
IMPROVING OUR UNDERSTANDING OF 

SRC VARIABLE STARS 

by 

Kathleen Elizabeth Moncrieff 

A thesis submitted to the faculty of 

Saint Mary's University 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Astronomy 

April 2011, Halifax, Nova Scotia 

Copyright © 2011 Kathleen Elizabeth Moncrieff 

Approved: Dr. David G. Turner, Chair 

Approved: Dr. C. Ian Short, Committee Member 

Approved: Dr. Eric G. Hintz, External Examiner 

Date: April 20, 2011 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
OttawaONK1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
OttawaONK1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-79650-4 
Our file Notre reference 
ISBN: 978-0-494-79650-4 

NOTICE: AVIS: 

The author has granted a non­
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, prefer, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

• • I 

Canada 



ABSTRACT 

IMPROVING OUR UNDERSTANDING OF 

SRC VARIABLE STARS 

Kathleen Elizabeth Moncrieff 

Department of Astronomy and Physics 

Doctor of Philosophy in Astronomy 

April 2011 

SRC variables are evolved stars (mostly M supergiants) that vary in brightness 

with semi-regular periods ranging from several months to several years. Their light 

variation is caused by a combination of pulsation, convection, and other processes such 

as dust ejections. Much data exist for the stars, but they have been under-utilized. 

We studied 49 individual SRC variables using archival and newly-obtained data. We 

present new results including cyclic variation in radial velocity, spectral type, and 

luminosity class, period analysis, and changes in period and mean magnitude for 

individual stars. We have re-examined the period-luminosity and period-radius rela­

tions, and discovered a new relationship among spectral type, luminosity class, and 

light amplitude. To aid in future studies of the stars, we have subdivided them into 

three categories based on the quality of available data and the likelihood that they 

are periodic rather than simply varying irregularly. 
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Chapter 1 

Introduction 

1.1 Cool Luminous Variable Stars 

Most luminous stars on the cool side of the H-R diagram are light variable. 

Those of largest light amplitude are the Mira variables, all M giants with periods of 

variability of typically several hundred days. They are moderately regular, although 

all cool variables exhibit random fluctuations in period from cycle to cycle that are 

evidence for some chaotic influences affecting the mechanism, probably regular pul­

sation, that dominates the light variations. 

Closely related to Miras are semi-regular variables types A and B (SRA's and 

SRB's). Both types are also late-type giants. SRAs exhibit persistent periodicity, 

but with smaller light amplitude than Miras (AV less than 2m.5), while SRBs exhibit 

either poorly-defined periodicity or alternating intervals of periodic and slow irregular 

changes. As a group, the stars represent a mixture of population types ranging from 

old disk stars of nearly solar metallicity to thick disk and near-halo stars of low 

metallicity. Their masses must lie close to that of the Sun, around 1-2 M 0 , with 

surface temperatures typical of M giants, 3000-4000 K. 

Somewhat related are type D semi-regular variables (SRD), which comprise a 

mixed group of giant and supergiant variables of spectral types F, G, and K, rather 

than M. They are not well understood given that they comprise a mix of types in 

terms of their variability. A subgroup, the UU Herculis stars, display cepheid-like 

variability (Fernie 1986). 

The type C semi-regulars (SRC) are uniquely different from Miras, SRAs, 

SRBs, and SRDs in comprising a group of 15-20 M 0 red supergiants of spectral 

type M, all of young disk, Population I metallicity with ages of less than 10 million 

years. They have masses on the order of 15-25 M 0 (Stothers & Leung 1971), effective 
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temperatures below 4,000 K (van Dyck et al. 1988; Levesque & Massey 2005), and 

radii of at least several hundred R 0 (van Dyck et al. 1988). Many are surrounded by 

large circumstellar dust shells created mainly by their ongoing mass loss (Humphreys 

& Lockwood 1972; Stencel et al. 1988). They represent stars that were O-type main 

sequence objects during their hydrogen burning stage, but are now in the early or 

final stages of helium burning (or carbon burning, etc.), about to end their lives as 

core-collapse supernovae (Smartt 2009) on time scales that may be as short as a few 

decades to several hundred years, given the time steps evident in the last stages of 

evolution of 20 MQ stars (Weaver et al. 1978). The nature of their variability may 

therefore provide clues to the time remaining prior to their eventual demise. 

Like Miras, SRAs, and SRBs, the SRC variables also appear to display random 

fluctuations in period (Turner et al. 2006). Establishment of reliable long-term trends 

in the stars therefore requires observations over many decades, or even centuries. 

Their periods of variability are also somewhat larger than Miras, SRAs, and SRBs. 

Most have periods of one or two years or even longer, although a handful of the stars 

appear to display periods of only a few months. 

