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A b s t r a c t 1

A b s t r a c t

T h e  D e n s e  M o l e c u l a r  R id g e  in  NGC 2024

by Tomomi Watanabe 

August 20, 2007

NGC 2024 is a star-form ing region in  O rion B which contains a dense molecular ridge and a number of 

dense cores seen by the ir dust emission (Mezger et al., 1992). This area is investigated using observations 

of four formaldehyde transitions, and the J  =  3 — 2 transition of H C O + and H 13CO+ . Maps of the ridge 

are produced and used to  provide temperatures and densities, w ith  a focus on the dense core positions. 

The resulting temperatures are very warm (45-85 K ), and derived H^CO number densities are found to  be 

~  2 x 106 cm-3 . Using the derived properties in  combination w ith  sub-mm data from  Johnstone et al. (2006), 

core masses of ~2 M 0 are found w ith in  a 15" beamsize, and H^CO fractional abundances are calculated 

to  resemble previous values found in  sim ilar star-form ing regions. H C O + and H 13CO+ observations are 

used to  obtain temperatures and also optical depths. The v iria l theorem is applied to  F IR  cores 3, 4, 5 and 

6 suggests tha t a ll four cores are unstable against gravitational collapse.
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1. I n t r o d u c t i o n 2

l  I n t r o d u c t io n

1 .1  M o l e c u l a r  c l o u d s , c l u m p s , a n d  c o r e s

Star form ation occurs w ith in  gravita tiona lly bound, large m ixtures of gas and dust known as molecular 

clouds. In  Giant Molecular Clouds ( GMCs), such as the O rion B Complex, the mass typ ica lly ranges 

around 104 — 1O6M 0 . The kinetic temperatures found w ith in  GMC complexes are around 20 K  w ith  

number densities n(H 2) ~  102 cm-3 . Molecules such as H 2 are formed when they freeze out o f the gas- 

phase and condense onto the dust grains tha t are interm ixed w ith in  the clouds. The dust acts as a shield 

for the molecules and protects them against stellar radiation, allowing the ir form ation. Due to  such factors 

as photodissociation, ionization by nearby stars, turbulence, and shocks, the temperature and density can 

vary widely w ith in  GMCs. Substructures have been observed in  forms of filaments, sheets, bubbles, and 

clumps. These complex structures make up the regions which are dense enough for star form ation to  take 

place. Clumps are defined as the denser regions w ith in  GMCs, such as NGC 2024 found w ith in  the Orion 

B complex. On a smaller scale, substructures are found w ith in  clumps which have even higher densities. 

These compact objects are often referred to  as cores, which are most like ly active or eventual sites o f star 

form ation. NGC 2024 is an example of a clump w ith in  Orion B where a string o f cores resides. Compared to 

isolated cores which are more extensively studied due to  the ir observational advantages (Section 4.4), these 

non-isolated cores are more d ifficu lt to  investigate. These cores are optim al in  studying the environments 

in  which a group of stars forms from  a single common clump. From careful evaluations of the ir physical 

properties using observations, each core may reveal its  potentia l to  form  a star and the properties of the 

eventual star.

1 .2  St a r  f o r m a t io n

Images of molecular clouds show tha t star form ation is an active, ongoing process. The mechanisms tha t 

drive star form ation must be efficient enough th a t such observations can be made, but it  is also clear 

tha t it  must be inefficient, considering the great m a jo rity  o f gas which is le ft behind in  the surroundings
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1. I n t r o d u c t i o n 3

(Larson, 2007). The rate o f stellar production in  the Galaxy is a puzzle, since i t  is much higher than the 

rate at which gas is returned back in to  the interstellar medium (ISM ). This is suggestive o f the irreversible 

effect of conversion of interste llar gas in to  stars (Knapp and M orris, 1985). There are s till uncertainties 

concerning the conditions for which star form ation is possible. The com plexity o f real star form ation regions 

(e.g. magnetic fields, turbulence, ro tation, geometry) makes numerical simulations a challenging task, and 

observations cannot reveal many details due to  lack of resolution. Nevertheless, great advances have been 

made in  th is subject, and a sim plified model is generally agreed upon to  display the overall physics of star 

form ation.

The densest cores w ith in  molecular clouds harbor the most ideal environment to  trigger star form ation. 

As mentioned previously, the dust shields the molecules from  interstellar radiation fields (ISRF) and allows 

the molecules to  form . The s tab ility  o f the gravita tiona lly bound core may be inferred from  the v iria l 

theorem. The v iria l theorem evaluates the balance of energies of the core, by incorporating parameters 

such as mass, temperature, size, density, gravitational potentia l, and external pressure acting upon the core. 

Instab ility  o f the core in itia tes the firs t part o f star form ation evolution, which is free-fall collapse. During 

the free-fall phase, the core is assumed to  be nearly isothermal. In  an isothermal sphere, the density profile 

is expected to  have the power-law p oc r~2. The core is thought to  undergo an “ inside-out” collapse where 

the collapse begins from  inside and propagates outward (Young and Evans, 2005). A t the inner rad ii, the 

density d istribu tion is expected to  be fla tte r, w ith  a —3/2 power dependence. Fragmentation may produce 

smaller features as a result o f a core reaching a lim it called the Jean’s mass—the m inimum mass (and size) 

for a cloud to  collapse self-gravitationally. This lim it neglects the magnetic fie ld, ro ta tion, and turbulence, 

which are common ingredients to  star form ation. The Jean’s mass is therefore only a simple approximation, 

and observations reveal the existence of factors supporting the clumps from  collapse even when the observed 

clump masses exceed the Jean’s lim it (Shu et al., 1987). Fragmentation is supported observationally and 

also in simulations. In itia l conditions of these simulations determine the lim itin g  amount o f fragm entation, 

showing tha t it  is characteristic o f the molecular cloud. During the contraction, the density and temperature 

w ith in  the core rise considerably, thus increasing the pressure. This pressure succeeds in  slowing down the 

gravitational collapse, while the density and temperature continue to  grow w ith in  the core, ending the firs t 

phase of collapse. A fte r the firs t phase, the temperature climbs high enough for molecular hydrogen to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. I n t r o d u c t i o n 4

dissociate, and the second phase of collapse sets in. The collapse turns from  isothermal to  adiabatic, and 

is eventually halted when the gravity can no longer overcome the pressure. When the collapse becomes 

adiabatic, the rate o f collapse slows down significantly, and hydrostatic equilibrium  is nearly reached in  the 

core center. The resulting stable object in  the central region is the earliest form  of a star, referred to  as 

a young stellar object (YSO) or protostar. YSOs represent the earliest stages before the star reaches the 

zero-age main sequence (ZAM S). This stage can be divided in to  several evolutionary sequences discussed in 

detail below: class -1, 0 ,1, II ,  and I I I .  Aided by ro ta tion and the magnetic field, the circum stellar envelope is 

flattened in to  a disk, which accretes mass onto the protostars, advancing its  growth as a star. C ircum stellar 

disks are observed to  be very common in  star form ation, although the ir physics is not completely understood. 

Observations of outflows and jets orig inating from  cores support the presence of circum stellar disks. Jets 

and outflows involve magnetic fields, im plying th a t the problem is magnetohydrodynamic. Magnetic fields 

and ro tation are needed to  produce jets in  simulations (Banerjee and Pudritz, 2006; Machida et al., 2006). 

Simulations also show th a t jets and outflows are efficient in  removing excess angular momentum.

In  this simple, general model o f in itia l star-form ation, several factors are neglected in  order to  m inim ize 

the real complexity o f star form ation which is beyond the key focus of th is thesis. These include the effects 

o f magnetic fields, ro ta tion of the cores, and like ly deviation from  spherical symmetry

1 .2 .1  Y o u n g  St e l l a r  O b j e c t s

The different classes of YSOs are classified by the spectral energy d istribu tion  (SED) over a range of different 

wavelengths. Class 0 is the firs t observable form  of a protostar. In  the preceding stage, class —1, where 

the core is represented by a purely in fa lling  embedded source, the central source cannot be observed due 

to  the amount of dust and gas enshrouding it. To date, direct observational evidence of th is stage has not 

been found. Class 0 sources are observed only as outflows; unipolar or bipolar. Outflows are an essential 

means of driv ing away angular momentum in  the form ation of the central star. A t th is stage, the central 

source can properly be labeled as a protostar since the mass of the envelope exceeds th a t o f the star. For 

approximately 104 yrs, the star remains hidden and undetected by wavelengths less than 100 pm, obscured 

by the surrounding dust and gas. I t  has been suggested tha t the short timescale o f a YSO in  class 0 is due 

to  the observational d ifficu lty  o f class 0 objects (Evans, 2003), and Visser et al. (2001, 2002) have proposed
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that class 0 YSOs are as frequent as class I YSOs, raising the timescale of class 0 sources by 10 times.

The source makes the transition from  a class 0 to  class I  YSO when the sum of the star mass and disk 

mass exceed the envelope mass (Young and Evans, 2005). The follow ing 105 years after a star enters the 

class I  stage, the source is fina lly  observable up to  the near-IR, but s till invisible in  the optical. The outflow 

continues but w ith  less force than class 0. The envelope m aterial accretes onto the central star or is blown 

away by the outflow.

The source fina lly  becomes optica lly apparent in  the class I I  stage after the envelope m aterial is v irtu a lly  

a ll lost (Young and Evans, 2005). The SED o f a class I I  YSO is characterized by IR  emission from  the disk, 

and optical and UV emission from  accretion. This stage is illustra ted by the evolution of the circum stellar 

disk, commonly referred to  as T  Tauri stars. The circum stellar disks spark interest from  the perspective of 

planet form ation, and disk form ation persists for up to  106 years onwards.

The YSO spends the longest tim e (107 years) contracting toward the main sequence as a class I I I  source. 

In  th is stage, the disk may coagulate in to  a planetary system. As contraction continues, the temperature 

increases, moving the star horizontally leftward on the H-R diagram.

Depending on what stage the YSO is in , it  w ill be observable only in  select wavelengths ranging from 

fa r-IR  to optical. Various molecules are used to  trace these young objects hidden w ith in  dusty regions. 

Rotational and vibrational energy level transitions of these molecules are found in  mm and sub-mm ranges, 

ideal for penetrating long columns of dust surrounding YSOs and for probing density and temperature 

inform ation. U ltim ately, the densities of H 2 are the most fundamental in  studying dense regions, since H 2 

is the most abundant molecule found in  molecular clouds. H 2, however, cannot be d irectly detected, so 

different molecular tracers are used, assuming abundances relative to  H 2. Excitations of rotational energies 

are due to collisions of the tracer molecule w ith  H 2 or electrons, so these tracers essentially act as tools to  

exhib it the properties o f molecular hydrogen.

The emission th a t is linked to  specific transitions of molecular energy levels can be represented by some 

d istribu tion  o f the molecular population when the density is greater than some critica l density, at which 

spontaneous emission is surpassed by collisional excitation. This d is tribu tion is often approximated by the 

Boltzmann d istribu tion , which can be estimated using the excitation temperature and the energy required 

for the transition. Local thermodynamic equilibrium  (LTE) excitation is often assumed for the simplest
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approximations, and it  is often a sufficient method. By observations o f the densest molecular regions, it  

is possible to  determine how like ly the observed cores are of being embedded sources-—the earliest stage 

of star form ation—by deriving density, temperature, and mass estimates from  the molecular tracers. I t  is 

debated, however, whether actual observations of purely in fa lling  embedded sources— before the onset of 

outflows—in  the fa r-IR  has ever been observed, and such bold claims are often challenged (Moore et al., 

1989; Schulz et al., 1991).

A molecular line profile o f a cloud can uncover the structure o f the region. One example of a commonly 

observed feature is a double-peak signature. There are two ways to  interpret a double-peaked line, namely 

self-absorption and moving clumps. In  the firs t case, if  the observed region is enshrouded by a static 

spherical envelope, then the lines observed in  optica lly th ick gas w ill show a double-peaked line. This is 

due to  absorption of radiation by the static envelope which blocks the central core. In  the second case, the 

line may be displaying two separate velocity components (i.e., moving clumps). In  order to  rule out one 

interpretation, the region must be observed in  one optically th ick and one optica lly th in  line. I f  both lines 

display the double peaked feature, then the presence of two sources w ith  different velocities would be more 

likely. On the other hand, i f  the optica lly th ick line shows a double peaked line w ith  an observed dip, and 

the optica lly th in  line displays a single-peak at the same velocity as the dip, then self-absorption may be 

justified.

In  addition to  structure, line profiles may also exhib it activities taking place in  the region. One such 

possible ac tiv ity  is a cloud undergoing the process of “ inside-out” collapse. For a simple case of a static 

spherical envelope surrounding a smaller spherical region which is experiencing in fa ll, a line profile may be 

characterized by a blue-skewed double-peak feature w ith  a self-absorption dip in  the center (Evans, 2003). 

The stronger blue peak results from  the back of the cloud, and the red peak from  the front o f the cloud. 

These characteristics can only be observed if  the line is optica lly th ick, but as discussed above, observations 

using an optica lly th in  line must be carried out to  rule out the presence of two separate velocity components. 

An ideal too l for th is function is the pair o f H C O + J =  3 — 2 (optically th ick) and H 13CO+ J =  3 — 2 

(optica lly th in ) lines. A lthough contributing factors (such as density and how much m aterial s till remains 

in  the static envelope) may complicate the detection of in fa lling  clouds, sta tistica l studies have shown tha t 

inward motions are observed in  excess (over outflow  motions or random motions) w ith in  class —1, 0, and I
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sources (Evans, 2003). The to ta l number of sources in  these studies may be insufficient, however, and the 

detection o f red-skewed profiles among these sources is evidence tha t blue-skewed profiles are not universal.

1.3 O r io n  B a n d  NGC 2024

The Orion B giant molecular cloud is one of the most extensively-studied regions of active star form ation. 

Also known as L1630, it  is located at a distance o f 415 pc (Anthony-Twarog, 1982), and th is proxim ity has 

made the region an ideal place to  study star-form ation. Orion B is part o f the larger Orion complex which 

includes Orion A  to  the south-west. I t  has been observed to  extend out to  8° in  diffuse gas, but most of 

the gas is concentrated in two main sections: O rion B N orth and Orion B South. Orion B N orth contains 

star-form ing regions NGC 2071 and NGC 2068, while O rion B South is home to  NGC 2023, NGC 2024, and 

M78 (HH 19-27). Many studies have sought the identification of dense clumps w ith in  Orion B, to  probe the 

d istribu tion  and properties of clumps and cores. Lada et al. (1991a) surveyed Orion B in  CS and found tha t 

the emission is not distributed uniform ly, but rather in  a clumpy form  (Fig. 1.1). 42 individua l clumps were 

found, in  various sizes, but in  more elongated structures than round shapes. V iria l masses were obtained for 

each clump, and it  was found tha t at least 50% of the to ta l clump mass is located in  the five most massive 

cores mentioned above. Following th is survey, Lada et al. (1991b) presented 2.2 /xm observations in  Orion 

B. This study identified smaller features w ith in  the star-form ing regions, and concluded tha t the m a jority 

of the detected sources were found in  embedded clusters, which comprises only ~18% of the entire surveyed 

region, suggesting tha t star form ation w ith in  O rion B is a very localized process. More recently, M itchell 

et al. (2001) identified 67 clumps in  850 /xm w ith in  O rion B South (shown in  Fig. 1.3), and obtained more 

detailed inform ation on clumps regarding the ir mass, temperature, and density.

