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Abstract 
Computing Error-Detecting Capabilities of Regular Languages 

By 

Alifasi Daka 

Abstract: The property of error-detection ensures that when words of a language 
are communicated over a noisy channel, no word of the language can be transformed 
into another word of the language. The newer concept of maximal error-detecting 
capability seeks to find the noisiest channel a language is error-detecting for. We 
investigate, refine and implement algorithms related to error-detection for regular 
languages (words accepted by a finite automaton). As a result, we present some 
new ways of modeling channels using sequential machines. In addition, we adapt 
an existing transducer functionality algorithm to work with sequential machines, for 
the purpose of deciding the error-detection property. In the process we introduce, 
among others, the new concept of pseudo-sequential machines, and provide methods 
for converting them to sequential machines and vice-versa. We apply our new tools to 
the higher concept, and the result is a way of computing the maximal error-detecting 
capabilities of a regular language. We have implemented the new algorithms we de
veloped, as well as some relevant existing theoretical algorithms. Finally, we have 
created a web interface for interacting with the tools we developed, and have made 
the source code of our implementation available to the research community. 

December 14, 2011 
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Chapter 1 

Introduction 

1.1 Noisy Channels and Error-Detection 

We consider a communication language, which is a set of words used to encode data. 

These words are communicated over a noisy channel. A physical channel is any 

transmission or storage medium which has a potential of deleting, substituting and 

inserting some symbols in the words passing through it [31]. We model a channel 

as a set of pairs of words (wi,w2) such that w\ is the input message and w<i is the 

received/output message. The received message w2 can be different from W\ when 

channel errors occur. In such a case, we can say that (wi,w2) is an error situation of 

the channel. The property of error-detection ensures that errors that alter an input 

message, as it passes through the channel, are detected and possibly corrected. To 

provide error-detection on channels, codes are designed and used. A code, as shown 

in [16], is a set of words that can be used to encode data, and any concatenation of 
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such words is uniquely decodable. 

Codes are sometimes given as regular languages. A regular language is a set of 

words accepted by a finite state automaton [13]. These languages are usually designed 

to work for a particular channel with a known set of error situations. Although it 

can be decided whether a language is error detecting for a given channel, currently 

there are very few formal attempts [26] to compute the maximum amount of errors 

a language is capable of detecting under different error situations other than what 

it was designed for. This thesis looks at the set of algorithmic tools for deciding 

error-detection, as well as the new concept of computing maximal error-detecting 

capabilities of a communication language, that is, a maximal channel, from a certain 

class of channels, such that the language is error-detecting for that channel. We use 

the term error model for the class of channels under consideration. 

1.2 Objectives and Scope 

The objective of this research is to investigate existing and develop new algorithms 

related to error-detection, including maximal error-detecting capabilities of a com

munication language, in the direction introduced in [26]. We will work with regular 

languages, that is, languages accepted by finite automata. Our work will consider 

certain sets of combinatorial channels, such as SID channels, which specify the error 

type T and number m of errors that the channel can introduce in a given length of 
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symbols being transmitted over it. For example, the channel T(TO, I) specifies that 

only up to m errors of type r can occur in any I consecutive symbols passing through 

the channel. 

The overall scope of this thesis research work is outlined as follows: 

• Investigate, refine and implement relevant existing algorithms. 

• Build on and add to the introductory work started in [26]. 

• Introduce and describe the modeling of channels using sequential machines. 

• Adapt the transducer functionality and related algorithms to work with sequen

tial machines, for the purpose of deciding the error-detection property. 

• Make a web interface for interacting with the algorithms we implement. 

We believe that the set of concrete algorithmic tools and source code developed in 

this thesis brings us a step closer to the realization of practical software for evaluating 

the error-detecting capabilities of languages. 

1.3 Structure of Thesis 

This thesis has seven chapters. In Chapter 2 we give some general definitions, nota

tion and background information. This is followed by a literature review on error-

detection and the use of automata in error-detection presented in Chapter 3. In 
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Chapter 4, we present some new methods for modeling channels using sequential 

machines. Chapter 5 contains some new and existing algorithms we have used for 

computing error-detecting capabilities. For example, it documents the new concept 

of pseudo-sequential machines. It also contains our adaptation of the transducer 

functionality algorithm for regular languages, in order to decide the error-detection 

property for a regular language. We also show how these algorithms can be used to 

compute maximal error-detecting capabilities of a regular language. A substantial 

part of this research has been the implementation and testing of new and relevant 

existing algorithms. Chapter 6 contains implementation details for this research work 

and provides some details on how to interact with the system we have implemented. 

We conclude the thesis in Chapter 7, as well as provide some remarks on possible 

future work. 



Chapter 2 

Definitions, Notation and 

Background Information 

In this chapter we provide some basic definitions, notation and relevant background 

information. 

2.1 Basic Definitions and Notat ion 

We consider an alphabet to be a finite non-empty set of symbols. The size or cardi

nality of a set A is denoted by \A\. A word w over an alphabet A is a concatenation 

of some symbols from A. We use the notation \w\ for the length of the word w. For 

example, \aba\ = 3. The empty word A is the word with zero symbols. Hence, |A| = 0. 

In a word w of the form xyz, the word y is called a factor of w. We use A* to denote 

the set of all words over the alphabet A, including A. On the other hand, A+ denotes 

the set of all words over A excluding the empty word; that is A+ = A* — {A}. A 
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language L over A is a subset of A*. In notation we write this as L C A*. 

A binary relation R over two alphabets A and B, denoted by R : A* =4> B*, is 

a subset of A* x 5*. The relation is functional, or single valued, if for each pair 

(a, b) E R and (a, 6') € R, it is the case that 6 = V. The inverse R" 1 of R is the 

relation {(b, a) \ (a, b) E R} . 

2.2 Theory of Au tomata 

2.2.1 Automata 

An automaton with empty transitions (A-NFA) is a quintuple M — (Q,A,q0,E,F) 

where Q is a finite and non-empty set of states, A is a finite set called the input 

alphabet, q0 E Q is the start state, F C Q is the set of /ma/ states and 15 is the set of 

transitions. Each transition in E is a tuple of the form (qi, a, q2), also written as q\aq2, 

such that q\, q2 E Q and a E ^4|J{A}. A computation of M is a word to of the form 

qo^iqi • • • o-nQn such that each factor gj_ia,gj of ui is in 12. This computation is called 

loop-free if all c&'s appearing in it are distinct. The computation to is an accepting 

computation if qo is the start state and qn E F . The automaton M reads in a word 

wn containing n symbols from A and makes appropriate transitions as defined in E. 

The word wn is accepted by M, if after reading wn, the automaton ends up in a state 

qn E F. The set of all words accepted by M is called the language of M, denoted 

as L(M). For example, the automaton in Figure 2.1 accepts the string bbab, but not 
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bb. An accepting computation for bbab in M is Iblbla2b3. This computation is not 

loop-free. 

Figure 2.1: An example of an automaton 

A regular language is a set of words that are accepted by some automaton. See 

[42, 13, 29] for more information on automata and regular languages. 

The automaton M is said to be accessible if for every state q G Q there is a path 

from the start state q0 to q. We say that M is coaccessihle if for every state qt G Q 

of M, there is a path from ^ to any qn G F. An automaton is trim if it is both 

accessible and coaccessible. M is a non-deterministic finite automaton (NFA) if for 

every transition q\aq2, a is not empty, that is, a G A. It is called a deterministic finite 

automaton (DFA), if for every pair of transitions q\aqi and qiaq% it is the case that 

qi — 13 and a E A. The diameter of a deterministic finite automaton M, denoted as 

diam(M), is the number of states in the longest loop-free accepting computation in 

M. For example, the diameter of the automaton in Figure 2.1 is three. We will use 

the terms finite state machine and finite machine to mean automaton. Furthermore, 

our research focuses on deterministic finite automata (DFA). Hence, unless explicitly 

specified otherwise, all the automata used for the regular languages in our research 
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are assumed to be deterministic. 

2.2.2 Transducers and Sequential Machines 

A finite state transducer (automaton with output) T is a sextuple (Q, A, B, q0, E, F) 

where B is the output alphabet, and the definitions of Q, A, go a n d F are the same 

as in the definition of an automaton with empty transitions. The only difference 

is that the transitions in E are of the form qia/bq2 with gi,g2 £ Q, & £ A* and 

b <E B*. A computation of T is a word \i of the form qodi/biqi... an/bnqn such that 

each factor qt-\aljblql of \i is in E. In this case, the word a\ ... an is the input part 

and the word b\.. .bn is the output part of [i. The computation JJ, is an accepting 

computation if g0 is the start state and qn G F. The transducer T realizes the relation 

R(T) : A* =» B*, such that a pair of words (w\,W2) is in R(T) if and only if there is 

an accepting computation of T that takes W\ as input, gives u>2 as output and ends 

up in one of the final states of T. The definitions of accessible, coaccessible and trim 

are defined analogously to the definitions in an automaton. The relation recognized 

by T, also called a rational relation, is the set of all pairs of words (wi,W2) G R ( r ) . 

The transducer T is functional or single-valued if the relation R(T) is functional. 

The transducer T in Figure 2.2 has Ib/bla/b2b/b2 as an accepting path. Therefore, 

(bab,bbb) G R(T). We next discuss some important types of transducers. 

An arbitrary transducer reads in a word x G A* and outputs a word y G B*. 
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a/b 

0 «/* o 
b/b b/b 

Figure 2.2: An example of a transducer T 

A transducer is in standard form if for every transition q\a/bq2 it is the case that 

a £ A U {A} and 6 e 5 U {A}. A real-time transducer reads in a symbol at a time and 

outputs a set of words for it. It has transitions of type (?ia/yg2, where a £ A and y is 

a regular expression (a set of words £ B*). A transducer is a generalized sequential 

machine (GSM) if it reads in one symbol per transition and outputs one word for 

it. Its transitions are of the form a/y where a £ A and y £ B*. Going forward, we 

use the term sequential machine to mean GSM. It should be noted that a sequential 

machine is a special type of a real-time transducer, whose set of output words per 

transition has one word. A transducer is called a restricted sequential machine if it 

can read and output strictly one symbol on each transition. 

As we shall see later in Chapter 5, we need to introduce a special type of trans

ducer, which we call pseudo-sequential. Specifically, let T be any transducer. A 

transition of T is called a X-input transition if it is of the form (p, X/z, q), where A is 

the empty word and z is the output word £ B*. The transducer T is called pseudo-

sequential if it is trim and in standard form and the X-input transitions satisfy the 

following two conditions: 
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1. The start and final states have no outgoing X-input transitions 

2. If a state has an outgoing X-input transition then that state has no other out

going transitions. 

Given a transducer T and a DFA M, we use T \. M to denote the transducer 

that results from intersecting the input part of T with M. More specifically, (u, v) is 

recognized by T 4- M if (u, v) is recognized by T and u is accepted by M. Similarly, 

we use T \ M to denote the transducer that results from intersecting the output part 

of T with M; that is, (u, v) is recognized by T t M if (u, v) is recognized by T and v 

is accepted by M. We refer the reader to Chapter 5 for details of the construction of 

these machines. 

2.2.3 Size of Finite State Machines 

Automata and transducers are given as input to various algorithms for error-detection. 

We use the term machine to refer to either of these two objects. The size of the 

machine is the number of states plus the sum of the sizes of the transitions in the 

machine. The size of a transition pxq is 1 plus the length of x. For example, the 

size of the transitions la/62 in Figure 2.2 is 1 + 3 = 4, and the size of the machine 

in the figure is 2 + 4 * (1 + 3) = 18. The size of a machine M is denoted as \M\. 

With this definition we can express statements about the complexity of an algorithm 

involving machines. Thus, if an algorithm takes as input a transducer T and we say 
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the algorithm is quadratic, we mean that the time complexity of the algorithm is 

0(\T\2)-

2.3 Word Difference Measures 

When a word w from a certain language L is communicated via a noisy channel, the 

presence of errors can change w to some word w' that is not in L. Correcting w' is 

the process of finding a word z € L that is as close to w' as possible—the aim being 

that z = w. This real-world scenario motivates the definition of distance between 

two words, which quantifies how different two words are from each other. Next we 

discuss two known distance measures. 

2.3.1 Hamming Distance 

The Hamming distance if is a measure of how different words of equal length are. 

Between two words, it is the number of positions at which the two words differ or, 

equivalently, the number of substitutions required to change one word to the other. 

For example, bread and brood differ in two positions. Hence, H(bread, brood) = 2. 

With this in mind, a word is different from another word of equal length if and 

only if the Hamming distance of the two words is greater than zero [9, 20]. That is, 

if H(wi,W2) > 0 then w\ ^ w^. 

Definition 2.3.1. Given a language (set of words) L, the Hamming distance of L is 
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the smallest distance between any two distinct words of L. 

H(L) = mm{H(wi,Wj) | Wi&ndwj G L, andiUj ^ Wj} 

Remark 2.3.1. The Hamming distance based word difference measure, in its basic 

form, assumes that the words of the language are of equal length, such as in block 

codes. Hence, it can only work when only substitutions are permitted for changing 

words. On the other hand, a deletion would reduce the length of the word and 

would make our Hamming distance scheme fail. This problem has been solved by 

introducing variations to the Hamming distance. For example, a deletion can be seen 

as a substitution with an unknown symbol. In this case, the word length is considered 

to be the same. When the words differ in length, the shorter word is padded with some 

dummy symbols, at the end, to make the lengths of the two words equal [7]. After 

this the Hamming distance can be measured. The disadvantage of such a scheme is 

that very similar words of different lengths can end up having a very large Hamming 

distance between them, making them seem more different than they really are. 

