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ted at different times. Also plotted are the fast magnetosonic surface (long 

dashed line), the Alfven surface (dashed line), and slow magnetosonic sur

face (dot-dashed line). This figure is reproduced with kind permission of 

the original authors and the AAS 17 



5 Results from "Numerical simulations of astrophysical jets from Keplerian 

disks. II. Episodic outflows" (Ouyed & Pudritz 1997b; Figure 2) showing 

episodic knot-like features. Twenty logarithmically spaced contours of den
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permission of the original authors and the AAS 18 

6 Results from one of the 3-D simulations of "Three-dimensional simulations 

of jets from Keplerian disks: self-regulatory stability" (Ouyed, Clarke, & 

Pudritz 2003; Figure 3). Shown are false colour representations of / pdl 

(top) and J (V • v)dl (bottom). The disk is on the left-hand side of the 

image (not shown), and the jet propagates from left to right. This figure is 

reproduced with kind permission of the original authors and the AAS. . . . 23 

7 False colour images of the HH 30 (top left), HH 34 (top right), and HH 

47 jets (bottom) taken with the Hubble space telescope. HH 47 exhibits 

clear non-axisymmetric behaviour while HH 30 and HH34 appear more 

axisymmetric. The images were taken with WFPC2 in visible light, and 

the scales in the bottom left of each panel correspond to 1000 AU. Top left 

credit: J. Morse/STScI, and NASA. Top right credit: J. Hester (Arizona 

State University), the WFPC 2 Investigation Definition Team, and NASA. 

Bottom credit: C. Burrows (STScI k ESA), the WFPC 2 Investigation 

Definition Team, and NASA 27 
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to fluxes from simulations G and H barely registering at 1000 AU above the 

disc, we exclude this data from the fits for this height only. (M) has units of 

l O - 6 M 0 y r - \ (5) units of 10"4 M 0 yr"1 km s - 1 , (K) units of 1033erg s"1, 

and (L) units of lO^Moyr" 1 AU km s"1 196 
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Abstract 

INTO THE VOID: 

SIMULATIONS OF PROTOSTELLAR JETS FROM KEPLERIAN DISCS 

EXTENDED TO OBSERVATIONAL LENGTH SCALES 

by 

Jonathan Paul Ramsey 

In this work, I present the first simulations to investigate the formation and propaga
tion of protostellar jets that simultaneously include the launching mechanism at < 0.1 AU 
and the much larger observational length scales at > 103 AU. This is accomplished through 
the development and application of AZEuS, a new adaptive mesh refinement (AMR) ver
sion of the ZEUS-3D magnetohydrodynamics (MHD) fluid code. AMR has been adapted 
for a fully-staggered mesh, and a description of the methods employed is given. By simu
lating protostellar jets over 5 orders of magnitude in length, I find relationships between 
conditions at the disc surface and observable quantities such as jet proper motion, rota
tional velocity, jet radius, and mass, momentum, kinetic energy, and angular momentum 
fluxes. I also find that two mechanisms for jet launching are required to understand the 
simulation results. For strong fields, the traditional magneto-centrifugal mechanism is 
applicable, while for weak fields, the jet is accelerated by gradients in toroidal magnetic 
pressure. The jets presented here establish a magnetically-dominated region early in their 
evolution, regardless of the initial magnetic field strength, implying that plasma-/? < 1 is 
required for jet launching to occur. Over time, the plasma-/? —> 1, and the jets approach 
equipartition between thermal pressure and magnetic forces. These results demonstrate 
that outflows launched magnetically from discs are capable, by themselves, of producing 
realistic protostellar jets. 

July 25, 2011 
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Chapter 1 

Introduction 

1.1 Observational studies of protostellar jets 

It has been more than 50 years since the initial discovery of Herbig-Haro (HH) 

objects, small nebulae with characteristic optical emission, found in or around regions of 

star formation (Herbig 1950, 1951; Haro 1952, 1953). While these objects were originally 

believed to be reflection nebulae, or even the sites of active star formation, by the late 

1970s it was becoming clear they were instead the optical manifestations of low-excitation 

shocks (see the review of Schwartz 1983). Then, in the early 1980s, CO measurements 

of L1551 IRS 5 by Snell et al. (1980) revealed oppositely directed blue- and red-shifted 

lobes, inside which HH objects were embedded. These authors subsequently proposed a 

model whereby HH objects are produced inside a bipolar outflow which has itself been 

ejected from an obscured young star and accretion disc. It did not take long for additional 

observations of well-collimated bipolar outflows in regions of star formation to appear (e.g., 

Mundt et al. 1983; Mundt k Pried 1983; Mundt et al. 1984), further lending support to 

the outflow model. 

At around the same time, radio emission at centimetre wavelengths was detected 

from HH objects 1 and 2, as well as from an optically invisible source lying in between 

(Pravdo et al. 1985). The spectral power index of the invisible central source is consistent 
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with an ionised stellar wind, again pointing towards an outflow origin for HH objects. 

Similar radio jets, explainable by thermal free-free emission, have since been discovered 

in numerous other bipolar outflows (e.g., Anglada et al. 1998). 

In the mid-1990s, through the increasing availability of wide-field and high resolution 

CCDs, it was discovered that a number of protostellar jets were associated with HH objects 

at much larger length scales than previously believed (e.g., Bally & Devine 1994). Several 

of these so-called giant HH outflows have since been observed stretching over several 

parsecs, leaving their parent molecular cores, and injecting energy and momentum into 

the interclump medium (e.g., Reipurth et al. 1997b). In fact, more recent studies of giant 

outflows imply that the amount of energy and momentum deposited can actually maintain 

the supersonic turbulence observed in molecular clouds (e.g., Quillen et al. 2005). 

The influence of protostellar outflows is not limited to the parent core or cloud: 

they also have a profound influence on the chemistry of the surrounding medium by 

destroying dust grains, dissociating molecules, and generally injecting thermal energy via 

shock heating. Moreover, they strongly affect the accretion disc and young star from 

whence they are launched by extracting mass and angular momentum. This link with the 

accretion disc is of particular importance because it relates the properties of the jet to 

conditions near the disc, as well as to the accretion history of the central driving object. 

Further adding to the importance of protostellar outflows is the frequency with which 

they are observed: Reipurth (1999) has catalogued 600 HH objects, while Wu et al. (2004) 

lists almost 400 molecular outflows. Indeed, jets and outflows are observed not only in 



Chapter 1 Introduction 3 

regions of star formation, but in a wide range of other astrophysical settings, from brown 

dwarfs to X-ray binaries to active galactic nuclei (Livio 2009). 

Although observations tell us a great deal about protostellar outflows, there are a 

few areas wherein they encounter difficulties. For example, observed opening angles of 

protostellar jets imply the launching region is < 5 AU in size (Ray et al. 2007). Ignoring 

for the moment that the majority of protostars and accretion discs are obscured by a 

thick layer of dust and gas, 5 AU is still smaller than the finest resolution possible for the 

nearest star formation regions with current telescope technology. In fact, only recently 

have observations begun to routinely probe length scales below 100 AU (e.g., Hartigan, 

Edwards, & Pierson 2004, Coffey et al. 2008). 

It has also proven difficult to observe definitively the presence of rotation in pro

tostellar jets, a critical measurement if one wishes to determine the angular momentum 

transported by a jet. While radial velocity gradients across jets are observed to be in 

the 5-25 ± 5 km s_ 1 range (e.g., Woitas et al. 2005), and it is becoming generally ac

cepted that protostellar jets do rotate, these asymmetries can be explained away by other 

phenomena, such as an interaction between the jet and a warped disc (Soker 2005), or 

magnetohydrodynamic shocks in a helical field (Fendt 2011). 

The detection of magnetic fields in protostellar outflows is another area in which 

observations continue to experience difficulty. While there are a number of observations 

of circular polarisation in protostellar jets (e.g., Chrysostomou et al. 2007) which give 

clues to the magnetic field structure, to date there are only two actual measurements of 

field strengths in a protostellar jet. The first comes from non-thermal cyclotron radio 
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emission in T Tauri S (~a few Gauss; Ray et al. 1997), and the second is from polarised 

synchrotron emission in HH 80-81 (~0.2 mG; Carrasco-Gonzalez et al. 2010). As discussed 

below, the most successful theoretical models for protostellar outflows require magnetic 

fields, and to test these models, additional measurements of field strengths are needed. 

Application of the 'BE' technique (Bacciotti & Eisloffel 1999) shows that the ion-

isation fraction (the ratio between electron and total number densities) in the outflow 

varies between 0.03 - 0.6, with the highest values concentrated near the jet base (Ray 

et al. 2007). While strong magnetic fields have been observed in the inner regions of 

protostellar discs (~ kG strengths; e.g., Donati et al. 2005), the lack of magnetic field 

measurements in protostellar jets implies that, although the jet may be driven by strong 

magnetic fields near the central star, on larger scales these fields are weak and no longer 

dynamically important (Hartigan et al. 2007). 

Figure 1.1 shows a false colour image of HH 34, a well-known giant outflow in the 

Orion nebula which is nearly 3 pc in length (Reipurth et al. 2002). This object displays 

many of the characteristic features of a typical protostellar jet including a high degree 

of collimation (~ 0.4° opening angle), large flow speeds (< 200 km s_1) along its length, 

strong emission in forbidden lines {e.g., [SII]), episodic "knots" in emission along the jet 

length, a strongly axisymmetric appearance, and two oppositely directed bow shocks far 

(> 40000 AU) from the central source (Reipurth et al. 2002). The central source itself 

is obscured behind a thick torus of dust and gas, and invisible at optical wavelengths, 

thus limiting the information we have on both the protostar and the physical mechanism 

producing the jet. 



Chapter 1 Introduction 5 

Figure 1.1 False colour image of the HH 34 complex in the Orion nebula, obtained with 
the VLT. The HH34 jet is characterised by the narrow and bright red feature, seen slightly 
off-centre, and the two oppositely directed bow shocks. Blue corresponds to the visual B 
filter, green to Ha, and red to [SII]. Image credit: ESO. 

The emission observed in protostellar jets is typically dominated by line emission 

from atomic Hydrogen {e.g., Ha; green in Figure 1.1) and forbidden transitions in atoms 

such as Oxygen {e.g., [OIII]), Sulfur {e.g., [SII]; red in Figure 1.1), and others. Molecular 
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emission is also commonly observed around outflows (e.g., rotational transitions of CO), 

primarily in material which has been entrained by a fast-moving jet such as HH 34 (see 

Arce et al. 2007 for a review). 

Together, line and molecular emission provide a wealth of information on protostellar 

jets and the surrounding conditions into which the jet propagates. From this information, 

characteristic properties of protostellar jets can be derived. These include the mass-loss 

rate, the ionisation fraction, and the total gas density, among others. Summarised in 

Table 1.1, these general characteristics furnish us with most of the information necessary 

to develop physical models for protostellar jets, the topic I turn to now. 

proper motion (km s *) 
rotational velocity (km s_1) 

FWHM jet width (AU) 
mass-loss rate (M© yr - 1) 

momentum fluxes (M 0 yr_1 km s_1) 
angular momentum fluxes 

(M0 yr-1 AU km s"1) 
mechanical luminosity (erg s_1) 

M j e t / M a c c 

opening angles 

ionisation fraction 
total density, n# 

jet overpressure factor 

100 - 200 (500 max.) 
(5 - 25) ± 5 

30 - 80 (at 200 AU) 
io-6-io-5 

10"5 

10"6-10-5 

(2.7-16) xlO33 

0.05 - 0.1 
20 - 30° inside 50 AU 
< few ° beyond 50 AU 

0.03 - 0.6; decreasing along jet 
up to 106 cm - 3 

102 - 104x the ambient 

Table 1.1 A summary of observed characteristics of protostellar jets. 

References. — Hartigan, Morse, & Raymond (1994); Reipurth & Bally (2001); Podio et al. (2006); 
McKee & Ostriker (2007); Ray et al. (2007); Coffey et al. (2008, 2011). 
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1.2 Theoretical studies of protostellar jets 

There are several theoretical models in the literature which can, at least partially, 

account for the properties of observed protostellar outflows. However, those which em

ploy magnetic fields and accretion discs have, by far, been the most successful. Indeed, 

accretion discs coupled to magnetic fields are now argued by some to be the common 

mechanism producing most, if not all, types of astrophysical jets (e.g., Livio 2009). 

Two models which have received serious attention, but that have fallen out of favour, 

are purely hydrodynamical and radiation pressure-driven jets. Hydrodynamical models 

have demonstrated that an infalling envelope of gas can form a nozzle and collimate a 

wind (e.g., Delamarter et al. 2000), but the base wind must be weak in order to reach the 

high degree of collimation observed in protostellar jets. Further, hydrodynamical models 

do not treat the underlying mechanism, but instead rely on an already existing wind. 

Radiation pressure is expected to play an important role in outflows from massive 

and luminous central stars. For low-luminosity sources however, around which collimated 

protostellar outflows are commonly observed, the momentum contained in the outflow is 

~ 100x greater than the momentum provided by the radiation pressure (Lada 1985), and 

purely radiative models can be ruled out. 

Theories of magnetically-powered winds date back to the work of Schatzman (1962), 

Weber & Davis (1967), and Mestel (1968) in the context of stellar winds. An impor

tant result of these studies was that magnetic winds can remove a significant amount 

of angular momentum from a rotating star. Michel (1969) further demonstrated that, 

with regard to pulsars, magnetic fields can also power a high speed outflow. Applying 
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these ideas to accretion discs around black holes, Bisnovatyi-Kogan & Ruzmaikin (1976), 

Lovelace (1976), and Blandford (1976) almost simultaneously proposed that discs could 

also launch a magnetic outflow, carrying with it energy and angular momentum. It was 

not until Blandford & Payne (1982; BP82), however, that self-similar quantitative models 

of "magneto-centrifugal" disc winds became available. This seminal study demonstrated 

that magnetic field lines which make an angle of less than 60° with the surface of a cold 

accretion disc will launch an outflow parallel to the disc rotation axis. The usefulness 

of this mechanism lies in its ability to convert the gravitational potential energy of disc 

material into kinetic energy of a wind, removing significant amounts of angular momen

tum along magnetic field lines, and thus increasing the rate at which matter can accrete 

onto the central object. While BP82 focused on jets in the extragalactic context, it was 

Pudritz & Norman (1983), however, who first proposed that a magneto-centrifugal wind 

could power protostellar jets. 

Following Spruit (1996), consider a thin accretion disc lying in the z = 0 plane of 

a cylindrical (z,r,<p) coordinate system, threaded by a magnetic field B (Figure 1.2). 

Assume the disc is a Keplerian rotator (vv = VK = \jGM*/r, where M* is the mass of 

the central object, G is the gravitational constant), and the atmosphere above the disc is 

cold enough that the thermal pressure p can effectively be ignored. 

Although not a requirement (e.g., Fendt & Cemeljic 2002), I will assume the gas is 

sufficiently ionised for the ideal magnetohydrodynamics (MHD) approximation to apply. 

Thus, the magnetic field lines and the gas are perfectly coupled, the field lines are anchored 

in the disc and forced to rotate with the disc. For a "strong" magnetic field near the disc 
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O2r0 = ^ _ > ro 
'o 

• I >Z 

M7 v 
Figure 1.2 Schematic representation of the magneto-centrifugal launching mechanism in 
cylindrical coordinates. Adapted from Spruit (1996). 

surface (i.e., the plasma-/3 = 8irp/B2 < 1, 4irpv2/B2 < 1, where p is the gas pressure and 

p is the density), I can assume that the atmosphere is forced to co-rotate with the field. 

In a reference frame co-rotating with the accretion disc, the velocity will be parallel 

to the magnetic field: v || B, and the Lorentz force (FL — qv x B) along a field line will 

be zero. Under the assumption of a strong magnetic field (/? < 1), the field lines can be 

considered to be rigid, and fluid particles are free to move like a "bead on a frictionless 

wire" (Henriksen & Rayburn 1971). 

Under the assumption of Keplerian rotation, gravity just balances the centrifu

gal force at the footprint of a field line (r0), where the centrifugal force is given by 

Fc oc V^/TO — ^2ro, and Q is the angular speed. Since the field lines rotate with the 

disc, the centrifugal force along a field line will behave like solid body rotation and in

crease with radius. If a fluid particle is then raised up off the disc along a field line, and 
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the component of the centrifugal force exceeds the gravitational force, the fluid will be 

accelerated outward. 

What conditions must be satisfied for this to occur? Consider the effective potential 

of a fluid particle tied to a field line: 

* - W — ^ - i n v w . («) 

where R = sjr2 + z2 is the spherical radius, s is the coordinate along a magnetic field line 

(B = \\B\\s), and Q.2 — GM*/rl assuming co-rotation of the field line and a Keplerian 

disc. Depending on the inclination angle 8 of the field line along which the fluid particle 

is tied, <£eff takes on three different characteristic profiles (Figure 1.3). 

r 

ro 

Figure 1.3 Three characteristic profiles for a magnetic field line with footprint r0. See 
the text for descriptions of field lines A, B, and C. Adapted from Spruit (1996). 

*Z 
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First, for a perfectly vertical field line (9 = 7r/2; case A), the rotational term 

— |fi2r2(s) is constant, and the effective potential monotonically increases away from 

the disc, making it difficult to overcome gravity and launch a wind. For field lines with 

an intermediate inclination angle (case B), the effective potential has a global maximum 

relatively near the disc surface, beyond which the centrifugal force along the field line 

overcomes gravity. In this case, it is possible to launch a wind so long as a means to move 

fluid particles beyond the global maximum can be found. Finally, for field lines relatively 

close to the disc surface (case C), the effective potential monotonically decreases, and 

the centrifugal term immediately overpowers the gravitational force, allowing a wind to 

launch directly from the disc surface. 

To determine when launching directly from the disc is possible, one needs to know 

the location of the boundary between the second and third cases: i. e., when the global 

maximum of $eff is at the disc surface: d2^es/ds2\s=0 = 0. Since r = scosO + ro, and 

R2 = s2 + r2, + 2sr0 cos 6 by the law of cosines (Figure 1.2), it can be shown that 

^ £ =O = ft2(sin20-3cos20). (1.2) 

Solving for 9, the critical angle to launch a wind directly from the disc surface is: 9CTit — 60° 

(BP82). 

This centrifugal launching action will continue to operate so long as the magnetic field 

can enforce co-rotation with the fluid. This assumption loses its validity when the poloidal 

kinetic energy of the fluid is greater than the magnetic energy: M\ = A.npv2/B2 > 1, i.e., 

when the Alfvenic Mach number (MA) is greater than one. The location along a field 
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line where MA = 1 is called the Alfven point. In addition, I have used here the poloidal 

magnetic field and velocity, which, in cylindrical coordinates, are components of the total 

magnetic and velocity vectors, given by: 

B — Bp + B^ip and v — vp + vv<p. (1.3) 

It is important to note that a magneto-centrifugal jet can be launched for inclination 

angles 6 > 60°; the fluid just needs a push to get past the maximum of the effective 

potential. Means of accomplishing this include an outward thermal pressure gradient or 

an "evaporation" speed from the disc into the wind, both of which serve to move the fluid 

from the disc past the maximum of the effective potential. I have ignored these effects 

here, but they are factors for some of the simulations presented in Chapters 3 and 4. 

So far, the reference frame is assumed to co-rotate with the accretion disc. However, 

an alternative viewpoint for the magneto-centrifugal mechanism can be developed if one 

instead works in the inertial reference frame. 

In the co-rotating frame, v \\ B, and the Lorentz force along the field line is zero. 

In the inertial frame however, it is the poloidal velocity which is parallel to the poloidal 

field (vp || Bp), and the centrifugal force term disappears, while the poloidal Lorentz force 

density is: 

^L,P= ^ ( ( V x B , ) x B „ ) 
4TTV / ( L 4 ) 
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where Bv — Bvip. For a wind to be launched via the poloidal Lorentz force, one requires 

that the combination of toroidal magnetic pressure gradient VB2 and inwardly directed 

magnetic tension B^f/r result in a net outward force along the field line. 

These two viewpoints are equivalent and related by a relatively simple coordinate 

transformation. The stationary equation of motion for ideal MHD in the inertial frame is: 

pi}. W = - V p - p V $ + — ( V x B ) xB. (1.5) 

Along a field line, the magnetic force is then given by (vp/vp) • FL;P, where FL,P is given 

by equation (1.4). If we define the rotating reference frame with: 

v' = v — rQif, (1.6) 

and substitute into equation (1.5), then the equation of motion in the rotating frame is 

(equation 23 of Spruit (1996)): 

pi?' • W ' = - V p - pV$ + — (V x B) x B + pQ2rr + 2pv' x (Qz), (1.7) 

where pQ2r is the centrifugal term, and 2pv' x (Qz) is the Coriolis term. Along a field 

line, where the velocity and magnetic field are parallel, the Coriolis term will everywhere 

be perpendicular to the field line and (B/B) • {v' x [Qz]) will be zero. The Lorentz force 

is also perpendicular to B, and by the same argument, also disappears, leaving only the 

pressure, gravitational, and centrifugal terms. Thus, we have two forms of the equation 
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of motion: one which involves a centrifugal force (equation 1.7), the other which involves 

a magnetic force due to the toroidal field (equation 1.5). 

Which point of view one should adopt depends on the conditions in the flow: If the 

approximation of co-rotation is reasonable, then the centrifugal picture is the most useful. 

However, when co-rotation is not applicable, the toroidal field dominates over the poloidal 

field, and the acceleration mechanism is best viewed with the magnetic picture. For the 

simulations presented in Chapters 3 and 4, both of these viewpoints have proven useful 

in understanding our results. 

Time-independent theoretical models are valuable for determining the overall struc

ture of a jet, including collimation, terminal wind speeds, location of the critical surfaces 

(e.g., the Alfven point), magnetic field structure, and even the amount of mass or angular 

momentum removed from the accretion disc (see Pudritz et al. 2007 for a review). How

ever, being stationary, these models cannot accommodate time-dependent phenomena, 

in particular, the jet formation process, the episodic emission observed in some outflows 

(e.g., HH 34; Figure 1.1), and the time-variable turbulent structure of the jet bow shock 

(e.g., Hartigan et al. 2011). In order to remain tractable, theoretical models have been 

restricted to a relatively small portion of parameter space, and require assumptions which 

are not always physically realistic (e.g., self-similar models exclude the jet symmetry axis 

and assume the jet radius extends to infinity). For answering questions about the clearly 

non-stationary aspects of protostellar jets, the only effective tool available is direct nu

merical integration of the time-dependent MHD equations. 
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1.3 Numerical studies of protostellar jets 

The first numerical simulations of a magneto-centrifugal jet launched from an accre

tion disc were presented by Uchida & Shibata (1985) and Shibata & Uchida (1986). These 

authors modelled a magnetised, sub-Keplerian disc around a gravitational point source 

in axisymmetric (2.5-D), cylindrical coordinates using the equations of ideal magnetohy-

drodynamics (MHD). They demonstrated that material can be launched perpendicular to 

the disc by an initially poloidal magnetic field which has been wound-up into a toroidal 

field by the rotating disc. 

The pioneering simulations of Uchida & Shibata proved to be the beginning of a 

veritable industry of numerical simulations of protostellar outflows. These subsequent 

studies generally break down into two groups: Those which include the time evolution of 

the accretion disc, and those which take the accretion disc as a boundary condition. 

Ultimately, the self-consistent inclusion of the accretion disc is important for under

standing the interaction between disc, central mass, and outflow. However, the spatial and 

temporal scales required to simulate all three components self-consistently is restrictive, 

and as a result this type of simulation has so far been limited to relatively small spatial 

and temporal scales (e.g., Miller & Stone 1997; Kudoh et al. 1998; Matt et al. 2002; Casse 

& Keppens 2004; Kigure & Shibata 2005; Romanova et al. 2005; Meliani et al. 2006; Zanni 

et al. 2007; Tzeferacos et al. 2009). 

Alternatively, the outflow problem can be simplified by treating the accretion disc as 

a boundary condition, and setting some or all of the MHD variables to prescribed values. 

Pioneered by Ustyugova et al. (1995), this approach is computationally less expensive, 
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and allows focus to be placed on the process of launching and collimating an outflow. 

This tactic has since been the basis for a large number of simulations across a range of 

physical conditions, and below, I summarise some of these studies and their important 

results. 

The study of Ustyugova et al. (1995) finds that an outflow is launched along the 

rotation axis of the disc, driven and collimated by magnetic forces (Figure 1.4). Although 

the flow is sub-slow at the disc, it is accelerated to super-fast magnetosonic speeds by 

gradients in the toroidal field, which have built up through twisting of the initially poloidal 

magnetic field (c.f. Uchida & Shibata 1985). 

In a series of papers, Ouyed & Pudritz (1997a,b, 1999) present axisymmetric ideal 

MHD calculations of centrifugally launched jets, with a time-independent Keplerian disc 

for a boundary condition, and initial conditions which are magnetically force-free and in 

hydrostatic equilibrium (HSE). They obtain solutions which are either stationary (d/dt ~ 

0) or unsteady, depending on the mass load at the disc surface (r](ip) = pvp/Bp; see Section 

4.5.1). Even though a steady mass inflow is used, the unsteady simulations produce 

episodic ejections which are characterised as "knots" (e.g., Figure 1.5). These ejections 

have radii ~1 AU, and it is speculated they may explain the much larger clumpy structures 

observed in some protostellar jets (e.g., HH 111; Raga et al. 2002). Their simulations are 

also effective at removing angular momentum from the disc: the ratio of accretion rate to 

the wind mass loss rate is found to be rha/mw ~ 6. 

Employing the same initial conditions as Ouyed & Pudritz (1997a), Vitorino et al. 

(2002, 2003) apply random and sinusoidal perturbations to the velocity at the disc surface, 
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Figure 1.4 Figure 1 from "Magnetohydrodynamic simulations of outflows from accretion 
disks" (Ustyugova et al. 1995) demonstrating a jet launched from a disc as a boundary 
condition at the bottom edge of each frame. Poloidal velocity vectors (top) and con
tours of toroidal velocity (bottom) are plotted at different times. Also plotted are the 
fast magnetosonic surface (long dashed line), the Alfven surface (dashed line), and slow 
magnetosonic surface (dot-dashed line). This figure is reproduced with kind permission 
of the original authors and the A AS. 

obtaining solutions with periodic structures, not unlike Ouyed & Pudritz (1997b). In 

the case of sinusoidal perturbations, they find a clear dependence between the "knot" 

spacing and the perturbation period, but recognise that the spacing between their episodic 

ejections is too small to explain observations. 



Chapter 1 Introduction 18 

15 

10 
5 

I I I ! i \ i i i 1 i i 

T = 300 

^ 

3 

1 

1 

20 40 
z/r, 

60 

Figure 1.5 Results from "Numerical simulations of astrophysical jets from Keplerian 
disks. II. Episodic outflows" (Ouyed &, Pudritz 1997b; Figure 2) showing episodic knot
like features. Twenty logarithmically spaced contours of density (left) and twenty linearly 
spaced contours of the toroidal magnetic field (right) are plotted at four different times. 
The disc as a boundary condition is on the left-hand side of each frame. This figure is 
reproduced with kind permission of the original authors and the AAS. 

Also following Ouyed k Pudritz (1997a), Fendt & Cemeljic (2002) extend models of 

magnetic winds from Keplerian discs by applying the equations of resistive MHD {i.e., it 

is no longer assumed that the fluid is a perfect conductor). Through the use of a constant 
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turbulent magnetic diffusivity, Fendt k, Cemeljic find that a finite resistivity generally 

decreases the jet propagation speed and the collimation of the magnetic field. They also 

find evidence for a critical value of the diffusivity, beyond which the bulk outflow is radial 

rather than collimated. 

Extending the study of Ouyed & Pudritz (1999), Pudritz et al. (2006) systematically 

investigate different profiles for the initial magnetic field distribution (i.e., different mass 

load distributions), finding the radial distribution of the mass load has an effect on both 

the collimation and rotation profile of the jet, and concluding that hydromagnetic winds 

can explain both wide-angle and highly collimated outflows. More specifically, steeply 

declining mass loads collimate to cylinders, while gradually declining mass loads result in 

wide-angle winds. Fendt (2006) perform a similar and nearly contemporaneous study, but 

includes a magnetic diffusivity and explores a larger parameter space through variation in 

the total magnetic field strength and mass flux. The results for magnetic field distribution 

are in general agreement with Pudritz et al. (2006), and he additionally finds evidence 

that the terminal jet speed scales with magnetic field strength. 

Ustyugova et al. (1999) present jet simulations using a steeply declining split-monopole 

magnetic field configuration, finding solutions which are stationary and poorly collimated, 

confirmed by the results of Pudritz et al. (2006). Importantly, Ustyugova et al. also employ 

partially time-dependent boundary conditions for the disc, allowing the inflow velocity, as 

well as the radial and toroidal components of the field, to vary with time, in contrast to 

the fixed in time boundary conditions of Ouyed & Pudritz and related studies. 
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These boundary conditions are adopted and generalised by Krasnopolsky et al. (1999, 

2003), who perform simulations of steady-state, cold, and collimated ideal MHD jets. 

Their boundary conditions allow both the radial and toroidal components of the magnetic 

field and velocity to respond to conditions in the atmosphere above the disc. Similar to 

Ouyed & Pudritz, these authors find their results are insensitive to changes in the density 

or velocity at the disc surface, so long as their product (oc rj, the mass load) is constant. As 

measured by the ratio of Poynting to kinetic energy flux, they find that far from the disc, 

~60-80% of the magnetic energy extracted from the disc has been converted to kinetic 

energy of the wind. 

Anderson et al. (2005) expand upon the results of Krasnopolsky et al. by performing 

simulations across a wide range of mass loads (through variation in the injection speed 

at the disc surface). They find that high mass loads increases collimation, but lead to 

unsteady winds, while low mass loads result in steady-state solutions. This is opposite to 

the trend for mass load found in Ouyed & Pudritz (1999), and the authors postulate this 

could be due to the differences in the boundary conditions in the two studies. Whereas 

Anderson et al. (2005) use a disc boundary which can respond to conditions in the atmo

sphere above it, Ouyed &, Pudritz (1999) use a time-independent boundary which appears 

to be formally overspecifled (for a discussion, see Appendix B of Porth k, Fendt 2010). 

Anderson et al. also find that above some critical mass load unsteadiness is unavoidable, 

likely because the field is too weak to accelerate the mass efficiently. They also discover 

that the terminal speed along a given field line is oc Mw (where Mw is the mass load), 

in agreement with analytical radially self-similar models {e.g., Michel 1969). 



Chapter 1 Introduction 21 

Fendt & Elstner (2000) take a slightly different approach relative to the other studies 

discussed here by simulating a two-component magnetic field in ideal MHD, consisting of 

a stellar-type dipole and a stellar wind component. They find the dipole field is disrupted, 

forming a disc wind, while a second separate component forms due to the stellar wind. 

There is a clear boundary between the two components, a result of oppositely directed 

magnetic fields in the disc and stellar wind components. 

As a follow-up to Fendt & Elstner (2000), Fendt (2009) simulates two-component 

outflows, including a magnetic diffusivity. Although the value of the magnetic diffusiv-

ity is small relative to Fendt & Cemeljic (2002), physical magnetic reconnection is still 

permitted. Indeed, "strong flares" are observed in the simulations, resulting in sudden, 

transient changes in jet mass flux and velocity by factors of a few. In addition, Fendt 

finds that a strong disc wind is required to combat the radial character of the stellar wind 

and maintain collimation. 

Following a different approach, the work of Gracia et al. (2006), Matsakos et al. 

