
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, som e thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of th is rep ro d u c tio n Is dependen t upon the quality o f th e

copy subm itted. Broken or Indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and im proper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete m anuscript

and there are missing pages, th e se will be noted. Also, If unauthorized

copyright material had to be rem oved, a note will indicate the deletion.

Oversize materials (e.g., m aps, drawings, charts) are reproduced by

sectioning the original, beginning a t the upper left-hand corner and continuing

from left to right In equal sections with small overlaps.

ProQ uest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0000

UMI

Level Set M ethods and

Sloshing Problem s

Geng Tian

A thesis submitted in partial fulfillment of

the requirement of the degree of

Master of Applied Science (in Mathematics and Computing Science)

Saint Mary’s University

Halifax, Nova Scotia

Copyright [Ceng Tian, 2005]

All Right Reserved

August 29, 2005

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0 -4 9 4 -0 6 9 7 9 -1

NOTICE;
T he author h a s g ran ted a non­
exclusive license allowing Library
an d Archives C a n a d a to reproduce,
publish, archive, p reserv e , conserve ,
com m unicate to the public by
te lecom m unication or on the Internet,
loan, distribute a n d sell th e se s
worldwide, for com m ercial o r non­
com m ercial p u rp o ses , in microform,
p ap er, electronic and/or any other
form ats.

AVIS:
L 'auteur a acc o rd é u n e licence non exclusive
perm ettan t à la Bibliothèque e t A rchives
C an ad a d e reproduire , publier, archiver,
sau v eg ard e r, co n server, transm ettre au public
p a r télécom m unication ou par l'Internet, p rêter,
distribuer e t vendre d e s th è ses partout d a n s
le m onde, à d es fins com m erciales ou au tre s ,
su r support microform e, papier, électronique
et/ou au tre s form ats.

T he au thor reta ins copyright
ow nership and m oral rights in
this thesis. N either the th esis
nor substan tial ex trac ts from it
m ay b e printed o r otherw ise
reproduced without the au thor’s
perm ission.

L 'auteur co n serv e la propriété du droit d 'au teu r
e t d e s droits m oraux qui protège ce tte th è se .
Ni la th è se ni d e s ex traits substan tiels de
celle-ci ne doivent ê tre imprimés ou au trem en t
reproduits s a n s son autorisation.

In com pliance with the C anad ian
Privacy Act so m e supporting
forms m ay have b een rem oved
from this thesis.

C onform ém ent à la loi canad ienne
su r la protection de la vie privée,
quelques form ulaires secondaires
ont é té en lev és de ce tte thèse.

While th e se forms m ay be included
in the docum ent p a g e count,
their rem oval d o e s not rep resen t
any loss of con ten t from the
thesis.

Canada

Bien que c e s form ulaires
aien t inclus d a n s la pagination,
il n'y aura au cu n con tenu manquant.

C ertification

Name: Geng Tian

Degree: Master o f Science in Applied Science

Title o f Thesis: Level Set Methods and Sloshing Problems

Examining Committee:

Dr. Kevin Vessey, Dean of Graduate Studies and Research

Dr. David H. S. Richardson, Program Co-ordinator

Dr. Patrick Keast, External Examiner
Dalhousie University

Dr. Paul Muir, Senior Supervisor

Dr. Raymond Spiteri, Senior Supervisor
University o f Saskatchewan

Dr. Walt Finden, Supervisory Committee

Dr. Hai Wang, Supervisory Committee

Date Certified: August 25,2005

© Geng Tian, 2005

To My Family

A bstract

Level set methods are powerful numerical techniques for tracking the motion

of an interface. Many applications arise in such areas as fluid flow simu­

lations, medical science, and image processing. In fluid flow simulations,

tracking the interface between two fluid flow phases is often difficult. Among

the m athem atical models th a t can be used to analyze fluid flow are the

shallow water equations and Navier-Stokes equations. An im portant class

of fluid flow problems is known as sloshing problems. These problems are

concerned w ith the sloshing of a fluid in a tank, and they arise in the automo­

tive, aerospace, and ship-building industries. In this thesis we consider the

modelling of sloshing problems using shallow water equations and Navier-

Stokes equations. W hereas the shallow water equations include a function

th a t models the fluid interface, the Navier-Stokes equations do not. In this

la tte r case, however, one can use the level set approach to track the fluid

interface. Given the fluid velocity as obtained from the Navier-Stokes equa­

tions, one can use it to evolve the interface using the level set approach. We

develop a MATLAB based implementation and provide numerical results to

dem onstrate this approach.

A cknowledgem ents

I t is a pleasure to thank many people who made this thesis possible.

I would like to gratefully acknowledge my senior supervisors, Professor

Paul Muir (Saint M ary’s University) and Professor Raymond Spiteri (Uni­

versity of Saskatchewan). W ith their enthusiasm, their inspiration, and their

great efforts to explain things clearly and simply, they helped to make m ath­

ematics fun for me. Throughout my graduate studies, they provided encour­

agement, sound advice, good teaching, and lots of good ideas. 1 would have

been lost without them.

1 am also grateful to my thesis examining committee. Professor Patrick

Keast (Dalhousie University), Professor W alt Finden (Saint M ary’s Univer­

sity), and Professor Hai Wang (Saint M ary’s University) for their very kind

assistance with writing this thesis, giving wise advice, and so on.

And 1 would like to thank the Faculty of G raduate Studies and Research

a t Saint M ary’s University for their support in the form of scholarships.

1 am grateful to the faculty and staff a t the department of Mathematics

and Computing Science in Saint M ary’s University, for helping the depart­

m ent run smoothly and for assisting me in many different ways.

1 am indebted to my many student colleagues for providing a stimulating

ii

and fun environment in which to learn and grow. I am especially grateful

to S tuart Crosby, Hui Xu, Rong Wang, Hong Zhao, Zhenyan Sun, Yasushi

Akayama, Wei Yu, Fan Luo, Yan Ma, and Arun Yadav.

I would also like to thank all my friends for helping me get through the

difficult times, and for all the emotional support, entertainm ent, and caring

they provided. A special thanks to Paul Ransom, G aétan Lang, and Travis

Coady.

I wish to thank my entire extended family for providing a loving environ­

m ent for me.

Lastly, I would like to thank my parents, Wenmin T ian and Hali An, my

sister and her husband, Jing Tian and Elvis Essavi. They bore me, raised

me, supported me, taught me, and loved me. To them I dedicate this thesis.

Ill

Contents

1 Introduction 1

2 Overview of Level Set Methods 5

2.1 In tro d u c tio n ... 5

2.2 Distance Functions and Signed Distance F unctions....................... 10

2.3 Level S e t s .. 12

2.3.1 The Velocity F u n c t io n ... 13

2.3.2 The Level Set Equation ... 14

2.3.3 Reinitialization of the Level Set F u n c t io n 17

2.4 Spatial Derivative Approximations... 18

2.4.1 The CFL C ondition .. 21

2.4.2 F irst-O rder Upwind Difference Approximations 23

2.4.3 Second-Order ENG Upwind Difference Approxim ations 24

iv

2.5 Time S tepp ing .. 27

2.5.1 The Forward Euler M e t h o d .. 29

2.5.2 Runge-K utta M e th o d s .. 29

2.5.3 TVD R unge-K utta M e th o d s .. 31

2.6 Motion Involving Mean C u rv a tu re ...32

2.6.1 Example I .. 33

2.6.2 Example II ... 35

3 Level Set Toolbox 37

3.1 In tro d u c tio n .. 37

3.2 Purpose of the T oo lbox .. 39

3.3 Level Set E x a m p le s ... 41

3.3.1 Application of the T oo lbox .. 41

3.3.2 G etting Started w ith the T o o lb o x ...42

3.3.3 Motion by a Constant Velocity F i e l d 43

3.3.4 Motion in the Normal D ire c tio n .. 47

3.3.5 Motion by Mean Curvature ... 48

3.4 The Toolbox F u n c tio n s ...52

4 Numerical Modelling of the Navier-Stokes Equations 55

4.1 In tro d u c tio n ..55

4.2 The Navier-Stokes E quations..56

4.3 The Numerical Treatment of the Navier-Stokes Equations . . . 59

4.3.1 Spatial D iscretization .. 60

4.3.2 Boundary Values for the Discrete E q u a t io n s 61

4.3.3 Time Stepping .. 65

4.3.4 Stream F u n c t io n ...67

4.3.5 Example A p p lica tio n .. 67

5 Numerical Solution of Sloshing Problems 71

5.1 In tro d u c tio n ..71

5.2 Sloshing P roblem s..72

5.3 Modelling of Sloshing Problems with the Shallow W ater Equa­

tions ... 79

5.3.1 One-dimensional and Two-dimensional M o d e ls 79

5.3.2 Numerical Treatment of One-dimensional Shallow Wa­

ter E q u a t io n s ... 81

5.3.3 Use of a Linear Approximation in the Solution of the

One-dimensional Shallow W ater E q u a tio n s 83

VI

5.3.4 Use of a Linear Approximation in the Two-dimensional

Shallow W ater E quations .. 85

5.3.5 Numerical Results for One-dimensional Shallow W ater

E q u a t io n s ...87

5.3.6 Numerical Results for a Linear Approximation in the

One-dimensional Shallow W ater Equations 90

5.3.7 Numerical Results for a Linear Approximation in the

Two-dimensional Shallow W ater E q u a tio n s 90

5.4 Level Set M ethods Coupled with Navier-Stokes Equations . . 95

5.4.1 Governing E q u a tio n s .. 95

5.4.2 Im p lem en ta tio n .. 97

5.4.3 Simulation R e s u l t s ..98

6 Conclusions and Future Work 101

A Appendix 103

A .l Level Set Method- convectionSlosh.m .. 103

A.2 Navier-Stokes Solver- N S l .m ...114

B Bibliography 156

Vll

List of Tables

3.1 Flowtype Options, adapted from [13]..43

3.2 Accuracy Options, adapted from [13]..44

3.3 The execution tim e for convectionDemo w ith different choices

of a c c u ra c y ...46

vui

List of Figures

2.1 Implicit function 4>{x) = defining the region Çl~ and

as well as the boundary dCl, adapted from [19], page 4. . . . 6

2.2 Implicit representation of the curve = 1, adapted from

[19], page 5.. 7

2.3 Implicit representation of the surface = 1.......... 8

2.4 Implicit function (j){x) = |x| — 1 defining the region and

as well as the boundary dCl, adapted from [19], page 20. . 11

2.5 Curve propagating w ith velocity V in normal direction, adapted

from [21]... 13

2.6 An example of a violation of the CFL condition, adapted from

[18], page 89..21

2.7 The ENG scheme approach chooses the best four points out

of a larger set of grid points to improve smoothness............... 25

ix

2.8 ENO Computational G r i d ...27

2.9 Stability regions for some second-, third-, and fourth-order

explicit Runge-Kutta methods... 28

2.10 (a) V = 1, (b) y = 1 — O.Ik, with the 4 th order Runge-Kutta

m ethod... 34

2.11 V = —k; sphere at t = 0,0.01,0.02, from left to right, from

top to bottom ... 36

3.1 Motion of a circle by a constant velocity field.................................. 45

3.2 Motion of a star shaped interface in the normal direction,

adapted from [13]... 48

3.3 Motion by mean curvature of a star shape with mulitplier

b(x,t) varying in time and space, adapted from [13]...................... 49

3.4 Motion by mean curvature of a three dimensional dumbbell,

adapted from [13]... 51

4.1 Domain with boundary cells; solution values are assumed to

be available on these cells, adapted from [8], page 27................ 61

4.2 No-slip Boundary Condition, adapted from [8], page 30. . . . 64

4.3 Free-slip Boundary Condition, adapted from [8], page 31. . . 64

4.4 Driven Cavity Flow, adapted from [8], page 67...............................68

4.5 Driven cavity; streamlines in x-y plane, a t t = 1,5,10,15;

Re = 1000.. 69

4.6 Driven cavity; streamlines in x-y plane w ith Reynolds numbers

1,10,100,1000 at t = 8, (from left to right, top to bottom). . . 70

5.1 Shallow water equations in the x-y plane; nonlinear one-dimensional

model of sloshing a t t = 0.0,1.0,1.5,2.0, from left to right, top

to bottom ... 88

5.2 Shallow water equations in the x-y plane; nonlinear one-dimensional

model of sloshing a t t = 2.5,3.0,3.5,4.0, from left to right, top

to bottom ... 89

5.3 Shallow water equations in the x-y plane; solution based on a

linear approximation in the one-dimensional model of sloshing

at t = 0.0,1.0,1.5, 2.0, from left to right, top to bottom 91

5.4 Shallow water equations in the x-y plane; solution based on a

linear approximation in the one-dimensional model of sloshing

at t = 2.5,3.0,3.5,4.0, from left to right, top to bottom 92

XI

5.5 Shallow water equations in x-y-z space; solution based on a

linear approxim ation in the two-dimensional model of sloshing

a t t = 0.0,1.0,1.5,2.0, from left to right, top to bottom93

5.6 Shallow water equations in x-y-z space; solution based on a

linear approxim ation in the two-dimensional model of sloshing

a t t = 2.5,3.0,3.5,4.0, from left to right, top to bottom 94

5.7 Simulation using the Navier-Stokes equations and level set

equations, t e [0,4], R e = 100, stationary tan k99

5.8 Simulation using the Navier-Stokes equations and level set

equations, t 6 [0,2.5], R e — 100, horizontal tank motion. . . . 100

Xll

Chapter 1

Introduction

In this thesis we consider the application of level set methods for the tracking

of the fluid interface for a class of fluid flow problems known as sloshing

problems.

Liquid in a basin or tank can flow back and forth in standing waves at

discrete natural frequencies. This phenomenon is called sloshing. Appli­

cations arise in, for example, the automotive, aerospace, and ship-building

industries. In ships, sloshing loads can cause cracks and weld-line failures in

sheet m etal compartments. Sloshing is, therefore, a m ajor consideration for

oil tankers, cargo ships, and cruise ships. Sloshing of liquids in tanks has

received the attention of many researchers over recent decades. The slosh­

ing phenomenon is very im portant in the design of a liquid-filled tank. The

sloshing problem can be critical in a partially filled tank. The sloshing of

the liquid can increase the dynamic pressure on the tank sides and bottom;

violent sloshing creates impact th a t can cause serious damage to the tank

[15].

The numerical solution of a sloshing problem first requires the develop­

m ent of a mathematical model, i.e., a set of partial differential equations,

th a t describe flow of the fluid within the tank, w ith possibly an explicit con­

sideration of the motion of the interface. W hen the motion of the interface

is small compared to the depth of the fluid, a family of equations known

as the shallow water equations can be used as a m athem atical model. For

more general contexts, the well-known Navier-Stokes equations, provide a

rich m athem atical model for treating many fluid flow problems, including

sloshing problems. In this latter case, only the velocity of the fluid is explic­

itly considered by the model. However, as we consider in this thesis, it is

possible to use the velocity results from the Navier-Stokes equations to evolve

the interface using the level set approach. The interface is represented as the

zero level set or contour of a function called the level set function. The level

set equation incorporates the fluid velocity to describe the evolution of the

zero level set of the level set function, thus allowing us to track the fluid in­

terface in the context of the numerical modelling of a sloshing problem based

on the Navier-Stokes equations. To our knowledge, no one has attem pted to

model sloshing using level set methods.

In this thesis, we consider the numerical solution of Navier-Stokes equa­

tions and the numerical solution of level set equations. In C hapter 2 we

provide a survey of level set methods, and in C hapter 3, we describe the re­

cently developed level set toolbox th a t provides a MATLAB [6] based suite

of numerical methods for the solution of level set equations [13]. We pro­

vide several examples to demonstrate some of the capabilities of this toolbox.

Chapter 4 is devoted to a discussion of the Navier-Stokes equations and their

numerical solution. P a rt of the work undertaken in this thesis is a MATLAB

based implementation of a collection of numerical methods for the treatm ent

of Navier-Stokes equations. We include the source code in the Appendix.

Chapter 4 describes our implementation and provides results for a sample

fluid flow problem. In Chapter 5, we begin with a review of the literature on

the numerical solution of sloshing problems and related fluid flow problems.

We then consider the numerical treatm ent of a sloshing problem modelled

using the shallow water equations. The final part of this chapter considers

the modelling of a sloshing problem by the Navier-Stokes equations, with the

tracking of the fluid interface handled by the level set approach, the imple­

m entation of which is based on the level set toolbox; numerical results are

provided. We close in C hapter 6 w ith our conclusions and suggestions for

future work.

Chapter 2

Overview of Level Set M ethods

2.1 Introduction

In this chapter we provide an overview of level set methods. This material

is largely drawn from [19], (Page 3-Page 67).

In a variety of phenomena, we want to track the m otion of an interface.

Such phenomena can occur, for example, in fluid mechanics, m aterial sci­

ence, medical science, combustion, meteorology, control theory, and image

processing. An interface (or front) is a boundary between two regions, which

we call inside and outside.

In one dimension, suppose we separate the real line into three parts using

the points x = —1 and a: = 1 as boundaries. We define ü ~ = (—1,1) as

the inner region of the domain and O'*" = (—oo, —1) U (1, +oo) as the outer

region of the domain. The points a; = — 1 and a; = 1 define the interface,

9 0 , between the two domains. An implicit interface representation is one in

Q-
<0
Inside

<î>>0

yOùiside

Figure 2.1: Implicit function (p{x) — x"̂ — I defining the region 0 and 0"*'

as well as the boundary 9 0 , adapted from [19], page 4.

which the points belonging to the interface are implicitly defined by some

isocontour function. For example, the zero iso contour of (f){x) = — 1, the

set of zeroes of ^(x), is precisely 9 0 = {—1,1}. These definitions are shown

graphically in Figure 2.1.

6

In two dimensions, in order to ensure there are clearly defined interior

and exterior regions, we define an interface to be a simple closed curve. For

example, consider (j>{x,y) = + y' ̂ — 1, where the interface defined by the

<j>{x,y) = 0 isocontour. This is the unit circle defined by dCt = {{x^y) :

-\-y^ = 1}. The interior region is O” = {(x, y) : < 1}, and the

exterior region is 0 + = {{x ,y) : -\/x^ + > 1}. These regions are shown in

Figure 2.2.

O '

0 <0

Figure 2.2: Implicit representation of the curve a:̂ + y^ = 1, adapted from

[19], page 5.