2.3.2 Levenshtein Distance 

Perhaps the most comprehensive solution to the limitation of the Hamming distance 

word difference measure is the Levenshtein distance (A). Also referred to as the 

edit distance, it is a more sophisticated word difference measure and it covers sub

stitutions, insertions and deletions [30]. It is defined as the minimum number of 
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possible substitutions, insertions or deletions that would transform one word into an

other. For example, the edit distance between summer and stammer is 2. That is 

A(summer, stammer) = 2. In this example, using all the possible error combinations, 

at least two errors are needed to change summer to stammer and vice-versa. 

The shortest way to change summer to stammer is by 

1. Inserting a t to get stummer 

2. Substituting the u with an a to get stammer, 

or do the same two steps in reverse. There is no other way of doing it using one 

operation or error at a time. 

Definition 2.3.2. The edit distance A of a language L is the smallest edit distance 

between any two distinct words in L. 

A(L) = mm{A(wi,Wj) \ w^ and Wj € L, andwjj ^ uij} 

2.4 Channels 

A combinatorial channel is a binary relation 7 C A* x A* that is domain preserving; 

that is, the pair (a, a) € 7 for all a E {a'\(a', b) G 7 for some word b}. Given a channel 

7 and a pair of words (wi,?/^) € 7, we say w^ can be received as output from the 

channel on the input word w\. If w\ 7̂  w-i we say that wx is received with errors. In 

this section we introduce some relevant channels. 
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2.4.1 SID Channels 

Definition 2.4.1. An SID (Substitution,Insertion,Deletion) channel is a channel 

which is specified by the type r and largest number m of errors the channel can in

troduce in a given length I, or any length oo, of consecutive symbols passing through 

the channel; it is denoted as T(TO, /) or r(ra, oo). 

The error type r can be one of the basic error types, substitution (cr), insertion(t) 

and deletion(d)), or any combination of the three basic error types. We use 0 as a 

connective when showing a combination of error types for a channel. For example, 
i 

a Q 5 means an error on the channel can be either a substitution or a deletion. 

Only m errors allowed in any symbols of length I 

Only m errors allowed in any symbols of length I 

Figure 2.3: Error allowance on a combinatorial channel 

For example, the pair (aaaaaa, abaaba) is in the channel cr(2,4), while the pair 

(aaaaaa, abbaba) is not, where a represents the substitution error type, and, a and b 

are symbols in the alphabet. 
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Remark 2.4.1. Note that in combinatorial channels we do not provide an analysis or 

specification of the probability of certain errors occurring in the channel. Rather, it 

is assumed that any errors allowed by the channel have a high enough probability of 

occurring in a given length of symbols passing through the channel. These types of 

channels were first considered in [30] and then, more systematically, in [21, 22]. 

2.4.2 Homophonic Channels 

Definition 2.4.2. A homophonic channel Th(m,l) is defined to be similar to the 

SID channel r(m, /), with the only difference being that instead of allowing up to m 

errors in any block of symbols, it allows up to m errors in one fixed block of symbols 

regardless of what happened in the previous fixed block. Hence, Th(m,l) will allow 

no more than m errors in the first block of I symbols passing through the channel, 

then, regardless of what happened in the first block, it will allow a maximum of m 

errors in the next block of I symbols, and so on. 

As can be seen in Figure 2.4, the block of / symbols that spans or overlaps two 

consecutive blocks of I symbols will not necessarily conform to the error restriction 

described above. 

Remark 2.4.2. Homophonic channels can be useful in estimating the error-detecting 

capabilities of a regular language because they are less expensive to construct, com

pared to their corresponding SID channels, in terms of number of transitions. Refer 



16 

Only 2 errors allowed in a block of 4 symbols 

A slice of 4 symbols between two blocks of 
4 symbols might have more than 2 errors 

Figure 2.4: Error allowance on a sample homophonic channel 7^(2,4) 

to [16, 2] for more information on homophonic channels. 

2.5 Error-Detect ing Languages 

Definition 2.5.1. Given a language L, let L\ = L U {A}. L is error-detecting for a 

channel 7 if 7 cannot transform a word w\ G L\ to a different word w2 E L\] that is, 

if (w-\,,W2) E 7 and iui, w2 E L\ then ^1 = u>2-

Remark 2.5.1. This property enables us to tell if an error has occurred by simply 

checking if the received word from a channel belongs to the error-detecting language 

being used. The received word is in the language only if no error occurred. In this 

thesis we assume that the empty word A is not significant in considering the error-

detecting capabilities of the language, or that A is already part of the language. In 

any case, we use the version of the above definition in which L is used in place of L\. 



Chapter 3 

Literature Review 

The objectives of this thesis can be attained via a formal approach to defining chan

nels, and a set of algorithmic tools for manipulating these objects. In this chapter 

we look at some relevant existing and useful concepts related to channels and error-

detection. 

3.1 Modeling Noisy Channels 

Below we present some methods that have been previously used for modeling noisy 

channels. 

3.1.1 Rational Channels 

Transducers are automata that generate output for each input read. Their ability to 

read an input and produce an output is a feature that has been used to model noisy 

channels. The channels realized by transducers are called rational channels [24]. In 

17 
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[17, 19, 24], the authors have used transducers to model channels. The disadvantage 

of rational channels is that they include some theoretical channels that can not be 

physically implemented or used [24]. Furthermore, the transducer realizing a channel 

can have a lot of states, even exponential in the number of errors the channel is 

generating [19, 24]. Nevertheless, transducers can be used to model most real world 

channels. 

3.1.2 Edit Strings 

Let A be an alphabet. An edit string is a concatenation of symbols called edit oper

ations [17]. Edit operations are symbols of the type (a/a), (a/b), (a/A), (A/6) where 

a,b £ A. For each edit operation, the left symbol shows the input and the right 

symbol shows the output. An edit operation with a top symbol that differs from the 

bottom symbols is called an error [17, 19]. For example, (a/A) is a deletion, (A/a) 

is an insertion, (a/b) is a substitution and (a/a) is an error free edit operation. A 

represents the empty word; that is |A| = 0. An example of an edit string h is shown 

next. 

h = (a/a)(a/b)(a/X)(\/b) 

The input part of h is aaa and the output part is abb. Edit strings can be used to 

model a channel by representing the error situations that digital channels exhibit. 

They are also a convenient way of representing a channel where the three basic errors 
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can occur in varying combinations. The authors in [19, 20, 41] have used edit strings 

to define substitution, insertion and deletion (SID) channels. Moreover, for every 

SID channel there is a transducer realizing it [24]. In [2], the authors present an 

algorithm for encoding and decoding messages for multivalued codes, and this is 

conceptually similar to edit strings and SID channels because it is an attempt to 

deduce the source words of a channel's output words that can result from multiple 

possible error combinations (substitutions, insertions and deletions). In other words, 

the higher concept is the same as that of modeling a channel with edit strings. 

3.2 Deciding Error-Detection Capabilities 

In the previous chapter the error-detecting property of a language for a given channel 

was defined. In this section we look at some literature on how this property can be 

modelled, and how it can be decided for a given regular language. 

3.2.1 Error-Detection via Transducer Functionality 

In [23], the author shows that a language L is error-detecting for some channel 7 

if and only if the relationship ((7 | Lx) t -^A) is functional, where Lx = L U {A}, 

7 I L\ = 7 n (LA x £*) and 7 t L\ = 7 n (£* x Lx). With this method, one can use 

standard transducer constructions and decide error-detection by deciding whether a 

given transducer is functional. This problem is decidable [1, 8, 10]. See Section 5.7 
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for the details of the algorithms in [1], which is implemented in this work. 

3.2.2 Language Inequations and Binary Operations 

The authors in [18] present a way of defining language properties, including error-

detection, using language inequations. This technique relies on modeling a channel 

using binary word operations. For instance, o can be used as a binary operation on 

two words or languages: X oY. In the paper, the authors show that, by varying o 

and Y, an inequation of the form XoY C Xc , where Xc is the complement of X, can 

be used in such a way that its solution, say L, for X indicates if L is error-detecting 

for a channel defined by o and Y. 

3.3 Complexity Analyses and Implementation of 

Automata 

Automaton theory comes with many possible operations on automata that are avail

able in the theory of computation, such as catenation and Kleene star, which involve 

manipulating the states and transitions in the automata involved to achieve the de

sired results. The author in [44, 43] presents some state analyses for intersection, 

cross product and several other operations on regular languages. Others such as 

[11, 12, 14, 42] discuss state and time complexities for various operations on regular 

languages, rational languages, non-deterministic automata and formal languages in 
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general. These analyses are very important for solving problems using automata, and 

we have considered them in this research. 

Other results such as deciding if a language is thin [38], deciding if a language is a 

code [32], shortest path algorithms [28, 33] and several algorithm design considerations 

[40] have also been used in this research. 

In addition, software tools such as Grail [35, 36, 37] have been used to aid the 

study of these operations on automata. They are especially helpful when dealing with 

large automata that have a lot of states and transitions. We have used the Grail C + + 

library in our study and implementation of several algorithms. 

3.4 Maximal Error-Detecting Capabilities 

In [26] the authors introduce the concept of maximal error-detecting capabilities of 

formal languages. They discuss what possible research can be done in studying this 

new concept. Notably, they define an error model to be a set of channels. For example, 

the error model CT[l] = {r(m, I) for any m with 1 < m < 1} is a set of channels where 

I is fixed and the number m of errors allowed is varied within the range 1...(/ — 1). 

The error type, r, can be a basic type or a combination of the three basic error types 

a, t. 8. Let C be an error model. A channel 7 G C is a C-maximal error-detecting 

capability of a language L if 

1. L is error-detecting for the channel 7. 
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2. L is not error-detecting for any channel 7' € C which properly contains 7, that 

is, 7' 2 7 

In other words, there is no channel in C larger than 7 for which L is error-detecting. 

The definition of C might involve parameters such as r, m and I. The authors of [26] 

consider several cases when the error type r, the number of errors m and the segment 

length I are varied. Moreover, they present some preliminary results on computing 

maximal error-detecting capabilities for some cases involving substitutions, insertions 

and deletions, that is, r = er, 4, 5. They also state that the channels in an error model 

can be realized using transducers, as indicated in [19]. As mentioned earlier, the 

number of states for each transducer realizing a SID channel could be exponential 

with respect to the number of errors m being permitted by the channel. 

The next two subsections discuss how the maximal error-detection capability prob

lem is related to computing the Hamming distance and edit distance of a language. 

Refer to Chapter 5 for further information on how we use these two computations. 

3.4.1 The Hamming Distance of a Language 

Given a channel <r(m, 00) as a transducer which will permit a maximum of m sub

stitutions in any input message passing through it, one can decide in quadratic time 

if a given regular language L is error-detecting for the channel [26]. This is a special 
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case of the problem of computing maximal error-detecting capabilities of a given lan

guage, where the error model is the set of all channels a(m, oo). In this case, there is 

a unique maximal channel, which is equal to a{M — 1, oo), where M is the Hamming 

distance of L. 

Remark 3.4.1. In this research we have implemented the algorithm for computing 

the Hamming distance of a regular language presented in [20], by taking advantage 

of a modified approach to Dijkstra's shortest path algorithm [6]. See Chapter 5 for 

details. 

3.4.2 The Edit Distance of a Language 

Similarly, given an SID channel U 0 J 0 8(m, oo) that will permit a maximum of 

m substitutions (a), insertions (t) and deletions (5) anywhere in the input word, it 

can be decided if a regular language L is error-detecting for the channel using the 

results in [25, 19]. Note that the symbol 0 is simply a connective which indicates 

that the channel can generate the three types of errors in any combination, up to the 

limit set by m. Again, this is a special case of the problem of computing maximal 

error-detecting capabilities of a given language, where the error model is the set of 

all channels < 7 0 i 0 S(m, oo). In this case, there is a unique maximal channel. 

Computing the edit distance involves constructing a transducer that realizes all 

the edit strings which model the effects of the channel on the language L and then 



24 

computing the distance of L in polynomial time [25]. Comparing this edit distance 

with the value of m reveals whether the language is error-detecting for the channel. 

Remember that a language can detect up to m SID errors if and only if its Levenshtein 

distance is greater than m [30]; that is to say, L is error-detecting for a0t0(5(m, oo) 

if and only if A(L) > m, where A(L) is the Levenshtein distance of the language and 

m is the number of SID errors permitted on the channel in any length of consecutive 

symbols. 

Remark 3.4.2. Using the edit distance to decide error-detecting capabilities of a reg

ular language works well for the channels of the form r(m, oo). These are channels 

allowing a fixed maximum number m of errors in any input message passing through 

them. 



Chapter 4 

Algorithmic Tools I: Construction 

of Channels 

As mentioned in the previous chapter, computing error-detecting capabilities of a 

regular language requires a means of modeling noisy channels. We showed a few 

existing models of these channels, which are rather at a conceptual level. In this 

chapter we considerably refined these models so as to bring them closer to the software 

implementation level. In this process, we also introduce a new way of modeling 

channels using sequential machines. 

4.1 Sequential Machine vs General Transducer 

In [17] the authors provide a construction of a channel using a general transducer. 