(2008, 2009), and Stute et al. (2008, 2010) take as initial conditions for their simulations 

analytical self-similar models which already include a jet in a nearly steady-state. Addi

tionally, they do not simultaneously include the disc as a boundary condition and large 

simulation boxes, but rather begin the computational domain slightly above the disc sur

face to avoid numerical issues near the equatorial plane. In all cases, the steady-state 

models relax to a modified stationary state, which is usually quite similar to the original 

analytical solution. By producing synthetic forbidden emission maps, Stute et al. (2010) 
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demonstrate for these models that a finite outer launching radius is necessary in order to 

agree with observed values of protostellar jet widths. 

To date, there have only been a few 3-D studies of jets launched from discs as a 

boundary condition. For instance, Ouyed, Clarke, & Pudritz (2003) present 3-D simu

lations with initial conditions derived from Ouyed & Pudritz (1997b), finding that the 

launching mechanism carries over from axisymmetric simulations. They also find that the 

jet, while subject to Kelvin-Helmholtz instabilities, maintains long-term stability with 

help from a "backbone" of poloidal magnetic field along the axis of the jet, and by a self-

limiting of jet velocities to trans-Alfvenic speeds. This remains true even after introducing 

perturbations at the disc surface (Figure 1.6). 

Anderson et al. (2006) have also published 3-D simulations, this time based on the 

axisymmetric studies of Anderson et al. (2005). In this study, an attempt is made to drive 

the outflow unstable by unevenly distributing the mass load at the disc surface, but the 

authors instead find that the jet settles into a new, asymmetric steady-state. Similar to 

Ouyed, Clarke, & Pudritz (2003), a concentration of poloidal field lines near the jet axis 

appears to help maintain stability. 

Finally, Staff et al. (2010) begin with the initial conditions of Ouyed, Clarke, & 

Pudritz (2003) and perform 3-D simulations with the magnetic field profiles of Ouyed & 

Pudritz (1997a) and BP82. Calculating the synthetic forbidden emission of [OI], they find 

the Ouyed & Pudritz-type field configuration produces results which are in better agree

ment with observations than the BP82 configuration. They also find jets with speeds 
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Figure 1.6 Results from one of the 3-D simulations of "Three-dimensional simulations 
of jets from Keplerian disks: self-regulatory stability" (Ouyed, Clarke, & Pudritz 2003; 
Figure 3). Shown are false colour representations of J pdl (top) and J"(V • v)dl (bottom). 
The disk is on the left-hand side of the image (not shown), and the jet propagates from 
left to right. This figure is reproduced with kind permission of the original authors and 
the AAS. 
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up to 400 km s_1, and jet widths of < 20 AU. More importantly though, a strong rota

tion signature is still present in their synthetic observations, despite time variability and 

perturbations at the disc surface. 

Based on the studies discussed above, the magneto-centrifugal wind launching mech

anism is robust. Several different groups have found that jets are launched magneto-

centrifugally regardless of the magnetic field profile, the specifics of the mass loading 

profile, the details of the boundary conditions, or the inclusion of additional physics. 

Furthermore, jets produced with the magneto-centrifugal mechanism are stable to pertur

bations in both 2-D and 3-D. It is for these reasons, among others, that this mechanism is 

currently regarded as the most credible model for explaining not only protostellar outflows, 

but jets in many different astrophysical settings. 

For the simulations which have been scaled to physical units, Table 1.2 summarises 

results which can be compared directly with observations. While properties such as jet 

speeds and mass fluxes overlap at least partially with observed characteristics of proto

stellar jets (Table 1.1), the maximum simulated extent of 100 AU (Anderson et d. 2005) 

is orders of magnitude smaller than the observed sizes of these objects. 

The disconnect between scale lengths of observations and simulations prevents a 

number of outstanding questions from begin answered. For example, can the magneto-

centrifugal mechanism, by itself, produce jets which agree with observations on large-

scales? What properties will these jets have? Are they capable of propagating to the 

lengths of giant HH outflows? Do the knots produced by some small-scale simulations 
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poloidal velocity (km s_1) 
toroidal velocity (km s - 1) 

mass fluxes {MQyr~l) 
max. physical extent (AU) 

simulation lifetimes (yr) 

35 - 1300 
< 5 0 

10~8 - 10~5 

1-100 
1-100 

Table 1.2 Several properties from simulations of protostellar jets launched from a disc as 
a boundary condition. 

References. — Ouyed & Pudritz (1997a); Ustyugova et al. (1999); Anderson et al. (2005); Fendt (2009); 
Staff et al. (2010). 

evolve to form the clumpy structures observed at much larger scales? While on small-

scales, the conditions at the accretion disc have clear relationships with the properties of 

the jet. On large scales, how do the observed properties of jets, such as mass flux or proper 

motion, relate to the conditions at the surface of the accretion disc? For the simulations 

discussed above, the jet has long moved off the grid and the ambient medium surrounding 

the jet has long been pushed completely off the computational domain. In reality, the 

jet is directly influenced by a confining medium. Thus, none of these simulations can 

address what effect the ambient medium has on jets launched by the magneto-centrifugal 

mechanism. 

1.4 This work 

Evidently, there is a disparity between observations of jets which stretch for > 104 

AU, and simulations with a maximum extent of only 100 AU. It is then difficult to recon

cile the magneto-centrifugal model for jet launching with observations when the maximum 
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extent of simulations are only a few times larger than the highest spatial resolution cur

rently attainable (~14 AU for the Taurus Auriga complex; Ray et al. 2007). To further 

put this into context, Figure 1.7 shows false colour images of protostellar jets with a scale 

of 1000 AU indicated in the bottom left of each panel. In the cases of HH 34 and HH 

47, 100 AU barely registers as a single resolution element, and very little information is 

available on these scales. In order to establish whether the magneto-centrifugal model 

can produce realistic protostellar jets, we need either observations which resolve down to 

the AU scale, or simulations which include both the launching mechanism and the large 

observational scale structure. 

In this work, I aim to do the latter by presenting axisymmetric, ideal, time-dependent 

MHD simulations of protostellar jets, simultaneously including both the launching mech

anism at sub-AU scales and observable scales of thousands of AU. By placing an emphasis 

on quantities which are directly comparable to current observations, I attempt to deter

mine if the magneto-centrifugal jet launching mechanism is suitable for producing observed 

protostellar jets. 

To make these simulations possible, I employ the new adaptive mesh refinement 

(AMR) MHD fluid code AZEuS. The development and testing of AZEuS constitutes a 

significant portion of this work, and in Chapter 2 I describe how we adapt the AMR 

scheme of Berger & Colella (1989) for use with the fully staggered-mesh of ZEUS-3D 

(Clarke 1996, 2010). 

At the outset of this project, a purely 3-D, hydrodynamical, and Cartesian AMR 

prototype of AZEuS had been developed by Sasha Men'shchikov, then a post-doctoral 
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Figure 1.7 False colour images of the HH 30 (top left), HH 34 (top right), and HH 47 jets 
(bottom) taken with the Hubble space telescope. HH 47 exhibits clear non-axisymmetric 
behaviour while HH 30 and HH34 appear more axisymmetric. The images were taken with 
WFPC2 in visible light, and the scales in the bottom left of each panel correspond to 1000 
AU. Top left credit: J. Morse/STScI, and NASA. Top right credit: J. Hester (Arizona 
State University), the WFPC 2 Investigation Definition Team, and NASA. Bottom credit: 
C. Burrows (STScI & ESA), the WFPC 2 Investigation Definition Team, and NASA. 

fellow at Saint Mary's. Since his departure, I was responsible for completing the devel

opment of AZEuS which included geometrical symmetries (1-D, 2-D), curvilinear coordi

nates (cylindrical and spherical polar coordinates), magnetic fields (and the preservation 

of the solenoidal condition), higher-order conservative prolongation schemes {i.e., inter

polation), and the treatment of physical boundary conditions. The ZEUS-3D portion of 
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AZEuS is equivalent to the version currently developed and maintained by David Clarke 

(ht tp: //www. ica . smu. ca/zeus3d). With regards to both ZEUS-3D and AMR modules, 

I was also responsible for OpenMP shared-memory parallelisation and general performance 

tuning, resulting in an increase in serial performance of ~20%, and a parallel speed-up fac

tor of 12.5 on 16 CPUs. To the best of my knowledge, AZEuS is the only fully-staggered 

mesh (i.e., both magnetic fields and momenta are located at face centres) AMR-MHD 

code in use in astrophysics. 

In performing these simulations, I have made a number of physical assumptions which 

simplify our models, making them tractable for the large computational domains and long 

simulation run times we use. Here, I perform a "reality check" to examine whether or not 

these assumptions were valid in the first place. The major assumptions I discuss here are 

1) the ideal MHD approximation, 2) neglecting self-gravity of the fluid, and 3) cylindrical 

axisymmetry. 

The ideal MHD fluid approximation is the simplest single-fluid model available for 

studying a conducting fluid, and to check its validity, we start by examining the applica

bility of the fluid model. This requires the mean free path of the particles, 51, to be much 

less than the characteristic length scale of interest, L: 

Sl<^L. (1.8) 
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For particles with a Maxwell-Boltzmann distribution of velocities, the mean free path can 

be written as 

SI = -yt—, (1.9) 

where n is the number density of particles, and a — nr2 is the cross sectional area of 

collision (Baierlein 1999; p. 376). Using a characteristic value for the density in protostellar 

jets (n ~ 1011 m~3; McKee & Ostriker 2007), along with five times the Bohr radius (5re = 

2.6 x 10~10 m) in the cross-sectional area1, I calculate a mean free path of I ~ 3 x 107 m. 

Taking as the characteristic length scale the size of the smallest resolution element from 

my simulations, L — A£min ~ 109 m, then 51 -C L, as desired. 

Next, in order for the MHD approximation to be considered valid, the fluid must 

be sufficiently magnetised for the fields to couple to the particles. Equivalently, for the 

approximation to apply, the ion gyro radius 

r . = = (1.1.) 

(also known as the Larmor radius) must be much smaller than the characteristic length 

scale. In this expression, m is the mass of an ionised particle, v is the velocity of these 

particles, q is the electric charge, and B is the strength of the local magnetic field. Using 

the maximum velocities measured in protostellar jets (t>max — 5xl0 5 m s_1; Table 1.1), 

a magnetic field strength of B ~ 10~8 T (Vallee 2003), and a proton as the particle, the 

gyro radius is then rg ~ 5 x 105 m < L = A^min. 

lA value of 5re is used to account for the increase in cross-sectional area due to charged particles and 
the resulting Coulomb force. 
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Finally, for the MHD approximation to be considered ideal, magnetic diffusion must 

be completely negligible (i.e., the electrical conductivity a —> oo). This can be expressed 

through the magnetic Reynolds number: 

11T 

i ? m = — , (l.H) 
V 

where 77 is the magnetic diffusivity. A value of the magnetic Reynolds number much 

larger than unity indicates magnetic diffusion is unimportant. Following Fendt & Cemeljic 

(2002), for a fully ionised hydrogen gas, the magnetic diffusivity parallel to the field can 

be expressed as 

v~rec(^fy\ (1.12) 

where re is the classical electron radius, vt^ — -^/ksT'/me is the thermal speed of the elec

trons, c is the speed of light, T is the gas temperature, fee is the Boltzmann constant, and 

me is the electron mass. Again using the smallest resolution element for the characteristic 

length, a velocity of 5 x 105 m s_1, and a gas temperature of 100 K, I calculate a magnetic 

Reynolds number of Rm ~ 109 3> 1. 

The magnetic diffusivity perpendicular to the field will, in general, be different than 

along the field. However, for such large magnetic Reynolds numbers, these anisotropic 

effects are negligible and only the diffusivity parallel to the field needs to be considered. 

While the inclusion of self-gravity is important for studies of molecular cloud and core 

collapse, in our relatively small-scale simulations it is negligible. This can be demonstrated 
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by calculating the free-fall time of our simulated "core": 

*-(*m) • (L13) 

where (p) is the mean density (Truelove et al. 1998). 

This mean density is calculated by integrating our initial density profile over a sphere 

of radius Rmax, where Rmax is the maximum extent of our computational domain, and then 

dividing the result by the volume of a sphere with the same radius. Using a hydrostatic 

profile plus a density floor: 

/9(iJ) = A i r 1 / ( 7 - 1 ) + Hr6A, (1.14) 

where r\ is the scaling length, p\ is the density at r;, 7 = 5/3 is the ratio of specific heats, 

and R = \/r2 + z2 is the spherical radius. Integrating over a sphere, the mean density is 

given by 

(p) = 4 / p(R)R2 sin 9 dR d9 d<j) = - 3 — / p(R)R2 dR. (1.15) 

For a maximum extent of Rmax = zmax = 4096 AU, I calculate a mean density of (p) ~ 

5 x 10~15 kg m~3. Substituting into Equation (1.13), I find a free-fall time of % cz 3 x 104 

yr, much longer than our maximum simulation time of 100 yr. Even then, the magnetic 

and pressure forces in our simulations act on significantly smaller timescales than 100 yr, 

further justifying neglecting self-gravity of the fluid. 
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The third major assumption I have made in this work is that of axisymmetry. For 

cylindrical coordinates, this approach assumes that all variables are symmetric and all 

derivatives are zero in the (^-direction (d/df = 0). Unlike pure 2-D, it does allow for the 

^-components to take on non-zero values and affect the dynamics of the simulation. This 

simplifying assumption is justified so long as the physical phenomena we are trying to 

model also exhibits axisymmetric behaviour. HH 34 in the Orion nebula is an excellent 

example of an axisymmetric protostellar jet, showing essentially only axisymmetric struc

ture along the visible jet (Figure 1.1, 1.7). Although there are HH objects which show 

clear non-axisymmetric structure (e.g., HH 47, Figure 1.7; Heathcote et al. 1996), I focus 

here on astrophysical examples which do show a high degree of axisymmetry (e.g., HH 

30, HH 111; Ray et al. 1996, Reipurth et al. 1997a), and demonstrate that axisymmetric 

models are relevant. Indeed, to perform fully 3-D simulations on the scale of the 2-D 

models presented here, even with AMR, would require computing resources far beyond 

those which we have access to. 

In addition, I have assumed in this work that radiative effects are not important. 

However, protostellar jets are clearly emission line objects (e.g., Figures 1.1 and 1.7) and, 

as such, ignoring radiation is not necessarily a reasonable assumption. Indeed, radiative 

cooling immediately behind a shock can have significant consequences on conditions in 

the jet (Reipurth & Bally 2001), in particular, on the ionisation fraction and temperature. 

Although I understand the importance of these effects, they are not included here due 

to the additional complexity and computational demands associated with calculating line 
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cooling, and radiative timescales which can dominate the other timescales in the problem 

(e.g., TesUeanu et al. 2008). 

An outline of this thesis is as follows. Chapter 2 discusses the details of the imple

mentation of AMR on the fully-staggered mesh of AZEuS. In Chapter 3, I present the first 

results of the application of AZEuS to studies of protostellar jets. These results are also 

the first simulations to include the jet launching mechanism and length scales > 103 AU 

simultaneously. 

In Chapter 4, I discuss further aspects of the jet simulations, and expand the discus

sion on comparing simulations with observations. The jet launching mechanism and the 

generation of "knot"-like structures in the simulations is also addressed. 

Finally, Chapter 5 summarises the major findings, and comments on their implica

tions for both our current understanding of protostellar jets and future simulations. 
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Chapter 2 

AZEuS: An Adaptive Zone Eulerian 
Scheme1 

A new adaptive mesh refinement (AMR) version of the ZEUS-3D astrophysical mag-

netohydrodynamical (MHD) fluid code, AZEuS, is described. The AMR module in AZEuS 

has been completely adapted to the staggered mesh that characterises the ZEUS-3D fam

ily of codes, on which scalar quantities are zone-centred and vector components are face-

centred. In addition, for applications using static grids, it is necessary to use higher-order 

interpolations for prolongation to minimise the errors caused by waves crossing from a grid 

of one resolution to another. Finally, solutions to test problems in 1-, 2-, and 3-dimensions 

in both Cartesian and spherical coordinates are presented. 

2.1 Introduction 

High-resolution, multidimensional simulations have become indispensable for many 

complex problems in astrophysics, particularly those involving (magneto-)fluid dynamics. 

One of the most important innovations in this area has been the use of dynamic and 

variable resolution techniques. Adaptive mesh refinement (AMR), pioneered in the context 

l rrhe contents of this chapter have been submitted for publication to The Astrophysical Journal Sup
plement Series. 
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of the fluid equations by Berger & Oliger (1984) and Berger & Colella (1989; BC89), is 

one such approach. 

With AMR, a hierarchy of grids is used to provide high numerical resolution when 

and where the physics requires it, leaving as much of the volume at lower resolution as 

possible to minimise computational effort. This makes AMR an efficient means of studying 

problems with a very large spatial dynamic range (e.g., star formation, galaxy evolution), 

as borne out by the large number of codes which employ it: ORION (Klein 1999), FLASH 

(Pryxell et al. 2000), RIEMANN (Balsara 2001), RAMSES (Promang et al. 2006), PLUTO 

(Mignone et al. 2007), NIRVANA (Ziegler 2008), AstroBEAR (Cunningham et al. 2009), 

and ENZO (Collins et al. 2010) to name several. 

Virtually all AMR fluid codes to date are based on a zone-centred grid, with all hy-

drodynamical variables (density, energy, and momentum components) taken to be located 

at the centres of their respective zones. Indeed, AMR was originally designed specifically 

for zone-centred schemes. Magnetohydrodynamic (MHD) solvers are designed with either 

zone-centred or face-centred magnetic field components, depending in part on the mecha

nism used to preserve the solenoidal condition. One scheme that has enjoyed somewhat of 

a renaissance of late is Constrained Transport (CT; Evans & Hawley 1988), which places 

magnetic field components at the centres of the zone-faces to which they are normal. The 

staggered mesh introduced in such a scheme has to be specifically accounted for in the 

AMR modules and in such a way that V • B remains zero everywhere—including within 

the boundaries—to machine round-off error. 
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Figure 2.1 On a fully-staggered grid, scalars (p, ex, e, p) are zone-centred, primitive 
vectors (v, B) are face-centred, and derived vectors (E = —v x B, J = V x B) are 
edge-centred. 

The only astrophysical fluids code in wide use that employs a fully staggered grid, 

where the momentum components are also face-centred, are the ZEUS-3D family of codes 

(Figure 2.1). While concerns have been expressed over the suitability of its MHD algo

rithms in certain pedagogical 1-D test problems (e.g., Falle 2002), the fact remains that 

in one form or another, ZEUS-3D is among the best tested, documented, and widely-used 

fluid codes in astrophysics (Stone & Norman 1992a,b; Stone, Mihalas, & Norman 1992; 

Clarke 1996, 2007, 2010; Hayes et al. 2006), and a proper merger with AMR is warranted. 

To do this, AMR has to be modified for a fully staggered grid, including the proper 

treatment of face-centred magnetic fields and face-centred momenta. 

In this paper, we introduce the newest member of the ZEUS-3D family of codes, 

AZEuS, whose "maiden simulations" have already appeared in Ramsey &; Clarke (2011). 

AZEuS is a block-structured AMR version of ZEUS-3D (Clarke 1996, 2010) which preserves 

the modularity and structure of the underlying ZEUS-3D module. The AMR scheme of 
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BC89 including the changes described in Bell et al. (1994) are modified for a fully-staggered 

grid, with additional modifications made to the prolongation procedure to allow for smooth 

passage of all types of waves between adjacent grids of differing resolution. AZEuS is 

currently capable of ideal MHD in 1-, 1.5-, 2-, 2.5-, and 3-D in Cartesian, cylindrical, 

and spherical polar coordinates using both dynamic and static grids, and with a full suite 

of physical boundary conditions. As with all ZEUS-3D-type codes, additional physics 

modules (e.g., gravity, viscosity, radiation, etc.) can be easily added. 

This paper does not attempt to give a full recount of the basic methodology in either 

AMR or ZEUS-3D, but focuses instead on the modifications to AMR (not so much to 

ZEUS-3D) necessary for their merger. Thus, the reader should be familiar with BC89 

and Clarke (1996, 2010). In Section 2.2, we list the MHD equations solved by AZEuS, 

and define our conventions and notation. In Sections 2.3 and 2.4, we enumerate the 

modifications necessary for restriction and prolongation on a staggered grid, as well as 

outline the interpolation schemes used to allow the smooth passage of waves across grid 

boundaries. Section 2.5 focuses on boundary conditions, while in Section 2.6 we discuss 

how grids are created and how the proper nesting criterion must be modified for a fully-

staggered grid. Several of the 1-D, 2-D, and 3-D test problems used to validate AZEuS are 

given in Section 2.7, followed by a quick summary in Section 2.8. Discussion of curvilinear 

coordinates, use of the vector potential, and a schematic overview of the code are relegated 

to the appendices. 
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2.2 Preamble 

2.2.1 Underlying numerical method 

AZEuS solves the following equations of ideal MHD (with the artificial viscosity and 

gravity terms included): 

0, (2.1) 

- V ( p + pB) + V • (BB - Q) - pV<f>, (2.2) 

0, (2.3) 

- p V • u - Q : W , (2.4) 

0, (2.5) 

where p is the mass density, v is the velocity, s = pv is the momentum density, p is the 

thermal pressure, B is the magnetic induction2, ps — B2/2 is the magnetic pressure, Q is 

the von Neumann-Richtmyer artificial viscous stress tensor (von Neumann & Richtmyer 

1950; Clarke 2010), (f> is the gravitational potential and satisfies the Poisson equation 

(V2^> = AirGp), E = — v x B is the induced electric field, e is the internal energy density, 

and ex — e + \pv2 +PB + P<fi is the total energy density. This set of equations is closed by 

the ideal gas law, p = (7 — l)e, where 7 is the ratio of specific heats. Figure 2.1 shows the 

locations of most of these variables on a fully-staggered grid. Other physics terms often 

found in ZEUS-3D codes such as a second fluid, physical viscosity, radiation, etc., have 

yet to be implemented. 

2in units where /ig = 1 

dp 
dt 

• V • (pv) 

OB „ 

(sv) = 

x E = 

(ev) = 

OCT / -* ~* 

-^- + V-((eT-pB)v + ExB + Q-v) = 
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AZEuS inherits the operator-split methodology of ZEUS-3D, wherein the terms on 

the RHS of equations (2.1)-(2.5) are treated in a source step while those on the LHS are 

accounted for in a separate transport and inductive step. As such, the algorithm is not 

strictly conservative. However, based as it is on the version of ZEUS-3D described by 

Clarke (2010), AZEuS can solve either the internal energy equation or the total energy 

equation, where the latter choice does ensure conservation of total energy to machine 

round-off error, but at the cost of non-positive-definite thermal pressure. Should positive 

definite pressures be paramount, the internal energy equation offers a viable option with, 

in most cases, total energy conserved to within 1% or less (see Clarke 2010 for further 

discussion). 

To accommodate the interpolation schemes, two boundary zones must be specified 

at the edges of all grids. On a staggered grid, all zone-centred quantities have just the 

two boundary values, while face-centred quantities have two boundary values plus a value 

that lies on the face separating the "active zones" from the "boundary zones", hence

forth referred to as the "skin" of the grid (Figure 2.2). As we shall see, skin values for 

the magnetic field are treated just like active zones, while the momenta on the skin are 

treated somewhere in between active and boundary values; the difference attributed to 

the conservation properties of these two quantities. 

2.2.2 Conventions and Notation 

We adopt the following conventions and notation throughout this paper: 
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active zones 

boundary zones 

— — skin faces 
• active zone-centred values 
o boundary zone-centred value 

—*~ active face-centred values 
—»- skin face-centred values 
=*- boundary face-centred values 

Figure 2.2 On a fully-staggered grid, all variables have two boundary values. In addition, 
for each direction, one component of a face-centred vector and two components of an 
edge-centred vector have one skin value. 

1. Quantities in coarse and fine zones are denoted with upper and lower cases respec

tively: e.g., Q(I,J,K), q(i,j,k). Fluxes for a quantity Q (q) are denoted -Fm,Q 

(,fm,q), where m — 1, 2, or 3 indicates the vector direction. 

2. Unless otherwise indicated, a "coarse" grid or zone is considered to be at level I, 

while its daughter "fine" grid or zone is at level I + 1. The base and coarsest grid, 

which covers the entire domain, is at level 1 = 1. Refinement ratios, u, between level 

I and I + 1 must be a power of 2 and the same in all directions. 

3. Grid volumes, areas, lengths and time steps are AV, AAm, Axm, and At for a coarse 

grid, and 5V, 5Am, 8xm, and St for a fine grid. 

4. Indices (i, j , k) correspond to a fine zone at the (left, bottom, back) of a coarse zone 

with indices (/, J, K). The zone-centre of a particular fine zone within a coarse zone 
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Figure 2.3 The regions of influence (ROI) (shaded) for: (a) zone-centred variables, (b) 
face-centred and volume-conserved variables, and (c) face-centred and area-conserved vari
ables. A refinement ratio of v = 4 is shown. 

is designated (i + a, j + /3, k + rf), where a,P,r] — 0,1,... v—\. For the 1-face-centre 

of a fine zone, a = 0 , 1 , . . . u while /?, r\ = 0 , 1 , . . . v — 1, etc. 

5. Similarly, grid positions for the coarse grid use upper case indices [e.g., xi(I)], while 

grid positions for the fine grid use lower-case indices [e.g., x\(i)]. 

6. The current time step for the coarse grid is indicated by the upper case superscript 

N, while the current fine time step is indicated by the lower case superscript n. 
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Typically, n = uN. To designate a fine time step within a coarse time step, we use 

n + r, where T — 0,1,... v. 

7. The region of influence (ROI) of a variable is defined as the area or volume over which 

that quantity is conserved. For zone-centred scalars on the coarse grid, this is the 

volume AV(I, J, K) (Figure 2.3a). For face-centred but volume-conserved quantities 

(e.g., Si), the ROI is the staggered volume [e.g., \(AV(I, J, K) + AV(I- 1, J, K))] 

(Figure 2.3b). Finally, for face-centred but area-conserved quantities (e.g., B\), 

the ROI is the area of the face at which the vector component is centred [e.g., 

AAX(I,J,K)) (Figure 2.3c). 

Finally, while AZEuS is written in the covariant fashion of ZEUS-2D (Stone & Nor

man 1992a), our discussion is given in terms of Cartesian-like components with uni

form zone sizes within each grid for simplicity. As such, AV/SV — v3, AAm/8Am = 

u2, Axm/5xm = v, and At/dt — v. Some of the modifications necessary for curvilinear 

coordinates are given in Appendix 2.A. 

2.3 Restriction 

Restriction is the process by which data on the coarse grid are replaced by an average 

of data from an overlying fine grid. This must be done in a fashion that locally preserves 

all conservation laws and the solenoidal condition to within machine round-off error. Two 

types of restriction are considered: the conservative overwrite of coarse values with ROIs 

which are entirely covered by ROIs of overlying fine zones, and flux corrections to coarse 
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zones (sometimes called "refluxing") with ROIs which are adjacent to, or partially covered 

by, the ROIs of fine zones. 

2.3.1 Conservative Overwrite 

At the end of a coarse time step, fine and coarse grids are synchronised by overwriting 

the coarse grid with "better" values from overlying fine grids. Because of the different 

ROIs on a staggered mesh, the specifics of the overwriting procedure depend on which 

variable is being overwritten. For zone-centred, volume-conserved quantities (e.g., p, e, 

ei-), the procedure is the same as in BC89: 

1 "_ 1 

Q(I,J,K) = — Y, q(i + a,j + P,k + V), (2.6) 

which, by inspection, can be seen to conserve the quantity locally to within machine 

round-off error. 

For face-centred, volume-conserved quantities such as the momentum density whose 

ROIs are completely covered by the ROIs of overlying fine zones, we have: 

1 v/2 „ - l 

Si (! , . / ,#) = - E E G(<x)si(i + a,j + /3,k + ri), (2.7) 
a=-v/2 P,r)=Q 

where G(a) = < 
1/2 if a = ± v/2 

(2.8) 

1 otherwise, 
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for the l-component of the momentum. The factor Q(a) takes into account that only half 

of the ROIs of the fine momenta at a — —u/2, v/2 cover the ROI of coarse momentum 

(Figure 2.3b). 

Coarse momenta with ROIs partially covered by a fine grid are co-spatial with the 

skin of the overlying fine grid. As skin values of momenta are considered to be boundary 

values (since one of the fluxes is completely determined from within the boundary), they 

are not taken to be more reliable than the underlying coarse values (whose fluxes are 

determined exclusively by interior zones), and thus the coarse values are not overwritten 

by the fine grid values. Instead, coarse momenta cospatial with a fine grid skin are 

considered to be adjacent to the fine grid and, as such, are subject to the "flux-correction" 

step described in the next subsection. 

For magnetic fields, the conserved quantity is the magnetic flux (f B • dA). Thus, 

coarse values of B\ are overwritten using: 

1 "_ 1 

Br(I,J,K) = - £ h(i,j + l3,k + r,), (2.9) 
0,n = o 

where the sum is over all fine ROIs (areas of 1-faces) that cover the coarse ROI. One can 

easily show that overwritten values of B will still satisfy the solenoidal condition—even 

when combined with values of B that are not overwritten—so long as the overlying values 

of b are divergence-free and adjacent values of B are properly "refluxed" (Section 2.3.2). 

In addition, since B is an area-conserved quantity, there is never partial coverage of ROIs 

as there is with the momenta, and thus no analogue of G(a) (equation 2.8) is necessary 

for the magnetic fields. 
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A straightforward permutation of indices gives the analogous expressions for the 

other components of momentum and magnetic field. 

2.3.2 Flux Corrections 

A coarse zone adjacent to but not covered by a fine grid shares a face with the fine 

grid. In order that local mass, momentum, and magnetic flux remain conserved to within 

machine round-off error, the coarse and fine zones must agree on the fluxes passing across 

their common face. This is accomplished by keeping track of all coarse fluxes passing 

across the skin of a contained fine grid, and then subtracting from these the fine fluxes 

computed during the MHD updates of the fine grids. These "flux corrections" are then 

subtracted from the coarse zones adjacent to the fine grid during the so-called "refluxing 

step", effectively replacing the coarse fluxes with the fine fluxes along their common face. 

For zone-centred, volume-conservative quantities this procedure follows BC89. Thus, 

for transport in the 1-direction, we have for the flux-corrected quantity, Q: 

QN+1(I,J,K) = QN+\I,J,K) - AVJJK) (F^(I,J,K) 

0,V,T=O ' 

(2.10) 

where the quantities in large brackets are the flux corrections. For the purpose of illus

tration, the coarse zone (I, J, K) is taken to be immediately to the right (increasing / ) 

of a fine grid. F1Q ' is the time-centred 1-flux of Q (with units QVAAAt, where V is 
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Figure 2.4 The different cases for flux corrections on a staggered grid, including: (a) 
zone-centred quantities; (b, c, and d) the three different cases for face-centred, volume-
conserved momenta; and (e) area-conserved magnetic field corrections via the EMFs. Note 
that in this figure, all arrows correspond to components of fluxes or EMFs. 

the coarse velocity)3 passing across the 1-face co-spatial with the skin of the fine grid, 

while fi!q
T+ axe the corresponding fine fluxes (with units qv5A5t, where v is the fine 

velocity; Figure 2.4a). Note the sum over r reflecting the fact there are several fine time 

steps (typically v of them) within a single coarse time step. 

When flux correcting the face-centred, volume-conserved momenta, we must depart 

from BC89 as there arise three different situations that must be dealt with explicitly. 

First, when a component of momentum is normal to and straddling the boundary of a 

3Strictly speaking, this is not a flux because of the factor At. However, for the purposes of accounting, 
we find it advantageous to define the fluxes with the time steps embedded. 
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fine grid, its ROI is only halfway inside the fine grid. Consider the coarse ROI of Si 

straddling the right boundary of a fine grid (Figure 2.4b). In this case, the flux correction 

takes the form: 

S?+\I,J,K) = S?+1(I, J, K) - AvJ^ R) (F^}(I - 1, J, K) 

-\ E (firh-s-u+M+v) (2-n) 

P,V,r=0 

Note that in the 1-direction, the coarse and fine momenta pass through the same face, 

but the fluxes do not. Thus, an average of the fine fluxes at i — v/2 — 1 and i — v/2 is 

needed to properly centre the fine fluxes, and to ensure local conservation of momentum 

flux. 

