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Abstract

Formal Methods for Secure Software Construction

by Ben Goodspeed

The objective of this thesis is to evaluate the state of the art in formal methods usage
in secure computing. From this evaluation, we analyze the common components and
search for weaknesses within the common workflows of secure software construction.
An improved workflow is proposed and appropriate system requirements are discussed.
The systems are evaluated and further tools in the form of libraries of functions, data
types and proofs are provided to simplify work in the selected system. Future directions
include improved program and proof guidance via compiler error messages, and targeted
proof steps.

April 8, 2016



“There is no such thing as perfect security, only varying levels of insecurity.”

Salman Rushdie
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Chapter 1

Introduction

Computer security is a huge industry, one that costs consumers billions of dollars per year

[1]. The notion of security risk spans many areas of technology use, and is not limited to

the information technology sector. The Symantec study suggests the damages for a single

breach can reach nearly 200USD per record, and with some incidents affecting hundreds

of thousands of records; it is not a risk that can be ignored. The traditional area of focus

in computer security is cryptography in its various forms [2–13]. However, computer

security is also deeply connected to software development [14–17] and program/algorithm

correctness [18–21].

As a society we place a huge amount of trust in our computer systems [22, 23], and

fundamental insufficiencies in our definitions of security (and requirements generated

for our software systems) [24] suggest that this is a danger to us.

This leads to the key questions motivating this research: How are formal methods used

in computer security? Where have they been successful, and where have they fallen flat?

We found several patterns and commonalities in a great deal of the works cited herein,

and specifically, we find gaps in the common workflow (which we discuss in chapter 4).

Those observations lead us to put forward the hypothesis: “Dependent type systems

enable ‘Proof-driven development ’, which can reduce the efforts required

to construct software with provable properties”, which is described in detail in

chapter 6.

The workflow (which we refer to as the “common workflow”, figure 1.1) with the following

stages has been broadly employed by the papers cited here.

1
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1. Define security goals.

2. Produce specification or policy.

3. Produce model.

4. Prove the model meets the goals.

5. Implement a system based on the model.

Figure 1.1: The “Common Workflow”

1.1 Contributions and Organization

In this thesis, we provide the following contributions:

1. We introduce an alternative to the common workflow, which we call “Proof driven

development” (PDD). Proof-driven development represents an extension to ex-

isting test-driven development workflows, combined with new technology made

available by proof assistants and dependently typed languages. This contribution

is described in chapter 6.

2. We evaluate a collection of existing languages on the basis of their utility within a

PDD workflow. This evaluation includes extraction/compilation readiness, practi-

cality (in the form of performance and utility), and expressive power as measured

by their ability to universally quantify assertions. The selected language, Idris, as

well as these evaluations, are discussed in chapter 5.

3. We implement a practical example of a program from the security domain, namely

a login program. Along with a discussion of the design requirements of such a

program, we provide an analysis of some typical existing versions of such pro-

grams in current use. We develop our solution in the chosen language, Idris, and

prove several interesting properties about the behavior of our implementation. The

implementation, the properties and their proofs are described in chapter 7.

4. We provide implementations in Idris for several utility functions and benchmark

programs. These utilities (such as functions for computing permutations, cyclic

shifts, regular expression matchers, and numeric data types) serve as building

blocks for larger efforts. The benchmarks serve to justify the performance claims

about the selected language. These contributions are presented in chapter 8.

5. We provide several mathematical models and related lemmas to facilitate proofs.

For example, an Idris datatype representing homomorphisms as well as proofs of

transitivity of composition of these types, is provided and discussed in chapter 9.
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The remainder of the thesis is organized as follows:

1. Chapter 2 reviews and synthesizes the relevant topics surrounding formal methods

usage in computer security, it serves as the literature review for this work.

2. Chapter 3 discusses the mathematical components and background material re-

quired for formal verification, a survey of the use of formal methods in different

contexts, and acknowledges fundamental limitations (for example, we do not at-

tempt to prove the hardware in which the software runs is secure).

3. Chapter 4 provides an analysis of the common themes in the works cited herein,

a discussion of the remaining issues with the identified themes, and describes the

rationale for the contributions summarized above.

4. Chapters 5 through 9 present the contributions of this work.

5. Chapter 10 summarizes the benchmark results and the savings achieved by the

contributions given.

6. Chapter 11 discusses related works, indicating where the approaches are similar

and where they differ.

7. Chapter 12 reiterates the key contributions, and lays out potential directions for

future work.

1.2 Motivation for Formal Methods

Many security problems have subtle nuances that are difficult to explain or model pre-

cisely. Even when the problem is restricted to securing a single local system, the issue is

complex and intractable. Network configurations permit additional categories of insecu-

rity. Likewise, particular applications also permit new types of flaws (e.g. web servers,

database management systems) [25].

The flaws are so numerous that dedicated tracking has become necessary to determine

vulnerable versions of operating systems, software libraries, applications, network de-

vices, cryptographic protocols and even programming languages themselves. One such

repository is the Common Vulnerabilities and Exposures (CVE) database1. At the time

of writing, the archive contained over 70,000 documented vulnerabilities going back only

as far as 1999.

1https://cve.mitre.org/
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Loscocco notes that mandatory security2 – as defined in the Trusted Computer System

Evaluation Criteria (the so-called “Orange Book”) [26] – is “insufficient to meet the needs

of either the Department of Defense or private industry as it ignores critical properties

such as intransitivity and dynamic separation of duty” [24]. Loscocco further suggests

that mandatory access controls, including cryptographic data protection policies, require

support at the operating system (OS) level to be successful. His paper argues that

security must exist at every level, from the OS to the application level, through to the

network stack.

To quote a motivating posting to a popular encryption forum3:

[I]n the early to mid 1980’s, formal verification was clearly a dead end that

would never get anywhere. A boss of mine once asserted (circa 1988) that

there would never be a verified program that did anything terribly interest-

ing, and at time he seemed right.

Today, there is a formally verified microkernel called seL44, a formally verified

C compiler called CompCert5, a formally verified experimental web browser

called Quark6... [27]

This informal post suggests a renewed interest in formal methods, and new approaches to

circumvent a number of the challenges in formal verification of extremely large systems.