As shown in our literature review, transducer functionality is important for deciding 

error-detecting capabilities of regular languages. We note, once more, that deciding 

25 
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functionality of a general transducer could be expensive in practice [24]. On the 

other hand, there are simpler algorithms provided in [1, 10] to decide transducer 

functionality if the given transducer is a sequential machine. We will investigate 

these in more detail in the next chapter. To take advantage of these algorithms, we 

introduce methods for constructing sequential machines that realize our channels of 

interest. 

4.2 SID Channel Construction With Sequential Ma

chines 

Recall that SID channels are specified by the type T and number m of errors that 

are permitted in any length I of symbols passing through the channel. In this chap

ter we always assume that / ^ oo. Also, we use £ to denote both the input and 

output alphabets. We agree that each channel error occurs at a certain symbol of 

the input word. This is clear for substitution and deletion errors. For example, 

(abaaab, baaaa) 6 u 0 5(2, 6) because of a deletion at the first a of the input word, 

and substitution at the last b of the input word. When the SID channel permits 

insertions, namely r contains t, we assume that any insertion error occurs at the im

mediate left of some input symbol. For example, (aaa,abaa) £ i(l,3) because there 

is an insertion error at the second a of the input word. This convention is not unusual 

and in any case, one can define languages whose words end with a special marker $, 
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so in effect any insertion to the left of $ is an insertion at the end of the word. 

4.2.1 Construction of the Channel i(m,l) 

Proposition 4.2.1. For every channel i(m, I) there is effectively a sequential machine 

realizing it. 

Proof. The construction of the machine is shown below: 

1. For each transition label x/y of the machine, \x\ = 1 and 1 < \y\ < (m + 1), 

where m is the number of errors permitted in any / input symbols. 

2. Each state will remember what happened in the last (I — 1) input symbols. 

3. Each state will be represented by a string qc = iain... ia('-Vn 

where iaj represents 0 . . . m possible insertion errors that occurred on the j t h 

input symbol of the last (I — 1) input symbols represented by the state and n 

represents the normal or error free input symbol. It can be observed that strings 

representing the different states of our machine will not necessarily be of the 

same length, but will have lengths in the range (I — 1) < \qc\ < (I — 1 + m). 

4. As all insertions occur to the left of the last read symbol, the states will always 

end in the following: 

n = normal error free transition 

in = one error occurred on the last read symbol 
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iain = a3 errors occurred on the last read symbol 

5. The start state will represent the situation where no errors occurred in the last 

(I — 1) symbols. Hence, the start state go = nl~l. For example, the start state 

for i(2, 4) is (nnn). 

6. The total number of transitions originating from a state q will be 

|£| + |£ |2 + . . . + |£! (m-e*+1) , 

where eq is the total number of insertion errors seen by the state q and S is 

the input alphabet. The transitions correspond to the possible events of the 

channel in response to reading the next input symbol; 0, or 1, . . . , or (m — eq) 

insertions occur to the left of that symbol. 

For a given state p, a transition out of p would go to a state q such that the 

meaning of the states as described above is preserved. In particular, if p is of 

the form iknx and the transition to q involves j insertion errors, then q = xi3n. 

For example, the state (nnin) represents the situation where 1 insertion er

ror occurred on the third symbol of the last three input symbols. Transitions 

with 0 and 1 errors from (nnin) would go to the states (ninn) and (ninin), re

spectively, and would be of the form (nnin)a/a(ninn) and (nnin)a/a'a(ninin). 

Figure 5.9 shows an example construction of t(2,4), and Algorithm 4.2.1 shows 
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some pseudo code from our implementation to help visualize the above state

ments. 

• 

Figure 4.1: Sequential machine realizing t(2,4) 

Remark 4.2.1. The figure above, and the rest of the figures in this section, only 

show the type of transitions and errors involved from one state to the other. This 

abstraction is necessary because it is infeasible to make a readable diagram showing 

all the transitions, even for the small values of m and I. For instance, there are 

actually |E| + |£ |2 + . . . + |£|(m-e<j+1) transitions originating from each state q in the 

figure above. 
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Algorithm 4.2.1. Construction of i(m,l) as a sequential machine 

INPUT : m, I and the alphabet £ 

queue<state> UNSEEN, SEEN = empty;// 

startState=new s t a t e ( n n n . . . n ) ; / / s t a t e with no e r rors 

UNSEEN.push(startState); 

while (!UNSEEN.empty()){ 

currentState=UNSEEN.front 0 ; 

numOfTransitionsFromState = m - errorsSeen(currentState)+ 1; 

for ( j=0;j < numOfTransitionsFromState;j++) •[ 

s t a t e des t ina t ion = createNewState(currentState , j e r r o r s ) ; 

for each symbol in alphabet 

addTrans i t ions(cur rentSta te , j e r r o r s , des t ina t ion ,a lphabe t ) ; 

if (!SEEN.contains(destination)) / /add s t a t e to unseen if not seen 

UNSEEN.push(destination); 

}//end for loop 

SEEN.push(currentState); 

UNSEEN.pop(currentState); 

}//end while loop 

makeFinalStates(SEEN); 

OUTPUT: Sequential machine realizing t(m, I) 

Implementat ion Notes 4.2.1. Our construction creates states on the fly to make 

the |E| + |S | 2 + . . . + |S|(m~e"+1) transitions from each state q starting with the start 

state. It uses two queues to keep track of which states have already been seen so that 

we do not process a state more than once. 
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Notes on the above algorithm pseudo code: 

• The function er rorsSeen(s ta te) returns the number of errors the current state 

has seen. For example, errorsSeen(nnin) = 1 and errorsSeen(nniin) = 2 

• The function createNewState(currentState, j ) creates a new state with j 

errors from the current state. It does this by reading the current state string 

from left to right and erasing the leftmost occurrence of n and every symbol to 

its left. It then appends P = j occurrences of the symbol i and ends with the 

symbol n to come up with a new state. For example, createNewState(nnn,2) 

first knocks off the leftmost n to get nn then appends iin to get nniin. Similarly, 

createNewState(nniin,0) knocks off the leftmost occurrence of n to get niin 

then appends the symbol n only, since there are 0 errors, to get niinn. This 

operation can further be visualized as a FIFO keeping track of the symbol n in 

the string representing a state. When the symbol n is inserted on the right of 

the FIFO, the leftmost n with everything on its left is removed. 

• The function addTransitions (source, j e r ro r s ,des t ina t ion ,a lphabe t ) adds 

|£|(m-e,+i) transitions to our sequential machine with the specified source state, 

number of errors and destination state. 

More details on this implementation can be found in Chapter 6. 
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4.2.2 Construction of the Channel a(m, I) 

Proposition 4.2.2. For every channel o(m, I) there is a sequential machine realizing 

it. 

Proof. The construction of the machine is very similar to that in the proof in Propo

sition 4.2.1, with a few differences as shown below: 

1. For each transition label x/y of our machine, \x\ = 1 and \y\ = 1 

2. Each state will remember what happened in the last (I — 1) input symbols. 

3. Each state will be represented by a string qc = a\... a^_i 

where a3 = n if an error did not occur at position j , and a,j = s if a substitution 

error occurred at position j of the last (I — 1) input symbols represented by 

the state. This time the strings representing the different states of our machine 

will be of equal length. Specifically, \qc\ = (I — I) for all states in our machine. 

Unlike the case of insertions, only one substitution can occur per transition. 

4. The start state will represent the situation where no errors occurred in the last 

(I — 1) symbols. Hence, the start state qo = n'_ 1 . For example, the start state 

for o"(2,4) is (nnn). 

5. Each state q will have |S | x \T,\£q transitions originating from it, where eq is the 

number of errors allowed on any transition from state q. Precisely, eq = 0 if the 
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errors seen by the state = m and eq = 1 otherwise. E is the input alphabet. 

The transitions correspond to the possible events of the channel in response to 

reading the next input symbol. That is, 0 or 1 substitution errors will occur on 

the last input symbol. Hence, if eq = 0 (when errors seen = m) we only add 

one error-free transition from state q to a state p, for all a € E. If, however, 

eq = 1 (errors seen < m) then we add |E| transitions from state q to a state p, 

for all a G E. 

For a given state p, a transition out of p would go to a state q such that the 

meaning of the states as described above is preserved. In particular, if p is of 

the form nx and the transition goes to q, then q — xa3, where a2 = s if a 

substitution occurred, or a3 = n if no error occurred. For example, the state 

(nnss) represents the fact that 2 substitution errors occurred on the last 4 

inputs read by the channel. Transitions with 0 and 1 errors from (nnss) would 

go to the states (nssn) and (nsss), respectively, and would be of the form 

(nnss)a/a(nssn) and (nnss)a/a!(nsss). 

Figure 4.2 shows an incomplete construction of <r(2, 5) to help visualize the 

above construction. 

• 
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Figure 4.2: Partial depiction of sequential machine realizing er(2, 5). In order to avoid 
clutter on the figure, the transition (snns)a/a(nnsn) is not shown. 

Implementation Notes 4.2.2. Our construction creates states on the fly to make 

the jE|e«+1 transitions from each state starting with the start state. It uses two queues 

to keep track of what states have already been seen so that we do not process a state 

more than once. The reader can see Chapter 6 for our implementation details. 

4.2.3 Construction of the Channel 5(m, I) 

Proposition 4.2.3. For every channel 5(m, I) there is a sequential machine realizing 

it. 

Proof. The construction of this machine will be exactly as in Proposition 4.2.2 for 

the channel a(m, I), with the only difference being that all substitutions will be with 

the empty symbol A. We follow this approach because a deletion can be viewed as 
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a special substitution with an empty symbol. In addition, we replace the symbol s 

with the symbol d to represent a deletion whenever we show the machine states as 

strings. 

Due to the similarity with the construction in Proposition 4.2.2 we have left out 

the construction rules. Nevertheless, Figure 4.3 shows a partial depiction of 5(2, 5) 

to help visualize the construction. As in the the previous section, the transition 

(dnnd)a/a(nndn) is not shown. • 

(dndn) (dnnd) 

Figure 4.3: Sequential machine realizing 5(2, 5) 

The next four channel constructions are derived from of use the last three con

structions in some way, as will be made clear. 
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4.2.4 Construction of the Channel i © a(m, I) 

Proposition 4.2.4. For every channel tQa(m,l) there is a sequential machine re

alizing it. 

Proof. The construction of the sequential machine is a combination of the construc

tion rules in Proposition 4.2.1 for channel t(m,l) and 4.2.2 for channel a(m,l), and 

is as follows: 

1. Remember that the symbol 0 is only used as a connective to show what types 

of errors are possible on the channel. Hence, tQ a = a Q L. This will be true in 

every case we use the symbol 0 . 

2. Each state will remember what happened in the last (I — 1) input symbols of 

the channel. 

3. Each state will be represented by a string qc = a i . . . a j_ i , where ad = n if 

no errors occurred, a.,- = ikn if k insertion errors occurred, a,j = s if only a 

substitution error occurred, and a,j = iks if k insertion errors and a substitution 

error occurred on the j t h input symbol of the (I — 1) input symbols represented 

by the state. 

4. The start state q0 will represent the situation where no errors occurred in the 

last (I — 1) input symbols. Particularly, q0 = n^l~l\ 

5. Only one substitution error and 0 . . . m insertion errors can occur per transition. 
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6. The strings representing our states will not be of equal length but will have 

lengths in the range (I — 1) < \qc\ < (I — 1 + m). 

7. Each state q containing eq errors will have transitions as follows: 

(a) No substitution and 0 , 1 , . . . , m — eq insertions: The number of transitions 

from state q will be 

|E| (l + |£| + i£|2 + ... + |E|(m-e')) 

(b) One substitution and 0 , 1 , . . . , m — eq — 1 insertions: The number of tran

sitions from state q will be 

|E| (|E| - 1) (1 + |E| + |E|2 + . . . + |£|(™-^-i)) 

where eq is the total number of errors seen by the state q. 

For a given state p, a transition out of p would go to a state q such that the 

meaning of the states as described above is preserved. In particular, if p is of the 

form nx and the transition to q involves 1 or 0 substitution errors then q = xa3, 

where a3 — s if a substitution occurred or ad = n if no error occurred. On the 

other hand, if the transition from p to q involves j insertion errors, then q = xi3n, 

where V represents the j insertion errors that occurred on the last input. For 

example, the state (nnss) represents the situation where 2 substitution errors 

occurred on the last 4 inputs read by the channel. The state (nnsin) represents 
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the situation where 1 substitution occurred on the third input and 1 insertion 

occurred on the fourth symbol of the last 4 input symbols represented by the 

state. The reader is referred to Figure 4.4 for a partial depiction of a sequential 

machine realizing i0cr(2,4). The states (nnis), (nisn) and (isnn), as well as a 

few transitions, have been left out for a clearer picture. 

• 

Figure 4.4: Partial depiction of sequential machine realizing i 0 cr(2,4) 
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4.2.5 Construction of the Channel i © 5(m, I) 

Proposition 4.2.5. For every channel iQ5(m,l) there is a sequential machine real

izing it. 

Proof. The construction of the machine is similar to the construction in Proposition 

4.2.4 for the channel 10 a(m, I), with the main difference being that all substitutions 

are with the empty symbol A. We omit the rules for this construction and just provide 

a diagram showing a partial representation of a sequential machine realizing tO<5(2,4). 