In three dimensions, as an example, consider (f>{x,y,z) = x ^ + y “̂ + z^ - I,

where the interface defined by the (f>(x,y,z) = 0 isocontour. This is the

7

unit sphere defined by dVt = { { x ,y ,z) : \ /x^ + y^ + — 1}. The interior

<E>=-x'‘ + y‘‘ +z -l.= 0

In terfaa

0.5

-0.5-

o u t m
0.5

■0.5 -0.5

Figure 2.3: Implicit representation of the surface -t- y + 2 — 1.

region is = { { x ,y ,z) : ^ x ^ + y^ -f z^ < 1}, and the exterior region is

Q+ = { { x ,y ,z) : V $ ^ "+ "P "+ ^ > !}• These regions are shown in Figure

2.3.

Note th a t the interface itself is not explicitly available. I t is given as the

isocontour of the implicit function (j> and thus will have to be interpolated

from the set of da ta points where the implicit function (j) is defined. Let x =

[x ,y Y \ in the context of a numerical computation, ^(x) will be represented

by a discrete set of values associated with da ta points distributed throughout

the problem domain. The set of data points is called a grid-, for example,

uniform Cartesian grids are defined as : 1 < i < m, 1 < j < n}.

We assume Zi < - < < Xi+i < ■■■ < Xm and ?/i < • • • < % • < yj+i <

• • • < y„. We set A x = Xj+i — Xj, A y = By definition, Cartesian

grids imply a rectangular domain D = [xi,Xm] x [yi,y„]. Because (f) is only

im portant near the interface, we can optimize the implicit representation by

only storing a subset of a uniform Cartesian grid, discarding grid points th a t

are not sufficiently near the interface. If we do not know the location of

any of the points on the interface, th a t is, data points x where ^(x) = 0,

interpolation is needed. The isocontour th a t includes the points x has to

be determined from the interpolant using a contour plotting routine. Such

routines are normally available in standard software libraries and in problem

solving environments like MATLAB [6].

2.2 D istance Functions and Signed D istance

Functions

Let X = [xi,X2 , - ■ • ,X n Y ■ We define a distance function d(x) = m in(|x —x /|)

for all X/ e do.. Thus cJ(x) = 0 on the interface where x e dü. W hen

X ^ dÇl and Xc is the closest point on the interface to x , then d{x) =

Y 4------- Xc,nf, and then

V d(x) =

1 2 (x i - X c , i)

2 \ / (z i - X c , l) ^ - | ------h { X n - X c , n Ÿ

1 2 (x „ - X c .n)

 ̂ \ / (r i —X c ,i)^ 4 ------h (a :n -® c ,n)^

(Jn-gç.n)^ = 1 .Then |V d(x)| ((a;i_x<,,iV+-+(L-xc,n)'^ ̂ i f

We define a signed distance function <ÿ(x) such th a t (f>{x) = —d(x) in the

interior region ü~ , <j){x] = d{x) in the exterior region and <j){x) = 0 on

the boundary dü. Thus a signed distance function is positive on the exterior,

negative on the interior, and zero on the boundary. Since |V d(x)| = 1, we

also have |V<^(x)| = 1.

Given a point x, <j){x) is the signed distance to the closest point on the

interface. We can therefore trace from x along the normal to the interface a t

10

this closest point in order to find the coordinates of this closest point. T hat

is, the point on the interface closest to x is given by Xc = x — ^ (x)N , where

N is the local unit normal a t x; i.e., N = since V<f>{x) points in the

direction of the normal to the surface a t x . Because |V<^(x)| = 1 for a signed

distance function (j), we have N = V< .̂

Inside.

'Interface

Figure 2.4: Implicit function ^{x) = |rc| — 1 defining the region and

as well as the boundary dQ., adapted from [19], page 20.

Let us now consider an example in one dimension. We previously used

4>{x) = — 1 as an implicit representation of dO. = {—1,1}. A signed

distance function representation of these points, (f){x) = |z | — 1, is shown in

11

Figure 2.4. The signed distance function 4>{x) = |z | — 1, gives the same

boundary dÇl, interior region and exterior region 0+ .

In two dimensions, the implicit function y) = 2 :̂ + — 1 is replaced

by the signed distance function <j){x^y) = y/x" ̂+ y^ — 1, and the unit circle is

represented by d ü = {(x,y) : V P " + ^ = 1}. In three dimensions, the im­

plicit function (j>{x, y ,z) = x^-\-y'^ + z' ̂— l is replaced by the signed distance

function (f){x,y, z) — y/x^ -f y^ -t- — 1, and the unit sphere is represented

by d ü = {(rc,y,z) : ^ J x ^ T ^ y ^ '+ ^ = 1}.

2.3 Level Sets

At a given time i, the zero level set of the evolving function, (f>{x{t),t) is the

set of points x (t), such th a t

(?i>(x(t),t) = 0,

where in two dimensions, for example,

x{t) =

/ \
%(()

\ y(f) J

12

Inside

Outside

Figure 2.5; Curve propagating w ith velocity V in normal direction, adapted

from [2 1].

2.3.1 The Velocity Function

Imagine a closed curve propagating with velocity V in the direction normal

to itself. The velocity function V , which may depend on many factors,

can be w ritten as: V = V { L ,G ,I) . See Figure 2.5, where L represents

local information (e.g., curvature and normal direction), G represents global

information (e.g., integrals along the front, heat diffusion), and I represents

information th a t is independent of the shape of the front (e.g., an underlying

fluid velocity th a t transports the front).

There are many ways to define the velocity function. For example, con­

sider a velocity function V th a t depends only on the local curvature k, of the

13

curve, th a t is, V = V (k), where the curvature k is defined to be

K = V • N , (2.1)

where V- is the divergence operator, and N is the normal direction, N =

and IV0 I =1̂ , where, for example, in two dimensions, =

+ 4>l)- V <;6 is perpendicular to the isocontours of (j> and points in the

direction of increasing 4>. From (2 .1) we get, after simplification,

_ (pxx4'y ~ + 4^yy4'x /r, r,\

2.3.2 The Level Set Equation

Level set m ethods rely on two central embeddings: the first is the embedding

of the interface as the zero level set of a function called the evolving or level

set function (j). The level set function is evolved in time by the level set

equation. The second embedding is the embedding of the interface’s velocity

within the level set equation.

We can thus link the two central embeddings through a time-dependent

initial value PDE. At any time, t, the interface is given by the zero level set

of the time-dependent level set function çi(x(t),t), where 0 (x (t) ,t) evolves

14

according to the equation,

0t + V - V 0 = O, (2.3)

with a given initial condition, </>(x(0), 0). This is the level set equation given

in [20]. Equation (2.3) describes the tim e evolution of the level set function

(j), under the influence of the interface velocity V . Note th a t the velocity term

in equation (2.3) may be dependent on external sources. For example, the

interface velocity may be obtained by solving the two-phase Navier-Stokes

equations, where the — 0 iso contour represents the interface be­

tween two different phases. Generally, the interface velocity involves both

space and time, so we can write V as V (x (t), i).

In the area of combustion dynamics modelling, there is an equation called

the G-equation th a t is of the form

G t - I - V - V G = 0,

where the G {x{t),t) = 0 isocontour represents the reaction surface of an

evolving flame front implicitly. The G-equation is obviously equivalent to

the level set equation (2.3), and some researchers have begun to use level set

methods to find numerical solutions of combustion problems [19], (page 26).

Now we consider an example of interface motion for a velocity field V

15

th a t depends on the level set function (j). In two dimensions, the velocity

V can be w ritten as V = V^N 4 - VÎT, where is normal velocity, Vt is

tangential velocity, and T is tangent vector. Since T • V(p = 0, (recall is

in the direction of the normal; see discussion in Section 2.3.1), the level set

equation becomes

4>t + K iN ■ V ÿ = 0 .

Because N • W(f> = • V(f> = |Vi;6 | , we have

+ K |V 0 | = 0. (2.4)

Continuing our example from the previous section, if we substitute 14 =

—bK for some constant b into (2.4), we get

<f)t — bK\'^(j)\. (2.5)

Generally the level set equation is a hyperbolic PDE. However, in this

example of interface motion because of the dependence of /c on ^ as defined

in equation (2 .2), the 6 ac|V(|̂ is a parabolic term , and V(^ can be discretized

w ith a central (or symmetric) difference, rather than a one-sided or upwind

scheme, as is normally required for a hyperbolic PDE. We consider this fur­

ther in Section 2.4.

16

Prom (2 .1) and (2.5), we have

= bA(p. (2.6)

To see this, recall th a t the level set equation is 4>t + Ki|V</!)| = 0. In our

example = -b n where /c = V • N = V • Therefore the level set

equation becomes

(f>t — |Vi^| = 0 =?> - 6 V • Vcj) = 0 — bA(j>

because V • V</> = V — <̂xx “b 'Pyy — A(f).

\ 4 /

2.3.3 Reinitialization of the Level Set Function

The level set function is initially a signed distance function. After the ad-

vection of the interface using the level set equation, it is uncommon for the

level set function to remain a signed distance function. This means th a t the

level set function needs to be reinitialized (i.e., reconstructed so th a t it again

becomes a signed distance function) a t regular time intervals. A simple and

accurate technique is to calculate how far each grid point is from the zero

iso contour of the level set directly. This technique is quite expensive in prac­

tice, and as such it cannot be used in real world examples or with schemes

17

th a t require frequent reinitialization. The crossing time gives the distance

for the grid point. If we evolve the interface in bo th the normal and negative

normal direction a t the same time, we obtain the following equation, known

as the reinitialization equation,

where (j)o = ^ (x , 0), S'(^o) is a smoothed (i.e., not a step function with a

discontinuous derivative) sign function th a t is positive and approximately

equal to 1 in negative and approximately equal to — 1 in Q,~, and 0 on

the interface. This function has the form S{(f)o) = where 0 < e < 1 .

For example, \i (j>o = x \ + x \ - I, then S{4>o) = , • As long as

(f> is relatively smooth and the initial da ta are somewhat balanced across the

interface, this m ethod works well. See [19], (page 67), for further details.

2.4 Spatial Derivative Approxim ations

In general the level set equation (2.3) is a first-order hyperbolic PD E that

is related to the well-known hyperbolic conservation laws. Such equations

can be difficult to treat computationally; one has to be careful in order to

keep the numerical computation from becoming unstable. In this section,

18

we consider techniques for approxim ating the spatial derivatives arising in

(2.3), namely V ^ (x (t) ,t) . We consider the two-dimensional case; however

generalization to three-dimensions is certainly possible. We define cj)i j to be

f f x .) \
the discrete grid function, i.e., (pij = (j> , ty
have for simplicity suppressed the dependence on t.

, X = (x , y) ^ , w h e r e w e

In order to trea t first derivatives, we could use first-order forward differ­

ence approximations,

« X) 4 + := and

The first-order backward difference approxim ation gives

M ^) « ■= ^ '■=

The schemes (j)~, and are referred to as unwind schemes. The

second-order central difference approximation gives

f e w and ,^,(x) « < :=

For the treatm ent of second derivatives, we have the following second-order

finite difference approximations;

19

and

J. J.0 . <l>i+l,j+l -

The appropriate choice of spatial derivative approximation depends on

the type of PD E one is trying to solve. For hyperbolic PD Es, an upwinded

scheme is required. For a parabolic PDE, such as (2.6), a central difference

scheme is appropriate. Once the spatial derivatives are approximated, the

resultant ODE system can be solved using a numerical time-stepping scheme.

For certain types of time-stepping schemes and for hyperbolic PDEs, the

well known CFL condition provides a restriction on the size of the time-

step; we consider this further in the next section. For parabolic PDEs, and

for example for (2.6), a standard stability analysis w ith a forward Euler

tim e integration (see Section 2.5.1) combined with central differencing of A<p

requires A t + (^ j?) < 1 [19], (page 44), which gives a restriction on

the tim e step w ith respect to A x and A y. If we use an implicit time stepping

m ethod, such as the backward Euler method, there is no stability restriction

on the size of A t.

20

2.4.1 The CFL Condition

Courant, Friedrichs, and Lewy [18] formulated a necessary condition now

known as the CFL condition for the convergence of a difference approximation

in terms of its domain of dependence compared to th a t of the underlying

PDE. Consider the simple model problem, ut{x, t) + aUx{x, t) = 0, where a is

a constant. Assume an initial condition u (x ,0) = uo(x). Then the solution

a t a point P can be w ritten as u(x, t) = uq[x — at).

1
i \
T

A
* ? V

*— t J . - \

Figure 2.6: An example of a violation of the CFL condition, adapted from

[18], page 89.

A plot of the points x — at = h iox some constant h gives a line in the

(x, t) plane. Along this line, called a characteristic, the solution of the PDE

is constant.

Suppose we apply a one-sided finite difference scheme for the spatial dis­

cretization of Ux] e.g., Ux = where Ui « u{xi). Suppose also th a t Ax

21

is fixed and th a t A t is fixed. Then the triangle of points shown in Figure 2.6

represents the solution approximations from previous tim e steps upon which

the solution approximation at P depends. This triangle is called the domain

of dependence of the numerical scheme.

Figure 2.6 also illustrates two situations in which the CFL condition

is violated. Suppose for two different choices of a in the model equation

ut + aux = 0, we get the characteristic lines PQ and PR . Both of the char­

acteristics PQ and P R lie outside the triangle of points representing the

domain of dependence of the numerical scheme. Figure 2.6 shows th a t the

scheme cannot converge for a differential equation for which a < 0, because

this would give a characteristic like P R . If a > 0, and we have a charac­

teristic like PQ , the scheme also does not converge. This characteristic line

shows the dependence of the solution of the underlying PD E on the initial

condition. The CFL condition states that the domain o f dependence of the

numerical scheme m ust include the domain of dependence of the PDE. I t

gives a restriction on the size of the time step, because the condition th a t

the characteristic must lie with in the triangle of dependence of the numerical

scheme requires th a t |n |A t/A z < 1.

22

2.4.2 First-Order Upwind Difference Approximations

Consider the one-dimensional level set equation (2.4),

(t>i + V|V(|̂ = 0.

The spatial discretization of this equation yields one ODE for each mesh

point. The (pt term becomes ^{xi, t) , the V term becomes := V(a:i, t) , and

the approxim ation of |V(^| must be considered carefully. From the discussion

in Section 4.1 we see th a t if V , < 0 , we should find an approxim ate value

of (j) a t tim e tn+i from the right; otherwise if V , > 0 , we should look to

the left to find an approxim ate value of <j> a t tim e T h a t is, if < 0,

we should use cj)'̂ to approxim ate and if > 0 , we should use to

approxim ate (j)x. If we use a forward Euler tim e discretization (see Section

2.5.1) and an appropriately upwinded spatial discretization, we will have a

consistent numerical scheme. Stability comes from the CFL condition which

can be w ritten in this case as

A t • max I ^ I < 1.

23

2.4.3 Second-Order ENG Upwind Difference Approx­

imations

Hyperbolic PDEs can develop shocks in the solution over the spatial domain.

Finite difference schemes of higher order which adaptively avoid such shocks

can be developed using an approach th a t is local, free of problem-dependent

param eters, and does not require any characteristic information for hyper­

bolic conservation laws. The schemes are called essentially non-oscillatory

(ENO) schemes [23]. Such a finite difference scheme uses solution informa­

tion from several points in the solution domain; this set of points is called

the stencil for the finite difference scheme. ENO m ethods choose (see below)

one stencil out of a number of potential candidates. In one spatial dimension

(see Figure 2.7), we suppose we have a first-order finite difference scheme

th a t employs solution approximations a t X{ and Xi+i. We wish to obtain a

higher-order finite difference scheme th a t is based on additional solution ap­

proximations, associated w ith other nearby mesh points. In the ENO scheme

approach, one first considers the neighbouring points, æ,:_i and Xi+2 , and for

each of these computes certain higher order divided differences (e.g., second-

order Newton divided differences; see, e.g., [1]). The neighbouring point to

24

be included in the stencil for the higher order finite difference scheme is the

one which yields the smallest value for the Newton divided difference.

This process can be repeated to include further neighbouring points in

the stencil, yielding a higher order ENO scheme. Figure 2.7 shows 3 possible

sets of neighbouring points, each of which could represent the best stencil for

a finite difference scheme of third order. The ENO scheme approach allows

us to adaptively choose a finite difference scheme to avoid differencing over

a discontinuity in the solution.

i-3 i-2 i-1 L i+2 i+3 i+4

Figure 2.7: The ENO scheme approach chooses the best four points out of a

larger set of grid points to improve smoothness.

Let us consider more details for the two-dimensional case [24]. We con­

struct second-order approximations to (f>x and of the forms

andAa; Ay

25

where we will determine the expressions 0 i+i/2 , <t>i,j+1/2 , and

using the ENO approach. See Figure 2.8. Define

m{a, b) =
^ a, if |a | < \b\ ^

b, otherwise

Let

(f>L = <t>i,j + - ^ i , i i ^ i , j -

<i>R = - 2^ist>i+2é - (At+lj,

and

We then choose

(2.7)

(2 .8)

(2.9)

<t>M, if < 0 and > 0,

^i+ i/2 ,j = ‘ (pji, if < 0 and </)/j < 0,

(pL, if > 0 and 4>l > 0,

where (pi < (pM < <pR (see [23]).

This corresponds to choosing the neighbouring points in order to get a

two-dimensional second-order finite difference approximation th a t has the

smallest value for the approximation of the derivative. The idea is to avoid

including within the stencil two points which have a discontinuity in the

solution between them.

26

i - i . i - i X i , j - t

Figure 2.8; ENO Com putational Grid

It is possible to construct even better methods by considermg weighted

combinations of ENO schemes; such schemes are known as weighted ENO

(WENO) schemes. See, e.g., [19], for further details.

2.5 T im e Stepping

Consider the test equation ÿ = Xy. For a given tim e stepping m ethod and

a tim e step A t, the region of absolute stability is the set of points. A t ■ A,

in the complex plane such th a t the m ethod yields an approxim ate solution

satisfying the absolute stability requirement |y” | < n = 1 , 2 , • • -, where

y” % y{tn), where is the n th step. In Figure 2.9, we see the regions of

absolute stability for several popular numerical time-stepping methods called

R unge-K utta methods having orders of accuracy p = 2,3, and 4. (The order

27

of a scheme is p provided the local error is proportional to These

stability regions provide time step restrictions for the numerical time stepping

schemes.