Second, when a component of momentum lies adjacent to a fine grid and its direction 

is parallel to the fine grid boundary, its ROI is entirely outside the fine grid just as for a 

zone-centred quantity. For example, consider the 1-flux correction for the ROI of S2 lying 

to the right of a fine grid (Figure 2.4c). The flux correction here is given by: 

S^ (/, J, K) = S2
N+1 (I, J, K) - AV{I]JK) ( * £ ' ( ' , J, K) 

v/2 „ - i J (2.12) 

- £ £ $(/*)/£T5 (*, .7+ /*,* + »?)). 

The factor Q(/3) (equation 2.8) ensures that only half of the fine 1-fluxes of the fine ROIs 

at j3 = ±v/2 are included, as a quick glance at Figure 2.4c will verify. 
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The third case is similar to the second, with the coarse ROI also straddling a bound

ary in another direction (i.e., at a corner of the fine grid; Figure 2.4d). Consider again the 

ROI of S2 to the right of a fine grid that is also straddling a boundary in the 2-direction. 

The flux correction in this case is: 

S?«(I, J, K) = # « < / , J, JO - ^ ^ ( ! £ ! * & * < / , J, K) 

v/2 v-\ 1 v ( 2 - 1 3 ) 

j3=l 7/,T=0 ' 

where the fraction [y — l)/2z/ is the area filling ratio between the fine to coarse fluxes. 

For example, for v = 4, {y — l)/2v — 3/8 (Figure 2.4d), and 3/8 of the coarse flux must 

be replaced with the overlapping fine fluxes. Note that fi,a2(i,j,k) does not contribute 

to the fine fluxes that replace part of the coarse flux since it is determined, in part, by 

values from the boundary region of the fine grid, and thus not taken as reliable enough 

to replace part of the coarse flux determined exclusively from active zones of the coarse 

grid. 

For the magnetic field components, the operator in the evolution equation (equation 

2.3) is the curl, and not the divergence of the hydrodynamical variables. Thus, B is a 

surface conserved quantity (rather than volume-conserved) and, as such, we make adjust

ments to the EMFs instead of the fluxes; otherwise the procedure is the same. Consider 

the coarse ROI of B3 immediately to the right of a fine grid (Figure 2.4e). Following 
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Balsara (2001), we have: 

B»+1(I,J,K) = B»+1(I, J, K) + AAJ^ J; R) (eH+* (J, J, K) 

"- 1 n+.+ i \ ( 2 ' 1 4 ) 

3 T—n / 0,T=O 

where £2 (I,J,K) = E2Ax2At is the time-centred coarse 2-EMF4 ("electro-motive 

force") located along the 2-edge, and where e2 (i,j + f3,k) is the time-centred fine 

2-EMF, located along the same 2-edge as the coarse 2-EMF. Here, the quantity in large 

brackets are the "EMF corrections", analogous to the flux corrections for the hydrody-

namical variables. In ZEUS-3D, the EMFs can be evaluated using various algorithms. In 

our case, we use the Consistent Method of Characteristics (CMoC) described by Clarke 

(1996). 

Because the magnetic field is an area-conserved quantity, there is no situation where 

the coarse ROI of a magnetic field component is partially covered by fine ROIs as can 

happen for the volume-conserved, face-centred momentum. Thus, equation (2.14) and its 

permutations are sufficient to cover all EMF corrections for all field components in all 

directions. Note, for example, there are no corrections to be made in the 1-direction for 

the 1-field, again because of the surface conservative nature of the magnetic field. 

Further, induction of magnetic field components penetrating the skin of a fine grid is 

affected by EMFs computed from quantities taken entirely from within the active portion 

of the grid. This is in contrast to a momentum component penetrating the skin, half of 

4Similar to the hydrodynamical fluxes, we define the EMFs with the factor At embedded to simplify 
the accounting. 
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whose fluxes are computed from boundary values. Thus, we take the skin values of the 

EMFs and the magnetic components they induce to be just as reliable as those evaluated 

from within the grid, and it is appropriate to restrict the coarse magnetic field values on 

the skin of a fine grid with the overlying fine values (e.g., equation 2.9). 

Finally, expressions for flux corrections to coarse zones which are to the left of a fine 

grid (decreasing /) are derived by simply adding 1 to the first index of F\tQ or £;, adding 

v to the first index of / ^ Q or £j, and changing the sign of the correction terms in equations 

(2.10)-(2.14). Flux correction equations for coarse zones at the front or back (increasing 

or decreasing J) , and top or bottom (increasing or decreasing K) of fine grids can be 

obtained by a suitable permutation of indices and subscripts. 

2.4 Prolongation 

Prolongation is the process by which fine grid zones are filled using the best infor

mation available. This could either be by interpolating values from the underlying coarse 

grid in a way to ensure local conservation and local monotonicity, or taking them from 

adjacent or overlapping fine grids. As with restriction, prolongation can be divided into 

two types. First, when a fine grid is created or extended, the new fine zones must be filled. 

Second, at the beginning of a fine grid time step, fine boundary zones must be set. Both 

types require interpolation methods, some of which have been introduced here specifically 

for static grid refinement. 



Chapter 2 AZEuS 51 

2.4.1 Spatial interpolation 

In an effort to minimise the errors caused by waves travelling across boundaries 

between fine and coarse grids, we have introduced higher-order interpolation schemes 

(e.g., piecewise parabolic interpolation, PPI, Colella & Woodward 1984; CW84) to the 

prolongation step. This improves the results for adaptive refinement, and has proven 

important for static refinement where strong waves are required to cross grid boundaries. 

By design, these interpolation schemes honour conservation laws and monotonicity. 

In all cases and for all variables, we begin by estimating the interface values QL,R(I) 

from cubic fits to the coarse grid data (Section 1 of CW84) without the monotonisation 

or steepening steps. Now, to fit a parabolic interpolation function, ql(x), across the 

coarse ROI for zone / , we need three constraints. Two come from requiring that g*(x) 

passes through QL,R(I), while the third comes from requiring that the zone-average value 

Q(I, J, K) times the zone volume equal the volume integral of q\(x). For the original PPI 

scheme, this final constraint is written as: 

Q(I,J,K)AXl(I) = f q[(x)dx. 
JAx 

For our purposes, we need to interpolate fine zone averages from the coarse ones and, 

as such, the conserved quantity is the Riemann sum and not the integral. Thus, in the 

1-direction, our final constraint is: 

v-l 

Q(I,J,K)AXl(I) = ^ 9 l * ( i + a,j,fc)<Jxi(i) (2.15) 
a=0 
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1 "_ 1 

Q(I,J,K) = -j^qW + ̂ J^) (2-16) 
a=0 

for constant Ax, 5x. With this, our parabolic interpolation function is (c./., equation 1.4 

in CW84): 

qXi + <x) = QL{I) + (;{QR(I)-QL{I)-'HI{1-Q), (2.17) 

where: 

_ x^i + ot) - X i ( / ) _ 

AX!(/) 

Hi = 
/.W 

- ^ y ( Q ( I , J, K) - QL{I) - h{v)(QR(I) - QL(I))); (2.18) 

AW = h £ (^ -!); /»("> = i» E ̂  -x)2-

With g*(i + o) determined, we set the differences between the fine and coarse zones: 

Sqi(i + a) = ql(i + a)-Q(I,J,K). (2.19) 

For zone-centred quantities, we determine the fine-zone differences in the manner of 

equation (2.19) in each of the three directions, and set the interpolated fine zone averages 

to be: 

q(i + a,j + 0,k + ri) = Q{I,J,K) + 5q1{i + a) + 6q2(j + P)+6q3(k + r]). (2.20) 
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Given equation (2.16) and analogous expressions in the 2- and 3-directions, it is easy to 

show that this prescription is conservative; that is, 

1 "_ 1 

Q(I,J,K) = ~3 Y, q(i + a,J + P,k + rj), (2.21) 
a,0,r]=O 

for uniform grids (Ay — u3SV). 

For face-centred quantities, we determine the fine-zone differences in the manner of 

equation (2.19) in each of the two orthogonal directions (e.g., in the 2- and 3-directions 

for Si), and set the interpolated fine zone averages along each coarse face to be: 

8l(i,j + /3,k + ri) = S1(I,J,K) + 6slt2(j + P) + Ss1,3{k + rf). (2.22) 

Exactly the same procedure is used to interpolate Bi across each coarse 1-face. As with 

the zone-centred quantities, it is easy to show that this procedure conserves momentum 

(magnetic) flux on the face: 

1 v~x 

Sr(I,J,K) = - ^Sl(i,j + P,k + ri). (2.23) 
0,1=0 

The next step is to interpolate the face-centred quantities into the interior of the zone, 

and it is here where the procedure for momentum and magnetic components diverge. 

For the volume-conserved momenta, we perform a linear interpolation between the 

fine momenta on opposing coarse faces. For example, between s\(i,j + f3,k + rj) and 
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si (i + v,j + 0,k + rj) we set: 

sx{i + a,j + P,k + 7i) = (1 — C) si(», J + /?, fc + T;) + C «i(* + ^, J + /?, fc + ry), (2.24) 

where a — l,...,v — 1 and ( = a5x/Ax. This prescription guarantees that over a 

zone-centred volume, the prolongation of the 1-momentum is conservative. The fact that 

conservation is over the zone-centred volume and not specifically the 1-momentum ROI 

is required for equations (2.23) and (2.24) to be consistent with the restriction procedure 

of equation (2.11). 

For the area-conserved magnetic fields, a simple linear interpolation between oppos

ing coarse faces does not preserve the solenoidal condition. Thus, we turn to a generalised, 

directionally unsplit version of the algorithm described by Li & Li (2004) in which V • b = 0 

so long as V • B — 0 holds on the underlying coarse grid. 

In this approach, we take the coarse and recently interpolated fine values of magnetic 

field (equation 2.22), and apply the solenoidal condition to determine "intermediate" 

coarse field values (e.g., B{; Figure 2.5), which are cospatial with fine zone faces. For 

example, the intermediate values for Bi are given by: 

( b%Ai + a, i + v, k) — b%, (i + a, j , k) 

Ax2{J) 

*»3,i (» + a > 3>k + v) - hh (* + a> 3,k) 
Ax3(K) 
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Figure 2.5 Schematic representation of the directionally unsplit Li & Li algorithm for 
calculating fine values of b between coarse grid faces when v = 4. 

where: 

J/-I 1 " ' 
b*2,!(i + a,j,k) = - J 2 b2(i + a,j,k + r]), 

rj=0 

1 V~1 

bl,i(i + aJ,k) = -^2 b3(i + a,j + (3,k); 
(2.26) 

0=0 

B*1(i + 0)=B1(I,J,K), 

and 0 < a < v — 2. Given Bf(i + a + l), and the differences between fine and coarse values 

at the coarse faces (Sb\ti, 1 — 2,3; equation 2.19), we then calculate the fine magnetic fields 
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at i + a + 1: 

6i(i + a + 1, j + 0, k + rj) = Bf(i + a + l) + 5bh2(i + a + l,j + /3,k) 
(2.27) 

+ 6bh3(i + a + l,j,k + rj), 

where: 

* M * + a,j + P, k)= (1 - C) Sb1}2(i, j + P, k) + (6blt2(i + u,j + (3, k), 
(2.28) 

5bh3(i + a,j,k + rj) = (1 - Q Sblt3(i, j , k + rj) + (5bh3(i + v, j , k + rj), 

and C, = a$x/Ax. 

Proceeding incrementally from i + ltoi + u — 1 provides all of the values of b\ (i,j, k) 

between the coarse faces (/, J, K) and (I + l,J,K). Values for the other magnetic field 

components are given by a straightforward permutation of indices. 

Finally, we offer a note on the use of vector potentials. Igumenshchev k, Narayan 

(2002) have demonstrated that the vector potential, A, may be used in the CT algorithm 

(Evans & Hawley 1988) instead of the magnetic field with results identical to machine 

round-off error. Thus, one may be tempted to adopt this approach so that prolongation 

methods simpler than the Li & Li algorithm may be used on A as a way to guarantee 

that the fine grid satisfies the solenoidal condition. Reasons for not taking this approach 

are given in Appendix 2.B. 
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2.4.2 Temporal interpolation 

Fine grids require prolonged boundary values at the beginning of each fine time step, 

and thus we also need to perform temporal interpolations on the coarse values. Following 

BC89, we perform a linear interpolation on the coarse hydrodynamic variables in time, 

and then spatially interpolate them as described above to obtain the necessary boundary 

information for each fine time step. 

For the magnetic fields, the fine components penetrating the skins of the fine grid are 

retained; only those values completely within the boundary region need to be prolonged 

from the coarse grid. Temporal interpolations cannot be performed directly on the coarse 

magnetic field components without violating the solenoidal condition. Instead, we perform 

a linear interpolation on the coarse EMFs in time, replacing those coincident with the skin 

of the fine grid with spatial and temporal sums of the overlying fine values. Thus and for 

example, we set 

e?*(I, J,K) = J2T, £2+T+hhJ + P, k), (2.29) 
T=0 /3=0 

where ip = (2r' + l)/2u, and where 0 < r ' < v — 2 designates the last completed fine time 

step. Equation (2.29) gives the properly time-centred values for £2 necessary to update 

the coarse magnetic field components from the coarse time step N to the end of each fine 

time step contained within the single coarse time step, except for the final one. In turn, 

the coarse fields are interpolated spatially as described above to obtain the necessary fine 

magnetic boundary values. 
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2.4.3 Monotonicity 

We have found it necessary to maintain a certain monotonicity in our prolongations. 

Failure to do so can lead to negative pressures (even when solving the internal energy 

equation) and violations of the CFL condition. For example, if the current time step 

is governed by the sound speed, and the prolongation process leads to an interpolated 

density less than the surrounding zones, the sound speed in a fine zone could be greater 

than that which was used in determining the CFL time step, possibly leading to numerical 

oscillations and loss of stability. 

Sequentially stringing together two (or three) 1-D PPIs as we do for prolongation of 

zone-centred quantities (e.g., equation 2.20) can lead to non-monotonic behaviour even if 

each 1-D interpolation is separately monotonic. If a PPI-determined value q(i + a,j + 

j3,k + rj) is found to lie outside the range set by neighbouring coarse zones: 

Qmin = min (Q(I + r,J + A,K + ?)); 

Qmax = max (Q(/ + r , J + A,.K"-|-T)), 
> - i < r , A , T < + i , 

then we "fall back" to piece-wise linear interpolations (PLI; van Leer 1977). In rare cases 

where the PLI-determined value is also non-monotonic (possible only in 3-D), we revert 

to piece-wise constant interpolations (PCI, a.k.a. "direct injection" or "donor cell"): 

q(i + a,j + f3,k + ri) = Q{I,J,K). 
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Where PPI yields non-monotonic results, we note that transmission of strong waves across 

changes in resolution (e.g., static grids) is significantly improved if one first tries PLI rather 

than falling back directly to PCI or limiting the interpolated value to lie between Qmin 

a n d Qmax-

2.5 Boundary conditions 

Boundary conditions are applied directly to the hydrodynamical variables (p, e, v) 

and indirectly to the magnetic field via the EMFs. Attempting to apply boundary con

ditions directly to B often generates monopoles in the boundary regions, which can have 

disastrous effects on the dynamics in the active grid. 

In addition to the usual boundary conditions applied by the ZEUS-3D module during 

each MHD cycle, the AMR module must also set boundary conditions on two occasions. 

After restriction and before prolongation, boundary values are set on the coarse grid. 

Then, after prolongation and before the ZEUS-3D module is called for the next MHD 

cycle; boundary values for the fine grid are set using the results of the prolongation 

step. These additional applications of boundary conditions are necessary to maintain the 

imposed physical boundaries after restriction and prolongation have altered some of the 

values on the active grid, and to reconcile boundaries of grids that may be contained 

within or adjacent to other grids, henceforth referred to as adjacent boundaries. 

Because of their nature, physical boundaries (inflow, outflow, reflecting; those tra

ditionally applied by single-grid MHD codes), and adjacent boundaries must be treated 

differently, and each is discussed in turn. 
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2.5.1 Physical Boundaries 

Generally, a fine grid is completely embedded within a coarse grid. The single excep

tion is when both grids share a physical boundary and two items of note must be borne 

in mind when adapting the physical boundary condition routines in ZEUS-3D to AZEuS. 

First, since each grid has only two boundary zones, only part of the coarse boundary 

region is covered by fine boundary zones. Thus, coarse boundary zones cannot be included 

in the restriction step; a particular concern when setting magnetic boundary conditions. 

In AZEuS, we extend the EMF correction scheme of Section 2.3.2 by retaining three layers 

of transverse EMF corrections, and two layers of longitudinal EMF corrections5, including 

the skin layer plus two additional layers interior and adjacent to the skin. Immediately 

before the restriction step, physical boundary conditions are applied to the EMF correc

tions, which are then used to update the boundary values of the magnetic field components 

in the coarse grid according to equation (2.14). Done in this fashion, there is no risk of 

introducing monopoles to the coarse boundary zones during the restriction step when two 

or more grids overlap a physical boundary. 

Second, not handled properly, inflow boundary conditions can introduce unexpected 

violations of conservation laws which can cause unwanted discontinuities in the boundary. 

In particular, if a boundary variable is to be set according to an analytical function of 

the coordinates, that variable should be set to the zone average of that function, and not 

simply to the function value at the location of the variable. While this is good advice for 

a single grid application, it is critical for AMR. 

5e.g., the transverse (longitudinal) EMFs for the 1-boundary are £2 and £3 (EI) . 
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Figure 2.6 A single coarse zone in the z — 0 boundary with zone centre at r(J) = r and 
with refinement ratio of v — 2. 

For example, suppose the density profile: 

p(r) 
1 

r 3 / 2 ' (2.30) 

is to be maintained in cylindrical coordinates along the z = 0 boundary. Let p(J) be 

the density in the coarse zone of dimension (Az, Ar) centred at r(J) = r, and let p(j) 

and p(j + 1) be the densities in the fine zones of dimension (Sz, Sr) centred at r(J) and 

r(j + 1) (Figure 2.6). For a refinement ratio of 2, Ar = 2Sr, Az = 2Sz, r(j) = r — \Sr, 

and r(j + 1) = r + \Sr. 

If we naively set p( J) using equation (2.30), the mass of zone J (with volume AV = 

rArAz) is: 

m(J) = p{J)AV(J) 
ArAz 

7-1/2 • 
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Similarly, for the fine zones, 

. . SrSz Srdz 

Adding the masses in the four fine zones contained by the coarse zone, we find: 

2{m(j) + m(j + l)) = « W l + ^ ( 
3 / 5 r x 2 

r . + ••• I > ™(A 

and the physical boundary conditions violate mass conservation. 

Instead, p(J) should be set to the zone average, determined by: 

P(J) - m{J) 

AV(J) 

where the mass function, m(J), is given by: 

(J) = / p(r)dV, (2.31) 
JAV(J) 

m 
lAV(J) 

where p(r) is the given density profile (e.g., equation 2.30). Similar expressions apply for 

m(j), and m(j + 1). Done in this fashion, it is easy to show that 

p(J)AV(J) = 2{p(j + l)5V(j + l)+p(j)SV(j)), 

and both grids agree on the mass contained with coarse boundary zone J to within machine 

round-off error. With a little bit of algebra, this can be confirmed analytically for the 
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specific case of equation (2.30). For more complicated profiles, a numerical integrator can 

be employed to perform the necessary integrations in equation (2.31). 

2.5.2 Adjacent Boundaries 

Unlike Godunov methods which typically require a single application of boundary 

conditions at the end of each MHD cycle, the operator-split nature of ZEUS-3D requires 

boundary conditions to be set several times. For physical boundaries, this is not an issue; 

physical boundary conditions may be set whenever needed based on data from a single 

grid. However, adjacent boundaries pose a unique challenge in AZEuS since the ZEUS-3D 

module is aware only of the grid being updated, and other grids cannot be accessed in the 

middle of an MHD cycle to update these boundaries. 

We have introduced into AZEuS the concept of "self-computing" boundary conditions 

for adjacent boundaries. In this approach, boundary zones are set at the beginning of each 

time step using the best information available (either from an adjacent grid of the same 

resolution, or from the prolongation of an underlying coarse grid possibly interpolated 

in time), and then the full set of operator-split MHD equations are applied to both the 

boundary and active zones; no adjacent boundary zones are reset to any pre-determined 

quantity inside a single MHD time step. 

Of course, assumptions about missing data beyond the outermost edge of the grid 

must be made, and "pollution" from these missing data necessarily propagates inward. 

For example, consider the left 1-boundary where Vi(i = 1) and Vi(i = 2) represent the 

boundary values of Vi, v\(i = 3) the skin value (treated as a boundary value), and V\(i = 4) 
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the first active value. The pressure gradient at vi(i = 1) is proportional to p(i = 1) —p(i = 

0), yet p(i = 0) is completely unknown \p{i = 1) and p(i — 2) are the only boundary values 

available]. The best we can do for a missing datum such as this is to extrapolate assuming 

a zero-gradient, in which case p(i — 0) = p(i — 1) and no pressure gradient is applied 

to Vi(i — 1). In this manner, v\(i — 1) is polluted by the missing datum at the very 

beginning of the source step. 

Additional steps inside a single MHD cycle include the application of artificial viscos

ity, adiabatic expansion/compression for the internal energy equation, the transport steps, 

and the induction step. All but the latter contribute to propagating pollution from miss

ing data toward the active portion of the grid. Ideally, one would carry enough boundary 

zones to prevent pollution from reaching the active grid within a single MHD step, so 

that the AMR module (with knowledge of all grids) can reset all boundary values to new 

and unpolluted values before their effects ever reach the active zones. However, for van 

Leer (1977) interpolation in the transport step and within a single MHD cycle, pollution 

from missing data reaches the skin and first active zone-centre on the grid, as well as the 

first active face and second active zone-centre if the local velocity points away from the 

boundary (true regardless of which energy equation is used). Thus, to completely prevent 

pollution from reaching the active grid, we would have to double the number of boundary 

zones from two to four. 

We have investigated this effect thoroughly and have found no test problem that 

demonstrates anything but the slightest quantitative effect from pollution by missing data 

at adjacent boundaries between fine and coarse grids. For adjacent boundaries between 



Chapter 2 AZEuS 65 

grids of like resolution, we have elected to force these grids to overlap (for reasons explained 

in Section 2.6) by an amount sufficient to eliminate the problem of missing data pollution 

altogether. 

Finally, self-computed boundary zones are included in the calculation of the Courant-

limited time step. For an operator-split code such as AZEuS, this step is critical in 

minimising transmission errors when waves of any significant amplitude cross adjacent 

boundaries. 

2.6 Grid creation and adaptation 

Creation or modification of adaptive grids in AZEuS proceeds in a manner similar 

to Bell et al. (1994) including the suggestions of Berger & Rigoutsos (1991), with two 

important differences. First, we have had to modify the proper nesting criterion of BC89 

by increasing from one to three the number of zones at level I — 1 separating an active 

zone at level I from level I — 2. This is because prolongation of boundary values for level I 

from level I — 1 requires one zone from level I — 1 beyond the edge of a grid at level I, plus 

two additional zones at level I — 1 on either side to satisfy the five-zone molecule needed 

by PPL 

Second, BC89 allow grids of the same resolution to abut without overlapping, whereas 

we have found it advantageous for at least two reasons to extend abutting grids so that 

they overlap by a minimum of one coarse zone (Figure 2.7). For one, since the momenta 

penetrating a grid skin are no more reliable than boundary values, two abutting grids 

would, in general, disagree on the values of the momentum penetrating their common skin. 
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This turns out to pose an intolerable ambiguity in the solution. Second, the problem of 

pollution propagating from missing data onto the active grid (Section 2.5.2) is completely 

averted by overlapping two abutting grids by one coarse zone. 

By forcing abutting grids to overlap, there is always a clear choice of which value 

to use at a given location. Where the boundary and skin values of one grid overlap the 

active zone values of another, the active zone values prevail, and are used by the other 

grid for its boundary values. 

Grids which are abutting at the end of the grid generation and modification process, 

but before they are prolonged, are made to overlap by one coarse zone. Numerous situa

tions arise in which more than one grid may overlap at the same location (e.g., the test 

problems in sections 2.7.2 and 2.7.2), and this can result in overlaps which are greater 

than one coarse zone. Further, the possibility of a complex distribution of AMR grids 

opens up a whole host of pedagogical cases which one must consider, particularly when 

looking to maintain the solenoidal condition. During the development of AZEuS, we have 

carefully examined each case involving multiple levels with numerous grids overlapping 

each other, to ensure that where grids overlap, they all agree on the flow variables and all 

conservation laws are preserved to machine round-off error. 

Note that mismatched momentum and velocity components can be more insidious 

than one might at first imagine. With mismatched velocities, CMoC will generate mis

matching EMFs on the two grids, and this can lead to monopoles. Even if such monopoles 

are restricted entirely to the boundary zones, their unphysical forces can affect neigh

bouring active zones whose effects propagate rapidly throughout the grid. Preserving 
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Figure 2.7 Two grids that originally abut (panel a) are made to overlap by at least one 
coarse zone (panel b). 

agreement between overlapping zones including boundary zones to machine round-off is, 

therefore, of paramount importance. 

2.7 Numerical Tests 

We have verified AZEuS against a number of standard test problems, some of which 

are presented in this section. Further results will be posted to h t t p : //www. ica . smu. ca/azeus, 

as they become available. Additional and similar test problems for ZEUS-3D (without 

AMR) are found in Clarke (2010) and on-line at http://www.ica.smu.ca/zeus3d. 

2.7.1 1-D shock tubes 

While most AMR applications rely exclusively on dynamic grids, certain applications, 

particularly those which exhibit some degree of self-similarity, can benefit enormously from 

the use of a base of nested, static grids (e.g., Ramsey & Clarke 2011). As such solutions 

evolve, waves of all types—including strong shocks—must pass sequentially from one grid 

http://www.ica.smu.ca/zeus3d
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to another, and it is here where our higher order prolongation algorithms for adjacent 

boundaries are critical. 

AZEuS has been tested with all 1-D shock tube problems from Ryu & Jones (1995; 

RJ95) for both static and dynamic grids, and we show the results from two to highlight 

these features of the code. Both tests use the total energy equation with 7 = 5/3, C = 0.75 

(Courant number), and artificial viscosity parameters qcon = 1.0 and q l in = 0.2. 

For static grids, Figure 2.8 shows two solutions for p, ex, v2, and B2 from problem 

(4a) of RJ95 over a domain of x\ € [—0.5,2.5] (three times larger than RJ95) for a time 

t = 0.45 (three times longer). The initial discontinuity is placed at x\ — 0.5, with the 

left and right states given in the figure caption. The left panels show the domain resolved 

with 1200 zones and no AMR, while the central panels show the AMR solution with 

a base resolution of 600 zones and fine static grids with a refinement ratio of 2 placed 

at x\ 6 [—0.2,0.1] and x\ G [0.7,1.245] (grey). These locations allow all the physical 

features, with the exception of the sluggish slow rarefaction, to suffer at least one change 

in resolution. The right panels show the percent differences between the two solutions. 

Discounting all zones trapped within a discontinuity (which, even without AMR, 

are are already in error by as much as 100% since discontinuities are supposed to be 

infinitely sharp), the maximum error one can attribute to the use of static grids in any 

of the variables is less than 1%. As further evidence of the ability of AZEuS to pass 

waves of all types across adjacent boundaries, Ramsey & Clarke (2011) find almost no 

sign of reflection, refraction, or distortion of any type of wave across any of the static 
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Figure 2.8 Static grid solution to problem (4a) of RJ95 at time t = 0.45. The initial left 
and right states are (p,Vi,v2,v3,B2,Bs,p) = (1,0,0,0,1,0,1) and (0.2,0,0,0,0,0,0.1), 
with B\ = 1. From left to right, the physical features are: (1) fast rarefaction, (2) slow 
rarefaction, (3) contact discontinuity, (4) slow shock, and (5) "switch-on" shock. Left 
panels: uniform "fine" grid solution; middle panels: same solution with two fine, static 
grids (gray) overlying the coarse grid; right panel: percent difference between the uniform 
and static grid solutions. Solid lines are the analytical solutions from the Riemann solver 
described in RJ95. 

grid boundaries in their 2-D axisymmetric simulations of protostellar jets in cylindrical 

coordinates. 
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Figure 2.9 AZEuS solution to problem (2a) of RJ95 at t = 0.20. The initial left and 
right states are (p,v1,v2,v3,B2,B3,p) = (1.08,1.2,0.01,0.5,3.6/V^K,2/y/^v,0.95) and 
(1,0,0,0,4/\/47r, 2/-\/47r, 1), with Bx = 2/y/An. The physical features, from left to right, 
are: (1) fast shock, (2) rotational discontinuity, (3) slow shock, (4) contact discontinuity, 
(5) slow shock, (6) rotational discontinuity, and (7) fast shock. Shaded regions indicate 
the location of finer grids, with the level of shading indicating the level of refinement. 
^ — t an - 1 (B3/B2) is the angle between the transverse field components. The solid lines 
are the analytical solution from the Riemann solver described in RJ95. 

For dynamic grids, Figure 2.9 illustrates the results of test problem (2a) of RJ95. 

We employ four levels of refinement (sequentially darker shades of grey) above the base 

grid with a resolution of 40 zones over the domain X\ € [0.0,1.0]. The initial discontinuity 

is located at x\ = 0.5, with the left and right states given in the figure caption. To 
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track the developing features, refinements are based on three criteria (Khokhlov 1998): 

contact discontinuities (CD), shocks, and gradients in certain variables, each requiring 

a threshold value to be set above which a zone is flagged for refinement. Here, we set 

parameters to lcd = tolshk = 0.1 for CDs and shocks, respectively, and check t>2 for 

gradients above to lgrad = 0.1. For this problem, the gradient detector is needed to 

refine both the discontinuity of the initial conditions as well as rotational discontinuities 

(xi ~ 0.53 and x\ ~ 0.71 in Figure 2.9), neither of which are detectable as a CD or shock. 

Additional parameters used to obtain this solution include kcheck = 5 (the number 

of cycles between successive grid modifications), geff cy = 0.95 (the minimum allowed 

grid efficiency, defined as the ratio of zones flagged for refinement to the number of zones 

actually present in a new grid), and ibuf f = 2 (the number of buffer zones added around 

flagged zones). 

2.7.2 2-D tests 

MHD Blast 

The MHD blast problem of Londrillo k Del Zanna (2000) and Gardiner k Stone 

(2005) has proven to be a very valuable test of our AMR algorithms and for rooting out 

problems in the code. It is also a good test of directional biases and the ability of a code to 

handle the evolution of strong MHD waves. We initialise the problem in the same manner 

as Clarke (2010) with domain x € [-0.5,0.5],y € [-0.5,0.5] and (p,v,B1,B2,B3) = 

(1,0,5\/2, 5\/2,0) everywhere. Within radius r = 0.125 of the origin, we set the gas 

pressure to p = 100, and p — 1 elsewhere. 



Chapter 2 AZEuS 72 

Figure 2.10 AZEuS solution for the 2-D MHD blast problem at t = 0.02 using 2 levels 
of refinement. Top left: gas pressure; bottom left: magnetic pressure (pB — \B\2/2); top 
right: gas density; and bottom right: distribution of AMR grids at t = 0.02. 