For a clearer figure, the states (nnid), (nidn) and (idnn), as well as a few transitions, 

have been left out. • 
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Figure 4.5: Part of sequential machine realizing i 0 <5(2,4) 

4.2.6 Const ruct ion of t h e Channel a © S(m, I) 

Proposition 4.2.6. For every channel a © S(m,l) there is a sequential machine 

realizing it. 

Proof. There are two possible ways of constructing this machine. The first approach 

is to create states that track substitutions and deletions separately. This method 

would create unnecessary states since deletions can be viewed as special substitutions 

with the empty symbol. The method would only be useful if we strictly need to track 

deletions and substitutions separately. 
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Hence, we proceed with the second method which uses about half the states com

pared with the first method. This second approach simply treats a deletion as a 

special substitution and can be viewed as an extension of the channel a(m,l) in 

Proposition 4.2.2. The construction of the machine is as follows. 

1. Construct the machine as in Proposition 4.2.2 with the following additional 

rules. 

2. For each set of transitions from state p to q with the input a and involving 

a substitution error we add a transition of the kind p(a/\)q, for all a 6 S. 

This will add an extra |S| transitions to each set of transitions involving a 

substitution error from a state p to a state q. 

3. Hence, each state q will have |E| x (|E U {A}|)e<1 transitions originating from it, 

where eq — 0 if the errors (substitutions and deletions) seen by the state = m 

and eq = 1 if the errors seen by the state < m. 

4. Recall that in Proposition 4.2.2 we used s to represent a substitution error. In 

this construction we replace the symbol s with the symbol e that represents 

either a substitution or a deletion error. Figure 4.6 shows an example of a 

sequential machine realizing a 0 5(2,5). Note the similarity with Figure 4.2 

with additional transitions representing deletions. For a clearer picture, we 

have left out the transition (enne)a/a(nnen). 
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• 

Figure 4.6: Sequential machine realizing a © 5(2, 5) 

4.2.7 Const ruct ion of t h e Channel a Q LQ 5(m, I) 

Proposition 4.2.7. For every channel a © t © 5(m, I) there is a sequential machine 

realizing it. 

Proof. We construct the machine as follows: 

1. We again treat deletions as special substitutions and utilize the rules in Propo

sition 4.2.6, for the channel aQ8(m, I), to deal with substitutions and deletions. 

2. We then construct our machine as a special type of the construction in Proposi

tion 4.2.4, for the channel iQci(m, I), where a substitution can be with another 

symbol in the alphabet or with the empty symbol. 
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3. Therefore, we replace the symbol s in Proposition 4.2.4 with the symbol e to 

represent either a deletion or a substitution error. 

4. For each transition from state p to q, involving a substitution error in Proposi

tion 4.2.4, we add a transition of the kind p(a/\)q for all a £ S. This will add 

an extra |E| transitions to each set of transitions involving a substitution error. 

5. Each state q will have a number of transitions as follows: 

(a) No substitution/deletion and 0 , 1 , . . . ,m — eq insertions: The number of 

transitions from state q will be 

IEI (i + m + m2 +...+m^-^) 

(b) One substitution and 0 , 1 , . . . , m — eq — 1 insertions: The number of tran

sitions from state q will be 

|S| (|S| - 1) (1 + |E| + |E|2 + . . . + ISI^-^- 1 ) ) 

(c) One deletion and 0 , 1 , . . . , m — eq — 1 insertions: The number of transitions 

from state q will be 

|S | (l + |S | + |S|2 + . . . + |S | ( m - e ' - 1 ) ) 

where eq is the total number of errors seen by the state q. 
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Figure 4.7 shows a partial depiction of a sequential machine that realizes the 

channel aQtQd(2,4). Similar to the preceding sections, we have left out the transition 

(inen)a/a(enn). 

D 

Figure 4.7: Partial depiction of sequential machine realizing a 0 t 0 5(2,4) 
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Remark 4.2.2. In the figure above a label a/ax means that ax 6 T, U {A} with ax ^ a. 

The symbols a, a € S. The symbols of type a1 . . . aJ on a transition label from state 

p to state g represents all the transitions with j insertion errors. The actual number 

of symbol combinations for j error transitions from a state p to q would be |Sp for 

each input a 6 £. 

See Section 6.2 for implementation details of all the channels presented in this 

chapter. 

4.3 Homophonic Channel Construction With Se

quential Machines 

The SID channels presented in the previous section would require transducer con

structions with a large number of states, exponential in the number of errors allowed 

on a channel. This presents a computing time and complexity challenge, especially 

when we start increasing the values of m and /. Hence, we present methods for con

structing homophonic channels using sequential machines. See Section 2.4.2 for the 

definition of homophonic channels. Proposition 4.3.1 shows how homophonic channels 

can be useful for determining error-detecting capabilities of a regular language. 

Proposition 4.3.1. / / a language L is error-detecting for a homophonic channel 

Th(m,l) then it is also error-detecting for the SID channel T(m,l). 

Proof. The proof is deduced from the definitions of the two types of channels in 
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question. A homophonic channel with the same m and I will allow more errors across 

the channel than its corresponding SID channel. More specifically, we have that 

r(m,l) C Th(m,l). Hence, if L is error-detecting for the case where more errors are 

allowed, it must be error-detecting for the case where less errors are allowed. • 

Remark 4.3.1. Homophonic channels have the potential of helping in estimating the 

error-detecting capabilities of a regular language in lesser time because they require 

much smaller sequential machines for modeling the channel, compared to ordinary 

SID channels. 

4.3.1 Construction of the Channel ah(m, I) 

Proposition 4.3.2. For every channel a^irn, I) there is a sequential machine realizing 

it having a number of states < 1 + (/ — 1) x (m + 1) — m. 

Proof. The construction of the sequential machine is as follows: 

1. For each transition label x/y of our machine, |x| = 1 and \y\ = 1. 

2. Since the requirement is to track what happens in blocks of I symbols, the 

machine will be reset to the start state after reading I symbols. Obviously, no 

more than m errors will be allowed in the I symbols read in. 

3. Each state will be represented by a pair of integers (i,j), where i is the number 

of symbols read so far and j is the number of errors seen so far. For example, 
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- the state (2,1) represents the situation where 2 symbols have been read in and 

1 substitution has occurred. 

4. The start state, indicated by (0, 0), will represent the situation where no symbols 

have been read in and hence, no errors have occurred in the next block of / 

symbols. 

5. Each state q = (i,j) will have |E| x |E|e? transitions originating from it, where 

eq is the number of errors allowed on any transition from the state. Precisely, 

eq = 0 if j = m, and eq = 1 if j < m, where E is the input alphabet, i is 

the number of symbols read so far and j is the number of errors seen so far. 

The transitions correspond to the possible events of the channel in response to 

reading the next input symbol. That is, 0 or 1 substitution errors will occur 

on the last input symbol. Hence, if eq = 0 (when errors seen so far j = m) we 

only add one error free transition from a state p to a state g, for all a G E. If, 

however, eq = 1 (errors seen j < m) then we add |E| transitions from a state p 

to a state q, for all a G E. 

For a given state p, a transition out of p would go to a state q such that the 

meaning of the states as described above is preserved. In particular, if p is of 

the form (i,j) then q = (i + l , j ) if no error occurred, and q = (i + 1, j + 1) if 

a substitution occurred. For example, the state (2, 0) represents the situation 

where 2 symbols have been read and no error has occurred. Transitions with 0 
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and 1 errors from (2,0) would go to the states (3,0) and (3,1) respectively. 

See Figure 4.8 for an example of such a construction. 

• 

Figure 4.8: Sequential machine realizing <r^(2,4) 

Remark 4.3.2. In Figure 4.8, the states are represented by pairs (i,j), where i is the 

number of symbols read for the block and j is the number of errors seen. We skip 

showing the construction of the channels (t 0 a)h{m, 1), (t 0 8)h(m, I), (a 0 8)h{m, I) 

and (<7 0i0i5)/,(m,I) because they can be extended from the above construction and 

the methods used in the previous section. 



Chapter 5 

Algorithmic Tools II: Additional 

Relevant Algorithms 

In the previous chapter we discussed methods for modeling noisy channels using 

sequential machines. In this chapter we move a step further and present some relevant 

algorithms used in computing error-detecting capabilities of regular languages. 

5.1 Computing the Hamming Distance of a Regu

lar Language 

Recall that the Hamming distance of a language is the smallest number of substitutions 

that can change one word of the language into another word of the language [9, 20]. 

The next proposition explains how the Hamming distance of a language relates to 

error-detection. 

< 
49 
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Proposition 5.1.1. [9] Given a language L and the channel 7 = a(m, 00) which 

allows a maximum of m substitution errors (a) in any length of consecutive symbols 

across the channel, we have that L is error-detecting for 7 if the Hamming distance of 

L is greater than the maximum number of errors the channel allows, that is, H(L) > 

m. 

In this section we discuss the algorithm for computing the Hamming distance of 

a regular language in quadratic time using the results in [20]. 

Theorem 5.1.2. [20] Given an automaton A accepting a language L, the Hamming 

distance of L can be computed in quadratic time. 

The reader is referred to [20] for the proof. Nevertheless, we present a brief 

description of this computation, as well as a discussion of our implementation. 

Given a NFA A accepting a language L(A), we discuss how the Hamming distance 

of L(A) is computed. Recall from Section 3.1.2 of Chapter 3 that we defined an 

edit string as a concatenation of edit operations from a given set of edit operations. 

The alphabet E^ of the basic edit operations (representing insertions, deletions and 

substitutions) is the set of all symbols x/y such that 1,1/EEU {A} and at least one 

of x and y is in E. If E is any subset of E%, the automaton A HE A, [25], accepts all 

edit strings that can transform words in L to words in L using the edit operations in 

E. Note that the input and output parts of the edit strings accepted by AHEA would 

both be in L. More specifically, A DE A is defined as follows: ((p, q),x/y, (p', q1)) is a 
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transition in A HE A, if (p, x,p') and (q, y, q') are transitions in A and x/y £ E. Also, 

(s, s) is the start state of A C\E A where s is the start state of A, and each pair (/, g) 

is a final state of A C\E A, if / and g are final states of A. 

Now let Ea = {x/y, where I , J / G E and x ^ y}. 

1. Construct the NFA Aa> over the alphabet Ea which has two states s and g, 

where s is the start state and g is the only final state. Aa> has the transitions 

sx/xs, sx/yg, gx/xg, and gx/yg, for all symbols x, y € S with I / J . It is 

clear that A /̂ accepts all edit strings in .E* containing at least one substitution 

error. Furthermore, we assign a cost to each edit operation as follows: 

[0 , \lx±y 

2. Construct the automaton Aa = (A n ^ A) n Ay which accepts all edit strings 

that transform words of the language L(A) into other words of L(A) and have 

at least one substitution error. If L{Aa) is empty then the Hamming distance 

of L(A) is infinite, and we ignore the next two steps. Otherwise, proceed to the 

next two steps. 

3. Use Djikstra's algorithm to compute a shortest accepting path in Aa. 

4. The Hamming distance is the total number of errors or total cost on the shortest 

accepting path in Aa. 
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Algori thm 5.1.1. Computing the Hamming distance of a regular language using 

shortest path algorithm 

INPUT : NFA A 

Define two queues QO and Ql 

I n i t i a l i z e a l l en t r i e s of the boolean array Seen to fa l se 

I n i t i a l i z e a l l en t r i e s of the integer array Distance to 0 

QO.insert(startNode) 

Seen [startNode]=true 

length=0 

while (QO is not empty) 

while (QO is not empty) 

a=Q0.front() 

for each edge (a,b) in QO with not Seen[b] 

QO.insert(b), Seen[b] = true; 

Distance[b]=length 

end for 

QO.deleteO, Ql.insert(a) N 

end while 

length = length + 1 

while (Ql is not empty) 

a=Ql.front() 

for each edge (a,b) in Gl with not Seen[b] 

QO.insert(b), Seen[b] = true; 

Distance[b]=length 

end for 

Ql.deleteO 

end while 
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end while 

OUTPUT: Hamming distance of L(A) 

The reader can refer to Chapter 6 and [3] for details on our implementation of 

this. 

5.2 Comput ing the Edit Distance of a Regular Lan

guage 

Recall from Chapter 2 that the edit distance of a language is the smallest number 

of substitution, insertion and deletion errors that can change a word of a language 

into another word of the language. The definition given below shows how the edit 

distance is related to error-detection. 

Theorem 5.2.1. [30, 26] Given a language L and the channel 7 = a 0 1 0 5(m, 00) 

which allows a maximum of ra substitution, insertion and deletion errors in any word, 

we have that L is error-detecting for 7 if the edit distance, A, of L is greater than m, 

that is, A(L) > ra. 

We use the algorithms in [27] to compute the edit distance of a regular language. 

Refer to it for a full understanding of our approach. Nonetheless, we present the main 

ideas here. 

Given a language L, we would approach computing the edit distance as follows: 
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1. Let A be an automaton accepting L 

2. Let B be the automaton ACIEA which accepts all edit strings that can transform 

words in L to words in L using the edit operations in the alphabet of edit symbols 

E. Note that the input and output part of the edit strings accepted by B would 

both be in L. 

3. If it was possible, we would construct an automaton T accepting all edit strings 

for which the input and output parts are distinct. 

4. Then we would compute the transducer B C\T that accepts all edit strings for 

which the input and output parts are distinct and are in L. 

