewed publication. Some repetition is therefore inevitable. Finally, 

chapter 4 attempts to tie together the information from both these chapters with 

discussions and general conclusions.

5
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(For some elements)
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Changes over space and time Breakage results in loss of 
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Pre-mature death because of 
compromised energy budget

Figure 1.1. The above conceptual model is a proposition to explain how changes in moose population structure may result from 
geochemistry via the effects on tooth ‘integrity’. Each step in the model is linked to another by a hypothesized cause and effect. The goal 
of this study is to test predictions of these specific hypotheses to assess the validity of the conceptual model.
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CHAPTER 2:

Characterisation of incisor condition in North American moose populations and its
affects on population age structure
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Abstract: It has been hypothesised that animals have evolved teeth suited for wear 

and tear associated with their lifestyle. Therefore, mammals with similar life history 

traits should have similar dentition. Individuals whose teeth are structurally 

compromised are thought to be at a disadvantage in terms of food acquisition and 

ultimately survival, but some teeth may be less critical than others. This study 

assessed the impacts of tooth condition (wearing, breakage, etc) on population age 

structure of moose {Alces alces) from seven North American jurisdictions: Cape 

Breton Island, New Brunswick, New Hampshire, Newfoundland, Ontario, Yukon and 

Vermont. Frequency of tooth breakage is highest for Newfoundland and Cape Breton 

moose and even within these jurisdictions there is spatial variation in the frequency of 

breakage. Wearing occurs in all populations, but is 2 times higher in New Hampshire, 

Vermont, New Brunswick and Ontario. Incisal depth was used to measure the 

integrity of incisors (i.e., cumulative effects of breaking and wearing). Although a 

normal process, the rate of loss of incisor integrity with age was twice as fast for Cape 

Breton moose relative to New Brunswick, New Hampshire, Ontario and Vermont. 

However, there was no relationship between loss of incisor integrity and survivorship.
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Introduction

Mammals rely on their teeth to perform essential daily tasks such as the 

capture and mastication of food and defence. Life history traits, most notably diet, 

dictate dentition characteristics for different species (Orr 1961; Romer 1962; 

Hildebrand 1988). For example, carnivores will often have prominent canine teeth and 

molars and premolars that are modified for shearing meat, with other cheek teeth 

having been reduced, or in some cases completely absent (Orr 1961; Romer 1962; 

Hildebrand 1988). In herbivores, incisors have developed into blade-like structures 

efficient at pinching and cropping vegetation (Orr 1961; Hildebrand 1988). Canine 

teeth are reduced, and in most cases have developed to resemble incisors in form and 

function (Orr 1961). Cheek teeth are important for grinding and shredding cropped 

food (Orr 1961; Romer 1962; Hildebrand 1988). Omnivores generally have a dentition 

that is a mixture of tooth types from carnivores and herbivores (Hildebrand 1988).

Specific tooth types are adapted to particular functions (Hildebrand 1988; Van 

Valkenburgh 1988). For example, ruminants may spend as much as 7-10h/day 

chewing food (Hildebrand 1988; Renecker and Schwartz 1997) that is usually coarse 

and may contain mixtures of grit exacerbating wear (Peterson et al. 1982; Young and 

Marty 1986; Hildebrand 1988). To deal with heavy wear and tear, ruminants have 

evolved hypsodont dentition, whereby the cheek teeth develop deep within the jaw of 

young animals, and the crown is very high (Hildebrand 1988). As wearing progresses, 

the roots progressively rise from the jaw (with the void being replaced by bone) to 

expose more of the crown (Romer 1962; Hildebrand 1988).

If tooth function is critical for survival in mammals, there should be strong 

selection pressure on teeth to withstand normal wear and tear (Van Valkenburgh 1988; 

Fenton et al. 1998; Patterson et al. 2003). Individuals displaying severely blunted, or
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in extreme cases broken teeth, may be inferior predators (Van Valkenburgh 1988; 

Patterson et al. 2003). Similarly, foraging and chewing efficiency in herbivores may 

be inhibited if structural integrity of teeth are compromised (Young and Marty 1986; 

Hindelang and Peterson 1994). Alternatively, it is possible other mechanisms may be 

responsible for tooth condition within wild populations. Spatial variation in tooth 

integrity may be related to local environmental conditions, i.e., major and trace 

element availability (Bibby and Losee 1970; Curzon and Cutress 1983) or occasional, 

unpredictable high stresses (e.g., falls) unrelated to selection (Van Valkenburgh 1988).

Moose (Alces alces) belong to Family Cervidae and are found exclusively in 

the Northern Hemisphere, occurring in a variety of habitats such as montane forests, 

mixed deciduous hardwood forests, and boreal forests (Bubenik 1997; Kams 1997; 

Renecker and Schwartz 1997). They are a generalist browser, with woody vegetation 

comprising a large component of their diet (Renecker and Schwartz 1997). Incisor 

teeth are important for moose to meet their daily nutritive requirements. Food is 

placed between the incisors and upper lip and cropped from the source. Attrition of 

incisors has been documented in some moose populations (Peterson et al. 1982;

Young and Marty 1986), with the most severe forms documented in the Alaska and 

Cape Breton populations (Smith 1992; Clough et al. 2006). Smith (1992) observed a 

58% incidence of incisor breakage in 270 mandibles from Alaskan moose, and 

concluded that this high frequency may be a result of high moose densities. At the 

time of the study, moose density on the Seward Peninsula was reported at 8 

moose/km2 (Grauvogel, 1984 in Smith 1992). Moose have since showed a gradual 

decline in numbers on the Seward Peninsula (Persons 2004).

When moose occur at high densities for long periods of time food resources 

are heavily exploited (Basquill and Thompson 1997; Moen et al. 1998; Persson et al.
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2000; Edenius et al. 2002) and browse quantity and quality decreases (Renecker and 

Schwartz 1997). Moose require a wide variety of plants and plant parts within their 

diet to meet daily energy and nutritive requirements (Oldemeyer 1974; Ohlson and 

Staaland 2001). Where heavy browsing of vegetation occurs it is also likely that 

moose increase consumption to satisfy daily requirements and there may be less 

variety as preferred food supplies wane. These changes may also increase the risk of 

moose having toxic or deficient mineral nutrition (Ohlson and Staaland 2001). When 

nutrition is compromised, there is a possibility that the structural integrity of teeth may 

be compromised (Bibby and Losee 1970; Curzon and Cutress 1983; Clough et al. 

2006). Such problems may further be compounded by moose foraging frozen 

vegetation, or having to browse vegetation that has larger diameter (which will be 

harder) due to a lack of new growth vegetation as a result of over foraging which may 

increase wear and tear.

The consequence that incisor attrition has on individuals affected is unknown, 

but it seems likely that fitness could be compromised as a result of reduced cropping 

efficiency (Peterson et al. 1982; Young and Marty 1986; Smith 1992; Clough et al. 

2006). The purpose of this study was to characterize the physical condition of incisors 

from several moose populations across North America and relate trends in incisor 

condition to population age structures. It is predicted that jurisdictions with low tooth 

integrity among older cohorts will display lower survivorship with age.

Methods

A total of 3602 individual moose incisors (IIs) were collected from 7 North 

American jurisdictions from the 2005 hunting season: New Brunswick (NB), New 

Hampshire (NH), Ontario (ON), Cape Breton Island (CBI) and Vermont (VT), 

Newfoundland (NL) and Yukon (YK). For each tooth we also received an estimate of
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its age (determined in all cases by cementum annuli dating) and the specific moose 

management unit (MMU) of origin, with the exception of NL, for which age data were 

unavailable at the time of this study. Each II was characterised in terms of damage, 

breakage, cracking, wear and incisal depth as an indicator of tooth integrity (Table 

2.1). Quantification of incisor condition was carried out blindly (i.e., origin and age 

was unknown) by a single observer (MC) to eliminate both inter-jurisdictional and 

inter-individual bias. Average moose density observed for the 2005 hunting season, 

presented as moose/km2, was received for each jurisdiction. Jurisdiction MMUs were 

arbitrarily grouped where appropriate for ease of reference (e.g., VT was divided into 

northern, central and southern).