One of the main sites of star-form ation w ith in  O rion B is NGC 2024 in the South molecular cloud. NGC 

2024 is a complex region which consists o f several m ajor components w ith  observed features including an H 

I I  region, molecular ridge, dust lane, dense cores, and young star cluster. Fig. 1.2 shows the optical image of 

NGC 2024. The H II  region— seen as an extensive, bright ionized region— is obscured by a dark band of dust, 

which appears to  stem from  the center bottom  of the H I I  region. The unknown physical configuration of 

the entire system, specifically the relation between the molecular gas, dust, and the coincident H I I  region,
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has kept observers pursuing the cloud’s structural and morphological inform ation* Physical parameters 

including gas temperatures and densities can unlock clues to  the actual star form ation taking place in  the 

dark obscured region.

1.3.1 P r e v io u s  s tu d ie s

The firs t studies of NGC 2024 date back to  B all et al. (1970) and Cesarsky (1971) where detections of 

H137a (1.68 GHz) and H157a (2.52 GHz) line emission from  the region were published. Soifer and Hudson 

(1974) presented the firs t subm illim eter map in  400 pm, followed by the 9 pm map by Harper (1974) 

which gave color temperatures and grain models. Grasdalen (1974) discovered a brigh t IR  point source 

in  an 8.4 pm map, also finding a large visual extinction toward the region. Mapping of NGC 2024 in  IR  

emission was continued in  the follow ing years (Prey et al., 1979; Thronson et al., 1984), and spectroscopy 

in  IR  (Thompson et al., 1981; Black and W illner, 1984). The firs t molecular studies done in  absorption 

included O H  by Barnes et al. (1989) and formaldehyde (H 2CO ) by Crutcher et al. (1986). Molecular 

emission studies came later, including H 2CO emission (Mangum and W ootten, 1993; van Dishoeck et al., 

1993), H C O + (Barnes and Crutcher, 1990), N H 3 (Schulz et al., 1991; Ho et al., 1993), CS  (Schulz et al., 

1991; Chandler and Carlstrom , 1996), and CO (Chandler and Carlstrom , 1996; M itchell et al., 2001). The 

molecular studies have allowed for the modeling of the NGC 2024 spatial structure, pu tting  together a ll the 

pieces of its  components (e.g. molecular cloud, H I I  region, IR  sources). A fte r many attem pts to  seek the 

star responsible for the ionization of the H I I  region, B ik et al. (2003) identified the ionizing source of NGC 

2024 to  be a late O type main sequence star, positioned directly east o f the m iddle section of the ridge.

Some o f the most notable studies of NGC 2024 were in  sub-mm wavelengths by Mezger et al. (1988) and 

Mezger et al. (1992). These early dust observations of th is cloud uncovered the presence of high-density 

condensations aligned in  an elongated ridge, and they were claimed to  be isothermal protostars in  the 

earliest stages of protostellar evolution. Mezger et al. (1988; 1992) also presented temperature, density, 

and mass estimates, concluding tha t the cores were surprisingly cold and massive. The discovery o f the 

F IR  sources sparked further interest in  th is region and led to  more sub-mm and mm observations. Schulz 

et al. (1991) closely inspected the F IR  core positions w ith  CS  and found few potentia l counterparts to  the 

F IR  cores, and presented temperatures, densities, and masses tha t strongly disagreed w ith  those of Mezger
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Figure 1.1: Dense molecular gas in  Orion B seen in  (75(2 — 1) from  Ladaet al. (1991a). The three northern
most components make up O rion B N orth, and the three southern-most components make up 
Orion B South.
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Figure 1.2: Optical image o f NGC 2024 from  the D igitized Sky Survey. The coordinates are displayed in  
epoch 2000. A  dark lane o f dust can be seen obscuring the center o f the ionized region.
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Figure 1.3: Dust continuum maps of Orion B south from  SCUBA in 850 fj,m (le ft) and 450 fj,m (righ t), 
previously published in  Johnstone et al. (2001), M itchell et al. (2001), and Johnstone et al. 
(2006). The three m ajor members of Orion B are labeled. The beam sizes are 15" for 850 /an 
and 15" for 450 pm.
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et al. (1988; 1992). Visser et al. (1998) surveyed the F IR  cores in sub-mm continuum at 450 and 800 /xm 

and compared images to  molecular observations. More recently, the larger area of the Orion B molecular 

cloud has been observed at 850 fj,m by Johnstone et al. (2001), M itchell et al. (2001), and Johnstone et al. 

(2006) to probe the clump d istribu tion  in  a larger area.

Further inspections of the F IR  cores have revealed distinctive features of individual cores. Moore and 

Chandler (1989) suggested th a t F IR  4 contains a luminous stellar object observed in  2.2 fj,m, most like ly a 

T  Tauri star. F IR  4 is also associated w ith  a near-IR reflection nebula and a unipolar, blue-shifted outflow  

lobe (Moore and Yamashita, 1995). Rodriguez et al. (2003) found compact cm sources in  radio continuum 

at the positions o f FIRs 4, 5, and 6, im plying star form ation. F IR  5 has an associated unipolar outflow  

(Richer et al., 1992), and a compact bipolar outflow in  CO has been observed at the position o f F IR  6 

(Richer, 1990). An H 20  maser coincident w ith  the position o f F IR  6 was also found by Genzel and Downes 

(1977) before the detection o f the F IR  cores by Mezger et al. (1988). Wiesemeyer et al. (1997) observed 

FIRs 5 and 6 in  3 mm continuum and CS and resolved F IR  5 into two components, F IR  5-w and -e. 

This study also f it  the SED of F IR  5-w and found tha t it  is best modeled by a low bolom etric lum inosity 

source w ith  a massive envelope. In  CS, the authors could not find a close agreement in  position w ith  the 

F IR  cores. In  addition, other molecular studies of the F IR  cores have also concluded a failure to  detect 

coincident molecular peaks at the positions of Mezger’s F IR  cores. Mauersberger et al. (1992) found no CO 

counterparts to  any of the F IR  cores, and presented a disagreement between the ir detected CS  peaks and 

the dust cores in  terms of position and size. The CS study of Schulz et al. (1991) also lacked agreement 

w ith  the F IR  cores. W ilson et al. (1995) also presented a CO study of NGC 2024, which resembled the 

features of the dust cores, bu t found a sh ift in  the peak positions. These various molecular studies of the 

cores raise questions regarding the ir true protostellar nature. Some m ajor concerns are the discrepancies 

between the dust core and the molecular core positions, the vast range of derived core properties— namely 

temperature and mass— and the features o f the region which appear to  change w ith  the observed molecule 

or frequency. The disagreement seen w ith in  the previous studies makes i t  a challenge to  put together an 

evolutionary picture of each core which satisfies a ll observations. W ith  improvements in  resolution and 

instrum ent sensitivity, the in terpretation of these cores should become more transparent, and the details 

o f the ir evolution should surface. Detailed inform ation associating FIRs 1-3, and 7 to  unique features and
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possible star-formation has not yet been made available.

1 .4  P h y s ic a l  p r o p e r t ie s : t e m p e r a t u r e  a n d  d e n s it y

1.4.1 T e m p e r a t u r e  o f  F IR  c o r e s

Probing the physical conditions of the F IR  cores can provide more insight o f the system as a whole. Most 

im portantly, the temperatures of the individua l cores offer inform ation about what stage of star-form ation 

the region is in. Because ranges in  temperature can be traced to  a specific phase of star-form ation, this 

parameter is crucial in  the evaluation of the observations, and an inaccurate evaluation could lead to  

m isinterpretations. Since the discovery of the F IR  cores by Mezger et al. (1988), kinetic temperatures and 

number densities have been derived for the F IR  cores using different molecular tracers and models. These 

numerous past studies vary, however, in  the ir results, revealing s till a need for fu rther investigations.

Mezger et al. (1988) used the ir observations of the cores and found tha t the integrated emission could 

be f it  w ith  three temperature components. Their density analysis showed tha t the m a jority o f the emission 

comes from the cold dust component, having temperature as low as 16 K . From th is temperature and 

by comparison of computed evolutionary tracks o f pre-main sequence stars, the authors suggest tha t the 

discovered cores were isothermal protostars w ithout luminous stellar cores.

The paper was im mediately followed by contradicting studies. In  the subsequent years, several groups 

presented evidence tha t some of the cores were associated w ith  embedded stellar activ ity. A  2.2 fj,m IR  

source was found in  coincidence w ith  F IR  4 by Moore and Chandler (1989), and a compact CO outflow 

centered on F IR  6 was reported by Richer (1990). F IR  5 was also predicted to  be associated w ith  a 

CO  outflow (Richer et al., 1989; Richer, 1990; Barnes and Crutcher, 1990). W ith  th is evidence, further 

investigations of core temperatures were carried out, challenging the claims of Mezger et al. (1988). Moore 

et al. (1989) used a CS line to  map the region o f NGC 2024. They found a lower lim it o f 28 K  for the 

emission, using LTE. They showed tha t the continuum spectrum of Mezger et al. (1988) could be f it  w ith  

a single component temperature of 47 K  by m odifying the dust em issivity slightly. A sim ilar result was 

presented by Schulz et al. (1991), who mapped the region in  N H S inversion lines and transitions of CS. 

Their N H 3 observations suggested a kinetic temperature of 35 K , and from  CS  a range between 35 and 45
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Table 1.1: Summary o f Temperature Results from Previous Studies

Study Observation Temperature Comments
Mezger et al. (1988) F IR >  16 K cold dust/gas component
Moore et al. (1989) CO transition >  28 K LTE
Shultz et al. (1991) N H 3 k  CS 35-45 K LVG
Lis et al. (1991) H C O + emission >  27 K
Mezger et al. (1992) 1300 pm k  870 pm > 19 K cold dust/gas component
Gaume et al. (1992) n h 3 >  20 K uncertainties not clarified
Mauersberger et al. (1992) C 180 , C 170 , k  13C180 35-40 K
Ho et al. (1993) n h 3 40 K FIRs 5-7
G raf et al. (1993) CO transitions 67 K F IR  5

K  using the large velocity gradient (LVG) models— sim ilar to  LTE. LVG models sim plify the complexities 

of radiative transfer by assuming tha t a small region is not affected by the radiation approaching from  large 

distances. They emphasized the lack of evidence for a cool emission component in  the ir data, and found 

tha t the low temperature component was not required to  f it  the continuum data of Mezger et al. (1988). 

These authors ruled out the likeliness tha t the cores were protostars, claim ing th a t the clumps resemble 

more young stellar objects w ith  embedded heat sources. S im ilar to  Moore et al. (1989), Lis et al. (1991) 

found a lower lim it o f 27 K  using H C O + emission. Mezger et al. (1992) presented a follow-up to  the ir firs t 

paper, w ith  the addition of new observations at 1300 and 870 pm. They again found tha t the ir data f it  

a three component model, but the ir cold gas component o f 16 K  was raised to  19 K . Gaume et al. (1992) 

found temperatures resembling Mezger et al. (1992) from V LA  observations of N H 3, where FIRs 1-3, and 

6 had T  <~20 K , and FIRs 4 and 5 w ith  T  >  20 K . I t  is worth mentioning th a t the temperatures may be 

highly uncertain, since the ir spectra have very low signal-to-noise ratios, and no error analysis is presented. 

Mauersberger et al. (1992) found kinetic temperatures in  the range of 35 to 40 K  using line ratios of spectra 

of C 180 , C 170 , and 13C 180  transitions. Ho et al. (1993) obtained the same N H 3 lines as Gaume et al.

(1992) w ith  the V LA  but found different temperatures, w ith  FIRs 5-7 having 40 K , whereas Gaume et al.

(1992) found 20 K  for F IR  6. G raf et al. (1993) used CO  transitions to  specifically observe F IR  5. They 

dispute w ith  the results o f Mezger et al. (1992), reporting tha t the bulk o f the gas has a temperature of 67 

K , and tha t the cold gas makes up a much smaller percentage o f the entire region. A  summary of F IR  core 

temperatures derived in  previous studies is tabulated in Table 1.1.
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1.4.2 F o r m a ld e h y d e  a s  te m p e r a tu r e  p ro b e

K inetic temperatures and number densities have been derived for the F IR  cores using various methods, one 

of which is formaldehyde line ratios. Mangum and W ootten (1993) showed how temperature and density 

inform ation can be obtained from  the ratios o f observed formaldehyde transition intensities. Using spherical 

LVG models, Mangum and Wooten presented the temperature- and density-dependent relations tha t specific 

ratios offer, making it  possible to  derive accurate estimates of temperature and density. Using th is method, 

Mangum et al. (1999) derived approximate temperature estimates independent of gas density effects for 

FIRs 3-7. Formaldehyde line ratios can also be used to  derive temperatures assuming LTE. Since the 

relative population occupying two states are related through the Boltzmann equation by the temperature, 

a few assumptions can be made to  find a simple relationship for the temperature. Mangum and W ootten

(1993) showed tha t in  LTE and w ith  additional assumptions, the temperature can be approximated as a 

function of the observed intensity ra tio  of the two levels and the difference in  the energies. One o f the 

advantages of using formaldehyde as a temperature and density probe is tha t several transitions can be 

measured w ith  the same telescope—including a few tha t may be detected in the same spectrum—therefore 

m inim izing calibration uncertainties. Formaldehyde is also an ideal tool to  probe high-density regions and, 

unlike some other tracers of temperature, formaldehyde is re latively high in  abundance and does not vary 

significantly w ith in  the interstellar medium (Mangum and W ootten, 1993).

Measurements of density and temperature variations throughout the cloud—especially across the F IR  

cores and from  one F IR  core to  another— would contribute to  a more complete picture of the structure 

of NGC 2024. Temperature differences between the cores and the surrounding regions could be indicating 

clues as to  why the peaks in dust do not coincide w ith  the molecular peaks. In  isolated regions, significantly 

higher temperatures w ith in  cores compared to  its  surroundings would h in t a t the presence of embedded 

sources in  more advanced stages of star-form ation, whereas cooler temperatures would im ply prestellar 

sources. In  a clustered region, however, the interpretation is more complicated, w ith  the contribution of 

core-heating due to  the radiation from  nearby cluster stars. The true influence o f clustered regions on star 

form ation is not well-understood. Overcoming the obstacles of studying such complicated regions w ill shed 

ligh t on how they vary from  (or resemble) isolated regions. Hence, a large map of the NGC 2024 region
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in  a tem perature/density tracing molecule is required to  make accurate assessments of the nature o f the 

ridge and its  dense cores. An emphasis should be made on cuts through the F IR  core positions to  study 

variations and differences from  the core w ith  its surroundings.

1 .5  T h e s is  c o n t e n t

In  order to  explore the temperature and density variation throughout the ridge o f NGC 2024, observations 

were carried out a t the James Clerk Maxwell telescope (JCM T) in  2004 in  four H 2CO transitions. These 

transitions—namely, 3o3 -> 2 o2 , 322 —> 2 2 1 , 5os —► 404, and 523 422—were chosen to  perm it measurements

of temperature and density. Details concerning the method of observations, and the properties of the 

transitions are discussed in  Chapter 2. The ratios o f H 2CO transitions 3o3 -> 2o2/3 22 -> 221 and 5os -»• 

4(m/523 422 give reliable kinetic temperatures, and the density is obtained from the H 2CO  transition

ra tio  o f 3o3 202 / 5os -¥ 404- For the formaldehyde transitions of 3o3 -> 202, 322 ->■ 22i,  and 5o5 -> 4o4,

maps are produced from  the observations and used to  evaluate the temperature and density structure inside 

and outside the NGC 2024 ridge. The H 2CO 522 422 transition was too weak to  produce a fullscale

map, but the observations at the F IR  core positions and its  immediate surroundings are s till beneficial in  

the temperature and density evaluations. The formaldehyde maps and spectra are introduced in  Chapter 

2, and the derived temperatures and densities w ith  an emphasis on the F IR  core positions are presented in 

Chapter 3. Chapter 3 also combines the temperature and density inform ation obtained from  H 2CO and 

used w ith  various other observations (e.g., sub-mm, m id-IR ), to  obtain inform ation such as clump masses, 

column densities, and H 2CO fractional abundance. Chapter 4 discusses these results and the ir im plications. 