Figure 2.10 presents our results for the 2-D blast problem at t — 0.02 for a base 

grid of 2002 zones, and one additional level of refinement with ratio v = 2. For this test, 

we have purposely chosen a high grid efficiency of gef f cy = 0.92 to strenuously test the 

ability of AZEuS to handle a large number of grids in a complicated pattern and refine 

on features which are not preferentially aligned with a coordinate axis. Typically, a lower 

value for the grid efficiency is used (e.g., geffcy ~ 0.7) to try and balance minimising 
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p 
V 

PB 

AMR 
Min Max 

0.201 3.36 
0.737 32.3 
24.2 75.7 

Uniform, 2002 

Min 

0.200 
0.771 
24.9 

Max 

3.22 
32.0 
76.0 

Uniform, 4002 

Min Max 

0.189 3.40 
0.714 32.1 
23.6 75.6 

Table 2.1 Extrema for density, p, gas pressure, p, and magnetic pressure, PB, in AMR 
and uniform grid solutions of the 2-D MHD blast problem at t — 0.02. 

the number of refined zones with the overhead associated with managing an increasing 

number of small grids. 

Evidently, AZEuS is able to follow the blast wave closely, regardless of its orientation. 

Table 2.1 compares the extrema of the plotted variables between the AMR calculation and 

uniform grid solutions with 2002 and 4002 zones. With the exception of the density, which 

exhibits differences between the uniform 2002 and AMR solutions of < 0.5%, the uniform 

grid results bracket the AMR solution. 

For this test, we set tolshk = to lcd = 0.2, and apply tolgrad = 0.2 to e^. While 

the gradient detector is useful in refining the initial pressure jump, most (~ 99.9%) of the 

zones flagged for refinement soon thereafter are detected by the CD and shock detectors. 

Additional parameter settings include kcheck = 10, ibuff = 3, 7 = 5/3, C — 0.5, qcon 

= 1.0, and q l in = 0.1. All boundaries are set to outflow conditions. 

Orszag-Tang MHD vortex 

The 2-D vortex problem of Orszag & Tang (1979) has become a standard test for 

astrophysical MHD codes, and as it has not previously been performed using our version 

of ZEUS-3D, we present both non-AMR and AMR results here. It is important to note 
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that the same code was used to produce both sets of results: AZEuS is designed to be 

modular, and by deselecting the 'AMR' option at the precompilation step, the code reverts 

to ZEUS-3D. 

For this test, we follow Stone et al. (2008) by initialising a periodic, Cartesian box 

of size x,y € [0,1] with initially constant pressure and density, P = 5/127T and p = jP = 

25/367T, for 7 = 5/3. The velocity is initialised to (vx, vy, vz) = (— sin (2ny), sin (2TTX), 0), 

and the magnetic field is set through the vector potential Az = (Bo/Air) cos (Anx) + 

(B0/2TT) cos (27ry), where B0 = 1/VATT. 

The results for uniform grids with 2562 and 5122 zones at t = 1/2, as well as the 

AMR results for a base grid of 1282 zones and 2 levels of refinement (effective resolution of 

5122 zones), are presented in Figure 2.11. The bottom right panel shows the distribution 

of AMR grids at t — 1/2. For clarity, we have only plotted the grids at level 3 (i.e., 2 levels 

higher resolution than the base grid). Even then, the filling factor of level I — 2 grids at 

this time is > 95%. Examining the first three panels of Figure 2.11 closely, features are 

noticeably sharper in the 5122 solution relative to the 2562 results, while the AMR and 

5122 solutions are indistinguishable. 

Figure 2.12 shows slices of the gas pressure as a function of x at t = 1/2 and 

y = 0.4277, which once again demonstrate that the AMR and 5122 uniform grid solutions 

are virtually identical. Quantitatively, these solutions compare favourably with those from 

higher-order codes such as ATHENA, with the discontinuities in the AZEuS solutions being 

slightly broader. 
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Figure 2.11 Uniform and adaptive grid solutions for the Orszag-Tang MHD vortex at 
t = 1/2. Plotted are 20 evenly spaced contours of the gas pressure with range [0.03,0.50]. 
Top left: uniform grid solution with 2562 zones; top right: uniform grid solution with 
5122 zones; bottom left: AMR solution with a base grid resolution of 1282 and 2 levels of 
refinement; and bottom right: distribution of grids at level 3 in the AMR solution. 

For this problem, we set C = 0.5, qcon = 1.0, and ql in = 0.1 for both uniform and 

adaptive grids. For the AMR results, kcheck = 10, gef fey = 0.9, ibuf f = 2, and tolshk 

= 0.2. Neither the CD nor gradient detector were engaged. 
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Figure 2.12 1-D slices of the gas pressure at t = 1/2 and y = 0.4277 in the Orszag-Tang 
MHD vortex problem. From top to bottom, uniform 2562 grid, uniform 5122 grid, AMR 
solution with 2 levels of refinement and an effective resolution of 5122 zones. 

Magnetised accretion torus 

This test is based on the simulations of Hawley (2000) and Mignone et al. (2007) for 

a magnetised, constant angular momentum torus in axisymmetric spherical (r, •&) coordi

nates, and highlights the use of curvilinear coordinates in AZEuS. 

The torus structure is described by the equilibrium condition: 

IP 

( 7 - l ) p 
C-

i / 2 

2 r2sin2tf' 
(2.32) 
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where C is a constant of integration, <f> — —l/(r —1) is the pseudo-Newtonian gravitational 

potential, and Zxep is the Keplerian angular momentum at the pressure maximum. The 

pressure p is initially related to the density via the polytropic relation, p = up7, with 

7 = 5/3. By specifying the location of the pressure maximum (rmax = 4.7) and the inner 

edge of the torus (rm\r, = 3), we can determine the value of C and the (hydrodynamic) 

structure of the torus. 

A poloidal magnetic field is initialised in the torus from the ^-component of the 

vector potential: 

Av = — min(p(r, •&) - pc, 0), 
Pm 

where BQ — 2np]n/(3m, f3m and pm are, respectively, the plasma-beta and density at rmax, 

K, is determined by equation (2.32) evaluated at rmax, and pc = pm/2 determines the 

surface of the last vector equipotential. For the simulations presented here, /3m = 350 and 

Pm — 10- The toroidal velocity (v^) in the torus is initialised to the local Keplerian speed, 

while the poloidal velocity is set to zero everywhere. 

Outside the torus, the magnetic field is zero and we initialise a hydrostatic atmo

sphere with density and temperature contrasts of /?atm/Pm = 10~4 and Tatm/Tm — 100, 

respectively, where Tm is the temperature at rmax-

The domain of the grid is r G [1.5,20] and # G [0,7r/2]. We impose reflecting 

boundary conditions suitable for a rotation axis at # — 0, reflecting/conducting boundary 

conditions at the equatorial plane (i? = 7r/2), and outflow boundary conditions at r = 20. 

At r = rin = 1.5, we impose "sink" boundary conditions in an attempt to absorb any 

material reaching the inner boundary. This involves maintaining the density and pressure 
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at their initial values, and setting vr = v$ — vv = 0 within the boundary. On the inner 

skin (r — r i n), vr is set to the minimum of zero and a linear extrapolation from the grid. 

Finally, outflow boundary conditions are applied to the EMFs: 

£i(r <rin) = £ i ( 2 r i n - r ) ; 

£ 2 ( r < r i n ) = 2 £ 2 ( r i n ) - £ 2 ( 2 r i n - r ) ; (2.33) 

£ 3 ( r < r i n ) = 2 £ 3 ( r i n ) - £ 3 ( 2 r i n - r ) . 

Values of £2(rin) and £z{r\^) are determined by the CMoC algorithm in AZEuS. 

Both the uniform grid and AMR solutions are presented here. For the single grid 

calculation, we use 592 uniform radial zones and 256 uniform meridonal zones. For the 

AMR solution, we use a base grid of 296 x 128 zones, and allow one level of refinement 

with a refinement ratio v = 2, giving the same effective resolution as the uniform grid 

calculation. 

For both calculations, C = 0.5, qcon — 1.0, and q l in = 0.1. For AMR, kcheck 

= 50, geffcy = 0.8, ibuff = 2, tolshk = to lcd = 0.2, and tolgrad = 0.2 is applied 

to B$. We use the gradient detector to refine on the initial magnetic field configuration 

(contained entirely within the torus), and the complex field structure that develops later 

on from the magneto-rotational instability (MRI; Balbus & Hawley 1991), since neither 

are well-tracked by the shock and CD detectors. 

Following Hawley (2000), we enforce a density floor of W~3p(rin) to prevent the time 

step from becoming prohibitively small, and we use the internal energy equation to avoid 
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Figure 2.13 The "beard of AZEuS": Results of MHD accretion torus simulations in (r,#) 
coordinates at t — 300, where the vertical axis is the rotation axis. Plotted are contours 
of poloidal magnetic field (left) and logarithmic density (right). Top panels are for the 
uniform grid, bottom panels the AMR solution with one level of refinement. Borders of 
the adaptive grids are shown with black lines. 

negative pressures. Unlike Hawley (2000), we do not introduce any perturbations on the 

initial conditions, which slows but does not prevent the onset of MRI. 

Figure 2.13 presents the results of our simulations at t = 300. Evidently and very 

much unlike the Orszag-Tang vortex, the AMR and uniform grid solutions are visually 

different, even though they have the same effective resolution. For a pseudo-turbulent, 

"irreversible" problem such as this, small differences between values in the coarse and fine 

grids grow exponentially during the simulation, and lead to visually different solutions. 

This is quite unlike the behaviour of a "reversible" problem such as the Orszag-Tang 

vortex, for which small fluctuations grow at worse linearly in time, and never manifest 

as visual differences in the plots. On the other hand, integrated quantities tend to be in 

better agreement than their detailed distributions. For example, between the uniform grid 
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and AMR solutions, the integrated mass and kinetic energy at t = 300 differ by only 1.1% 

and 3.5% respectively. Furthermore, our results are qualitatively similar to Mignone et 

al. (2007); Figure 2.13 could easily fit in with their Figure 8 for different Riemann solvers 

and interpolation schemes. 

2.7.3 A 3-D test: self-gravitational hydrodynamical collapse 

The last test is the self-gravitational hydrodynamical collapse calculation first pre

sented by Truelove et al. (1997) and Truelove et al. (1998; T98). At the time of this 

writing, self-gravity has not been fully implemented in AZEuS, and so we use the suc

cessive over-relaxation (SOR) method (Press et al. 1992) as an easy-to-program, albeit 

slow, stop-gap measure. Since SOR is incompatible with periodic boundary conditions, 

we apply inflow boundary conditions instead. This results in some subtle differences from 

T98, which we discuss below. 

A rotating, uniform cloud of mass M = 1MQ and radius R = 5 x 1016 cm is initialised 

in the centre of a 3-D Cartesian box with side length 4R. We use a nearly isothermal 

equation of state (p = up1, 7 = 1.001), initially uniform rotation Q = 7.14 x 10~13 rad 

s_ 1 with angular momentum axis in the positive ^-direction, and energy ratios of 

0 - § ( d y ' " I = °-16 and fia = l^k = °-26' <M4) 

where po is the initial density of the uniform cloud (T98). The remainder of the compu

tational volume is initialised with uniform density and pressure given by /9atm — 100pciouc[ 

and p a t m = lO ĉioud- Upon the initial uniform density distribution, we apply an azimuthal 
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m = 2 perturbation of the form /3cioud(l + Acos(2ip)), where >1 = 10% is the perturbation 

amplitude and ip is the azimuthal angle relative to the cloud centre. 

Following T98, we set the coarsest grid to 323 zones, or eight zones per cloud radius. 

We immediately add 1 level of refinement by flagging all zones which have density p > 

Pcioud (for a refinement ratio of 4, this gives 32 zones per cloud radius). Beyond this, we 

enforce the so-called "Truelove criterion": 

J = ^ = Ax (<¥) < Jmax, (2.35) 

refining zones which have Jeans numbers J larger than critical value Jmax = 0.25. Addi

tional run-time parameters for this test include C = 0.33, qcon = 1.0, q l in = 0.1, kcheck 

— 20, gef f cy = 0.7, ibuf f = 2, and refinement ratio v = 4. 

Figure 2.14 shows our results at t = 0.598133 = 1.215£ff. At this time, there are 

seven levels of refinement above the base grid and, in the terminology of T98, our highest 

resolution grids correspond to i?i3io72- Our maximum density at this time is logpmax = 

—8.8767, with density measured in g cm~3, an increase over p0 of more than 8.5 orders 

of magnitude. While our simulation collapses more quickly than T98 and our Figure 2.14 

does not correspond exactly with their Figures 12 and 13, we actually reach a higher 

maximum density. 

The differences between our results and T98 are most likely caused by the differing 

boundary conditions (ours inflow, theirs periodic). Indeed, T98 allude to this possibil

ity, suggesting that non-periodic boundary conditions could slightly increase the rate of 

collapse, which we observe. 
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Figure 2.14 AZEuS results for the Truelove problem with a 10% amplitude perturbation 
at t = 0.598133 = 1.215£ff, where tg is the free-fall time. Left: Equatorial x\-x2 slice of 
logarithmic density with velocity vectors over-plotted. The highest resolution shown here 
is i?8i92- Right: Equatorial X\-x2 slice of logarithmic density of the upper fragment. The 
highest resolution in this plot is .R32768; there is one additional level of refinement not 
shown. Black lines denote the borders of AMR grids and the units of density are g cm -3 . 
For each panel, 20 evenly spaced contours are plotted with ranges log p — [—16.10, —9.905] 
(left) and [-14.30, -9.604] (right). 

2.8 Summary 

We have described a method for block-based AMR on a fully-staggered mesh, and 

implemented this method in a new version of ZEUS-3D called AZEuS. In addition to 

describing the modifications required to AMR to account for the fully staggered grid, we 

also describe higher order interpolation methods for the prolongation step which we found 

necessary to allow for static grids. Static grids are important for problems which, at first 

order, have a self-similar character and expand over the course of the simulation to ever 

larger scale lengths. Such a simulation by AZEuS has already appeared in the literature 

(Ramsey & Clarke 2011), which showcases the ability of the code to transmit waves of 
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all types and strengths across grid boundaries, and to do so in cylindrical coordinates. 

The higher-order prolongation operator is designed to maintain the conservation of all 

important physical quantities such as mass, momentum, energy, and magnetic flux. 

Numerous test problems were also presented in 1-, 2-, and 3-D, and in both Cartesian 

and spherical polar coordinates. These tests demonstrate the ability of the code to produce 

essentially identical results in "reversible" (non-turbulent) problems whether using a single 

grid or AMR, and give an example of the differences that can occur in "irreversible" 

(turbulent) problems as minute differences caused by the insertion or deletion of a grid 

amplify. 

Finally, the AZEuS website h t t p : //www. ica . smu. ca/azeus was introduced on which 

test problems and simulations will be posted as they become available, and from which 

the code can be downloaded in the near future. 

2.A Curvilinear Coordinates 

Like other codes in the ZEUS-3D family, AZEuS uses the "covariant" (coordinate in

dependent) form of the MHD equations (Stone &; Norman 1992a). Supported geometries 

in AZEuS include Cartesian (x, y, z), cylindrical (z, r, ip), and spherical polar (r, •&, ip) coor

dinates while other orthogonal curvilinear coordinate systems may be easily implemented 

as needed. For simplicity, the equations presented in the main body of the paper were all 

written assuming Cartesian-like coordinates. In this appendix, we show how these may 

be rewritten in a covariant fashion. 
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(x1,x2,x3) 

(x, y, z) 
(z, r, ip) 
(r, tf, ip) 

912 (j) 
1 
1 
1 

9is(k) 

1 
1 
1 

923(k) 

1 
1 
1 

521(i) 
1 
1 

xi(i) 

53i(«) 
1 
1 

xx{i) 

932 (j) 

1 

sinx2(j) 

Table 2.2 The metric scaling factors in AZEuS for Cartesian, cylindrical, and spherical 
polar coordinates. 

The distance differential in an orthogonal coordinate system, {x\,x2, x3), is given by: 

ds — gf dxx + g2 dx2 + g3 dx3, (2.36) 

where gt, i = 1,2, 3, are the usual metric scaling factors and all are functions of the 

coordinates. If the scaling factors are separable and independent of their own direction, 

we can write: 

9i = 9i(j,k) = gi2 (j) 9n (k); 

92 = 92(k,i) = g23(k) g2i(i); 

93 = 9z{i,i) = 93i(i)932(j)-

(2.37) 

For Cartesian, cylindrical, and spherical polar coordinates, these factors are given in Table 

2.2. 
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Face areas and zone volumes important for the calculation of fluxes and conserved 

quantities are written as: 

SA!(i,j,k) = / 92i(i)93i(i) 932(f) dx'2dx3 

/•X2O+I) pX3{k+l) 

= 921 (i) 531 ( i ) / 932(f) dx'J dx'3 (2.38) 
•Jxi(i) Jxn(k) A

fX2(]+l) rX3(k+l) 

932(f) dx'2 
X2{]) Jx3(k) 

= 92i(i)93i(i)SA12(j)5A13(k), 
fx3(k+l) /-xi(i+l) 

5A2(i,j,k) = / 531 ( 0 532 ( .7 )^4^1 
Jx3(k) J x\{i) 

pX3(k+l) />Xl(l+l) 

= 532 0 ' ) / dx'J 53i (i')dx[ (2.39) 
JX3(k) JXl(l) lx3(k) Jxi(i) 

= 932(j)5A23(k)8A21(i), 

r x i ( i+ l ) rx2(3+l) 

5A3(i,j,k) = / 521 ( 0 dx\ dx2 

Jxi(i) Jx2(j) 

/•Xl(t+1) fX2(j+l) 

= / 92i(i')dx[ dx'2 (2.40) 
Jx-th) Jxi(l) IXl{l) JX2{j) 

= 5A31(i)SA32(j). 

rxi(i+l) fx2(]+l) rx3(k+l) fXl\l+l) l-X2{] + i.) fX3(K+l) 

SV(i,j,k) = / / / g2i(i')93i(i') 932(f) dx^dx^dx^ 
Jxi(i) JX2<j) Jx3(k) 

l-Xl(l+l) pX2(j + l) pX3(k+l) 

= / 92i(i')g3i(i')d^1 932(f) dx'2 dx'3 (2.41) 
Jx\(i) -̂ ^20) Jx3(k) 

rxi(i+l) r-X2{j+t) pX3(k+l) 

= \ dV{ / dV2' / dVi (2.42) 
Jxiii) Jx2{j) Jx3<k) 

i(t) Jx2(j) Jx3(k) 

= SVtWSViWSVzik), 
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where metric scaling factors equal to 1 in Table 2.2 have been and will continue to be 

dropped. 

Finally, ZEUS-3D has traditionally defined the momentum densities, s, as: 

si(i,j,k) = p(i-^,j,k)v1(i,j,k); 

S2(i,j,k) = g2i(i)p(i,j-^,k)v2(i,j,k); (2.43) 

sz(i,j,k) = g3i(i)932(j)p(i,j,k-l)v3(i,j,k), 

where the half indices in the density indicate two-point averages. Defining the momentum 

components with the metric scaling factors simplifies the momentum equation somewhat 

by eliminating all "Coriolis^like" fictitious forces, leaving only the "centrifugal-like" terms. 

2.A.1 Restriction 

Conservative Overwrite 

When applying the conservative overwriting procedure on a curvilinear grid, the 

equations of Section 2.3.1 must be modified to account for the non-constant volumes of 

zones. For example, equation (2.6) for zone-centred quantities becomes: 

Q{I,J,K)m{I)m{J)m{K) = J2 q(i + a,j + (3,k + V) (2.44) 
a,/3,rj=0 

x SV^i + a) 5V2(j + 0) SV3(k + r,), 
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and equation (2.7) for face-centred momenta generalises to: 

S1{I,J,K)i^Vl{I)/W2{J)lW3{K) = J2 E Q»si(i + a,j + l3,k + ri) (2.45) 

x SV^i + a) SV2(j + 0) 6V3(k + rj), 

where: 

G'(a) = { 

^I ,R(* + a) if a = ~u/2; 

WI,L(« + a) if a = +v/2; 

otherwise, 

(2.46) 

and where: 

WI,L(«) 

1 rxi{i) j rxi(i+l/2) 

^ l W JxAi-1/2) 6Vl(V Jx!(i) 
(2.47) 

While it is still true that the fine zones at a = ±z//2 are halfway outside the coarse 

ROI in position space (Figure 2.3b), this is not generally true in volume space. As 

an example, consider spherical coordinates where the 1-volume differential is dVi(i) = 

92i(i)93i(i) dxi(i) — x\(i) dxi(i). Clearly, dV\{i) in spherical coordinates is not a linear 

function of position, and it cannot be assumed that exactly 1/2 of the fine momentum vol

ume is outside the coarse ROI. To correct for this, we calculate the ratio of the half'-volume 

inside the coarse ROI to the actual volume element (equation 2.47), which is then used as 

a weighting factor in Q'(a). For reasonable grid parameters, these weighting factors are 
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small corrections (< a few %) relative to the Cartesian factor of 1/2, but nonetheless are 

included for accuracy. 

Suitable expressions for the 2-direction are obtained by a permutation of indices. 

No corrections are necessary for the 3-direction, since dV%{k) = dx3(k) for the curvilinear 

coordinates discussed here. 

For the magnetic fields, equation (2.9) changes to account for non-uniform areas: 

u-l 

^(Z, J, if) A ^ (/ , / ,#) = J2 h(i,j + P,k + v)SA1(i,j + P,k + ri). (2.48) 
P,V=0 

Flux Corrections 

Fluxes and EMFs as stored by ZEUS-3D already include the appropriate area and 

length elements, so the required changes for flux corrections in curvilinear coordinates are 

not substantial. As with the conservative overwrite, the corrections need to be adjusted 

by replacing occurrences of Q (equation 2.8) with Q' (equation 2.46). Similar to equation 

(2.45), equation (2.11) for the flux corrections of momentum components normal to the 

boundary must also be modified to account for non-constant volumes: 

S?+\I,J,K) = gf+1(/, J, K) - A y ( / * ^ R) (F"SSI ~ 1, J, K) 

- E ( « ' i , R ( * - | ) / " r + 5 ( i - ! - 1 . i + ^ f e + ^) (2-49) 
0,V,r=O 
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By the same argument, equation (2.13) for coarse momenta with components parallel 

to a grid boundary also needs to be modified, as the original factor of {y — l)/2v = 'R, is 

not correct for curvilinear coordinates: 

S?+\I,J,K) = S?+1(I, J,K)- AV{jiJtK) U(J,u)F^}(I,J,K) 

/3=1 »7,T=0 / 

Here, C(J, v) = W2,L{ J, v) if Siil-, J, K) is at the upper edge of the fine grid (high j), and 

C(J, u) = W2,R(J, V) if S2(I, J, K) is at the lower edge of the fine grid (low j), with: 

Wv-V>v) = AVTT) / m> 
A>V2(J) JX2(J-l/2) 

-, fX2(J+l/2) 

AV2{J) JX2(J+l/2-ll) 

Like the function Q1, C accounts for the portion of the coarse zone flux in volume space 

which is being replaced by fine fluxes. As before, expressions for the 2-direction are 

obtained by a suitable permutations of indices. 

2. A. 2 Prolongation 

The changes required for prolongation on curvilinear grids deal entirely with making 

the interpolations conservative for curvilinear volumes and areas. In the case of 1-D PPI, 



Chapter 2 AZEuS 90 

equation (2.16) summarising the conservation constraint is modified to: 

u-l 

Q{I,J,K)AV!(I) = X > ( » + a , j ,AW(») , (2.51) 

which then affects the rest of the scheme (equations 2.17 and 2.18): 

ql(i + a) = QLW + ̂ QRW-QLW-H'^I-Q), (2.52) 

where: 

K = f^/-fi^)(AVl{lHQ{I^K)-QL{I)) 

-ffc,i){Qn(i)-QL(i))); 

and where: 

_ xi(i + a) -xx(I) 

^ ~ Axi(7) 

As for PLI, the original 1-D scheme in the 1-direction takes the form (van Leer 1977): 

ql(i + a) = Q{I) + (2C - 1) AQ', (2.53) 
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where: 
AQ R AQ L 

AQ' 

if A Q R A Q L > 0 ; 
AQR + AQL 

0, otherwise, 

and where: 

AQR = Q(J + 1 ) - Q ( J ) ; AQL = Q(I)-Q(I-1). 

Equation (2.53) will not generally conserve mass, momentum, or magnetic flux on 

a curvilinear grid. To correct this, we relax the constraint that the linear interpolation 

profile must pass through Q(I) at the zone-centre. This releases one degree of freedom 

that can then be used with equation (2.51), resulting in: 

q\(i + a) = Q ^ + A Q ' ^ C - l - ^ y y / ^ t ) ) , (2-54) 

where: 

ffc,i) = - ^ ( ( 2 e - i ) - I / ) ^ 1 ( t + e - i ) . 
^ = 1 

The additional term in equation (2.54) can be viewed as either a shift in the zone-centred 

intercept, or as choosing a modified value of ( corresponding to the volume-centred rather 

than the spatial-centred coordinate. 

Unfortunately, this "shift" can push ql(i + a) beyond neighbouring values of Q(I) at 

the edges of the interpolation profile, resulting in a loss of monotonicity. However, since 
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( = 0 or 1 at the left or right side of the interpolation profile, we can write: 

AQ'L = Q(I) - q\{i + a) = AQ'(! + £[) 
(2.55) 

or AQ'R = q\{i + a) - Q(I) = A Q ' ( l - / C i ) , 

where JC[ — f^(u, i) / AV\(I). If we limit the slope of the interpolation profile to: 

AQ" = { 

sign (AQ') |AQL | / (l + / d ) if |AQ'L| > |AQL | 

sign (AQ') |AQR | / (l - / d ) if |AQ^| > |AQR | (2.56) 

AQ' otherwise, 

and, because of the properties of the PLI slope AQ', the first two cases of equation (2.56) 

will never occur simultaneously. Thus, the equation for conservative, monotonic, 1-D PLI 

in curvilinear coordinates is: 

ql(i + a) = Q(/) + A Q " ( ( 2 C - l ) - / C 1 ) . (2.57) 

The previous discussion applies to interpolation of momenta in the directions per

pendicular to the component normal (e.g., Si in the 2- and 3-directions). The covariant 
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procedure for linear interpolation in between coarse faces (e.g., si in the 1-direction; equa

tion 2.24) is as follows: 

S!(i + a,j + l3,k + r])SVi(i + a) = (1 - ()Sl(i,j + [3,k+ rj)5V1(i) 

+ C si(i + v, j + P, k + rj) SVtii + v). (2.58) 

Finally, the generalised Li & Li (2004) algorithm is adapted to curvilinear coordi

nates simply by replacing B (and b) in equations (2.25)-(2.28) with the magnetic "flux 

functions": 

/ \ ( AVo \ 
* = (* i ,* 2 ,*3) = {g2ig3i-^B1,g31g32B2,g21B3J. (2.59) 

With this modification, the solenoidal condition can be written in "Cartesian-like" form, 

regardless of the geometry: 

axi ox2 0x3 

and the prolongation of magnetic fields in curvilinear coordinates proceeds exactly as 

described in Section 2.4.1. 

2.B The Vector Potential 

Writing B — V x A and assuming 3-symmetry with an appropriate gauge, one 

can easily show from the induction equation (equation 2.3) that A3 obeys an "advection 
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equation": 

dA3 + v-VA3 = 0, (2.60) 
dt 

from which the poloidal components of the magnetic field are given by: 

ft = *k ; «, _ _§*•. (2.61) 
ox2 OXi 

Further, one can show that B$ is given by: 

-~ + V-(B3v) = B-Vvs. (2.62) 

Since equation (2.62) has exactly the same form as the internal energy equation (equation 

2.4), and since equation (2.60) is a simple induction equation, the induction step in the 

original ZEUS-3D code (zeus04; Clarke 1988) was based on solving these equations using 

the hydrodynamical algorithms already in the code, and then calculating B\, B2 from 

equations (2.61). Evidently, the solenoid condition is strictly satisfied. Regardless of the 

initial magnetic field configuration, it is easy to show that a face-centred B and a corner-

centred (edge-centred in 3-D) As guarantees V • B — 0 everywhere and at all times to 

machine round-off error. 

However, Clarke (1988) points out that a second-order accurate A3 means first order 

accurate poloidal magnetic field components and a zeroth-order accurate current density 

J3 (each differentiation reduces the order of accuracy by one), and this was found to 

have catastrophic consequences in computing the J x B source terms in the momentum 

equation (equation 2.2). Thus, the vector potential algorithm in zeus04 was abandoned, 
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and the first publicly released version of ZEUS-2D (Stone & Norman 1992a,b), and later 

ZEUS-3D (Clarke 1996), were based on the CT algorithm of Evans & Hawley (1988) in 

which the magnetic fields are updated directly. Note that the CT scheme conditionally 

satisfies the solenoidal condition, requiring that the magnetic field be initialised such that 

V • B = 0. 

Still, the failure of the vector potential algorithm in zeus04 is not a complete indict

ment of A for use in numerical MHD algorithms. Indeed, Londrillo & Del Zanna (2000) 

and Igumenshchev & Narayan (2002) have successfully demonstrated the use of A as the 

primary magnetic variable in their MHD codes. By substituting B — V x A into equation 

(2.3) and with an appropriate gauge, we can write: 

BA 
- = J / x B = f. (2.63) 
at 

Thus, CT can be used as originally designed in which V x £ is used to update B, or 

easily modified to use £ to update A directly, then update B by taking a curl of the time 

derivative of A. Either way, a curl must be taken and the algorithms are interchangeable 

to machine round-off error. Note that the algorithms used by Londrillo & Del Zanna 

(2000) and Igumenshchev & Narayan (2002) are very different from the failed algorithm 

described for zeus04. 

Based on this observation, early versions of AZEuS used the vector potential as the 

primary magnetic variable so that prolongation could be accomplished by interpolating A 

(rather than B), thus guaranteeing preservation of the solenoidal condition on a newly-

created fine grid. Furthermore, because the vector potential conserves magnetic flux via a 
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path integral {§ A-dl = f B • da), by restricting on the vector potentials directly and then 

calculating B everywhere, no EMF corrections are required. This approach, however, was 

found to be unsatisfactory since the parabolic interpolation function generated by PPI 

on A produces linear profiles for B and piecewise-constant profiles for J, recovering the 

problem that doomed the original zeus04 algorithm. 

In addition, having to match gauges on overlapping grids poses a significant problem, 

and one that we never solved. In order to arrive at equation (2.63), one implicitly assumes 

a specific gauge. For a single grid, this is not a problem since there is never a need to 

specify this gauge. For multiple grids, however, each grid may have its own gauge (espe

cially for grids whose origins are not coincident) and leaving them unspecified gives rise 

to discontinuities in the magnetic field components perpendicular to adjacent boundary 

normals. While a solution to this problem likely exists, we abandoned vector potentials 

in AZEuS before finding one simply because of the insurmountable problem of the lack of 

accuracy in the current densities. 

As an illustration, Figure 2.15 shows early results of the simulations in Ramsey & 

Clarke (2011) in which the vector potential is used as the primary magnetic variable. The 

left panel shows the solution immediately before a grid modification, and the right panel 

the solution a few time steps after, where the fine grid was extended from X\ = 160 to 

X\ — 166. The errors committed by the piecewise constant current densities take a while 

to dissipate and, in this particular example, result in particularly egregious defects in the 

velocity divergence distribution within the new portion of the grid. Conversely, the Li k, 
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Li (2004) algorithm we currently employ renders adjacent boundaries virtually invisible 

in the distributions of all variables. 

Figure 2.15 The effects of differencing a parabolic interpolation of A twice to calculate 
J x B forces. Left panel: the solution immediately before a grid adaptation step. Right 
panel: the solution a few time steps after. Plotted are 20 evenly spaced contours of 
the toroidal magnetic field (top) and velocity divergence (bottom) with ranges B^ = 
[-0.035,0.0] and V • v = [-0.15,0.15], respectively. 