1.3 Definitions of security

Security can be defined broadly as “the degree of resistance to, or protection from, harm.

It applies to any vulnerable and valuable asset, such as a person, dwelling, community,

nation, or organization.”7 However, particular applications and groups require different

aspects of security. For example: cryptography goals might include non-repudiation

or data integrity. Systems with goals focused on confidentiality [28] require different

definitions than those focused on data integrity [29], which further differ from those

focused on information-flow [30]. Each of these prompted the need for their own formal

definition of security.

2See the glossary for working definitions of selected security terms.
3gmane.comp.encryption.general
4http://ssrg.nicta.com.au/projects/seL4/
5http://compcert.inria.fr/
6http://goto.ucsd.edu/quark/
7http://en.wikipedia.org/wiki/Security
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Different notions of the meaning of modeling [31–33] have caused confusion and mis-

matched expectations. These different definitions permit the precision necessary to

make a formal, refutable, and provable argument about the security of the system.

1.4 Trust

Trust is an important concept from all Department of Defense (DoD) publications. Their

guidelines published in the “rainbow series” [26, 34–38] are all based on producing/eval-

uating “trusted computing” systems.

Ken Thompson’s Turing award lecture [23] centers on the chains of trust that we rely

on in software. Trust is built by layers, and each tool used in the production of a system

has its own network of trust assumptions. In the lecture, he discusses a “theoretical”

quine (a self-outputting program) to be inserted in a compiler. The quine would detect

the compilation of a login program, and insert a backdoor. It would also detect the

compilation of a compiler, and insert both the login backdoor logic and the compiler

tampering logic. A compiler produced by this bugged compiler would then indefinitely

produce the backdoors in both classes of programs, leaving no source-level mechanism

able to detect the tampering.

Similarly, Wadlow [22] talks about the network of trust required to operate any sys-

tem. Every stakeholder, including internal developers/administrators and clients, is

necessarily endowed with a certain degree of trust (sometimes explicitly and sometimes

implicitly). He goes on to consider the implications of trusting a person or system; you

now implicitly trust what or whom they trust. The article discusses certain mitigat-

ing techniques and presents case studies where they were not applied (and the issues

that arose from missing such mitigating treatment). The popular “pretty good privacy”

(PGP)8 cryptosystem explicity deals with the issue of trust. The system uses trusted

“introducers” (other users trusted by the system) to receive unknown keys in a more

secure manner9.

Formal verification permits a level of trust in software systems that was previously

unobtainable. The remainder of this work discusses the challenges and opportunities

present in the current landscape of formal verification for secure software development.

8http://www.pgp.com
9http://en.wikipedia.org/wiki/Web of trust



Chapter 2

Literature Review

To examine the role that formal methods have had on security, we begin with the

history of formal modeling of computer security. Research began in the 1970’s with Bell

and Lapadula [28] in their seminal paper “Secure Computer Systems: Mathematical

Foundations”. They were among the first to formalize the issues at the core of the

burgeoning security problem of the era. Their formalism is based on finite state machines

[39, 40]. The key idea is that starting in a secure state and controlling transitions between

states allowed rigorous proofs of security to be achieved. Many adaptations of this model

followed and met with similar success [29, 30, 33, 41–43].

Initially the work was heavily concentrated around operating system research [28, 41, 44–

47], and it was often funded by the US department of defense [26, 34–38]. Following

the success of operating system security research (see section 2.1), we find similar ap-

plications of rigor to other specific disciplines and research lines. Particularly, we find

many applications in cryptography (see section 2.2), processes for developing software

& specification/design modeling (see section 2.3), quality assurance (see section 2.4), of-

fensive security for attack planning strategies (see section 2.5), programming languages

(see section 2.6), and secure string handling within languages (see section 2.7).

2.1 Operating systems and Hardware

Bell and Lapadula’s original model [28] sufficed for the simpler time sharing systems

that were prevalent at the time (predominately based on Multics). For modern oper-

ating system standards, such as Posix [48], and applications of secure operating system

6
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design to embedded systems [49] their model was insufficient. This is in some cases due

to theoretical limitations [39, 49] where the finiteness requirement of automata-based

systems becomes questionable. Similarly, the models broke down for parallel and dis-

tributed systems [43] and when networked communications were explicitly modeled [34].

Recent research has seen success with a fully formal-system verified microkernel called

seL4 [50].

The requirements and techniques used for security of operating systems are not entirely

disparate from those employed in a cryptographic context.

Indeed, the physical tamper proofing requirements demanded by high-level security stan-

dards [51] and embedded system security [49] are virtually identical to those postulated

by Goldwasser in describing the requirements for cryptographically guaranteed “one-

time” (single run) programs [10].

2.2 Cryptography

Goldwasser [2] was among the first to attempt to bridge the challenging gap of bringing

formal security proofs to the world of cryptography.

This area is challenging because cryptographic secrecy relies on the currently unproven

conjecture that certain problems in NP are not in P , which would imply that P 6= NP ,

where P represents the class of problems requiring only “polynomial time” to decide, and

NP represents those that can be decided in “polynomial time” by guessing a certificate.

Many cryptography systems rely on the difficulty of these problems [3–9, 11, 12, 40].

In particular, two such problems, the discrete logarithm problem and the integer fac-

torization problem form the basis of RSA and DES, which are widely deployed. If

efficient algorithms were to be found to solve these problems, the security of many cryp-

tographic systems would be compromised. Whether or not such efficient algorithms

exist, Goldwasser was able to prove other important aspects of cryptographic systems

such as resilience to message replay attacks (sending the same message repeatedly with-

out knowing the plain text contents) [3, 9]. Recent research trends have leveraged the

power of proof assistants [15, 52–62] to provide automatic validation of these crypto-

graphic security properties [12, 13].

Across these systems we find two basic approaches. The first is to leverage a declarative

system like Prolog wherein facts are stated about the system, then the system searches
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for a way to unify the facts with stated goals. We see this approach in several proofs of

cryptographic protocol security [6–8]. The alternative approach is based on constructive

logic (where the proofs are built by the user rather than searched for within the system

via a unification process). The latter approach generally requires a proof assistant or a

programming language with a strongly normalizing type system such as Martin-Löf [63]

or the Calculus of Inductive Constructions [58], and we see it used in the verification of

cryptographic primitives [12, 13].