Comparisons are made between the formaldehyde maps and a number o f other observations to  probe the 

nature of the F IR  cores. Lastly, the v iria l theorem is used to determine whether the cores are contracting.

Observations of NGC 2024 in  H C O + and H 1?JCO+ were obtained from  the JCM T as well, w ith  the 

intention o f detecting in fa ll a t the F IR  core positions. In  Section 3.3, these observations are used to  derive 

optical depths and excitation temperatures at various positions, and also to  calculate the column densities. 

As w ith  H 2CO, the H C O + column densities are used to  derive H C O + fractional abundance at the F IR  

cores, which are presented in  Section 3.5.
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2 O b s e r v a t io n s

A ll observations were carried out between August 2004 and December 2004 at the James Clerk Maxwell 

telescope on Mauna Kea, in  queue observing mode, using the fac ility  A-band and B-band receivers. Four 

formaldehyde lines were observed, namely H 2CO 3o3 -A 202 at 218.2222 GHz, H 2CO 322 -A 221 a t 218.4756 

GHz, H 2CO  5o5 —> 4o4 at 362.7360 GHz, and H 2CO 523 -A 422 at 365.3634 GHz. The details o f these 

transitions are presented in  Table 2.1. Because of the quantum properties of formaldehyde transitions and 

its  assymetric structure and rotational characteristics, some transition ratios are sensitive to  temperature, 

while some are sensitive to  density (Mangum and W ootten, 1993). The intensity ratios 3o3 -A 202/3 22 -A 22i  

and 5o5 —¥ 404/5 23 -A 422 provide two independent measures of the gas kinetic temperature. The intensity 

ra tio  3os -A 2o 2/5o 5 -a 4o4 provide a value of the to ta l gas density [i.e. n(772)]. Because o f the ir proxim ity 

in  frequency, it  was possible to  obtain the 3o3 -A 202 and 322 -A 22i lines in  a single tuning. The 3o3 -A 

2o2/322 -A 22i  intensity ra tio  is, therefore, independent o f calibration uncertainties.

A number of raster maps was made in  the 218 GHz line pair, using a 7.5" grid (i.e., a th ird  o f a 

beamwidth) and an integration tim e o f 5 seconds at each position. Line intensities were obtained as 

antenna temperatures, TJ, corrected for atmospheric and telescope losses. The to ta l integration tim e was 

calculated so as to  achieve a fina l rms o f 0.1 K  in  T \.  Raster maps in  the 362 GHz line were taken w ith  a 5" 

grid (again a th ird  of a beam) and a 5" integration tim e per position. Because the 365 GHz line is weaker, 

raster-mapping was not attem pted. Instead, n x 1 grid maps (i.e., cuts at fixed declination) through each 

F IR  source position were obtained, where n =  5 for F IR  1 through F IR  5 and n =  3 for F IR  6 and F IR  7.

Table 2.1: Summary of Observed Formaldehyde Transitions

Transition Frequency Beam size E °■‘-‘U Sb
[ J K aK cl [GHz] ["] [K]

3o3 “A 2()2 218.2222 23 23 2.9994
322 -A 221 218.4756 23 68 1.6667
505 -A 4o4 362.7360 15 52.4 4.9971
523 -A 422 365.3634 15 99.7 4.1998

“Upper energy 
bLine strength
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Table 2.2: Positions of F IR  Sources from  Mezger et al. (1992)

Source R .A .(J2000) Declination (J2000)
F IR  1 05/i39m09.s9 —1°55T7"
F IR  2 05h39ml l . 80 —1°55'34"
F IR  3 05h39mll.® 4 —1°55'52"
F IR  4 05h39m12.s6 —1°56'13"
F IR  5 05/l39m13.s0 —1°57'08"
F IR  6 05h39ro13.s7 —1°57'30"
F IR  7 05/l39m13.s5 —1°57'50"

Table 2.3: Summary of Observed H C O + and H l3CO+ Lines

Transition Frequency Beam size
[GHz] ["]

H ViCO+ J  =  3 -  2 260.2555 ' 21
HC O + J  =  3 - 2  267.5576 21

Table 2.2 shows the righ t ascension and declination coordinates used for the seven F IR  cores.

Spectra o f H C O + J =  3 — 2 at 267.5576 GHz and H 13CO+ J =  3 — 2 at 260.2555 GHz were obtained 

at each of the seven F IR  positions. The details of these transitions are shown in  Table 2.3. Integration 

times at each position were 5 minutes for the H C O + line and 10 minutes for the H viCO+ line.

A ll spectral data were reduced using SPECX, a spectral data reduction package which allows the trans

form ation of raster map observations into a map which can be viewed in  user-specified axes and integrated 

intensities. To make each of the three H 2CO transition  maps (i.e. 3o3 -> 202, 322 22i , and 5os -» 404),

the spectra w ith in  the raster-map were inspected and baseline-corrected. I f  a bad spectrum appeared, it  was 

om itted from the map. Each spectrum was incorporated in  the fina l map as a single cell which corresponds 

to  the position of the observed data. Spectra o f the same position were combined and averaged to  give a 

better signal-to-noise ra tio . The fina l map is in  the form  of a data cube, w ith  axes of frequency, velocity, 

and intensity, and may be viewed in  various form ats w ith in  SPECX. To study the velocity, the map can 

be viewed at specified ranges o f velocities. The line strength is recorded as the antenna temperature TJ. 

To obtain temperature and density inform ation, the intensity is required to  be in the form  o f radiation 

temperature T r.  Radiation temperatures were derived from  the antenna temperature by correcting for the 

main-beam efficiency t j m b ■ This efficiency has been derived for Mars, Jupiter, and Uranus and is offered at
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the JC M T website1. Fig. 2.9 shows several sample spectra after the baseline has been removed. In  these 

spectra, the antenna temperature T \  is p lotted as a function o f velocity.

2.1 H2CO 3()3 —̂ 2q2 AND 322 —̂ ^21 MAPS

The linear baseline was firs t removed from  each spectrum of the 3o3 -> 2o2 and 322 -+ 221 lines. O ut o f the 

1023 channels in  each spectrum, 200 on each side were dropped. A map was made for each observed night, 

w ith  cell sizes o f 7.5" by 7.5". The maps of the North region on 4 different nights were averaged into one 

fina l N orth map. The South consists o f three small maps and one medium map. The overlapping regions 

were averaged to  make one fina l South map. The fina l South and N orth maps were combined to  make the 

fina l map o f the entire region. The final map is centered on RA 5,439m12.s4 and dec —1°56'25."31, w ith  

the RA offsets ranging from  —120" to  +120", and the declination from —120" to  +150".

The fina l averaged map of the 3o3 —> 202 line is presented in Fig. 2.1, where the intensity has been 

integrated from  8 to  13 km s_1. The high intensity emission can be seen as an elongated ridge tha t is 

concentrated in  the north-south direction, s lightly tilte d  to  the west. The ridge is clearly composed of 

two components: a northern clump and a southern clump. The northern clump is more elongated, and 

stretches further south in  a fainter emission. The southern clump is s ligh tly stronger, and less extended 

than the northern clump. The elongated ridge is separated by a gap of fa in t emission. The diffuse emission 

extends out to  50" from  the central peaks. The 322 ~> 221 map also shown in Fig. 2.2 displays a weaker 

emission, but w ith  the same features as the 3o3 —> 2q2 map. The emission maintains the same elongated 

north-south orientation, w ith  the southern clump having a stronger intensity. The channel maps shown in 

Fig. 2.3 exhib it the velocity difference along the entire ridge. By p lo tting  the map at intervals o f 0.5 km 

s_1, it  is clear tha t the northern clump peaks at a lower velocity than the south. A t 9 km s-1 , only the 

northern region is fa in tly  visible, and there is nothing apparent in  the south. As the velocity is increased, 

the north becomes stronger, while the south begins to  appear, but by 10.5 km s_1, the north  region fails to 

be detected. The south emission fa in tly  lingers u n til 12.5 km s_1, by which no sign of the north emission is 

traced. The maps are used to  calculate the physical properties (e.g. temperature, number density, column

1 JCM T beam efficiencies webpage http://w w w .jadi.haw aii.edu/JC M T/spectral-line/Standards/beam eff.htm l
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density) at various positions and are presented in the remaining sections of this chapter. The implications 

of the results—including the derived physical properties and observed velocity features— are discussed in 

detail in  the next chapter. A  detailed discussion comparing the H 2CO maps w ith  previous observations 

and proposing the nature o f the F IR  cores w ith in  the ridge is also presented.

2 .2  H2CO 505 4q4 M a p

For the spectra o f the H 2CO  5os —> 4o4 transition at 362.7360 GHz, a sim ilar method was employed to  

create a map of the entire ridge. From each spectrum, 30 channels on each end were dropped to  leave a 

to ta l o f 963 channels. The three sets of observations from  the different nights have three different map sizes. 

The overlapping regions were averaged to  make one fina l map, w ith  cell sizes of 5" by 5". The offsets range 

from  —90" to  +90" in  RA, and -142 .5 " to  150" in  declination. Fig. 2.4 shows the integrated intensity map 

of the 5o5 -+ 4q4 line. The intensity appears weaker than the 3o3 -» 202 line, but in  general, no obvious 

differences can be observed. The ridge is divided in to  the north and south, separated by a gap of very 

weak intensity. The southern clump peaks appear stronger, w ith  a less elongated structure than the north. 

The channel maps in  Fig. 2.5 follow  the same velocity trend as seen in  the 3o3 —> 2<)2 channel map. The 

north emission dominates at velocities from  9 to  10.5 km s-1 , but is taken over by the south emission at 

higher velocities, where the north  emission fades away completely. A  comparison of the 3o3 -+ 202 transition 

map and the 5os -+ 404 transition  map is presented in  the overplot of Fig. 2.6. The figure shows the two 

maps are very sim ilar in  the ir extent, shape, and peak positions. As w ith  the maps from  the 3o3 -+ 202 

and 322 -+ 221 transitions, th is map w ill also contribute to  the calculations of physical properties in  the 

following sections, and the im plications of the results are discussed in the follow ing chapter.

2 .3  H2CO 523 4 22 S p e c t r a

The H 2CO 523 -+ 422 line at 365.3634 GHz is weaker in  comparison w ith  other H 2CO lines, so a single 

cut across each F IR  was obtained at a fixed declination. For FIRs 1 through 5, 5-point cuts were taken, 

w ith  each cut centered on the F IR  position, extending out to  30" on each side. For FIRs 6 and 7, 3-point 

cuts were taken centered on the F IR  position, extending out to  15" on each side. The spectra o f the cuts
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Figure 2.1: Integrated intensity map of NGC 2024 ridge observed in  H^CO 3o3 -4 2<)2 line at 218.2222 
GHz. The intensity is integrated over the velocity range of 8 - 13 km s-1 . The maximum value 
is at 12 K  km s_1, and the m inimum is at 0 K  km  s-1 . The beam size is 23". The coordinates 
are in epoch 2000, as are a ll the subsequent figures unless otherwise stated.
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Figure 2.2: Integrated intensity map o f NGC 2024 ridge observed in H 2CO  322 22i  line at 218.4756
GHz. The intensity is integrated over the velocity range of 8-13 km s_1. The maximum value 
is a t 5 K  km s-1 , and the m inim um  is a t 0 K  km s-1 . The beam size is 23".
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Figure 2.3: Channel maps of H^CO  3o3 —> 2q2 transition. The velocity range is from  9 to  12.5 km s \  
taken at intervals o f 0.5 km s-1 .
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Figure 2.4: Integrated intensity map of NGC 2024 ridge observed in H 2CO  5os - t  4o4 line at 362.7360 
GHz. The intensity is integrated over the velocity range of 8-13 km  s-1 . The maximum value 
is a t 10.4 K  km s-1 , and the m inimum is a t 0 K  km s-1 . The beam size is 15".
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Figure 2.5: Contour channel maps of H 2CO 5os -> 404 transition. The velocity range is from  9 to  12.5 km 
s-1 at intervals o f 0.5 km s-1 .
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Figure 2.6: Contours o f H 2CO 5o5 -+ 404 transition  map p lo tted over 3o3 -> 202 transition map. The 
contours show intensities at 2, 4, 6, 8, and 10 K  km  s_1.
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Figure 2.7: G rid map of H^CO 523 422 transition at constant-declination cuts through F IR  core posi
tions. The position of each spectrum in  the grid  corresponds to  its  true position w ith in  NGC 
2024.

are shown at the ir corresponding positions in  Fig. 2.7. Since the positions of 523 —»• 422 line observations 

are lim ited, a map could not be produced, but the cuts are used to  derive temperatures at the most v ita l 

positions. The results are presented in  section 3.1 in  the follow ing chapter.

2.3.1 HCO+ J =  3 - 2  a n d  H 13CO+ J =  3 - 2  S p e c t r a

The H C O + J  =  3 — 2 and H 13CO+ J =  3 — 2 lines at frequencies 267.5576 and 260.2555 GHz were taken at 

each F IR  core position. Each spectrum was corrected for its  baseline by fittin g  it  to  a polynom ial baseline 

and removing the best fit. When more than one spectrum was available for a single position, the average 

was taken. Fig. 2.8 shows the 267.5576 and 260.2555 GHz lines for the F IR  core positions stacked in  order 

of declination. The general trend of the northern F IR  cores having a lower velocity than the southern cores 

in  formaldehyde lines is seen here again. In  both lines, the southern peaks have velocities tha t peak about 1
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Figure 2.8: Spectra o f H C O + J =  3 — 2 line at 267.5576 GHz (le ft) and the H 13CO+ J =  3 — 2 line 
at 260.2555 GHz at F IR  core positions. The intensities are offset to  display a ll the spectra 
simultaneously. The F IR  positions are in  order from  F IR  1 (at top) to  F IR  7 (at bottom ). Note 
the difference in  the y-axis scales between the two plots.

km s-1 greater than the northern F IR  cores. The peaks of the F IR  core positions in  both lines are observed 

at the same velocities for each F IR  core, bu t they also exhibit m ajor differences. The intensities o f the 

H C O + lines are stronger than the H 13CO+ lines. Also, the shapes of the peaks are vastly different between 

the two transitions. The H C O + lines show double-peak features, which is most prom inent in  F IR  2. This 

feature w ill be further discussed in  Section 3.3 in  the next chapter and in  more detail in  the discussion 

chapter.