Stability reg io n s fo r R ungo -K u tia m e th o d s

•5 •4 -3 2 0 1 2

Figure 2.9; StabiUty regions for some second-, third-, and fourth-order ex­

plicit Runge-K utta methods.

Once the implicit function (j) and velocity function V are defined a t the

grid points of our Cartesian grid, we can apply a numerical time stepping

method to calculate <j) forward in time moving the interface across the grid.

At some point in time, say time let represent the current

values of ^ a t the grid points. Updating (j) in time consists of finding new

values of 0 a t every grid point after some tim e increment A t. We denote

28

these new values of 4> by = <j>{tn+i)i where t„+i = + A t. We next

consider several tim e stepping schemes.

2.5.1 The Forward Euler M ethod

For the standard ODE, ÿ = the forward Euler m ethod has the form

where y" approximates y{tn). We can apply the forward Euler method for

the tim e discretization of equation (2.3) to get the equation

= 0 ,

where V" = y (x , t„), and ÿ" = </>(x, t„). This m ethod is first order in time

and has a stability region th a t is a unit circle, centered at (—1 , 0) in the

complex plane.

2.5.2 Runge-Kutta M ethods

A general s-stage Runge-K utta m ethod for the ODE system, ÿ = f { y , t) ,

is usually w ritten in the form

y”- = y^ 1 + A t ^ k f{ Y i, t„_i + a A t) , where
i=l

29

= y" ̂+ A t ^ a.ijf{Yj, tn - i + CjAt), 1 < i < s.
j= i

The R unge-K utta m ethod is explicit iff = 0 for j > i, because then each

Yi is given in term s of known quantities.

One of the most widely used R unge-K utta methods [1], (page 80), is the

following four-stage, fourth-order m ethod which has

“ij = 0, U = 1) 2,3,4), Cl = 0, C2 = C3 = C4 = 1 => Ki =

“ 21 = = 0, j = 2, • • - ,4 =» K2 = + ^ / (K i , t „ _ i 4- ^) ,

“31 = 0 , 0 3 2 - “3j = 0, j = 3,4 => Y3 = + ^ / (y 2 ,in - i + ^) ,

“41 = “42 = 0, 0 4 3 = 1, 0 4 4 = 0 ==> ÏQ = -j- A tf{ Y z ,tn - \ d" A t),

and 6 i = 6 4 = 1 , 6 2 = 6 3 = giving

y" = y"“ ^+

A t ^ g /(Y i,t„ _ i) 4- g/ (V 2) in -i + - y) + g / (^ , L - i 4- —) 4- - / (l 4 , t„_i 4- A t

W hen we apply it to the level set equation (2.3) we get:

3»1 =

$ 2 = 4- — K(^>i,t„_i 4- —) V 4- —),

30

$3 = < " - 1 + y (" - 1 + y) ,

#4 = ̂+ AtV{^3, tn~l + Ai)V</>(3’3, t„_l + At),

(j>n — 4> n-l _

At

(g ^ (^ l) tn -l + A t) V ^ (^ l , in -l + A^) + - F ($ 2)^n-l + -^)V çil($ 2 , tn -l + —) +

(^3) tn -1 + —)V l^($3, in -1 + " y) + (^4, in-1 + A i) V(^(#4, in-1 + A i)) .

2.5.3 TVD Runge-Kutta Methods

Shu and Osher [22] proposed to tal variation diminishing (TVD) Runge-

K u tta (RK) methods to improve upon the use of the forward Euler method

and increase the accuracy of the time stepping scheme. Furthermore, for

a TVD scheme, we have the property th a t ||i/"+^|| < ||y"|| provided that,

for the given spatial discretization, the forward Euler m ethod also satisfies

||yn+i|| < ||y"||j where ||.|| is a given norm. These TVD RK schemes guarantee

th a t no spurious oscillations are produced as a consequence of the higher-

order accurate tem poral discretization as long as no spurious oscillations are

produced with the forward Euler method for the given spatial discretization.

A TVD explicit Runge-K utta method is built up from a convex combination

31

of forward Euler steps. We next present second and third order TVD Runge-

K u tta methods.

A well-known second order TVD Runge-K utta method [22] has the form,

$ 1 =

*i>2 = ^ 1 + -f- A t)V (^($i, -f- At),

$3 = 2 * ^ 1 T 2 ^ 2 + -A tV (0 2 , 4- At)V<^($2) ^n-i + At),

0 " - $3.

A well-known third order TVD Runge-K utta method [22] has the form,

$ 1 =

$ 2 = + A tV ($ 1 , t„_i + A t)V 0 ($ i, t„_i -f A t),

^3 = ^̂ *1 + ^$2 + -A tV (02 , + At)Vl^(#2, 7̂1-1 + At),

$4 = 2 ^ 1 + 2 $3 + 2A tV ($3 ,t„_ i + At)V^(^>3,t„_i 4- At),

= $ 4 .

2.6 M otion Involving M ean Curvature

In this section, we consider several examples involving the evolution of an

interface according to the level set approach. In these examples we assume

32

th a t the velocity of the interface depends only on the curvature, k , of the

interface.

2.6.1 Example I

We consider the level set equation (2.4) ,

4>t + y j v ^ i = 0 .

Let (j) be the height of the propagating function a t tim e t, and (f>o{x) =

cos(4 7 r$), X E [0, 7t]. We consider the two cases V = 1 and V’(k) = 1 — e/t,

where e < 1, and k = ----- [2 1], (page 26). Because |V 0 | = (1 + ^^)a,

for the la tte r choice of V , the level set equation becomes:

(l>t + \/'^ + <}>l — -£■ ^ ^ ' 2 • (2 .1 0)
1 + %

We implemented an algorithm for the numerical solution of (2.10) in MAT-

LAB. We use the finite difference methods, (j)̂ = and (f>xx =

for the spatial derivatives, and the 4 th order Runge-K utta m ethod given in

Section 2.5.2 for the time integration, w ith a time step A t = .01. We will

let N , the number of mesh points in the x domain, be 150. We consider the

case where e = 0 and e = 0 .1 . The results are shown in Figure 2.10.

33

(a) track th e m otion of a n In terface by RK4, V =1, finite d ifference m ethod

— — t=0
* t=0.05

t=0.11.5

0.5>

-0 .5

-1
0 .5 1.5 2,5

X

(b) track th e m otion of a n in te rface by RK4, V = 1 -0 .1 k , finite d ifference m ethod

' — t= 0
* 1=0.05

 1= 0.11.5

m l
m l

0.5
>-

'.V 7
0.5

-1
0.5 1.5 2 .5

Figure 2.10: (a) F = 1 , (b) = 1 — 0 . 1 k , w ith the 4 th order Runge-Kutta

method.

34

The velocity function y = 1 causes swallowtail behavior [21], (page 21).

After adding a little curvature term (viscosity) (i.e., V = 1 — efc), the curve

is well-behaved.

2.6.2 Example II

We consider a speed function V = —k , where

rv — |V0p «-iiQ an ini-

tial sphere of radius is 0.4. We use N = 50 and a tim e step A t = .01. The

evolving surface is a sphere of decreasing radius which eventually disappears.

See Figure 2.11. The solution steps are the following:

1. Given initial curve as an input.

2. Build the signed distance function 4>{x, y, z, t) = 0.

3. Solve the Level Set Equation, 4>t 4- V̂ |V<̂ [= 0, with V = —k, using cen­

tra l differences for the spatial derivatives and forward Euler’s m ethod for the

tim e integration. Stability can be achieved by using a much more restrictive

CFL condition A t ~ (Az)^; recall th a t the standard CFL condition from a

hyperbolic PD E gives A t ~ A x , see Section 2.4.

4. Plot zero contour of <t> to show the zero level set evolving in time.

We implemented the above algorithm in MATLAB to obtain the results

35

shown in Figure 2.11.

"V .

v<' ■ " « 0

Figure 2.11: V = —k; sphere a t i = 0,0.01,0.02, from left to right, from top

to bottom .

36

Chapter 3

Level Set Toolbox

3.1 Introduction

In this chapter, this m aterial is largely drawn from [13]. “A Toolbox of

Level Set M ethods” is introduced; its source code and documentation are

copyrighted by Ian M. Mitchell. Version 1.1 of ”A Toolbox of Level Set

M ethods” is available at

http://www .cs.ubc.ca/~m itchell/ToolboxLS. The purpose of this pack­

age of software tools is to provide a resource for those interested in imple­

m enting level set methods. This toolbox is a collection of MATLAB routines

for working w ith dynamic implicit surfaces and approxim ating the solution

37

http://www.cs.ubc.ca/~mitchell/ToolboxLS

of Hamilton-Jacobi PDEs; the specific form for the equations will be defined

shortly.

The supplied routines work in 1, 2, or 3 dimensions on a fixed Cartesian

grid. Routines th a t implement upwind spatial derivative and explicit tem po­

ral derivative approximations of high-order accuracy are included, as well as

routines th a t implement level set methods for more than a dozen examples

drawn from the level set literature. Most of the algorithms and examples in

this version of the toolbox are taken from [19].

The toolbox is designed to ease the process of exploring the application

of level set methods by reducing the to tal coding, execution, and analysis

time. The sophisticated analysis, da ta m anipulation, and visualization ca-

pabilites of MATLAB make construction of numerical codes much simpler,

when compared to compiled languages like C4-+ or Fortran. Although [13]

is not by itself a tutorial on these methods, the author suggests th a t for those

who are new to the field it would serve as an excellent supplement to either

of the textbooks [19], [21].

38

3.2 Purpose of th e Toolbox

Using the routines provided in the toolbox, a user can tre a t a Hamilton-

Jacobi (HJ) PD E of the following form, as defined by Mitchell in [13];

0 = Dt<j>{x,t) (3.1)

+ u (x , i) • V<;6(x,i) (3.2)

+a(x,t)||V çi>(x,t)|| (3.3)

-b{x,t)K{x)\\V(f>{x,t)\\ (3.4)

+sign((^(x,0))(||Vÿ(x,t)\\ - 1) (3.5)

+Jf(x,Vÿ), (3.6)

with constraints

Dt<l){x,t) > 0, or Dt(j){x,t) < 0,

where x E is the s ta te space, (f) is the level set function, and V(j){x, t) is

the gradient of (j). All term s (3.1)-(3.6) are defined below.

The tim e derivative appearing in (3.1) is approximated w ith an explicit

TVD RK integration scheme; CFL conditions, determined automatically

within the level set toolbox, restrict the size of each timestep. Note th a t

39

the tim e derivative (3.1) and at least one term involving a spatial derivative

(3.2)-(3.6) m ust appear, otherwise the equation is not a time-dependent HJ

PDE.

The term (3.2) represents motion of the interface subject to a constant

velocity field. The velocity field v must be provided by the user, and then

the toolbox provides an upwind finite difference scheme to approximate the

gradient V<?i(x,t) .

The term (3.3) represents motion of the interface in the normal direction.

The user provides the speed of the interface a, and the gradient V(/>(x,t) is

approximated with an upwind finite difference scheme.

The next term (3.4) represents motion by mean curvature. The user

provides the speed b, and the mean curvature k (x) . We recall from Chap­

ter 2 th a t for this term, the PD E is parabolic and upwind schemes are not

necessary. The spatial derivatives can therefore be approxim ated by cen­

tered second-order finite difference approximations, which are provided by

the toolbox.

The next term (3.5) represents the reinitialization equation. It can be

used with implicit surface functions so as to change them back into signed

distance functions. See Section 2.2 of Chapter 2.

40

The final term (3.6), allows for the representation of a general Hamilton-

Jacobi term , which is first-order, spatially dependent, and continuous in x

and t. Such term s arise in optimal control and zero-sum differential games.

The user provides the analytic Hamiltonian H , and the gradient V<^(x, t) is

approximated with an upwind finite difference scheme.

3.3 Level Set Examples

3.3.1 Application of the Toolbox

Below we provide the basic steps th a t should be followed in order to solve

an application problem using the toolbox:

1. Identify a H J PD E from (3.1)-(3.6).

2. Specify the desired order of accuracy, the CFL condition, and other infor­

m ation relevant to the HJ PDE, such as velocity.

3. Specify the boundary conditions, the initial condition, and the grid.

4. Integrate in time by using a TVD RK method.

We consider shortly an example demonstrating the use of the toolbox in

solving a problem.

41

3.3.2 G etting Started with the Toolbox

To use the toolbox, one needs to run the basic version of MATLAB. (We have

performed tests using version 6.5, b u t earher 6.* versions may also work.)

No additional toolboxes are required. The computing environment we use is

Microsoft W indows XP; the machine type is a Dell Dptiplex Gx270 personal

computer. One can try out the distribution of the level set toolbox by going

to the Examples subdirectory of the level set toolbox. There one will find the

file addPathToKernel.m , which should be edited to modify the path name

contained there so th a t it contains the absolute p a th (starting from root) of

the Kernel subdirectory of the distribution. Once this modification had been

performed, one can s ta rt MATLAB, and execute one of the examples in any

of the example subdirectories by typing its name a t the MATLAB prompt.

Following the lead of [13], we next provide an introduction to the toolbox

through a few examples; this will introduce a num ber of routines from the

toolbox. We will then follow the examples with an overview of the full set of

routines provided in the toolbox.

42

3.3.3 M otion by a Constant Velocity Field

This section describes an example involving motion by a constant velocity

field (3.2). It is accessed by using the file Exam ples/Basic/convectionD em o.

We first discuss this example to see how it works. We will then examine the

source code for this example to see how the level set toolbox routines are

used to implement it. The MATLAB command to execute this example is

[d a ta , g , dataO]= convectionDemo(flowType, accu racy , d isp lay !jrp e).

All of the input param eters are optional; the first input parameter, flowType,

specifies the type of flow. The options are as given in Table 3.1. The con-

fiowType String to specify type of fiow field

’constant’

’linear’

’constantRev’

’linear Rev’

Constant flow field V = Constant (default)

Linear fiow field V = Linear=A x + b

Constant fiow field, reverses direction a t thaif = \tmax

Linear fiow field, reverses direction at thaif — |tmax

Table 3.1: Flowtype Options, adapted from [13].

s tan t fiow field demonstrates a spatially independent flow field. The linear

flow field demonstrates a spatially dependent fiow field. The quantity, tmax,

gives the end of the tim e interval.

43

The second input param eter, accuracy, specifies how much accuracy is

needed. The choices available for this param eter are as given in Table 3.2,

where the tim e integraters are odeCFLl, forward Euler, odeCFL2: second-

accuracy M ethod used

’low’

’medium’

’high’

’veryHigh’

Use odeCFLl and upwindFirstFirst (default)

Use odeCFL2 and upwindFirstENC2

Use odeCFL3 and upwindFirstENC3

Use odeCFL3 and upwindFirstW ENC5

Table 3.2: Accuracy Options, adapted from [13].

order TVD RK scheme with CFL condition, and odeCFL3: a third-order

TVD RK scheme with CFL condition, and the spatial discretization schemes

are u p w in d F irs tF irs t : a first-order upwind scheme, upwindFirstEN02: a

second-order ENC scheme, upwindFirstENOS: a third-order ENC scheme,

and upwindFirstWENOS: a fifth-order W ENC scheme. The third input pa­

ram eter d isp layT ype specifies how to display results.

The first returned param eter, d a ta , is the implicit surface function at

imax'i the second returned parameter, dataO, is implicit surface function at

to, and the th ird returned parameter, g, is the com putational grid. These

44

three returned param eters are arrays.

Let us now consider a specific example. Suppose we type the MATLAB

command [d a ta , g , dataO] = convectionDemo(’c o n s ta n t ' , ’medium’).

The results we get are shown in Figure 3.1. The initial interface setup by

this example is a circle, and the effect of this example is to implement a circle

moving with a constant velocity from left to right as in Figure 3.1.

0.5

-0.5 -0,5 -0.5

I m 0.825t = 0.375

0.5 0.5 0.5

-0.5 -0.5 -0.5

t a 0.75

0.5

0.5

-0.5

0.50,5

Figure 3.1; Motion of a circle by a constant velocity field.

The results given in Table 3.3 show the execution tim e for

convectionDemo(’ c o n s ta n t ’ , accuracy) w ith the different choices of ac­

curacy.

45

Accuracy Temporal Spatial Execution Time

Param eter Accuracy Accuracy Seconds

low 1 1 1.168

medium 2 E N 02 5.095

high 3 EN 03 16.864

very high 3 W EN 05 20.242

Table 3.3: The execution time for convectionDemo with different choices of

accuracy.

Review of the convectionDemo Function

This demo is used as the basis for our implem entation of level sets for the

treatm ent of the sloshing problem. We provide the source code for this new

function, called co n v ec tio n S lo sh in the appendix and refer the reader to it

as a reference for this material. A number of values are set (but easily modi­

fied) inside this function. The variables tO (initial time) and tMax(final time)

control the length of the simulation. The variable g. dim specifies the dimen­

sion (one, two, or three); u seS u b p lo ts determines whether to display results

in a single figure or in separate subplots. The function schemeFunc is the

subfunction which describes the spatial approxim ation schemes. The func­

46

tion term C onvection th a t implements a spatial approximation for the term

(3.2). The function in te g ra to rF u n c is the subfunction which describes the

tim e integration schemes (the options are: odeCFLl, odeCFL2, and odeCFLS).

The flow field information is stored in schemeData. v e lo c i ty . The function

v isu a l iz e L e v e lS e t performs the actual visualization.

3.3.4 M otion in the Normal Direction

In this section we examine motion in the normal direction (3.3) using another

example from the level set toolbox, namely the function,

Exam ples/OsherFedkiw/nonnalStaxDemo. This function describes motion

in the normal direction at speed a(x, t) of a star-shaped interface, where the

user provides the speed a(x, t).

The initial configuration for the level set in this case is a star; see Figure

3.2. The MATLAB command is

[d a ta , g , dataO]=norm alStaxDem o(accuracy, reverseF low , d isp layT ype).

The param eters accu racy and d isplayT ype are the same as in the previous

example. The boolean param eter reverseF low specifies whether to reverse

the m otion of the flow at half time.

If we type the MATLAB command

47

[d a ta , g , dataO]= normalStarDemoC’m ediiim ', 'O ’),

the results we get are shown in Figure 3.2. We see the evolution of the star

shaped interface by motion in the direction normal to the interface. The im-

0.50,5

-0,5 -0,5

1 1
I » 0,375 (= 0,6251 1

0,5 0,5

-0,5 -0.5

1=0.875(«0.75 (= 1
1 \t

0.5 0.5 0,5

-0,5 -0.5 -0.5

11

Figure 3.2: Motion of a sta r shaped interface in the normal direction, adapted

from [13].

plementation of the normalStarDemo is similar to th a t of convectionS losh ,

given in the appendix.