2.3 Specification/Design

Specifications are the starting point of implementations. In some cases, the specifications

alone are published prior to any systems that satisfy them. These specifications include

cryptographic protocols and high level system designs [11, 32, 48, 51]. It is from these

specifications that the developer (or the person proving properties of the system) builds

his or her mental model. From the mental model a formal mathematical model is derived

and it is the mathematical model that is referenced during proofs.

This area has been made rigorous by formalizing the way specifications are described

and written [20], and how systems are modeled & designed [16, 64–66]. We saw the

formalization of the processes used to create software in the late 1990s and early 2000s

[17, 67–69].

2.4 Quality Assurance

Quality assurance, for our purposes, is the act of verifying that an implemented system

(per the workflow described in section 1.1) meets the goals or policy defined by the

specification phase.

This is often done by testing. Fundamentally, there is a divide between manual test-

ing (where a person operates the machine/runs the program) and automated testing

(where the machine consults an oracle [70] to determine the correct results). Formally,

procedures (such as ISO 9000 [71], clean room [72], and waterfall [73]) have been used

to facilitate manual testing and apply rigor to a human endeavor. Semi-recently, ag-

ile software development [16, 17, 67, 69] has pushed for new processes like test-driven

development (TDD) [68] to shift more of the work onto the computer. This has had a

positive effect on defect rates, in some cases reducing the number of defects by 50% [74].
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A parallel research track is finding appropriate test cases, usually done by “fuzzing”

(testing by generating a large quantity of inputs). Initially, these inputs were generated

at random, or guided by rules unrelated to the structure of the program being tested

[21]. This approach was improved by Earl et al. [75], and separately by Holler [21]

who used the formal grammar of the target language to help generate intelligent test

inputs. Historically, these types of analyses fall into the static or dynamic analysis

categories, though recent work has blurred the lines between the two. Static analysis

uses the structure of the code (or more commonly the structure of the abstract syntax

tree the compiler produces) to predict bugs. Typically, these types of bugs are found by

analyzing things like uncovered execution paths and focusing on the areas of greatest

complexity (on the idea that greater complexity implies the system is more likely to

have bugs) [18, 76]. Dynamic analysis focuses on the output of the program at runtime

[21, 75, 77].

2.5 Attack Planning

A popular technique in security evaluation, “penetration testing” is to attempt to break

into one’s own systems [21, 78–80]. Historically, this was performed ad-hoc, or based

on individual experience/intuition [81]. However, recent research shows that the task of

attack planning can be (partially) reduced to a decision & optimization problem [78, 79].

The key ideas here have been to explicitly model the uncertainty of the “opponent’s”

state. While loosely based on the finite state machine models from the historic Bell

LaPadula [28] formalization, it requires a Markov style decision procedure [82, 83] and

the goal is not to provide security but to compute an optimal strategy to break it.

2.6 Programming Languages

At first glance, the programming languages component makes up the last component in

the development workflow described in section 1.1. However, a substantial amount of

research has gone into building languages and systems that support security features by

default [14, 84–88]. Likewise, work has gone into adding support to existing languages

(often accomplished by adding annotations) [85, 87]. Finally, new paradigms of program-

ming like “dependent types” [54, 60–63, 88–91], proof by “tacticals” [15, 56, 57, 61, 92],

and reasoning via “separation logic” [53, 93, 94] have been leveraged to improve security.
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The theoretical framework of a programming language defines the limits of what can

be described by the primitives of the language. In the earliest languages (assembly

languages), the framework was dictated by the logic gate structures of the hardware

on which they ran [95]. Early higher level languages (ones that require translation or

compilation to run as machine code) such as LISP and Fortran were based on very early

formalisms of the lambda calculus[96] and Turing machines [97].

More recent advances in programming language theory and type theory gave rise to

theories like the calculus of inductive constructions (the CIC) [58], and Martin-Löf type

theory [63], itself a subset of the CIC. These theories gave rise to dependent types

[54, 90, 91], which form the basis of the systems Agda [60], Idris [61], Coq [56], and

Cayenne [62].

These latter languages/systems (Coq, Isabelle, Agda, Cayenne and Idris) belong to a

category of languages known as proof assistants. This is because they are capable of

encoding mathematical logic and formal proofs directly within them. In 2008, the famous

“4 color theorem” was indeed proven and formally verified with the Coq proof assistant

[98]. Originally, these systems were built to codify and assist proofs on mathematical

structures. As such, the older variants (such as Coq, Isabelle) tend to provide more

support to users attempting to prove properties of things like Peano arithmetic, group

theory and higher order logic [15, 56, 99]. In order to accomplish the tasks most large

scale programs require (such as input/ouput, or mutable state/data structures), complex

additional libraries must be added to these systems including elements like separation

logic [53, 93] and monad constructs [100].

Several of these proof assistant languages, including Coq and Idris support dependent

types. These are data types that are defined in terms of the values of other types. A

classical example of this is the vector data type, wherein the number of elements in the

vector is a part of the type itself. More formally, a dependent type is a family of types,

each indexed by the dependent value. This is distinct from parameterized types, such

as generics in Java and C# (e.g. a vector of real numbers), where the new type depends

on another type (e.g. the real numbers), not the value of the other type.

A substantial amount of effort is required to bring software engineering to the level of

mathematical certainty. According to Ricketts, in his 2009 paper “Automating Formal

Proofs for Reactive Systems” [14]:
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”Implementing the kernel for the seL4 [50] verified OS took only 2 person

months, while verifying those roughly 9,000 lines of C code required over 20

person years.”

The newer systems like Agda, Cayenne and Idris have tried to start with a more “industry

friendly” (versus mathematician friendly) basis [60, 61]. As such, they require less

development effort to do common monad-based computations [54], including side effects

(such as mutable data structures) and input/output.

Despite the effort required, a number of successes in “real world” industry-relevant

programs have been achieved such as: seL4, the verified microkernel [50]; CompCert, the

verified C compiler [101]; Quark, the verified web browser [84]; and verified cryptographic

systems [12, 13].