2.C Schematic overview of the A M R module 

This appendix is designed mainly for programmers and those who may wish to use 

and/or modify AZEuS. It is meant as an overview to illustrate how the main ideas covered 

in this paper have been implemented in the code. 

Step 0. Initialise computational domain and all variables for the current run. 

Set level l v l = 1, n togo(lvl) = 1. 

MAIN LOOP: 
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Step 1. For level Iv l , c a l l REGRID(lvl) if kcheck cycles have transpired at level Iv l 

since the last call to REGRID, or if t = 0. 

F o r i = maxlevel - 1, I v l , - 1 : 

Step la. Flag existing grids at level 1 for refinement based on one or more 

physical criteria. Add ibuf f buffer zones around flagged points. 

Step lb. Create grids around flagged points based on gef f cy. 

Step lc. Check for proper nesting on all new/modified grids; fix grids which 

are not properly nested via bisection. 

Step Id. If any new/modified grids are abutting, make them overlapping 

instead. 

End For 

For 1 = Iv l + 1, maxlevel: 

Step le. Fill new/modified grids with values either from old grids at level 1 

or interpolated from coarse grids at level 1 - 1 . 

Step If. Remove old grids which are no longer in use. 

End For 

Step 2. For level Ivl , c a l l ADVANCE ( Iv l , d t ) . 

Step 2a. For all grids at level Ivl , fill boundary zones either from over

lapping grids at the same level, or interpolate values from coarse 

grids at level I v l - 1 (unless Iv l = 1, in which case use physical 

boundary values). 
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For each grid m at level Ivl : 

Step 2b. Advance grid m by time step dt with ZEUS-3D. 

Step 2c. Save fluxes/EMFs along the edges of grid m for flux corrections 

later. 

End For 

Step 3. One time step at level Iv l is complete; check for levels > Iv l . 

Set ntogo(lvl) = ntogo(lvl) - 1. 

Step 3a. If Iv l < maxlevel then: 

Set Iv l = Iv l + 1. 

Set ntogo(lvl) = nu, where nu is the refinement ratio. 

Set dt = dt / n togo( lvl ) . 

Go to the beginning of the main loop. 

End If 

Step 3b. If n togo(lvl) > 0 then go to the top of the main loop, 

Else Set Iv l = Iv l - 1. 

Step 4. For level Iv l , c a l l UPDATE(lvl). 

For each grid m at level Ivl : 

Step 4a. Flux correct each grid m with fluxes from grids at level Iv l + 1, if 

any. 

Step 4b. Overwrite zones on grid m with overlying zones at level Iv l + 1, if 

any. 
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Step 4c. Update any physical (non-periodic) boundary values which depend 

on zones which were just flux corrected or overwritten. 

End For 

If l v l > 1, go to Step 3b. 

Step 5. One entire AMR cycle is complete. Reconcile time steps across all grids and levels. 

Step 6. Perform any required input/output. 

Step 7. If t < t l i m i t , go to the top of the main loop, else exit. 
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Chapter 3 

Simulating protostellar jets 
simultaneously at launching and 
observational scales 

We present the first 2.5-D MHD simulations of protostellar jets that include both 

the region in which the jet is launched magnetocentrifugally at scale lengths < 0.1 AU, 

and where the propagating jet is observed at scale lengths > 103 AU. These simulations, 

performed with the new AMR-MHD code AZEuS, reveal interesting relationships between 

conditions at the disc surface, such as the magnetic field strength, and direct observ-

ables such as proper motion, jet rotation, jet radius, and mass flux. By comparing these 

quantities with observed values, we present direct numerical evidence that the magneto-

centrifugal launching mechanism is capable, by itself, of launching realistic protostellar 

jets. 

3.1 Introduction 

Jets and outflows from protostellar objects are fundamental aspects of the current 

star formation paradigm, and are observed anywhere star formation is ongoing. The mech

anism proposed by Blandford k, Payne (1982), in which jets are launched from accretion 

1The contents of this chapter originally appeared as Ramsey, J.P., & Clarke, D.A, 2011, The Astro-
physical Journal, 728, L l l . 
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discs by gravitational, magnetic, and centrifugal forces, has been extensively studied nu

merically (e.g., Uchida & Shibata 1985; Meier et al. 1997; Ouyed & Pudritz 1997a,b, 

1999; Krasnopolsky et al. 1999; Vitorino et al. 2002; von Rekowski et al. 2003; Ouyed, 

Clarke, & Pudritz 2003; Porth & Fendt 2010; Staff et al. 2010). By treating the accretion 

disc as a boundary condition (e.g., Ustyugova et al. 1995), one can study jet dynamics 

independently of the disc (e.g., Pudritz et al. 2007) though, in order to resolve the launch

ing mechanism, numerical simulations have not followed the jet beyond 100 AU (e.g., 

Anderson et al. 2005). 

In stark contrast, protostellar jets are > 104 AU long (Bally, Reipurth, & Davis 2007), 

and only recently have observations reached within 100 AU of the source (e.g., Hartigan, 

Edwards, & Pierson 2004; Coffey et al. 2008). This large scale difference between observa

tions and simulations makes direct comparisons difficult and, in this work, we aim to close 

this gap. We present axisymmetric (2.5-D) simulations of protostellar jets launched from 

the inner AU of a Keplerian disc, and follow the jet well into the observational domain 

(2500 AU). These calculations allows us to address the efficacy of the magnetocentrifugal 

mechanism, and to relate conditions near the disc with directly observable properties of 

the jet. 

The simulations presented herein are performed with an adaptive mesh refinement 

(AMR) version of ZEUS-3D (Clarke 1996, 2010) called AZEuS (Adaptive Zone Eulerian 

Scheme). The ZEUS-3D family of codes are among the best tested, documented, and 

most widely used astrophysical MHD codes available, though this is the first attempt to 
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couple ZEUS-3D with AMR2. We have implemented the block-based method of AMR 

detailed in Berger & Colella (1989) and Bell et al. (1994). Significant effort was spent 

minimising errors caused by passing waves across grid boundaries, which is of particular 

importance to this work. A full description of the code and the changes required for AMR 

on a fully-staggered mesh will appear in Ramsey & Clarke (in preparation). 

3.2 Initialisation 

Observationally, the inner radius of a protostellar accretion disc, r;, is between 3-5 

R, (Calvet et al. 2000) and, for a typical T Tauri star (M = 0.5 M0 , R, = 2.5_R0), 

n = 0.05 AU. Thus, following Ouyed & Pudritz (1997a), we initialise a hydrostatic, 

force-free atmosphere surrounding a 0.5 M 0 protostar coupled to a rotating disc with 

ri = 0.05 AU. However, unlike Ouyed & Pudritz we use an adiabatic equation of state that 

conserves energy across shocks rather than an isentropic polytropic equation of state, as 

the distinction becomes important for supermagnetosonic flow (Ouyed, Clarke, Sz Pudritz 

2003). 

We solve the equations of ideal MHD3 (7 = 5/3) over a total domain of 4096 AU x 

256 AU. To span the desired length scales, nine nested, static grids (refinement ratio 2) 

are initialised each with an aspect ratio of 4:1 (16:1 for the coarsest grid only) and bottom 

left corner at the origin. Our finest grid has a domain 4AU x 1AU and a resolution 

Az — r*i/8 = 0.00625 AU which we find sufficient to resolve the launching mechanism. 

2ENZO, a hybrid N-body Eulerian code (O'Shea et al. 2004), links AMR with the hydrodynamical 
portion of ZEUS-2D. 

3AZEuS solves either the total or internal energy equation. We chose the latter because positive-definite 
pressures trump strict conservation of energy in these simulations; see Clarke (2010). 
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Thus, the effective resolution for the entire domain is > 26 billion zones. The simulation 

highlighted in §3.3 was run to t = 100 yr with an average time step in the finest grid of 

~ 3 minutes and thus ~ 18 million time steps. 

During the simulations, a thin region of low velocity and high poloidal magnetic field, 

Bp — \/B2
z + B$, develops along the symmetry axis, the edge of which is defined by a 

large gradient in the toroidal magnetic field, drBv. Insufficient resolution of drBv can 

lead to numerical instabilities, and grids are added dynamically whenever this gradient is 

resolved by fewer than five zones. 

3.2.1 The atmosphere 

The atmosphere is initialised in hydrostatic equilibrium (HSE; vz — vr = v^ = 0). 

Because the LHS of the equation governing HSE, 

Vp + ,oV^ = 0, (3.1) 

is not a perfect gradient, differencing it directly on a staggered-mesh can commit sufficient 

truncation error to render the atmosphere numerically unstable. Thus, we replace V<f> with 

the corresponding poloidal gravitational acceleration vector, 

£ = - — V j * , (3.2) 
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where ph and ph are the hydrostatic density and pressure given by: 

ri V"1 ^ „ ft m 
7 

p- = p\-^T,) and ^ U 1 ' (3'3) 

Here, pi and ^ are the initial density and pressure at r\ and p <x p1 is assumed throughout 

the atmosphere at t = 0. In this way, differencing equation (3.1) maintains HSE to within 

machine round-off error indefinitely. 

However, equations (3.3) as given are singular at the origin where truncation errors 

are significant regardless of resolution. These errors can launch a supersonic, narrow jet 

from the origin destroying the integrity of the simulation. To overcome this problem, we 

replace the point mass at the origin with a uniform sphere of the same mass and a radius 

Ro, thus modifying the first of equations (3.3) to: 

ri r2 + z2>R0
2
] 

_1 \lr2 + z2 

If RQ is sufficiently resolved (e.g., four zones), the numerical jet is eliminated. The re

sulting "smoothed potential" is superior to a "softened potential" since the former has no 

measurable effects beyond RQ. Here, we use Ro = r\. 
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The atmosphere is initialised with the force-free magnetic field used by Ouyed & 

Pudritz (1997a): 

. _ Bj yV2 + (z + zAf -(z + zd) 

^ ^ ' ' (3,) 

ld(rAv) _ dAv _ 
DZ — » , DT — , .Dy, — U, 

r or uz 

where Av is the vector potential, zA is the disc thickness (set to r ;), and BY is the magnetic 

field strength at n, given by: 

Here, p\ and /?; (plasma beta at n) are free parameters. 

Finally, to ensure the declining density and magnetic field profiles do not fall below 

observational limits, we add floor values yOfloor ~ 10~6pi and BzfiOOT ~ 10~5B\ (c.f. Bergin 

k Tafalla 2007, Vallee 2003) to equations (3.4) and (3.5). By imposing HSE and the 

adiabatic gas law at t — 0, a floor value on p imposes effective floor values on g and p as 

well. 

3.2.2 Boundary Conditions 

In the accretion disc (z < 0, r > r\), v^ = vK — yjGM*jr, the Keplerian speed, 

and vz = (VK — 10_3UK is an "evaporation speed" at the disc surface. The disc and 

atmosphere are initially in pressure balance with a density contrast r\ = Pdisc/Patm = 100, 

while B is initialised using equations (3.5). 
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Following Krasnopolsky et al. (1999), p, p, and vz are held constant, vr = vzBr/Bz, 

vv — vK + vzBv/Bz, Ez{—z) — Ez(z) (where E = v x B is the induced electric field), 

Er(0) = vKBz(0), Er{-z) = 2Er(0)-Er(z), Ev(0) = 0, and Ev(-z) = -Ev(z). Since vz is 

sub-slow, these conditions are formally over-determined and p should probably be allowed 

to float. Indeed, we allowed p to be determined self-consistently in test simulations, and 

found only minor quantitative differences in the jet since the pressure gradient is only 

about 1% of the net Lorentz force at the disc surface. However, allowing p to float in 

the boundary caused undue high temperatures in the disc, and thus small time steps. 

Therefore, the simulation proceeds more rapidly but otherwise virtually unchanged when 

p is maintained at its initial value. 

Inside J-J (z < 0), we apply reflecting, conducting boundary conditions (J = V x B ^ 

0). Thus, p, p, and v are reflected across z = 0, and magnetic boundary conditions are 

set according to Ez{—z) = —Ez(z), Er(—z) = Er(z), and Ev(—z) = Ev(z). At z = 0, Er 

and E<f, are evolved using the full MHD equations. 

Finally, we use reflecting boundary conditions along the r = 0 symmetry axis, and 

outflow conditions along the outermost r and z boundaries. 

3.2.3 Scaling Relations 

From equation (3.1) and the adiabatic gas law, one can show: 

Cs
2 = 7^ = ( 7 - l ) ^ = ( 7 - l K , (3-7) 
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where R is the spherical polar radius. From equations (3.6), (3.7), and the ideal gas law 

(p = pkT/(m), where (m) is half a proton mass), we derive the following scaling relations 

to convert from unitless to physical quantities: 

^ ( i G O d y n e c m - ^ d ) ^ ) 2 ; (3.8) 

^ ( , 4 X 1 0 . W ) ( A ) ( ^ ( ^ ) ( ^ ) ; (3„ 

^ ( , 2 X I 0 5 K ) (^2) (^) ; (,10) 

c,„.(77kms-1) ( ^ f (_-_)-

for 7 = 5/3. Note that $ is the only free parameter varied in this work. 

3.3 Results for A = 40 

Figure 3.1 depicts a jet with $ = 40 at t ~ 100 yr from the highest resolution grid 

near the disc surface (bottom panel) to the coarsest grid in which the jet has reached a 

length of just under 2500 AU (top panel)4. A few features worth noting include: 

• When 0 < 60° (angle between Bp and disc surface), Blandford & Payne (1982) show 

that cold gas near the disc is launched into a collimated outflow. Here, 6 < 60° 

for all r > ru but significant outflow is limited to inside the point where the slow 

surface intersects the disc (r^d ~ 30 AU = jet radius at the disc; second panel 

4Time-lapse animations are available at h t tp : / /www. ica . smu.ca /zeus3d/ rc l0 / . 

http://www.ica.smu.ca/zeus3d/rcl0/
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0 1 2 5 
X, (AU) 

Figure 3.1 Nested images of a p\ — 40 jet at t = 100 yr. Colours indicate temperature, 
white contours magnetic field lines, maroon contours the slow surface, and arrows the 
velocity. Dashed lines denote grid boundaries, and x\ = z, x^ = r. 

from top). Below r^d, cold disc material has moved onto the grid and accelerated 

into the outflow. Above r ^ , the weak magnetic field has yet to drive enough disc 

material onto the grid to displace the hot atmosphere, and outflow is stifled. While 

rj;d gradually increases with time, the majority of mass flux originating from the 

disc is driven within r; < r < 10n (0.5 AU; bottom panel). 

• Jet material becomes super-fast (M{ < 5) within a few AU of the disc, and the 

boundary between jet and entrained ambient material is defined by a steep tem

perature gradient (contact discontinuity; second panel). Portions of the original 



Chapter 3 Simulating protostellar jets 110 

atmosphere, which remain virtually stationary throughout the simulation, are still 

visible above and ahead of the bow shock (top panel). 

• At large distances from the disc (> 500 AU; top panel), the dynamics of the jet 

become dominated by B^, and the jet is led by an essentially ballistic, magnetic 

"nose-cone" with a Mach number of ~ 10 (e.g., Clarke, Norman, & Burns 1986). 

Still, Bv is a small fraction (10~3) of B\, consistent with Hartigan et al. (2007). 

• The knots dominating the bottom panel (c.f., Ouyed & Pudritz 1997b) are produced 

by the nearly harmonic oscillation of Bp in n < r < 2r;, whereby 9 fluctuates be

tween 55° and 65° with a period ~ 30 Tj. These oscillations result from the interplay 

between in-falling material along the symmetry axis, and under/over pressurisation 

near the central mass. The knots are denser and hotter than their surroundings, 

and bound by magnetic field loops. They occupy a region within ~ 2 AU of the 

symmetry axis, and gradually merge to form a continuous and narrow column of 

hot, magnetised material5 (third panel). As such, they are unlikely to be the origin 

of the much larger-scale knots observed in some jets (e.g., HH111; Raga et al. 2002). 

Further details of this and other simulations of protostellar jets are left to a future 

paper, and we focus here on a few properties directly comparable with observations. 

5The knots are resolved by 10-20 zones when they merge, and thus their merger is unlikely related to 
the ever-decreasing resolution of the nested grids. 
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proper motion (km s x) 100 - 200 (500 max.) 
rotational velocity (km s_1) (5 - 25) ± 5 

FWHM jet width (AU) 30 - 80 (at 200 AU) 
mass-loss rate (10~6Meyr~1) 0.01 - 1 

Table 3.1 Selected observational characteristics of protostellar jets. References: Reipurth 
& Bally (2001), Ray et al. (2007), McKee & Ostriker (2007). 

3.4 Comparing simulations and observations 

Table 3.1 summarises a few observational characteristics of protostellar jets. To 

connect these attributes to conditions in the launching region, we have performed a small 

parameter survey in /%, and made numerical measurements of the quantities in Table 3.1. 

Variation of other parameters (such as ( and p;) is left to future work. 

Note that /?; is the initial value of the plasma beta at ru and not the average j3 in 

the jet. Indeed, Fig. 3.2a demonstrates that at very early time, (/?) — 8ir(p)/(B2) < /?i/5, 

where B2 — B2 + B2, and where the average is taken over zones that exceed a certain 

threshold vz so that only out-flowing jet material is considered. Thus, the magnetic field 

within the jet is stronger than f3\ would suggest. Initially, (/?) is dictated by Bp, but 

becomes dominated by Bv within < 10 yr after launch. As time progresses, (/3) gradually 

increases but never rises above unity (at least for t < 100 yr), even for $ S> 1. Still, one 

might speculate from Fig. 3.2a that with sufficient time, (/?) —• 1 regardless of /?;. 

3.4.1 Proper motion 

For t > 10 yr, the velocity of the tip of the jet, Vjet, is nearly constant and, from Fig. 

3.2b and Table 3.2, we find ujet oc 51°-44±001. 
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Figure 3.2 (a) (/3) as a function of time for different # . (b) v}et (diamonds) and (v^,) 
(triangles) of each jet as a function of Bt. Best fit power-law coefficients for these data 
are a = 0.44 ± 0.01 (ujet, solid line) and 0.66 ± 0.01 ((v^), dashed line). 

To understand this result physically, we begin with the magnetic forces: 

Bu 
•V||(rB„); 

B, ^ . = ^ r V | | ( r B v ) ; (3.13) 

F x = - ^ V ± (r£„) + Jv£p , 

(e.g., Ferreira 1997; Zanni et al. 2007) where V||,Vj_ are the gradients parallel and per

pendicular to Bv. For a given field line, a stronger Bv at its "footprint" in the disc (r = r0) 

generates a stronger 5 V which leads to stronger gradients in rB^ and thus, from equations 

(3.13), greater magnetic forces to accelerate the flow. In practice, we find that most of 

the acceleration occurs before the fast point (and not the Alfven point) located at r = rf, 

where rf is a weak function of the field strength at the footprint and thus of Bt. 
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Following Spruit (1996), one can show that as a function of the "fast moment arm" 

(£ = rf/r0), the poloidal velocity at the fast point is: 

vP,i = y/ap,f vKfi ( cj2 + - - 3 J oc y/B~i (3.14) 

since oP;f, the poloidal Alfven speed at the fast point, is roughly proportional to Bi. 

^K,O = \/GM*/r0 is the Keplerian speed at the footprint of the field line. We note that 

measured values of vpj in our simulations vary as Bf5 and agree with equation (3.14) to 

within 1% so long as the fluid is in approximate steady-state6. 

After the poloidal force given by equations (3.13) decreases to 1% of its maximum 

value (> a few rf), vp still follows a power law in B[ with index 0.52 ±0.04 and essentially 

unchanged from equation (3.14). Nearer the head of the jet where steady state is no longer 

valid, we find (vp) oc #°-4 5 ± 0 0 2 (where the momentum-weighted average is taken across 

the jet radius), only slightly shallower than equation (3.14). Thus, while the conditions 

in the jet have changed, some memory of the steady-state conditions at rf persists. 

Finally, Vjet (Fig. 3.2b and Table 3.2) is within ~ 10% of (vp) near the bow shock and 

maintains the same power-law dependence on B\. Thus, these jets are essentially ballistic, 

where the observed jet speed v-^ oc £.a44±0-01. i n short, all measures of jet speed increase 

with Bi, a trend that agrees with Anderson et al. (2005) who find for much less evolved 

jets, vp oc Bf/3. 

6Indeed, all four steady-state functions from Spruit (1996) remain constant in our simulations to within 
< 5% along steady-state field lines, which we take as validation of our numerical methods. 
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A 
A(G) 

Vjet (km s _ 1 ) 

(vp) (km s_1) 
2rjet (AU) 

Mjet (10"6Me yr"1) 

160 
5 

84 
2.6 
21 

0.44 

40 
10 

125 
3.0 
40 
1.9 

10 
20 

161 
6.2 
60 

2.8 

2.5 
40 

230 
10.1 

85 
4.2 

1.0 
63.2 

270 
13.1 

94 
6.9 

0.4 
100 

330 
18.4 
104 

10.1 

0.1 
200 

460 
31 

130 
17.9 

a 

0.44 ±0.01 
0.66 ±0.01 
0.35 ± 0.04 
0.92 ±0.09 

Table 3.2 Simulation "observables" Vjet and {vv) are asymptotic values while rjet and 
Mjet are measured at z — 200 AU and t = 20 yr. Uncertainties in a are from the fitting 
procedure. 

3.4.2 Toroidal velocity 

Figure 3.2b and Table 3.2 show vv averaged over time and the jet volume for z >100 

AU as a function of Bt. Like Vjet, v^ asymptotes to a constant value. The region inside 

100 AU is ignored because the torsion Alfven wave at low z has a non-negligible v,p, is 

not part of the jet, and skews our results. By fitting a power law to these data, we find 

Unlike Ujet, we have not uncovered a rationale for this power law, yet it seems plausible 

one must exist given the tightness of fit. Eliminating B[ from the power laws for (v^) and 

fjet, we find that {v^) oc vje^
0±om. To render this a useful observational tool, further work 

is needed to quantify the effects of other initial conditions such as £ and p\ on both the 

power law index and the proportionality constant, as well as the effect our simplified disc 

model may have on conditions in the jet at observational length scales. 
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3.4.3 Jet radius and mass flux 

The jet radius, r^, is defined by the contact discontinuity (steep temperature gra

dient in the second panel of Fig. 3.1) between shocked jet and shocked ambient material, 

which in turn is determined by where the radial jet ram pressure balances all external 

forces. Since ram pressure increases with vp, r-iet should increase with B-u just as observed 

in Table 3.2. At any given time, we find that r-iet varies with B[ as a reasonable power law 

though, unlike v-iet or (v^), the power index is not constant and decreases slowly in time, 

while rjet itself increases in time, though at an ever-slowing rate. 

The mass flux transported by the jet, Mjet, consists of material from both the disc 

and the atmosphere. Unlike previous simulations where jets are typically evolved long 

after the leading bow shock has left the grid, no part of any bow shock in our simulations 

reaches the boundary of the coarsest grid. Thus, each jet continues to entrain material 

from the atmosphere throughout the simulation at a rate that has a strong dependence 

on Bh as seen in Table 3.2. Indeed we find that M-}et varies with B^ as a reasonable power 

law, with the power index decreasing slowly in time. As the atmosphere is depleted, the 

mass flux contribution from the disc (which, by design, is independent of B\) becomes 

more important and the dependence of Mjet on BY diminishes. 

3.5 Discussion 

We have presented the first MHD simulations of protostellar jets that start from 

a well-resolved launching region (Azmin = 0.00625 AU) and continue well into the ob

servational domain (2500 AU). On the AU scale, each jet shows the characteristic and 
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near steady-state knotty behaviour first reported by Ouyed & Pudritz (1997b), though 

the origin of our knots is quite different. On the 1000 AU scale, each jet develops into 

a ballistic, supersonic (8 < M < 11) outflow led by a magnetically confined "nose-cone" 

(Clarke, Norman, & Burns 1986) and a narrow bow shock, consistent with what is nor

mally observed. 

On comparing Tables 3.1 and 3.2, our simulations comfortably contain virtually all 

observed protostellar jets on these four important quantities. We note that these tables 

would not have been in agreement had we stopped the jet at, say, 100 AU and measured 

these values then. It is only because our jets have evolved over five orders of magnitude 

in length scale that we can state with some confidence that the magnetocentrifugal launch

ing mechanism is, by itself, capable of producing jets with the observed proper motion, 

rotational velocity, radius, and mass outflow rate. Indeed, our jets are still very young, 

having evolved to only 100 yr, and allowing them to evolve over an additional one or two 

orders of magnitude in time may still be useful. For example, it would be interesting to 

know whether (0) rises above unity for any of the jets (Fig. 3.2a), and thus enter into a 

hydrodynamically dominated regime. It would also be interesting to see how long it takes 

for the power laws in jet radius and mass flux as a function of BY to reach their asymptotic 

limits. 

Our jet widths tend to be higher than those observed, particularly when one considers 

that the values for r-iet in Table 3.2 are at t = 20 yr7, and that rjet continues to grow in 

time (e.g., for the $ — 40 jet, 2rjet ~ 100 AU by t — 100 yr). As our jet radii mark the 

locations of the contact discontinuity while observed radii mark hot, emitting regions, our 

7Some simulations had not reached t = 100 yr at the time of this writing. 



Chapter 3 Simulating protostellar jets 117 

widths should be considered upper limits. That our values contain all observed jet widths 

is a success of these simulations. 

Similarly, our numerical mass fluxes are higher than observed values by at least an 

order of magnitude. Since observed mass-loss rates account only for emitting material 

(e.g., in forbidden lines; Hartigan, Morse, & Raymond 1994), and thus temperatures in 

excess of 104 K (Dyson & Williams 1997; p. 104), our mass fluxes are necessarily upper 

limits as well. Indeed, if we measure our mass fluxes near the jet tip (instead of at 200 

AU for Table 3.2) and restrict the integration to fluid above 104 K, our mass fluxes drop 

by a factor of 10-100, in much better agreement with Table 3.1. 



118 

Chapter 4 

Additional results from simulations 
of protostellar je ts 

In this Chapter, I expand upon the results of Chapter 3 by describing the methods 

used to achieve those results, introducing new results and expanding on the discussion. In 

light of this broader picture, I revisit previous comparisons to observations in an attempt 

to make further connections with observed protostellar jets. 

4.1 Introduction 

In this work, I simulate the time-dependent equations of ideal MHD in cylindrical, 

axisymmetric [(z,r,(p);d/dip — 0] coordinates using the AZEuS AMR-MHD fluid code. 

The ideal equation of state, 7 = 5/3, and the internal energy equation are used (as 

opposed to the total energy equation) for reasons described in Section 3.2. 

The total computational domain is 4096 x 256 AU in size, within which we place 

8 additional levels of higher resolution. Table 4.1 summarises our initial static mesh 

refinement set up, with the lower-left corner of each grid located at the origin. For 

grids at levels I > 1, the seemingly odd grid dimensions are a result of the desire to 

maximise parallel efficiency. AZEuS employs OpenMP parallelism at the do-loop level, 

and a noticeable increase in efficiency is observed if the number of iterations in the most 
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time intensive loops are tuned to a multiple of the number of CPUs being used (in this 

case, we almost exclusively use 16 CPUs). 

Level zmax(AU) rmax(AU) Az (AU) 
4096 

508.8 
254.4 

127.2 

63.6 

31.8 

15.9 

7.95 

3.975 

256 
124.8 
62.4 

31.2 

15.6 
7.8 
3.9 
1.95 

0.975 

1.6 
0.8 
0.4 
0.2 
0.1 

5.0xl0"2 

2.5xl0"2 

1.25xl0-2 

6.25xl0"3 

Table 4.1 Initial static grid set up for these simulations. The zones are everywhere uniform 
in shape (i.e., Az — Ar). 

In addition to static grids, which are stationary throughout the simulation lifetime, 

resolution is added dynamically using the criterion described in Section 4.4. 

With the exception of the initial magnetic field strength, B{, the initial conditions 

for all simulations are the same. B\ is measured at r„ where r\ — 0.05 AU is the inner 

disc radius. The plasma-/? at n is /5; = 8irpi/Bf, where pi is held constant in this work. 

Further details of the initial conditions may be found in Chapter 3. 

Additional run-time parameters for the simulations presented here and in Chapter 3 

include a Courant number of C — 0.5, artificial viscosity parameters qcon = 2.0 and qlin 

= 0.2, and AMR parameters kcheck — 100, ibuf f = 2, and gef f cy = 0.5. Definitions 

of these input parameters can be found in Section 2.7.1. Conversions between simulation 

and physical units employ the scaling relations of Section 3.2.3. 
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Simulation f3\ B[ (G) tend (yr) 
A 
B 
C 
D 
E 
F 
G 
H 

0.1 
0.4 
1.0 
2.5 
10 
40 
160 
640 

200 
100 
63.2 

40 
20 
10 
5 
2.5 

42.37 

60.53 
74.92 

92.68 

100.0 

100.0 

76.18a 

100.0 

Table 4.2 Summary of simulation times. The simulation end time, tend, denotes when the 
jet leaves the computational domain or t = 100 yr, whichever comes first. 

aAt this time of this writing, the (3\ = 160 simulation is still running. 

Table 4.2 summarises the simulation lifetimes for the set of simulations presented 

herein. The simulation lifetime, £end, is defined by when the jet either leaves the compu

tational domain, or the physical problem time reaches t — 100 yr. When Chapter 3 was 

written, most of the simulations summarised in Table 4.2 had not yet run to completion. 

Indeed, the motivation for discussing simulation F in detail in Section 3.3 was because it 

had run to t = 100 yr. In that which follows, we expand the discussion to include all of 

the simulations presented in Chapter 3, including an additional simulation with very weak 

magnetic field ($ = 640; i?; = 2.5 G). Time-lapse animations of the results presented here 

can be found at ht tp: / /www.ica.smu.ca/zeus3d/rcl0/ . 

4.2 Description of simulations 

Each simulation begins with the launching of a torsion Alfven wave from the disc 

surface which imparts a sudden torque on the magnetic field in the atmosphere. The 

http://www.ica.smu.ca/zeus3d/rcl0/
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propagation of this torsion wave can be described by (e.g., Mouschovias k, Paleologou 

1980): 

d2Bv> - n2 &J?v. M n 
dt2 ~ aA,atm gz2 , {.*•*•) 

8-§f " ̂ ' <"> 

where aPiatm = BP}atrn/y/4npatm, patm are the Alfven speed and density of the undisturbed 

atmosphere, respectively. These equations describe how the torsion wave propagates with 

time, as well as how Bv is generated. Given that SPjatm is proportional to Bh the speed 

of the torsion Alfven wave will also be proportional to B\. 

Behind the torsion wave, a toroidal field and velocity are established which quickly 

results in a magnetic pinch towards the axis, and a centrifugal force in the positive r-

direction. Combined with gravity and pressure forces, the net force points away from the 

disc, and material is accelerated into a wind. Beginning at r± and moving radially outward 

with time, the flow just above the disc surface becomes super-slow, and cold disc material 

begins flowing into this newly-established wind. 

4.2.1 Simulation A: # = 0.1 

The initial magnetic field configuration (equations 3.5) is such that the angle the 

field makes with the disc is < 60° for r > 2r\, and the conditions for launching a wind 

centrifugally from the disc are favourable right from the beginning (Blandford & Payne 

1982; Section 1.2). In simulation A, because of the strong magnetic field, the critical 
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angle for launching at the disc surface changes very little with time, remaining satisfied 

for r > 1r\ throughout the simulation. 

The expansion of the slow surface at the disc occurs rapidly at first, but slows over 

time. By t ~ 42 yr, it is located at r^ ~ 20 AU (Figure 4.1). Inside the slow surface, the 

initial atmosphere has been replaced by cold disc material with low temperature (~ 10 

K) and plasma-/? (= 8TTP/B2 < 10~3). 

Outside the slow surface, the poloidal velocity is low and little outflow takes place. 