5. Treating B n T a s a weighted graph where the weight of a transition is 1 when 

there is an error and 0 otherwise, the edit distance would simply be the weight 

of the shortest path. 

Unfortunately, such a T does not exist [39]. In [27], the author presents an al

ternative approach that leads to the desired result using a transducer Tj described 

below. 

7} is an automaton that accepts all edit strings whose input and output parts 

differ at exactly position j for a given integer j . Refer to [27] for the complete rules 

for constructing Tj and proof of correctness. Of particular importance for our usage 

is the fact that it is enough to only consider all T3 for which 1 < j < q(A), where 
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q(A) is the value diam(A) if A is deterministic, or s2 if it is non-deterministic, where 

s is the number of states in A. 

Since we are only considering deterministic finite automata we use diam(A) and 

not s2. With this in mind and an understanding of 7}, we proceed with computing 

the edit distance of a regular language as follows: 

1. As before, let A be an automaton accepting L. 

2. Similarly, let B be the automaton AP\EA which accepts all edit strings that can 

transform words in L to words in L using the edit operations in the alphabet 

of edit symbols E. 

3. Initialize a distance tracking variable dist with the value of diam(A). That is, 

dist = diam(A). 

4. For each j in the range l...q(A) 

(a) Construct 7}. 

(b) Construct BC\Tr 

(c) Find the shortest path i n B n 7} based on weight as described earlier. 

(d) If the total weight on this path is less than dist then update dist with this 

new value. 

5. The edit distance of L is the final value of dist. 
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Below we present this algorithm in pseudo-code. See Section 6.2 for its full im

plementation details. 

Algor i thm 5.2.1 . Computing the edit distance of a regular language 

Input = some d e t e r m i n i s t i c f i n i t e automaton A; 

dist=diam(A) ; 

B = A f]E A; 

m = diam(A); 

for each j = l , . . . , m 

begin 

G = BHTj ; 

weight=ShortestPathWeight(G); 

if (weight <dist) 

dist = weight 

end 

Output = dist; 

5.3 Construction of Ax from A 

For a given deterministic finite automaton A there is an equivalent automaton A* 

that has A transitions, but accepts the same language as A. We construct Ax by 

simply adding A self loops to every state in A. Figure 5.1 shows the addition of self 

loops to A in order to get Ax. In this example, both A and Ax accept the language 

a*b. 
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a a A 

0 
A 

Figure 5.1: An example automaton A and its equivalent A* 

5.4 Construction of T \, A using a Special Cross 

Product 

As mentioned earlier, for a given transducer T and a deterministic finite automaton 

A, the transducer T \. A is the intersection of the input part of T with A. We achieve 

this construction using a special cross product construction as follows: 

1. Start with an empty machine T \. A 

2. For each transition (p,x,q) in Ax, get all transitions (p',x/y,q') in T that 

have x as the input label, and for each such transition create the transition 

(P'P, x/y, q'q) in T j A. 

3. A state in T 4- A, such as p'p, is the start state only Up' and p are start states 

in their respective automata. 

4. Similarly, a state in T J, A, such as g'g, is a final state only if both q' and q are 

final states in their respective automata. 
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The resulting transducer accepts pairs (u, v) of words such that (u, v) G R(T) and 

u € L(A). In the following figures we show an example transducer T and the resulting 

transducer T ], A using Ax from Figure 5.1. 

Figure 5.2: An example transducer T 

Below we have Table 5.1 showing the transitions in the T and Ax in the examples 

above, and Table 5.2 showing the matching on the input that gets used in the cross 

product construction of T \, A. 

Transitions in T 
(0,a/a,0) 
(0,6/6,0) 
(0,a/A,l) 
(0,6/A,l) 
( l ,a /a ,2) 
(1,6/6,2) 
(2,o/a,0) 
(2,6/6,0) 

Transitions in Ax 

(0,a,0) 
(0,A,0) 
(0,6,1) 
(1,A,1) 

Table 5.1: Transitions in T and Ax 
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The following table shows the matching on the input of transitions in T with 

transitions in Ax. 

Transitions in Ax 

(0,a,0) 

(0,A,0) 

(0,6,1) 

(1,A,1) 

Transitions in T with matching input 
(0,a/a,0) 
(0,a/A,l) 
(1, a/a, 2) 
(2,a/o,0) 

(0,6/6,0) 
(0,6/A,l) 
(1,6/6,2) 
(2,6/6,0) 

Table 5.2: Matching transitions in Ax with the input part of T 

T I A is then constructed by a cross product using the matched states in Table 5.2. 

The resulting transducer is shown in the figure below: 

Figure 5.3: The transducer T \. A 
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5.5 Construction of T t A using a Special Cross 

Product 

Similarly, T t A is the intersection of the output part of T with A. We achieve this 

using a product construction as follows: 

1. For each transition (p, y, q) in A, get all transitions (p', x/y, q') in T that have y 

as the output label, and for each such transition create the transition (p'p, x/y, q'q) 

2. A state such as p'p is the start state only if p' and p are start states. 

3. Similarly, a state such as q'q is a final state only if both q' and q are final states. 

The resulting transducer outputs words that are both outputs of T and also ac

cepted by A. For a better understanding, next we provide an example of this con

struction using T \. A from the previous section in place of T. The table below shows 

transitions in T \. A and Ax that are also used in the cross product construction of 

(T±A)t A. 

Transitions in T \. A 
([0,0], a/a, [0,0]) 
([0,0], 6/6, [0,1]) 
([0,0],6/A,[l,l]) 
([0,0], a/A, [1,0]) 
([1,0], a/a, [2,0]) 
([1,0], 6/6, [2,1]) 
([2,0], a/a, [0,0]) 
([2,0], 6/6, [0,1]) 

Transitions in Ax 

(0,a,0) 
(0,A,0) 
(0,6,1) 
(1,A,1) 

Table 5.3: Transitions inT i A and Ax 
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The following table shows the matching on the output of transitions in T 4- Ax 

with transitions in Ax. 

Transitions in A 

(0,o,0) 

(0.A.0) 

(0,6,0) 

(1,A,1) 

Transitions in T I A with matching output 
([0,0], a/a, [0,0]) 
([1,0], a/a, [2,0]) 
([2,0], a/a, [0,0]) 
([0,0],6/A,[l,l]) 
([0,0], a/A, [1,0]) 
([0,0], 6/6, [0,1]) 
([1,0], 6/6, [2,1]) 
([2,0], 6/6, [0,1]) 
([0,0],6/A,[l,l]) 
([0,0], a/A, [1,0]) 

Table 5.4: Matching transitions in Ax with the output part of T \. A 

Similarly, (T \. A) ^ A is then constructed by cross product using the matched 

states in Table 5.4. The resulting transducer is show in the figure below: 

As a side note, the input words recognized by (T 4- A) t A, and their corresponding 

output words, are both accepted by the automaton A. In other words, the transducer 

accepts pairs of words whose input and output parts are both in L(A). We will utilize 

these tools later in this chapter. 
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a/a 

OMP) 

b/X 

(EH) 

b/b 

(CTTo)—^->(A%OP) 

C(o7i)7i) (S3) 

dHHD 

fo/A 

o/A 

Figure 5.4: The transducer (T ], A) f A with unreachable states in gray 

5.6 Introducing Pseudo-Sequential Machines 

Recall from Chapter 2 that in a pseudo-sequential machine start and final states have 

no outgoing X-input transitions, and if a state has an outgoing X-input transition 

then it has no other outgoing transitions. As a build-up to the next section, we now 

present some useful concepts related to pseudo-sequential machine T". First note 

that if (p, X/y, q) is a X-input transition of T", then there is a unique path of X-input 

transitions from q to some state t such that t has no outgoing X-input transitions. 

This follows from the constraints on the X-input transitions of a pseudo-sequential 

transducer T", and the fact that T" must be trim. 
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Theorem 5.6.1. If T is a sequential machine then there is an equivalent pseudo-

sequential machine T". 

Proof. T" is constructed by expanding some transitions as follows: 

1. Make a copy of T 

2. Replace each transition (p, x/y, q) for which \y\ > 1, with the transitions (p, x/yi,r\), 

(n,A/y2 , r2) , . . . , (rfc_i,A/yfe,q), where y\...yk = y and rx, r2,...,rk are the new 

states added for the sake of expanding the original transition. Figure 5.5 shows 

how the states get replaced in this operation. 

• 

,A/y2 

Figure 5.5: Converting from sequential to pseudo-sequential 

Theorem 5.6.2. / / T' is a pseudo-sequential machine then there is an equivalent 

sequential transducer T". 
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Proof. Construction of T" from T" 

1. Make a copy of V. 

2. For every transition (p, x/y, q), with x ^ A, for which there is (q, X/zi,r), replace 

(p, x/y, q) with (p, x/yw, t), where t is the unique state with no outgoing X-input 

transitions that can be reached from q, and w is the word formed by the output 

labels in the unique path from q to t. 

• 

Figure 5.6: Converting from pseudo-sequential to sequential 

Theorem 5.6.3. IfT' is a pseudo-sequential machine and M is a DFA then T' t M 

is also pseudo-sequential. 

The proof of this can be found in [5]. 
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5.7 Deciding Transducer Functionality 

Utilizing the edit and Hamming distances for computing error-detecting capabilities 

of a regular language works well for channels of type T(m,l) with I = oo. The 

methods generally break down when we have I < oo. To address this limitation 

we utilize transducer functionality to decide error-detecting capabilities of regular 

languages. The work in, [24] introduces the method of using transducers to decide 

error-detecting capabilities. 

Theorem 5.7.1. [10, 1} Given a sequential machine, it is decidable in quadratic time 

whether it is functional . 

The reader is referred to [10, 1] for the proof. The construction in [10] works 

when the transducer being considered strictly reads one symbol and outputs one 

symbol for each transition (restricted sequential machine). Hence, it does not work 

when we consider our sequential machines realizing channels with insertion errors. 

Obviously, with insertion errors, the output might be more than one symbol per 

transition. Therefore, we concentrate on the construction provided in [1] as it works 

for real-time transducers (transducers that can output a set of words for a transition). 

Recall that our sequential machines are simply a special type of real-time transducers. 

The reader can refer to [1] for the complete proof of correctness. Nevertheless, for 

completeness we present the steps of this algorithm. More details can be seen in our 

implementation notes in Chapter 6. 
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For a sequential transducer T with a start state s, construct a product machine 

U as follows: 

1. If (p,a/x,q) and (p',a/x',q') are transitions in T then add to U the transition 

((p,p'),(x,x'),(q,q')). 

2. The start state of U is (s, s). 

3. The final states of U are all (/, / ' ) where both / and / ' are final states in T. 

4. Only keep states that can be reached from (s, s) and can reach a final state. 

After constructing U, assign to each state of U a value, which is either ZERO, 

or a pair of words in {(A, A), (A, u), (u, A)}, where A is the empty word and u is a 

nonempty word, as follows: 

1. The start state gets the value (A, A). 

2. If a state (p,p') has some value V and there is a transition ((p,p'), (x, x'), (q, q')) 

then (g, q') gets a value as follows: 

(a) If V = (y,y') and yx is a prefix of y'x', so that y'x' = yxu, then value = 

(X,u) 

(b) If V = (y,y') and y'x' is a prefix of yx, so that yx = y'x'u, then value 

=(U,A) 
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(c) Else, {value = ZERO; return NO } 

3. Repeat until a state gets two values or every transition has been seen. 

4. If every state has one value AND every final state of U has value (A, A) then 

output YES (T is functional) Else output NO. 

The figures below give an example of how we utilize this algorithm. 

Figure 5.7: An example transducer T 

b,bb^~Q2) 

Figure 5.8: U is a cross product construction from T in Figure 5.7 
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( l , K A , A > ) 

(1,2<A,6>) 

—(0,0 < A,T>) 

(2,1 < M > ) 

Figure 5.9: Assigning values to the trim part of U 

5.8 Deciding Error-Detection Using Transducer Func

tionality 

In this section we discuss the use of transducer functionality for deciding if a language 

is error-detecting for a channel. 

Theorem 5.8.1. [24] Given an automaton A accepting language L{A) and a trans

ducer T realizing a given channel, it is decidable if L is error-detecting for the channel 

realized by T . 

Proof. We refer the reader to [24] for the complete proof. Nonetheless, for complete

ness we have adopted the steps as follows. 

We assume that the channel transducer T is given in sequential form and that the 

automaton A is deterministic. 
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1. Construct transducer B = T \. A, which results by intersecting the input part of 

T with A. Hence, B realizes all pairs (w, z) such that (w, z) G T and w G L(A). 

Note that B is sequential, as it has the same transition labels with T. 

2. Make B pseudo-sequential using Theorem 5.6.1. 

3. Construct C = B ^ A, which results by intersecting the output part of B with 

A. Therefore, C realizes all pairs (w,z) such that (w,z) G T and w,z G L(A). 

Note that, as B is pseudo-sequential, Theorem 5.6.3 implies that C is also 

pseudo-sequential as well. 

4. Convert C to a sequential machine using Theorem 5.6.2. 

5. Decide if C is functional. 

6. If C is functional then L(A) is error-detecting for the channel realized by T; 

Otherwise it is not. 