2.7 String Handling

String handling is an important part of practical programming. Nearly all large scale

programs interact with strings in one way or another. A large number of security vul-

nerabilities1 have been the direct result of unsafe string handling in the C programming

language.

Many attempts have been made to solve the problem, even within the C family of

languages. For example C++ allows both the C-style strings and an object oriented

version. This causes mismatches of libraries and has caused conversion issues.

There are many representations of strings both in mathematics and in practical im-

plementations. Each one has different strengths and weaknesses. Likewise, some lend

themselves more readily to building rigorous libraries than others. All of these represen-

tations and properties and libraries suggest a single core of mathematical structure that

is available regardless of representation, and it is on this core that we can build reliable

string handling.

Strings are used heavily in industry e.g. all web applications render templates, console

programs use them to produce output and consume input, etc. However, they are also

important theoretically, as automata theory (including deterministic, non-deterministic

and regular varieties) essentially deals in words over an alphabet.

1https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=string
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With the recent advances in dependent type theories and proof assistants, we are now

in a position to formalize and automate the verification of string representations and

properties. We would expect strings to be a highly developed aspect of proof assistants

and of general purpose languages that support dependent types. Surprisingly, this is not

the case. Many such proof assistants merely delegate these things to the primitives of

the implementation language, and focus their efforts on other aspects of mathematics.

Each programming system represents strings differently. Some languages consider them

second class citizens (notably C), others treat them as first class entities. These choices

dictate the efficiency of the programs that use strings, the ease with which programs

may manipulate strings, and the ability of the user (or the system itself) to reason about

the contents or state of strings.



Chapter 3

Background

3.1 Building Blocks

This section describes the mathematical tools used to build and evaluate formal models.

Many of the models described in this thesis are composed of many of the following basic

components. In more modern formalisms such as proof assistant systems, these building

blocks are deeply buried, and to do high level work with the systems deep knowledge

of these components is not always required. They are described here for the sake of

completeness.

3.1.1 Lattices

A lattice structure frequently arises from the natural ordering occurring in permissions

and classification levels. The hierarchy of roles described by Bell and LaPadula in their

landmark 1973 paper “Secure Computer Systems: Mathematical Foundations” form a

lattice [28].

Similarly, Denning’s paper on secure information flow [102] shows that the operation

“flow” (the movement of information between objects in the system) forms a bounded

lattice, defined as:

”a set of objects (files etc), processes (programs running on behalf of some

agent); clearances; a mechanism to determine the resulting clearance level/-

classification of a combination of two objects; and a flow relationship operator

(indicating the permission of information to flow from object A to B).” [102]

13
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McLean’s Algebra of Security [103] develops a boolean algebra supporting mandatory

and discretionary access control. This particular structure forms a “distributive lattice”

(in the way that users and their permissions can be combined).

A textbook on lattice theory, “General Lattice Theory” [104] discusses the axioms and

properties required of lattices as well as their evolution from boolean algebras. Lattices

are useful in formal modeling because they allow a set of non-numeric disjoint elements

(for example users and classifications) to be combined and ordered as though they were

numeric.

3.1.2 Matrices

General access control rules are often stored in matrices. Typically rows and columns

represent subjects (users/processes) and objects (files/database rows), and store a list

of capabilities (reading/writing) that are currently permitted. This is used both for

mandatory (fundamental to the operation of the system) and discretionary access con-

trols.

Bell and LaPadula’s seminal model [28] stores access control lists in matrices. Brewer

and Nash’s Chinese Wall security protocol [42] stores access lists in a matrix indicating

permissions to interact with other conflict of interest classes. On the other hand, Graham

and Denning [47] store permissions such as “creation” and “deletion” in a matrix of

subjects and objects. Harrison, Ruzzo and Ullman [45] develop a protection scheme for

the secure control of the access matrix described by Graham and Denning. Landwehr’s

survey of formal models [105] discusses and compares some of the above matrix-based

implementations.

Sarraute [78] used partially observable Markov decision processes to model unknown

state and scanning process for use in attack planning and penetration testing. In these

hidden Markov models (and in general Markov systems) the state transition probability

is stored in a matrix. Solving the system of matrix equations for the optimal policy is

a computationally intensive (cubic) operation. As such, alternative mechanisms such as

dynamic programming have been employed [83].

Often a matrix is a natural way to store 2-dimensional data in a software system. How-

ever on some occasions (such as described above for the Markov model), the matrix-based

formulation permits general results from linear algebra to be used in a new setting. The

Markov case above is an example of this crossover. If the system was modeled in another
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way, then it is possible the use of iterative methods to find approximate solutions may

not have been found.

3.1.3 Finite State Machines

Beginning with Bell and LaPadula’s early work [28] focusing on secure states and secure

transitions between them, many security models have been formalized as finite state

machines.

McLean [32] discusses Bell’s model and points out some of the challenges in defining

the scope of what is protected/secure, and the limitations of the theorems arising from

those definitions.

Biba’s work [29] is of much the same structure and formalism as Bell’s. Where Bell

focused on confidentiality, Biba focused on integrity. However, this change was largely

accomplished by inverting the direction of the lattice structure described in section 3.1.1,

without changing the overall structure of the state nor the transition function.

Clark and Wilson’s model [41] also focuses on transitions between states. These are

defined by the process, the user and the data (constrained or unconstrained). The

model then ensures the “internal” and “external” integrity and consistency of the system

is maintained.

Benson [43] developed a centralized, parallel, and distributed (CPD) model with sim-

ilar properties to Bell and LaPadula’s. His model adds assurance and the required

mechanisms to confirm that all interleaving of instruction sequences (this is especially

important in the parallel case) result in a secure state throughout the operation of the

system. Other variants of the model (specifically the centralized and distributed cases)

deal with models very similar to Bell’s, save for the number and location of the “reference

monitor(s)”.

Lotz [49] extends the work begun by Bell and LaPadula into a model capable of proving

security properties at the hardware/embedded system level. The formalism is still state

and transition based, but requires a slightly more complex state machine. In particular,

some standard aspects of automata theory requiring finiteness are relaxed.