Closely related to the semi-regular variables (class SR) are stars that display 

much less well-organized variability, typically at low light amplitudes lm.0. Such 

objects are designated as class L, the slow irregular variables, and split into two 

subclasses: LB, M giants similar to the SRB variables, and LC, M supergiants similar 

to the SRC variables. Despite many years of observation of such stars by AAVSO 

observers, it has not yet been possible to establish reliable values for their likely 

periods of variability (Percy & Terziev 2011). While some may display a degree of 

repeatable light variability like that of the SR stars, precise estimates of V or B 

brightness are needed to demonstrate that. 

Whether an M supergiant variable was assigned to the SRC class or the LC 

classes depended upon the nature of the original study. Therefore, some SRC variables 

of small amplitude may have been assigned to the class on the basis of an older study 

tied to a restricted interval of time where they displayed a rare degree of light curve 
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stability. Likewise, some LC variables may have been assigned to the class on the 

basis of simply a lack of sizable light variations or a lack of observational data. Some 

SRC variables may therefore be of the LC classification, while some LC variables may 

eventually prove to be low amplitude SRC's once more extensive series of observations 

become available. 

Figure 1.1: S Persei, an SRC Variable. Combined image created by the author using images 
from the Digitized Sky Survey. 

1.2 Motivation 

SRC variables, like other M supergiants, are thought to be the precursors to 

most core-collapse supernovae. Their periods and luminosities change with time. Like 

other pulsating variables, they appear to exhibit a period-luminosity relation, which 

means they have a potential use as distance indicators both within our own Galaxy 

and on the extragalactic scale. They have been identified in several nearby galaxies. 

As young Population I objects, they could also be used as tracers of spiral structure 

in our Galaxy (see, for example, Humphreys 1970). 
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One of the first, and one of very few, comprehensive studies of variation in M 

stars was made by Joy (1942). He compiled a collection of observations of spectral 

type and radial velocity of 118 irregular M-type variables. He found periods for some 

of the stars in his set, and for a subset of those he listed the phase at which the 

observations were made. He emphasized the importance of obtaining simultaneous 

light and radial velocity information in order to understand the relationship between 

the two variations. Although there have been many observations of Joy's M stars in 

the 68 years since his paper was published, there have been few attempts to study the 

group of SRC variables in depth. There is much we can learn about SRC variables 

and there are decades of underused observations of the stars. We have examined 

archival as well as newly-obtained observations to see what we can learn about how 

the stars behave as individual objects and as a group. 

Understanding how SRC variables evolve leads to a better understanding of 

the processes that occur in the late stages of stellar evolution. Having an organized 

collection of temporal spectroscopic and photometric information available for SRC 

variables will help future efforts to model and understand the behavior of the stars. 

The purpose of this thesis is to collect available observational data for the stars and 

to use them to study the properties of the class in greater detail than has been done 

previously. 

1.3 Previous Work 

1.3.1 The Work of Alfred Joy 

As mentioned previously, Joy (1942) published a survey of spectroscopic and 

photometric observations of 118 "Less Regular M-Type Variable Stars". He observed 

that the general behavior of the stars resembles that of Mira, an M giant and one of the 

first known variable stars. He described their light curves as considerably irregular 

with periods that range from poorly-defined to fairly definite. He noted that the 

group is heterogeneous and likely contains several types of variable stars. One of 
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those types would later come to be known as the SRC variables. His survey includes 

a list of spectral types and brightness amplitudes with observation epochs that we use 

in a later chapter to examine how the stars have been changing temporally. We have 

made use of some of Joy's measurements in our study of the stars' cyclic variations 

in spectral type and radial velocity. 

1.3.2 The Work of Stothers 

Stothers (1969) showed that pulsation can account for the primary periods of 

variability in M supergiants. He calculated Q values for several M supergiants and 

showed that they agreed with those predicted by pulsation theory. He also noted that 

the cyclical variations in magnitude, spectral type, and radius, and the existence of 

a period-luminosity relation, suggest that the stars are pulsating. 

1.3.3 The Work of White and Wing 

White & Wing (1978) created a spectrophotometric classification system that 

used measurements in eight narrow-band filters to determine spectral types of M 

supergiants from photoelectric photometry. They recognized that it is difficult to 

classify M supergiants using conventional techniques as all M supergiants are variable 

and there are no reliable standard stars to use for comparison. Their system used eight 

narrow-band interference filters in the near-infrared that measure TiO and CN band 

strengths. They observed 128 M supergiants, determined spectroscopic information 

on temperatures and luminosities for all of the stars, and listed spectral type and 

luminosity class ranges for several of the more variable stars. We have obtained some 

of their spectrophotometric measurements and used them in our study of the changes 

in the stars' spectral types. 