2.4  C u t s  t h r o u g h  F IR  c o r e  p o s i t i o n s

The F IR  core positions in  the H 2CO transitions 3o3 -» 202 and 322 -> 221 are fu rther examined by studying 

the gradients across cuts centered on the F IR  core positions. The cuts are made so tha t the RA offsets
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Figure 2.9: Spectra of H 2CO 3o3 -> 202 line (le ft) and 322 22i  line (righ t) at F IR  core positions: FIRs
1-7 from  top to  bottom . Note the difference in  the y-axis scales between the two plots.

ranged from  —45" to  45" on either side of each F IR  core position. In  order to  obtain a better signal-to-noise 

ra tio , the spectra w ith in  the cuts were averaged over squares of 9 cells (3 by 3 cells). S im ilarly, the F IR  

cuts o f the 5o5 —> 4o4 transition were averaged over 5 cells like the 023 —> 422 cuts. The measured integrated 

intensities of the averaged cuts are given in  Table 2.4. Figs. 2.9-2.10 show the F IR  core positions stacked 

vertica lly for the four different formaldehyde lines, separated by offsets tha t do not necessarily represent 

spatial distances. A  common trend among a ll the lines is tha t the F IR  cores positioned in  the southern 

clump have higher velocity peaks compared to  the cores in  the northern clump. This is also observed in 

the channel maps presented in  Figs.2.3 and 2.5. The peak velocity for each F IR  core remains about the 

same for a ll transitions. As previously mentioned, the 3o3 -»• 202 and 5os —> 404 lines are stronger than the 

322 -> 22i  and 523 ->• 422 lines. The velocity inform ation o f these spectra at F IR  positions is discussed in 

section 4.4.1 of the next chapter.
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Figure 2.10: Spectra o f H 2CO 5o5 ->■ 404 line (le ft) and the 523 ^22 line (righ t) at F IR  core positions:
FIRs 1-7 from  top to  bottom . Note the difference in  the y-axis scales between the two plots.
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Table 2.4: Integrated Intensities at F IR  Core Positions for H^CO Transitions

Source Offset
["]

J(3o3 -± 202)° 
[K  km s-1 ]

/(3 22 —> 22i ) “ 
[K  km s-1 ]

/(505 -± 4o4)“ 
[K km s-1 ]

/(5 23 —► 422) 
[K  km s_1]

F IR  1 (-45,0) 1.62 ±0 .10 0.76 ±  0.09
F IR  1 (-30,0) 3.69 ±  0.11 1.22 ±  0.09 1.04 ±0.10
F IR  1 (-15,0) 6.76 ±  0.10 2.12 ±0.09 2.57 ±0.12 0.66 ±  0.08
F IR  1 (0,0) 6.78 ±  0.10 1.99 ±0.10 5.00 ±  0.16 1.22 ±  0.08
F IR  1 (15,0) 4.00 ±0.10 1.00 ±  0.09 2.60 ±  0.14
F IR  1 (30,0) 1.26 ±  0.09 0.52 ±  0.08 1.67 ±0.11 0.51 ±  0.06
F IR  1 (45,0) 0.67 ±  0.09 0.26 ±  0.08
F IR  2 (-45,0) 2.10 ±0.08 0.34 ±  0.07
F IR  2 (-30,0) 2.96 ±  0.08 0.86 ±  0.08 0.07 ±  0.09 0.25 ±  0.06
F IR  2 (-15,0) 6.19 ±0 .10 1.60 ±  0.08 1.31 ±0.11 0.18 ±  0.07
F IR  2 (0,0) 8.86 ±  0.08 2.49 ±  0.09 5.54 ±0.14 2.22 ±  0.08
F IR  2 (15,0) 7,16 ±  0.09 2.02 ±  0.08 2.81 ±0.12 1.38 ±  0.09
F IR  2 (30,0) 4.27 ±0.09 0.83 ±  0.08 1.62 ±0.11 0.24 ±  0.08
F IR  2 (45,0) 2.08 ±  0.09 0.16 ±0.09
F IR  3 (-45,0) 3.40 ±  0.11 0.49 ±  0.08
F IR  3 (-30,0) 4.76 ±  0.10 1.03 ±  0.09 0.41 ±0.11 0.48 ±  0.05
F IR  3 (-15,0) 6.94 ±  0.10 1.71 ±0.11 1.59 ±0.11 1.03 ±  0.07
F IR  3 (0,0) 7.65 ±0.11 2.01 ±0.10 5.89 ±0.14 2.38 ±  0.08
F IR  3 (15,0) 4.80 ±  0.11 1.16 ±0.10 2.94 ±0.13 1.14 ±0 .08
F IR  3 (30,0) 2.17 ±0 .10 0.20 ±  0.08 0.26 ±0.10 0.57 ±0 .07
F IR  3 (45,0) 1.45 ±  0.09 0.01 ±  0.08
F IR  4 (-45,0) 1.56 ±0.11 0.55 ±  0.09
F IR  4 (-30,0) 2.77 ±0.10 0.53 ±  0.08 0.02 ±0.10 0.50 ±  0.05
F IR  4 (-15,0) 5.32 ±  0.10 1.27 ±0.08 1.04 ±0.12 0.35 ±  0.06
F IR  4 (0,0) 7.22 ±0.12 1.68 ±  0.09 4.13 ±0.13 3.28 ±0.12
F IR  4 (15,0) 5.76 ±  0.10 1.46 ±  0.09 1.98 ±  0.13 0.65 ±  0.11
F IR  4 (30,0) 2.85 ±  0.09 0.57 ±0.08 0.59 ±  0.09 0.28 ±  0.06
F IR  4 (45,0) 1.15 ±0.10 0.07 ±  0.09
F IR  5 (-45,0) 2.62 ±0.11 0.70 ±  0.09
F IR  5 (-30,0) 4.32 ±  0.13 1.14 ±0.09 2.71 ±0.15 0.81 ±0.15
F IR  5 (-15,0) 7.78 ±0.12 2.61 ±0.10 6.78 ±  0.18 1.64 ±0 .17
F IR  5 (0,0) 9.00 ±0.12 2.88 ±  0.10 6.65 ±0 .18 3.05 ±0 .17
F IR  5 (15,0) 5.73 ±0.11 1.70 ±0.10 2.12 ±0.16 1.65 ±0.11
F IR  5 (30,0) 2.99 ±0.11 0.64 ±  0.09 1.76 ±0.13 1.37 ±  0.08
F IR  5 (45,0) 1.55 ±0 .10 0.37 ±0.08
F IR  6 (-45,0) 2.15 ±0.11 0.62 ±  0.10
F IR  6 (-30,0) 4.01 ±0.12 1.11 ±0.11
F IR  6 (-15,0) 7.28 ±  0.12 2,00 ±0.13 1.94 ±0.16 0.34 ±0.10
F IR  6 (0,0) 9.56 ±0.11 2.40 ±  0.12 6.46 ±  0.14 2.57 ±0.15
F IR  6 (15,0) 6.63 ±0.11 1.50 ±0.11 4.35 ±0 .17 0.59 ±  0.07
F IR  6 (30,0) 4.09 ±0.11 1.25 ±0.11
F IR  6 (45,0) 2.90 ±0.11 0.71 ±0.12
F IR  7 (-45,0) 1.64 ±0 .10 0.65 ±0.10
F IR  7 (-30,0) 3.06 ±0.11 0.82 ±  0.09
F IR  7 (-15,0) 5.74 ±0.11 1.20 ±0.12 1.26 ±0.12 0.82 ±  0.08
F IR  7 (0,0) 6.98 ±  0.12 1.39 ±0.10 2.74 ±0.13 0.08 ±0.11
F IR  7 (15,0) 4.48 ±  0.10 0.78 ±  0.09 1.43 ±0 .14 0.23 ±  0.12
F IR  7 (30,0) 3.03 ±  0.11 0.90 ±  0.09
F IR  7 (45,0) 1.97 ±0.10 0.89 ±0.11

“All intensities integrated over velocity range 5-15 km s 1.
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3 A n a l y s is

3 .1  K i n e t ic  t e m p e r a t u r e  a n d  d e n s it y

The H 2CO  line intensity ratios 3q3 —t 202/3 22 -> 22i  and 005 - *  4o4/5 23 - t  422 are useful in  providing two

independent measurements of the kinetic temperature of the gas. Mangum and W ootten (1993) demon

strated how the kinetic temperature from  H 2CO  transitions may be calculated assuming tha t the gas is 

optica lly th in , and adopting the LTE model. Using the measurements of the integrated intensities obtained 

from  the antenna temperatures, the follow ing expression from  Mangum and W ootten (1993) can be used 

to  derive the kinetic temperature,

the upper energies and the line strengths of the two transitions are given in Table 2.1.

For a reasonable evaluation of uncertainties in  temperature, the lower and upper lim its  are calculated

(3.1)

where Eu is the energy of the upper level o f the transition, S is the line strength, and the subscripts and

superscripts of 1 and 2 correspond to the 3q3 -a 202 and 322 -> 22i line respectively. The values used for

for the temperatures derived for the F IR  core cuts. F irs t, the averaged spectrum is observed to  determine

the velocity linew idth A Vune (in  km s 1). The velocity channel w idth A Vch (in km s x) is found from

c(A vjvrest) where c is the speed of ligh t, A v is the channel w idth in  units of frequency (Hz) and vrest is

the rest frequency of the transition in  units o f frequency (Hz). The line w idth is then converted to  units of

channels by Auune/A  vch. The uncertainty in  intensity A I  is then found from,

^ j   *7 A  Inline (3.2)

where a is the standard deviation obtained d irectly from  SPECX for a specified velocity range. The to ta l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. A n a l y s is 33

intensity ra tio  uncertainty at„t is then obtained from  the follow ing expression (Bevington, 1969):

h  / / ' A / A 2 , / A72x 2
atot /a V l  Ji J + w *  ; '

(3.3)

The upper aind lower lim its  in  temperature are derived by using the upper and lower lim its  o f the intensity 

ra tio :

rp U p p e
k in =  ( E l - E 1u)S[ ln 2 _ ( h  

|S i U
+ & to t (3.4)

T'lO 
I f i ,
lo w er
k in =  ( E l - E l ) { i n S2 ( h

Si \ I 2
J'

-1
(3.5)

And the final temperatures w ith  the corresponding upper and lower lim its  are expressed as follows:

Thin
( T ; r r -T kin)

(3.6)

For the 5os -> 404 /523 -4 422 transition  ra tio , an additional set o f uncertainties are taken in to  account 

due to  the calibration of two separate observations, whereas it  is unnecessary for the 3o3 —> 2o2/3 22 —> 22i 

ra tio , since the two lines were observed w ith in  a single beam. The calibration uncertainty o f 15% is adopted, 

although up to  30% can be expected for 370 GHz (Schulz et al., 1991), for each frequency. Combining these 

uncertainties in the form  of ratios results in  a higher set o f uncertainties compared w ith  the uncertainties 

solely from spectral noise. The temperatures derived for various offsets a t each F IR  core position are given 

in  Table 3.1. Note the large uncertainties for the H 2CO 505 - t  40i /5 23 -¥ 422 derived temperatures. Hence, 

the temperatures from  the 3o3 —> 2o2/3 22 —> 22i  ra tio  are more reliable, and these are m ostly adopted for 

subsequent calculations.

The kinetic temperatures above are derived assuming the LTE model and optica lly th in  gas. Another 

commonly used approxim ation is the large velocity gradient (LVG) model. Since the LTE model and LVG 

model use different approximations and assumptions, it  is a useful check to  see whether the temperatures 

derived by the two methods are in  agreement. The LVG H 2 number densities and the observed 3q3 —»
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Table 3.1: K inetic Temperatures at F IR  Core Positions

Source Offset

["]

I(  3o 
/(32

!-»2o2) rp ('303->-2o2 \ 
2-422l ) ±k™ ->-221 1

[K]

I ( 5o5 —>4o4 ) rp / 5ok —>4o4 \ a 
I (523 —>422 ) n ' 523 —>422 '

[K]
F IR 1 (-15,0) 3.19 ± 0.15 82+“ 1.65 ± 0.35 145!®®9
FIR 1 (0,0) 3.41 ± 0.18 74l® 3.31 ± 0.70 46 lg4
FIR 1 (15,0) 4.00 ± 0.36 5 9 t98
FIR 2 (-15,0) 3.87 ± 0.21 6 lis 2.15 ± 0.46 8 O I2I
F IR 2 (0,0) 3.56 ± 0.13 691^ 2.72 ± 0.58 5711®
FIR 2 (15,0) 3.55 ± 0.15 691® 2.55 ± 0.54 6211®
FIR 3 (-15,0) 4.06 ± 0.26 58±S 7.39 ± 1.57 2611
FIR 3 (0,0) 3.81 ± 0.20 631® 1.79 ± 0.38 11611®1
FIR 3 (15,0) 4.14 ± 0.36 57 ly 7.03 ± 1.49 2711
FIR 4 (-15,0) 4.19 ± 0.27 56l®
FIR 4 (0,0) 4.30 ± 0.25 541® 2.09 ± 0.44 84l® l
F IR 4 (15,0) 3.95 ± 0.25 601® 3.60 ± 0.76 43+12
FIR 5 (-15,0) 2.98 ± 0.12 931“ 1.79 ± 1.00 3411
FIR 5 (0,0) 3.13 ± 0.12 85+? 3.72 ± 0.79 42111
FIR 5 (15,0) 3.37 ± 0.22 7 5 l“ 1.79 ± 0.38 1171JS®
FIR 6 (-15,0) 3.64 ± 0.24 67+? 2.27 ± 0.48 yo+43

'^-19
F IR 6 (0,0) 3.98 ± 0.20 591® 3.11 ± 0.66 4911®
FIR 6 (15,0) 4.42 ± 0.33 5 2 l9 10.00 i 2.12 22l®
FIR 7 (-15,0) 4.78 ± 0.48 481® 3.41 ± 0.72 45113
FIR 7 (0,0) 5.02 ± 0.39 4611 8.62 ± 1.83 241®
FIR 7 (15,0) 5.74 ± 0.68 411® 4.19 ± 0.89 3811

“Uncertainties from 5os -4  4o4/523 —4 422 ratios arise from calibration uncertainties and 
system atic error.
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Table 3.2: LTE and LVG Derived Temperature Comparison

Source Offset Tkin/■3o3-42o2 \  
'■322-+221 ' Tkin(B o5-^404 \  

5cia—yAw . '

LTE LVG“ LTE LVG“
["] [K] [K] [K] [K]

F IR  1 (-15,0) 8 2 ± i 90 ± 1 0 14512®/ 120 ±  10
F IR  1 (0,0) 74+® 80 ±  10 4612 50 ±  10
F IR  1 (15,0) 59^8 60 ± 1 0
FIR  2 (-15,0) e i i 65 50 ± 1 0 80+2/ 60 ± 1 0
FIR  2 (0,0) 691® 70 ± 1 0 571® 60 ± 1 0
FIR  2 (15,0) 691® 70 ± 1 0 62l? 60 ± 1 0
FIR  3 (-15,0) 5 8 l65 50 ± 1 0 2 6 1 /
F IR  3 (0,0) 63l® 70 ± 1 0 U6±m 100 ±  10
F IR  3 (15,0) 57+? 60 ± 1 0 2 7 l2
F IR  4 (-15,0) 561® 60 ± 1 0
FIR  4 (0,0) 541® 60 ± 1 0 00 it (O 

t*. 70 ± 1 0
F IR  4 (15,0) 601® 50 ± 1 0 43l® 40 ±  10
F IR  5 (-15,0) 931J1 100 ±  10 341® 40 ± 1 0
FIR  5 (0,0) 85+® 100 ±  10 421® 40 ± 1 0
F IR  5 (15,0) 7 5 1 / 80 ± 1 0 1171®° 100 ±  10
F IR  6 (-15,0) 671? 70 ± 1 0 73l?g 60 ± 1 0
F IR  6 (0,0) 591® 60 ± 1 0 4912 50 ± 1 0
F IR  6 (15,0) 521® 50 ± 1 0 221®
FIR  7 (-15,0) 481® 50 ± 1 0 4 5 1 / 50 ± 1 0
F IR  7 (0,0) 46 i^ 40 ± 1 0 241®
FIR  7 (15,0) 411® 40 ± 1 0 3 8 1 / 30 ± 1 0

“LVG temperatures estim ated from LVG models of van 
Dishoeck et al. (1993).

2 0 2 /3 2 2  - t  22i  and 505 -4 404/523 -4 422 line ratios can be used to  find the LVG temperature estimates 

from  van Dishoeck et al. (1993). In  contrast to  the 3o3 -4 2o2/5o5 —► 404 ra tio , these two line ratios are 

sensitive to  temperature rather than density. Table 3.2 shows the estimated LVG temperatures alongside 

the LTE temperatures for comparison. These temperatures were estimated from  a p lo t o f select line ratios, 

so the uncertainties arise from  lack or resolution in the given plots. Hence, the chosen uncertainties for a ll 

LVG temperature estimates are the same. The two sets of temperatures give good agreement w ith in  the ir 

uncertainties, and is discussed further in  Section 4.