A standard reference for automata theory is Sipser’s Theory of Computation [40]. A

more advanced branch of automata theory, including automata on infinite state spaces

as used above, is described by Thomas in “Automata on Infinite Objects” [39].
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3.1.4 Zero Knowledge/Interactive Proof

Cryptography and general message exchange protocols have been successfully analyzed

using different proof and modeling techniques than most single-system mechanisms.

Goldwasser makes extensive use of zero knowledge (interactive) proofs in his “Search for

Provably Secure Cryptosystems” [2] . An interactive proof is one by which a challenger

can query the holder of information repeatedly in order to convince himself or herself

that the information holder does in fact hold the information. It is important to note

that zero knowledge proofs (and interactive proofs in general) are not “proofs” in the

mathematically rigorous sense of the word. Because they are based on individual correct

“guesses”, the number of trials can increase the probability of correctness to any arbi-

trary confidence level. Zero knowledge proofs are useful because they do not leak any

information about the secret to the challenger, only that the holder does indeed possess

the secret.

3.1.5 Lambda Calculus and Process Calculi

The lambda calculus is a general mathematical construct used to define and evaluate

functions. It is symbolic in its computation, binding values to variables as evaluation

occurs.

The typed lambda calculus (a lambda calculus extended with a type system) is used

in Hicks’ Secure Typed Languages [85]. Hick’s paper describes language extensions (fo-

cusing on a particular implementation for Java) that enable the encoding of security

policy information along with function and method definitions. The Coq proof assistant

[15], also makes use of an even more refined variant of the typed lambda calculus (the

“Calculus of Constructions” [58]). Building on Coq and making heavy use of depen-

dent types (which are data types defined algebraically on top of other types), Chlipala

[54] discusses “certified programming”, which in this case a “certificate” means that a

program meets its specification. In particular, Chlipala states:

“For instance, the type of an array might include a program expression giving

the size of the array, making it possible to verify absence of out-of-bounds

accesses statically. Dependent types can go even further than this, effectively

capturing any correctness property in a type.” [54]
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Abadi [7] describes the SPI calculus, which is based on the π-calculus. The π-calculus

is a “process calculus”. Such calculi are focused on modeling processes (including sin-

gle threaded “sequential” programs and their multi-threaded counterparts) and their

communication channels. The SPI calculus extends the π-calculus with explicit crypto-

graphic “primitives”, such as encryption and decryption. This work eventually merged

into the “applied π-calculus”, and is used by Blanchet’s automated cryptographic pro-

tocol verifier research (see section 3.1.6).

Furthermore, Datta [9] uses what he describes as the “cord calculus”, based on the

applied π and SPI calculi, to produce a composition system for security protocols. Due

to the extensive focus on composition of existing protocols, he has further modeled

elements in the calculus (specifically objects and processes) as categories; the morphisms

(or mappings/transformations) are processes from the calculus. This permits him to use

results from category theory, which requires only associativity of composed morphisms1.

3.1.6 Prolog

Prolog2 is a programming language based on logic. Many mainstream programming

languages are structured as a list of steps to take in a prescription for how to solve a

problem. Prolog, however, expects to be given a list of facts and rules, which are then

queried to determine if new claims are supported by the previously given (or generated)

facts.

Blanchet [8] uses Prolog rules to prove a given cryptographic protocol does not leak se-

crets. The system3 makes use of an intermediate representation to model the capabilities

of the attacker, the knowledge of the attacker, and the protocol itself. Later versions

integrate portions of the SPI calculus (the “applied π calculus”) as defined by Abadi [7].

3.1.7 Markov Decision Processes

A Markov process is a process with no “memory”. The transitions to future states are

determined entirely by the current state. A decision process is a Markov system with

rewards for each state, and a valuation function that determines the value (present and

discounted future) of being in a given state, the goal being to maximize the value by

1As opposed to other more restrictive algebraic structures which often require distributivity, annihi-
lator elements or other constructs his formalism does not guarantee

2http://en.wikipedia.org/wiki/Prolog
3http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
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producing an optimal policy. An optimal policy always exists according to Bellman

equations [82].

In a Partially Observable Markov Decision Process (POMDP), the exact state of the

system is not known, but is a probability distribution over the state space based on the

belief state (the path that was statistically likely to have occurred), and the associated

value.

Attack planning problems have been modeled as hidden Markov models [78, 79]. In clas-

sical planning, the assumption is that the state (the operating system and other software

configuration) of the target machine is known to the attacker. In practice, however, the

attacker lacks exact knowledge of the system (or network) to be attacked. This un-

certainty can be modeled better as a POMDP than using deterministic or ‘classical’

planning. Explicitly modeling this uncertainty leads to better decision making in the

attack planning process (e.g. “when should a scan for more information take place?”,

or “which system should be targeted next?”).

Details about general Markov processes can be found in Puterman’s text [82], and dy-

namic programming solutions to solving for the optimal policy (set of actions to take

given the belief state) can be found in Sondik’s paper [83].

3.1.8 Formal Verification and Proof assistants

Formal verification of software is important because testing an arbitrarily large number

of examples does not prove a claim. Exhaustive verification for even simple operations

becomes infeasible due to the size of the data types being verified. For example, a binary

operation on IEEE4 floating point numbers would require verification of approximately

280 values. Proof assistants can be employed to both generate and machine-verify formal,

rigorous proofs. The Metamath archive maintains a list of machine-verified proofs5, with

over 10,000 theorems as of the time of writing.

Pierce [15] describes the Coq proof assistant system, a system based on the typed lambda

calculus (specifically the calculus of inductive constructions [58]). Coq uses the Curry-

Howard isomorphism where terms in the given type system correspond to formal deduc-

tions. Essentially this permits a valid transition from type “A” to type “B” (in the form

4IEEE standard number 754: http://grouper.ieee.org/groups/754/
5http://us.metamath.org/
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of a compilable program in Coq) to be treated as a proof that the proposition associated

with “A” implies the proposition associated with “B”.

Paulson [6] and Malecha [106] discuss the use of “traces” (message exchanges) and the

Isabelle theorem prover 6 to verify cryptographic protocols. In Malecha’s case, traces are

required to prove input-output (IO) properties of the system. The languages for proof

assistants (like Coq and Isabelle) are restricted subsets of pure functional languages,

which lack the direct capacity for side-effects (all forms of IO are considered side effects).