• 

The algorithm operates in time (|T||A|2)2 = |T|2|^4|4. This is because the con

struction of B takes time ITH^I, the construction of C takes time |T||A|2, and the 

decision of whether C is functional takes quadratic time. The reader can refer to 

Section 6.2.7 for details on our implementation of this algorithm. 
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5.9 Computing Maximal Error-Detecting Capabil

ities 

In this section we present algorithms for the computation of maximal error-detecting 

capabilities of regular languages for various error models. We will utilize the tools 

developed in the preceding sections and chapters to achieve this goal. 

5.9.1 Overview of our Approach 

Recall that by definition an error model is simply a set of channels. Using the methods 

from Chapter 4, we can construct channels belonging to an error model. We then 

use the methods in the earlier sections of this chapter to decide if a regular language 

is error-detecting for a given channel. For a given error model, we systematically 

apply all the tools we described earlier to compute the maximal channel for which 

the regular language is error-detecting. 

Recall that for an error model C, a channel 7 G C is a C-maximal error-detecting 

capability of a regular language L, if L is error-detecting for 7 and L is not error-

detecting for another channel 7' that properly contains 7. 

5.9.2 The Er ror Model C°T [00]= {r(ra, 00): for all m > 1} 

This error model represents channels that allow a maximum of tn errors of type r in 

any given length of symbols passing through the channel. That is, 
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C° [oo] = { T ( 1 , OO), T(2, OO), T(3 , OO), . . . } . Below we present a couple of scenarios for 

this error model and, in each case, show how to compute the maximal error-detecting 

capability. 

Substitutions - <C° [00] = {u(m, 00): for all m > 1} 

This variation of the error model contains channels that only allow substitution errors. 

Hence, for a given m > 1, only rn substitutions are allowed in any length of symbols 

passing through, that is, 

C° [oo] = M l , 00), a(2, 00), a(3, 00),.. .} 

For this instance of the error model, the problem of computing maximal error-

detecting capabilities of a regular language reduces to computing the Hamming dis

tance of the language. Hence, given a regular language L we compute the Hamming 

distance H(L) of the language using Algorithm 5.1.1. 

The C° [oo]-maximal error-detecting capability of L is a(H(L) — l,oo) provided 

that H(L) — 1 > 1. Otherwise, L does not have error-detecting capabilities for the 

error model. 

The reader can look at Sections 6.2.3 and 6.3 for details of how we implemented 

this. 
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SID - C° 0 t 0 ( 5 [oo]= {a 0 i © 5(m, oo): for all m > 1} 

This SID variation of the error model allows substitutions, insertions and deletions. 

Therefore, for a given m > 1, only m errors, that can consist of substitutions, in

sertions and deletions, are allowed in any length of symbols passing through, that 

is, 

C°aQLQS [OO]={<T 0 L 0 5(1, oo), cr 0 /, 0 5(2, oo), a 0 i 0 5(3, o o ) , . . . } 

In this variation of the error model, the problem of computing maximal error-

detecting capabilities of a language is solved by computing the edit distance A of 

the language. Hence, given this error model and a language L, we compute the edit 

distance of L using Algorithm 5.2.1. 

The CgID [oo]-maximal error-detecting capability of L is a 0 L 0 5(A(L) — 1, oo) 

provided A(L) — 1 > 1. Otherwise, the language does not have any error-detecting 

capability for the error model. 

We have described our implementation of this in Section 6.2.4 and Section 6.3. 

5.9.3 The Error Model C\ [l]= {r(m, I): for any m wi th m < 1} 

In the model, Ĉ i [l]= {T(ITI,1) : for any m with m < I}, we have the error type r 

and length I of symbols fixed. As can be observed, we only have a finite number of 

channels to consider, that is, 

CM/]={r(l,0,r(2,0,.. . ,r(/-l,0}. 
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For a given language L, error types r and a value for I, we start assigning values 

to m from the range 1...(/ — 1). For each m, we use the algorithms in Chapter 4 to 

construct a sequential machine realizing the channel. We then use the algorithm in 

Section 5.8 to decide if L is error-detecting for the channel. The process continues until 

the first value of m is found for which L is not error-detecting for the channel. Ideally, 

the process can be sped up by using binary search to go through the values of m. 

However, because the size of the sequential machines generated grows exponentially 

with respect to m, from an implementation point of view, the binary search does not 

help and might hurt performance. The C* [£]-maximal error-detecting capability of 

L is T(m — 1,1), provided m > 1. Otherwise, L does not have any error-detecting 

capabilities for the error model. 

Details on how we implemented this have been included in Sections 6.3, 6.2.7 and 

6.2.5. 

5.9.4 The Er ro r Model C^ [m)= {r^m, I): for any / with I > m} 

In this error model, we have the error type r and the number m of errors fixed. Our 

goal is to find the smallest I for which a language is error-detecting for the channel 

T(m,l). 

Theorem 5.9.1. [26] 

For a given automaton A, accepting at least two words and a value of m, the 
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language L(A) is error-detecting for the channel r(m, I), for some I > m, if and only 

if it's error-detecting for r(m, 2ms2), where s is the number of states in A. 

The reader is referred to [26] for the proof and more details. Nonetheless, Theorem 

5.9.1 provides us with an upper bound on the values of / we need to consider. As can 

be observed, this reduces the number of channels to a finite set: 

{r(m, m + 1), r(m, m + 2 ) , . . . , r(m, 2ms2)} 

Therefore, for a given language L and m, we start assigning values to I from the 

range m + 1. . .2ms2, where s is the number of states of the automaton A whose 

language is L. The process stops when we find the smallest I for which L is error-

detecting for r(m,l). 

The C2 jm]-maximal error-detecting capability of L is r(m, MIN(l)), where MIN(l) 

is the smallest I > m for which L is error-detecting for T(TO, I). 

The reader can look at Section 6.3 for our implementation details for this. 



Chapter 6 

Implementation Details, Testing 

and Interacting with the System 

We have implemented all the relevant algorithms in this thesis using C++ and Grail 

[36]. In addition, we have created a web interface for interacting with the tools we 

have developed. This chapter gives some details on our implementation and shows 

how to interact with the system. 

6.1 Overall System Architecture 

The system has been implemented and tested on Linux and Windows platforms. It 

has three tiers: web tier, logical tier and data tier. Figure 6.1 shows the overall 

architecture of our implementation. The heart of our implementation is in the logical 

tier, which has been implemented in a modular fashion using C++. Hence, most 

classes we have written are fairly decoupled for added flexibility. 
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Figure 6.1: Overall system architecture 
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6.1.1 Web/Presentation Tier 

The presentation tier is composed of a web application written using PHP [34] and 

jQuery [15]. We have deployed this application on an Apache web server. It gets 

input from a user, submits it to the logical tier for processing, and renders the results 

from the logical tier back to the user. We have followed a Model-View-Controller 

pattern to develop the web application. The controller component of the application 

is implemented in submit Jobs, php and f unctions, php. It gets all the user input 

and action requested, passes it to the model for processing, and hands over control to 

the view component. The model is composed of the C++ components that process 

the requested job and make the result available to the view component. The view 

component is implemented in displayJobResults.php. It queries the model using 

a job id to retrieve the results and displays them to the user. Figure 6.2 shows the 

main web interface for interacting with the algorithms we have implemented. This 

web interface can be accessed using [4]. We have made available the source code for 

our implementation, including the PHP web application, via [3]. 
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Figure 6 2 Mam web interface for interacting with system 
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6.1.2 Logical Tier 

The logical tier contains the heart of our system. It consists of C++ modules that 

implement all the algorithms in this research. Some notable modules in the system 

deal with: 

1. Weighted shortest path 

2. Hamming distance of a regular language 

3. Edit distance of a regular language 

4. Construction of channels with sequential machines 

5. Converting from sequential to pseudo-sequential 

6. Converting from pseudo-sequential to sequential 

7. Transducer functionality 

8. Deciding error-detection 

9. Maximal error-detecting capabilities 

10. Several helper utilities 

All the modules we have developed are built either on top of or alongside the Grail 

C++ Library. We present more details on these modules later in this chapter. 
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6.1.3 Data Tier 

The data tier utilizes the filesystem to store useful data such as input, output and 

configuration details. Grail was originally designed to work with file based input and 

output. Hence, we have built our implementation to also use file input and output. 

This has performance implications when large data sets are used. A possible future 

improvement would be to include adapters for Grail that can utilize a database instead 

of the filesystem. 

6.2 Logical Tier I—A Detailed Look at Core Tools 

As mentioned earlier in the chapter, the logical tier is the biggest and most important 

part of our implementation, fn this section we provide a closer look at this core of our 

implementation. We present some useful information on relevant classes and methods 

that work together to create our logical tier. 

6.2.1 Relevant Grail Classes 

Here we outline the major and relevant Grail C++ library classes we use in our 

implementation. Refer to [37] for more details on Grail. Most classes in this library 

extensively use C++ templates. For brevity, we sometimes omit the template details 

in our implementation descriptions shown later in this chapter. 
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The class fm is used to represent a finite machine. Recall that the basic com

ponents of any finite state machine are states, transitions, transition labels from an 

alphabet, a start state and a set of final states. The class fm utilizes, among other 

support classes, bit, array, list, set, string, state and inst, to represent the com

ponents of a finite state machine. Notably, state implements the states while inst 

implements the transitions of a finite state machine respectively. 

As part of our implementation, we extended the functionality of some base classes 

to meet the requirements for our usage. Our general approach has been to extend 

a base class and make required additions to achieve our goals. For example, Grail 

only stores states as integers. Hence, it can not be used out-of-the-box for many of 

our automata because they require a state to store its meaning. Therefore, to work 

around this limitation we extended the base class fm and added a way for us to track 

the meaning of a state even though it is still stored as an integer. Since most of the 

classes in our implementation descend from fm, we have used Code Snippet 6.2.1 to 

show some relevant parts of the class. This should help in visualizing how the other 

classes in our implementation fit into the picture. 

Furthermore, the out-of-the-box Grail functionality only supports char and int 

alphabets. On the other hand, some of our automata implementation, such as chan

nels handling insertion errors, required an extension to Grail to use either an array 

of chars or string for alphabet symbols. We chose to implement the support for 
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string alphabets. 

Code Snippet 6.2.1. A partial view of the fm class 

class fm 

{ 

set<inst<Label> >arcs; // set of instructions 

set<state>start_states; // set of start states 

set<state>final_states; // set of final states 

public: 

fm() { ; } // default constructor 

void add_instruction(const inst<Label>& i); 

void set_finals(const set<state>& s); 

void set_starts(const set<state>& s); 

set<state>& sources(set<state>&) const; 

set<state>& sinks(set<state>&) const; 

set<state>& starts(set<state>& r) const 

int is_deterministic() const; 

int number_of_final_states() const; 

int number_of_states() const; 

~fm() { ; } // destructor 

}; 
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The significant classes we have added for our purposes are: MaximalFm, Trans

ducer, TransducerK, DistanceFm, ErrorFm and several other supporting classes. 

The class MaximalFm extends Grail's base finite machine class fm, and is the base 

class for most classes in our implementation. As noted earlier, Grail only stores 

states as integers. However, most of the finite machines in our work, such as all 

the constructions in Chapter 4, need to store the meaning of each state. Hence, 

to fill this gap, wc created MaximalFm, a descendant of fm, that adds our de

sired functionality. Specifically, MaximalFm adds on a map data structure called 

stringToStateLookUpMap, implemented as a hashmap. This map, working together 

with associated methods, provides a way for us to use Grail's underlying states while 

keeping track of the meaning of states as desired. In most cases, we only need to keep 

track of the meaning of a state when constructing our automata. After we construc

tion, we generally manipulate the automata like any other Grail constructed object. 

Code Snippet 6.2.2 shows a part of the class MaximalFm extending from fm. 
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Code Snippet 6.2.2. A partial view of the class MaximalFm extended from fm 

template< c lass Label > 

c lass MaximalFm:public fm <Label>{ 

hash_map<string,state> StringToStateLookUpMap; 

publ ic : 

MaximalFm(); 

bool addEmptySelfLoopsO ; 

in t getDiameterO ; 

s t a t e getStateFromMap(string s t r S t a t e ) ; 

>; 

In addition, we provide an example in Table 6.1 showing how the lookup map, 

StringToStateLookUpMap, would look for the sequential machine in Figure 4.2. 

StringToStateLookUpMap 
String State 
nnnn 
nnsn 
nnns 
nsns 
snsn 
nsnn 
nnss 
snnn 
nssn 
ssnn 
snns 

Grail State 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Table 6.1: Mapping of MaximalFm states to Grail's states 



85 

In the next sections, we provide details for the other classes and their methods, 

as we describe the functionality that utilizes them. 

6.2.2 Implementation of Weighted Shortest Path Computa

tion 

We have utilized the weighted shortest path algorithm as part of computing the 

Hamming distance and the edit distance of a regular language. To this end, we have 

implemented Dijkstra's shortest path algorithm [6, 28], in the class Graph. Our 

approach for utilizing this algorithm has been to to create a weighted graph based on 

the transitions and labels of the finite state machine to which we wish to apply the 

algorithm. We then apply Dijkstra's shortest path algorithm on the created graph. 

Code Snippet 6.2.3 shows some parts of the class Graph. 

We added the suitable constructor Graph( const fm<Label>& a ) that constructs 

a weighted graph based on the transitions of the input finite machine. We then uti

lize Dijkstra's algorithm to get the constructed graph's weighted shortest path and 

its associated weight. 