3.3.5 Motion by Mean Curvature

In this section we examine the curvatureStarD em o in the directory

Exam ples/OsherFedkiw/, and the function dum bbelll in the directory

48

E xam ples/S eth i an /. The function curvatureStaxDemo describes motion of

a star shaped interface by mean curvature (4) with speed 6(x, t) which is

provided by the user. It uses the subfunction sw itchV alue.

0.5 0.5

-0.5 -0.5 -0,5

11
t = 0.375 1 = 0.5 1 = 0.625

1 1

0.5 0.5 0.5

-0,5 -0,5

1

0.5

-0.5

Figure 3.3: Motion by mean curvature of a star shape w ith mulitplier b{x, t)

varying in time and space, adapted from [13].

The MATLAB command is

[d a ta , g , dataO]= curvatureS tarD em o(accuracy , s p li tF lo w , d isp layT ype).

The parameters, accu racy and displayT ype are as before. The boolean pa­

ram eter s p li tF lo w (’O’ or ’1’) specifies whether the multiplier should be

constant or varying in time. The returned param eters are the same as in

previous examples.

49

If we type the MATLAB command

[d a ta , g , dataO]= curvatu reS tarD em o(’m edium ', the results we

get are shown in Figure 3.3. The figure shows motion of a star shape by mean

curvature, w ith the speed b{x,t) varying in tim e and space. For the time

and spatially varying case sp litF lo w = l. The source code for the function

c u rv a tu re S t arDemo is also similar to the previously described functions.

Review of the dumbbelll Function

We now consider an example involving the motion of a three-dimensional

dumbbell shaped figure by mean curvature. The MATLAB command is

[d a ta , g , dataO]= dum bbelll (a c c u ra c y) . The accu racy param eter is as

the same as before, as are the returned parameters. The dumbbell is created

as the zero contour oî a, (j> function defined in [13]:

tpuft{x) = \ j {xi + o)2 + x l + x l - r.

Aight{x) = \J[xi - o)^ + x l + x l - r,

’̂ center{x) = max (jzi - o[), + xl~UJ

<j){x,Q) = miXi[lljieft{x),i)right{x)Acenter{x)],

50

t = 0 t = 0.003125 t = 0.00625

-8.2— -0.5
t = 0.009375

-8.2 -0.5
t = 0.0125

8.2^^-0.5
1 = 0.015625

-8.2— -Oj
1 = 0.01875

- 8 . 2 ^ -0.5

1 = 0.021875

0.2 0 -8.2^^-0.5
1 = 0.025

-8.2^-0.5

Figure 3.4: Motion by mean curvature of a three dimensional dumbbell,

adapted from [13].

51

where o is the offset of the center of the lobes of the dumbbell, r is the radius

of the lobes, and uj is the radius of the center cylinder. The dumbbell is the

union of these three implicit surfaces.

Let us now consider a specific example. If we type the MATLAB com­

mand

[d a ta , g, dataO] = dum bbelll (’medium’), the results we get are shown

in Figure 3.4. The source code for dum bbelll is also similar to th a t of

convectionS losh .

3.4 The Toolbox Functions

Here we list the complete set of functions available in the toolbox:

convectionDemo demonstrates motion by an external velocity field of a cir­

cle.

reinitD em o demonstrates the reinitialization equation.

laxFriedrichsD em o is an implem entation of time independent convective

flow using a general HJ solver.

curvatureSpiralD em o demonstrates m otion by mean curvature of a two-

dimensional wound spiral interface.

52

curvatureStaxDem o demonstrates m otion of a star by mean curvature w ith

multiplier b{x).

normalStarDemo demonstrates motion of the surface of a s ta r in the normal

direction a t speed a{x,t) .

spinStarDemo demonstrates the combination of motion of a s ta r in the nor­

mal direction and with convective rotation.

t r i p le S in e demonstrates the evolution of a sine-shaped interface under a

combination of curvature and normal motion.

dum bbelll demonstrates the evolution of a three-dimensional dumbbell un­

der motion by mean curvature.

burgersLF demonstrates solution of Burgers’ equation,

f igureAirSD visualizes the three dimensional reachable set, and possibly the

initial collision/target set.

G rids found in the directory K ern e l/G rid s; a grid is represented by a struc­

ture: a fixed rectangular Euclidean mesh.

BoundaxyConditions is called by the spatial derivative approximation func­

tion (schemeFunc). There are three boundary conditions from which to

choose: Periodic, Dirichlet, and Neumann boundary conditions.

I n i t ia lC o n d i t io n s can create basic shapes: circles, spheres, cylinders, squares,

53

cubes, rectangles, hyperplanes, and polygons. The functions term C onvection,

termNormal, and te rm R e in it in the directory

K e rn e l/E x p lic i t ln te g ra t io n /T e rm / approximate the term s th a t imple­

m ent convection by a velocity field (3.2), motion in the normal direction

(3.3), and the reinitialization equation (3.4), respectively.

The functions in the directories K e rn e l/E x p lic it I n te g r a t io n /

T erm /term L axF ried richs, and K e r n e l /E x p l ic i t ln te g ra t io n

/D is s ip a t io n approxim ate general HJ terms.

54

Chapter 4

Num erical M odelling of the

Navier-Stokes Equations

4.1 Introduction

The Navier-Stokes equations are the fundamental equations for the modelling

of fluid flow problems and are thus relevant to the modelling of sloshing

phenomena. In this chapter we introduce the Navier-Stokes equations and

their numerical solution. We also consider the numerical solution of the

Navier-Stokes equations for one example.

55

4.2 The Navier-Stokes Equations

The following m aterial is largely drawn from [8], (page 11-page 35).

The Navier-Stokes equations are derived from a number of assumptions

about the attribu tes of the fluid, such as the density, p, etc. Based on the

density, the flow can be classified as compressible or incompressible. If the

flow is incompressible, the density p is constant w ith respect to both space

and time. We consider incompressible flows in this thesis. The dimensionless

Navier-Stokes equations take the following form:

the momentum equation is

^ + Vp = - (u • V)u -f g (4.1)

and the continuity equation is

V • u = 0, (4.2)

where u is the velocity vector, p is pressure. Re is the Reynolds number, one

of the basic dimensionless numbers in fluid dynamics, and g denotes body

forces such as gravity.

Because

(u • V)u =
u d u l d x + v d u fd y ^

u d v /d x + v d v /d y

56

from (4.2), we have

Also

du dv „ du dv ^

vdu vdv
+ -7T- = 0.d x dy

We next observe th a t

d{u^) d{uv) 2udu udv vdu udu vdu
dx dy dx dy dy dx dy ’

and

d(uv) d(v ‘̂) udv vdu 2vdv udv vdv—:— H— -— - = ------- 1--------- 1---------= -------- 1--------.
dx dy dx dx dy dx dy

The momentum equations then become

du dp i f d'^u d'^u\ d{u^) d{uv)
dt dx Re i <9ŷ i dx dy

and

dv dp i f d \ d ‘̂ v \ d{uv) d{v^)

The continuity equation is

The initial conditions are u (x ,y ,0) = ua{x^y) and u(a;,y,0) = vo{x,y),

and we assume th a t these functions satisfy (4.4).

57

To define the boundary conditions, we will employ the following defini­

tions: (fn will be the component of velocity orthogonal to the boundary, ĉ f

will be the component of velocity parallel to the boundary, and

will be their derivatives in the normal direction. We assume th a t the bound­

aries are parallel to the coordinate axes. On the vertical components of the

boundary we have

difn du dipt dv

whereas, on the horizontal segments of the boundary we have

d(pn dv d(pt du

For fluid on the boundary, one the following sets of boundary condtions

are often assumed:

1. No-slip condition: No fluid flows through the boundary; i.e., the velocities

in the horizontal and vertical directions a t the boundaries must be zero,

<^n(a;,y) = 0, ^pt{x,y)=Q.

2. Free-slip condition: The velocity normal to the boundary is zero, but

there is no change in the tangential velocity w ith respect to the normal (i.e.,

no frictional losses)

58

fn {x , y) = 0, (pt{x,y)/dn = 0.

3. Inflow condition; The velocities in the horizontal and vertical directions

a t the boundaries are given; i.e.,

(Pn{x,y) = <pI, ipt{x,y) = (p°, with given.

4. Outflow condition: Neither velocity component changes in the direction

normal to the boundary; i.e.,

ipn{x,y)ldn = 0, (pt{x,y)ldn ^ Q.

In general, solutions to the Navier-Stokes equations cannot be obtained

analytically. Rather, they must be approximated numerically.

4.3 The Num erical Treatm ent of the Navier-

Stokes Equations

In this section we consider basic methods for the numerical solution of the

unsteady incompressible Navier-Stokes equations, (4.3), (4.4). This material

is largely drawn from [8], (page 22-page 39).

59

4.3.1 Spatial Discretization

We consider a finite difference m ethod for the discretization of Navier-Stokes

equations on rectangular domains. We will employ w hat is referred to as a

staggered grid. For a given cell of such a grid, the pressure p is associated

with the center of the cell, the horizontal velocity u is associated with the

midpoints of each vertical cell edge, and the vertical velocity v is associated

with the midpoints of each horizontal cell edge. Thus the pressure value p, j

is defined to be a t the coordinates ((z — 0.5)Aa;, { j — 0.5)Ay, the horizontal

velocity value Uij is definded to be a t the coordinates {lAx, { j — 0.5)Ay), and

the vertical velocity value a t the coordinates {{i — 0.5) A x , j Ay) , where

i € {0 , Zfnai}' 2,nd j S {0^ jmax\-

We can then discretize the spatial derivatives arising in equation (4.3) as

follows, [8], (page 29)

^ ^t+i,J ~ 2uj,j + Uj-i,j d'^u ^ Ujj+i — 2ujj -t- Ujj^i
dx^ Ax^ ’ dy'^ Ay^ ’

d '^ v ^ V j + i j — 2 v j j + — 2 v j j - f V j j - i

dx" ̂ A x ^ ’ dy" ̂ Ay^ ’

~ Ax 1̂ 1 2) \ 2 j j ’

60

d{uv) ^ / (^i,j + fj-ij+l) {%j + _ (^ i-l,j + ^ i- l j+ l) {'^i-lj + •^ij)
dx ^ A x \ 2 2 2 2

djuv) ^ {UjJ + ^ i,j+l) _ {%j-l + % + l j _ l) + U i j)

dy ~ Ay

and

^ _ Phi+i - PiJ
dx A x ’ dy A y

4.3.2 Boundary Values for the Discrete Equations

For the momentum equations, (4.3), we assume values on the boundary (see

Figure 4.1.) T ha t is, we assume values for the solution

./max :i" 1 / / / / / / / / v / /

J ~ /mix / / / /

/ / / /

i = i / / / /

/ / / / / / / / / /

: =0 , t = l = W * == w + 1

Figure 4.1; Domain w ith boundary cells; solution values are assumed to be

available on these cells, adapted from [8], page 27.

61

'̂ 1,0) ~ 1) ■ ■ ■ ! ^max-

' 1̂,01 '^ijmax+it * ~ Ij ■ ■ ■ ! *mai)

'̂ 0,j> '^imax+lj) j 1) ■ ■ ■ tjmaxj

outside the domain Cl. These velocity values are obtained from a discretiza­

tion of the boundary conditions of the continuous problem, as defined in [8]:

1. No-slip condition: The values of continuous velocities should be zero at

the boundary; therefore we set:

^Oj = 0, — 0, j = 1,- ■ • ,jmax)

= 0, ' îjmax ~ 0, i = 1, ••• , imax-

The zero boundary value is calculated by averaging the values on either side

of the boundary as shown in Figure 4.2. Vq is the velocity a t the midpoint

of the cell outside the boundary; is the velocity a t the midpoint of the cell

inside the boundary.

Va 4-V;
Vr := = 0 =*- Va = —Vj. (4.5)

We thus obtain the conditions

« 1 , 0 = - « i , l , « i , j m a x + l = - « i , j m a x , ^ = 1) ’ ‘ ‘ ,

62

Vo,j = - V l j , Vimar+l,j = j = 1, • • • , j m a x -

2. Free-slip condition: the values of velocities normal to the boundary

should be zero on the boundary; therefore we set:

^ 0 , j — 0) ' ^ imaxj = 0) J — 1) ' ' ' i j m ax t

Vifi = 0, = 0, i = 1, • • • , i m a x -

We will approximate the normal derivative of the tangential velocity v, i.e.,

dv /dn , a t a point Q using a simple divided difference, (vi — Va)/Ax] (see

Figure 4.3); so th a t the requirement d v i d n — 0 leads to the condition

Va = Vi- We thus obtain the boundary conditions

Uifl = Uj,i, ^tjmox+l ~ ~ 1) ‘ ‘ ‘)

Vo,j = V i j , j = J , J = 1, • • •, j m a x ■

3. Outflow condition: the normal derivatives of u and v are set to zero

a t the boundary. We set velocity values a t the boundary equal to their

neighboring velocities inside the domain.

= " I j , = ' U i m . x - I J ,

= V l J , V i ^ a x + U j = f J i m a x d l J = 1 , J m a x ,

63

Boundary

/

A X
/

/

Figure 4.2: No-slip Boundary Condition, adapted from [8], page 30.

Boundary

/

(2

/

/

/

Figure 4.3; Free-slip Boundary Condition, adapted from [8], page 31.

64

'^tjmax+l ~ Jmci)

^(.0 = H i , H jm ax = H j m a . - l , ̂ = 1, ' ' ‘ . H a x -

4. Inflow condition: for the velocity components tangential to the boundary,

we average the values on either side of the boundary as in (4.5).

4.3.3 Time Stepping

We subdivide the time interval [0, tend] into equal subintervals

[nAt, {n + l)A t], n = 0, • • •, tend/At — 1. Denote by u", u", and p", the

velocity and pressure values deflned a t times n A t . To discretize the time

derivatives a t time we use the forward Euler m ethod. The finite dif­

ference approximations in time to (4.3) can then be w ritten in the following

form:

A t dx Re \ d x ^ dy^J dx dy '

= + + + (4.7)
A t dy Re \dx'^ dy “̂ j d x dy ^

Letting

65

and

we can rewrite (4.6), (4.7) in the form

u"+i = F - A t ^ ,
ax

= G - A t | ^ . (4.9)
dy

Differentiating and substituting these equations into (4.4) gives

0u"+^ ôu"+i a F " a^p^+i a c " a^p"+i
dx dy dx ̂ dx"̂ dy ̂ dy'^

After rearranging terms, this becomes a Poisson equation for the pressure

a t tim e t„+i:

Q2pn+1 ^ Q2pn+1 ^ ̂ / a F " dG'^

dx' ̂ dy"̂ A t y dx dy

We have implemented an algorithm for the numerical treatm ent of the Navier-

Stokes equations using the numerical methods described here. The MATLAB

source code is given in the Appendix A.2.

66

4.3.4 Stream Function

If u and V are the velocities of the flow field, then the stream function cj){x, y)

is defined by

_ d(j){x, y) _

For a physical interpretation of the stream function, we first introduce the

concept of a streamline. A streamline is a curve whose tangent is parallel

to the velocity vector { u , v Y a t each of its points (a:,y) a t a fixed time t.

We show an example involving streamlines in the next subsection th a t is

implemented using MATLAB. We solve the Navier-Stokes equations using a

solver we have written based on the description of the numerical methods

given previously; we use finite different methods for spatial discretizations in

a rectangular domain, and the forward Euler method for the tim e discretiza­

tion.

4.3.5 Example Application

As a model problem, we consider the steady flow of an incompressible fluid

in a square cavity (0 < a: < 2 ,0 < y < 2). The flow is induced by the

sliding motion of the top wall (y = 2) from left to right; see Figure 4.4. The

boundary conditions are no-slip conditions w ith the exception of the upper

67

boundary, for the upper boundary we have u = 0, and u = 1. This is referred

to as a driven cavity.

u=1
v=0

u=0 u=0
v=0 v=0

u=0
v=0

Figure 4.4: Driven Cavity Flow, adapted from [8], page 67.

Figure 4.5 shows the streamlines for Re — 1000 a t t = 1 ,5 ,10,15. Figure

4.6 shows the streamlines for Re = 1,10,100,1000 a t t = 8.

68

Figure 4.5: Driven cavity; streamlines in x-y plane, a t t = 1,5,10,15; Re =

1000.

69

0.6 0.8

1.8

1.4

1.2

0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.4 0.6 1.4 1.6 0.2 0.4 1.2 1.8

Figure 4.6: Driven cavity; streamlines in x-y plane with Reynolds numbers

1,10,100,1000 a t t = 8, (from left to right, top to bottom).

70

Chapter 5

Num erical Solution of Sloshing

Problem s

5.1 Introduction

In this chapter, we first review sloshing problems and the substantial liter­

ature concerned w ith the numerical modelling of these problems. We then

describe a sloshing problem model based on the shallow water equations and

provide some results on the numerical solution of this model. We next ex­

amine the numerical solution of a second sloshing problem model and in

particular the application of level set methods in the determination of the

71

fluid motion as described by Navier-Stokes equations.

5.2 Sloshing Problem s

Because of the complexities of modelling the fluid motion associated with

sloshing, an overall analysis using an appropriate numerical m ethod is neces­

sary. However, difficulties arise from the fact th a t the domain of interest has

an unknown boundary or free surface; i.e., the surface of the fluid should be

determined as a part of the solution. To trea t a free surface numerically, it is

necessary to employ an accurate and efficient numerical scheme th a t can re­

solve the free surface as it moves continuously w ith time. This scheme should

be able to model a variety of free surface configurations. To describe these

flows mathematically, the governing equations and surface conditions must

be given. There are a number of m athem atical models th a t can describe a

sloshing problem including ones based on the shallow water equations and

the Navier-Stokes equations.

Early simulations of sloshing problems were mostly performed with waves

of small height. The sloshing height was assumed to be sufficiently small

so th a t the nonlinear effects could be neglected. Many analytical and ex­

72

perim ental studies on sloshing were performed in the 1950’s and 1960’s for

tank design of space vehicles [16]. Graham and Rodriguez [7] gave a very

thorough analysis of the impulsive and convective pressures in a rectangular

container. The most commonly applied idealization for estim ating liquid re­

sponse in rectangular and cylindrical tanks was formulated by Housner [10].