Intensity ratios o f 3o3 -4 202/5o5 -A 404, together w ith  gas kinetic temperatures, offer number density 

constraints in  the LVG approxim ation, van Dishoeck et al. (1993) have used LVG models to  calculate 

the 303 -4 202 /  5o5 -4 404 intensity ra tio  for a range of H 2 densities and gas kinetic temperatures. Their 

results are used here to  obtain H 2 densities from  formaldehyde 3o3 -4 202/5o5 -4 404 intensity ra tio . Table 

3.3 shows the H 2CO number density estimates for various offsets o f each F IR  core. As w ith  the LVG
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Table 3.3: H 2 Number Densities at F IR  Core Positions

Source Offset

[ " ]

fT3o3-»-2o2) 
f(5 o 5 —>^0 4 )

n(H2)a
[cm "3]

F IR 1 (15,0) 2.03 ±0.12 1 X 10b ± 0.5 X 10®
FIR 1 (0,0) 1.31 ±0.06 2 X 106 ± 0.5 X 106
FIR 1 (-15,0) 1.61 ±0.17 2 X 106 ± 0.5 X 106
FIR 2 (15,0) 4.33 ±0.41 6 X 105 ± 0.5 X 105
FIR 2 (0,0) 1.79 ±0 .07 2 X 106 ± 0.5 X 106
FIR 2 (-15,0) 2.74 ±0.16 1 X 106 ± 0.5 X 106
FIR 3 (15,0) 4.49 ±0.37 5 X 105 ± 0.5 X 105
FIR 3 (0,0) 1.67 ±0.06 2 X 106 ± 0.5 X 106
FIR 3 (-15,0) 2.23 ±0.13 2 X 10® ± 0.5 X 10®
FIR 4 (15,0) 2.21 ±0.18 2 X 106 ± 0.5 X 106
FIR 4 (0,0) 2.05 ±0.11 2 X 106 ± 0.5 X 106
FIR 4 (-15,0) 4.01 ±0.36 6 X 105 ± 0.5 X 105
FIR 5 (15,0) 1.40 ±0 .07 2 X 106 ± 0.5 X 106
FIR 5 (0,0) 1.12 ±0.04 2 X 106 ± 0.5 X 106
FIR 5 (-15,0) 1.37 ±0.08 2 X 106 ± 0.5 X 106
FIR 6 (15,0) 3.74 ±0.29 1 X 106 ± 0.5 X 106
FIR 6 (0,0) 1.85 ±0.06 2 X 106 ± 0.5 X 106
FIR 6 (-15,0) 1.79 ±0.10 2 X 106 ± 0.5 X 106
FIR 7 (15,0) 3.48 ±0 .30 2 X 106 ± 0.5 X 10®
FIR 7 (0,0) 3.40 ±0.23 2 X 106 ± 0.5 X 10®
FIR 7 (-15,0) 6.34 ±0.85 5 X 105 ± 0.5 X 105

“Values estim ated from LVG models of van 
Dishoeck et al. (1993) using H 2 CO  intensity ratio 
3o3 —t 2q2/5o5 4q4-

temperature estimates, the LVG model plots are offered for only a select number of intensity ra tio  values. 

The uncertainties are therefore reflective of the lim ited resolution of the plots.

In  the optica lly th in  lim it, the column density is given by,

(3-7)

where uui is the transition  frequency, Aul is the Einstein coefficient for spontaneous transition, gu is the 

statistica l weight o f the upper state, Q(Trot) is the pa rtition  function as a function o f ro ta tiona l temperature 

(Trot), E u is the energy o f the upper state, k is the Boltzmann constant, h is the Planck constant, c is the 

speed of ligh t, and /  Tmbdv is the m ain beam temperature integrated over the velocity linew idth dv in  units
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of K  km s A For H 2CO, th is equation can be sim plified to,

N tot _ ê _ 1.67 x lO 14

Q(Trot)

1.67 x 1014 f  m ,
6 =  v tfS  J TmbdV’ (3‘8)

where n is the permanent dipole moment and S is the line strength. Using the expression from  Blake et al. 

(1987), the pa rtition  function can be given by:

Q(Trot) =  2
7T(kTr o t ) 3

h3ABC

1 /2

(3.9)

The rotational constants A, B , and C were obtained from  the JPL catalog of spectroscopy1. The to ta l 

H 2CO column densities derived from  the above equations are given in Table 3.4. I f  an appropriate value 

for the H 2CO fractional abundance relative to  H 2 was known at specific regions of NGC 2024, the to ta l H 2 

column densities may be calculated. This is not entire ly reliable, however, since a constant abundance ra tio  

for such an extensive region is unlikely, and the fractional abundance varies according to  the temperature 

o f the region. Instead of calculating the H 2 column densities, the fractional abundance at the F IR  core 

positions are derived using these H 2CO column densities and the H 2 column densities from  previous data 

(Johnstone et al., 2006). These calculations are presented in  section 3.5 o f th is chapter, and are discussed 

further in  chapter 4.

3 .2  M a s s

Masses for clumps or cores may be found by various methods, using known properties such as densities and 

sizes. One approach is to  make use of emission from  dust, and to  assume a dust temperature. A  recent 

study of NGC 2024 using SCUBA 850 gm  data by Johnstone et al. (2006) in  combination w ith  the gas 

kinetic temperatures obtained from  formaldehyde transitions allows for the derivation of core masses. From 

Johnstone et al. (2006),

M,clump
M r,

0.59$850
( % r )  ~ 1 0.02 cm2g~l J \400pc

- 1  /  » \  2

K85° V  (  d ' (3.10)

1 JPL molecular spectroscopy site http://spec.jp l.nasa.gov/
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Table 3.4: H 2CO  Column Densities at F IR  Core Positions

Source Offset
["]

N {H 2CO)3ô 2b, 
[cm 2]

N (H 2CO )322 _221 
[cm 21

FIR 1 (-15,0) 2.3 X 1014 ± 2 .6 X 10u 7.2 X 1014 ± 4.6 X 1013
F IR 1 (0,0) 2.0 X 1014 ± 9 .1 X 1013 6.7 X 1014 ± 3.7 X 1013
F IR 1 (15,0) 8.9 X 1013 ±  1.9 X 1013 3.6 X 1014 ± 1.9 X 1013
F IR 2 (-15,0) 1.5 X 1014 ± 1 .0 X 1014 5.6 X 1014 ± 1.8 X 1013
F IR 2 (0,0) 2.4 X 1014 ± 3 .0 X 1013 8.5 X 1014 ± 2.7 X 1013
F IR 2 (15,0) 1.9 X 1014 ±  1.1 X 1014 6.9 X 1014 ± 2.5 X 1013
FIR 3 (-15,0) 1.5 X 1014 ± 4 .4 X 1013 6.2 X 1014 ± 2.0 X 1013
FIR 3 (0,0) 1.8 X 1014 ± 6 .8 X 1013 7.0 X 1014 ± 2.4 X 1013
FIR 3 (15,0) 1.0 X 1014 ± 7 .0 X 1013 4.2 X 1014 ± 1.8 X 1013
FIR 4 (-15,0) 1.1 X 1014 ± 4 .3 X 1013 4.7 X 1014 ± 1.3 X 1013
FIR 4 (0,0) 1.5 X 1014 ± 1 .2 X 1013 6.3 X 1014 ± 1.3 X 1013
FIR 4 (15,0) 1.3 X 1014 ± 7 .2 X 1013 5.2 X 1014 ± 1.9 X 1013
FIR 5 (-15,0) 3.0 X 1014 ± 3 .8 X 1013 9.0 X 1014 ± 6.4 X 1013
FIR 5 (0,0) 3.1 X 1014 ±  1.2 X 1014 9.8 X 1014 ± 5.2 X 1013
FIR 5 (15,0) 1.7 X 1014 ± 9 .7 X 1013 5.7 X 1014 ± 4.3 X 1013
FIR 6 (-15,0) 1.9 X 1014 ± 4 .5 X 1013 6.9 X 1014 ± 3.8 X 1013
FIR 6 (0 ,0 ) 2.2 X 1014 ±7 .1 X 1013 8.6 X 1014 ± 2.3 X 1013
FIR 6 (15,0) 1.3 X 1014 ± 1 .4 X 1013 5.7 X 1014 ± 1.3 X 1013
FIR 7 (-15,0) 1.0 X 1014 ± 2 .5 X 1013 4.9 X 1014 ± 9.3 X 1012
FIR 7 (0,0) 1.2 X 1014 ± 4 .3 X 1013 6.0 X 1014 ± 3.6 X 1012
FIR 7 (15,0) 6.7 X 1013 ± 2 .9 X 1013 3.9 X 1014 ± 9.4 X 1012

where Td is the dust temperature, Ssso is the 850 pm flux, Kgso is the mass absorption coefficient 0.02 

cm2 g-1 from  Johnstone et al. (2006), and d is the distance to  the source 415 pc. The dust temperature 

is assumed to  be equal to  the gas kinetic temperature, This should be valid for the very high gas

densities in  NGC 2024 (see Table 3.3). Johnstone et al. (2006) applied a clump finder to  the 850 pm 

map and presented the size of each clump, the to ta l flux inside the clump, and the clump mass for a dust 

temperature of 20 K . Using the H 2CO derived temperatures from  the ra tio  3o3 —> 2<)2 /3 22 -» 221 , the 

clump masses are rederived, and also the mass w ith in  a 15" beam. The results are shown in  Table 3.5. The 

clump masses calculated here are used to  evaluate the v iria l s tab ility  of the F IR  cores in  section 4.4.2.

3.3 HCO+ a n d  H ldCO+

W ith  the anticipation o f detecting possible in fa ll at the core positions, the F IR  cores were observed in  H C O + 

(J  =  3 — 2) and H 13CO+ (J — 3 — 2). The expected double-peaked lines are observed for H C O + , while the 

H 13CO+ lines are a ll single peaked (as seen in  Fig. 2.8), so the possibility o f m ultip le velocity components
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Table 3.5: Masses Derived for FIRs 3, 4, 5, and 6

Source
M(TH2co)ab 

per 15" beam clump to ta l0 
[M e beam-1 ] [M e ]

F IR  3 2.0 15.6
F IR  4 1.7 14.0
F IR  5 2.0 12.0
F IR  6 2.0 22.4

“Used temperatures derived from I I 2 CO 
line ratio 3o3 —> 2 02 /32 2  221 .

6Mass absorption coefficient of re =  0.02 
cm 2 g-1  used.

“Masses derived for clump sizes given by 
Johnstone et al. (2006).

is ruled out. The velocities at which the H 13CO+ lines peaked are approximately a t the same velocities 

as the self-absorption dips of the H C O + lines, further supporting this interpretation. The possib ility of 

in fa lling  cores, however, cannot be established, since the H C O + peaks show red-skewed profiles, rather than 

blue-skewed profiles. The im plications of a red-skewed profile are remarked upon in  chapter 4. The H C O + 

spectra were therefore a ll treated as self-absorption lines. Since the self-absorbed portions of the lines can 

affect the outcome o f calculations, they were corrected for by fittin g  each spectrum w ith  a Gaussian curve. 

The fitted  Gaussian lines were used to  evaluate the antenna temperature. Fig. 3.1 shows the best-fitting  

Gaussian curves for the H C O + spectra from  each core.

3.3.1 O p t ic a l d e p th  a n d  e x c it a t io n  te m p e r a tu r e

The intensities from  the two lines o f H C O + J =  3 — 2 and H 13CO+ J — 3 — 2 can give a ra tio  which allows 

for the optical depth ( r)  to  be calculated. For any optical depth r ,  the radiation temperature is given by,

r«  =  ( i - 0  <3-n >

where the radiation temperature is related to  the observed antenna temperature by TR =  T^/rjmb as 

described in  section 3.1. Provided the two transitions have the same excitation temperature (Tex), and 

neglecting the small difference in  frequency between the two transitions so v(H C O + ) =  v (H 13CO+ ), the
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V e lo c ity  /  ( k m / s )  LSR f r a m e  (R a d io  D e f'n )

Figure 3.1: Best fittin g  Gaussian curves for spectra of H C O + lines at 267 GHz to  correct for self-absorption 
at positions of F IR  1-7 (top to  bottom ).
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Table 3-6: O ptical Depths and Excita tion Temperatures at F IR  Core Positions

Source T K H C O +)
TX(H13CO+) r ( H 13C O + )a r(H C O + )a Tex(H 13C O +)b

[K]

Tex(H C O +)b
[K]

F IR  1 9.9±0.1 0.1 6.4 34 34
F IR  2 8.3±0.2 0.1 7.7 42 43
F IR  3 9.4±0.1 0.1 6.7 42 42
F IR  4 20.3±0.2 0.1 2.9 64 64
F IR  5 9.0±0.2 0.1 7.0 70 70
F IR  6 12.1±0.2 0.1 5.2 61 61
F IR  7 10.4±0.2 0.1 6.1 34 34

“uncertainties ±  less than 1% 
^uncertainties ±  less than 2%

follow ing relationship can be used to  find the optical depths for both H C O + and H 13CO+ ,

TX(HCO+) „  1 — e—r(HCO+) 1 - e-Ar(H™CO+) 
T*A{H 33CO+) ~  l-e~T(H™CO+) ~  i _ e-r(H^co+) ’ (3-12)

where A is the abundance ra tio  H C O + / H l 3CO+ , and t (H C O + ) =  A t (H 13CO+ ). The excitation tem

perature can then be found, given the optical depth and the observed radiation temperature:

TP. ’ J l
hv'

In r (3.13)

Using the abundance ra tio  o f A =  60, the optical depths were derived from the observed H l3CO+ antenna 

temperatures and absorption-corrected H C O + antenna temperatures for each F IR  core position. The 

excitation temperatures were then calculated from  the derived optical depths for both transitions. The 

fina l values are given in  Table 3.6.

The derived excitation temperatures deviate from  the H 2CO derived kinetic temperatures. A lthough a 

few F IR  core excitation temperatures are very sim ilar to  the kinetic temperatures from  H 2CO  (FIRs 4 and 

6), the others are as different as up to  ~40 K . Comparisons between the two sets of temperatures and the ir 

explanations w ill be discussed in  more detail in  Section 4.
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Table 3.7: H 13CO+ and H C O + Column Densities at F IR  Core Positions

Source N (H 13CO+)
[cm-2 ]

N (H C O +)
[cm-2 ]

F IR 1 1.5 X 1012 8.8 X 1013
FIR 2 2.5 X 1012 1.5 X 1014
FIR 3 2.1 X 1012 1.3 X 1014
FIR 4 1.8 X 1012 1.1 X 1014
FIR 5 5.1 X 1012 3.0 X 1014
FIR 6 3.0 X 1012 1.8 X 1014
FIR 7 1.4 X 1012 8.2 X 1013

3.3.2 C o l u m n  d e n s i t y

Using the observed radiation temperature, the calculated optical depth, and the excitation temperature, 

the H 13CO+ column densities are derived from  the expression given by Hogerheijde et al. (1997),

which is a sim plified version of an expression from  Scoville et al. (1986):

3fc ehBJi(Ji+i)/kTea. Tex +  hB/3k
N  =

8n3BjJ,2 J; +  1 1 — e.-hv/kTsi J TRdV. (3.15)

The column densities for H C O + is then obtained by m ultip lying  the column densities from  H 13CO+ by 

the abundance ra tio  A (60). Table 3.7 shows the column densities derived for H 13CO+ and H C O + at 

the F IR  core positions. Fractional abundances for H C O + /H 2 are derived from  these column densities and 

presented in  section 3.5.