We also note that our implementation of this algorithm extends from that used 

in [19]. 
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Code Snippet 6.2.3. A partial view of the class Graph 

class GrapM 

public: 

Graph(int size); 

Graph( const fm<Label>& a ); 

~Graph(); 

void AddEdge( int from, const Labelfe, int to ); 

int GetSizeO ; 

int DeleteEdge( int from, int to ); 

void ShortestPaths_Dijkstra( const set<int>& sources, 

double distances[], 

int previousNode[], 

Label previousLabel[], 

double (*Distance)( const Labelfe ) ); 

private: 

GraphListNode<Label>** AdgacencyList; 

int MaxNode; 

friend class DistanceFm<Label>; 

} 

6.2.3 Implementation of Hamming Distance Computation 

Our implementation for computing the Hamming distance of a regular language uses 

the classes Graph, ErrorFm and DistanceFm. ErrorFm realizes, among other 

things, a finite machine that transforms words of the input regular language to other 

words of the same language using substitution errors. Recall that a description of 
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such a finite machine is given in Section 5.1. D i s t a n c e F m is utilized for creating 

a Graph object based on an input ErrorFm object, and subsequently for applying 

Dijkstra's shortest path algorithm to return the Hamming distance. 

Note that both ErrorFm and D i s t a n c e F m are also used in the process of com

puting the edit distance, as we will show shortly. The next code snippets show partial 

details of the two classes, and an example of how the two classes are used when com

puting the Hamming distance. 

C o d e Snippet 6.2.4. Partial view of the class ErrorFm 

c l a s s Er ro rFm:pub l i c Transducer<Label>{ 

p u b l i c : 

E r r o r F m ( ) { ; } ; 

ErrorFm(const fm A l , c o n s t fm A2,EMPTY_TRANSITI0N); 

ErrorFm(const MaximalFmfe A1,cons t MaximalFmfe A2,EMPTY_TRANSITI0N, 

cons t s t r i n g d i s tanceType ) ; 

ErrorFm(const ErrorFm<Label> A2, cons t ErrorFm<Label> B); 

ErrorFm(const fm<Label>& A l ) ; 

ErrorFm(const TransducerK<Label>& Tk) ; 

ErrorFm(const set<Label> a l p h a ) ; 

} ; 

There are several ErrorFm constructors depending on the need. For exam

ple, ErrorFm(Al,A2, ' " ' , 'Hamming') would create an automaton accepting all edit 

strings over {x/y : x, y G £ } , for which the input part is accepted by automaton Al 

and the output part is accepted by A2— see Section 5.1. 
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Code Snippet 6.2.5. Partial view of the class DistanceFm 

class DistanceFm : protected Transducer <Label> 

{ 

public: 

DistanceFm(...); 

String< Pair<Label> >& GetMinWord(...); 

private: 

> 

Code Snippet 6.2.6. Partial view of driver code of computing the Hamming distance 

MaximalFm<string> myFml = MaximalFm<string>(inputFm); 

MaximalFm<string> myFm2 = MaximalFm<string>(inputFm); 

ErrorFm<string> fmA( myFml, myFm2,"~","Hamming"); 

ErrorFm<string> fmB (myFml .getAlphabetO); 

ErrorFm<string> errorFm; 

errorFm.cross_product(fmA,fmB); 

DistanceFm<string> hamDistFm(errorFm); 

//Use Djikstra's algorithm 

hamDistFm.GetMinWord(editHammingStr,""", resultHammingDistance); 

pair<int,String<Pair<string>» result(resultHammingDistance,editHammingStr); 
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6.2.4 Implementation of Edit Distance Computation 

Computing the edit distance utilizes the already described classes ErrorFm, Dis-

tanceFm and Graph, in conjunction with the class TransducerK. TransducerK 

implements Tj and ErrorFm realizes B, as both specified in Algorithm 5.2.1. Code 

Snippet 6.2.7 shows a part of TransducerK and Code Snippet 6.2.8 shows a part of 

the driver code that computes the edit distance using the mentioned classes. 

Code Snippet 6.2.7. The partial view of the class TransduerK showing methods 

for generating each of the 19 types of transitions described in [27] 

class TransducerK:public Transducer<Label>{ 

publ ic : 

TransducerK(){;} 

TransducerK(set<Label>& alphabet.int k,const Label &EMPTY_TRANSITION); 

state encodeStateToGrailFormat(...); 

void make_i_j_E_a_i_j_p_l(int i, int j);// #1 (if j<k-l) 

void make_i_j_E_a_i_ak(int i, int j.int k); // #2 (if j=k-l 

void make_i_j_a_E_i_p_l_j(int i, int j);// #3 if i < k-1 

void make_i_j_a_E_ak_j(int i.int j, int k);// #4 if i=k-l 

void make_i_j_to_i_p_l_j_p_l(int i,int j);// #5 

void make_i_j_a_b_to_ak_j_p_l(int i.int j,int k);// #6 

void make_i_j_a_b_to_i_p_l_bk(int i,int j.int k);// #7 

void make_i_j_to_k_k(int i.int j);// #8 if i=j=k-l 

void make_kk_x_y_kk(int i, int j);// #9 

void make_ak_j_b_E_ak_j(int j,int k);// #10 

void make_ak_j_b_c_ak_j_p_l(int j,int k);// #11 
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void make_ak_j_b_c_k_k(int j.int k);// #12 

void make_ak_j_E_b_ak_j_p_l(int j,int k);// #13 

void make_ak_j_E_b_k_k(int j,int k);// #14 

void make_i_ak_E_b_i_ak(int i, int k);// #15 

void make_i_ak_b_c_i_p_l_ak(int i.int k);// #16 

void make_i_ak_b_c_k_k(int i, int k); // #17 

void make_i_ak_b_E_i_p_l_ak(int i, int k);// #18 

void make_i_ak_b_E_k_k(int i, int k);// #19 

> 

Code Snippet 6.2.8. A partial view of the driver code for computing the edit distance 

//Create transducer whose input and output words belong to the input fm 

ErrorFm<string> fmB( myFml, myFm2,"~","Edit"); 

ErrorFm<string> errorFm; 

for(int i=l;i<diameter;i++) { 

TransducerK<string> Tk(myFml.getAlphabet(),i,"~"); 

ErrorFm<string> fmTk(Tk); 

errorFm.cross_product(fmB,fmTk); 

DistanceFm<string> editDistFm(errorFm); 

editDistFm.GetMinWord(tempEditString,"~", tempEditDistance); 

if(tempEditDistance < resultEditDistance) { 

editDistance=tempEditDistance; 

editString=tempEditString; 

} 

} 

pair<int,String<Pair<string>» result(editDistance,editString); 
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6.2.5 Implementation of Channel Construction Using Sequen

tial Machines 

To implement all the channels described in Chapter 4, and the other specialized 

transducers in our research, we have created the class Transducer which extends 

MaximalFm. Instead of having separate classes for each type of channel, we utilize 

the same class and simply leverage the different constructors and methods to construct 

the sequential machine that realizes a desired channel. This class also relies on the 

ability to track the meaning of each state that is implemented in MaximalFm. The 

code snippet below shows a part of TransducerFm. 

Code Snippet 6.2.9. A partial view of the class Transducer 

class Transducer:public MaximalFm < Pair<Label> >{ 

set<Label> currentAlphabet; 

bool channelConstructed; 

s t r i ng currentErrorType; 

map<int,Pair<string> > mapOfUValues; 

publ ic : 

Transducer(){;}; 

Transducer(const fm& Al,const fm& A2 ); 

Transducer(Transducer T,const fm& Al,string whichSide); 

Transducer(const MaximalFmfe Al,const MaximalFmfe A2 ); 

Transducer(const string errorType,int m,int l,set& alphabet); 

Transducer(const MaximalFmfe Al); 

Transducer(const fm<Pair> sourceFm); 
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bool createSubChannel(int m,int l,set alphabet); 

bool createlnsChanneKint m,int l,set alphabet); 

bool createDelChanneKint m.int 1, const set alphabet); 

bool createSublnsChanneKint m.int l,set alphabet); 

bool createSubDelChannel(const int m,int l,set alphabet); 

bool createlnsDelChannel(const int m,int l.set alphabet); 

bool createSublnsDelChannel(const int m.int l,set alphabet); 

bool intersectWithlnput(Transducer inputTransducer,fm inputFm); 

bool intersectWithOutput(Transducer inputTransducer,fm inputFm); 

bool isTransducerFunctional(Transducer T); 

bool convertFromSequentialToPseudoO; 

bool convertFromPseudoToSequentialQ; 

>; 

In addition, below is a code snippet showing one of the constructors and how it 

constructs the desired channel based on the input error type. 

Code Snippet 6.2.10. A constructor for the class SidFm 

SidFm(const s t r i ng errorType, int m, in t 1, set<Label> alphabet) 

{ 

currentErrorType = errorType; 

currentAlphabet = alphabet; 

if (S.compare(errorType) == 0) { 

channelConstructed = createSubChannel(m,l,alphabet); 

} else if (I.compare(errorType) == 0) { 
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channelConstructed = createlnsChannel(m,l,alphabet); 

y else if (D.compare(errorType) == 0) { 

channelConstructed = createDelChannel(m,l,alphabet); 

} else if (SI.compare(errorModel) == 0) { 

channelConstructed = createSublnsChannel(m,l,alphabet); 

> else if (SD.compare(errorModel) == 0) { 

channelConstructed = createSubDelChannel(m,l,alphabet); 

} else if (ID.compare(errorModel) == 0) { 

channelConstructed = createlnsDelChannel(m,l,alphabet); 

} else if (SID.compare(errorModel) == 0) { 

channelConstructed = createSublnsDelChannel(m,l,alphabet); 

> 

> 

In a typical scenario utilizing this class, we are given the number of errors m, the 

type r, the length I being considered and an alphabet that is either derived from a 

finite machine or is entered separately. We construct the sequential machine realizing 

the channel by creating an instance of Transducer using a suitable constructor in 

the class, such as 

Transducer(const s t r i ng errorType,int m, in t 1, set alphabet) . 

Based on the error type, the constructor then calls a suitable method, such as 

createSubChannel(m,l,alphabet), to create all the states and transitions of the 

desired sequential machine. 

Another typical scenario is when users enter their own channel transducer in a 
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Grail-like format. In this case, the default constructor Transducer () is used, followed 

by a call to a utility method to load the transducer from the user-provided input. 

6.2.6 Implementation of Transducer Functionality Algorithm 

We use the class Transducer, described above, to decide if a transducer is functional. 

Specifically, we use the method isTransducerFunctionalO to implement the rules 

and constructs in Section 5.7, for deciding if the given sequential machine is functional. 

We have made this generic so that it can be applied on a sequential machine that has 

either been generated or has been entered through user input. 

6.2.7 Implementation of Error-Detecting Capability Algo

rithm 

Deciding error-detecting capabilities of an input regular language for a channel is an 

application of the modules described in the preceding sections. Specifically, to de

cide if a language is error-detecting for a channel, we use the class Transducer to 

either load a user-entered sequential machine realizing the channel or generate a new 

sequential machine realizing the channel using user-entered parameters of m, I and 

r. We trust that having the option for a user-entered sequential machine realizing 

some channel opens our tools up for others who might want to test channels that 

we have not covered. We then call Transducer's methods intersectWithlnputO 
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and intersectWithOutputO to generate a sequential machine based on the chan

nel, but having the input and output words that belong to the input regular lan

guage. Note that Transducer has the methods convertFromSequentialToPseudoO 

and convertFromPseudoToSequentiaK) for converting from sequential to pseudo-

sequential and vice-versa, when necessary. These methods are useful when dealing 

with channels that involve insertions as the resulting transducer after intersecting 

might not be sequential. We then call the method isTransducerFunctionalO to 

decide the functionality of the resulting transducer. If the transducer is functional 

then the input regular language is error-detecting for the channel. Otherwise, it is 

not. 

6.3 Logical Tier II—Implementation of Maximal 

Error-Detecting Capabilities 

This module applies the tools described in previous sections to compute maximal 

error-detecting capabilities of a regular language for various error models. 

Recall that an error model C is a set of channels. A channel 7 is a C-maximal 

error-detecting capability of a regular language L if the following three conditions are 

are true: 

1. 7 is in C 

2. L is error-detecting for 7 
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3. L is not error-detecting for another channel 7' in C that properly contains 7. 

We use the method getMaximaK), directly callable from the main method in 

maximal. cpp, to compute the maximal error-detecting capabilities of a language L 

for a given error model C Currently, we only consider the error models described in 

Section 5.9. 

Next we show some more implementation details for the error models we have 

considered. 

6.3.1 Implementation for the Error Model C° [00] 

As noted in Section 5.9, computing maximal error-detecting capabilities for this error 

model involves computing the Hamming distance of the input regular language. The 

code snippet below shows a part of the method getMaximaK) showing how the 

computation proceeds for several error models including this one. Note that this 

error model is shown as SIGMA_INFTY_ER_MODEL() in the code. 