He divided hydrodynamic pressures of the contained liquid into two compo­

nents; the impulsive pressure caused by the portion of the liquid accelerating

w ith the tank and the convective pressure caused by the portion of the liquid

sloshing in the tank. A m ethod associated with the simulation of free surface

fluid flow called the Marker and Cell (MAC) method was published by Har­

low and Welch [9]. They introduced massless markers th a t move with the

fluid and a novel flnite difference algorithm for the velocity fleld. The mass-

less markers are used to deflne the location and track the movement of the

free surface. Disadvantages of this approach include the additional storage

required for locating the marker particles, and the additional programming

complexity required to locate the cells containing the free surfaces [25].

In the 1970’s and early 1980’s, the sloshing problem became an impor­

tan t issue in the design of the liquified natural gas carriers. Several numerical

approaches were considered during this time. Nakayama and Washizu [14]

73

modeled nonlinear sloshing by finite element and boundary element meth­

ods. They carried out numerical simulations of a two-dimensional liquid

under horizontal and pitching periodic ground motions. Mikelis and Journee

[1 2] conducted experimental and numerical simulations of sloshing behaviour

in hquid cargo tanks and its effect on ship motions. They used a two-

dimensional finite-difference transient solution based on the MAC approach,

adapted for the prediction of liquid motions and induced pressures in par­

tially filled ship tanks. Essentially the Navier-Stokes equations are solved

for each cell of the computational mesh in conjunction with the appropri­

a te boundary conditions and ancillary equations. The solution is advanced

through tim e in a way th a t enables viscous transient fluid flow problems to

be considered.

In the 1990’s, many attem pts were made to develop methods for the sim­

ulation of sloshing phenomena. In 1992, Hwang [11] employed the panel

method, which was based on the boundary element method, to investigate

the three-dimensional sloshing problem. Szymczk [25] used codes designed

to model compressible flow in the study of free surface problems for incom­

pressible fluids. However, these methods are not particularly well suited for

treating the long-time motion of nearly incompressible fluids like water. Free

74

surface velocity boundary conditions also play a critical role in the simula­

tion of fluid flow problems involving free surfaces; accurate procedures for

the application of free surface velocity boundary conditions are presented in

Chen [3].

There has been recent work related to bu t not specifically about slosh­

ing problems. Sussman [23] developed a level set approach for computing

solutions to incompressible two-phase flow. A level set technique is coupled

with a projection method. The projection method was introduced in 1968

by Chorin [23] as a way of efficiently computing solutions of Navier-Stokes

equations for incompressible flow. The m ethod uses backward Euler in time

and centered-differencing in space and assumes periodic boundary conditions.

The advantage of this approach is tha t the numerical boundary layers are

explicitly characterized. The disadvantage, however, is th a t it requires far

more regularity of the exact solution than is necessary, or realistically ex­

pected. An im portant feature of this m ethod is th a t it maintains the level

set function as a distance function for all time, without reconstructing the

interface.

Chen [4] presented a new m ethod for simulation of two-dimensional,

incompressible, free surface fluid flow th a t was called the surface marker and

75

micro cell (SMMC) m ethod. The nev/ method is therefore a marker and cell

m ethod, but it differs from the MAC method in one essential way. Surface

markers, rather than markers distributed throughout the fluid, are used in

the SMMC method. The evolution of the fluid free surface is accomplished

by moving the surface markers to new locations. This m ethod is validated

by comparison of simulation and experimental results for water sloshing in

a tank. The comparison shows good agreement between the shapes and

locations of the simulated and experimental free surfaces.

Chang [2] derived a level set formulation for incompressible, immisci­

ble multi-fluid flow. A second-order projection m ethod or velocity-based

method can be used to discretize the fluid equations in the level set formula­

tion. There is no explicit tracking of the fluid interface. The fluid interface

is recovered at the end of the calculation by locating the zero level set of a

sm ooth function. The effects of discontinuous density, discontinuous viscos­

ity, and surface tension can all be taken into account naturally. The m ethod

is robust, efficient, and capable of handling topological change in the fluid

interfaces. It can be generalized to three-dimensional problems fairly easily.

In Kim [17], a numerical m ethod is applied for the simulation of fluid

flows in two- and three-dimensional tanks. The m ethod has been applied to

76

several models.

In im portant recent work, Neilson [15] investigated free surface modeling

and the sloshing problem in his Ph.D. thesis. The free surface is described

by a Volume of Fluid M ethod (VOF). In the VOF m ethod, the free surface is

represented on fixed grids using a fractional fluid volume in each cell. A cell

with a volume fraction value of 0 is empty, and a volume fraction value of 1

implies a full cell. A cell with a volume fraction value between 0 and 1 , im­

plies th a t the cell contains a free surface. Initially, all cells are given a volume

fraction value corresponding to the initial fluid surface, and at each time step

a transport equation is solved to find the distribution of fluid a t the new time

step. The overall solution algorithm is simple and efficient, and it can also

handle complex geometry. However, the VOF-based m ethod has difficulties

in determining a free surface location on fixed grids. Numerical smearing on

the free surface was not handled effectively, and three-dimensional sloshing

problems could not be simulated accurately. Neilson also reports an exper­

imental testing of sloshing in a tank. The free surface from the numerical

m ethods was compared to the one observed in the experiments, and it was

found th a t the com putation gave a very good prediction for the sloshing flow.

Sussman [24] investigated a nmnerical m ethod called the coupled level

77

set and volume of fluid (CLSVOF) method to represent the free surface for

several fluid flow problems, bu t not the sloshing problem. The position of

the free surface is updated via the level set equation + V ■ = 0. The

volume fractions are used to express the interfacial curvature to second-order

accuracy.

Kim [16] considered a new free surface tracking algorithm based on the

VOF method. The novel features of the proposed algorithm are character­

ized by two numerical tools: the orientation vector used to represent the

free surface orientation in each cell and the baby-cell used to determine the

fluid volume flux at each cell boundary. The proposed algorithm can be

easily implemented on any irregular non-uniform grid, such as usually en­

countered in the finite element method. Most of the analysis was limited to

two-dimensional problems; however the proposed algorithm can be extended

and applied to the three-dimensional free surface flow problems without ad­

ditional efforts. The robustness of the proposed numerical algorithm was also

demonstrated.

78

5.3 M odelling o f Sloshing Problem s w ith the

Shallow W ater Equations

5.3.1 One-dimensional and Two-dimensional Models

If the degree of sloshing is small compared to the depth of the fluid then we

can use the shallow water equations to describe the motion of a fluid in a

tank. The one-dimensional shallow water equations are as follows.

The mass conservation equation is

+ = (5.1)

and the momentum conservation equation is

 ̂A +v)
where

X € [0 , L] is the spatial coordinate attached to the tank of length L,

t € [0 ,T] is the time coordinate, T > 0,

g is the gravity constant,

H{x, t) denotes the height of the liquid,

V{x, t) denotes the horizontal speed of the fluid in the coordinates attached

79

to the tank.

The initial conditions are;

H{x ,0) = H q{x) and y (x , 0) = Vo(x),

where we model a solitary wave by choosing

Ho{x) = Hsech.{x'^),

and

Vi(x) = - 2 ^ c o s (! ^) s m (=) .

The boundary conditions for V are given by, for all t e [0,T],

V(0, t) = 0 and V { L , t) = 0 .

The boundary conditions for H are derived from requiring = 0 a t each

boundary; a one-sided high-order finite difference approximation gives

H { x i , t) = 3H{x2, t) - 3H{xs, t) + H (x i , t) ,

H{x n , t) = 3E(zA r-i, t) - ^H{x n _2, t) + H { x n - 3, t).

where x i , zg, • • x n are uniformly spaced over the x domain. The two-

dimensional shallow water equations are as follows.

80

The mass conservation equation is

d H , d (H V) d{HU) „
dt dx dy ~ ’

(5.3)

where H, V are as before, and U denotes the speed of the liquid in the

coordinate Y attached to the tank. All functions H, V, U depend on t, x,

and y. For the boundary conditions we set H{xn, t) = 0 and the velocity

component normal to the boundary is set to zero.

The momentum conservation equations are

d {H V) d
dt dx

and

(5.5)

5.3.2 Numerical Treatment of One-dimensional Shal­

low Water Equations

The system of shallow water equations in one dimension can be w ritten as

/
d
dt

H {x , t)

y (z , t)

\ /
+ 2

dx

\
H {x , t)V {x , t)

= 0 . (5.6)

81

In (5.6) we can explicitly apply differentiation with respect to x] the two

components of the second term of (5.6) become

d{H{x , t)V {x , t))
dx

A () + j = t) + y(%,t)VL(%,t). (5.8)

We next rewrite (5.6) by substituting (5.7) and (5.8); we have

^ H { x , t) = - {H:,{x, t)V{x, t) + H{x , t)V: ,{x , t)) , (5.9)

and

^ 7 (x , t) = -{gHa;{x, t) + V{x, t)V: ,{x , t)) . (5.10)

Applying the forward Euler method gives

H{x, tn) = H{x , tn - l) - A t{H^{x, tn- l)V{x, tn-l) + H { x , tn - l)V ,{x , tn-l) ,

(5.11)

V{x, tn) = V { x , t n - i) - A t {gHx{x,tn-l) + V{x,tn-l)Va:{x, tn-l)) . (5.12)

We discretize the spatial derivatives using the usual central second-order

finite difference scheme. This gives

cj j.\ - H[x i^ \ , t) — H[x i^i , t)

and

V{xi+i ,t) - V { x i . i , i)
2 A i

82

5.3.3 Use of a Linear Approximation in the Solution of

the One-dimensional Shallow Water Equations

We can rewrite system (5.1), (5.2), in a matrix-vector form [5]

/
d
at

\

\ /
2

dx

\

= 0, (5.13)

with the characteristic m atrix

A { H { x , t) ,V { x , t)) =

V /9 V{x , t)

Following the development in [5] we see th a t the eigenvalues of this m atrix

are

Xi{H ,V) = V - y / ^ and X^iH^V) = V +

We can then employ a change of coordinates; let

= V —VQ — 2[\J'gH—^I’gHo) and eg = V —Vo+2{yJgH — \JgHo)- (5.14)

We can then rewrite the system (5.13) in the form:

a
at

f \ f \
ei V a ei

4- A (e i , e g) ^ = 0 (5.15)

where

^ ((i , 2̂) —
4 ^ 2 4 -16 i + Vo — V g ^ 0

4 ^ 2 4 - 7 ^ 1 4 - V o — v /fifi^ O

(5.16)

83

Thus i ï , V can be expressed in term s of ei and eg as

and v = î î l i l + v;. (5.17)
J-vg z

R ather th an solve the system (5.15) directly, de Halleux [5] indicates th a t

he employs a linear approxim ation for ei and eg in (5.17) to compute H and

V. However, he dose no t give explicit details for th is approximation. Here

we employ our own linear approxim ation for ei, eg- From equation (5.14), we

have: ei = V —Vo—Ae and eg = H —Vo+Ae, where Ae = 2{y /gH-^ /gHo).

Since g and H q are known, our approxim ation for Ae (and thus ei and eg) is

obtained once we have an approxim ation for H a t the current tim e t. A linear

approximation for H{t) comes a t no cost from H{t — At) , the H value a t the

previous tim e step. A simple Taylor series argum ent shows th a t H{t — A t)

is an 0 (A t) approxim ation to H{t). This approxim ation for H is employed

in the above expression for Ae which is then used to get approximations for

ei, eg and from (5.17), we then get linear approximations for H and V a t the

current time.

84

5.3.4 Use of a Linear Approximation in the Solution of

the Two-dimensional Shallow Water Equations

We can rewrite the system (5.3), (5.4), and (5.5) in a matrix-vector form [5]

as

d
dt

with the characteristic matrices, [5]

/

/ \
H

/ \
H

(\
H

H V + 4 H V + 4 H V

H U _ . H U H U .

= 0 ,

A =

and

\

/

B =

0 1 0

-V^ + g H 2V 0

- V U U V

0 0 1

- V U U V

- U ^ + g H 0 2U

The eigenvalues of the m atrix A are
\

Ai = V — X2 = V + and A3 = V.

The eigenvalues of the m atrix B are

') \ - U - y ^ n , 7 2 = (7 + y ^ and 7 3 = U.

85

(5.18)

We can then employ the following change of coordinates; let

= V — Vq — {\JgH — yjgHo) and €2 = V — Vq + { \ jgH — \JqHq). (5.19)

r]i = U — Uq — [\JgH — y qHq) and t]2 = U — Uq + [\JgH — \JqHq). (5.20)

We can then rewrite the system (5.18) in the form

/ ^ (\
d ei . d ei
Ft + A(ei,e2)- = 0, (5.21)

where A((1 , 6 2) is the same as in (5.16) and

d
dt

{ \ (\
Vi

+ r(77l,772)^

[v2j

= 0 , (5.22)

r(m,T?2) =

where
/

4 ^ 2 + 4 % - \ - U q — \ / g H o 0

0 fî?2 + \vi + Uo — y/gHo

i ï , V, and U can then be expressed in terms of ei, 6 2 , and 772 as

(C2 — Cl + 772 — ï?! + 4\ / g 3 o)^

\ /

. (5.23)

H =
1 6 5

V = ^ l ± ^ + Vo, and +

(5.24)

(5.25)
2 2

As in the one-dimensional case we consider linear approximations for ei,

6 2 , Vi, V2 obtained as follows. From (5.19) and (5.20) we observe th a t

€\ = V — Vq — Ae and 6 2 = — Vq -b Ae,

86

T]i = U — Uq — Ar} and r}2 = U — Uq + Arj,

where Ae = Arj = [y /gE — y/gHo). A similar analysis therefore holds and

linear approximations for H, V and U are obtained as in (5.24), (5.25).

5.3.5 Numerical Results for One-dimensional Shallow

Water Equations

In this section we provide numerical results associated w ith the solution

of the nonlinear shallow water equations, in discretized form (5.6). The

computing environment is MATLAB 6 . 1 running under Microsoft Windows

XP; the machine type is a Dell Dptiplex Gx270 personal computer, and we

have L = 1, T = 4, A t = 0.0004, and Aa; = 0.005. Figures generated from

the numerical results are shown in Figures 5.1 and 5.2.

87

Nonlinear Model Nonlinear Model

N onlinear Model Nonlinear Model

Figure 5.1: Shallow water equations in the x-y plane; nonlinear one­

dimensional model of sloshing a t t = 0 .0,1.0,1.5,2.0, from left to right, top

to bottom .

Nonlinear Model Nonlinear Model

J - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - 1_ _ _ _ _ _ _ _ _ I_ _ _ _ _ _ _ _ _ 1_ _ _ _ _ _ _ _ _ I I_ _ _ _ _ _ _ _ _ I_ _ _ _ _ _ _ _ _ 1_ _ _ _ _ _ _ _ _ 1_ _ _ _ _ _ _ _ _ I_ _ _ _ _ _ _ _ _ I_ _ _ _ _ _ _ _ _ I_ _ _ _ _ _ _ _ _ I_ _ _ _ _ _ _ _ _ L .

N onlinear Model Nonlinear Model

Figure 5.2; Shallow water equations in the x-y plane; nonlinear one­

dimensional model of sloshing at t = 2.5,3.0,3.5,4.0, from left to right, top

to bottom.

89

5.3.6 Numerical Results for a Linear Approximation

in the Solution of the One-dimensional Shallow

Water Equations

In this section we present numerical results based on a linear approximation

in the one-dimensional shallow water equations (5.6). The same computing

environment and param eter values were employed. The results are shown

in Figures 5.3 and 5.4. We note th a t while the implementation involving

the linear approximation is simpler, the results of the linear case do differ

somewhat from those obtained from the direct treatm ent of the numerical

model.

5.3.7 Numerical Results for a Linear Approximation

in the Solution of the Two-dimensional Shallow

Water Equations

In this section we present numerical results based on a linear approximation

in the two-dimensional shallow water equations (5.18). The same computing

environment and param eter values were employed. The results are shown in

Figures 5.5 and 5.6.

90

Linear Model Linear Model

Linear Model L inear Model

Figure 5.3; Shallow water equations in the x-y plane; solution based on

a linear approximation in the one-dimensional model of sloshing at t =

0.0,1.0,1.5,2.0, from left to right, top to bottom.

91

Unear Model Unear Model

Linear Model Linear Model

Figure 5.4: Shallow water equations in the x-y plane; solution based on

a linear approximation in the one-dimensional model of sloshing at t =

2.5,3.0,3.5,4.0, from left to right, top to bottom.

92

Figure 5.5: Shallow water equations in x-y-z space; solution based on

a linear approximation in the two-dimensional model of sloshing at t =

0 .0,1.0,1.5,2.0, from left to right, top to bottom.

93

i

Figure 5.6: Shallow water equations in x-y-z space; solution based on

a linear approximation in the two-dimensional model of sloshing at t =

2.5,3.0,3.5,4.0, from left to right, top to bottom .

94

5.4 Level Set M ethods Coupled w ith Navier-

Stokes Equations

In the remainder of this chapter, we present a preliminary investigation in

which we attem pt to couple the level set m ethod with Navier-Stokes equa­

tions for the modelling of sloshing problems. We implement the level set

component of this simulation using the level set toolbox described in Chap­

ter 3 and implement the Navier-Stokes component using the Navier-Stokes

solver described in Chapter 4,

5.4.1 Governing Equations

We recall the dimensionless incompressible Navier-Stokes equations; the mo­

mentum equation is

^ + Vp = - (u • V)u 4- g (5.26)

and the continuity equation is

V • u = 0, (5.27)

where u is the velocity vector, p is the pressure. Re is the Reynolds number,

(we choose Re = 100), and g denotes body forces such as gravity; we initially

95

consider g = (9.8,0)^ corresponding to the presence of the force of gravity

in the vertical direction. For two-dimensional incompressible flows, u =

(w,u)^, X = { x , y Y , g = [çx^gyY, and u is dependent on x; i.e., u =

u (x , t). We take the domain to be the box [—1,1] x [—1 , 1]. We discretize

these equations as described in the previous chapters and use a MATLAB

im plem entation to compute the horizontal and vertical fluid velocities by

solving the discretized Navier-Stokes equations. The MATLAB source code

is shown in the Appendix.