Although the torsion Alfven wave travels slowly through this region and generates a 

toroidal velocity and magnetic field, the initial atmosphere remains essentially stationary. 

Once the initial atmosphere has been removed and the jet filled with cold disc ma

terial, the interior of the jet tends towards an approximately steady state. Between the 

axis and a reasonable distance inside the outer radius of the jet, I find that all quantities 

behave smoothly in both z and r, and only slowly in t. 

Figure 4.2 shows the radial profiles of several quantities at 100 AU above the disc, 

demonstrating that the profiles are indeed smooth inside the outer jet radius. Other char

acteristic features exemplified by Figure 4.2 include absolute maxima which are located 

near the axis for all quantities, and centrally concentrated values of temperature, poloidal, 

and toroidal magnetic field. Also visible is a "backbone" of high vp and Bp near the axis, 

but low vv and \BV\. Given that the global maxima are located just outside this backbone, 

the profiles in v^ and Bv experience strong gradients in both quantities as one approaches 

the axis. 



500 km/s (top panel) 

250 km/s (otherwise) 

Figure 4.1 Nested images of simulation A at t — 42.37 yr. Colours indicate temperature, white contours magnetic field lines, 
black contours the slow magnetosonic surface, and arrows the poloidal velocity. Dashed lines indicate grid boundaries. The 
dimensions of the top panel are z = xi € [0,4096] AU and r = x2 € [0, 256] AU. 
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Figure 4.2 A radial slice from simulation A at z — 100 AU and t = 42.37 yr. Plotted 
on the left are, from top to bottom, logarithmic density, poloidal velocity, and poloidal 
magnetic field. Plotted on the right, from top to bottom, are logarithmic temperature, 
toroidal velocity, and toroidal field. Successively darker shading indicates a higher level 
of refinement; no shading corresponds to level 1 — 2. The highest resolution available at 
this height above the disc is level I = 4. 

The outer jet radius is clearly visible in Figure 4.2 at r ~ 40 AU in both the density 

and temperature. The presence of a contact discontinuity at r ~ 35 AU and a global 

minimum in density between 35 - 40 AU is quite prominent, corresponding to just inside 

the outer edge of the jet. In contrast, the profiles of the other variables show no evidence 

of variation at the outer jet radius. 
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As the initial torsion wave propagates to greater z, it leaves behind it toroidal velocity 

and magnetic field. At £end, the torsion wave at high r in simulation A extends past z — 300 

AU. This material is clearly visible in Figure 4.2 beyond the outer jet radius, and has a 

small toroidal velocity and magnetic field. It also has a noticeably higher density and 

temperature than the majority of the jet. 

At greater distances from the disc, the torsion Alfven wave is replaced by a bow 

shock with the ambient medium and, as it propagates forward, heats the ambient material 

significantly (top panel, Figure 4.1). In fact, the highest temperatures in the simulation 

(~ 106 K) occur at the head of the jet where it propagates into the undisturbed ambient 

medium. 

The effects of the bow shock on the ambient are shown in Figure 4.3, which plots 

radial slices of several variables at z = 1000 AU above the disc. The outer jet radius (at 

r ~ 85 - 90 AU) is clearly seen in the profiles of the hydrodynamic variables (but not 

Bp or Bv) and, in particular, the sudden drop of the poloidal velocity at the outer edge 

of the jet and the effectively zero toroidal velocity beyond. Besides a noticeably higher 

temperature, the shocked ambient material (r ~ 90 - 95 AU) is also characterised by a 

slow poloidal velocity, a result of material entrainment by the jet. Another noteworthy 

feature is a region of negative toroidal velocity just inside the jet radius which is co-spatial 

with a local reversal in the direction of the poloidal magnetic field {i.e., change of sign in 

Bz; Figure 4.3). 

The jet radius initially increases with distance from the disc, but beyond some max

imum, rjet,maxj it actually begins to narrow slightly with increasing distance from the disc 
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Figure 4.3 A radial slice from simulation A at z = 1000 AU and t = 42.37 yr. Plotted 
on the left are, from top to bottom, logarithmic density, poloidal velocity, poloidal field, 
and the z-component of the magnetic field. Plotted on the right, from top to bottom, are 
logarithmic temperature, toroidal velocity, and toroidal field, and logarithmic /?. At this 
height above the disc, the highest resolution data available is at level I = 1. 

(top panel of Figure 4.1). The majority of the jet momentum is forward-directed and 

concentrated near the symmetry axis, and so the jet propagates forward much faster than 

it radially expands. This is exacerbated somewhat by conditions in the ambient medium 

where, by the time the jet reaches z ~ 500 AU, the density and pressure are effectively 
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constant. As the now constant density and pressure require more force to displace than 

values which are steadily declining, the ability of the jet to expand is hampered. 

Comparing Figures 4.2 and 4.3 at 100 and 1000 AU, the density has decreased while 

the temperature has increased, the toroidal velocity has decreased by a factor of ~ 1.5, 

and the poloidal velocity profile has become shallower. However, the maximum poloidal 

velocity near the axis remains approximately the same. 

At 100 AU above the disc, the magnitude of both the poloidal and toroidal fields are 

< 2.0 G, significantly lower than their values at the disc surface (Bp > 50 G, Bv < 25 G). 

At 1000 AU above the disc, the magnitude of the poloidal and toroidal field has fallen to 

~ 0.3 G and ~ —0.7 G, respectively. 

Figure 4.3 shows that f3 is low in the jet, only reaching ~ 1 in the shocked ambient 

medium. Thus, even though the large-scale fields appear weak relative to the values at 

the disc, they still dominate over thermal pressure, and the jet bow shock appears as a 

magnetically confined "nose-cone" (Clarke, Norman, & Burns 1986). 

4.2.2 Simulation B: # = 0.4 

The evolution of simulation B proceeds much the same as A, but the jet propagates 

and radially expands more slowly, taking ~ 60 yr to reach the edge of the domain (as 

opposed to ~ 42 yr for simulation A). The trends observed in Figures 4.2 and 4.3 remain 

the same, but the maxima of the different quantities decrease: e.g., the strength of the 

fields decrease by a factor of ~ 2 at z — 100 AU relative to simulation A, and by a 

factor of ~ 1.5 at 1000 AU (notably, B\ is also a factor of 2 lower than in simulation A). 



Chapter 4 Additional results 128 

Meanwhile, the velocities decrease by a factor of ~ 4/3 at z = 100 AU and by a factor of 

~ 1.5 at z — 1000 AU. The only qualitative difference from simulation A is the appearance 

of "knot"-like structures which periodically form near the origin and propagate down the 

length of the jet. 

Figure 4.4 shows nested images of the temperature in simulation B at the simulation 

end time and, in the third panel, knot-like structures are clearly visible as regions of 

high temperature with spacing ~ 5 AU. Looking to the origin, these knots originate at 

z ~ r ~ n = 0.05 AU, and propagate along the axis with the rest of the flow. In the 

case of simulation B, knots first appear at t ~ 7 yr, and are produced every ~ 0.090 yr 

thereafter. 

As the knots (actually rings in cylindrical axisymmetry) propagate downstream, they 

slowly expand and diffuse in both the z and r directions, losing their original elongated 

shape. The spacing between knots is large enough that within ~ 60 AU of the disc 

surface, individual knots are easily distinguished. Beyond ~ 60 AU, the diffusion of the 

knots grows steadily until, around 120 AU, all that remains is a single contiguous column 

of hot, dense material along the jet axis. 

The knots reach a maximum radius and length of only ~ 2 AU before merging into 

a single column of material. Even then, the maximum radial extent of the contiguous 

column remains well below 10 AU, and is virtually invisible on scales larger than 100 AU. 

Taking an axial slice at r = 1 AU (Figure 4.5), oscillations associated with the 

knots can be seen as jumps in p, T, /?, poloidal velocity (vp), toroidal field (B^), Alfvenic 

Mach number (MA), and fast magnetosonic Mach number (Mf). Conversely, knots are 
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anti-correlated with toroidal velocity vv, poloidal field (Bp), and slow magnetosonic Mach 

number (Ms). 

In all the quantities plotted in Figure 4.5, a uniform knot spacing is evident, implying 

the knot generation period is constant. There is also an apparent lack of knots for z < 10 

AU. Knots are indeed present inside z = 10 AU, they simply have not yet expanded to 

r — 1 AU, and thus do not show up in the axial slice. 

Variations in the poloidal velocity and magnetic field components are small across 

the knots, while variations in density and temperature are high (factors of 10 - 1000). 

Hence, variations in the various Mach numbers are high, particularly for the slow speed. 

In between knots, the flow is cold and magnetically-dominated (low /?). In this 

situation, the slow speed is the analogue to the sound speed in hydrodynamics, and thus 

I expect the cold inter-knot regions to have small slow speeds and correspondingly high 

Ms, as observed in Figure 4.5. 

From the trend underlying the knots, one can see that the magnetic field decreases 

with distance from the disc, as previously observed in Section 4.2.1. In addition, the 

poloidal velocity approaches an asymptotic value (~ 280 km s_1) far from the disc, and 

the toroidal velocity first strongly increases, then gradually decreases, with height from 

the disc. 



300 km/s (top panel) 
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Figure 4.4 Nested images of simulation B at t — 60.53 yr. See Figure 4.1 for a description of the plotted quantities, 
dimensions of the top panel are z G [0,4096] AU and r G [0,256] AU. 

The 
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Figure 4.5 An axial slice through simulation B at r — 1.0 AU showing the structure of the 
knots. Plotted on the left, from top to bottom, are logarithmic density, poloidal velocity, 
poloidal field, slow magnetosonic Mach number, and Alfvenic Mach number. Plotted on 
the right, from top to bottom, are logarithmic temperature, toroidal velocity, toroidal 
field, logarithmic /?, and fast magnetosonic Mach number. Successively darker shading 
indicates a higher level of refinement; no shading corresponds to level 1 = 4. 
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4.2.3 Simulation C: A = 1.0 

Simulation C (Figure 4.6) proceeds similarly to simulation B. As was the case before, 

the jet propagation speed and radial expansion decrease, and it now takes the jet 74.92 

yr to reach the edge of the domain. The trends from Figures 4.2 - 4.5 remain the same, 

and, as before, the maxima of the velocities and fields decreases relative to simulation B. 

From Figure 4.6, the knot spacing has decreased to ~ 2.5 AU (see also Figure 4.15). 

The knots are also more elongated, taking on a characteristic "door handle" shape. Mea

sured directly from the simulation, the knots have a period of ~ 0.056 yr. 

4.2.4 Simulation D: # = 2.5 

Simulation D continues the trend of a decrease in propagation speed, jet radii, and 

other quantities relative to simulation C. In keeping with this tendency, the temperature of 

the shocked ambient medium also decreases. In order for the bow shock to remain clearly 

visible in Figure 4.7 (and subsequent Figures), the contour levels have been adjusted. 

The temperature of the shocked ambient medium is a function of the bow shock speed, 

and thus a higher propagation speed leads to a higher shocked ambient temperature. The 

jet propagation speed has been steadily decreasing with the value of B[, and so too has 

the temperature of the shocked ambient (e.g., the maximum temperature in simulation D 

is ~ 105 K, compared to ~ 106 K for simulation A). 
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Figure 4.6 Nested images of simulation C at t — 74.92 yr. See Figure 4.1 for a description of the plotted quantities. The 
dimensions of the top panel are z € [0,4096] AU and r € [0,256] AU. 
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Prom Figure 4.7, the knot spacing has decreased to ~ 1.5 AU, and the knot period 

is measured to be ~ 0.046 yr. Relative to simulation C, the knots have become more 

elongated, and the "door handle" shape is even more prominent. Since the knots are now 

stretched in the z-direction (with lengths > 1 AU), and become more so as they propagate 

downstream, the rate at which they merge will increase. 

This is shown in Figure 4.8, which plots a radial cut from simulation D at z — 3.9 AU, 

corresponding to the two knots just visible at the right edge of the bottom panel of Figure 

4.7. There are two distinct knots at this location, and the z-velocity of the knot closer to 

the axis is ~ 1.4 times that of the knot at higher radius. Thus, the elongated shape of 

the knots results from a differential velocity between the top and bottom portions of the 

knot, stretching it out. In addition, there is a positive vr between the knots, suggesting 

the knots will at least partially merge before passing each other by. 

An additional feature which is present in all simulations with knots, but has only 

now become apparent enough to warrant discussion, is the "draping" of magnetic field 

lines over knots. For the knot in the bottom panel of Figure 4.7, located at z = 3.8 AU, 

the otherwise straight field lines are distorted by the knot, forming a loop. These loops 

travel along with the knot, and correspond to regions of high (3. 



200 km/s (top panel) 

100 km/s (otherwise) 

Figure 4.7 Nested images of simulation D at t — 92.68 yr. See Figure 4.1 for a description of the plotted quantities. Note that 
the contour levels for this Figure (and subsequent Figures) have changed from Figure 4.6. The dimensions of the top panel 
are z 6 [0,4096] AU and r € [0,256] AU. 
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Figure 4.8 A radial cut at z = 3.9 AU and levels I = 8,9 from simulation D. Plotted on the 
top are logarithmic density and temperature, and on the bottom, the z and r-components 
of velocity. The two knots can be seen distinctly in the density and temperature. 

4.2.5 Simulation E: # = 10 

Figure 4.9 shows simulation E at t = 100 yr. This is the first simulation presented 

which does not leave the domain within the 100 yr time limit. In fact, it only reaches 

a length of ~ 3000 AU from disc, continuing the trend of a slower propagation speed 

with decreasing B\ (increasing $ ) . The other trends also still hold, with decreases in the 

velocities and fields relative to simulation D. 

In this simulation, the knots are present in some form right from the beginning of the 

simulation, but ~ 5 yr elapses before they settle into a regular period. This is apparent 

from time-lapse animations, available at http:/ /www.ica.smu.ca/zeus3d/rcl0/ . The 

time-lapse information also shows that there are periods (~ 4 yr in length) during the 

http://www.ica.smu.ca/zeus3d/rcl0/
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evolution of the jet in which the knot generator changes its behaviour. One of these 

instances can be seen in the bottom panel of Figure 4.9, where the knots form downstream 

at ~ 2 AU, as opposed to near the origin. A more representative example of the average 

knot behaviour in simulation E is shown in Figure 4.10, from which I measure a knot 

spacing of ~ 0.4 AU and a period of ~ 0.031 yr. 

4.2.6 Simulation F: # = 40 

The jet in simulation F has previously been discussed in section 3.3 and nested 

images of the temperature are presented in Figure 3.1. For this simulation, I measure a 

knot period of ~ 0.020 yr, and a spacing of ~ 0.3 AU. 

The evolution of simulation F proceeds much the same as in simulation E, with the 

expected decreases in jet propagation speed, radius, and velocity and magnetic field in 

the jet. By this stage, the maximum velocities at z = 100 AU have decreased by a factor 

~ 6 with respect to simulation A, the poloidal field has decreased by a factor of ~ 9, 

but the toroidal field has only decreased by a factor ~ 5/2. The situation at z — 1000 

AU is similar, with decreases by factors of ~ 6, ~ 10, and ~ 3 relative to simulation A 

in the velocity, poloidal field, and toroidal field, respectively. For comparison, the initial 

magnetic field strength between simulations A and F differs by a factor of 20. 
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Figure 4.9 Nested images of simulation E at t = 100 yr. See Figure 4.1 for a description of the plotted quantities. 
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Figure 4.10 A representative example of knot production in simulation E at t — 60.29 
yr. Temperature is plotted in colour, the slow magnetosonic surface with black contours, 
magnetic field lines in white, and arrows denote the poloidal velocity. 

A feature which is present in all the simulations, but is just now becoming visible 

due to the decreasing jet radius, is a kink in the field lines at the outer jet radius (second 

panel of Figure 3.1). At the outer jet radius, f3 > 1, and hydrodynamical stresses can then 

bend the field lines easily (relative to f3 < 1). This reversal in the direction of the field line 

corresponds to the negative values of Bz and vv observed in simulation A (Figure 4.3). 

4.2.7 Simulation G: # = 160 

As B\ decreases even further, not only does the propagation speed and jet radius de

crease, so too does the temperature of the jet bow shock. For simulation G, the maximum 

temperature is now only 4 x 104 K at the head of the jet. 

As can be clearly seen in the bottom panel of Figure 4.11, individual knots are no 

longer produced, having been replaced by an unsteady, continuous stream of material. The 

base of the stream is located at approximately the same location as the knot generator 

observed in other simulations, but the conditions have changed such that the oscillatory 

release of material has become more or less continuous. This flow is pseudo-turbulent, has 
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a low magnetic field (notice the almost complete lack of field lines inside the stream), and 

consequently a high j3. While the maximum radial extent of the knots in other simulations 

is restricted to ~ 2 AU, the material in simulation G is able to expand radially to < 10 

AU as it propagates down the length of the jet. 

At the time of this writing, simulation G is still running. By t — 76.18 yr, it has 

reached a height of z ~ 1200 AU above the disc. Assuming the jet is traveling at a roughly 

constant speed, by t — 100 yr, it should reach a length of ~ 1600 AU. 

4.2.8 Simulation H: A = 640 

Simulation H has the weakest magnetic field of the simulations discussed here, and 

as such propagates the least distance with the lowest speeds. Like simulation G, it also 

does not exhibit knots, but rather a continuous stream of material emanating from near 

the origin. This stream is even more pseudo-turbulent than in simulation G, and this high 

temperature material results in a jet that looks qualitatively different than the others. 

Figure 4.13 shows a radial slice from simulation H at z = 100 AU, demonstrating 

that even with a very weak field, the jet still manages to accelerate to super-fast speeds, 

and P generally remains below one. Relative to Figure 4.2, the profiles of the different 

quantities are no longer smooth, and the clear features at the outer jet radius are entirely 

washed out. The velocities in this simulation are decreased by a factor of ~ 10 relative to 

simulation A, as are the components of the magnetic fields. 
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Figure 4.11 Nested images of simulation G at t = 76.18 yr. See Figure 4.1 for a description of the plotted quantities. *>. 
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Figure 4.12 Nested images of simulation H at t = 100 yr. See Figure 4.1 for a description of the plotted quantities. 
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Simulation H exhibits a behaviour not observed in any of the other simulations: at 

seemingly random times, a violent eruption of high pressure (and consequently high (3) 

material occurs near the origin. Figure 4.14 shows two snapshots in time, before and after 

such an eruption. Although the event disrupts the jet at small scales, the large-scale jet 

maintains its structure, and the jet launching mechanism is able to re-establish the flow 

near the disc within ~ 4 yr. These eruption events are correlated with the presence of 

small regions of positive Bv near the origin, a feature which is wholly unique to simulation 

H. It is my suspicion that these events are numerical in origin, though the nature of these 

outbursts has yet to be established. 

4.2.9 Qualitative trends 

The behaviour of the knot-like structures as the magnetic field strength decreases 

from simulation A through H is summarised in Figure 4.15. For simulations which exhibit 

knots, the shape and size of the knots depend on Bh with larger and more elongated knots 

generally corresponding to a stronger magnetic field. In addition, the knot spacing clearly 

increases with Bi} implying the knot frequency decreases monotonically with B^. 

Figure 4.15 also shows the locations of the plasma-/? = 1 and poloidal Alfvenic Mach 

(MA — 1) surfaces in the different simulations. With the exception of simulation H (the 

weakest magnetic field), the plasma-/3 surface is located close to the origin, and the jets 

are dominated by j3 < 1 material (c./., Figure 4.5). 

The shape of the Alfvenic Mach surface also shows a dependence on B\. For example, 

in simulation A, the majority of the jet near the disc is at sub-Alfvenic speeds, while the 
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Figure 4.13 A radial slice from simulation H at t = 100 yr. Plotted on the left, from top 
to bottom, are the logarithmic density, poloidal velocity, poloidal magnetic field, and fast 
magnetosonic Mach number. Plotted on the right, from top to bottom, are the logarithmic 
temperature, toroidal velocity, toroidal field, and logarithmic (3. 

opposite is true for simulation G. Furthermore, the minimum height of the Alfven surface 

above the disc surface increases with magnetic field strength, and is located very near the 

the disc surface for jets with weak fields. 

At larger scales, Figure 4.16 shows the distribution of vv in simulations A - H plotted 

when all jets have propagated to 1000 AU above the disc. Evidently, the toroidal velocity 
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Figure 4.14 Two snapshots in time from simulation H. On the left, before an eruption 
event. On the right, immediately after. j3 is plotted in colour, magnetic field lines in 
white, and velocity vectors in black. 

in the jet depends on the magnetic field strength, with a larger velocity corresponding to 

a stronger field, and a factor of ~ 20 difference between simulations A and H. Another 

striking feature of Figure 4.16 is the apparent self-similarity of the jets when they have 

the same length. Indeed, the jet radius and shape of the fast magnetosonic surface are 

similar, regardless of B„ and it is challenging to differentiate between the jets based on 

appearance alone. 

Figure 4.17, which plots the poloidal velocity in simulations A - H at the same 

simulation time (t — 42.65 yr), very clearly shows the differences in the jet propagation 

speed and jet radius as the magnetic field decreases from simulations A to H (top to 

bottom). Indeed, both quantities increase monotonically (but not linearly) with B\. 
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Figure 4.15 Images of the knot-like structures observed in simulations A - H on the highest resolution grid. Simulations A -
D are arranged from top to bottom on the left, and simulations E - H are similarly arranged on the right. Colour contours 
denote the temperature, white the plasma-/? surface, and black the Alfvenic Mach surface. The dimensions of each panel are 
z G [0,4], r G [0,1] AU. Unlike Figures 4.1 - 4.12, all panels use the same temperature scale. 
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Figure 4.16 The toroidal velocity, vv, in simulations A - H (top to bottom), plotted 
when they reach a height of 1000 AU above the disc. Black contours denote the fast 
magnetosonic surface (Mf = 1). All plots have dimensions z € [0,1025], r € [0,110] AU. 
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Figure 4.17 The poloidal velocity, vp, in simulations A - H (top to bottom), plotted at simulation time t = 42.65 yr 
contours denote the fast magnetosonic surface (Mf = 1). All plots have dimensions z € [0,4070], r G [0,245] AU. 
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4.3 The "knot" generator 

The "knot"-like features observed in most of the simulations are the most striking 

feature of the jets on scales < 100 AU. As they appear to originate from the same loca

tion near the origin, it begs the question whether a single mechanism can explain their 

formation and varied characteristics. 

Knots have previously been observed in simulations of magnetic jets and, in particu

lar, for jets launched from a disc as a boundary condition, Ouyed & Pudritz (1997b, 1999) 

find episodic structures form as a result of re-collimation of the flow by a strong toroidal 

field and, through MHD shocks, steepen into knots (Figure 1.5). These authors speculate 

these knots may explain the much larger clumps of emission observed in some protostellar 

jets (e.g., HH 111; Raga et al. 2002). Here, I suggest that the knots observed in the 

simulations presented here are instead generated by a pinch effect between outflowing and 

backflowing material, resulting in pressure oscillations, before being accelerated into the 

outflow by the magneto-centrifugal mechanism. 

Using simulation F as a representative example, Figures 4.18 and 4.19 show the 

knot generator in the "on" and "off" positions, respectively. When the knot generator 

is "on", a stream of backflowing material is present at r ~ 0.06 AU, directed towards 

the disc surface (negative vz\ bottom left panel of Figure 4.18). Simultaneously and at 

the same radius, the angle the field makes with the disc surface, 8, is less than 60° (top 

right panel) and material is accelerated from the disc surface. These two streams meet 

at z ~ 0.04 AU, where material begins to accumulate. This results in a local increase in 

pressure, which not only increases the (3 (colour contours, top left panel), but also the 
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local slow magnetosonic speed (thus decreasing the slow Mach number at z ~ 0.06 AU; 

black contours, top left panel). 

0.2 0.3 
X, (AU) 

0.0 0 2 0.4 0.6 O.i 
r (AU) 

km/s 
-0 .05 -« 

0.0 0.2 0.4 0.6 O.i 
r (AU) 

Figure 4.18 The knot generator in the "on" position. Top left panel: plasma-/? is plotted 
in colour, the slow Mach surface in black, and velocity vectors in white. Bottom left panel: 
the z-component of the velocity is plotted in colour, magnetic field lines in black, and the 
net poloidal acceleration vectors in white. Top and middle right panels: the launching 
angle 9 and the poloidal velocity, just above the disc surface at z = 0.01 AU, as a function 
of radius. Bottom right panel: The net radial acceleration at the location of the knot 
generator (z ~ 0.04 AU). The dashed red line denotes the inner disc radius r\ = 0.05 AU. 
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Figure 4.19 Knot generator in the "off" position. See Figure 4.18 for a description of the 
plotted variables. 

Consequently, with a value of plasma-/? ~ 1, the pressure forces are able to bend 

the field lines outward somewhat, further decreasing the value of 9. This increases the 

speed of inflow from the disc (vp at r ~ 0.06 AU; middle right panel), allowing more 

material to accumulate, increasing the pressure further. When the combined pressure and 

centrifugal forces overcome gravity and the pinch Lorentz force, material is pushed away 
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from the core and accelerated into the wind centrifugally, forming a knot (positive net 

radial acceleration at z ~ 0.03 AU; bottom right panel of Figure 4.18). 

The knots propagate downstream, traveling with the cold jet material, slowly diffus

ing and eventually merging with other knots (visible in the third panels of Figures 3.1, 4.4 

- 4.9, 4.15). They are condensations of hot, high /? material, and are confined by poloidal 

magnetic pressure (the field lines form loops around the knots; bottom left panel). 

Behind the newly-formed knot, pressure and (3 drop, and the magnetic pressure near 

the disc surface pulls the field lines towards the vertical (0 > 60°; top right panel of Figure 

4.19), causing the flow speed from the disc surface to decrease (compare the middle right 

panels of Figure 4.18 and 4.19). Concurrently, the knot absorbs the backfiow feeding the 

generator as it moves away from the disc (negative vz stops at the knot; lower left panel 

of Figure 4.19). Starved of material, the knot generator shuts off temporarily. 

Once the knot has been carried away with the flow, a new region of backfiow develops 

due to a loss of pressure balance behind the just-formed knot (white vectors and negative 

vz, bottom left panel of Figure 4.18). Material begins to accumulate again, and as 0 drops 

below 60°, the process starts anew. 

The knot generator can be modeled as a simple harmonic oscillator in the pressure: 

dP ~^P, (4.3) 
dt2 

where the angular frequency UJ — 2-K/T, and r is the knot generator period given by: 

7TV' 

T ~ —-, (4.4) 
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where as is the slow magnetosonic speed, and r; is the approximate radius of the knot 

generator. For simulation F, I measure a slow speed of ~ 37 km s_1 at the location of the 

knot generator. Substituting into equation (4.4), this predicts a knot generation period of 

Tknot,caic ~ 0.020 yr, in good agreement with the period I actually observe (Tknot,obs — 0.020 

yr)-

Why should the slow speed set the period of the knot generator? In axisymmetric 

coordinates, if the poloidal velocity flows parallel to the poloidal magnetic, as is ap

proximately true in the region surrounding the knot generator, then the slow and fast 

magnetosonic speeds reduce to the minimum and maximum of the sound (c^ = "fp/p) and 

total Alfven speeds [a^tot = (B^ + B^,)/47rp\, respectively. Empirically, I measure that the 

minimum of the sound and total Alfven speeds is always Cg at the location of the knot 

generator. Thus, since it is the pressure that is undergoing pseudo-harmonic oscillation, 

the slow speed should be the characteristic speed for the knot generator. 

Table 4.3 summarises the application of equations (4.3) and (4.4) to the other val

ues of J3j, demonstrating that the suggested harmonic oscillator mechanism holds for all 

simulations which form knots, to within the estimated measurement uncertainties. I also 

find a clear correlation between Tknot,obs a n d Bu and fitting a power law to the data, I find 

+V.o+ „- ~ r>0.62±0.04 

tnat Tknot,obs oc Bi 

The generation of knots is clearly related to the perturbation of the slow surface 

(compare the location of the slow surface in the top left panels of Figures 4.18 and 4.19), 

and thus will be some function of the pressure. As the magnetic field strength, B[, in

creases, (3 and as decrease at the knot generator. At some point the field will become 
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Simulation 
BUG) 

Timot.obs ( y r ) 

as (km s_1) 
Tknot,calc ( y r ) 

H 
2.5 
— 
— 
— 

G F 
5 10 

— 0.020 
— 37 
— 0.020 

E 
20 

0.031 
23 

0.031 

D 
40 

0.046 
15 

0.049 

C 
63.2 

0.056 
12 

0.064 

B 
100 

0.090 
9.2 

0.080 

A 
200 
— 
— 
— 

Table 4.3 The measured and calculated periods, and the measured slow magnetosonic 
speed, of the knot generator, as a function of B\. Individual knots are not produced for 
in simulations A, G, and H. The estimated average relative uncertainty in Tknot,obs and as 

is ~ 20%. 

rigid enough that perturbations to the pressure will be too small to result in oscillatory 

behaviour. This appears to be the case for the strongest magnetic field case (simulation 

A), where I indeed observe no significant perturbations to the slow surface at the location 

of the knot generator visible in the other simulations, and no knots are generated. 

In contrast, for simulation G, the values of j3 and as near the disc surface are high, 

and the slow surface is actually a filament which extends to z ~ r ~ 2r\, from whence a 

nearly constant stream of material emanates. In the case of simulation H, the slow surface 

is even more extended, reaching z ~ r ~ 5n. Thus, in the weakest field simulations, the 

pressure forces are strong enough to prevent the other forces from cutting off the flow of 

material to the knot generator, leading to a continuous ejection of material. 

At most, the knots described here are observed to extend outwards from the axis by 

only ~ 2 AU (e.g., the third panel of Figure 4.7), and expand to widths of ~ 2 AU in the 

^-direction. At large heights from the disc, the knots merge with one another, resulting 

in a contiguous column of material rather than separate clumps. Since individual knots 

are resolved by ~ 20 zones in the ^-direction when they begin to merge, their merger will 

not be strongly related to the decreasing resolution of the nested grids. 
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Comparing these knots to the clumpy structures observed in some protostellar jets, 

I find that the knots produced in these simulations are much too small (almost 2 orders 

of magnitude smaller in the case of HH 34; Hartigan et al. 2011) and, as such, are not the 

likely progenitors of observed knot-like structures. Unlike Ouyed & Pudritz (1997b), whose 

simulations extend only to 4 AU, the simulations presented here extend to observational 

length scales, and thus I can state with some certainty that these knots are not good 

candidates for explaining the observed structures on larger scales. 

4.4 Numerical Challenges 

As a jet propagates, a "backbone" of high poloidal field and low velocity develops 

along the symmetry axis. The edge of this region is well-defined by strong gradients 

in B^, and using reflecting boundary conditions at the symmetry axis, Bv will change 

sign at r = 0. For insufficient numerical resolution near the symmetry axis, I observe 

that B^ does not tend to zero as it crosses the axis, leading to a numerically induced 

current sheet which is unstable to perturbation. Figure 4.20 shows an early version of the 

simulations presented here which employed only static grids, demonstrating the effects of 

a perturbation at the axis. A local minimum in density, and therefore inertia, coupled 

with a strong inward magnetic pinch, results in material "bouncing" off the symmetry 

axis, manifesting as a numerical explosion. 
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Figure 4.20 Two successive snapshots in time illustrating the numerical instability due 
to insufficient resolution of gradients in B^. From top to bottom, plotted are contours of 
velocity divergence, temperature, and toroidal magnetic field. The instability leads to the 
localised explosion observed at z ~ 184 AU. 