1.3.4 The Work of Roberta Humphreys 

Humphreys (Humphreys 1970; Humphreys & Lockwood 1972; Humphreys et 

al. 1972; Humphreys 1983; Humphreys & Ney 1984; Elias et al. 1985) did extensive 
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work on supergiant stars in the Milky Way and nearby galaxies, including some SRC 

variables. She used M supergiants to calculate distances to some nearby galaxies. In 

addition to having observed the photometric and spectroscopic properties of individ­

ual stars in our own Galaxy, she compared the properties of Galactic M supergiants 

to the properties of M supergiants in other galaxies, finding that the average spectral 

types of the groups are earlier in galaxies with lower average metallicities. She com­

piled a catalog of bright stars in OB associations and clusters, and we have taken most 

of the distance moduli that we use to examine the SRC period-luminosity relation 

from her catalog. 

1.3.5 The Work of David Gray 

Gray (Gray 2000, 2001, 2005, 2008) studied one SRC variable, a Orionis, in 

detail, using spectroscopic data. He found evidence that convection contributes to the 

star's brightness variations. The star's surface appears to be dominated by as few as 

2-10 giant convection cells with lifetimes comparable to the star's primary period of 

approximately 400 days. By extension we can infer that convection contributes to the 

brightness variations of other SRC variables. It is important to remember that the 

stars also have long secondary periods on the order of 10 times their primary periods, 

and convection obviously does not explain all of the variation. Pulsation must also 

play a role. Gray's work highlights the complexity of the stars' atmospheres and 

shows us that their behavior is the result of several different processes occurring 

simultaneously and interacting. 

1.3.6 The Work of Levesque and Massey 

Levesque & Massey (2005) studied the physical properties and effective tem­

perature scale of M supergiants in our Galaxy and in the Magellanic Clouds. They 

used MARCS models to determine spectral types and an effective temperature scale 

for the stars. They found that the stars were not as cool as had previously been 
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believed, and they refined the positions of the stars in the H-R diagram, bringing 

them closer to agreement with evolutionary tracks. 

1.3.7 The Work of Turner and Rohanizadegan 

Turner et al. (2006) present one of very few comprehensive studies of the 

brightness variations of a particular SRC variable, BC Cygni, over a long time scale. 

The study also illustrates the usefulness of archival data for learning about such stars. 

Our project performs some of the same analyses as that paper, but for more of the 

stars in the group. 

1.3.8 Questions Left Unanswered by Previous Work 

Much of the work done previously focuses on the spectroscopic and photomet­

ric properties of the stars, but very little of it addressed their variable nature. In the 

following chapters we examine the stars individually and as a group with the goal of 

improving our understanding of their variations. In chapter 4 we look at how the peri­

ods and average magnitudes have changed for individual stars and at cyclical changes 

in spectral type and radial velocity. In chapter 5 we examine properties of the group 

of stars using the chapter 4 results. We reinvestigate the period-luminosity relation 

and present a new relationship for the light amplitude as a function of spectral type 

and luminosity class. 

1.4 Pho tome t ry 

Ideally, the light variations of these stars would have been studied decades ago 

by means of precise photoelectric photometry. Unfortunately, dedicated observing 

runs of several years are needed for that purpose, something not possible at most 

observatories, and seasonal effects make color corrections for such cool, red stars 

unstable and difficult to establish reliably from one night to another. 
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Instead, all photometric studies of cool variable stars are made using pho­

tographic plates of specific star fields, or from collections of (mostly) visual, pho­

tographic, and photoelectric observations made by members of the American As­

sociation of Variable Star Observers (AAVSO). This study makes use of AAVSO 

observations available via the AAVSO online database at http://www.aavso.org as 

well as estimates made from survey plates in the Harvard College Observatory Pho­

tographic Plate Collection. The Harvard plates were scanned for the fields of several 

SRC variables in several sessions by the author, Dr. David Turner, and recent Saint 

Mary's B.Sc. graduate Michael Hiland. In each case the measurements were made by 

estimating the brightness of the variable through a small magnification eyepiece from 

the size and density of the star image relative to a sequence of confirmed non-variable 

stars lying in close proximity. Such measurements are generally accurate to within ± 

0.1 to ± 0.2 magnitude, possibly slightly larger at the faint limits where the accuracy 

of the known magnitudes for the reference stars is less certain. 

The natural sensitivity of the photographic plates in the Harvard collection 

corresponds roughly to that of the Jonson B filter, so the standard reference stars 

in each field were calibrated to B from available B V photometry for the stars in the 

literature or online surveys. The estimated accuracy of the individual photographic 

measures is therefore ± 0.1 to ± 0.2 in B. 

The AAVSO measures are less reliable. While the visual acuity of good ob­

servers in the AAVSO frequently reaches a precision of ± 0.1 to ± 0.2 in their visual 

V magnitude estimates, a variety of factors often degrade the quality of the collected 

data. Poor observers often estimate star brightness systematically different from their 

true values, either through inexperience, the deleterious influence of the Purkinje ef­

fect, or, more likely, from estimating the star's brightness in inappropriate fashion. 

The precision of the human eye as a light detector reaches optimum values when 

working near the limits of vision, so eye estimates of variable stars made within a 

magnitude or two of the detector limit generate the best results. Some observers 

make the mistake of making eye estimates of bright variables using large telescopes 
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