Incisal depth was used as an index of tooth integrity. For each population mean 

incisal depth was calculated for individual cohorts. For inter-population comparisons 

of incisal depth (i.e., tooth integrity) and age, simple linear regression (SLR) was used 

to calculate the slope and its associated standard error (SE). Using hunter killed data 

from CBI, NB, NH, ON, and VT static survivorship curves were derived to assess the 

impacts of tooth integrity on population age structure (Begon et al. 1996). Hunting 

strategies within these jurisdictions allow for any sex/age harvesting and populations 

are subjected to minimal predatory pressure with wolves being absent in all 

populations except ON (Tony Nette, Dwayne Sabine, Kristine Rines, Cedric 

Alexander and Neil Dawson, personal communication). Two major assumptions are 1) 

hunting biases that may exist are similar among jurisdictions and; 2) age specific 

mortality threats are the same in each jurisdiction (Begon et al. 1996).

Results

Cracking was observed within all populations, with an average incidence of 

0.85 (Table 2.2). Newfoundland and CBI moose display a higher incidence of
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breakage relative to the other jurisdictions, but within these populations the incidence 

of breakage is highly variable (Table 2.2). Cape Breton Island moose North of Cape 

Breton Highlands National Park (Fig 2.1) had a 5 times increase in the incidence of 

breakage compared to moose from southwest CBI and NL moose from the Northern 

and Avalon regions had 1.5-3 times higher incidence of breakage relative to NB, NH, 

ON, and VT.

All populations displayed an increase in both the mean and variation of incisor 

depth with age (Fig 2.2). The slope of the relationships between incisor depth and age 

for NB, NH, ON, and VT ranges between 0.21 and 0.30 ATooth condition/AAge. 

Within CBI spatial variation is observed for the slope of the relationships between 

incisor depth and age, with a loss of tooth integrity with age increasing along a south 

to north gradient (Table 2.3). The loss of tooth integrity with age occurs at rate 

between 0.5-2 times the magnitude on CBI relative to the other jurisdictions (Table 

2.3). Further, the SE range of the slope of MMU1 within CBI (0.606 + 0.071) does not 

include the SE range of slope measures from MMUs 2, 3 or 4 south of Cape Breton 

Highlands National Park indicating a significant difference between the means (0.425 

±0.097; 0.390 + 0.110; 0.334+ 0.130 respectively).

Moose densities are 3.25-13 times greater within the CBI population relative to 

NB, NH, ON and VT, and 11.5-46.5 times greater within the NL population relative to 

NB, NH, ON and VT (Table 2.4). Static survivorship curves for each of the five 

jurisdictions suggests tooth condition has no impact on age structure among 

populations (Fig 2.3).

Discussion

The positive relationship between attrition and age was as expected. Continual 

use of teeth and associated wearing is well documented for many species (Cutress
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1983a; Hindelang and Peterson 1993; Stander 1997; Hewison et al. 1999; Gipson et 

al. 2000; Christianson et al. 2005; Oliveira et al. 2006). However the exceptionally 

high breakage frequencies within NL and CBI suggest that some other factor(s) is/are 

at play within these populations. These factors may include behaviour, local 

environment, diet or some combination of these.

There is a correlation between high breakage incidence and high moose 

densities demonstrated within CBI and NL. The correlation is further supported within 

CBI, where an increasing trend in the incidence of breakage is observed from south to 

north. Moose densities in the lightly harvested area north of the park are high and 

similar to densities within the park. South of the park, where hunting pressure is 

higher, moose densities are slightly lower. South west of the higher elevations density 

continues to decrease (Fig 2.1-Tony Nette, personal communication).

With a correlation between high moose densities and higher incidence of 

breakage, the data support the contention that moose density affects forage quality and 

growth, which may lead to problems of tooth integrity. The specific functional 

mechanism could be either through increased attrition caused by the 

structure/composition of the browse itself and/or by causing a less-than-optimal tooth 

chemistry, therefore affecting tooth integrity and its ability to withstand ‘normal’ wear 

and tear.

Heavy wear has been observed in several moose populations. Peterson et. al. 

(1982) reported differences in tooth wear between moose inhabiting the Kenai 

Peninsula in Alaska (AK), USA and Isle Royale National Park, USA. Heavy wear was 

observed in 2-3 year old animals in the AK population, comparable to wear in 15 year 

old Isle Royale moose (Peterson et al. 1982). Young and Marty (1986) observed 

excessive wear of incisors within a population of moose from Manitoba, Canada,
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relative to other moose populations within the province. High silica content within the 

food supply was thought to be the mechanism resulting in high wear within the 

Manitoba moose, whereas ingestion of soils was thought to be the cause within 

Alaska.

Moose are generalist browsers, but they will limit themselves to preferred 

foods when they are available (Renecker and Schwartz 1997; Moen et al. 1998; 

Persson et al. 2005). Although slight variation in diet occurs among populations 

woody vegetation is a major component of moose diet and (Peek 1974; Persson et al. 

2005). Aquatic vegetation is considered a succulent food for moose, and are 

preferentially browsed when available (Peek 1974). Bottom sediments and abrasive 

particles suspended in the water are generally ingested when feeding on aquatic plants 

(Peterson et al. 1982; Young and Marty 1986). Furthermore, high silica content 

associated with certain food types (such as ground vegetation) has been suggested as 

acting as an abrasive agent on teeth (Peterson et al. 1982; Young and Marty 1986). 

Behavioural differences among populations, dictated by local environment, may be a 

plausible hypothesis to explain differences in incidence of tooth wear. Moose in areas 

of high wear may feed more exclusively on aquatic plants and ground vegetation, and 

therefore ingest more soil and grit. Both NH and VT which likely experience similar 

environmental conditions display similarities in tooth wear and breakage.

Many studies have observed correlations between local geo-environmental 

conditions and tooth condition, with severe forms of dental disease being 

geographically isolated (Bibby and Losee 1970; Curzon 1983a; Maisironi 2000). The 

fact that the severest form of attrition (i.e., breakage and increased incisal depth) is 

restricted to CBI, NL and AK warrants further investigation to consider whether local 

environment may be exerting a negative affect on tooth condition. Furthermore, CBI
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moose currently comprises the largest and most stable population within the province 

of Nova Scotia (NS) (Pulsifer and Nette 1995). It is the only population within the 

province that allows for an annual harvest. Approximately 300 licenses are issued, 

with over 12000 applications, annually (NSDNR 2005). Aboriginal people also rely 

on the moose for sustenance, and moose are a major attraction for the many thousands 

of tourists visiting the Cape Breton Highland National Park annually. These factors 

result in CBI moose being a high profile population for the province of NS. Therefore, 

based on the evidence from AK, which suggest tooth breakage may be an early sign of 

moose having reached/exceeded carrying capacity, wildlife authorities should closely 

monitor the populations that exhibit high tooth breakage.

There is no evidence that severe attrition has any effect on the age structure of 

the CBI population. The reason is unclear, but moose are able to maintain required 

energy levels through dietary intake. Our data do not support the hypothesis that 

jurisdictions with low tooth integrity among older cohorts will display lower 

survivorship as age increases. However, our data may support the contention that 

tooth condition among moose populations may be a function of density. Alternatively, 

because severe attrition is geographically isolated, it could also be argued that local 

environmental factors may be exerting an effect on tooth integrity. To further support 

this hypothesis, it is suggested that analysis of tooth chemical composition be carried 

out in order to determine if excessive/deficient mineral concentrations can further 

support the breakage hypothesis.
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Table 2.1. Characteristics used to quantify tooth condition of moose teeth.

Damaged Damage resulting from post mortem factors, identified by clean breakage with no staining or wear 
and/or fresh cracks. Damaged teeth were not used in population assessments of tooth condition.

Broken Identified by characteristic rounding and brown staining which indicates breakage occurred during 
the lifetime of theindividual. Individual teeth were scored as either being broken or not.