However, since side effects can be essential to the operation (and security) of a program,

these traces formally encode which side effects are permissible (or necessary).

Coq and Isabelle represent two of many theorem provers. Different approaches some-

times use different strategies for model checking, term rewriting, and thoroughness of

the included type systems and proof databases. Bishop’s text “Computer Security: Art

and Science” [107] has a detailed and thorough chapter on automatic verifiers and proof

assistants. From the early Boyer-Moore theorem prover (NQTHM)7 (a LISP based sys-

tem), to ACL28 (an updated version of NQTHM capable of running the system as well

as proving properties of the model), to the Prototype Verification System9, and the

Symbolic Model Verifier10, a number of approaches are compared and discussed, each

with the goal of system security verification.

3.1.9 Category Theory

Category theory forms the basis of several formal semantics of programming languages

[108, 109]. It is also critical for the formalization of Monads and Monoids (see further

discussion in section 3.5), which form the basis of all stateful function handling in func-

tional languages like Haskell [110] and Idris [61]. They are used as a mechanism to isolate

the unpredictable effects of methods that interact with the world (for example, reading

from the keyboard) by isolating the interaction in a “monadic computational context”

[108, 111]. Similarly, they form the basis for Separation logic [53, 93]. Separation logic

is a tool used to formally reason about effectful computation. This is accomplished by

sequential chaining of commands given matching pre- and post-conditions (a technique

pioneered by Hoare [94]).

6http://www.cl.cam.ac.uk/research/hvg/Isabelle/
7http://www.cs.utexas.edu/users/moore/best-ideas/nqthm/
8A Computational Logic for Lisp: http://www.cs.utexas.edu/users/moore/acl2/index.html
9http://pvs.csl.sri.com/

10http://www.cs.cmu.edu/ modelcheck/smv.html
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3.1.10 Secure Typed Languages

A related approach to those described in section 3.1.5 and 3.1.8 is to augment existing

languages with constructs to support security policy encoding. Hicks [85] describes

extensions to operating systems and languages (particularly those running the Java

Virtual Machine) to provide security labels (such as classification levels and sensitive

information flow tagging). These augmentations permit automatic verification of policies

and information flows. However, because these are designed after the original core

language they are attached to, they are generally not supported by the entire toolchain.

3.2 Uses in defensive security

Typically, when a formal model of security is given it is to support a security policy.

Only recently were models of security put forth from an attackers point of view. These

are discussed in section 3.3.

As different security goals require different mechanisms for protection and control, dif-

ferent models have been deployed in different areas of application.

Some modeling came from military (Department of Defense) sponsored research in

trusted systems [26], while others adapted previous works to new environments such

as networks [34], and database management systems [35]. Modern reinterpretation of

these criteria, merged with similar works developed in Europe and Asia, have been

bundled as the Common Criteria [51].

Modern society has certain laws that necessitate the appropriate protection of data. In

Canada, the storage of financial data, sensitive personal data, and similar “valuable”

data is governed by the Personal Information Protection and Electronic Documents

Act11. Similarly, medical records and all health services data are protected by the

Health Information Protection Act (HIPA)12.

3.2.1 Operating Systems

The operating system forms the core layer of security in software systems (firmware and

embedded systems can be viewed as having an embedded microkernel). Some unique

11PIPEDA: http://www.priv.gc.ca/leg c/leg c p e.asp
12http://www.e-laws.gov.on.ca/html/statutes/english/elaws statutes 04p03 e.htm
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aspects of the security of such systems are discussed by Lotz [49], which built on and

extended years of work on general operating system security.

Security issues became more evident as systems moved from single-user “batch” systems

to “time share” systems with multiple users. While Bell’s early work [28] dealt with an

abstraction of a system, the work was motivated by the Multics operating system.

Requirements for a trusted system, including mandatory and discretionary access con-

trols, privilege levels, and levels of trusted systems (along with guidelines to evaluate and

rate systems) were codified by the Department of Defense in the “Orange Book” [26].

This started their “Rainbow Series” of books on trusted systems, networks, distributed

systems, and databases.

The guidelines from the Department of Defense, along with European equivalent agen-

cies, were eventually merged to provide the Common Criteria [51] guidelines. These

guidelines indicate the required steps to take in order to certify a system, including

steps on modeling the system, proofs, and the requirements to meet each assurance

level.

Graham and Denning [47] discuss a matrix based model of an access control list (ACL).

ACLs are used by many operating system security models to indicate whether or not

subjects (users/processes they run) can interact (create/read/update/delete, “CRUD”)

with system objects (e.g. files).

Harrison et al [45] take Graham and Denning’s ACL work further by showing a protection

scheme for the ACL matrix itself. They also make the notable step of demonstrating

the undecidabilty of “security” in this context. Specifically they demonstrate that an

algorithm cannot decide if a sequence of operations can add a right to a previously empty

cell in the matrix.

Linden [46] discusses the mathematical and data structures required by the operating

system to provide security in practice. This includes things like “small protection do-

mains”, “extended type objects” (supporting encoding classification and security policy

data), separation of security policy enforcement from system functionality (to limit the

security impacts of subsystem failures), and capability based addressing (which refers to

restricting access to memory addresses based on user capabilities). Many of these fea-

tures have become commonplace in modern operating systems, and many are required

by the POSIX [48] specification.
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Neumann [44] describes a “provably secure operating system”, in which he details the

specification, design, implementation of the system, and gives proofs of security proper-

ties. An important discussion in section 8.2 is the recurring theme that the success of

security proofs is determined by the quality of the specifications, and the description of

the desired security properties of the system.

The Isabelle proof assistant system, along with a restricted subset of the C language,

were used by Klean et al [50] to develop a fully formally-verified microkernel. Dubbed

“seL4”, the kernel is based on the L4 microkernel13. As a microkernel, all extraneous

functionality that can reasonably be moved to a user-space program has been removed,

and the kernel supports only address space control, threading, interprocess communica-

tion, and a scheduler.