Boundary conditions along the lower and upper horizontal segments of

our domain are no-slip conditions; boundary conditions along the left and

right vertical segments are no-slip conditions as well. The discretized form

of the boundary conditions is therefore

0) — 0, J = 1, • • • , jmax)

VO,j = - V l J , j = 1 , ' ’ ' J m a x ,

~ Î = 1, ' ' ' ,imax-

— 0) ' ^ i j m a x — ̂ ~ 1) ■ ■ ■ ! ^m ax-

The initial conditions we use are u(x, 0) = wo(x) = 2, and u(x, 0) =

Uo(x) = 0. These are the same conditions as used in [8] for a similar problem.

96

We observe th a t while the Navier-Stokes equations allow us to compute

the velocity as it changes in time, the motion of the surface of the fluid is not

considered. Thus in our approach the position of the free surface is updated

via the level set equation

(f>t + u - V4> = 0 ,

where ÿ is the level set function whose zero contour will give the surface

of the fluid and u is the fluid velocity vector as in equations (5.26) and

(5.27). We choose the initial value for the level set function to be (^(x, 0) =

0.5 sin(0 .7 6 7 ra: -f 0.5) -f 0.247ry. See Figure 5.8, t = 0 , to see the initial fluid

surface.

5.4.2 Implementation

We modified convectionDemo, which was introduced in Chapter 3, to com­

pute level sets based on the velocity results of the Navier-Stokes solver. The

level set toolbox and the Navier-Stokes solver pass information back and

forth. The source code is given in the Appendix A .I.

The level set toolbox includes four spatial derivative approximations,

which were introduced in Section 3.3. We used the default m ethod u p w in d F irs tF irs t

(First-order upwind scheme). We also have the option of using the methods:

97

upwindFirstEN02, a second-order ENO scheme, upwindFirstENOS, a third-

order ENO scheme, and upwindFirstWENOB, a fifth order WENO.

Three tim e derivative approximations are provided in the level set toolbox

introduced in Section 3.3. We used the default m ethod odeCFLl (forward

Euler m ethod). We also have the option of using the methods: odeCFL2,

second-order TVD RK scheme, odeCFLS, a third-order TVD RK scheme, are

available as well. These functions handle the CFL condition automatically.

We choose the boundary conditions by calling addGhostNeumann (default

for the level set toolbox); the boundary cells will have a constant specified

derivative normal to the boundary; i.e., Neumann boundary conditions are

specified and the derivative is set to 1 .

5.4.3 Simulation Results

The results are shown in Figure 5.7. This model describes the sloshing of a

fluid in a stationary tank, with the initial fluid surface configuration shown

in the upper left hand corner of Figure 5.7. This is a restricted version of

the sloshing problem since the tank is stationary. We see the settling down

of a fluid surface starting from the shape shown in Fig 5.7 for t = 0.

For our second set of results, we will consider introducing a horizontal

98

1 = 0 1 = 0.5 t=1

0.5

-0 .5

1=1.5
1

0.5

-0 .5

1 = 3
1

0.5

-0.5

0.5

-0 .5

1 = 2

1

0.5

0

-0 .5

-1
-1

1 = 4

0.5

-0.5

1 = 2.5
1

0.5

-0.5

Figure 5.7: Simulation using the Navier-Stokes equations and level set equa­

tions, t G [0,4], Re — 100, stationary tank.

99

force which simulates the motion of the tank. In our first set of results the

forcing term was g = (9.8,0)^ representing the vertical force of gravitiy and

the absence of any horizontal force. Here we choose g = (9.8,5)^ to represent

a horizontal motion. The results are shown in Figure 5.8.

1 = 0 t = 0.5

0.5

.0.5

1

0.5

-0.5

t = 2

0:5

-0.5

0.5

-0.5

1 = 2.5

Figure 5.8: Simulation using the Navier-Stokes equations and level set equa­

tions, t G [0,2.5], Re = 100, horizontal tank motion.

1 0 0

Chapter 6

Conclusions and Future Work

In this thesis, we have provided a survey of level set methods for the implicit

tracking of interfaces in an elegant manner. We have also provided a review

of the MATLAB based level set toolbox th a t provides many useful tools for

the implementation of level set methods [13]. The Navier-Stokes equation

and models for their numerical solution have been considered as well. This

thesis has considered mathematical models and numerical methods for an im­

portan t class of fluid flow problems known as sloshing problems, which have

applications in areas such as the automotive, aerospace, and ship-building

industries. In particular, we have applied both the shallow water equations

and the Navier-Stokes equations to model sloshing problems. In the lat-

1 0 1

ter case, the fluid interface is not treated explicitly by the model, and we

have explored the coupling of the level set approach for the tracking of the

interface.

One possible area for further work following from this thesis is the devel­

opment and numerical solution of the three-dimensional sloshing problem.

Although we have considered this briefly within the shallow water equations

model, it would be interesting to examine a three-dimensional Navier-Stokes

model, coupled with a three-dimensional level set approach, for tracking the

interface surface. Other possibilities include consideration of related fluid

flows problems or implementations in standard programming language envi­

ronment such as C-t—I- or Fortran where we could expect the implementation

to be much more efficient.

1 0 2

A ppendix A

A ppendix

A .l Level Set M ethod - convectionSlosh.m

’/.Modification of convectionDemo.m to

'/.implement use of le v e l se t methods

'/.for the sloshing problem.

function [data, g, dataO]

= convectionSlosh(accuracy,initial,d isplayType)

'/. [data, g, dataO]

'/.= convectionSlosh (accuracy, i n i t i a l , displayType)

103

% sloshDemo: demonstrate sloshing problem.

% This function was o r ig in a lly designed as a scr ip t f i l e ,

so most of the options can only be modified by ed it ing the

f i l e .

For example, ed it the f i l e to change the grid dimension,

boundary conditions, flow f i e l d parameters, e tc .

Parameters :

accuracy Controls the order of approximation.

Note that the sp a tia l approximation i s always second order,

'low' Use odeCFLl.

'medium' Use odeCFL2 (d e fa u lt) .

'high' Use odeCFLS.

displayType Sinuoidal function,

data Im plicit surface function at t_max.

g Grid structure on which data was computed.

dataO Im plicit surface function at t_0.

y
y

y

y

You w i l l see many executable l in e s that are commented out.

104

% These are included to show some of the options available;

% modify the commenting to modify the behavior.

%---

% Make sure we can see the kernel m -f i le s .

run(' . addPathToKernel');

%---

%Call function nsvelv in order to

'/.get v e lo c ity from Navier-Stokes solver.

V = OnsvelV;

'/, R e in it ia l iz e to get signed distance function

% at the beginning.

r e in it lo S ta r t = 0;

%---

'/, Time integration parameters.

tMax = 4 ; % End time.

plotSteps = 9 ; % How many intermediate p lo ts to produce?

to = 0; '/. Start time.

singleStep = 0; '/. Plot at each timestep (overrides tP lo t)

% Period at which intermediate p lo ts should be produced.

105

tP lot = (tMax - to) / (plotSteps - 1);

% How close (re la t ive) do we need to get to

% tMax to be considered finished?

small = 1000 * eps;

%-------------------------------------

% What le v e l se t should we view?

le v e l = 0;

% Pause after each plot?

pauseAfterPlot = 0;

% Delete previous p lot before showing next?

deleteLastPlot = 0;

% Plot in separate subplots

Vo (set deleteLastPlot = 0 in th is case.

useSubplots = 1;

%-------------------------------------

% Use periodic boundary conditions?

periodic = 0;

% Create the grid,

g.dim = 2;

106

g.min = -1;

g.dx = 1 / 5 0 ;

i f (periodic)

g .max = Cl - g .d x) ;

g.bdry = QaddGhostPeriodic;

e lse

g .max = +1;

g.bdry = QaddGhostNeumann;

end

g = processGrid(g);

%------------------------

% What kind of display?

if(narg in < 3)

switch(g.dim)

case 1

displayType = ’p l o t ’ ;

case 2

displayType = ’contour’ ;

107

case 3

displayType = ’surface’ ;

otherwise

error (’Default display type undefined for dimension %d’ ,g.dim);

end

end

%--
% Create i n i t i a l conditions (sinusoidal fu n ction) .

data = 0 .5*sin(0 .76* pi * (g .xs{ l> + 0 .5)) + 2 * g.xs{2>;

dataO = data;

% R e in it ia l iz e i f requested (with same lev e l

%of accuracy as main

% computation).

i f (re in itT oS tart)

% The maximum trave l of the r e in i t ia l iz a t io n wavefront should

% only be about a quarter of the grid s ize .

tMaxReinit = 0.25 * norm(g.max - g.min);

7. We’re w il l in g to quit early i f the resu lts look good.

errorMax = 0.01;

108

data=

signedD istancelterative(g ,data,tMaxReinit, errorMax, accuracy);

end

%--

% Set up f lu id motion with v e loc ity .

schemeFunc = QtermConvection;

schemeData.grid = g;

schemeData.b = v;

%---

ifCnargin < 1)

accuracy = 'low';

end

% Set up time approximation scheme.

integratorOptions = odeCFLset('factorCFL', 0 . 5 , ' s t a t s ' , ' o n ') ;

'/«matlab integrator routine

% Choose approximations at appropriate le v e l of accuracy,

switch(accuracy)

case 'low'

in tégrâtorFunc = SodeCFLl;

109

case ’medium'

integratorFunc = @odeCFL2;

case ’h igh’

integratorFunc = @odeCFL3;

otherwise

error (’Unknown accuracy le v e l '/«s’ , accuracy);

end

if(s in g leS tep)

integratorOptions=odeCFLset(integratorOptions,’s in g leS tep ’ , ’on’) ;

end

%---
'/« I n i t ia l i z e Display

f = figure;

'/« Set up subplot parameters i f necessary,

if(useSubplots)

rows = ce i l (sq r t (p lo tS te p s));

cols = ce il(p lo tS tep s / rows);

plotNum = 1;

subplot(rows, c o l s , plotNum);

110

end

h=

v isu a lizeL eve lS et(g ,data ,d isp layT ype,level,C ’t= ’num2str(t0)]) ;

hold on;

if (g .d im > 1)

a x i s (g .a x i s) ;

d a s p e c t ([1 1 1]) ;

end

%--
% Loop u n t i l tMax (subject to a l i t t l e roundoff).

tNow = tO;

startTime = cputime;

while(tMax - tNow > small * tMax)

% Reshape data array into column vector for ode solver c a l l .

yO = d a ta (:);

% How far to step?

tSpan = [tNow, min(tMax, tNow + tP lo t)] ;

% Take a timestep.

[t y] = feval(integratorFunc, schemeFunc, tSpan, y O ,. . .

Ill

integratorOptions, schemeData);

tNow = t (e n d);

% Get back the correctly shaped data array

data = reshape(y, g.shape);

if(pauseAfterPlot)

% Wait for la s t p lo t to be digested.

pause;

end

% Get correct f igu re , and remember i t s current view,

f i g u r e (f) ;

figureView = view;

°/o Delete la s t v isu a liza tion i f necessary,

if(de leteL astP lo t)

d e le te (h) ;

end

7o Move to next subplot i f necessary,

if(useSubplots)

plotNum = plotNum + 1;

subplot(rows, c o l s , plotNum);

112

end

7. Create new v isu a liza tion .

h=

visua lizeL evelSet(g ,d ata ,d isp layT ype,level,[' t= 'numSstr(tNow)]) ;

% Restore view.

view(figureView);

end

endlime = cputime;

f p r in t f (’Total execution time %g seconds’ , endTime - startTime);

% out = nsvelVCt, data, schemeData)

% Parameters:

% t Current time.

% data Level s e t function.

% schemeData Structure.

function out = nsvelVCt, data, schemeData)

global le v e ls e t_ t leve lset_vel;

% c a l l the Navier-Stokes solver

nsl;

le v e ls e t_ t = t ; % initialize the end time.

113

out=levelset_vel; '/.retrieve the v e lo c ity ,

end

A.2 Navier-Stokes Solver- N S l.m

%NS1

'/. Numerical so lution of 2-D incompressible

% Navier-Stokes equations in rectangular domain.

% Functions called: problem_specification, grid_generation,

% viscous_matrix, grad_and_div, in it ia l_con d it ion ,

'/. inertia_matrix, stream lineplot,

timeO = clock;

global geval n uO vO J K yu yv yseglen le v e ls e t_ t le v e lse t_ v e l

% ... Input.............................

geval = 1; "/. Enter 1 for horizontal flow to the right

% or 2 for driven cavity

problem_specification

'/« ...End of input...........................

114

grid_generation

viscous_matrix

% Generate viscous matrices Bu, Bv and Masku, Maskv

grad_and_div% Generate pressure gradient matrices

% Pu, Pv and in it ia l_ co n d it io n

% Generate i n i t i a l uO, vO, pO

[Lp,Up] = l u ([Du Dv]* [Pu;Pv]);

% LU decomposition of pressure correction matrix

nstep = f lo o r (te n d /d t) ; % Number of time steps

t = 0; n = 0;

ul = uO; v l = vO;

for n = 1 instep

t = n*dt;

uO = u l; vO = v l;

inertia_matrix % Generate in e r t ia matrices

% Navier-Stokes, predictor:

rum = ru'; rum = rum(i); rvm = rv'; rvm = rvm(i);

i f n == 1, t i c , end

ul = Bu\(dt*(rum - Pu*pO) + Masku*uO);

115

vl = Bv\(dt*(rvm - Pv*pO) + Maskv*vO);

End of Stokes

dp = Up\(Lp\(Du*ul + Dv*vl)); pO = pO + dp/dt;

ul = ul - Pu*dp; v l = v l - Pv*dp;

end

streamlineplot

% Plot of streamlines and ve loc ity vectors

% PROBLEM SPECIFICATION

% S pecif ication of parameters, grid and boundary conditions

global Re le v e ls e t_ t

t i c

i f geval == 1 % Horizontal P o iseu il le flow to the right

dt = 0.125; % Time step

tend = le v e lse t_ t ; % End time

Re = 1500;% Reynolds number based

% on unit length and unit ve loc ity

umax = 0.75;% Estimates of max.

% v e lo c ity components required for s t a b i l i t y

vmax = 0;

116

xseglen = [1,1];% Enter segment lengths of horizontal

‘/oboundary in order of increasing x. Number

%of segments i s arbitrary.

% These segments are used for grid generation

%and boundary conditions,

yseglen = [1,1]; % Similar to xseglen in y-d irection .

nx = [4 ,4]; % Number of c e l l s along x-segments.

ny = [4,4]; % Number of c e l l s along y-segments.

% Type of boundary condition: 1: n o -s l ip

% 2: inflow

% 3: outflow

% Give type of boundary condition along lower (f i r s t row)

% and upper (second row) horizontal segments in order of

% increasing x:

xbc = [1,1; 1 ,1];

% Give type of boundary condition along l e f t (f i r s t row)

% and right (second row) v e r t ic a l segments in order of

% increasing y:

ybc = [1,1; 1,1];

117

e l s e i f geval == 2 % Driven cavity

dt = 0.05; % Time step

tend = 2;% End time

Re = 1000;% Reynolds number based on unit length and

% unit v e lo c ity

Umax = 1 ; % Estimates of max. v e lo c ity components required

% for s t a b i l i t y

vmax = 0;

xseglen = [1,1];% Enter segment lengths of horizontal

%boundary in order of increasing x.

%Number of segments i s arbitrary.

% These segments are used for grid

%generation and boundary conditions,

yseglen = [1 ,1]; % Similar to xseglen in y -d irection .

nx = [15,15]; % Number of c e l l s along x-segments.

ny = [15,15]; % Number of c e l l s along y-segments.

% Type of boundary condition: 1: n o -s l ip

% 2: inflow

118

7, 3; outflow

% Give type of boundary condition along lower (f i r s t row)

% and upper (second row) horizontal segments in order of

% increasing x:

xbc = [1,1; 2 ,2];

% Give type of boundary condition along l e f t (f i r s t row)

% and right (second row) v e r t ic a l segments in order of

7. increasing y;

ybc = [1,1; 1 ,1];

e lse

error(’Wrong value in input for parameter g ev a l’)

end

i f (s iz e (x b c (l , :)) ~ = s iz e (n x)) I (s i z e (y b c (l , :))~= size(nx))

error(’Wrong correspondence in problem_specification’)

end

7. GRID_GENERATION

global XU yu xv yv dx dy

t i c

dx = []; % Size of primary (i . e . pressure) c e l l

119

for s = 1;length(nx)

dx = [dx, x se g le n (s)* o n e s (l ,n x (s)) /n x (s)] ;

end

dy = []; % Size of primary (i . e . pressure) c e l l

for s = 1:length(ny)

dy = [dy, y se g le n (s)* o n e s (l ,n y (s)) /n y (s)] ;

end

[DX,DY] = meshgrid(dx,dy);

% Sizes of primary c e l l s

J= length(dx); K = length(dy);

XU = [0 ,cumsum(dx)];

% x-coordinates of u-nodes

X V = 0.5*(xu(l:end-l)+xu(2:end));

% x-coordinates of v-nodes

yv = [0, cumsum (dy)] ;

% y-coordinates of v-nodes

yu = 0 .5*(yv(l:end-l)+yv(2:end));

% y-coordinates of u-nodes

[XU,YU] = meshgrid(xu,yu);

120

[XV,YV] = m esh grid (xv ,yv);

[XP,YP] = meshgrid(xv,yu);% Coordinates of pressure nodes

DXU = XU; % Size of f in i t e volumes for u; preallocation.

DXU(:,1) = D X (:,l) /2;

DXU(:,2:J) = (D X (:,l:J -i) + DX(:,2 :J)) /2 ;

DXU(;,J+1) = DX(;,J)/2;

DYU = [DY.dy’l ;

DYV = XV;

% Size of f in i t e volumes for v; preallocation .