Wearing Indicated by either a brown stain or the wearing down to dentine on the incisal surface. Individual 
teeth were scored as either being worn or not.

Cracked Cracks that were identifiable on the surface of the teeth that terminated at the incisal surface were 
recorded for each tooth. Individual teeth were scored as cracking present or not present.

Incisal Depth Incisal depth was used as a measure of the loss of tooth integrity (i.e., volume lost or deterioration). 
Using a standard distance o f 2 mm from the incisal edge, the depth of the incisor (from front to back) 
was measured at 1/3, 1/2 and 2/3 distance from one side of the tooth to the other. The sum of the 
three was used for analysis. Teeth that are broken and worn will have higher values for this 
measure and would be expected to have lower cropping efficiency (i.e., less tooth integrity).

Table 2.2. Incidence of cracking (C), wearing (W) and breakage (B) for all age classes for 7 
jurisdictions

Jurisdiction M \1  Li n % C %W %B
C ape B reton Island
North o f Park 1 182 0.77 0.07 0.34
Immediately South o f Park 2 118 0.88 0.00 0.25
Central CBI 3 58 0.90 0.07 0.14
Southw est CBI 4 44 0.86 0.02 0.07
N ew  B runsw ick
Northwest 1-4,6, 10, 11 344 0.90 0.11 0.02
Northeast 5 ,7 ,8 299 0.83 0.17 0.03
Central 12-14, 17 195 0.88 0.23 0.01
Southwest 15, 16, 20, 21 309 0.87 0.24 0.01
Southeast 18, 19,22-25 221 0.91 0.14 0.02
N ew  H am pshire A-E 82 0.87 0.30 0.04
N ew foundland
Northern 1-5, 14,40,45 52 0.58 0.08 0.69
Western 5-11 29 0.86 0.03 0.21
Central 13, 15-22,24-27,41 45 0.93 0.18 0.31
Eastern 28-30, 42, 34,47 33 0.88 0.18 0.21
Avalon Peninsula 31-36,44 45 0.87 0.42 0.64
O ntario 1, 11-15,48,51,55, 56 136 0.82 0.40 0.01
V erm ont
Northern C, D, E, G, H 445 0.81 0.29 0.06
Central I, J 24 0.83 0.17 0.04
Southern L, M, O, P, Q 32 0.81 0.34 0.06
Y ukon 2-5, 7-10 42 0.69 0.12 0.02
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Table 2.3. Regression results from incisal depth vs age in moose from 5 North American jurisdictions. 
Also shown are the results for individual MMUs for CBI.

B 0 B age B age S E R* N P-Value
New Brunswick 5.52 0.244 0.01 36.0 1366 <0.001
New Hampshire 6.38 0.217 0.035 32.8 81 <0.001
Ontario 5.45 0.3 0.031 50.1 97 <0.001
Vermont 5.6 0.217 0.014 36.4 493 <0.001
Cape Breton Island (Total) 5.12 0.512 0.047 36.7 210 <0.001
Cape Breton Island MMU1 4.95 0.606 0.071 46.2 87 <0.001
Cape Breton Island MMU2 5.29 0.425 0.097 23.8 63 <0.001
Cape Breton Island MMU3 5.50 0.390 0.110 29.4 35 <0.001
Cape Breton Island MMU4 5.57 0.334 0.130 20.4 25 <0.001

Table 2.4. Average moose density for each jurisdiction, presented as moose/km2 as provided by wildlife 
officials from each jurisdiction.

Jurisdiction Density

Cape Breton Island 2.00
New Brunswick 0.32
New Hampshire 0.46
Newfoundland 7.00
Ontario 0.15-0.40
Vermont 0.61
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Figure 2.1. Map of Cape Breton Island illustrating the Moose Management Units where hunting is 
permitted. Moose do not inhabit areas southeast of units 3 & 4. Reprinted with permission from the 
Nova Scotia Department of Natural Resources-Wildlife Division.
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Figure 2.2. Mean incisal depth (+/- SD) of incisor teeth of moose from cohorts for 5 jurisdictions. NL 
and YK data are not included due to lack of age data and sample size. For NH we only received age 
data up to 7.5 years, and ON up to 8.5 years. Results for the regression are presented in Table 2.3.
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Figure 2.3 Static survivorship curves for moose populations plotted from hunter killed age data for 5 
jurisdictions for the 2005 hunting season. Newfoundland and Yukon are not included due to lack o f  age 
data and sample size respectively. Values were derived by dividing the number o f individuals remaining at 
each age class (i.e., number o f  individuals o f an age class and older) with the total number o f individuals 
within a jurisdiction.
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CHAPTER 3:

Characterisation of incisor condition in North American moose populations and its
affects on population age structure
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Abstract: Tooth enamel functions as a resistant layer that protects less mineralised 

components of teeth and bears the brunt of mastication. If the enamel becomes cracked or 

broken, the less mineralised components will be compromised, and the integrity of the 

tooth will decrease. The structural integrity of enamel is thought to be influenced by the 

incorporation of major and trace elements during tooth mineralization. High breakage 

frequency of moose (Alces alces) incisors has been observed in Newfoundland and Cape 

Breton. This study compared concentration of 20 elements in the enamel of moose 

incisors from 5 North America moose jurisdictions including New Brunswick, New 

Hampshire, Newfoundland, Cape Breton Island and Vermont. Results of a Canonical 

Analysis of Discriminance suggested that incisor breakage within Cape Breton Island and 

Newfoundland moose may result from a mineral imbalance. Specifically, lead 

concentration is negatively related to incisor integrity (P<0.10), and rubidium is 

positively associated with incisor integrity (P<0.10). Rubidium is a normal constituent of 

enamel, yet has no known physiologic function. However, lead has been implicated in 

several studies of human dental disease. High lead ingestion results in elements, such as 

calcium, being displaced from their binding sites in proteins and, accordingly, may 

interfere with the process of calcification (i.e., of bones and/or teeth). Higher lead 

concentration within the enamel where high breakage incidence occurs is likely the result 

of atmospheric deposition from anthropogenic sources. High moose density appears to 

exacerbate the problem.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction

In mammals, it has been demonstrated that at least 25 elements are essential for 

normal growth, development and daily metabolic activities (Underwood 1971; 1977; 

Curzon and Cutress 1983; Underwood and Suttle 1999; Bogden and Klevay 2000; 

Maisironi 2000). An imbalanced diet (excessive or deficient quantities of certain 

elements) may result in fluctuations of elements in the body above or below 

tolerable/required limits (Underwood and Suttle 1999). Nutritional disorders may arise, 

which may lead to abnormal growth and development, and possibly higher than expected 

rates of mortality (Underwood 1971; 1977; Curzon and Cutress 1983; Underwood and 

Suttle 1999; Bogden and Klevay 2000; Maisironi 2000).

Bioavailability of elements varies spatially and temporally due to fluctuations in 

geochemical (bedrock geology), climatic (rainfall and temperature), biological (hyper- 

accumulating/excluding plants), physical (soil pH, soil moisture retention, element- 

element interaction) and anthropogenic conditions such as industrial emissions (Pilgrim 

and Hughes 1994; Devkota and Schmidt 2000; Adriano 2001; Kabata-Pendias 2004; 

Simonetti et al. 2004; Telmer et al. 2004). Elements can enter animal food chains through 

plant, soil and water ingestion (Curzon 1983b; McLaughlin et al. 1999; Devkota and 

Schmidt 2000). Concentration of elements within an organism may also be regulated 

through homeostatic mechanisms (Kostial 1986; Underwood and Suttle 1999; Dolphin et 

al. 2005). Disorders resulting from excessive/deficient element concentration are often a 

result of local geo-environmental factors (Bibby and Losee 1970; Underwood 1971; 

Curzon and Cutress 1983; Maisironi 2000; Brown et al. 2004; Chandrajith et al. 2005; 

Howe et al. 2005; Farmer et al. 2006; Ljung et al. 2006).
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Enamel (hydroxyapatite) is an important component of teeth. It functions as a 

resistant layer surrounding the less mineralised dentin, bearing the brunt of mastication 

(Sharaway and Yeager 1991). It is the hardest substance in the mammalian body, is very 

similar to apatite found in nature, and is 96% mineralised (Lazzari 1976; Simpson 1976; 

Melfi 1988; Simmelink 1994). The mineral apatite has a Mohs hardness of 5, 

considerably higher than calcite (Mohs hardness 3), a major constituent of shell and bone 

(Klein et al. 1999). If the enamel layer is cracked or broken, the less mineralised 

components of the tooth (dentin and pulp) will dissolve due to the acidic nature of the oral 

cavity, eventually decreasing the integrity of the tooth (Lazzari 1976).