Code Snippet 6.3.1. The method computeUsingHammingO of the class Maxi-

malErrorDetecting Capability 

if (SID_INFTY_ER_MODEL().compare(errorModel) == 0) { 

getEditDistance(fmlnputFilename,outputFilename,"maximal"); 

> e lse if (SIGMA_INFTY_ER_MODEL().compare(errorModel) == 0) { 

getHammingDistance(fmlnputFilename,outputFilename,"maximal"); 

} e lse if (ANY_L_GT_M_ER_MODEL().compare(errorModel) == 0) { 

in t numStates=inputFm.number_of_states(); 
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int upperBound= 2 * m * numStates *numStates; 

if(isErrorDetecting(errorType,m,upperBound,inputFm.getAlphabet()) { 

for(int loopL = m+1; loopL <upperBound + 1; loopL++) { 

//Create channel 

Transducer myChannel(errorType, m, loopL,inputFm.getAlphabet()); 

//Intersect with input language on both input and output 

Transducer rTransducer = Transducer(myChannel,myFm,"InputOutput"); 

//Test if the resulting transducer is functional 

Transducer<string> U=Transducer(); 

isFunctional =U.isTransducerFunctional(rTransducer); 

if (isFunctional) { 

//Get the smallest 1 it is error-detecting for 

maximalL=loopL; 

} else { 

//stop as soon as we get an 1 it is not error-detecting for. 

break; 

} 

} 

} 

} else if (ANY_M_LT_L_ER_MODEL().compare(errorModel) == 0) { 

for (int loopM=l; loopM < 1; loopM++) { 

Transducer myChannel(errorType, loopM, l,inputFm.getAlphabet()); 

Transducer rTransducer = Transducer(myChannel,myFm,"InputOutput"); 

Transducer<string> U=Transducer<string>(); 

isFunctional =U.isTransducerFunctional(rTransducer); 

if (isFunctional) { 

//Get the largest m it is error-detecting for 
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maximalM=loopM; 

} else { 

//stop as soon as we get an m it is not error-detecting for. 

break; 

> 

} 

} 

6.3.2 Implementa t ions for the Er ror Model C°SID [oo] 

As before, this error model uses the edit distance for computing the maximal error-

detecting capabilities of a language. 

Code Snippet 6.3.1 includes the code for this error model. The error model is 

shown as SID_INFTY_ER_MODEL() in the code snippet. 

6.3.3 Implementa t ions for the Er ror Model C* [I] 

The error model C* [l]= {r(m, I): for any m with m < / } , described in Section 5.9.3 

is shown as ANY_M_LT_L_ER_MODEL() in Code Snippet 6.3.1. We compute the C* [l]-

maximal error-detecting capabilities of L by finding the largest m < I for which the 

language is error-detecting. 

6.3.4 Implementa t ions for the Er ror Model C^ [m] 

For this error model, C^ [m]= {r{m,i): for any / with I > m}, Code Snippet 6.3.1 

shows it as ANY_L_GT_M_ER_MODEL(). 
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Recall that the goal in this error model is to find the smallest / for which a language 

L is error-detecting for the channel T(m, I). We start by testing if L is error-detecting 

for the upper bound for I, as presented in Theorem 5.9.1. That is, create the channel 

T(m, 2ms2), where s2 is the number of states in the input finite machine, and test if 

L is error-detecting for it. If it is, then start a loop for the values of / in the range 

(m + 1 ) . . . 2ms2. For each I the process proceeds by testing if L is error-detecting for 

the current channel. The process stops when the first I is found for which L is not 

error-detecting for the channel T(m,l), and the channel T(m,l — 1) is the maximal 

error-detecting capability of L for the error model. 

6.4 Testing the System 

We tested all the algorithms in our implementation for correctness. Some of the test 

data we used can be accessed via [4]. In addition, we tested the main algorithms on 

three sequences Eb(n), Mb(n), L0(n) of automata of increasing size, that is, \Eb{n)\ < 

\Eb(n + 1)|, \Mb(n)\ < \Mb(n + 1)|, and \L0(n)\ < \LQ(n + 1)|. 

The main algorithms in this thesis are deciding error-detection (DED), computing 

Hamming distance (CHD), computing edit distance (CED) and computing maximal 

error-detection (CMED). Next we describe the test automata. After that we present 

our observed results, in terms of processing times, in Section 6.4.2. 
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6.4.1 Description of Test Input 

b/\b / \b / \b 

Figure 6.3: Depiction of Eb(n) 

The DFA in Figure 6.3 accepts the even parity code of length n. Even numbered 

states mean that the number of b's seen is even. Odd numbered states mean that the 

number of b's seen is odd. Every accepted word has an even number of b's. This is 

enforced in the last two transitions to the final state. This is the most well known 

code for detecting 1 substitution error per word (channel o"(l,co)). 

(n^T)_ (1000+ (n - 1)) 

b 

Figure 6.4: Depiction of Mb(n) 
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For the DFA in Figure 6.4, every accepted word has an even number of b's and a 

number of a's equal to 0(mod n). States r = 0 , . . . , n — 1 mean that the machine has 

seen an even number of o's and a number of a's equal to r(mod n). States 1000 + r 

mean that the machine has seen an odd number of o's and a number of a's equal to 

r(mod n). As an example, Figure 6.5 shows a depiction of M&(3). 

Figure 6.5: Depiction of M&(3) 

The third sequence L0(n) represents Levenshtein's codes [30] that are error-detecting 

for (i 0 5)(2, ex)). These are binary codes of length n defined as follows: 

L0(n) = {6i.. . bn | I Yl ibi I = ° ( m o d n + 1)} 

If we use a for 0, and b for 1, we can define a sequence of automata accepting 

L0(n) as follows. For each n < 3: 

• The start state is (0,0) 
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• The final state is (n, 0) 

• All other states are (i, s) with 1 < i < n — 1 and 0 < s < n. (s is the sum so 

far modulo (n + 1)). 

Figure 6.6 below shows a depiction of L0(n) and as an example, Figure 6.7 shows 

a depiction of L0(4). 

(T7o) ;5Ti',s) (n -1,o) 

(575) (»7s)' (M) 

' 6 

( M ) C^+LIC+L^M&^O-' («-i,i) 

Figure 6.6: Depiction of I/o(n) 

Figure 6.7: Depiction of L0(4) 
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Figure 6.8 shows two equivalent channels that can both introduce at most one 

transposition error. Transpose la uses substitutions and Transpose lb uses a combi

nation of a deletion and a special form of insertion. 

(J\b/a a/b/l^ 0\. i / /A a/ab
//'U 

b/b \ / 6/6 6/6 \ / 6/6 

© © 

Figure 6.8: Depiction of Transpose la and Transpose lb 

6.4.2 Some Empirical Test Results 

Below are the results from our testing. The tests were run on a 1.73 GHz processor 

with 8Gb of RAM. A table cell with no number in it means that we did not run that 

particular test or the processing time was so high that we stopped the test. 



DED 

Channel 

<r(l, OO) 

(t©<5)(l,oo) 

Transpose la 

Transpose lb 

n 

5 

10 

15 

20 

25 

5 

10 

15 

20 

25 

5 

10 

15 

20 

25 

5 

10 

15 

20 

25 

Processi] 
Eb{n) 
1 s 

21 s 

122 s 

508 s 

1142 s 

40 s 

929 s 

4775 s 

16635 s 

36392 s 

11 s 

603 s 

4697 s 

15438 s 

32920 s 

lis 
209 s 
2841 s 
8040 s 
20164 s 

ig Times 

Mb{n) 
2s 

33 s 

169 s 

648 s 

1770 s 

59 s 

759 s 

5873 s 

20313 s 

37124 s 

84 s 

1284 s 

7528 s 

25103 s 

54954 s 

24 s • 

364 s 

3998 s 

10992 s 

54979 s 

by Sequence 

L6{n) 
lis 

6060 s 

181 s 

11 s 

9212 s 

44 s 

37715 s 

Table 6.2: Processing times for Deciding Error-Detection 

6.4.3 Testing Summary 

We tested the main algorithms using sequences of automata that accept three classes 

of codes, Eb(n), Mb(n),L0(n). The tests helped to validate the correctness of our 

implementation. In addition, they provided us with some insights on performance. 

The processing times increased with the size of the input automata. As the running 

times of these tests are quite high, we did not do further tests on larger automata, in 

particular for the Maximal Error-Detection Capability problem. 



105 

CMED 

Error Model/Parameters 

C° [oo] (Uses CHD) 

C ° 0 t 0 , [oo] (Uses CED) 

CJ. \l}=a{m,l), with 1=3 

C2
a [m]= {a(m,l), with m=2 

n 

5 
10 
15 
5 
10 
5 
10 
5 
10 

Processing Times by Sequence 
Eb(n) Mb(n) Le{n) 
0 s 
0 s 
1 s 
14 s 
206 s 
23 s 
4379 s 
388 s 

13 s 
19 s 
174 s 

1 s 
48 s 
794 s 
30 s 
4368 s 
29 s 

232 s 

Table 6.3: Processing times for Computing Maximal Error-Detecting Capability 

As the channel Transpose la involves no insertions and deletions, the transducer 

functionality algorithm does not do the pseudo-sequential conversions—see Section 

5.8—for this type of error-detection, whereas in the case of the channel Transpose lb, -

these conversions are necessary. Despite this, the running times for the tests involving 

Transpose la are higher than those where Transpose lb is involved. By looking at 

the execution logs of these tests we found that the product machines U constructed 

in the tests involving Transpose la were much larger than the corresponding product 

machines in the tests for Transpose lb. In addition, the execution logs revealed that 

most of the processing time was spent on intersections and deciding functionality. 

We have made 120 of the tests we ran available via [3]. These tests can be 

downloaded and run locally. 
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6.5 Interacting with the System 

As mentioned earlier, we have created a web interface accessible via [4] for interacting 

with the tools we developed. Some of the computations such as computing the edit 

distance, intersecting transducers on input and output, and transducer functionality 

are computationally expensive and tend to take longer computation time as you 

increase the input size. Hence, for larger input we advise downloading the source code 

via [3] and running the code from the console. When the input from the web interface 

is large and the computation takes time, the browser request might be timed out and 

the computation stopped by the web server. On the other hand, running the program 

from the console ensures that it runs to the end even for extended computation times. 

The source code root folder has a readme. t x t file with instructions on how to compile 

and run the program from the console for both Linux and Windows platforms. In 

addition, the source code root has a folder called tes tData with some test input data. 



Chapter 7 

Conclusions and Future Work 

In this thesis, we investigated and implemented several existing and new concepts 

and algorithms related to the computation of error-detecting capabilities of regular 

languages. In this chapter, we conclude our findings and share our thoughts for 

possible future work. 

7.1 Conclusions 

As part of this research, we investigated the existing literature for related concepts 

and algorithms. We found some interesting concepts that helped us, and are worth 

studying on their own. For example, we found the algorithms for deciding transducer 

functionality really intriguing, and adapted one to work with sequential machines. 

We modeled SID channels using sequential machines in Chapter 4, and to our 

knowledge, this has never been done before. Furthermore, we extended the chan

nel constructions using sequential machines to homophonic channels which are less 

107 
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expensive to construct compared to SID channels. 

In Chapter 5, we adapted some existing algorithms and applied them to regular 

languages. We used the existing and our new algorithms for the purpose of computing 

error-detecting capabilities. Some of the algorithms included computing the Hamming 

distance and edit distance, intersecting a transducer on the input and output, and 

deciding transducer functionality with sequential machines. We introduced a new 

type of sequential machine called pseudo-sequential and showed how to use it as 

part of deciding the error-detection property for a regular language. In addition, 

in Section 5.9 we systematically and collectively applied all the existing and new 

algorithms, and showed how to implement the algorithms that compute the maximal 

error-detecting capabilities of a regular language for a several error models. 

A large part of our research was implementing, interacting and testing the algo

rithms we were dealing with. Our implementation was substantial and could be com

pletely documented in this thesis without dramatically increasing the size. Nonethe

less, we used Chapter 6 to provide an insight into our implementation. We learnt 

that implementing these algorithms is not a trivial matter, especially if the algorithm 

is given at a very high or theoretical level. We utilized the Grail C++ library for 

automata. Furthermore, we created a web interface for interacting with the system 

we implemented. Finally, we made the source code from our implementation available 

to the research community. It can be downloaded via the web interface we created. 
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7.2 Future Work 

This research work taught us a number of things and gave us some ideas on the 

direction we can take after this. 

Working with Grail showed us its strengths and weaknesses. Improvements that 

can be made to Grail include updating the code to newer versions and making the 

library work with several input and output mechanisms such as relational databases. 

In addition, the library could be updated to newer C++ standards so that it is easily 

portable to different platforms. 

The algorithms we implemented were expensive in terms of computational re

sources. Hence, this limited the size of machines they could reasonably work with. 

In the future we could rewrite the implementation to be run on high performance 

computing platforms such as ACEnet. This would let us work with larger automata 

and would let us submit a job which might need to run for an extended period of 

time. 

We applied the new concept of computing maximal error-detecting capabilities of 

languages to regular languages. In addition, we limited our focus to deterministic 

finite automata, and looked at a few error models. In the future we could expand the 

scope further to include non-deterministic automata, and other error models. 

We showed how to construct sequential machines realizing Homophonic channels, 

but did not implement them. These are theoretically less expensive to construct 
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and can prove useful in estimating error-detecting capabilities of regular languages. 

Future work can target implementing and investigating these further. 

As with any software implementation, there is always room for improvement. 

Obvious future improvements to our system would be increasing its efficiency, perfor

mance, robustness, usability and improving the processing times. 

In closing, we wish to express our belief that the technical contributions of this 

thesis bring us one step closer to the realization of a practical software capable of 

evaluating the quality of real-world languages in terms of their error-detecting capa

bilities. 
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