DYVCl,:) = D Y (l,:)/2;

DYV(2:K,:) = (DY(1:K-1,:) + DY(2:K,:)) /2 ;

DYV(K+1,:) =DY(K,:)/2; DXV = [DX;dx];

volu = DXU.*DYU; vol = l . / v o l u ’ ; n = (J+1)*K;

invvolu = spdiags(vo l(:) , 0, n, n) ; % (u-volume)~(-1)

volv = DXV.*DYV; vo l = l . / v o l v ’ ; n = J*(K+1);

invvolv = s p d ia g s (v o l(:) , 0, n, n) ;

% (v-volume)~(-l)

jseg = [0 ,cumsum(nx)];

121

% j -in d ices of horizontal segment boundaries

kseg = [0 ,cumsum(ny)];

% k-indices of v e r t ic a l segment boundaries

hx = min(dx);% Required for s t a b i l i t y estimate for

hy = min(dy);

c lear vol

% GRAD_AND_DIV

% Generates pressure gradient matrices Pu, Pv and divergence

% matrix D Vectorized matrix generation by evaluation of s ten c i l

% c o e ff ic ie n ts

% Output: Pu, Pv, Du, Dv

J= length(dx); K = length(dy);

%...................................Pressure gradient matrix Pu

% 1 0 1

% S tencil: [Pu] = |p l p2 0 I

7. 1 0 1

% Indexing convention in staggered grid:

% H— k + 1 — H

122

% I I

% j jk j+1

% I I

% +— k ----- H

t i c

p2 = l . / D X U (l , ; p i = zer o s(s iz e (p 2)); p l (l : J) = -p2(2:J+l);

Puu = spdiags([p l p 2] , [- l ; 0] , J+1, J) ; Pu = kron(speye(K),Puu);

7...Boundary correction s ..

for seg = 1 :length(ybc(1 , :))

i f (yb c(l .seg) == 1) I(ybc(1 ,seg) == 2)

% N o-slip or inflow at l e f t boundary

k = l+k seg(seg):k seg(seg+ l); P u (l+ (k - l)* (J + l) , :) = 0;

end

i f (ybc(2 , seg) == 1) I(ybc(2 ,seg) == 2)

% No-slip or inflow at right boundary

k = l+ k seg(seg):kseg(seg+ l); P u (k *(J+ l) ,:) = 0;

end

end

t i j d = toe; disp(['Breakdown of grad_and_div t im e’])

123

d is p ([’ Pu time = ’ ,num 2str(tijd)])

•Pressure gradient matrix Pv

% 1 0 1

% Stencil; [Pv] = |0 p2 G|

% I pi I

t i c

ppl = zeros(size(XV)); pp2 = ppl;

% Diagonals of Pv

p p l(2:K+1,:) = - 1 . /DYV(2:K+1,:); pp2 = -ppl;

p p 2 (l ,:) = l. /D Y V (l,:); pp2(K+l,:) = 0;

%... Boundary corrections.

for seg = 1:le n g th (x b c (l , ;))

i f (xb c(l,seg) == 1) I(xbc(1 ,seg) == 2)

% No-slip or inflow at lower boundary

j = l+ jse g (se g) :j s e g (se g + l) ;

p p l (l , j) = 0; p p 2 (l ,j) = 0;

124

end

i f (xbc(2 , seg) == 1) I (xbc(2 ,seg) == 2)

% No-slip or inflow at upper boundary

j = l+ js e g (s e g) :j s e g (se g + l) ;

ppl(K +l,j) = 0; pp2(K+l,j) = 0;

end

end

n = J*(K+1); p i = reshape(ppl’ , n , l) ;

p2 = reshape(pp2’ , n , l) ;

pi = [p l(J+ l;n); z e r o s (J , l)] ;

% Sh ift to accomodate spdiags

Pv = spdiags([pi p 2] , [-J ;0] , n ,n-J);

t i j d = toe; d isp ([' Pv time = ’ ,num 2str(tijd)])

%...................................u divergence matrix Du

% I 0 I

% Stencil: [Du] = 1 0 pi p2|

% I 0 I

125

t i c

Duu = sp d ia g s([-o n es(J ,l) o n e s (J , l)] , [0;1], J,J+1);

Du = k ron (sp d iags(d y \0 ,K, K), Duu);

t i j d = toe; d isp ([' Du time = ’ ,num 2str(tijd)])

%................................... V divergence matrix Dv

% I p2 I

% Stencil: [Dv] = |0 p i 0|

% I 0 I

t i c

Dvv = spdiags([-ones(K ,l) on es(K .l)] , [0;1], K,K+1);

Dv = kron(Dvv,spdiags(dx', 0 , J , J)) ;

t i j d = toe; d i s p ([’ Dv time = ’ ,num 2str(tijd)])

clear ppl pp2 pi p2 Puu Duu Dvv

% Save storage

126

INERTIA_MATRIX

D iscretiza tion matrices for in er tia term

Indexing convention in staggered grid:

4-- k+1---- H

I I

j jk j+1

I I

H---- k------ (•

i f n< 2 , t i c , end

aul = zeros(K,J+1); au2=aul; au3=aul;

au4=aul; au5=aul;

°/o Diagonals of Cu

avl = zeros(K +l,J); av2=avl; av3=avl; av4=avl; av5=avl;

% Diagonals of Cv

i f central == 1

% Central scheme for in er tia term

up = reshape(uO,size(XU')); up = up’ ;

127

% Two-index ordering of uO

vp = reshape(vO,size(XV)) : vp = vp' ;

upv = [up;up(K,;)] ;

upv(2:K,:) = (u p v (l:K -l ,:) .*DYU(1:K-1,:) . . .

+ upv(2:K,:) .*DYU(2:K,:)) . . .

./(DYU(1:K-1.:) + DYU(2:K,:));

vpv = [vp ,vp(:, J)] ;

% vpv: old V in c e l l vertices

vpv(:,2:J) = (vpv(: ,1 :J -1) .*DXV(:,1 :J -1) . . .

+ vp v(: ,2 :J).*DXV(:,2 :J)) . . .

./(DXV(:,1:J-1) + DXV(:,2:J));

aul(2:K,:) = - vpv(2:K,:)./(2*DYU(2:K,:)) ;

au2(:,2:J+l) = - u p (: , l:J) ./(2*D X U (:,2 :J+ l));

a u 4 (: , l :J) = u p (: ,2 :J+1)./(2*DXU(:,1 : J)) ;

au 5(l:K -l ,:) = vpv(2:K,:)./(2*DYU(l:K -l,:)) ;

a u 3 (: , l) = - u p (: , 1) •/(2*DXU(:,1)) ;

au3(:,J+l) = up(:,J+ l)./(2*D X U (:,J+l));

au 3(l:K -l ,:) = au 3(l:K -l ,:) + au5(l:K-1, :) ;

au3(2:K,:) = au3(2:K,:) + au l(2:K ,:);

128

% Further contributions to a u 3 (l , :) and au3(K,:)

% to be added below depending on boundary conditions

avl(2:K +l.:) = - vp(l:K,:). / (2*DYV(2:K+l,:)) ;

av2(: ,2 :J) = - upv(:,2 : J)./(2*DXV(:,2 :J)) ;

a v 4 (: , l : J - l) = upv(: , 2 :J) . / (2*DXV(: ,1 :J -1));

av5(l:K ,:) = vp(2:K+l,:) ./(2*DYV(1:K,:)) ;

a v 3 (l , :) = - vp (l , :) . / (2*D Y V (l , :)) ;

av3(K+l,:) = vp(K+1, :) . / (2*DYV(K+1, :));

av3(; ,2 ;J) = av 3 (; ,2 ; J) + av2(; ,2 ;J);

a v 3 (: , l : J - l) = a v 3 (: , l : J - l) + a v 4 (: , l : J - l) ;

% Further contributions to a v 3 (; , l) and av3(:,J)

% to be added below depending on boundary conditions.

e lse % Upwind scheme for in e r t ia term

up = (uO + abs(u0))/2; urn = (uO - abs(u0))/2;

up = reshape(up, size(XU')) ;

up = up’ ; um = reshape(um,size(XU’)) ; urn = urn’ ;

vp = (vO + abs(v0))/2; vm = (vO - abs(v0))/2;

129

vp = reshape(vp, size(XV')) ;

vp = vp' ; vm = reshape (vm, s iz e (XV)) ; vm = vm’ ;

vpv = [vp ,vp (: , J)] ;

% Approximation of v + |v | , v - |v |

vmv = [vm,vm(:, J)] ; % in c e l l vert ices

vpv(:,2:J) = (vpv(: ,1 :J-1).*DXV(:,1 : J -1) . . .

+ vpv(: ,2 : J).*DXV(:,2 : J)) . . .

./(DXV(;,1;J-1) + DXV(; ,2 : J)) ;

vmv(:,2 :J) = (vmv(:,1 :J-1).*DXV(:,1 :J-1) . . .

+ vmv(:,2 :J).*DXV(:,2 ;J)) . . .

./(DXV(:,1:J-1) + DXV(:,2:J));

upv = [up;up(K,:)] ; % Approximation of u + |u | , u - |u |

umv = [um;um(K,:)] ; % in c e l l vertices

upv(2;K,:) = (u p v (l :K -l , :) .*DYU(1:K-1,:) . . .

+ upv(2:K,:) .*DYU(2:K,:)) . . .

./(DYU(1:K-1,:) + DYU(2:K,:));

umv(2:K,:) = (um v(l:K-l,:) .*DYU(1:K-1,:) . . .

+ umv(2:K,:) .*DYU(2:K,:)) . . .

./(DYU(1:K-1,;) + DYU(2:K,;)) ;

130

aul(2:K,:) = - vpv(2:K,:) ./DYU(2:K.:);

au2(:,2:J+l) = - u p (: ,1 :J)./DXU(:,2 :J+1);

a u 4 (: ,l :J) = um(:,2 :J+1)./DXU(:,1 :J) ;

au 5(l:K -l ,:) = vmv(2:K,:) ./DYU(1:K-1,:);

a u 3 (: , l) = - um(:, 1) ./DXU(:,1);

au3(:,J+l) = up(:,J+l)./DXU(:,J+l);

au3(:,2:J) = (up(:,2:J) - um(:,2 :J))./DXU(:,2 :J) ;

a u 3 (l , :)= a u 3 (l , :) + (vpv(2,:) - vm v(l,:)) ./DYU(1,;);

au3(K,:)= au3(K,:) + (vpv(K+1,:) - vmv(K,:)) ./DYU(K,:);

au3(2:K -l,:)= au3(2:K-l,:) + (vpv(3:K,:) . . .

- vmv(2:K-l,:))./DYU(2:K-l,:);

avl(2:K +l,:) = - v p (l:K ,:) . /DYV(2:K+1, :) ;

av2(;,2;J) = - upv(;,2 ;J)./DXV(:,2 ;J) ;

a v 4 (: , l : J - l) = umv(:,2 :J)./DXV(:,1 :J -1) ;

av5(l:K ,:) = vm(2:K+l,:) ./DYV(1:K,:);

a v 3 (: , l) = (upv(:,2) - umv(:. 1)) . /DXV(:,1);

av3(;,J) = (upv(:,J+l) - imv(: , J)) . /DXV(: , J) ;

a v 3 (: ,2 :J-1) = (upv(:,3:J) - umv(:,2 : J-1))./DXV(:,2 :J -1) ;

131

a v 3 (l , :) = a v 3 (l , :) - v m (l,:) ./DYV(1,:);

av3(K+l,:) = av3(K+l,:) + vp(K+l,:) ./DYV(K+1,:);

av3(2:K,:) = av3(2;K,;) + (vp(2:K,;) . . .

- vm(2:K,:))./DYV(2:K,:);

end

% Boundary corrections...............................

rvm = zeros(size(XV)); % Contribution to right-hand side

tm = t + (omega-1)*dt;

for seg = 1 :length(ybc(1 ,:))

i f (ybc(1 , seg) == 1) |(ybc(1 ,seg) == 2)

% No-slip or inflow

% at l e f t boundary

k = l+kseg(seg);

rvm(k,l)

= rvm(k,l) + 0.5*up(k,1) .* v b d (tm ,l ,k , ' le f t ')*DY(k,1);

k = 2+kseg(seg):kseg(seg+1);

rvm(k,l) =

132

rvm(k,l) + u p v (k , l) .* v b d (tm ,l ,k ,’ le f t ') .* D Y V (k ,l) ;

k = kseg(seg+l)+l;

rvm(k,l) =

rvm(k,l) + 0 .5 * u p (k - l , l) .* v b d (tm ,l ,k , ’l e f t ’)* D Y (k - l , l) ;

e l s e i f y b c(l ,seg) == 3

% Outflow at l e f t boundary

i f central == 1

k = l+kseg(seg);

av3(k ,l) =

av3(k ,l) - 0.5*up(k,l)*DY(k,l) /(DYV(k,l)*DXV(k,l));

k = 2+ kseg(seg);kseg(seg+l);

av3(k ,l) = av3(k ,l) - u p v(k ,l) . /D X V (k ,l);

k = kseg(seg+l)+l;

av3(k ,l) =

av3(k ,l) - 0.5*up(k-l , l)*DY(k-l , l) / (DYV(k,l)*DXV(k,l)):

e lse

% Do nothing

end

133

e lse

e rr o r(’Wrong ybc’)

end

i f (ybc(2,seg) == 1) I(ybc(2,seg) == 2)

% No-slip or inflow at right boundary

k = l+ kseg(seg);

rvm(k,J) =

rvm(k,J) - 0.5*up(k, J+1) .*vbd(tm, J , k , ’r ig h t ’)=i'DY(k, J) ;

k = 2+kseg(seg):kseg(seg+l);

rvmCk.J) =

rvm(k,J) - upvCk,J+1).*vbd(tm,J,k,’r ig h t ’).*DYV(k,J);

k = kseg(seg+l)+l;

rvm(k,J) =

rvm (k,J)-0 .5*up(k-l,J+1).*vbd(tm ,J,k ,’r ig h t ’)*D Y (k-l,J);

e l s e i f ybc(2,seg) == 3

% Outflow at right boundary

i f central == 1

k = l+ kseg(seg);

134

av3(k,J) =

av3(k,J) + 0.5*up(k.J+l)*DY(k,J)/(DYV(k,J)*DXV(k,J));

k = 2+kseg(seg):kseg(seg+l);

av3(k,J) = av3(k,J) + upv(k,J+1)./DXV(k,J);

k = kseg(seg+l)+l;

av3(k,J) =

av3(k,J) + 0 . 5*up(k-1, J+1)*DY(k-l, J)/ (DYV(k,J)*DXV(k,J));

e lse

% Do nothing

end

e lse

error (’Wrong ybc’)

end

end

rum = zeros(size(XU));

% Contribution to right-hand side

for seg = l : l e n g th (x b c (l , ;))

i f (xbc(l,seg) == 1) I(xbc(l,seg) == 2)

135

% No-slip or inflow at lower boundary

j = l+ js e g (se g) :jse g (se g + l) ; a v 3 (l , j) = 0;

a v l (l , j) = 0; a v 2 (l j) = 0; a v 4 (l , j) = 0; a v 5 (l , j) = 0;

j = l+ jseg(seg);

rum (l,j) =

rum(l,j) + 0 .5 * v p (l ,j) .* u b d (tm ,j , l , ' lo w e r ’)* D X (l ,j) ;

j = 2+ jseg (seg):jse g (se g + l) ;

rum (l,j) = rum(l,j) + v p v(l ,j) .*u b d (tm ,j , 1 , ’ low er').*D X U (l,j);

j = jseg (seg+ l)+ l;

rum(l,j) =

rum (l,j) + 0 .5 * v p (l , j - l) .* u b d (t m ,j , l , ’lower’)* D X (l ,j -1) ;

e l s e i f x b c(l ,seg) == 3

% Outflow at lower boundary

i f central == 1

j = l+ jseg(seg);

a u 3 (l , j) =

a u 3 (l , j) - 0.5*vp(l , j)*DX(l , j) /(DXU(l, j)*DYU(l, j)) :

j = 2+ jseg(seg):j s e g (s e g + l) ;

a u 3 (l , j) =

136

a u 3 (l , j) - v p v (l , j) . /D Y U (1 ,j) ;

j = jseg (seg+ l)+ l;

a u 3 (l , j) =

a u 3 (l , j) - 0 .5*vp(l , j - l)*D X (l , j - l) / (DX U (l , j)*D Y U(l , j)) ;

e l s e

% Do nothing

end

e lse

erro r (’Wrong xbc’)

end

i f (xbc(2,seg) == 1) I(xbc(2 ,seg) == 2)

% No-slip or inflow at upper boundary

j = l+ j s e g (s e g) :j s e g (s e g + l) ;

av3(K+l,j) = 0;

avl(K +l,j) = 0; av2(K+l,j) = 0;

av4(K+l,j) = 0; av5(K+l,j) = 0;

j = l+ jseg (seg);

rum(K,j) =

rum(K,j) - 0 .5*vp(K +l,j).*ubd(tm ,j,K ,’upper’)*DX(K,j);

137

j = 2+ jseg(seg):jseg(seg+ l) ;

rum(K,j) =

rum(K,j) - vpv(K+l,j).*ubd(tm ,j,K ,’upper’).*DXU(K,j);

j = jseg (seg+ l)+ l;

rum(K,j) =

rum(K.j) - 0.5*vp(K+l, j -1) .*ubd(tni, 3 ,K ,’upper’)*DX(K, j -1) ;

e l s e i f xbc(2 , seg) == 3

% Outflow at upper boundary

i f central == 1

3 = l+ jseg (seg);

au3(K,j) =

au3(K,j) + 0.5*vp(K+l,j)*DX(K,j)/(DXU(K,j)*DYU(K,j));

3 = 2+3 s e g (s e g) :j s e g (s e g + l) ;

au3(K,j) = au3(K,j) + vpv(K+l,j)./DYU(K,j);

3 = jseg (seg+ l)+ l;

au3(K,j) =

au3(K,j) + 0.5*vp(K+l,3-l)*DX(K,j-l)/(DXU(K,j)*DYU(K,j)):

e lse

% Do nothing

138

end

e lse

error('Wrong xbc')

end

end

for seg = 1 : length(ybc(1 , :))

i f (ybc(l .seg) == 1) I(ybc(1 ,seg) == 2)

% No-slip or inflow at l e f t boundary

k = l+kseg(seg);kseg(seg+l); rum(k,i) = 0; au3(k,l) = 0;

a u l(k ,l) = 0; au2(k,l) = 0; au4(k,l) = 0; au5(k ,l) = 0;

end

i f (ybc(2,seg) == 1) I(ybc(2 ,seg) == 2)

% No-slip or inflow at right boundary

k = l+ kseg(seg):kseg(seg+ l);

rum(k,J+1) = 0; au3(k,J+1) = 0;

aul(k ,J+l) = 0; au2(k,J+l) = 0;

au4(k,J+l) = 0; au5(k,J+l) = 0;

end

end

139

for seg = l: len g tl i(xb c(l , :))

i f (xbc(1 ,seg) == l) | (x b c (l , s e g) == 2)

% No-slip or inflow at lower boundary

j = l+ js e g (se g) :j s e g (se g + l) : rvm (l,j) = 0;

end

i f (xbc(2 ,seg) == 1) |(xb c(2 ,seg) == 2)

% No-slip or inflow at upper boundary

j = l+ js e g (s e g) :j s e g (se g + i) ; rvm(K,j) = 0;

end

end

rum = rum./volu; rvm = rvm./volv;

% Contributions to right-hand side

aui = aul' ; aul = a u l(:) ; au2 = au2' ; au2 = au2(:) ;

au3 = au3’ ; au3 = au3(;); au4 = au4’ ; au4 = au4(;);

au5 = au5’ ; au5 = au5(;);

7,Caul au2 au3 au4 au5] ;% Display s te n c i l on screen

nn = (J+1)*K;

aul = [aul(J+2;nn); zeros(J+1,1)];

% S h ifts to accomodate spdiags

140

au2 = [au2(2:nn); 0] ;au4 = [0; au4(l:nn-l)] ;

au5 = [zeros(J+1,1); au5(l; im -J-i)] ;

d = [-J-1; -1; 0; 1; J+1];

Cu = spdiags([aul au2 au3 au4 au5], d, un, un);

avl = a v l '; avl = a v l(:) ; av2 = av2’ ; av2 = av2(:);

av3 = av3' ; av3 = av3(:) ; av4 = av4' ; av4 = av4(:) ;

av5 = av5’ ; av5 = av5(:) ;

% [avl av2 av3 av4 av5]

% Display s te n c i l on screen

nn = J*(K+1);

avl = [avl(J+1:nn); z e r o s (J , l)] ;

% S h ifts to accomodate spdiags

av2 = [av2(2:nn); 0]; av4 = [0; a v 4 (l :n n - l)] ;

av5 = [zer o s(J ,D ; av5(l:nn-J)] ;

d = [-J; -1; 0; 1; J] ;

Cv = spdiags([avl av2 av3 av4 av5], d, nn, nn);

% clear aul au2 au3 au4 au5 avl av2 av3 av4 av5 d nn

% VISCOUS.MATRIX

141

Vectorized matrix generation

by evaluation of s te n c i l co e ff ic ien ts

Output: Bu, Bv

I b5 I

[B] = |b2 b3 b4 |

I b l I

Indexing convention in staggered grid:

H--- k+1---H

1 1

j jk j+1

I I

H------- k ------ H

t i c

r = 1/Re;

% Mask for old u, v in D irichlet boundary

% points in time-stepping:

masku = ones(size(XU)); maskv = ones(size(XV));

%................................... Diagonals of viscous matrix Bu for u.