Structural integrity of enamel is thought to be influenced by the concentrations of 

major and trace elements incorporated into the crystal structure during mineralization 

(Zimmerman 1976). Once elements are incorporated into the enamel matrix, no 

physiologic process will decrease the element concentration (Cutress 1983a; Melfi 1988). 

Content of enamel reflects the concentration of the elements within tissues and fluids at 

the time of tooth development (Cutress 1983a). However, due to the semi-permeable 

nature of hydroxyapatite, it is thought that changes may occur at the outer (outer 30- 

50pm) enamel surface. Elements with a high affinity for calcium (i.e., the ‘bone-seeking’ 

elements such as. fluoride, strontium or lead) may accumulate at the enamel surface 

during the lifetime of an individual, increasing with age (Dreizen 1976; Lazzari 1976; 

Cutress 1983b), whereby a tendency towards chemical equilibrium between the enamel 

surface and oral environment is thought to occur (Driessens 1982).

Moose (Alces alces) belong to the cervidae family and are found exclusively in the 

Northern Hemisphere, occurring in a variety of environments such as montane forests,
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mixed deciduous hardwood forests, and boreal forests (Bubenik 1997; Kams 1997; 

Renecker and Schwartz 1997). They are generalist browsers and diets vary spatially (Peek 

1974; Basquill and Thompson 1997; Moen et al. 1998; Persson et al. 2000; Edenius et al. 

2002). However, woody vegetation from deciduous trees, shrubs and some conifers are 

common foods for all moose (Renecker and Schwartz 1997; Schwartz and Renecker 

1997).

Recent evidence suggests that moose populations of Cape Breton Island (A. a 

andersoni) and the island of Newfoundland (A. a. americana) are incurring higher 

incidence of breakage relative to other North American moose populations (Chapter 2). 

Spatial variation of breakage was also observed within CBI, with the incidence of 

breakage increasing along a south-north gradient within the region. Alaska moose (A. a. 

gigas) inhabiting the Seward Peninsula have the only other reported occurrence of 

excessively high incisor breakage among North American moose populations (Smith 

1992).

Moose were extirpated from CBI at the turn of the 20th century, and the current 

population base was founded by 18 Alberta moose {Alces alces andersoni) which were 

introduced in 1947 and 1948 (Pulsifer and Nette 1995). Two moose (one male and one 

female) were first introduced to the island of NL in 1878 from Nova Scotia {Alces alces 

americana), followed by another introduction (2 males and 2 females) from NB {Alces 

alces americana) in 1904 (Broders et al. 1999). Due to the apparent optimal conditions 

(e.g., low predation, sufficient food and shelter), moose inhabiting CBI and the island of 

NL have increased in numbers since their respective introductions. Moose densities on 

CBI are approximately 2 moose/km2. Highest densities occur north of Cape Breton 

Highlands National Park, and a decreasing trend is observed on a North to South gradient
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south of the park (See figure 2.3) (Tony Nette, personal communication). Newfoundland 

moose have been observed at densities up to 7 moose/km (Barry Adams, personal 

communication).

Moose are non-migratory, having a distinct home range where they can meet their 

daily life requirements (Cederlund and Okarma 1988; Lepitch and Gilbert 1989; 

Hundertmark 1997). Local environmental conditions may vary but individuals of a given 

area will be subject to relatively similar environmental conditions from year to year, and 

should display similar element concentrations over time (Devkota and Schmidt 2000; 

Adriano 2001; Kabata-Pendias 2004). Furthermore, if elements accumulate at the enamel 

surface over an individual’s lifetime (Lazzari 1976; Driessens 1982; Cutress 1983b), then 

it would be expected that teeth of the youngest individuals within a population will 

display lower concentrations of these elements at the surface relative to older individuals.

There is very little information available about tooth development in deer species 

(Bubenik 1997). It is therefore difficult to accurately account for the elemental deposition 

during tooth mineralization in moose, unlike in humans where mineralization occurs at a 

known rate (Johnsen 1994; Kang et al. 2004; Dolphin et al. 2005). However, most deer 

species will have fully erupted permanent incisors at approximately 4-6 months of age 

(Rue 1997). In humans, the process occurs over 4-6 years (Johnsen 1994). Mineralization 

of permanent incisors for moose will likely begin in utero. Therefore, it is assumed that 

element concentration of moose teeth will be influenced by both placental exchange 

(which is regulated in utero) and ingestion of mother’s milk (Dolphin et al. 2005).

The main goal of this study was to characterize elemental composition of sectioned 

incisors. Specifically, the objectives were to: 1) Determine whether there are significant 

differences between surface and inner element concentrations of enamel for moose; 2)
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Test the hypothesis that structural integrity of teeth is a function of the major and trace 

elements incorporated within hydroxyapatite crystal lattice during mineralization. 

Methods

Tooth collection and preparation

A total of 3602 individual moose incisor (II s) from the 2005 hunting seasons 

were collected from 7 North American jurisdictions: New Brunswick (NB), New 

Hampshire (NH), Ontario (ON), Cape Breton Island (CBI) and Vermont (VT), 

Newfoundland (NL) and Yukon (YK). For each tooth we also received an estimate of its 

age (determined in all cases by cementum annuli dating) and specific moose management 

unit (MMU) of origin, with the exception of NL, for which age data was unavailable at 

the time of this study. A total of 475 incisors from 5 jurisdictions (CBI, NB, NL, NH and 

VT) were selected for chemical analysis. To minimize bias, samples were randomly 

chosen from each age cohort, from each jurisdiction. In some cases, adjacent MMUs for 

some jurisdictions were grouped in order to increase the sample size. Teeth were 

sectioned (longitudinally) using a dremel ™ tool with a standard 1 1/2" reinforced cut off 

wheel.

Teeth were set in epoxy on standard 4.5x2.7 cm glass slides, and polished to optical 

quality using a Struers Planopol-V ™ rotary automatic polisher, using Mecaprex ™ self- 

adhesive polishing discs, and Struers ™ DP-Suspension diamond paste with grain sizes 

from 9 micrometers to 0.05 micrometers (Fig 3.1).

Chemical Analysis

Concentrations of 20 elements expressed as n B, 23Na20, 26MgO, 29SiC>2 , 

^CaO, 51V, 55MnO, 59Co, 63Cu, ^Zn, 69G a,75As, 85Rb, 88Sr, in Cd, 118Sn, 137Ba, 208Pb,

Th and U were determined at Memorial University of Newfoundland (MUN) Inco
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Innovation Centre using laser ablation inductively coupled plasma-mass spectrometry 

(LAM ICP-MS). Elements were chosen based on known essentiality and toxicity within 

mammals (Underwood 1977; Curzon and Cutress 1983; Underwood and Suttle 1999; 

Bogden and Klevay 2000; Adriano 2001), and also instrument capability (Mike tubrett, 

personal communication).

The analytical system was a Finnigan ELEMENT XR, a high resolution double 

focusing magnetic sector inductively coupled plasma mass spectrometer (HR-ICPMS) 

coupled to a GEOLAS 193 nm excimer LASER system. A helium flow rate of 1.25 

L/min was used to carry ablated material to the ICP, with an additional argon make up 

gas added after the ablation cell. The LASER beam was rastered over the enamel to 

produce a rim to core profile, commencing at the enamel surface and ending at the 

dentine-enamel junction. Laser energy was approximately 5 J/cm ; a laser repetition rate 

of 10 Hz produced a ~ 40 pm diameter spot on the sample. Time resolved intensity data 

were acquired by peak-jumping in a combination of pulse-counting, analog and Faraday 

modes, depending on signal strength, with one point measured per peak.