3.2.2 Distributed and Parallel Systems

Since many software systems are delivered via the internet, systems are now expected

to cope with a large burden of concurrent users. A common solution to this type of

scaling/load balancing problem is to scale the system “horizontally”. Horizontal scaling

is accomplished by running multiple copies of the application in parallel, with a router in

front dispatching requests according to various schedules. Similarly, modern processors

are growing in number of cores much more rapidly than in raw speed. These distributed

and parallel systems carry their own sets of security concerns. Synchronization and

related “race conditions”14 have over 400 issues reported in the common vulnerability

and exporsures database (the CVE). At a lower level, multi-threaded programs lose

deterministic instruction ordering, and as a result, certain orderings (instruction/thread

interleavings) potentially expose data to corruption, leaks, or other subversion.

Benson et al [43] present a formal protection model specifically designed to cope with

centralized, parallel, and distributed (CPD) clusters of systems. Based on a state ma-

chine formalism, the paper shows that securing the CPD model can be reduced to the

problem of securing a sequential, single system. The model makes a distinction between

commands (sequences of atomic instructions) that end in a secure state, and those that

never leave a secure state. This permits the non-deterministic front-end portion of the

system to enumerate and prove the security of all possible instruction interleavings.

13http://en.wikipedia.org/wiki/L4 microkernel family
14http://www.cve.mitre.org/cgi-bin/cvekey.cgi?keyword=race+condition
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3.2.3 Databases

Database systems are one of the most common mechanisms for storing data in a manner

that can be efficiently queried. The data stored by a system is one of the most typical

targets for attackers. As such, the security of the database is equally vital to the overall

system’s security as is the control of the application code.

The Department of Defense’s “Purple book” [36] describes the changes to the trusted

computer system evaluation criteria (the “Orange book”) that are needed to apply the

work to a database system. These changes are largely accomplished by the extension

of subjects and objects to include database tables, connections and other additional

structures required by databases, but not present in a standard operating system.

3.2.4 Cryptography

Cryptography is a vital aspect of security at all levels. Cryptography can provide secrecy

of data in transit over an untrusted network (via encryption), tamper-detection (via

hashing), and authentication (via signing). It is also used to store data securely while

“at rest” on a given host, such that even with complete control of the host machine, the

data remains unreadable to an attacker.

Abadi’s work on the SPI calculus [7] (discussed in section 3.1.5) has been used to an-

alyze specific cryptographic protocols, as well as to demonstrate their resilience to at-

tacks. This is accomplished by explicitly modeling “channels” over which processes may

communicate data. By making the “channels” a first-class notion in the calculus, it is

possible (for example) to prove that a given model or protocol only provides properly

encrypted data to a channel that may be eavesdropped upon.

The modeling efforts and specification used in the SPI calculus lends itself well to au-

tomation, and has been integrated with several works by Blanchet described in [8] :

ProVerif15 and CryptoVerif16. ProVerif is a protocol verifier based on the algebraic

Dolev-Yao model [3]. The Dolev-Yao model makes the basic assumption that the at-

tacker is able to intercept, replay, and synthesize any message sent by the system. This

adversarial model is an appropriate representation of the risks of sending messages across

an untrusted network. The ProVerif system is therefore capable of proving secrecy and

15http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
16http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/
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authentication (via the SPI calculus support in the system). On the other hand, Cryp-

toVerif is a protocol verifier focused on verifying computational secrecy.

Goldwasser [2] was one of the first to rigorously prove the secrecy of cryptosystems

based on computational secrecy. Computational secrecy is the notion that an attacker

recovering a key would require excessive time (often longer than the age of the sun).

He notes that Shannon’s Information Theory [4] shows all systems with “perfect” se-

crecy are equivalent to a “one-time pad” cipher system (wherein the key is at least as

large as the message). Goldwasser also includes comparisons of information-theoretical

security/perfect secrecy (as defined by Shannon in [4]) with semantic and computation-

ally secure systems. Since an arbitrarily large key is difficult to produce, manage and

remember, most modern cryptosystems rely on computational security. These computa-

tionally secure systems generally utilize problems in the NP complexity class. If efficient

algorithms were discovered to solve these problems, the security of the systems would

be compromised.

In a later paper [10], Goldwasser discusses one time programs, which can be employed

to develop self-destructing mechanisms in software comparable to tamper proofing in

hardware.

3.2.5 Networks

According to the “Internet World Stats”17, approximately 34% of the world’s population

has access to the internet. A substantial number of these users have access to their own

subnetworks (whether at work or at home) as well. As a result, it is no longer reasonable

to think about systems (or their security) in isolation. Networks have their own issues

in security, especially due to the distributed nature of routing and “bucket brigade”18

packet handling. It is more often the case that data passes through untrusted hosts

(or at least hosts not controlled by the sender nor the receiver) than entirely through a

trusted network.

The Department of Defense rainbow series has adapted the Trusted Computing System

Evaluation Criteria guidelines to the network in the “red book” [34]. In this adapted

view, the network is treated as a single trusted system, and the network requires a

single reference monitor (in charge of policy enforcement). The notion of subjects is

17http://www.internetworldstats.com/stats.htm
18Packet traffic is handled by repeated forward towards a destination, similar to a “bucket brigade”

moving water.
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extended to include processes that act on behalf of individual systems to create and

preserve connections. The extended model supports multiple partitioned systems via

a multi-level gateway. This configuration begins to reflect the more modern network

architecture of De-Militarized-Zones (DMZs) connected by secure routers.

3.2.6 Hardware

With the increasing affordability of devices like Arduino and Raspberry Pi, the past

few years have seen a huge jump in the diversity and ubiquitousness of user controlled

embedded systems. Even without ‘homebrew’ devices like those, there are still many

special purpose systems like routers, modems, home automation devices, and cell phones

in most homes and businesses. These devices have been abused as vectors for attackers

to break into networks19, or have been taken over for their own purposes20.

Lotz [49] provides a model for proving security within embedded systems and in hard-

ware, without abstractions at the operating system level. The modeling work was done

to support Common Criteria [51] QA level E4 requirements. The model is based on

a “state transition automaton on infinite structures”. This variant of automata is dis-

cussed by Thomas in the Handbook of Theoretical Computer Science [39]. Hardware

support for physical self-destruction upon tampering is required to achieve certain con-

fidentiality goals (once the CPU enters a compromised state as modeled explicitly in the

automaton).