142

aul = zeros(K,J+1); au2=aul; au3=aul; au4=aul; au5=aul;

% Diagonals of Bu

aul(2:K,:) = -2*r.*DXU(2:K,:) ./(DYU(1:K-1,:) + DYU(2:K,:));

au 2(: ,2 :J+1) = -r*DY./DX;

a u 4 (: , l :J) = au2(:,2 :J+1); au 5 (l:K -l ,:) = aul(2:K,:);

au3 = - aul - au2 - au4 - au5;

% Diagonals of viscous matrix Bv for v

avl = zeros(K +l,J); av2=avl; av3=avl; av4=avl; av5=avl;

% Diagonals of Bv

a v l(2 :K+1,:) = -r*DX./DY;

av2(: ,2 :J) = -2*r*DYV(:,2:J)./(DXV(:.l:J-1)+DXV(:,2:J));

a v 4 (: , l : J - l) = av2(: ,2 :J); av5(l:K ,:) = av l(2 :K + l,:);

av3 = - avl - av2 - av4 - av5;

% Boundary corrections ...

jseg = [0,cumsum(nx)] ;

% j - in d ice s of horizontal segment boundaries

for seg = l : l e n g th (x b c (l , :))

143

i f (xbc(1 ,seg) == 1) I(xbc(1 ,seg) == 2)

% No-slip or inflow at lower boundary

j = l+ jseg(seg);

a u 3 (l , j) = a u 3 (l , j) + r*DX(l,j) /DY(l ,j);

j = 2+ jseg (seg):j s e g (s e g + l) ;

a u 3 (l , j) = a u 3 (l , j) + 2*r*DXU(l,j)./DYU(l,j);

j = l+ jse g (se g + l) ;

a u 3 (l . j) = a u 3 (l , j) + r * D X (l , j - l) /D Y (l , j - l) ;

e l s e i f xbc(1, seg) == 3 '/, Outflow at lower boundary

% Do nothing

e lse

e rro r(’Wrong xbc’)

end

i f (xbc(2,seg) == 1) |(xb c(2 , seg) == 2)

% No-slip or inflow at upper boundary

j = l+ jseg(seg);

au3(K,j) = au3(K,j) + r*DX(K,j)/DY(K,j);

j = 2+ jseg (seg):jseg (seg+ l);

144

au3(K,j) = au3(K,j) + 2*r*DXU(K,j)./DYU(K,j);

j = l+ js e g (s e g + l) ;

au3(KJ) = au3(K,j) + r*DX(K, j-l)/DY(K, j -1) ;

e l s e i f xbc(2 ,seg) == 3 % Outflow at upper boundary

7. Do nothing

e lse

error(’Wrong xbc’)

end

end

kseg = [0,cumsum(ny)] ;

% k-ind ices of v e r t ic a l segment boundaries

for seg = 1 -.length(ybc(1, ;))

i f (ybc(1 , seg) == 1) |(y b c (i , s e g) == 2)

% No-slip or inflow at l e f t boundary

k = l-*-kseg(seg) :kseg(seg+l) ;

au3(k ,l) = 0; masku(k,l) = 0;

a u l(k , l) = 0; au2(k ,l) = 0;

au4(k ,i) = 0; au5(k ,l) = 0;

145

k = l+kseg(seg);

av3(k ,l) = av3(k ,l) + r*DY(k,l)/DX(k,l);

k = 2+kseg(seg):kseg(seg+l);

av3(k ,l) = av3(k ,l) + 2*r*DYV(k,l)./DXV(k,l);

k = l+kseg(seg+l);

av3(k ,l) = av3(k ,l) + r* D Y (k -l,l) /D X (k -l,l);

e l s e i f ybc(1 ,seg) == 3

% Outflow at l e f t boundary

% Do nothing

e lse

error (’Wrong ybc’)

end

i f (ybc(2,seg) == 1) |(ybc(2 ,seg) == 2)

% No-slip or inflow at right boundary

k = l+kseg(seg):kseg(seg+ l);

au3(k,J+l) = 0; masku(k,J+l) = 0;

aul(k ,J+l) = 0; au2(k,J+l) = 0; au4(k,J+l) = 0;

146

au5(k,J+l) = 0;

k = l+kseg(seg);

av3(k,J) = av3(k,J) + r*DY(k,J)/DX(k,J);

k = 2+kseg(seg):kseg(seg+1);

av3(k,J) = av3(k,J) + 2*r*DYV(k,J)./DXV(k,J);

k = l+ kseg(seg+ l);

av3(k,J) = av3(k,J) + r*DY(k-l,J)/DX(k-l,J);

e l s e i f ybc(2 , seg) == 3

% Outflow at l e f t boundary

% Do nothing

e lse

err o r (’Wrong ybc’)

end

end

for seg = 1 :length(xbc(1 ,:))

i f (xb c(l .seg) == 1) I(xbc(1 ,seg) == 2)

% No-slip or inflow at lower boundary

j = 1+ jseg (seg):jseg(seg+1);

147

a v 3 (l , j) = 0; m askv(l,j) = 0;

a v i d , j) = 0; a v 2 (l , j) = 0; a v 4 (l , j) = 0; a v 5 (l , j) = 0;

e l s e i f xbc(1 ,seg) == 3

% Outflow at lower boundary

% Do nothing

e lse

err o r (’Wrong xbc’)

end

i f (xbc(2,seg) == 1) I(xbc(2 , seg) == 2)

% No-slip or inflow at upper boundary

j = l+ js e g (s e g) :jseg (seg+ l);

av3(K+l,j) = 0; maskv(K+l,j) = 0;

avl(K +l,j) = 0; av2(K+l,j) = 0;

av4(K+i,j) = 0; av5(K+l,j) = 0;

e l s e i f xbc(2 ,seg) == 3

% Outflow at upper boundary

% Do nothing

148

e lse

erro r (’Wrong xbc’)

end

end

aul = a u l’ ; aul = au l(:) ;

au2 = au2’ ; au2 = au2(:) ;

au3 = au3’ ; au3 = au3(:);

au4 = au4’ ; au4 = au4(;);

au5 = au5’ ; au5 = au5(:) ;

% [aul au2 au3 au4 au5] ;

% Display s te n c i l on screen

n = (J+1)*K;

aul = [aul(J+2:n); zeros(J+1,1)];

% S h ifts to accomodate spdiags

au2 = [au2(2:n); 0]; au4 = [0; a u 4 (l:n - l)] ;

au5 = [z e r o s (J + l ,D ; a u 5 (l ;n -J - l)] ;

d = [-J-1; -1; 0; 1; J+1];

Bu = invvolu+spdiags([aul au2 au3 au4 au5], d, n, n) ;

149

avl = a v l ’ ; avl = a v l(:) ; av2 = av2'; av2 = av2(:) ;

av3 = av3’ ; av3 = av3(:) ; av4 = av4’ ; av4 = av4(:) ;

av5 = av5 ’ ; av5 = av5(:);

7, [avl av2 av3 av4 av5]

% Display s te n c i l on screen

n = J*(K+1);

avl = [avl(J+1:n); z e r o s (J . l)] ;

% S h ifts to accomodate spdiags

av2 = [av2(2:n); 0]; av4 = [0; a v 4 (l :n - l)] ;

av5 = [z e r o s (J , l) ; av5(l:n-J,)];

d = [-J; -1; 0; 1; J] ;

Bv = invvolv*spdiags([avl av2 av3 av4 av5], d, n, n) ;

masku = masku'; masku = masku(:);

Masku = spdiags(masku,0 , length(masku).length(masku));

maskv = maskv'; maskv = maskv(:);

Maskv = spdiags(maskv,0 , length(maskv).length(maskv));

clear aul au2 au3 au4 au5 avl av2 av3 av4 av5 d masku maskv

150

t i j d = toc; disp(['viscous_matrix time = ' ,num 2str(tijd)])

% INITIAL.CONDITION

% Generates i n i t i a l conditions for u ,v and p

% Functions called: ubd, vbd

t i c

i f geval == 1

% Horizontal P o ise u i l le flow to the right

uO = 5*ones(Size(XU));

vO = zeros(size(XV));

pO = (xu(end) - XP)*12/(Re*(yv(end)-yv(l))~2);

e l s e i f geval == 4 % Driven cavity

uO = zeros(size(XU)); vO = zeros(size(XV));

pO = zeros (size(XP));

e lse

error(’Wrong value for geval in INITIAL CONDITION’)

end

uO = uO’ ; uO = uO(:) ;

151

vO = vO’ ; vO = vO(:); pO = pO’ ; pO = pO(:);

disp([uO]);

function ye = ubd(t, j , k, side)

% UBD Prescribes u at inflow boundaries

% Possib le values for side:

7o ’ lower ’ , ’ upper ' , ’ l e f t ’ , ’ right ’

global geval uO J K yu yv yseglen alpha

ye = 0;

i f geval == 1

% Horizontal P o ise u i l le flow to the r ight

i f strcmpCside, ’l e f t ’) == 1

ye = uO(k*(J+D) ;

% Inflow p r o f i le = outflow p ro f i le

e lse

ye = 0;

end

e l s e i f geval == 4 % Driven cavity

152

i f strcmpCside, ’upper') == 1

ye = 1;

e lse

ye = 0;

end

e lse

e rr o r(’Wrong value in input for parameter geva l’)

end

function ye = vbd(t, j , k, side)

% VBD Prescribes v at inflow boundaries

% Possib le values for side: ’lower’ ,

%’upper’ , ’l e f t ’ , ’r ig h t ’

global geval vO J K alpha

ye = 0;

i f geval == 1 % Horizontal flow

ye = 0;

e l s e i f geval == 4 % Driven cavity

153

ye = 0;

e lse

error(’Wrong value in input for parameter geva l’)

end

7. STREAMLINEPLOT

% Screen p lot of streamlines

f ig u r e (3), c l f

t i t l e (’Streamlines’ , ’FontSize’ ,16)

hold on

uq = reshape(ul, size(XU’)); uq = uq’ ;

vq = reshape(vl, size(XV’)) ; vq = vq’ ;

s f = zer o s(s iz e (X)); % Streamfunction

s f (l , :) = [0, - cumsum(DXV(l,;) .* v q (i , ;))] ;

for k = 2:K+1

s f (k , :) = s f (k - l , :) + u q (k - l , :) .*DYU(k-l,:);

end

cvals=[linspace(min(min(sf)) ,max(max(sf)),30),

0,0.995*max(max(sf))];

154

contour(xu,jrv ,sf ,cvals, 'k')

uq = (u q (: , l :J) + u q (: ,2 :J+ l)) /2 ;

vq = (vq(l:K ,:) + vq(2:K +l,:))/2;

quiver(xv,yu,uq,vq,0.9, ’k ’)

hold o ff

155

Bibliography

[1] Ascher, U.M. and Petzold, L.R., 1998, Computer Methods for Ordinary

Differential Equations and Differential Algebraic Equations, Society for

Industrial and Applied M athem atics, Philadelphia.

[2] Chang, Y.C., Hon, T.Y., Merrian, B., and Osher, S., 1996, A Level Set

Formulation of Eulerican Interface Capturing M ethods for Incompress­

ible Fluid Flows, Journal o f Computational Physics, 124, 449-464.

[3] Chen, S., Johnson, D.B., and Raad, P. E., 1994, Velocity Boundary

Conditions for The Simulation of Free Surface Fluid Flow, Journal of

Computational Physics, 116, 262-276.

[4] Chen, S., Johnson, D.B., Raad, P.E. and Fadda, D., 1997, The Surface

M arker and Micro Cell M ethod, International Journal fo r Numerical

Methods in Fluids, 25, 749-778.

156

[5] De Halleux, J., 2003, Boundary Control o f Quasi-Linear Hyperbolic Ini­

tial Boundary-Value Problems, Ph.D . Thesis, Université Catholique de

Louvain, Belgium.

[6] Hanselman, D. and Littlefield, B., 2001, Mastering M A TLA B 6.0. Pren­

tice Hall, New Jersey.

[7] Graham, E.W . and Rodriguez, A.M., 1952, The Characteristics of Fuel

Motion Which Affect Airplane Dynamics, Journal o f Applied Mechanics,

19, 381-388.

[8] Griebel, M., Dornseifer, T. and Neuhoeffer, T ., 1998, Numerical simu­

lation in fluid dynamics:a practical introduction, Society for Industrial

and Applied M athematics, Philadelphia.

[9] Harlow, F.H. and Welch, J.E ., 1965, Numerical calculation of time-

dependent viscous incompressible flow of fluid with free surface. Physics

Fluid, 8, 2182-2189.

[10] Housner, G., 1957, Dynamic Pressure on Accelerated Fluid Containers,

Bulletin of the Seismological Society o f America, 47, 15-35.

157

[11] Hwang, J.H., Kim., I.S., Seol and Y.S., Lee, S.C., 1992, Numerical Simu­

lation of Liquid Sloshing in 3-Dimensional Tanks, Journal o f Computers

and Structures, 44, 339-342.

[12] Mikelis, N.E. and Journee, J.M ., 1984, Experimental and Numerical

Simulations of Sloshing Behaviour in Liquid Tanks and its Effect on Ship

Motions, National Conference on Numerical Methods fo r Transient and

Coupled Problems, Venice, Italy, 1-11.

[13] Mitchell, L, 2004, A Toolbox o f Level Set Methods, UBC OS TR-2004-

09, Departm ent of Computer Science, University of British Columbia,

Canada. Version 1.1 of the Toolbox was released on March, 2005. See

http://w w w .cs.ubc.ca/ mitchell/ToolboxLS/

[14] Nakayama, T. and Washizu, K., 1981, The Boundary Element Method

Applied to The Analysis of Two-Dimensional Nonlinear Sloshing Prob­

lems, International Journal For Numerical Methods in Engineering, 17,

1631-1646.

[15] Nielsen, K. B., 2003, Numerical Prediction o f Creen Water Loads on

Ships, Ph.D. Thesis, Department of Mechanical Engineering, Technical

University of Denmark, Denmark.

158

http://www.cs.ubc.ca/

[16] Kim, M.S., 2002, Numerical Analysis of Sloshing Problem, 15th Interna­

tional Workshop on Water Waves and Floating Bodies, Dan Caesarea,

Israel, 1-4.

[17] Kim, M.S. and Lee, W., 2003, A New VOF-based Numerical Scheme

for The Simulation of Fluid Flow w ith Free Surface. P a rt II; New Free

Surface-Tracking Algorithm and its Verification, Journal o f Numerical

Methods in Fluids, 42, 765-790.

[18] Morton, K. William and Mayers, David F., 1993, Numerical Solution of

Partial Differential Equations, Cambridge University Press, UK.

[19] Osher, S. and Fedkiw, R., 2002. Level Set Methods and Dynamic Implicit

Surfaces, Springer, New York.

[20] Osher, S. and Sethian, J.A., 1988, Fronts Propagating with Curvature

Dependent Speed: Algorithms Based on Hamilton-Jacobi Equations.

Journal o f Computational Physics., 79, 24-25.

[21] Sethian, J.A., 1999, Level Set Methods and Fast Marching Methods,

Cambridge University Press, UK.

159

[22] Shu, C. and Osher, S., 1989, Efficient Implementation of Essentially

Non-Oscillatory Shock-Capturing Schemes II, Journal o f Computational

Physics, 83, 32-78.

[23] Sussman, M., Smereka, P. and Osher, S., 1994, A Level Set Approach

for Computing Solutions to Incompressible Two-phase Flow, Journal of

Computational Physics, 114, 146-159.

[24] Sussman, M., 2003, A Second Order Coupled Level Set and Voluine-of-

fiuid M ethod for Com puting Growth and Collapse of Vapor Bubbles,

Journal o f Computational Physics, 187, 110-136.

[25] Szymczak, W .G., Rogers, Joel G.W., and Solomon, J.M ., and Berger,

A.E., 1992, A Numerical Algorithm for Hydrodynamic Free Boundary

Problems, Journal o f Computational Physics, 106, 319-336.

160