3 .4  C o l u m n  d e n s i t y  f r o m  e x t i n c t i o n  a n d  8 5 0  /j,m

Haisch et al. (2001) presented infrared photom etry of the NGC 2024 embedded star cluster. In  th is study, the 

authors surveyed the region in  search of circum stellar disks around YSOs at m id-IR  (10.8 /im ). Whereever 

possible, the ir data were used in  conjunction w ith  previous J H K L  photom etry data to  derive visual extinc

tions, Av , toward several IR  sources in  the v ic in ity  o f NGC 2024. These source positions are displayed in 

section 4.3.4. Using the extinction given for these positions, the H 2 column densities are derived assuming
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the ra tio  of extinction to  the B — V  color excess R  — A y /E (B  — V) =3 .1  (M itchell et al., 2001) and the 

relationship between the H i  column density and extinction to  be,

N Av =  1.87 x 10 cm A y , (3.16)

from  M itchell et al. (2001). The column densities are also derived at the same positions from  the 850 /xm 

emission data from  Johnstone et al. (2006) using the expression given by Fissel et al. (2007),

lV(850^m ) =  3.89 x 10 Ssso « 85 0

0.02cm2g~
exp

( 17K
cm - 2 (3.17)

where the temperature in  the expression was approximated for each individual source. This was done by 

considering the H 2CO derived kinetic temperatures, and taking into account the distance between the 

source position and the ridge. The 850 //m  flux a t each position is determined by doing photom etry (in 

G A IA ) on the map from  Johnstone et al. (2006). The positions of the IR  sources are labeled w ith  the ir 

source IDs used by Haisch et al. (2001) in  Fig. 4.11. The column densities derived for some of the positions 

in  the v ic in ity  o f NGC 2024 from  the above two methods are presented in  Table 3.8. The comparison of 

the two derived sets o f H 2 column densities and the consequences of these results are discussed in section

4.3.4.

3 .5  F r a c t io n a l  A b u n d a n c e

In  many molecular studies, a constant fractional abundance is assumed for the chemical species to  derive 

H 2 column densities from  molecular observations. Fractional abundance is typ ica lly  the ra tio  o f the density 

o f a species over the density of H 2. When a fractional abundance is assumed, the molecular density from  

observations is the only necessary parameter to  derive the H 2 density. This may be deceptive, however, 

since the assumed fractional abundances are often found for one specific region, and may be different for 

the evaluation of a different region. Even w ith in  the same region, the fractional abundance may not remain 

constant, especially for very dense cores. A  more realistic approach is to  reverse the process, by considering 

a separate measurement o f H 2 column densities. Using th is in  combination w ith  derived molecular column
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Table 3.8: H 2 Column Densities from  E xtinction and 850 /xm

Source ID® RA Dec
[K]

A y c A (H 2 )85 0p rod
[cm-2 ]

N (H 2)Av
[cm-2 ]

2 05:41:45.79 -01:54:39.05 40 8.7 5.4 x 102i 1.6 x 1022
4 05:41:39.04 -01:52:09.74 40 14 2.7 x 1021 2.6 x  1022
14 05:41:37.22 -01:53:15.51 40 0.8 1.2 x 1021 1.5 x 1022
26 05:41:36.19 -01:54:26.83 40 7.5 1.0 x 1021 1.4 x  1022
33 05:41:38.27 -01:50:40.88 40 9.4 5.8 x 1021 1.8 x 1022
45 05:41:39.20 -01:54:16.15 50 12 1.2 x 1022 2.2 x 1022
53 05:41:36.80 -01:54:00.78 40 5.6 3.5 x 1021 1.0 X 1022
58 05:41:44.38 -01:55:24.73 80 8.8 5.2 x 1022 1.6 x 1022
61 05:41:30.11 -01:53:36.02 50 11 9.1 x 1021 2.1 x 1022
73 05:41:44.79 -01:54:37.06 70 11 4.9 x  1022 2.1 x 1022
74 05:41:45.00 -01:54:07.57 60 43 1.2 x 1022 8.0 x 1022
80 05:41:41.89 -01:54:25.95 65 12 2.1 x 1022 2.2 x  1022
88 05:41:53.88 -01:55:16.82 40 9.8 6.4 x 1021 1.8 x 1022
92 05:41:45.98 -01:55:03.04 60 14 1.9 x  1022 2.6 x 1022
98 05:41:50.23 -01:57:45.15 40 6.1 1.4 x 1022 1.1 x 1022

“Source IDs correspond to the same IDs from Haisch et al. (2001)
bTemperatures at IR source positions estim ated using U 2CO  derived temperatures at FIR  

core positions
'V isual extinction towards mid-IR sources given by Haisch et al. (2001)
“*850 (im SCUBA data from Johnstone et al. (2006)

densities, it  is possible to  obtain direetlychemical fractional abundances for specific positions. Here, the 

column densities derived for H 2CO and H C O + are used w ith  the column densities derived from  sub-mm 

dust observations [850 pm  from  Johnstone et al. (2006)] for the F IR  core positions to  get H 2CO and H C O + 

fractional abundances. Johnstone et al. (2006) used 850 pm data to  derive properties of dense dust clumps 

in the v ic in ity  o f NGC 2024. Using the 21" beam convolved fluxes given by Fissel et al. (2007), H 2 column 

densities are found from  Eqn. 3.17 for each F IR  position. The result is presented in  Table 3.9. The H 2CO 

column densities used for the abundance ra tio  calculations came from the derivations of the 322 2 21

transition  (shown in  Table 3.4), and the H C O + column densities came from  m ultip lying the H 13CO+ 

column densities by the assumed abundance ra tio  for H C O + / H 13CO+ .

The calculated H 2CO fractional abundances range between 2 x 10-9 — 5 x  10-9 . These values agree well 

w ith  a number o f H 2CO fractional abundances in  previous litera ture. In  regions of massive star form ation, 

w ith  warm temperatures (60 to  90 K ), the fractional abundance of H 2CO  has been observed to  be a few 

x lO -9 (van der Tak et al., 2000; Schreyer et al., 2002; D oty et al., 2002). Higher values have been found, 

however, for instance, in  TM C-1 and L134N, where the observed fractional abundance was =  2 x 10~8 (van
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Table 3.9: Fractional Abundance for H 2CO and H C O + at F IR  Core Positions

Source A (i7 2)850/im Abundances®
[cm” 2] H i C O b

H->.
H C O + c 

H*
F IR  1 1.4 x 1023 5.0 x  1 0 -9 6 .5  x n r 10
F IR  2 2.2 x 1023 3.9 x  10 -9 6.9 x 1 0 - 10

F IR  3 3.2 x 1023 2.2 x lO "9 4.0 x 1 0 - 10

F IR  4 2.5 x 1023 2.5 x 10“ 9 4.3 x 1 0 - 10

F IR  5 4.3 x 1023 2.3 x 10-9 7.1 x lO -10
F IR  6 2.2 x  1023 2.6 x 1 0 -9 5.4 x 1 0 - 10

F IR  7 2.6 x  1023 2.3 x 10 "9 3.2 x 10-10

aH 2  column densities derived from SCUBA 850 fan  data 
of Johnstone et al. (2006)

hI I 2 CO  fractional abundance obtained from H 2CO column 
densities derived using 322 —► 22i transition.

cH C O +  fractional abundances derived assuming a fixed 
abundance ratio for H C O Jr/ H 13CO^~ (Table 3.7).

Dishoeck et al., 1993). This study focused on cold, dark clouds, and may not be applicable to  the dense, 

warm ridge of NGC 2024.

The fractional abundances o f H C O + /H 2 are given in  Table 3.9 to  be approxim ately 5 x 10-10. In  

comparison w ith  other H C O + fractional abundance observations, th is value is relative ly low. van Dishoeck 

et al. (1993) gave H C O + abundances around 7 x 10-9  for cold dark clouds in  TMC-1 and L134N. For a 

region more resembling the NGC 2024 ridge, Blake et al. (1987) found an upper lim it for the fractional 

abundance to  be around 10~9, which is greater by a factor of 2. Sim ilar values (1 x 10~9 — 5 x  10-9 ) 

were found by Helmich (1996) for IR  sources in  the W3 molecular gas, which is a massive star form ing 

region. The values derived in  th is thesis are lower than the presented molecular regions, but there are 

several feasible explanations for the possible cause in  the differences. One possible factor comes from  the 

assumption which was made tha t H C O + and H lsCO+ had the same excitation temperature. This was 

forced in  order to  calculate the optical depth. Another likelihood is tha t the assumed abundance ra tio  of 

H C O + / H lsCO+ was incorrect, and may have been smaller. These explanations are discussed further in  

Section 4.2 for the comparison between the H C O + derived excitation temperatures and the H 2CO derived 

kinetic temperatures.
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4 D is c u s s io n

4 .1  V a r i a t i o n  o f  p h y s i c a l  p r o p e r t i e s  t h r o u g h o u t  r i d g e

The temperature and density d istribu tion  across a core can unravel inform ation concerning the object’s 

present stage of core/star form ation. For instance, a class —1 source in an isolated region should reveal a 

low temperature center surrounded by warmer envelopes. The core’s only source of heating comes from  the 

interstellar radiation fie ld (ISRF) due to  the absence of a central stellar source (Evans, 2003; D i Francesco 

et al., 2001). The density o f the core should also be rad ia lly dependent by a power law (n oc r -2 ) as 

suggested for singular isothermal spheres by Shu (1977). Observations have shown tha t th is is not always 

the case, especially for clustered environments, and tha t the central profiles exhib it a flattened or plateaued 

d istribution, whereas the outer rad ii show the expected steeper fa ll o ff (D i Francesco et al., 2001). This 

density d istribu tion  has been predicted for the inside-out collapse, where the inner rad ii are expected to  

show a power law of — § (Young and Evans, 2005). The temperature and density distributions of cores in 

clustered regions may not show the same features as isolated regions, and further observations are needed 

to  constrain the properties o f clustered cores. Hence an observational test o f the temperature and density 

variation can reveal the development of the core in various ways.

4.1.1  T e m p e r a tu r e

The results o f the temperature derivations show tha t the F IR  cores have very warm temperatures, ranging 

from 46 to  85 K  for the 3o3 - f  2 0 2 /3 2 2  —> 221 ratios. The temperatures derived from  the 5os - f  404/523 -> 422 

ratios give a wider range, from  24 to  116 K  for the cores, but these temperatures have larger uncertainties 

as previously discussed. Regardless o f which set o f temperatures is being considered, they are much higher 

than the cold dust temperatures orig ina lly presented by Mezger et al. (1992), and more in  agreement w ith  

recent temperature studies.

The cuts o f constant declination across the F IR  cores (presented in Table 3.1) show tha t there is little  

variation in temperature between each F IR  core and its  immediate surroundings. In  general, from  Table
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Figure 4.1: Variation o f temperature derived from  CO  line ra tio  3o3 -4 2 0 2 /3 2 2  22i  (le ft) and formalde
hyde column density derived from  H iC O  3o2 —> 2o2 line (right) across F IR  cuts. The cuts are 
in  order from  F IR  1 to  F IR  7 (top to  bottom ). Each cut is a rb itra rily  offset to  display only its  
variations in  comparison w ith  the other cuts.

2.4, the integrated intensities measured at the positions of the F IR  cores are the largest along the cuts, in  

some cases significantly higher (FIRs 4-6). B ut the temperature depends on the intensity ratios, and these 

values varied little  (from  Eqn. 3.1). Fig. 4.1 (le ft) illustrates th is point, showing tha t the temperature 

remains constant along the cuts, and there is no consistent trend from one F IR  core cut to  another.

The lack o f evidence tha t the cores have significantly higher temperatures than the ir surrounding mate

ria l weakens the claim o f internal heating w ith in  the F IR  cores. Lack of internal heating suggests tha t the 

cores are not being heated by embedded sources, and therefore do not contain massive protostars. The core 

centers also fa il to  show cooler temperatures than th e ir surroundings, which makes it  d ifficu lt to  comment 

on whether they are being heated prim arily by an outside source. Schulz et al. (1991)—in  the ir study o f the 

F IR  cores using CS excitation-—found tha t the gas temperatures decreased w ith  increasing column density 

towards the core centers found in  this study, and they claimed tha t the main source of heating must be 

located outside. The warm core centers suggest th a t the dumpiness of the cloud allows external radiation 

to  reach core centers.
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4 .1 .2  D e n s it y

The density estimates n(H 2) obtained from  LVG models using the H 2CO line ra tio  3o3 —> 202 /3 22 221

(Table 3.3) show tha t the F IR  core positions tend to display peak densities w ith in  the cuts. The F IR  cores 

a ll have densities o f ~  2 x  106 cm-3 , w ith  little  deviation in  density from  one F IR  core to  another. I t  is 

d ifficu lt to  quantify the significance of the variations in  densities across cuts since these values were only 

roughly estimated. Nonetheless, it  is probably safe to  say tha t the cores have higher densities than the ir 

surrounding m aterial. The column density calculations of the F IR  core cuts derived from  H 2CO also show 

th is, as expected. The variation of column densities derived using the H 2CO derived temperatures and 

the line intensities from  the H 2CO 3o3 -4 202 line across the F IR  core cuts are shown in  Fig. 4.1 (righ t). 

The center core positions peak in  column densities, but they do not fa ll o ff rapidly. F IR  5 shows the 

largest variation in  column densities, possibly im plying a more advanced stage for the embedded source. 

The core positions in  general had higher column densities, but there were more variations in  the values 

among different F IR  core positions. The variation, again, is small. For the column densities derived from  

3o3 —t 2o2, the cores had the range 5.9 x 1021 — 1.6 x  1022 cm-2 , w ith  F IR  7 being the lowest and F IR  5 

being the highest. From the 322 -4 22i derivations, the column densities range from  3.0 x 1022 -  4.9 x 1022 

cm-2 , w ith  the lowest and highest values corresponding to  the same cores as in  3o3 -4 2o2 derivations. I t  

appears tha t the southern clump has slightly higher column densities than the northern clump, neglecting 

the lowest value for F IR  7. This can also be said for the column densities derived from  H 13CO+ and 

H C O + . This may be revealing the spatial orientation of the northern and southern clumps.

4 .2  T e m p e r a t u r e  c o m p a r is o n

The kinetic temperatures derived from  the H 2CO line ra tio  3o3 -4 202 /3o3 -4 2o2 and the excitation tem

peratures derived from  H C O + and H l3CO+ , as presented in  Table 3.1 and 3.6, have yielded two different 

sets o f temperatures. A lthough the difference is almost negligible in  a few F IR  cores, most temperature 

differences range between 20 and 40 K . This difference is not alarm ing, however, since the two temper

atures were derived using two different methods w ith  different assumptions. For example, in  obtaining 

the H C O + and H 13CO+ excitation temperatures, i t  was in itia lly  specified tha t the two species share a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. D i s c u s s i o n 4 9

common excitation temperature. This is not necessarily so, because the difference in  optical depths re

quires tha t the radiation in  the two lines is produced in  different gas volumes which may have different 

kinetic temperatures. Another assumption was an abundance ra tio  for H C O + / H 13CO+ which was used 

to  obtain the optical depth needed for the excitation temperature derivations. W ith  these possible sources 

o f uncertainty in  m ind, the H 2CO  derived kinetic temperatures are more trustw orthy, and prone to  fewer 

inaccuracies. In  support o f the re lia b ility  o f the H 2CO  temperatures, a comparison between the I I 2CO 

LTE and LVG derived temperatures show tha t they are in  good agreement (Tab,3.2). W ith  the exception 

o f a few positions, the LTE derived temperatures agree w ith  the LVG derived temperatures w ith in  the ir 

uncertainties. Even in  the most deviant case, the LTE and LVG temperatures disagree by only 7 K . This 

also suggests tha t LTE is a good approxim ation for the H 2CO level populations.