To avoid this issue, resolution is dynamically added whenever there is a change in 

sign in dBv/dr near the axis, and the ratio of 

dBv AtA 

dr y/47T(p) 
> to l a l f = 0.15, (4.5) 

where At A is the Alfven time step (At A °C fl^1> where «A = B/^/iirp is the Alfven speed), 

t o l a l f is the threshold parameter set at run-time, (p) is the radial average of the local 

density, and {l/^/An{fi)\ dB^/dr is essentially the radial gradient of the toroidal Alfven 

speed. If there is a change of sign in dB^/dr in the first NgBifi zones of the symmetry 

axis, where NQBV is a user-specified parameter, and equation (4.5) is greater than the 

threshold value, then nbuf f er zones are flagged for refinement, nbuf f er is typically set 
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to a dozen or more zones to avoid very small grids which are inefficient from a parallelism 

perspective. 

Flagging zones for refinement based on dBv/dr alone is not sufficient as a change in 

the sign anywhere near the symmetry axis results in refinement, even if the profile of Bv is 

otherwise well-behaved. Furthermore, to prevent grids from being continually created and 

destroyed in regions where equation (4.5) fluctuates around the threshold value ("mesh 

trashing"; Khokhlov 1998), if refinement has already occurred at a location along the 

symmetry axis, then 2NgBtp zones are checked for changes in the sign of dBv/dr. 

At the time of this writing, simulation G is, in fact, still running, having only reached 

a problem time of t ~ 76 yr. This is in part due to time lost to results which exhibited the 

numerical instability just described, even though dynamic gridding was active. Reasonable 

results were recovered by decreasing the threshold of the refinement criterion (equation 

4.5) to 0.10. As a result, simulation G has ~ 25% more zones on average than the other 

calculations, contributing to a longer time to completion. 

Simulation H exhibits a recurring instability close to the disc surface which also 

involves strong gradients in Bv. As it displays some of the same characteristics as the 

numerical instability just described, I speculate that it may also be numerical in origin. 

One way to test this hypothesis would be to perform a simulation with increased resolution 

at the disc surface (e.g., whereas simulations A - H have a resolution of 8 zones per r; at 

the disc surface, a resolution of 16 zones per r; could be tried), and a simulation which does 

just that is currently underway. None of the other simulations show any evidence for this 
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kind of instability at the disc surface, and 8 zones per r\ is sufficient numerical resolution: 

employing 16 zones per r; gives the same qualitative and integrated quantitative results. 

Once knots begin to form, another numerical issue arises. Regions of extremely low 

density develop in between knots (e.g., simulation F; Figure 4.21) which, coupled with a 

relatively strong magnetic field, leads to a restrictively small Alfven time step A£A- TO 

prevent these "sinkholes" from forming, a density floor is imposed which is 300 times 

the density obtained from equation (3.4) applied at the outer corner of the computational 

domain [(zmax, rmax) = (4096, 256) AU]. This rather large floor value is only applied within 

a spherical radius of 20 AU from the origin where these sinkholes are observed to form. 

Since the Alfven time step oc ^fp, the chosen floor value increases the overall time step 

by a factor of ~ 20. Comparisons to test simulations without this density floor show no 

qualitative or quantitative differences. In fact, over the simulation lifetimes, we find the 

total mass added in this manner for any simulation remains below 1%. 

0 1 2 3 4 0 1 2 3 4 
x, (AU) x, (AU) 

Figure 4.21 An axial slice from simulation F at z — 0.1 AU and level I — 9. Plotted are 
logarithmic density (left) and Alfven speed (right). The highest Alfven speeds correspond 
to regions between knots. 
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Note that this floor value should not to be confused with the constant density of 

10~6pj added to the initial hydrostatic profile (Section 3.2.1). This initial constant is 

designed to have the density profile asymptote to an observationally realistic value, not 

to limit the time step. 

4.5 The driving mechanism 

The magneto-centrifugal theory of wind launching is commonly used to explain the 

launching of magnetic jets from discs (e.g., Blandford & Payne 1982; Pelletier & Pudritz 

1992; Spruit 1996). A requirement of this model is that (3 < 1, so that the field lines can 

be considered rigid and fluid will move along them like "beads on a wire" (Henriksen & 

Rayburn 1971). A prediction of this model is that acceleration of the wind should stop 

at the Alfven point, where the poloidal Alfven Mach number MA — vp/a^p = 1, and 

OA,P — Bp/^/inp is the poloidal Alfven speed (henceforth simply the Alfven speed). 

For the simulations presented here which span a factor of 80 in initial magnetic 

field strength, can the magneto-centrifugal model explain the results, or is there a need 

to appeal to a different model? In the jets with weak fields, the toroidal velocity and 

poloidal field strength are small and the applicability of the magneto-centrifugal model 

should be questioned. However, jets are still present for weak poloidal fields, and if the 

magneto-centrifugal mechanism is not valid, how are the jets launched? 
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4.5.1 Steady-state constants 

It is well-established that, for the equations of steady-state (d/dt ~ 0), axisymmetric, 

ideal MHD, there exist four quantities which are constant along any given magnetic field 

line (Weber & Davis 1967; Mestel 1968; Spruit 1996). These constants are useful for 

understanding the physics of magnetic outflows, even when the assumption of steady-

state is only approximately true. 

The mass load rj(ip) is an expression for the mass flux density per unit of poloidal 

magnetic flux, is constant along a field line ip, and given by: 

v(1>) = ^ (4-6) 
Bp 

which is a consequence of vp \\ Bp in steady-state, ideal MHD. vp and Bp are the poloidal 

velocity and magnetic field, which, in cylindrical coordinates, are components of the total 

magnetic field and velocity vectors: 

B = Bp + B^ip and v — vp + vv<p. 

The value of the mass load for any given field line is determined at the Alfven point; its 

value is rj(ip) = V^PA, where pA is the density evaluated at the Alfven point. 

The apparent rotation rate Q(ip) is also constant along a field line, and given by: 

K^-^) nW = - K-^pir • (4-7) 
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For an accretion disc surrounding a central mass, the poloidal field lines are assumed to 

be anchored in the disc and, at the surface of the disc, they rotate with the disc angular 

velocity. Assuming the disc is Keplerian, the velocity is then VK,O = i/GM*/ro, where r$ 

is the "footprint" of the field line. Indeed, the value of Q.{ip) is determined at the field 

line footprint, and has the value fi(V') = ^K.O/^O-

The third constant embodies the conservation of angular momentum, and can be 

written as: 

*<*> = " * - 5 ^ ) - (4'8) 

This equation demonstrates that the total amount of angular momentum flux per unit 

poloidal magnetic flux along a field line is constant. The first term on the right-hand 

side is the angular momentum carried by the fluid, while the second term describes the 

magnetic torque. The field line rotation rate and angular momentum constants are related 

by the value of L(ip) at the Alfven point: L(tp) — Q,(ip)r\, where r& is the so-called Alfven 

radius and is located at the point where MA = 1. 

The final field line constant represents the conservation of specific energy, and is 

given by: 

Ety) = V^-- rvvQ + -L-?- + <D, (4.9) 
2 7 - l p 

where <3> is the gravitational potential, and v2 — v£ + v^. Assuming the fluid is cold and 

the thermal energy negligible compared to the other terms, then E(ip) = —2>v2
K0/2 at the 

disc surface. 
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4.5.2 Centrifugal versus magnetic mechanisms 

Once the initial atmosphere has been displaced, the simulations presented here 

quickly approach a quasi-steady-state near the disc, not withstanding the knot generator 

(Section 4.3). For poloidal field lines which vary smoothly in space and slowly in time, 

steady-state magnetic wind theory can then be applied to shed light on the mechanism 

driving the jets. 

Starting at the footprint of a field line (r0) on the disc surface, one can "follow" 

the field line outward from the disc along the field line coordinate s, where s — Bp/Bp 

(Staff et al. 2004). So long as the field line varies smoothly in space, I find that a bilinear 

interpolation can be used to produce reasonable results (i.e., integrating both forwards 

and backwards along a field line gives differences of < 0.1% in s). In so doing, quantities 

in the flow can be interpolated to the field line coordinate, s, and their behaviour along 

field lines examined. 

The left panel of Figure 4.22 shows the different velocities along a field line anchored 

at ro ^ 1.0 AU for simulation A. Although the velocities are functions of the footprint, 

their relative importances are not, and the same trends persist as long as the steady-state 

approximation applies. 

The right panel of Figure 4.22 plots the fractional variation of the steady-state con

stants (equation 4.6 - 4.9), which are a measure of the applicability of the steady-state 

approximation. For simulation A, with the exception of E(I/J), the constants are well-

behaved and remain close to their analytical values. To establish whether or not this field 

line can be considered steady-state, I look to a field line for which the approximation 
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Figure 4.22 The different speeds and fractional variations of the steady-state constants 
along a field line anchored at r0 ^ 1.0 AU in simulation A. In the left panel, vp is the 
poloidal velocity, vv is the toroidal velocity, CJA,P is the (poloidal) Alfven speed, a^v is the 
toroidal Alfven speed, a^ is the fast magnetosonic speed, and v^ — ̂ /2GM/r0 is the local 
escape speed for footprint r0. The triangle (square) denotes the location of the Alfven 
(fast) point. Plotted in the right panel are the fractional variations of the steady-state 
constants from their analytical values: r\ is the mass load, Q is the field line rotation rate, 
L is the angular momentum constant, and E is the energy constant (equations 4.6 - 4.9). 
These data are taken at t — 42.95 yr, but do not strongly vary in time. 

clearly does not apply. Figure 4.23 shows a field line from simulation A, anchored at 

r ~ 0.2 AU, which has a maximum fractional variation of > ±200%. Further, a number 

of the steady-state "constants" are offset from their analytical values by as much as 120%. 

With this in mind, the ± ~ 20% variation in E(ip) in Figure 4.22 (and much less for the 

other variables) is acceptable, and the field line is considered to be in steady-state. 

In Figure 4.22, the poloidal velocity increases from effectively zero at the disc surface 

(5 = 0) to more than 100 km s_1 within 20 AU. The majority of the acceleration of the 

fluid happens before the fast point (s ~ 370 AU), with ~ 80% occurring between the disc 

surface and the Alfven point (s ~ 99 AU). From magneto-centrifugal wind theory, if the 



Chapter 4 Additional results 164 

4 

2 

A 
O 
V 

A 

V, 

- 4 

t = 

WW\MMA/ \^A* I^ I I III 111 'II 

i j^wP^ 

42 95 yr . 

1 ' 
0 ' 
E • 

200 300 
, (AU) 

Figure 4.23 A representative example of a field line from simulation A which is not in 
steady-state (r0 ^ 0.20 AU). Note the difference in scale of the right panel relative to 
Figure 4.22. For a description of plotted quantities, see the caption of Figure 4.22. 

magnetic field is strong (/? < 1), and the kinetic energy of the fluid is low (MA < 1), then 

the fluid will be forced to co-rotate with the field lines. Inside the Alfven point, material 

will then be centrifugally flung out along field lines. Beyond the Alfven point however, 

where MA > 1, the kinetic energy of the fluid is greater than the poloidal magnetic energy, 

and co-rotation can no longer be assumed. The field becomes twisted, the toroidal field 

becomes dominant, and the remaining ~ 20% of the acceleration is due to gradients in 

the toroidal magnetic pressure (equation 1.4). 

Figures 4.24 - 4.30 plot the different velocities and fractional variations of the steady-

state constants for simulations B through H (and thus decreasing 5,), at footprint r0 cz 1.0 

AU. In simulation A, the poloidal field (Alfven speed) is dominant over the toroidal field 

(toroidal Alfven speed) up to the Alfven point and, as already stated, the majority of the 

acceleration has occurred by the time the fluid becomes super-Alfvenic. The same is true 
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Figure 4.24 Various speeds and fractional variation of the steady-state constants along a 
field line with footprint at r0 — 1.0 AU from simulation B. See Figure 4.22 for additional 
information. 
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Figure 4.25 Various speeds and fractional variation of the steady-state constants along a 
field line with footprint at r0 ^ 1.0 AU from simulation C. See Figure 4.22 for additional 
information. 

for simulations B and C, where almost 80% of the acceleration occurs before the Alfven 

point, and beyond which the toroidal field becomes dominant. 
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Figure 4.26 Various speeds and fractional variation of the steady-state constants along a 
field line with footprint at r0 cs: 1.0 AU from simulation D. See Figure 4.22 for additional 
information. 
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Figure 4.27 Various speeds and fractional variation of the steady-state constants along a 
field line with footprint at r0 ^ 1.0 AU from simulation E. See Figure 4.22 for additional 
information. 

As the field strength decreases further, the relative importance of the Alfven and 

toroidal Alfven speeds change. In simulation D, the poloidal field is still dominant over 

the toroidal field, but in simulation E, the toroidal field is now stronger than the poloidal 
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Figure 4.28 Various speeds and fractional variation of the steady-state constants along a 
field line with footprint at r0 — 1.0 AU from simulation F. See Figure 4.22 for additional 
information. 
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Figure 4.29 Various speeds and fractional variation of the steady-state constants along a 
field line with footprint at ro — 1.0 AU from simulation G. See Figure 4.22 for additional 
information. 

field at the Alfven point, and only ~ 67% of the total acceleration has occurred at sub-

Alfvenic speeds. Progressing to even weaker field strengths, only ~ 54% of the acceleration 

occurs before the Alfven point in simulation F. In simulation G, only ~ 37% occurs before 
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t = 99 83 yr \ 
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s (All) s (All) 

Figure 4.30 Various speeds and fractional variation of the steady-state constants along 
a field line with footprint at r0 ~ 1.0 AU from simulation H. See Figure 4.22 for addi
tional information. This field line is clearly not in steady-state, and is only included for 
completeness. 

the Alfven point, and the toroidal field is dominant right from the disc surface. The 

amount of acceleration occurring before the Alfven point in simulation H is similar to G, 

but the steady-state approximation is no longer valid (see the right panel of Figure 4.30), 

and I consider this result unreliable. 

In the magneto-centrifugal picture, because the launching mechanism only functions 

efficiently up to the Alfven point, the ability of an outflow to reach high speeds is governed 

by the location of the Alfven point, or more specifically the Alfven radius (Pelletier & 

Pudritz 1992). Under the assumption of rigid field lines, a large Alfven radius provides 

a large lever arm for the rotating disc to supply a torque to the fluid, and thus a large 

Alfven radius should correspond to a fast wind. 

Figures 4.22, 4.24 — 4.29 show that, for strong magnetic fields, the Alfven (and 

fast) point is far from the disc, while for weak magnetic fields, it is close to (or nearly 
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at) the disc surface. Subsequently, the flow along a field line anchored at ro — 1.0 AU 

in simulation A (the strongest field) is accelerated to an asymptotic speed ~ 10 times 

greater than in simulation G (the second weakest field)1. 

The centrifugal mechanism of Blandford & Payne (1982) assumes that the field is 

strong enough to enforce co-rotation on the fluid, or equivalently that the inertia of the 

fluid is negligible relative to the tension in the magnetic field. If the magnetic field is 

weak, co-rotation no longer holds, and the rotating fluid begins to drag the field with 

it, resulting in a strongly wound up field. This occurs when the toroidal kinetic energy 

exceeds the poloidal magnetic energy, or equivalently when the toroidal velocity is greater 

than the Alfven speed. 

This first happens in simulation F (Figure 4.28), where only ~ 54% of the total 

acceleration occurs before the Alfven point. Figure 4.31 plots the ratio of \Bp\fBp at 

the disc surface as a function of r, and shows that simulation F is also the first which 

is dominated by B^ right from the disc surface. Thus, for simulations F, G, and H, the 

assumption of co-rotation is not valid, and the centrifugal viewpoint is not efficient at 

launching the jet. 

As noted in Section 3.4.1, the poloidal component of the Lorentz force [(J x B)p] 

along a field line is given by: 

^ = - ^ V | l W ^ ( ^ - - ^ V , < ) . MO) 
1 Simulation H is excluded here because the steady-state approximation is not valid for the field line 

with ro ^ 1.0 AU. 
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Figure 4.31 \Bp\fBp as a function of radius just above the disc surface in each simulation. 
The data are taken at the end of the simulations (tend)-

where V|| — s • V is the gradient parallel to the field line, whereas the toroidal component 

of [(J x B)v] is given by: 

FT, „ = ^ V|| {rBv) = ^ s-f+ ^ V „ i ? c L,<£> 
A.-KT 47rr 47T V" 

(4.11) 

(equations 3.13, Zanni et al. 2007). Thus, I conclude from equation (4.10) that it is 

the toroidal magnetic pressure gradient V| |5^ and the magnetic tension B^ s • f/r which 

determine the acceleration along a field line for simulations F, G, H and, to a lesser extent 

simulations A - E where the centrifugal mechanism dominates. To use a mechanical 

analogy, the toroidal field acts like a "coiled spring", storing potential energy in the field 

as it becomes wound up, and releasing it as kinetic energy as the jet accelerates. 

file:///Bp/fBp
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Evidently, both the toroidal and poloidal Lorentz forces along a field line depend on 

gradients in rB^. The relative importance of the two components can then be assessed 

by taking the ratio of equations (4.10) and (4.11) (Zanni et al. 2007): 

FU\ = _&£_ 
Fh,ip Bp 

(4.12) 

For \Bp\fBp < 1, the toroidal Lorentz force Fi,jip dominates, the centrifugal force will 

be relatively large, and the magneto-centrifugal point of view is more appropriate. Con

versely, if \BV\/BP < 1, the poloidal Lorentz force FL,H will dominate, acceleration will be 

due to gradients in rB^ along field lines, and the "coiled spring" viewpoint is more useful. 

Appealing to a "coiled spring" of toroidal field can also help explain why the flow 

in some simulations experiences the majority of the acceleration between the Alfven and 

fast points. Along a field line, the fast magnetosonic speed is the root-sum-square of the 

poloidal and toroidal Alfven speeds. Thus, the square of the fast magnetosonic Mach 

number serves as a proxy for the ratio of poloidal kinetic to total magnetic energy in the 

flow: 

,,2 / l^™,2 

*-i-s&t- (413) 

Up to the fast point, a strong toroidal magnetic field can still exert itself through the 

Lorentz force to accelerate the flow, thus explaining why the simulations continue accel

erating beyond the Alfven point. 

For the jet with the strongest field (simulation A), Figure 4.31 shows that \Bp\fBp < 

1, so the centrifugal viewpoint dominates. From Figure 4.22, the assumption of co-rotation 

file:///Bp/fBp
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is good because the poloidal magnetic energy is much larger than the toroidal kinetic 

energy. The Alfven point is far from the disc and, assuming co-rotation, the disc is 

provided with a large lever arm over which to apply a force. These things considered, the 

centrifugal point of view is most appropriate for the strong field case, and the majority 

of the acceleration occurs before the Alfven point, as predicted from theory. Beyond the 

Alfven point, the toroidal field can still accelerate the fluid, but provides only a minor 

contribution to the total acceleration. 

For jets with weak fields (e.g., simulation G), Figure 4.29 demonstrates that the 

toroidal kinetic energy dominates over poloidal magnetic energy and co-rotation is not 

applicable. Thus, the lever arm loses its rigidity and is unable to apply a torque efficiently 

to the flow. Figure 4.31 shows that \Bp\fBp > 1, and so acceleration by gradients in the 

toroidal field is the dominant acceleration mechanism. In addition, the majority of the 

acceleration along the field line occurs beyond the Alfven point, further implying that it 

is the toroidal field which accelerates the flow. Thus, it is the energy stored in the "coiled 

spring", acting as a body force on the fluid, which accelerates the flow in the weak field 

case. 

Figure 4.32 shows the net and poloidal Lorentz accelerations along the field line for 

simulations A and G. For the weak field case, the Lorentz acceleration traces the net 

acceleration closely, as it is the dominant force. For the strong field case, the Lorentz 

acceleration only overlies the net acceleration outside the Alfven point, as expected for a 

centrifugally-driven jet. 
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Figure 4.32 The net acceleration (black) and poloidal Lorentz acceleration (red) along 
a field line with foot print r0 ^ 1.0 AU for simulations A and G (left and right panels, 
respectively). The Alfven and fast points are denoted by dashed lines, and 1% of the 
maximum acceleration is denoted by the green dash-dot line. 

4.5.3 Establishing a magnetic environment 

Initially, there is no toroidal field present in these simulations: only through the 

twisting of the poloidal field does a toroidal field become established. Once the simulations 

start, it does not take long for the field to become dominated by Bv. This is demonstrated 

in Figure 4.33, which plots three different ways of determining the plasma-/?. In all 

cases, the values are determined by averaging the pressure and appropriate magnetic 

field components over the domain, masked by vz so that only fast-moving jet material is 

included in the calculation. 

First, it should be pointed out that the oscillations in the simulation H ($ = 640) 

profile are the direct result of the eruption events discussed in Section 4.2.8. Although 

these ejections of high pressure material temporarily and drastically increase the value of 

/3, the underlying behaviour of this jet is still visible. 
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Figure 4.33 Different measures of plasma-/? as a function of time. Top left panel: (fip) = 
8n(j))/{B%) (poloidal). Top right panel: (fiv) = 8n{p)/(Bl) (toroidal). Bottom left panel: 
an updated version of Figure 3.2a for (fir) — 87r(p)/(S2) (total). Bottom right panel: a 
close-up of simulation G showing its asymptotic approach to (ft?) — 1. 

If only the poloidal field is included in the calculation of fi ((fip)', top left panel of 

Figure 4.33), all of the simulations end with (fip) > 1. In contrast, if only the toroidal 

field is used in calculating fi ((fiv)), the rapid generation of Bv drives (fi^) < 1 for all 

simulations. The rate at which the toroidal field becomes dominate over the poloidal 

field is illustrated by comparing the toroidal (fiv) and the total (fir), which includes both 
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poloidal and toroidal components. Indeed, the toroidal field becomes dominant for t > 10 

yr, and the plots for {(3^) and (/?T) become virtually indistinguishable. 

As the jets evolve and fill the domain, (/3r) increases asymptotically towards (/?T) = 1-

In the case of simulation G, (/?T) ~ 1 for ~ 50% of the simulation lifetime. A close-up 

view of this is shown in the bottom right panel of Figure 4.33, where a change in slope 

can be seen as it approaches, and then straddles, the (/?T) = 1 line. 

The tendency of these jets to asymptote to (/?T) = 1 is a result of their propagation 

to length scales much larger than the scale at which the launching mechanism operates. 

As there is no additional means of strong field generation in the far-field regime, the 

amount of magnetic energy per unit volume decreases as the jet expands and, as nature 

has a tendency to do, the jets move towards equipartition between magnetic and thermal 

forces. It would be useful to run the simulations for much longer physical times to confirm 

that the jets do indeed asymptote to ((3r) — 1 with time, regardless of the initial value of 

Bi. 

Finally, it is worth speculating that these jets exist because the rotating accretion 

disc is able to establish a magnetically-dominated environment within which jets can be 

launched. Even the weakest field case (simulation H) is able to generate enough toroidal 

field to force (fir) < 1 a n d launch a jet. Thus, regardless of the environment near the 

surface of the disc, one might expect in general that protostellar jets on observable scales 

will have (/3T) < 1, otherwise there would be no jet to observe. 



Chapter 4 Additional results 176 

4.6 Trends in B\ 

4.6.1 Speeds 

At the disc surface, the poloidal velocity is effectively zero. An "evaporation speed" 

from the disc interior is prescribed, but only to provide mass flux to the outflow (Section 

2.5). By the time the flow reaches the bow shock, it is moving with a significant velocity, 

and this begs the question, can the velocity at the jet head be linked to conditions at the 

disc surface? 

The first step is provided by the steady-state constants of Section 4.5.1, which can 

be used to derive an equation for the poloidal speed at the fast point that depends on 

quantities at the disc surface. 

Assuming that the steady-state approximation is valid for a field line ip, combining 

equations (4.7) and (4.9) gives: 

B2: 
2£(^ + r2fi2(^) = ^ ( l + |f)+2<3> 

where I have assumed the thermal energy of the gas is negligible. Substituting the poloidal 

and toroidal Alfven speeds (Bp/y/iTrp and B^/y/iirp, respectively) into this expression, I 

obtain: 

2E + r2n2 = v24 + 2$-

Evaluating this expression at the fast point (r = rj), and substituting for E(ip) = 

~3v2
ifi/2, fi(V0 = vKp/r0, and a gravitational point source, $ = —GM*/R = —u^0r0/i?, 
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then 

,4 2 „,2 (rf 2 r o 
V = a p , f V K , o ( ^ - ^ - - 3 ) ' 

where R — sjr2 + z2 is the spherical radius. Defining the "fast moment arm" as £ = rf/r0, 

and replacing the spherical radius with R = r^/l + z2/r2 — ry/l + a2 evaluated at the 

fast point, this leaves: 

1/4 

Wp,f = y/<h4VK,0 [ r - | ^ f ^ p _ 3 ) ' (4-14) 

which is a generalised version of equation (3.14). For the simulations presented here, it is 

observed that £ and a = Zf/r? are always greater than one, and thus 2/(cjv/l + c2) is small 

relative to £2 in equation (4.14), and can be ignored. It is also observed that £2 S> 3, the 

Alfven speed is roughly proportional to Bu and thus: 

vPji oc y/F^2, (4-15) 

where the fast moment arm £ is some unknown function of B\. Applying equation 4.14 

directly to the simulation data, I find that it predicts the poloidal velocity at the fast 

point with < 1% error, even for field lines that are not in steady-state (e.g., Figure 4.23). 

Table 4.4 contains the values of i>Pif measured along different field lines in each sim

ulation, averaged over > 100 sequential slices in time. Fitting a power-law to these data, 

I observe that vPtf oc £?.°-66±001. From equation (4.15), vpj will depend on both the square 

root of the Alfven speed (oc \fB\) and £. As I do not have an analytical expression 

for £, I instead measure it from the simulations. Using several field lines, I find that 
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£ oc jg.0-231110'07 and, thus, vpj oc B?S2±003, in agreement with the measured values of vPtf, 

to within uncertainty. 

In Section 3.4.1, the power-law index on vpj was stated to be 0.5, whereas here I find 

it to be 0.66 ±0.01. This discrepancy is attributable to Section 3.4.1 being biased towards 

the weak field simulations as the strong field simulations had not propagated very far in 

time2. In the current discussion, the strong field simulations are given equal weight, and 

these results should be more robust. 

Simulation 
Si (G) 

vPif (km s_1) 
^asymp ( k m S"1) 

(vz) (km s"1) 
t;jet (km s_1) 
(vv) (km s_1) 

H G F E D C B A 
2.5 5 10 20 40 63.2 100 200 

14.3 21.0 30.9 48.9 75.8 103 140 228 
14.4 22.3 36.9 54.5 80.9 88.6 108 204 
72.3 77.5 110 141 201 241 292 395 
45.3 67.3 109 146 208 254 317 458 

1.4 2.6 3.0 6.2 10.1 13.1 18.4 30.6 

a 

0.66 ±0.01 
0.52 ±0.04 
0.45 ± 0.02 
0.48 ±0.01 
0.66 ±0.01 

Table 4.4 The different velocities measured in simulations A - G. More detailed explana
tions are given in the text; see also Section 3.4.1. Although I have included simulation H 
results in the table, this simulation does not follow the same trends as the others, and I 
have elected to leave it out of the power-law fits. 

Another means of measuring the dependence of the magnetic field on the flow velocity 

is to examine the asymptotic flow speed along a field line. Here, I approximate this by 

measuring the poloidal velocity where the net acceleration along a field line (e.g., Figure 

4.32) decreases to 1% of its maximum value. The results of this measurement are found 

in Table 4.4 and, fitting a power-law do the data, I find vasymp oc B°52±om (Section 3.4.1). 

2Indeed, simulation A had only just reached t = 20 yr at the time of submission. 



Chapter 4 Additional results 179 

The location of this " 1 % point" is a function of B[, and for weak fields it is measured 

to be a few ~ rf, while for strong fields it is located at ~ 3rf/4. This is in general 

agreement with our interpretation of the driving mechanism (Section 4.5.2), where jets 

with strong fields attain the majority of their acceleration before the Alfven point, and 

jets with weak fields reach their asymptotic speed well beyond the fast point. This is 

demonstrated in Figure 4.32, where the green dash-dot line marks 1% of the maximum 

acceleration along field lines with footprint r0 — 1.0 AU, and the dashed lines denote the 

location of the Alfven (left) and fast (right) points. 

Evidently and in hindsight, for the strong field cases, the flow has already nearly 

reached its asymptotic speed before the fast point, and thus the velocities at the "1% 

point" are less useful. 

Moving to the far-field regime, where the steady-state approximation does not gen

erally apply, the momentum-weighted average velocity just behind the bow shock is cal

culated as: 

J pvzrdrdz 

where the integral goes from r = 0 to rmax and z — z-)et — 50 AU to z = z-iet, and where 

Zjet is the location of the bow shock at the symmetry axis. The time-averaged results of 

applying equation (4.16) to the simulation data are summarised in Table 4.4, and fitting 

a power-law, I find that (vz) oc B?A5±002.& 

Finally, Figure 4.35 displays the height of the bow shock above the disc as a function 

of time for each of the simulations A - H. Beyond some initial acceleration phase, the jets 

propagate forward uniformly in time, and least-squares fits to the slope are performed 
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Figure 4.34 The ratio |-BV | /JBP in simulations A - H (top to bottom), all plotted when 
they reach a height of 1000 AU above the disc. Black contours denote where \BV\/Bp = 1. 
All plots have dimensions z € [0,1025], r 6 [0,110] AU. 

to obtain the proper motions (vjet) found in Table 4.4. Fitting yet another power-law 

then gives3 Vjet oc £?.a48±001. The jet propagation speed changes only slightly (< 15% for 

3The data and power-law index for Vjet have changed relative to Section 3.4 and Table 3.2 for the same 
reasons that vPi{ has changed. 
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simulations A - G) from the momentum-weighted velocity immediately behind the bow 

shock, implying the jets are essentially ballistic. 

Regardless of the initial field strength, the toroidal field becomes dominant over the 

poloidal field beyond the Alfven point. Figure 4.34 plots the ratio of \B^\/BV, demonstrat

ing that, on large scales, this remains true. Appealing to the "coiled spring" mechanism, 

there will be some residual acceleration of the flow due to the toroidal field far from the disc 

surface. The amount of acceleration experienced will be a function of how "tightly wound" 

the spring is and, for higher values of \B,p\/Bp, the resulting ratio between (vz)/vasymp will 

be larger. Thus, the discrepancy between Uasymp and (vz) is the result of a small residual 

acceleration from the toroidal field, applied over large length scales (e.g., in simulation F 

the " 1 % point" is at a few rf ~ 20 AU, while (vz) is measured beyond 2000 AU), and the 

size of the discrepancy will depend on the ratio \Bp\fBp. 

The decrease in the power-law index with distance from the disc could also be a result 

of residual accelerations by B^. From Figure 4.34, the ratio \BV\/Bp evidently inversely 

depends on B\, and including this effect on the velocities between the " 1 % point" and the 

jet head will cause the power-law index will decrease. At the time of this writing, I have 

not quantified this effect, but I expect it is the dominant factor affecting the decrease in 

a. 

For weak fields, I find that v-iet is always less than (vz), while for strong fields the 

opposite is true. At the time of this writing, I have not uncovered a physical explanation 

for this effect, in particular why v-}et is greater than (vz) for strong fields. However, I do 

note that the power-law indices are consistent with each other to within the uncertainties. 

file:///Bp/fBp
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Figure 4.35 The height of the jet bow shock (z-iet) above the disc as a function of time 
and /?;. The proper motions of Figure 3.2b and Tables 3.2 & 4.4 are determined from the 
asymptotic slope of these data. 

A dependence on the magnetic field B[ is not limited to the poloidal velocity. The 

volume-averaged toroidal velocity can also be expressed as a power-law function: (vv) oc 

£0.66±o.oi ^see gjgQ geC£ion 3.4.2). The volume-averaged toroidal velocity asymptotes to a 

constant in time, not counting an initial acceleration phase. Table 4.4 shows our results 

for the different simulations, where we have excluded values at z < 100 AU because of the 

presence of the torsion Alfven wave, which has a non-negligible velocity, and is not part 

of the jet proper (e.g., Section 4.2.1 and Figure 4.2). 