Calcium oxide (CaO) was the internal standard used to control for differences in 

ablation yields and matrix effects between the unknown incisors and the calibration 

materials (NIST 612 glasses). The CaO concentrations of the unknowns were assumed to 

be homogeneous at ~ 49.1% , as determined by ICP-MS bulk analysis (Clough et al. 

2006). Approximately 30 seconds of gas background data were collected prior to each 60 

sec ablation of both standards and unknowns.

The methodology employed an analytical sequence of two analyses of the NIST 

612 standard and one of Durango apatite, followed by analyses of up to 14 unknown 

incisors, closing with a repetition of the same standards in reverse order. Having a similar
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matrix to hydroxyapatite, Durango apatite were treated as an unknown and data was 

acquired to monitor the accuracy and precision (Appendix 1). The error for this method 

when measuring homogeneous materials is estimated to be better than 4% relative based 

on the reproducibility of results for various reference materials measured from day to day 

over several months in the MUN laboratory. Data were acquired over a continuous period 

of one week. Average limits of detection for the elements analysed are detailed within 

Appendix 2.

Data were reduced using MUNs in-house CONVERT and LAMTRACE 

spreadsheet programs, which employ procedures described by Longerich et al. (1996). 

LAMTRACE allows selection of representative signal intervals, background subtraction, 

and internal standard correction for ablation yield differences, instrument sensitivity drift 

during the analytical session, and perform calculations converting count rates into 

concentrations by reference to the standards.

Data analysis

Outer and inner enamel was classified from analysis of graphs depicting 

variation in element concentration from the enamel surface to the dentine-enamel 

junction. From the surface to a depth of 100]nm was classified “outer matrix” (Fig 3.2) 

and from 100pm depth to the dentine-enamel junction was classified as “inner matrix” 

(Fig 3.2). Element concentration along the inner matrix was relatively homogenous. 

Mean and standard deviations of element concentrations in the outer and inner matrices 

were calculated for individual age classes for populations with sufficient sample sizes for 

analysis (i.e., CBI, NB and VT). To determine whether there is a difference (P<0.0025 

after Bonferonni correction) in mean concentration of the elements between the inner and
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outer matrices of enamel, two-sample t-tests were conducted using individual age classes 

for CBI, NB and VT (Appendix 3, 4, 5).

Forward stepwise Canonical Analysis of Discriminance (CAD) (McGarigal et al. 

2000) was used to determine whether there was any variation in element profiles among 

moose from various jurisdictions (F-to-enter=0.05). If jurisdictions with similar 

elemental profiles have similar tooth integrity profiles, then elements correlated with 

canonical axes might explain changes in tooth integrity. To satisfy the assumptions of 

normality, univariate data were transformed using square root where appropriate. The 

concentration of the 20 elements, and also age, were the variables included in the CAD 

model. The concentration of the elements for the inner matrix was considered for the 

CAD on the assumption that elements incorporated in this region occurred during 

mineralization, which are believed to influence the strength of the hydroxyapatite 

(Zimmerman 1976).

The same procedure (forward stepwise CAD with F-to-enter=0.05) was used to 

determine whether a suite of elements could explain differences in tooth integrity among 

the 4 MMUS of CBI which showed variation in breakage frequency within the region 

(See chapter 2).

Simple linear regression (SLR) was conducted for the elements that were found to 

be significant in the CAD analysis. A total of 14 elements were individually tested (MgO, 

Sr, B, Na2 <D, SiC>2 , MnO, Co, Cu, Zn, Ga, Rb, Sn, Ba and Pb) while controlling for age. 

Newfoundland was not included due to missing age data. The regression equation for the 

model was: Tooth Integrity=(3o+(3age+Peiement±Error.
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Results

Zinc is the only element that consistently differs (P>0.0025 after Bonferonni 

correction) in concentration between the inner and outer matrices (Appendix 3, 4, 5). This 

was the case for all age classes; with the exception of 7.5 and 10.5 year old NB moose, 

7.5-10.5 year old CBI moose and 9.5 year old VT moose. Zn for the outer matrix was on 

one to two orders of magnitude higher in concentration than the inner matrices for Cape 

Breton Island, New Brunswick and Vermont (Table 3.1).

Age was not an important variable in the CAD analysis (F=1.80). Therefore, the 

analysis was conducted again without the variable age and the NL chemical data was 

incorporated. Fourteen of the 20 elements were significantly correlated with the CAD 

axes of elemental profiles of moose from the different jurisdictions (Table 3.2). A 

MANOVA test, using Wilks Lambda, shows significant differences among the 

multivariate means of element concentration among the jurisdictions (Wilks 

lambda=0.115). The classification matrix shows that overall, 78% of the incisors were 

classified correctly to jurisdictions (Jackknifed matrix=76%). The canonical scores plot 

show that CBI and NL are slightly differentiated from NB, NH and VT along canonical 

axis 1 (Fig 3.3).

The CAD for the 4 MMUs of Cape Breton shows that 6 elements discriminate 

among the MMUs (Table 3.5). The Wilks lambda (0.096) shows significant differences 

among the multivariate means of element concentration among the MMUs. Overall, 84% 

of the incisors were classified correctly to MMUs (Jackknifed matrix=76%). The 

canonical scores plot shows that MMU 1 and 2 are well differentiated from MMU 3 and 4 

(Fig 3.4).
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For the SLR of the 14 elements that discriminated between the jurisdictions, lead 

and Rb are the only elements that have a significant (PcO.lO) relationship with breakage 

(Table 3.3). Due to the management/conservation implications of this work oc=0.10 was 

used to minimize Type I errors.

Discussion

Element concentration does not differ significantly (P>0.0025 after Bonferonni 

correction) between the inner and outer matrices of enamel among cohorts of individual 

jurisdictions, with the exception of Zn. Zinc is consistently higher in concentration within 

the outer matrix by 2-5 orders of magnitude for all age classes within all jurisdictions. 

There are some discrepancies within the jurisdictions for older cohorts (i.e., 7.5 and 10.5 

year old NB moose, 7.5-10.5 year old CBI moose and 9.5 year old VT moose show no 

significant differences (P>0.0025 after Bonferonni correction) in Zn concentration 

between the inner and outer matrix). However the mean concentration is still 2-4 times 

higher for the outer matrix compared to the inner matrix for these cohorts, and the 

discrepancy is likely associated with small sample size. Zinc is considered a bone-seeking 

element (Jarup 2002), and therefore its concentration would be expected to increase with 

age at the surface (Dreizen 1976; Lazzari 1976; Cutress 1983b). The data suggest 

otherwise, with Zn concentration remaining relatively constant among all cohorts for all 

jurisdictions.

No other elements displayed a significant difference (P>0.0025 after Bonferonni 

correction) between the inner and outer matrices, including the bone seeking elements Pb, 

Cd, and the alkaline earth metals (Cutress 1983b; Henriksen et al. 2002). Therefore, 

elemental differences observed at the enamel surface for Zn during this study cannot be
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related to bone-seeking elements penetrating the enamel surface with age, and some other 

mechanism must be involved.

If element intake during tooth mineralization is derived from placental exchange, 

followed by ingestion of mother’s milk, a shift in concentration may be visible within the 

enamel matrix distinguishing these two events. This mechanism would be similar to a 

phenomenon observed in human primary teeth, where shifts in concentration have been 

demonstrated on opposing sides of the neo-natal line of teeth (Dolphin et al. 2005). The 

neo-natal line distinguishes element uptake during placental exchange (which is regulated 

in utero) and uptake via mothers milk (Dolphin et al. 2005). Support for this mechanism 

is demonstrated within the Zn data, where the concentration is consistently higher within 

the outer matrix relative to the inner matrix among the cohorts for all jurisdictions.