4 .3  St r u c t u r e  a n d  m o r p h o l o g y

4.3.1 C o m p a r i s o n  w i t h  H2CO a b s o r p t i o n

NGC 2024 contains an H I I  region which only pa rtia lly  coincides w ith  the entire ridge, specifically w ith  

the northern clump. This spatial coincidence allows observations of molecular gas against the H I I  region 

continuum. Crutcher et al. (1986) presented absorption observations of NGC 2024 in the H 2CO lio  - t  In  

line at 4.8297 GHz (A 6 cm). The positions of the ir absorption measurements are shown in  Fig. 4.2. By 

comparing the absorption m inim a w ith  the measurements made from  H 2CO  emission, inferences can be 

made about whether the two observations are tracing the same region. Fig. 4.3 shows the absorption spectra 

from  Crutcher et al. (1986) compared w ith  the observed formaldehyde emission spectra. The emission peaks 

have been inverted in  the intensity direction for easier comparison w ith  the absorption. The two sets of 

spectral lines appear to  be tracing gases of two different velocities. For example, at the position called NCP 

[second from  top in  Fig. 4.3 (le ft)], the absorption m inim um  is at ~9.2 km s-1 , while the emission peak 

[top spectrum of Fig. 4.3 (righ t)] is at ~10.8 km s_1. The observed differences in  kinematics suggest tha t 

the absorbing and em itting formaldehyde are spatially separate, although coinciding along the observed 

line-of-sight. In  the 3o3 —t 202 spectra o f FIRs 1-4 (cores in  the northern clump), a very fa in t dip can 

be seen at the corresponding velocities o f the absorption peaks. This absorption is too fa in t to  be clearly
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detected in any of the other lines. The absorbing gas must be in  front o f the H I I  region and must be less 

dense by an order o f magnitude (~105 cm-3 ) than the em itting region. The H C O + emission spectra show 

self-absorption notches at approxim ately the same velocity peaks as the absorption peaks from  Crutcher 

et al. (1986) for the northern clump cores FIRs 1-4 (vabs =  9.9 km s-1 ). Since there are no absorption 

studies in  H 2CO for the southern clump, the presence of low density foreground gas in  the southern clump 

cannot be determined. Schulz et al. (1991) suggested tha t since the northern clump detected in  emission 

was not observed in  the absorption study of Crutcher et al. (1986), the northern clump is m ost-likely located 

behind the H I I  region, whereas the low density gas observed in absorption is ly ing in  fron t o f the H I I  

region. Further discussion of the dense molecular gas relative to  the H I I  region is given in  the follow ing 

section.

4.3.2 C o m p a r i s o n  w i t h  d u s t :  FIR 1300 /i m , SCUBA 850 a n d  450 ij,m

Fig. 4.4 and Fig. 4.5 show the contours of the H 2CO 3o3 —> 2q2 transition and the 5o5 —> 4o4 transition 

w ith  the positions o f the F IR  cores as presented by Mezger et al. (1992). From the 3o3 —t 2o2 map, we see 

a fa ir amount o f agreement between the F IR  core positions and the formaldehyde peaks. Most o f the F IR  

cores can be found w ith in  15" o f a 3o3 —> 2o2 peak, which is a difference of approxim ately two th irds o f the 

beamwidth. FIRs 1, 5, and 7 are not clearly distinguished peaks in 3o3 - t  202, but th is may be a m atter 

of resolution. A ll F IR  core positions can be located in  alignment w ith  the center o f the ridge, and shows 

no offset in  righ t ascension. The formaldehyde peaks of the 5o5 —> 404 transition map—observed in  higher 

resolution—agree more closely in  position w ith  the F IR  core positions. A ll F IR  core positions lie w ith in  5" 

of a formaldehyde peak, which is one th ird  of the beamwidth. A  peculiarity is tha t there are at least three 

prom inent formaldehyde peaks tha t were not detected in  dust emission by Mezger et al. (1988; 1992): one 

between F IR  2 and F IR  3, and two just south of F IR  4. The higher resolution 5os - t  404 map also reveals 

tha t the structures of the formaldehyde cores are not circular, but are more complex. The peak near F IR  5 

appears as though i t  may be a combination of two or more cores, as suggested by Wiesemeyer et al. (1997). 

Overall, the formaldehyde peaks of the two transitions (3o3 -> 202 and 5os -> 404) show good agreement 

w ith  the positions of the F IR  cores, displaying tha t the dust and molecular gas peak in  the same positions.

The formaldehyde transition  maps were interpolated to  smooth out the smaller features m ostly due
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Figure 4.2: H 2CO  3o3 -> 202 line map w ith  labeled positions o f V LA  absorption measurements from 
Crutcher et al. (1986).
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inverted emission spectra from H 2CO 3q3 202 line corresponding to  a ll eight positions (righ t).
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to  noise and emphasize the m ajor prim ary features. In  the 5<)5 -> 404 case, the contours reveal a strong 

resemblance to  the 450 /im  map. Fig. 4.6 displays the contours o f the 50s - t  404 map plotted over a gray 

scale map o f 450 /im . A lthough the peaks may be shifted by a few arcseconds, the positions of the peaks 

are in  very close agreement.

Fig. 4.7 shows the contours o f the 850 fim SCUBA map plotted over the formaldehyde 3o3 —t 2o2 tran

sition map. As can be observed from  the comparisons between the SCUBA contours and the formaldehyde 

transition, the peaks loosely correspond to  each other, but the differences are noticeable. In  the northern 

clump, the formaldehyde peaks are generally s lightly south o f the SCUBA peaks. The clearest example 

is F IR  4: the formaldehyde counterpart is 15-20" offset in  the south direction from  the SCUBA counter

part. The misalignment of the position is peculiar, but is perhaps revealing the presence of the unipolar 

outflow in  F IR  4 (Moore and Yamashita, 1995) although the direction of the outflow was approximated 

to  be along southeast-northwest projected orientation instead of directly north-south. This inference was 

made due only to  the detection of a small near-IR reflection nebula and the previous cases in  which such 

types were usually associated w ith  energetic molecular outflows. Further inspection o f the outflow would 

be needed to  clearly identify it  as the cause of the difference between the positions of the formaldehyde 

emission peak and in  the sub-mm SCUBA peak. In  formaldehyde, F IR  2 and F IR  3 counterparts appear to  

be blended in to  one strong peak in  between the two positions, whereas the SCUBA peak appears slightly 

more spatially correlated w ith  F IR  3, though it  is s till d ifficu lt to  distinguish the separation between F IR  

2 and F IR  3. In  the southern clump, the peaks are more in  agreement. The positions of the peaks are 

more closely aligned between the formaldehyde map and the SCUBA contours. One difference to  note is 

tha t the strongest peak in  each case is different from  the other. The strongest SCUBA peak appears at 

F IR  5, whereas in formaldehyde, the strongest emission peak appears more associated w ith  F IR  6. In  both 

cases, F IR  7 is not clearly distinguishable, bu t rather appears as an extension of F IR  6. Overall, the more 

diffuse outer boundary of the formaldehyde map appears shifted slightly southward in  comparison to  the 

SCUBA contours. This is more clearly observable in  the southern clump. W hy aren’t  the formaldehyde 

emission peaks aligned w ith  the submm SCUBA peaks? This is perplexing because dust and molecular gas 

are expected to  reside co-spatially. In  reality, maps of molecular emission and dust emission often show 

m ajor differences in  detail. In  fact, maps of the same region in  different molecular emission lines (e.g.
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km s-1 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D
ec

lin
at

io
n

4. D i s c u s s i o n 56

53:30

- 1 :54:00

30

55:00

30

56:00

30

57:00

5 :41:50 46  42 38 

Right ascension

Figure 4.6: Contours o f interpolated H 2CO  5os —> 404 line plotted over gray scale map o f 450 /im . The 
contours o f the 5os - t  4o4 line display intensities between 1 and 10 K  km s-1 at steps of 1 K  
km s-1 .
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H C O + , N 2H + , CS) often exhib it peaks at different positions. One proposed explanation for th is curiosity 

is a ttribu ted  to  molecular excitation issues, and how the temperature for excitation varies from  one species 

to  another. Another possibility is tha t variations in  the fractional abundances from  place to  place may 

contribute to  the observed peak positions in  different molecules.

4 .3 .3  C o m p a r is o n  w it h  o t h e r  m o l e c u l a r  s t u d ie s

Figs.4.8 and 4.9 show the contours of the H 2CO 3o3 —t %n transition map and the 5o5 -> 404 transition 

map w ith  the positions of the F IR  cores presented by Mezger et al. (1992), and CS  peaks presented by 

Schulz et al. (1991). The only strong correlation w ith  the 3o3 —> 202 peaks and the CS peaks appears at 

one peak near F IR  6. CS  2, 3, and 4 appear close to  (w ith in  15" of) 3o3 —> 202 peaks. The contours of the 

5o5 —t 404 map show closer correlation w ith  the CS peaks, probably due to  its  higher resolution. CS 2, 

3, 4, 5, 6, and 7 are a ll located w ith in  5" o f 5o5 —> 4q4 peaks. A  m ajor difference between CS  and H 2CO 

w orth pointing out is th a t an arc seen in  CS connecting the northern and southern clumps is not apparent 

in  either of the H 2CO maps. Our H 2CO 505 —> 404 transition  map also shows a number o f peaks tha t are 

not seen in CS. Schulz et al. (1991) pointed out tha t differences between different molecular distributions 

most like ly reflect the chemical abundance gradients inside the very high density cores.

4 .3 .4  E m b e d d e d  I R  s o u r c e s : C o m p a r is o n  w i t h  m i d - a n d  n e a r - I R

Haisch et al. (2000) presented a near-IR  3.4 fim survey of the NGC 2024 region and detected 257 sources 

w ith in  110 arcm in2. The positions of these sources tha t had complete J H K L  photom etry from  previous 

studies were presented, and compared w ith  the location of the NGC 2024 ridge. Fig. 4.10 displays the 

location of the near-IR sources in  the v ic in ity  o f the ridge. FIRs 1, 2, and 7 have near-IR sources w ith in  

10", as can be observed from  Fig. 4.10. However, these may well be coincidences, since the remainder of 

the near-IR sources in  general show no association w ith  the ridge, and there is no sign th a t the star cluster 

originated from  the ridge. Hence, there is no strong evidence for embedded young stars w ith in  the F IR  

cores. I t  is w orth noting again tha t the sources presented in  the study were not complete, and there may 

have been sources detected tha t were more closely corresponding to  the F IR  cores bu t le ft o ff from  the lis t 

due to  lack of available J H K L  photom etry data.
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Figure 4.7: Contours o f SCUBA 850 /on map plotted over H 2CO 3o3 -+ 202 transition gray scale map. The 
850 pm contours represent intensities at 2, 4, 6, 8, 10, and 12 K  km s-1 . The crosses indicate 
the positions o f the F IR  cores.
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Figure 4.8: H 2CO  3o3 -> 2o2 transition contours w ith  positions o f F IR  cores, CS cores from  Schulz et al.
(1991) and ionizing source IRS2b. The contours show intensities from  4 to  12 K  km s-1 at steps 
o f 1 K  km s-1 .
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Figure 4.9: H 2CO 5os -> 4o4 transition  contours w ith  positions o f F IR  cores, CS cores from  Schulz et al.
(1991) and the ionizing source IRS2b. The contours show intensities from  2, 4, 6, 7, 8, 9, and 
l O K k m s - 1.
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Figure 4.10: Comparison of H%CO 3o3 —> 202 map w ith  N IR  (3.4 jim) L-band sources from  Haisch et al.
(2000). The plus signs indicate the positions of N IR  sources, and the 7 open circles indicate 
the positions o f the F IR  cores. There are no exact coincidences o f the N IR  sources w ith  the 
F IR  cores.
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Haisch et al. (2001) surveyed NGC 2024 in  the m id-IR  at 10.8 /irn  to  find evidence for circum stellar disks 

around YSOs in  the region. The detected sources w ith  previous J H K L  photom etry data were presented 

and used to  calculate extinction towards the m id-IR  sources. Fig. 4.11 shows the positions o f some o f the 

detected disk sources relative to  the ridge, labeled by the source IDs assigned by Haisch et al. (2001). The 

objects which are excluded from  the figure (source IDs 4, 33, 88, and 98) are outside the map boundary. 

None of the detected sources have positions which coincide w ith  the F IR  cores. They are, however, close 

enough to  the ridge to  aid in  the analysis o f the structure of NGC 2024. In  section 3.4, the visual extinctions 

towards the m id-IR  sources are used to  derive H 2 column densities. These column densities are compared 

w ith  H i  column densities derived from  the SCUBA 850 gm data [from Johnstone et al. (2006)] at the same 

positions as the m id-IR  sources. The result shown in  Table 3.8 displays the two sets o f column densities. 

A llow ing a difference of a factor o f 2 to  be taken as an “agreement” , the follow ing statistics are found 

from  the comparison. There are 11 positions where the H i  column densities are in  agreement, and four 

positions where the H i  column densities derived from  850 pm data are greater. The m a jo rity  of the m id-IR  

sources have column densities in  agreement w ith  the sub-mm derived column densities. These sources are 

more likely to  be located behind the ridge. However, four m id-IR  sources show extinction derived column 

densities which are higher than the sub-mm derived column densities. These few stars may be embedded 

in  the ir small envelopes or circum stellar disks, and may have been diluted in  the beam o f the SCUBA 

observations. There is no suggestion th a t any of the m id-IR  sources is located in  fron t of the ridge.

Fig. 4.12 shows the formaldehyde 3o3 —)• 20i  contours overlaid on the Midcourse Space Experiment 

(MSX) 8 pm image. This m id-IR  emission traces the dust heated by ionization, and outlines the sharply 

delineated “bay” to  the south, which is ionization bounded. (Johnstone et al., 2006). The spatial agreement 

of th is sharply ionized southern boundary o f the H II region w ith  the “gap” separating the northern and 

southern clumps of NGC 2024 has clear im plications. The inclination o f the ridge along our line of sight 

can be inferred as the northern clump tiltin g  away from  us as the southern clump is tilte d  towards us. The 

area separating the two clumps may be due to  the obstruction o f the sharply ionized “bay” .

The 850 pm study by Johnstone et al. (2006) identified discrete emission features (clumps) from  NGC 

2024. The detected clumps were presented, w ith  calculated mass and radius for each source, assuming a 

constant temperature of 20 K . Comparing the source positions w ith  the positions of the F IR  cores, i t  was
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Figure 4.11: Comparison o f H 2CO  3o3 -+ 202 map w ith  M IR  (10.8 /jm ) iV-band sources from  Haisch et al. 
(2001). The M IR  sources are labeled using the same source IDs as Haisch et al. (2001).
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Figure 4.12: M SX 8 /um w ith  contours o f H 2CO 3o3 -4 202 line. The contours show intensities between 4 
and 12 K  km s-1 a t steps o f 2 K  km s-1 . 8 /im  traces the high temperature dust heated by- 
ionization. The ionization front can be seen to  coincide w ith  the gap separating the northern 
clump and the southern clump.
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found tha t the four most massive clumps were coincident w ith  F IR  sources, specifically FIRs 3-6. Fig. 4.13 

from  Johnstone et al. (2006) shows the same region in  various wavelengths. The bottom  le ft panel displays 

the positions of the detected clumps and the ir sizes signified by the size o f the crosses. This image clearly 

shows the m ajor clumps’ agreement w ith  F IR  core positions. The remaining F IR  cores are undetected, but 

the ir failure to  be identified may be due to  the automated clump finder used and the crite ria  lim its  defined 

by Johnstone et al. (2006). The possibility tha t the ir spatial proxim ities to  each other are too close and 

may be overlapping is another factor tha t may play a role in  the ir going unnoticed.

4.3.5 C o m p a r is o n  w i t h  o p t ic a l

The association of the molecular ridge w ith  the dust is evident when comparing the contours of the formalde

hyde maps w ith  the optical image. Fig. 4.14 (top) is NGC 2024 from  the DSS, w ith  the contours indicating 

the various strengths of the formaldehyde 3o3 -> 202 transition. The DSS image takes up a much larger 

region than the formaldehyde contours, but it  appears tha t the peaks of strongest formaldehyde emission 

coincide closely to  the large central dust band obscuring the H I I  region. This observation strongly sup

ports the notion tha t the molecular gas is cohabiting w ith  the dust responsible for the obscuration in  the 

foreground of the H I I  region. The weak extension o f the northern clump formaldehyde emission to  the 

east appears to  correspond to  the larger dust arm extending to  the east. The inclination o f the entire ridge 

to  the north-west appears to  follow  the north-east t i l t  o f the east arm of the dust. Fig. 4.14 (bottom ) 

which shows the correlation o f the 850 /im  contours w ith  the optical image displays the same trends as 

the formaldehyde emission. The outer diffuse extension follows the same general course as the dust band. 