Despite this rather tight power-law fit, I have yet to uncover a physical explanation 

for this dependence. Combining Vjet with (vv), I find that Vjet oc (vip)°-73±0-02, a result 

which might be possible to confirm with observations. 
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In the magneto-centrifugal wind launching picture, it is the centrifugal force (oc vV) 

which is responsible for accelerating the flow (Sections 1.2, 4.5.2; see also Figure 4.16). 

Thus, an increase in the toroidal velocity near the disc surface will lead to an increased 

centrifugal force, and this should result in an increase in the jet velocity, as the ~ 3/4 

relation confirms. 

4.6.2 Jet Radii 

The jet radius, rje t, is defined by the boundary between shocked ambient and jet 

material, and is visible as a sharp gradient in the temperature in Figures 4.1 - 4.11. In 

the top panel of Figure 4.36, the maximum jet radius is plotted as a function of time 

(as opposed to the jet radius at 200 AU above the disc as done in Section 3.4.3) for 

simulations A - G. Even at t = 100 yr, the jets are still expanding, and although there 

are signs that the jet radius will eventually asymptote (because of the asymptotically 

uniform ambient medium), it would take simulations of much longer duration to answer 

this question definitively. 

In Section 3.4.3, I fit a power-law in B\ to the jet radii at a selected time to try and 

draw out how the jet radius depends on conditions near the disc. Here, I instead use the 

maximum jet radius, and fit a power-law at several different points in time. The results 

are summarised in the right panel of Figure 4.36 and Table 4.5. Evidently, the power-law 

index for rjet,m£Lx decreases very slowly in time. 

Given that the jet radius is determined by the interplay between the jet ram pressure 

(which is determined, in part, by the jet speed) and forces in the ambient medium, then a 
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Figure 4.36 Top panel: the maximum jet radius rjet as a function of time for simulations A 
- G. Simulation H is excluded for reasons already discussed. Bottom panel: the maximum 
jet radius at select times as a function of Bt. The uncertainty for each measurement of 
rjet is ±1.6 AU, which is the resolution of the grid from whence these data were extracted. 
This is also the cause of the step-like appearance of the curves in the top panel. 
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correlation between rjet,max and Bx is expected. That the correlation is slowly decreasing 

in time implies that, at some point in the future, the magnetic field may no longer play a 

significant role in determining the jet radius. Extrapolating the decrease in the power-law 

index with time, the dependence of rjet on B[ should disappear at ~ 250 yr, which could 

be confirmed by extending the duration of these simulations by a factor of 5 - 6 in time. 

Figure 4.34 shows the simulations plotted at the same "propagation time", i.e., when 

they have all propagated to 1000 AU above the disc. As noted in Section 4.2.9, the jets 

all have roughly the same radius when compared at the same "propagation time". This 

implies that the jet radius is not a function of B\ directly, but rather, indirectly through the 

ram pressure and, thus, v-ifA. As the bow shock expands radially its area increases, but the 

total momentum provided by the jet launching mechanism remains the same and hence the 

ram pressure decreases. Meanwhile, the pressure exerted by the asymptotically uniform 

medium remains the same, and thus the radial expansion slows with time. Consequently, 

the dependence of fjet on B\ also decreases with time as the momentum provided by the 

launching mechanism loses its ability to propel the radial expansion. 

4.6.3 Fluxes 

The mass, momentum, kinetic energy, and angular momentum fluxes describe the 

important quantities transported by the jet. In Section 3.4.3, the mass fluxes were mea

sured at a certain time and height above the disc, noting that the power-law index was 

changing in time. Here, I elaborate on those statements and present the time-averaged 

fluxes at a few different heights above the disc, as well as fit power-law functions in Bt. 
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A 
BUG) 

ĵet @ 4lice (yr) = 5 

10 
15 
20 
25 
30 
35 
40 

160 
5 

8.8 
14 
17 
20 
25 
28 
31 
36 

40 
10 
10 
15 
22 
26 
31 
36 
41 
46 

10 
20 
12 
20 
28 
34 
39 
44 
49 
55 

2.5 
40 
15 
26 
34 
42 
49 
55 
62 
68 

1.0 
63.2 

18 
30 
41 
49 
57 
63 
70 
74 

0.4 
100 
22 
34 
46 
55 
65 
73 
79 
87 

0.1 
200 
26 
41 
55 
65 
76 
84 
92 
102 

a 
0.32 ± 0.01 

0.31 ±0.01 

0.31 ±0.01 

0.30 ±0.01 

0.30 ±0.01 

0.29 ±0.01 

0.28 ± 0.01 

0.27 ±0.01 

Table 4.5 The variation of a in rjet,max °c B° as a function of time. The last time slice is 
at t = 40 yr because the simulation A jet leaves the domain shortly thereafter. 

0 10 20 30 40 0 10 20 30 40 
t (yr) t (yr) 

Figure 4.37 Plot of mass, momentum, kinetic energy, and angular momentum flux for 
simulation A as a function of time at different heights above the disc. A boxcar average 
width of ~ 0.09 yr has been applied to the data to smooth over short-period fluctuations 
which can obscure the overall trends. The kinetic energy flux was smoothed with a width 
of ~ 0.21 yr. 
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Figure 4.38 The same as Figure 4.37, but for simulation B. 

Figures 4.37 - 4.44 show plots of the mass, momentum, kinetic energy, and angular 

momentum fluxes (M, S, K, and L, respectively) as functions of time for different heights 

above the disc (100 AU, 200 AU, 500 AU, and 1000 AU). The different fluxes are defined 

as: 

M — 271-M"! / pvzr dr; 

S = 271-5, / pv2
zr dr; 

•J> K = IvK, / pv\r dr 

-I L = 2,KL1 I pvzv<f,r dr, 

(4.17) 

(4.18) 

(4.19) 

(4.20) 
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where the integrals are from r = 0 to rmax, and the scaling factors are 

M s = (9.7 x l (T 7 M 0 yr ' -i^P Bi 

4 0 A 1 0 G ; V0.05AU 
2 

n \5/Vo.5M0\1/2 

) 

4 = ( 7 ^ x l O - M 8 ^ k m . - ) ( A ) ( ^ ) ( 
2 

0.05 AU 

- i ^ 0 ffi = ( 3 . 6 x 1 0 " erg s " 1 ) ^ 
^ n 

\ 3 / 2 

Li = (3.7 x 10"6 MQ yr"1 AU km s"1) ' ^ 

4 0 / V 1 0 G / V0.05AU/ VO-5M0, 
2 / \ 3 

J 
M* 1/2 

Si 

40 A 1 0 G 7 V0.05AU 

(4.21) 

(4.22) 

(4.23) 

(4.24) 
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Figure 4.39 The same as Figure 4.37, but for simulation C. 

Given what is already known about the relationship between the jet speed and B^ 

it comes as no surprise that simulation A transports the most flux, while simulation H 
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0 20 40 60 80 0 20 40 60 80 
t (yr) t (yr) 

Figure 4.40 The same as Figure 4.37, but for simulation D. 

transports the least. Time-averaged fluxes for the different heights, summarised in Tables 

4.6 - 4.9, confirm this. Time-averaged values for the fluxes are calculated by taking the 

mean of the data, but excluding times for which there is a negligible signal. For example, 

in Figure 4.37, only fluxes at t > 7 yr are considered in determining the time-averaged 

fluxes at z = 500 AU. 

While the fluxes might be expected to asymptote to constant values over time, this 

appears to hold only for the kinetic energy fluxes and some of the momentum fluxes. 

As the jet is still expanding with time, larger areas are continually being included in 

the mass fluxes, and this could prevent the fluxes from asymptoting. This would be a 

particularly prominent effect in the angular momentum flux, due to the r2 dependence in 

the integrand. As the radial expansion slows down over time (e.g., Figure 4.36), I would 
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Simulation 
BUG) 

(M) 
(S) 
(K) 
(L) 

H G F E D C B A 
2.5 5 10 20 40 63.2 100 200 

4.17 3.26 6.13 10.1 13.7 15.1 16.1 17.3 
0.73 0.87 1.67 2.91 4.46 5.94 7.78 11.1 
0.98 1.77 4.78 12.2 26.2 46.3 81.2 169 
0.96 0.55 3.05 11.9 27.7 40.8 62.9 108 

a 

0.32 ± 0.07 
0.67 ±0.03 
1.19 ±0.02 
1.3 ±0 .1 

Table 4.6 Time-averaged mass (M) (lO~6M0yr_1), momentum (S) 
(10 -4 MQ yr_1 km s_1), kinetic energy (K) (1033erg s_1), and angular momentum 
fluxes (L) ( lO~3M0yr_ 1 AU km s_1) with power-law fits a, measured at z = 100 AU 
above the disc for the different values of /?;. The data for simulation H is included in the 
table for completeness, but is excluded from the power-law fits (see Table 4.4). 

also expect the angular momentum to asymptote on longer time scales. To confirm this, 

longer simulations would be needed. 

Conversely, as shown in Figures 4.2 and 4.3, the poloidal velocity is strongly peaked 

near the axis at both small (100 AU) and large (1000 AU) scales. Thus, the kinetic energy 

flux, which is strongly weighted in vz, will be very strongly peaked near the axis, reducing 

the role of the jet radius in the flux calculation and providing an explanation for why the 

kinetic energy fluxes asymptote to constant values more quickly than the other fluxes. 

In some cases, the momentum fluxes at z = 100 AU reach a maximum at early times, 

before beginning a steady decline (e.g., simulations A - D). These characteristic peaks 

only occur in the jets with the strongest fields and only at early times. Since these maxima 

do not appear at greater distances from the disc (which serve as a proxy for a later time), 

it is likely they are an artifact due to the jets undergoing an acceleration phase at early 

times (t < 10 yr). 
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0 20 40 60 BO 100 0 20 40 60 80 100 
t (yr) t (yr) 

Figure 4.41 The same as Figure 4.37, but for simulation E. 

As with the other quantities presented in this Section, power-laws of the form (M) oc 

Bf have been fit to the time-averaged values and the resulting power-law indices are given 

in Tables 4.6 - 4.9. For a particular flux, the power-law indices do not vary drastically 

with height above the disc (z). At the four different heights above the disc for which fluxes 

are measured, the mass flux power-law index varies from 0.32 ± 0.07 - 0.56 ± 0.08. This 

compares favourably with how {vz) varies with B\ ((vz) oc ^.°-45±002)) a n d thus the effect 

of mass-weighting this average (as is done in calculating the mass flux) is minor. The 

range of indices for the momentum flux is 0.67 ± 0.03 - 0.87 ± 0.05 (c./. v?et oc jg.°-88±0-02)? 

and the kinetic energy flux is 1.19±0.02 - 1.38 ±0.04, and (c./. u?t oc B\-Z2±om). Finally, 

the range of power-law indices for the angular momentum flux is 1.3 ± 0.01 - 1.66 ± 0.08, 
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whereas Vjet(%)rjet oc ^.1-40±003 [where the average of a from Table 4.5 (= 0.30 ± 0.01) 

has been adopted for the power-law index of 7jet] • 

•W 60 
t(yr) 

Figure 4.42 The same as Figure 4.37, but for simulation F. 

Thus, simply taking the product of the constituent quantities of a flux, one can make 

a rough estimate of the dependence of that flux on Bh regardless of the height above 

the disc where the flux is measured. Hence, I adopt the following as time-independent 
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approximate power-law indices for the difference fluxes: 

(M) oc B?A4±0M; 

(S) oc £ ^ ± 0 . 0 2 . 

(K) OC £.^±0.03. 

(£) oc BlAO±om. 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

To render these useful observational tools, one need to determine estimates for the pro

portionality constants, which is beyond the scope of these simulations. 
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Figure 4.43 The same as Figure 4.37, but for simulation G. 



Chapter 4 Additional results 194 

Simulation 
2*(G) 

(M) 

(S) 

(k) 

H G F E D C B A 
2.5 5 10 20 40 63.2 100 200 

2.38 2.14 3.51 5.74 9.62 12.5 15.0 18.2 
0.52 0.76 1.54 2.74 4.75 6.71 9.19 13.9 
0.78 1.82 5.11 13.0 28.7 51.2 91.3 202 
0.48 0.31 1.11 5.14 16.4 32.0 58.7 125 

a 

0.56 ± 0.04 
0.77 ±0.03 
1.25 ± 0.02 
1.66 ±0.08 

Table 4.7 The same as Table 4.6, but measured at z = 200 AU above the disc. (M) has 
units of lO _ 6 M 0 yr- 1 , (S) units of l O ^ M o y r ^ k m s"1, (K) units of 1033erg s_1, and 
(L) units of 10"3 M 0 yr"1 AU km s_1. 

Simulation 
B-AG) 

<M> 

(S) 
(K) 
(L) 

H G F E D C B A 
2.5 5 10 20 40 63.2 100 200 

0.30 0.86 2.02 2.62 3.54 4.43 5.73 8.22 
0.11 0.43 1.23 2.21 3.69 5.33 7.67 14.0 
0.26 1.38 5.01 12.9 29.3 53.9 98.6 245 
0.06 0.14 0.48 1.12 3.56 7.90 18.3 46.4 

a 

0.52 ± 0.05 
0.83 ± 0.03 
1.31 ±0.02 
1.57 ±0.04 

Table 4.8 The same as Table 4.6, but measured at z — 500 AU above the disc. (M) has 
units of 10_ 6MQyr-1 , (S) units of l O ^ M o y r ^ k m s"1, (K) units of 1033erg s_1, and 
(L) units of 10"3 MQ yr"1 AU km s - 1 . 

4.7 Linking simulations to observations 

4.7.1 Comparisons with current observations 

One of the motivations for performing these simulations to such large-scales is to 

facilitate the direct comparison of simulations to observations. To this end, I now compare 

the simulation results to general observational characteristics of protostellar jets found in 

the literature. 

Beginning with the proper motions of Table 4.4 and comparing them to the observed 

values in Table 4.10, the simulations presented here match observations quite well, with 

all but simulations G and H falling within the observed range of proper motions. A similar 
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Figure 4.44 The same as Figure 4.37, but for simulation H. 

statement can be made about the volume and time-averaged toroidal velocities: all of our 

jets fall within the observed range of rotational velocities. 

Our measured jet radii are typically higher than observed values, especially when 

taking into account that at the end of the simulations the jets are still radially expanding. 

However, as measured, our radii track the discontinuity between the jet and shocked 

ambient medium, whereas observed radii are derived from measurements of forbidden 

emission lines {e.g., [SII], [01]; Ray et al. 2007). As we are not including any radiative 

effects in this work, our jet radii should thus be taken as upper limits. 

Table 4.11 summarises the range of fluxes measured for simulations A - H. We find 

that our mass fluxes can be as much as 10 times larger than the observed range of values. 

Observational fluxes are typically determined using forbidden emission {e.g., Hartigan, 
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Simulation 
BUG) 

(M) 
(S) 
(K) 
(L) 

H G F E D C B A 
2.5 5 10 20 40 63.2 100 200 

0.03 0.04 0.89 1.90 2.70 3.16 3.05 4.41 
0.01 0.02 0.68 1.85 3.45 5.05 6.49 13.0 
0.03 0.08 3.50 12.1 31.2 57.8 99.8 283 
0.0 0.0 0.19 0.95 2.67 4.97 6.45 19.7 

a 

0.42 ± 0.08 
0.87 ±0.05 
1.38 ±0.04 

1.4 ±0 .1 

Table 4.9 The same as Table 4.6, but measured at z = 1000 AU above the disc. Due to 
fluxes from simulations G and H barely registering at 1000 AU above the disc, we exclude 
this data from the fits for this height only. (M) has units of lO~6M0yr_1 , (S) units of 
10~4 MQ yr"1 km s_1, {K) units of 1033 erg s"1, and {L) units of 10"3 M© yr"1 AU km s - 1 . 

proper motion (km s *) 
rotational velocity (km s_1) 

FWHM jet radius (AU) 
mass-loss rate (M©yr_1) 

momentum flux (M© yr_ 1km s_1) 
ang. mom. flux (M© yr - 1 AU km s_1) 

mechanical luminosity (erg s_1) 
M je t/Macc 

100 - 200 (500 max.) 
(5 - 25) ± 5 

15 - 40 (at 200 AU) 
lO-MO"6 

10~5 

10"6-10-5 

(2.7-16) xlO33 

0.05 - 0.1 

Table 4.10 A review of selected observational characteristics of protostellar jets. 

References. — Hartigan, Morse, & Raymond (1994); Reipurth & Bally (2001); Podio et al. (2006); 
McKee & Ostriker (2007); Ray et al. (2007); Coffey et al. (2008, 2011). 

Morse, & Raymond 1994), which require the gas to be at temperatures ~ 104 K (Dyson & 

Williams 1997; p, 104). Meanwhile, the jets presented here are relatively cold, and with 

the exception of the fastest moving /5; = 0.1 jet, the volume filling factor of gas above 104 

K is quite small (< 1% in $ = 2.5 and decreasing with magnetic field strength). While it 

is true that the mass flux in the simulations above 104 K is 10 - 100 times smaller, and 

thus in better agreement with observations, the mass fluxes from these simulations should 

still be taken as upper limits. 
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(M)( lO- 6 M 0 yr - 1 ) 
(S) ( l O ^ M o y r ^ k m s " 1 ) 

(K) (lO^ergs"1) 
(L) (10"3 MQ yr-1 AU km s"1) 

0.30-
0.11 -
0.26-
0.06-

-18.2 
-14.0 
-283 
-125 

Table 4.11 The ranges of fluxes in the simulations A - H. We have ignored fluxes from 
simulation G and H at z = 1000 AU in determining these values; see Table 4.9. 

A commonly used ratio to describe the efficiency of outflows is the ratio of mass-loss 

rate to accretion rate of the protostar, M-iet/M&cc, and takes on values of 0.05 - 0.1 (Ray 

et al. 2007). Steady-state theory predicts that Mjet/Macc ~ (r0/rA)2 (Pelletier & Pudritz 

1992), where r^/vo is the Alfven lever arm. For values of the Alfven lever arm observed in 

these simulations {r\/r0 ~ 2 - 12), then M-iet/Macc ~ 0.01 - 0.25, in reasonable agreement 

with the observationally determined value. 

As with the mass fluxes, the momentum fluxes are also larger than observed values 

by approximately a factor of 10. The same is true for our kinetic energy (sometimes 

referred to as mechanical luminosities) and angular momentum fluxes when compared to 

observational values. Similar to the mass fluxes, if only momentum and kinetic energy 

fluxes above 104 K are considered, the fluxes drop by a factor of 10 - 100, putting the 

results into better agreement with observed values. 

4.7.2 Comparisons with future observations 

Although the highest resolution currently attainable for the nearest star formation 

region is only ~ 14 AU (Ray et al. 2007), as telescope technology advances it will eventually 

become possible to resolve structures on the scale of the jet launching mechanism. As such, 
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it is worthwhile to use the results of the simulations presented here to provide observable 

proxies for physical quantities near the disc surface which are otherwise challenging to 

measure. 

For example, equation (4.4) demonstrates that the knot period is inversely propor

tional to the slow speed at the location of the knot generator. By observing both the knot 

spacing and proper motion, the knot period, and thus the slow speed, can be determined. 

Assuming, as in Section 4.3, that the poloidal velocity and magnetic field are approxi

mately parallel, and that the sound speed Cg is less than the total Alfven speed aa)tot, then 

as ~ cs and, using the ideal gas law, the temperature at the location of the knot generator 

can be written: 

where (m) is half a proton mass, k is the Boltzmann constant, and r is the period of the 

knot generator (equation 4.4). 

As already stated in Section 4.3, I find that the knot period and field strength can be 

related through a power-law of the form Tknot,obs °c 5.°-62±004. This in general agreement 

with the temperature measured at the knot generator, where T is found to decrease with 

increasing B\. In addition, I find that the magnetic field measured at the knot generator 

is within a factor of 2 of B^. 

The properties of the knots can also be used to qualitatively determine which launch

ing mechanism dominates. From Figure 4.31, the transition between the "bead on a wire" 

and "coiled spring" mechanisms occurs at simulation E ($ = 10). In this case, the ra

dial extent of the knots is comparable to the knot spacing (Figure 4.10). Thus, if the 
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knots produced in these simulations are observed in protostellar jets, then the ratio of 

the radial extent of the knots to the spacing provides a simple method of determining 

which physical mechanism dominates near the disc surface, with B^jBp < 1 (where the 

magneto-centrifugal mechanism dominates) corresponding to a ratio of knot radial extent 

to spacing of < 1. 

An alternate means of distinguishing between physical mechanisms comes from mea

suring the value of Bv/Bv beyond r ~ 1 AU at the disc surface {e.g., Figure 4.31). If the 

magnetic field cannot be measured directly to determine B^/Bp, this ratio can instead be 

estimated by observing the pitch angle of the field through polarimetry (and consequent 

modeling; e.g., Chrysostomou et al. 2007), and then calculating B^/Bp from the fitted 

magnetic field structure. 

4.8 Discussion 

Taken together, the results presented here and in Chapter 3 comprise the first simu

lations of protostellar jets which resolve the launching mechanism at sub-AU scales, while 

simultaneously following the jet propagation to observational length scales of thousands 

of AU. The jets produced in these simulations naturally reproduce a number of general 

observational characteristics, demonstrating that magnetic disc winds can in fact produce 

realistic jets. 

The knot generator observed in these simulations occurs in a region where f3 and the 

slow Mach number Ms ~ 1, and as such, is sensitive to the relationship between thermal 

pressure and magnetic forces. If /? moves far enough away from equipartition in either 
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direction, the knots disappear. In the case of the strongest fields, oscillations are damped 

out and knots never form. Conversely, for the weakest fields, the oscillatory nature of the 

generator disappears and a continuous outward stream of material remains. 

I find that two viewpoints are necessary to understand the simulations presented here 

which span a factor of 80 in the initial magnetic field strength, B{. In both mechanisms, the 

magnetic field combines with rotation and gravity to launch the jet. When the magnetic 

field is strong, Bp acts as rigid wires along which centrifugally-launched beads of plasma 

are accelerated through the Alfven point to form an outflow (Blandford & Payne 1982). 

Beyond this point, the assumption of co-rotation fails, and acceleration is largely stifled. 

For weak magnetic fields, the lever arm is ineffective, and Bp becomes wound up into 

a dominantly toroidal field. Once Bv has reached a sufficient strength, outward gradients 

in B"2 accelerate material away from the disc. This "coiled spring" mechanism transfers 

potential energy stored in the field to kinetic energy of the outflow. 

The transition between these two mechanisms is continuous, with simulation F ex

hibiting properties of both. Indeed, to some extent, both mechanisms are at work in each 

of the simulations presented here. For intermediate strength fields, the "surface force" 

provided by the magneto-centrifugal mechanism serves to accelerate the flow from the 

disc to the Alfven point. Thereafter, the "body force" of the "coiled spring" mechanism 

takes over, and accelerates the flow through the fast point and beyond. 

An interesting observation from these simulations is that, so long as there is a mag

netic field present which couples the disc and atmosphere, in addition to a mass flux 
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flowing from the disc into the atmosphere, the twisting of the field into a toroidal com

ponent manages to create a significant region in which (/3T) < 1 for t > 10 yr. Thus, 

regardless of the initial field strength, the conditions required for magnetically launching 

a jet from a gravitationally-bound rotating accretion disc are always established. As the 

jet propagates, these conditions are at least somewhat maintained as rotational and grav

itational energy are converted to magnetic energy which, in turn, is converted to kinetic 

energy of the outflow. 

As demonstrated by Figure 4.33, all of the jets presented here, regardless of the 

initial magnetic field strength, first generate a region where (/?T) < 1 before asymptoting 

to ((3T) ~ 1 as they propagate to greater distances. Thus, I speculate here that protostellar 

jets on observable length scales will have magnetic fields which are in rough equipartition 

with the thermal energy density. A consequence of this is that observationally measured 

field strengths in the jet will have little bearing on the field strength near the jet launching 

mechanism. In this case, one must turn to other observable quantities such as Vjet and 

(vp) to constrain the field strength near the surface of the disc. 

Comparing these simulations to observations, I find they produce jet speeds and 

rotational velocities which generally agree with observational values, again demonstrating 

the ability of disc winds to produce realistic protostellar jets. For the jet radii and fluxes, 

the values presented here are generally larger than observational values, and should be 

taken as upper limits. Given that the observational counterparts to these quantities are 

strongly related to line emission and radiative cooling (e.g., Hartigan, Morse, &; Raymond 

1994), and since we do not include these effects here, the mismatch is not unexpected. 
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However, if we mask our fluxes to temperatures above 104 K, where forbidden emission is 

important, then we do produce more realistic values, at the cost of a low volume filling 

factor (< 1% for most simulations). 

The most readily accessible observable from this work that is related to conditions at 

the disc surface is the jet propagation speed, Vjet. To turn this into a useful observational 

tool, more work needs to be done to quantify the constant of proportionality, C, in the 

power law Vjet — C £?.0-44±0-01. This involves varying initial conditions other than Bi (such 

as density, pressure, etc.), and measuring how the jet speed responds, but this is well 

beyond the scope of this work. 

Finally, the power-law indices for the fluxes clearly have not converged, nor has the 

dependence of the magnetic field strength on the jet radius. Thus, the results presented 

herein could benefit from simulations of significantly longer duration that extend to well 

beyond the current maximum extent of 4096 x 256 AU. 
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Chapter 5 

Conclusions 

I have investigated the formation and propagation of protostellar jets with simula

tions that simultaneously include both the region where the jet is launched at sub-AU 

scales, and much larger observational length scales of thousands of AU. These are the first 

simulations to accomplish this feat, and permit jet properties on observational scales to 

be related to conditions at the disc surface where the jet is launched. 

This study is made possible through the development of a new AMR version of ZEUS-

3D, AZEuS. In Chapter 2, I described in detail how the AMR method of Berger & Colella 

(1989) was modified for the fully-staggered mesh characteristic to the ZEUS family of 

codes. Higher-order interpolations for the prolongation of grids have been implemented, 

as these have proven invaluable for the propagation of waves across the boundaries of static 

grids, such as those employed for the simulations in Chapters 3 and 4. The prolongation 

and restriction operators have also been generalised for curvilinear coordinates, ensuring 

the conservation of the important physical quantities. AZEuS has been validated against 

a number of test problems in 1-, 2- , and 3-D, in both Cartesian and curvilinear coordi

nates, proving that it is capable of producing virtually identical results for non-turbulent 

problems whether using a single grid or AMR. To the best of my knowledge, AZEuS is 

the only fully-staggered mesh AMR-MHD code in use in astrophysics. 
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The first science results with AZEuS were presented in Chapters 3 and 4, where 

simulations of protostellar jets launched from an accretion disc as a boundary condition 

are followed for more than 5 orders of magnitude in length. These simulations revealed 

relationships between large-scale observable quantities and conditions at the disc surface 

where the jet is launched. Clear correlations were found to exist between the magnetic field 

strength near the disc surface, B\, and the jet proper motion (ujet) and average rotational 

velocity ((vv)): 

tfct oc Bf^-°\ ) 

Some analytical explanation was given for the former, whereas the latter is an entirely 

numerical result. I also find that fluxes transported by the jet (mass, momentum, kinetic 

energy, and momentum) depend on B[, but not as tightly as Vjet and {vv}. Indeed, the 

fluxes can be expressed in terms of their constituent quantities and, thus, the majority 

of their dependence on B\ derives from their reliance on the jet propagation speed and 

rotational velocity. The observed correlation between B\ and the maximum jet radius 

seems to be determined more by the interaction of the asymptotic ambient medium with 

the jet ram pressure (which, in turn, depends on Vjet), than an intrinsic relationship 

between rje t jmax and .£?;. Even (fir) seems to have little correlation with Bx as it asymptotes 

to unity, regardless of the conditions near the disc surface and the value of B\. 

While the jet proper motions and rotational velocities in these simulations were 

shown to be in good agreement with observations, the values for the fluxes and jet radii 

are generally larger than observed values by a factor of ~10 - 100. As observed values are 
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derived from line emission data (which requires temperatures ~ 104 K), they necessarily 

only trace the high temperature regions of a jet. While I demonstrated that the measured 

fluxes can be reduced by a factor of 10 - 100 through masking of temperatures above 

104 K, this results in a small volume filling factor (< 1%). 

Overall, the characteristics of these simulations well contain the observed properties 

of protostellar jets, and this work demonstrates that jets launched magnetically from 

discs can, by themselves, produce realistic protostellar jets. Indeed, it is only because 

these simulations have evolved from sub-AU length scales to thousands of AU can I make 

this claim with some confidence. 

Knots were observed to form in these simulations near the origin, and are the result 

of pressure oscillations in a region where the plasma-/? and the slow magnetosonic Mach 

number, Ms, are both near unity. Knots produced through this mechanism reach extents 

of only ~ 2 AU in size and are therefore not good candidates for explaining the much 

larger clumpy structures seen in observations of protostellar jets. 

In Chapter 4, I found there are at least two distinct driving mechanisms that acceler

ate the jets. For strong magnetic fields (/?; < 1), the magneto-centrifugal model (Blandford 

& Payne 1982), where a rotating disc applies a torque via a rigid magnetic field, efficiently 

accelerates jet material through the Alfven point after which the jet asymptotes to a more 

or less constant speed. When the magnetic field is weak (/?; > 10), magnetic field is wound 

up and becomes predominantly toroidal. In this case, the magnetic field acts like a "coiled 

spring", in which the potential energy stored in the tightly wound toroidal magnetic field 

is converted to kinetic energy of the flow, and material is accelerated through the fast 
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point. As the toroidal field permeates the entire jet, some residual acceleration takes 

place throughout, and certainly beyond the fast point, independent of which mechanism 

is invoked near the disc surface. For intermediate field strengths (1 < /?; < 10), both 

mechanisms contribute significantly to the acceleration of the flow. 

I observe that if the magnetic fields are initially too weak to launch a jet, the "coiled 

spring" mechanism taps the gravitational and rotational energy of the disc-star system and 

winds up the field until a magnetically-dominated environment can be established in which 

a jet can be launched. This is consistent with the long-held view that a magnetically-

dominated region near the disc is required for a jet to be launched. Furthermore, the 

tendency of the simulations to asymptote to (5 ~ 1 or, equivalently, to equipartition 

between thermal and magnetic pressure, suggests that, on observational scales, observed 

magnetic field strengths will have little bearing on the strength of the field launching the 

jet. Instead, one must look to other observable quantities (such as v-]ei and (v^)) to act as 

proxies for the magnetic field near the disc surface. 

Clearly, protostellar jets are emission-dominated objects (e.g., Figure 1.1 and 1.7). 

However, in this work, radiative effects have been ignored due to the complexity and 

computational demands associated with self-consistently determining the line cooling and 

emission. Given that the observed properties of protostellar jets are strongly related to 

line emission, the comparisons to observations presented here (in particular the jet radii 

and fluxes) would benefit from the inclusion of radiative effects. This could also have a 

noticeable effect on the results at observational length scales as radiative cooling behind 

shocks can have significant consequences for the properties of the flow (Reipurth Sz Bally 
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2001). Thus, future work based on these simulations should self-consistently include 

radiative processes, and possible approaches for doing so can be found in the literature 

(e.g., Raga et al. 1997; Tesileanu et al. 2008). 

Given that several properties of the jets have not yet temporally converged by the 

end of these simulations (e.g., the dependence of the jet radii and fluxes on B;), and the 

existence of protostellar jets which span tens of thousands of AU (Section 1.1), it would 

also be worthwhile to extend these simulations in both duration and size (by factors of 

~ 5 - 10). Furthermore, in order to turn the various power-laws presented in Chapters 3 

and 4 into useful observational tools, additional work in the variation of initial conditions 

other than B{ (e.g., p\, pi) is needed. 
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