For both CAD analyses, based on the classification and jackknife matrices having 

little variation, the estimation of means and dispersions are reliable and sample size is 

sufficient (McGarigal et al. 2000). Although not well differentiated, jurisdictions with 

similar breakage incidence group together on the y axis and are associated with the 

elements highly correlated with of Canonical axis 1. The data support the prediction that 

areas with high breakage incidence will exhibit excessive/deficient concentrations of 

certain major and/or trace elements. The CAD analysis of individual MMUs for CBI 

further supports this prediction. Breakage trends for these MMUs show a relative increase 

from South to North (Chapter 2). The data illustrates that areas of higher breakage 

incidence (MMU 1 and 2) are well differentiated in elemental profiles from areas of lower 

breakage incidence (MMU 3 and 4) by elements correlated with canonical (1).

Areas with high breakage incidence exhibited higher concentrations of MgO, Sr, 

Na20, SiC>2 , MnO, Zn, Ga and Pb, and lower concentrations of B, Co, Cu, Rb, Sn and Ba
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within the enamel. Bivariate regressions of incisal depth against each element and age 

suggested that Pb and Rb are the only elements exerting a significant (PcO.lO) effect. 

BetaAge was ~ 0.30 for all models, suggesting the influence age has on tooth condition is 

constant.

Element bioavailability is a complex process. Individual uptake can be affected by 

numerous factors including: individual homeostatic mechanisms; differences in plant 

uptake which varies by species; and finally climatic, geochemical, physical, and 

anthropogenic conditions (Frieden 1984; Rajagopalan 1984; Schrauzer 1984; Kostial 

1986; Nielsen 1986; Quaterman 1986 ; Underwood and Suttle 1999; Devkota and 

Schmidt 2000; Adriano 2001; Kabata-Pendias 2004; Dolphin et al. 2005). It is also 

difficult to quantify daily requirements without species specific information, and little 

information exists for element requirements for moose (Schwartz and Renecker 1997; 

Underwood and Suttle 1999).

Many studies have demonstrated a negative relationship between Pb concentrations 

and dental disease (Stack 1983). High concentrations of Pb within tissues and fluids of an 

organism can displace other elements (Ca for example) from their binding sites in 

proteins and interfere with function, such as calcification of bones and/or teeth 

(Reichlmayr-Lais and Kirchgessner 1984). Rubidium is a normal constituent of enamel, 

yet has no known physiologic function (Curzon 1983a; Cutress 1983a).

Lead is released into the environment from chemical weathering of rocks and 

municipal/industrial discharge. However, the major source of absorbable Pb in the 

environment originates by atmospheric deposition from anthropogenic sources, such as 

the burning of fossil fuels and smelting of metal ores (Pilgrim and Hughes 1994; 

Mihaljevic 1999; Simonetti et al. 2004; Telmer et al. 2004; Bonham-Carter et al. 2006).
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Lead particles released into the atmosphere can stay aloft for up to 64 hours, and may 

travel up to 1600km from the source (Pilgrim and Hughes 1994). Long range transport 

has been well documented (Pilgrim and Hughes 1994; Simonetti et al. 2004; Telmer et al. 

2004; Shotyk et al. 2005). Ice cores in the Artie have been shown to contain high 

concentrations of industrial Pb originating from North American and Eurasian sources 

(Shotyk et al. 2005). Lead emissions from a smelter close to the Quebec/Ontario border 

were shown to be deposited in areas of the entire northeast region of North America 

(Simonetti et al. 2004).

Within CBI and NL, prevailing winds are predominantly from the south/southwest in 

the summer, and west/northwest in the winter (Phillips 1990). Directly east of NL and 

northeast of CBI is the Belledune smelter in northeastern New Brunswick, which releases 

up to 20 tons of Pb into the atmosphere annually (Pilgrim and Hughes 1994). It is 

possible that high Pb concentrations in CBI and NL are the result of long range 

transportation of Pb from anthropogenic sources, such as the Belledune smelter

Atmospheric deposition of Pb results in soils (and snow pack in winter) containing 

appreciable amounts of absorbable Pb (Pilgrim and Hughes 1994; Underwood and Suttle 

1999; Telmer et al. 2004; Shotyk et al. 2005). Tree or plant uptake of this element is poor 

(Underwood and Suttle 1999). However, grasses have been shown to accumulate high 

quantities of Pb (Pilgrim and Hughes 1994). Therefore, Pb in the diet may originate via 

ingestion of soil, grasses or water for moose.

The south-north gradient of breakage incidence within CBI is negatively correlated 

with population density (which is higher in the north). It seems plausible the relationship 

observed with element excess/deficiency on tooth condition is being exacerbated by high 

moose density. Support for this is further demonstrated within the NL and Alaska
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populations, where breakage incidence appears to correlate with high moose densities 

also. The mechanism is unclear, however moose populations occurring at high densities 

commonly over utilise resources, reducing browse quality and quantity (Basquill and 

Thompson 1997; Renecker and Schwartz 1997; Moen et al. 1998; Persson et al. 2000; 

Edenius et al. 2002). Over utilisation of browse may result in the exclusion of preferred 

food from canopy, giving way to less palatable/nutritious food (Basquill and Thompson 

1997). As a result, moose occurring at high densities may be altering their foraging 

behaviour, increasing the consumption of ground vegetation, such as grasses, which may 

contain a high content of soil, grit (silica) and ultimately Pb.

The high SiC>2 concentration within enamel of moose with high breakage incidence 

further supports this argument. In grazing livestock, the abrasive effects of substantial 

intakes of silicate-rich particles found within grasses has been associated with excessive 

tooth wear (Underwood and Suttle 1999), while in moose high silica content and soil 

ingestion associated with certain food types (such as ground vegetation) has been 

suggested as acting as an abrasive agent on teeth causing unusual wear (Peterson et al. 

1982; Young and Marty 1986).

The density correlation is important. High Pb concentrations close to the Belledunde 

smelter are well documented (Pilgrim and Hughes 1994). Moose inhabit the surrounding 

areas of the smelter. Unfortunately chemical data was not collected on moose incisors 

from this area. However, the incidence of breakage for moose incisors in the northeast 

area is 0.03, which is low relative to CBI and NL (See chapter 2). Densities are also much 

lower in NB (0.32 moose/km2; Dwayne Sabine, personal communication) relative to CBI 

or NL, adding further support that densities may exacerbate the problem of 

excessive/deficient mineral concentration of enamel and ultimately incisor breakage.
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The data support the hypothesis for an excessive/deficient mineral concentration of 

enamel resulting in compromised structural integrity of moose teeth. It is possible that the 

excessive/deficient enamel concentration is being caused or exacerbated by both high 

moose densities. The breakage occurring along the North-South gradient of CBI should 

be examined further. Further understanding of how density may affect diet is important, 

and any study must be complemented by NL and NB teeth, in particular moose 

surrounding the Belledune smelter. Investigation of natural “background” levels of Pb 

(Shotyk et al. 2005) in CBI and NL, and investigation of Pb isotopes may shed light as to 

the source of the Pb, which may support/refute the argument for an anthropogenic source 

of Pb.
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Table 3.1. Mean and SD o f Zn concentrations for the outer and inner matrices o f enamel for 3 different 
jurisdictions, CBI, NB and VT. Two sample T-test were conducted to test significant differences (P<0.0025  
after Bonferonni correction) among the means for inner and outer matrices

Aqe

Cape Breton New Brunswick Vermont
Outer Inner

P-value
Outer Inner

P-value
Outer Inner

P-valuen Mean SD Mean SD n Mean SD Mean SD n Mean SD Mean SD
1.5 18 98.183 40.37 18.14 5.569 P<0.001 15 79.61 40.73 18.51 5.333 P<0.001 14 130.04 55.01 25.23 8.525

oooVQ_

2.5 25 103.36 24.29 19.5 4.821 P<0.001 17 90.37 38.66 19.01 6.032 P<0.001 12 116 33.3 20.4 4.073 P<0.001
3.5 29 105.56 29.91 22.37 6.056 P<0.001 17 74.6 32.99 18.8 4.824 P<0.001 11 107.78 31.44 21.47 10.07 P<0.001
4.5 26 105.67 29.35 22.13 5.997 P<0.001 17 63.89 37.35 17.15 3.677 P<0.001 16 96.087 24.46 19.43 6.567 P<0.001
5.5 11 112.17 44.03 25.43 10.56 P<0.001 16 56.09 33.67 16.48 2.865 P<0.001 10 70.957 35.59 15.92 6.303 P<0.001
6.5 12 92.896 29.87 22.64 3.476