These observations suggest tha t the 850 /im  dust and the H 2CO  transitions are tracing the same region, 

the ir resembling shapes w ith  the optical dust band implies tha t they are located in  fron t o f the H I I  region. 

The sim ilar shapes o f the dust band and the molecular ridge may merely be a coincidence, however, since 

the molecular ridge was not detected in  the formaldehyde absorption study of Crutcher et al. (1986).
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Figure 4.13: Fig.6 from  Johnstone et al. (2006). NGC 2024 at (top-left) 450 pm, (top-right) optical from 
DSS, (bottom -left) 850 pm w ith  plus signs indicating the positions of the detected clumps and 
sizes indicating the calculated clump masses, and (bottom -right) 8 pm showing the sharply 
delineated south “bay” .
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Figure 4.14: DSS image o f NGC 2024 w ith  contours o f H 2CO  3o3 -4 202 (top) and contours of SCUBA 
850 /j,m (bottom ). The H 2CO contours show intensities a t 2, 4, and 8 K  km s_1. The SCUBA 
contours show intensities a t 0.5, 1, 2, 4, and 10 K  km s-1 .
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4 .4  St a r  f o r m a t io n

The study o f star form ation has m ostly been lim ited to  the observations of isolated “fie ld” molecular 

clouds, due to  the lim it o f sensitivity and resolution o f the instruments. Isolated regions are less obscured 

by dust, and therefore have been more intensively investigated. Isolated regions nurse the form ation of 

low-mass stars, and the absence o f massive stars—whose presence would dominate the lum inosity o f the 

lower mass stars—provides a simpler situation for observation. More recently, since the development of 

infrared and sub-mm instrum ents, the th ick dust in  clustered environments can be penetrated to  probe the 

ac tiv ity  taking place in  embedded clusters o f young stars. NGC 2024 is an example of such an environment, 

where the center-most dense region could not be studied in  detail u n til recently. Because we see tha t 

binary and m ultip le star systems are more common, it  is im portant tha t we understand the nature of 

cluster environments and the interactions in  clustered star form ation. Such clustered environments provoke 

curiosity, since star form ation must be more complicated than in  isolated regions, and the influence o f the 

surroundings must have some effect. For example, what kind of effect does it  have on form ation when 

neighboring stars are competing for the same m aterial, and how is evolution affected by nearby massive 

stars blowing away gas? Questions about whether the clrcum stellar disks in  such regions are disrupted by 

close-by stars have also been posed, as is the result in  simulations (Bate et al., 2003). Another curiosity is 

th a t clusters give b irth  to  stars of a ll different masses, and high-mass stars tend to  be found surrounded by 

low-mass stars in  clusters. Low and high-mass stars differ vastly in  the ir formations. High-mass stars have 

greater densities and masses so they collapse on smaller tim e scales. Their lum inosities and higher effective 

temperatures also relate to  the ir faster evolution, making it  more d ifficu lt to  identify the processes for 

high-mass star form ation. The d ifficu lty  caused is by the fact tha t high-mass stars are fewer in  number and 

tend to  be more embedded in  the thickest regions o f dust. Simulations have shown th a t the most massive 

stars tend to  form  in cluster centers, where there are enhanced accretion and interaction rates (Bonnell 

and Bate, 2002; Bonnell et al., 2003). In  contrast to  low-mass stars tha t can be found in  a ll star-form ing 

regions, high-mass stars are only found in G iant Molecular Clouds. Their presence is inferred, for example, 

by observations o f masers such as O H  and H 20  which arise in  outflows or circum stellar disks. In  low-mass 

star form ation, magnetic fields contribute significantly to  counteract gravity, but in  high-mass stars, the ir
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gravity is too strong and is less affected by the magnetic field.

In  earlier studies of NGC 2024, the masses o f the F IR  cores were determined to  be very massive due 

to  the low estimated temperatures. Most studies concluded tha t the region was undergoing massive star- 

form ation. Mezger et al. (1992) derived masses around 10 M 0 w ith in  5" o f F IR  cores, and Johnstone et al.

(2001) found an average of ~70 M 0 for F IR  cores w ith in  a 21" beam. These studies assumed a constant 

dust temperature around 20 K , which is lower than the H 2CO  derived temperatures. The masses o f the 

F IR  cores derived here are much lower. The highest o f which was for F IR  5 (using the temperature derived 

from  3o3 —> 202/322 —> 22i)  at 3.7 M 0 , far from  a high-mass star. The lowest was F IR  1 at 1.2 M 0 . These 

values are an order o f magnitude less than the previously derived masses. Hence, the NGC 2024 ridge 

cannot be a site o f massive star form ation, and the possib ility tha t the cores w ill form  high-mass stars is 

much lower than previously thought.

4 .4 .1  V e l o c it y  in f o r m a t io n

The channel maps at several velocity increments (Figs.2.3 and 2.5) and the molecular spectra of the F IR  

cores (Figs.2.9 and 2.10) presented in  Chapter 2 provide clues about the velocity characteristics and the 

dynamics of the gas being traced. As mentioned before, the channel maps (in  3o3 - t  202 and 5o5 —► 404) 

show tha t the northern clump peaks at lower velocities (~10.5 km s-1 ) whereas the southern clump peaks 

at higher velocities (~11.5 km s-1 ). The spectra o f the individua l F IR  cores show sim ilar velocity features. 

FlRs 1-4 (in the northern clump) range in  peak velocities from  10.2-10.6 km s-1 . FIRs 5-7 (in  the southern 

clump) a ll display peak velocities near 11.4 km s-1 , about 1 km s-1 higher than the northern clump cores. I t  

is unclear whether this velocity difference between the northern and southern clumps is suggesting rotation, 

but it  may be safe to say tha t the two clumps are kinem atically different, though weakly linked. The gap of 

fa in t emission between the northern and southern clumps is a good indicator o f this. This gap corresponds 

spatia lly to  the sharp ionization bound o f the H I I  region, perhaps indicating tha t the northern and southern 

clumps may be separated by the ionized gas.

The line profiles also offer clues about the turbu lent nature of the region. The F IR  core spectra have 

very broad lines (FW HM  of ~2 km s-1 ), approxim ately ten times the therm al line w idth, signifying a 

considerable amount o f turbulence. The lines for the F IR  cores in  the southern clump have broader lines,
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indicating th a t the southern clump is more turbulent. W inds from  young stars and the interaction between 

molecular and ionized regions are some of the possible sources of turbulence (Shu et al., 1987). The line 

shapes of the cores are also suggestive of non-quiescent areas. Prom Fig. 2.9, it  is clear tha t the lines are 

asymmetric, and non-Gaussian. More apparent in  the H 2CO 3 o3 —> 2o2 and 005 —t 4 04 lines of FIRs 4-6 

are the blue shoulders, and a weak red wing, most prominent in  F IR  5. These features are suggestive of 

the core gas being in  m otion, possibly experiencing dynamic events such as outflows. This is in  agreement 

w ith  evidence o f outflows from  previous observations: F IR  4 (Moore and Yamashita, 1995), F IR  5 (Richer 

et al., 1992), and F IR  6  (Richer, 1990).

D irect observation of gravitational collapse is d ifficu lt, and only indirect estimates of in fa ll speeds are 

available from  statistica l studies (Evans, 2003). The d ifficu lty  arises from  the fact tha t the collapse velocity is 

small, and easily obscured by other motions such as turbulence, therm al broadening, ro tational motions, and 

energetic outflows. In fa ll is ideally observed as a double peaked profile, where the blue peak is stronger than 

the red. A lthough the intentions o f observing the F IR  cores in  H C O + were to  detect these characteristics o f 

in fa ll, such features could not be found, as stated in  section 3.3. Instead, the H C O + spectral lines displayed 

red-skewed double-peaked profiles. Red profiles are most like ly indicative o f dense clumps in  outflow ing gas 

(Evans, 2003), which is in  agreement w ith  other observations of outflows.

4.4.2 S t a b i l i t y  o f  FIR c o r e s

One o f the chief questions regarding the F IR  cores is whether they are contracting. The v iria l theorem is 

used to  determine whether a clump is stable against collapse [e.g. Ward-Thompson et al. (2006)]. From 

the v iria l theorem, a contracting spherical cloud obeys the inequality,

2U +  2 T + 2 K <  Q +  X,  (4.1)

where U is the therm al energy, T is the turbulent energy, 1Z is the rotational energy, Q is the magnitude of 

the self-gravitational potentia l energy, and X  is the contribution from  external pressure. The contribution 

from  rotational energy is assumed to  be negligible, since there is no clear evidence of ro ta tion  in any o f the 

F IR  cores. Magnetic energy is also neglected as a m ajor source o f support. A lthough the presence of a
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magnetic field w ith in  the cores is likely, its  significance in  star form ation is controversial. In  a recent review 

by Bourke and Goodman (2004), it  is claimed tha t magnetic fields are not energetically dominant during 

the protostellar stage. A lthough the magnetic field has been determined for the large scale structure of 

NGC 2024, it  is unknown at the scale o f the F IE  cores. Hence, its corporation in to  the v iria l calculation is 

d ifficu lt, and avoided in  th is evaluation.

The v iria l s tab ility  evaluation is carried through by using the core sizes given by Johnstone et al. (2001), 

and the remaining physical properties (masses, temperatures, number densities) obtained from  H^CO. By 

comparing the positions of clumps found in  the 850 [im study w ith  the F IR  core positions, only four could 

be identified as clumps. The remaining cores tha t could not be detected as clumps were om itted from  

the v iria l stab ility  calculations, since the properties of the cores— such as the radius and mass— were not 

available by the 850 /im  data. As a result, the v iria l evaluation is made for only FIRs 3, 4, 5, and 6.

The therm al energy is evaluated by using the temperatures derived from  H 2CO,

2U = 3MkBT^ (42)
m

where M  is the mass, ks is the Boltzm ann constant, T  is the temperature, and m is the mean molecular 

mass. In  the calculations, the gas w ith in  the core is assumed to  be isothermal and monatomic, so m =  

1.67 x 10~24 g.

The turbulent energy is given by,

97- 3 M A Vp w h m  (a
8Jn(2) ’ ( j

where A Vf w h m  is the fu ll-w id th  at half-maximum of the line velocity.

The magnitude of the self-gravitational potentia l energy can be found from ,

( « )

where T) is a coefficient which is determined by the detailed density profile o f the clump. For Bonner-Ebert 

spheres—which is assumed for the F IR  cores— rj =  0.732.
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Table 4.1: Energy Terms o f the V iria l S tab ility  Evaluation

Thermal Turbulence G ravitational Pressure
Source 2 U 2 r Q X 2U +  2T g +  x

[erg] [erg] [erg] [erg] [erg] [erg]
F IR  3 5.2 x 1044 5.2 x  1044 1.5 x  1044 5.1 x 1044 1.0 x 1045 5.2 x  1045
FIR  4 4.0 x  1044 4.7 x 1044 1.3 x  1044 3.8 x 1044 0.9 x 1045 3.9 x  1045
FIR  5 5.3 x 1044 7.2 x 1044 1.1 x 1044 3.4 x  1044 1.3 x 1045 3.5 x 1045
FIR  6 7.0 x 1044 1.5 x 1045 2.6 x  1044 3.2 x 1044 2.2 x 1045 8.6 x 1045

The external pressure term  is approximated by,

X  =  2nR3PB, (4.5)

where PB is the pressure acting on the core boundary,

PB =  nkT, (4.6)

where n is the H 2 number density which is approximated to  be constant throughout the core radius. Table

4.1 shows the energy terms for each F IR  core and the final sums of the le ft and righ t side of the inequality.

From the last two columns of Table 4.1, it  is apparent tha t the sum of internal energy (column 6) is 

lower than the sum of external energy (column 7). From Eqn. 4.1, the evaluated F IR  cores are a ll unstable

against collapse. A lthough there were assumptions and approximations tha t contributed to  the calculation

of the v iria l theorem (turbulence calculations, the size and mass of the cores, etc.), the most reliable values 

for temperatures and densities from  the H 2CO transitions were used. The im plication of contraction due to  

gravitational collapse of the cores supports the idea th a t FIRs 3-6 are advanced in  the ir evolution. These 

results suggest tha t an observer studying NGC 2024 a m illion  years from  now w ill see a new generation of 

low mass stars where the molecular ridge is today.
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5 C o n c l u s io n

Observations from  the JCM T were used to  investigate the ridge of NGC 2024. The follow ing points 

summarize the key findings of th is thesis.

1. The two H 2CO transition  ratios, 3o3 —> ^02/^22  —> %2i and 5os —> ^04 /^23  —> 422 are used to  find 

gas kinetic temperatures for the ridge o f NGC 2024. Fixed declination cuts across F IR  core positions 

are used to  investigate the temperature variation of the cores and the ir surroundings. Temperatures 

at core positions are found to  be warm, between 45 and 85 K . There is no observed variation in 

temperature between the core centers and the ir envelopes.

2. The formaldehyde line ra tio  3o3 - *  202 / 5o5 -> 404 yields a H 2 number density o f ~  2 x 106 cm-3 at 

F IR  core positions. H 2CO column densities are found in  the range of 6 x  1014 to  1 x 1015 cm-2 . 

H C O + column densities are found to  range from  8 x 1013 cm-2 to  3 x 1014 cm-2 . The variation in 

H 2CO column density along cuts across F IR  core positions is investigated, and reveals th a t for almost 

a ll cuts, the central core position displays the highest value.

3. Fractional abundances of H 2CO and H C O + are obtained for the F IR  core positions by taking the 

ra tio  of H 2CO and H C O + column densities over H 2 column densities derived from  850 fim dust data 

(Johnstone et al., 2006). H 2CO fractional abundances are found to  be between 2 x  10-9 and 5 x 10-9 , 

which agrees well w ith  previously obtained fractional abundances for sim ilar regions. H C O + column 

densities gave H C O + fractional abundances of 3 x 10-1° — 7 x 10_1°, which is low by an order of 

magnitude compared to  values for other molecular clouds. The assumptions which were made to  

carry through H C O + calculations may be responsible for the discrepancy for the H C O + fractional 

abundances.

4. Core masses are derived by using SCUBA 850 /im  dust observations [from Johnstone et al. (2006)] 

and incorporating the temperatures found from  formaldehyde transition ratios. The resulting values 

a ll give ~ 2 M 0 w ith in  a radius o f 15" for FIRs 3, 4, 5, and 6. These modest core masses make it  

unlikely th a t massive star form ation w ill occur w ith in  the ridge.
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5. The derived core masses are used to  evaluate the s tab ility  o f the FIRs 3, 4, 5, and 6 using the v iria l 

theorem. Energies are estimated by taking in to  account the previously derived physical properties (e.g. 

core sizes), and the properties obtained from  formaldehyde transitions (e.g. temperature, density). 

The result suggests tha t the four F IR  cores are unstable against collapse.

6. Visual extinctions towards m id-IR  sources detected by Haisch et al. (2001) are used to  obtain H 2 

column densities at these source positions. H 2 column densities are obtained as well from  the 850 

fj,m map from  Johnstone et al. (2006) at the same positions as the m id-IR  sources. These two sets of 

Column densities are compared to  probe the orientation of the star cluster w ith  respect to  the dense 

dust and molecular gas. The m a jo rity  of the detected m id-IR  sources are located behind the molecular 

ridge, and a few sources suggest th a t they are embedded in a small envelope or circum stellar disk.
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