8oV0. 15 61.66 29.86 16.92 3.329 P<0.001 15 93.929 37.99 19.45 4.463 P<0.001
7.5 4 109.09 32.95 23.25 4.684 0.0128 5 56.68 34.89 19.3 2.045 0.0454 15 87.727 35 18.93 7.114 P<0.001
8.5 5 77.271 29.83 20.48 5.237 0.0181 9 65.9 48.54 21.67 9.833 P<0.001 12 81.959 20.47 19.52 5.51 P<0.001
9.5 5 26.75 3.881 18.81 2.581 0.0067 11 58.91 41.27 15.67 6.096 P<0.001 9 80.449 35.89 17.39 5.549 0.0068

10.5 6 48.957 27.94 21.2 3.39 0.0591 3 54.32 43.11 20.17 11.61 0.0174 10 89.445 54.45 21.99 7.667

oooVQ_

Table 3.2. Canonical scores plot illustrating the discriminatory power each element has for distinguishing 
jurisdiction/MMU. Values that approach zero have minimal discriminatory power

All Jurisdictions  Cape Breton Island
Canonical 1 Canonical 2 Canonical 1 Canonical 2

Constant 0.591 0.492 -6.718 -116.738
MgO 0.26 0.14 0.358 -0.117
CaO - - 0.001 0.524
Sr 0.61 0.107 - -

B -0.155 0.276 - -

Na20 0.792 -0.582 - -

SiOz 0.197 -0.094 -0.3 0.132
MnO 0.105 -0.137 - -

Co -0.226 0.328 - -

Cu -0.185 -0.458 - -

Zn 0.073 0.512 - -

Ga 0.307 0.286 - -

Rb -0.997 0.253 0.225 0.432
Sn -0.341 0.505 0.829 0.392
Ba -1.001 -1.027 - -

Pb 0.227 0.081 -0.875 0.641
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Table 3.3. Regression results for incisal depth vs age and element concentration in m oose from 4 North 
American jurisdictions.

Constant BetaAge BetaAge se P-Value Beta£iemen| BetaElement sE P-Value
MgO 5.66 0.303 0.024 < 0.001 -0.381 0.882 0.666

Sr 5.33 0.294 0.024 < 0.001 0.001 0.001 0.233

B 5.18 0.291 0.024 < 0.001 0.165 0.102 0.109

Na20 5.30 0.295 0.024 < 0.001 0.430 0.507 0.397

Si02 5.49 0.294 0.024 < 0.001 0.425 1.003 0.672

MnO 5.65 0.297 0.024 < 0.001 -3.288 2.627 0.211

Co 5.52 0.295 0.024 < 0.001 0.022 0.057 0.697

Cu 5.70 0.295 0.024 < 0.001 -1.160 1.180 0.324

Zn 5.20 0.296 0.024 < 0.001 0.077 0.072 0.290

Ga 5.59 0.294 0.024 < 0.001 -0.012 0.061 0.846

Rb 5.87 0.298 0.024 < 0.001 -0.410 0.235 0.080

Sn 5.44 0.294 0.024 < 0.001 0.115 0.125 0.359
Ba 5.63 0.294 0.024 < 0.001 -0.007 0.022 0.744
Pb 5.20 0.292 0.023 < 0.001 0.453 0.118 <0.001
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Figure 3.1. Polished incisor sections for LA-ICP-MS analysis, set in epoxy on standard 27 x 46mm glass 
slide.
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Figure 3.2 Count per second data from LAM-ICP-MS. The graphs shown do not represent absolute 
concentrations, but rather signal intensity over time which is converted to ppm or wt% using the program 
LAMTRACE. Beam movement was 5pm/sec (50 seconds=250pm) (a) Shows the profile o f a 10.5 year old 
male moose incisor from Vermont (MMU E2). Concentration spikes at the beginning o f  the run (~35sec), 
and levels o ff ~100pm  from the enamel surface (~55sec) (b) Shows the profile o f  a 1.5 year old male moose 
incisor from Vermont (MMU D2). Notice the profile is almost identical to the 10.5 year old moose. Vertical 
red lines indicate the start (enamel surface) and finish (dentine-enamel junction) o f  the analysis.
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Figure 3.3. Canonical scores plot o f moose from 5 jurisdictions depicting areas o f  high breakage frequency 
grouping closely based on the elements associated with canonical axis 1. Areas with low breakage 
frequency group closely on the x axis (Canonical 1). with differentiation occurring the y axis (Canonical 2).
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Figure. 3.4. Canonical scores plot for CBI moose depicting areas o f high breakage frequency grouping 
closely, and areas o f lower breakage frequency grouping closely, based on the elements associated with 
canonical 1. MMU 1 is north o f Cape Breton Highlands N.P. and MMU 2 is immediately south o f  the park. 
MMU 3 and 4 are south o f MMU 2, respectively.
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CHAPTER 4:

Incisor integrity of North American moose {Alces alces) and possible effects on
population dynamics: synthesis
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Wear and tear of teeth is expected to occur over the lifetime of an individual.

However, incisor deterioration among Cape Breton Island (CBI) moose appears 

abnormally high relative to New Brunswick (NB), New Hampshire (NH), Vermont (VT) 

and Ontario (ON). The data presented in Chapter 2 suggest that ‘normal’ deterioration of 

moose incisors with age occurs at a rate consistent with a slope of 0.2-0.3 ATooth 

condition/AAge. Within the CBI moose population, the slope of the line is approximately 

0.54 ATooth condition/AAge. It has been suggested that cropping efficiency may be 

compromised when incisor integrity is compromised (Young and Marty 1986; Hindelang 

and Peterson 1994). Therefore, it was predicted that a decrease in incisor integrity (i.e., 

increased attrition) would negatively affect survivorship within moose populations.

Static survivorship curves were derived for each jurisdiction from hunter killed data to 

test whether jurisdictions with low tooth integrity among older cohorts display lower 

survivorship as age increases. There was no correlation between a decrease in incisor 

integrity and survivorship, suggesting moose are able to maintain sufficient food intake to 

meet daily energy requirements regardless of incisor condition. However, moose densities 

are higher in CBI and NL (see Table 2.4), and appears to be correlated with breakage 

incidence. Adding support is the increasing incidence of tooth breakage along a south- 

north gradient of within CBI. The correlation is further supported by the findings of 

Smith (1992), who suggested that breakage may be a result of high moose densities. 

However, it was not known how high moose densities cause the rapid deterioration of 

incisors observed during this study.

One possibility is that an excess/deficient diet of various elements might affect tooth 

condition. Moose inhabiting areas of higher breakage incidence exhibited higher
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concentrations of MgO, Sr, Na20, SiC>2 , MnO, Zn, Ga and Pb, and lower concentrations 

of B, Co, Cu, Rb, Sn and Ba within the enamel. Bivariate regressions of incisal depth 

against each element and age suggested that Pb is the only element exerting a significant 

(P<0.001) effect (negative). Lead toxicity has been shown to displace elements (Ca for 

example) from binding sites, interfering with function, such as bone and teeth 

calcification (Reichlmayr-Lais and Kirchgessner 1984). Therefore, there is support for the 

hypothesis that mineral concentrations within hydroxyapatite will exert an effect on 

structural integrity of moose teeth.

The source of the lead within CBI and NL is most likely a result of atmospheric 

deposition from anthropogenic sources. The long range transport of Pb from 

anthropogenic emissions has been well documented, with particles travelling up to 

1600km. A potential source of Pb locally is the Belledune lead smelter in northeastern 

New Brunswick, which is directly northeast and east of CBI and NL respectively. 

Prevailing winds in both CBI and NL could potentially carry Pb particles into these 

regions (Phillips 1990). However, investigation of natural “background” levels of Pb 

(Shotyk et al. 2005) in CBI and NL, and investigation of Pb isotopes may shed light as to 

the source of the Pb, which may support/refute the argument for an anthropogenic source 

of Pb.

It is plausible that breakage incidence is positively correlated with moose densities, 

which has been demonstrated along the south-north gradient of breakage incidence within 

CBI, and the relatively high densities observed within NL and Alaska. A possible 

mechanism is that moose at higher densities are over utilising resources, which may 

reduce browse quality and quantity (Basquill and Thompson 1997; Renecker and 

Schwartz 1997; Moen et al. 1998; Persson et al. 2000; Edenius et al. 2002). As a result
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moose may be altering their foraging behaviour increasing the consumption of ground 

vegetation, such as grasses, which may contain a higher content Pb, and even soil and grit 

(silica). The high SiC>2 concentration within enamel of moose with high breakage 

incidence further supports this argument. Increased ingestion of Silica rich soil and 

grasses has been demonstrated to act as an abrasive agent, resulting in excessive tooth 

wear for grazing livestock and moose (Peterson et al. 1982; Young and Marty 1986; 

Underwood and Suttle 1999).

Moose inhabit areas surrounding the Belledune smelter, but exhibit a lower breakage 

incidence (0.03), relative to CBI and NL (see chapter 2). Densities are also much lower in 

NB (0.32 moose/km2; Dwayne Sabine, personal communication) relative to CBI or NL, 

adding further support that densities may exacerbate the problem of excessive/deficient 

element intake and ultimately incisor breakage.

With a positive correlation between breakage incidence and density demonstrated in 

Chapter 2, and support for an excess/deficient intake of elements resulting in 

compromised tooth integrity, it is plausible that excessive/deficient element 

concentrations are being exacerbated by high moose densities. It has been demonstrated 

that moose populations occurring at high densities commonly over utilise food resources, 

reducing browse quality and quantity (Basquill and Thompson 1997; Renecker and 

Schwartz 1997; Moen et al. 1998; Persson et al. 2000; Edenius et al. 2002). It is possible 

moose inhabiting areas of high density are altering their foraging behaviour due to 

changing food resources, increasing the consumption of plants containing a higher 

content of soil and grit (SiC>2 and Pb).

In spite of no correlation between tooth condition and moose population age structure, 

populations exhibiting high incidence of breakage must continue to be monitored. Higher
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breakage incidence negatively correlates with both breakage incidence and element 

excess/deficiency. Evidence from the Alaska moose populations, declining since the 

documentation of breakage, suggests that tooth breakage may be a possible warning sign 

that the population has exceeded the carrying capacity.

The breakage occurring along the North-South gradient of CBI should be examined 

further. Further understanding of how density may affect diet is important, and any study 

must be complemented by NL and NB teeth, in particular moose surrounding the 

Belledune smelter Investigation of natural “background” levels of Pb (Shotyk et al. 2005) 

in CBI and NL, and investigation of Pb isotopes may shed light as to the source of the Pb, 

which may support/refute the argument for an anthropogenic source of Pb.
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Appendix A: Average concentrations observed within Durango apatite during the 
of this study. Mean, SD, Min, Max and relative standard deviation are presented.
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Durango
Mean SD Minimum Maximum RSD

11B (ppm) 13.05 1 .93 9 .4 5 17 29.95%
23Na20  (wt%) 0 .2 2 8 8 0 .0 2 7 2 0 .1 7 6 0 .3 0 4 9.38%
26MgO (wt%) 0.0271 0 .0 0 3 6 0.0081 0 .0 3 1 3 12.68%
29Si02 (wt%) 0 .4 4 7 8 0 .0 3 2 4 0.31 0 .5 1 2 7.18%
44CaO (wt%) 55 .0 7 0 .6 8 0 0 5 0 .7 5 6 .3 3.06%
51V (ppm) 56 .7 4 2 .4 7 9 52 .5 65 3.27%
55MnO (wt%) 0 .0 1 2 8 0 .0 0 0 3 0 .0 1 2 2 0.0141 2.25%
59Co (ppm) 4 .1 1 4 2 .0 4 0 1 .09 9 .9 3 133.95%
63Cu (ppm) 0 .9 3 5 7 0 .3 0 5 8 0.431 1.76 222 .39%
64Zn (ppm) 5 .2 4 9 1 .063 2 .3 5 8 .4 3 30.48%
69Ga (ppm) 2 .8 0 3 2 .5 3 8 0 .8 0 3 9.41 143.29%
75As (ppm) 1191 .4 50 .8141 1030 1310 4.66%
85Rb (ppm) 0 .2 4 2 7 0.1211 0 .0 8 8 2 0 .6 8 56.54%
88Sr (ppm) 512 .9 7 .7 3 6 3 4 8 6 53 9 1.28%
111Cd (ppm) 0 .5 4 9 4 0 .3 2 0 8 0 .1 7 4 1 .85 355 .39%
118Sn (ppm) 1 .0765 0 .7 2 8 3 0 .3 0 7 2 .8 9 44.62%
137Ba (ppm) 1.8708 0 .2 3 3 3 1 .25 2 .4 13.49%
208Pb (ppm) 0 .8 6 1 9 0 .0 7 9 0 0 .7 4 2 1.11 7.40%
232Th(ppm) 26 6 .4 14 .92 2 2 9 301 5.62%
238U (ppm) 12.42 0 .2 9 6 7 11.7 12 .9 1.45%
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Appendix B: Average run detection limit for the elements throughout the course of data 
collection. Also presented is the average relative standard deviation observed during the 
course of this study
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Run Detection for unknowns
n Mean SD Minimum Maximum RSD

11B (ppm) 48 0.4577 0.6785 0.1660 5.1240 19.50%
23Na20  (wt%) 48 0.0001 0.0005 0 0.0030 27.18%
26MgO (wt%) 48 0.0003 0.0005 0 0.0020 20.74%
29Si02 (wt%) 48 0.0045 0.0062 0.0010 0.0460 21.80%
44CaO (wt%) 48 0.0044 0.0035 0.0010 0.0180 16.36%
51V (ppm) 48 0.0315 0.0263 0.0170 0.2090 19.19%
55MnO (wt%) 48 0 0 0 0 18.17%
59Co (ppm) 48 0.7171 0.7052 0.2530 4.3290 36.01%
63Cu (ppm) 48 0.2538 0.3687 0.1050 2.7890 24.36%
64Zn (ppm) 48 0.3550 0.2296 0.0950 1.2920 20.25%
69Ga (ppm) 48 0.1495 0.2035 0.0450 1.4820 8.387%
75As (ppm) 48 0.1528 0.0556 0.0160 0.3700 22.38%
85Rb (ppm) 48 0.0372 0.0415 0.0110 0.3090 22.27%
88Sr (ppm) 48 0.1392 0.0830 0.0300 0.4490 17.26%
111Cd (ppm) 48 0.1635 0.3708 0.0410 2.7430 22.86%
118Sn (ppm) 48 0.0828 0.1364 0.0320 1.0160 143.2%
137Ba (ppm) 48 0.2495 0.2570 0.0440 1.1680 19.91%
208Pb (ppm) 48 0.0224 0.0410 0.0050 0.2950 21.59%
232Th(ppm) 48 0.0037 0.0020 0.0010 0.0080 19.34%
238U (ppm) 48 0.0030 0.0035 0 0.0210 20.61%
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Appendix C: Mean and SD concentrations for the outer and inner matrices of enamel of the 20 elements for NB. Two sample T-test 
were conducted to test significant differences (P<0.0025 after bonferonni correction) between the means.
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Appendix D: Mean and SD concentrations for the outer and inner matrices of enamel of the 20 elements for CBI. Two sample T-test 
were conducted to test significant differences (P<0.0025 after bonferonni correction) between the means.
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Appendix E: Mean and SD concentrations for the outer and inner matrices of enamel of the 20 elements for VT. Two sample T-test 
were conducted to test significant differences (P<0.0025 after bonferonni correction) between the means.
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