3.3 Uses in offensive security

Historically, Bell’s work in the 1970s [28] was motivated by the success of the “tiger

teams”; the attackers trying to disprove the security of then-current operating systems

(such as Multics). Their attacks were based on knowledge of the systems they were

attacking, but lacked specific formalisms and guidelines.

Modern systems and networks are frequently tested for security in similar ways. The

activity of the former “tiger teams” is now generally referred to as “penetration test-

ing”. These tests look for vulnerabilities in systems that arise from broken software,

misconfigured communication protocols, and any other vector that might allow access

19http://phrack.org/issues/60/7.html
20http://www.businessinsider.com/97-arrested-for-spying-through-webcams-2014-5
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to a targeted system. Generally, once access has been obtained, risks (based on what

data can be obtained or damaged) are reported to the organization that requested the

penetration test.

3.3.1 Attack planning

Penetration testing involves a series of attacks, each successful compromise potentially

makes new targets either available or easier to exploit. Historically, these “pivots” and

the ordering of systems to attack were chosen based on intuition or ad-hoc valuations of

the contents of the systems.

In his PhD thesis, Sarraute [79] discusses some of the challenges surrounding automated

attack planning, historically treated as a “classical” planning problem. This older ap-

proach lacked the ability to model the information gathering/scanning phase. He argues

that a model for penetration testing that acknowledges the unknown portions of the

process is more accurate than just ignoring them. Partially observable Markov deci-

sion processes (POMDPs) allow the scanning portion of attack planning to be modeled

explicitly. His later paper [78], builds on the work by employing an automated solver

to compare costs, scaling, and success of his POMDP based approach to maximizing

penetration testing value.

3.3.2 Steganography

Data egress (the act of extracting data from a system) can be a challenging aspect of a

successful attack. Steganography21 has allowed seemingly innocuous data to leak. This

data is often embedded in media, such as images, video, or music. A novel approach has

been to use the very transport mechanism of the internet (TCP/IP) to hide information

[112]. The specification of the size and contents of TCP and IP packets and their headers

leave certain gaps, which can be abused to store additional data in an obfuscated manner.

3.4 Well known models

There are many models that have been developed within the last 45 years, with some

finding more success and popularity than others.

21http://www.garykessler.net/library/steganography.html
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The following models are heavily cited, as evidenced by CiteSeer22. Some of them are

the focus of college courses, others have Wikipedia pages in lay language, and all of these

are generally known outside of formal security research.

3.4.1 Bell LaPadula

Bell and LaPadula’s “Secure Computer Systems” [28] is one of the most cited formal

modeling papers. The work was sponsored by the Mitre corporation to research security

for the Multics23 Operating System.

The following description is from section II in Bell’s Secure Computer Systems paper

[28]. After the original modeling work, the authors revisited their work twice: first to

address certain criticisms about the nature of the model [33], and, later, in a retrospective

highlighting the success of the model [113]. The model is as follows.

Given sets of Subjects (processes/programs), Objects (data, files, programs, subjects),

Classifications (top secret, classified, etc.), and Need-to-Know categories, Bell’s formal-

ism is capable of proving that if the system begins in a secure state, and only follows

permissible transitions, then the system always remains in a secure state. Any state

that is not a compromise is secure. In other words, a compromise exists when:

1. a subject’s clearance is lower than the requested object’s classification; or

2. a subject does not have some need-to-know category that is assigned to the object.

Bell’s results show that if only secure transitions are followed from a secure state, the

system never leaves a secure state. This is Bell’s ‘basic security theorem’ stated infor-

mally.

3.4.2 Biba

Where Bell and LaPadula’s model focused on data confidentiality (that no unautho-

rized “reads” can take place), Biba [29] focused on data integrity (that no unauthorized

“writes” can take place).

22http://citeseerx.ist.psu.edu/index
23http://en.wikipedia.org/wiki/Multics
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Below is a description of one such integrity policy, called the “Low Water Mark Pol-

icy”, which focuses on direct (overt) and indirect (covert) threats to data integrity as

a reversal of the “High Water Mark” policy of data confidentiality. Similar to Bell’s

model, Biba’s model deals primarily with subjects (processes/programs) and objects

(data, files, programs, subjects), but rather than classifications and need-to-know levels,

it supports “integrity levels”. These form a lattice in the same way that classifications

form a lattice in Bell’s model.

Biba’s formalism is based on two key rules:

1. an observation of an object can lower the integrity level of the subject observing

the object to the level of the object.

2. a modification of an object by a subject is permitted only if the object’s integrity

level is at or below that of the subject.

3. a subject may invoke another subject if the latter subject’s integrity level is below

that of the invoking subject.

Biba’s results are summarized as follows. Rule (1) provides assurance that indirect

sabotage by ‘contaminated data’ is impossible. Rule (2) provides assurance that direct

malicious modification is impossible. Rule (3) “insures improper activation of more

privileged subjects may not cause indirect damage to higher integrity level objects” [29].

3.4.3 Clark Wilson

The Clark/Wilson model [41] is another integrity model similar to Biba’s [29], where the

focus is on preventing the tampering of data (as opposed to Bell and LaPadula’s model

[28] focused on confidentiality).

The Clark/Wilson model is based on data items, and transformations implemented on

them. All interactions (transactions) on constrained data items must conform to two

sets of rules. Operating on a triple of a user, a process, and some data; each integrity

verification process (IVP) and transformation process (TP) consumes constrained or

unconstrained data items (UDIs) and produces constrained data items (CDIs). The two

rule-sets that enforce this are certification based (responsible for making sure the state

of constrained data is valid, i.e. “external integrity”) or enforcement based (responsible

for the operation of the system, i.e. “internal integrity”).
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The rules for certifications are summarized as follows.

1. all IVPs must ensure a CDI is in a valid state before proceeding.

2. all TPs must be certified (by a security officer) to be valid.

3. the list of relations in enforcement rule 2 must be certified to meet the separation

of duty requirements

4. all TPs must be certified to write an append-only log (CDI) with sufficient detail

to reconstruct the command

5. any TP that takes a UDI may only perform valid transformations or none at all.

The rules for enforcement are summarized as follows.

1. the system must maintain the list of relations in certification rule 2, and ensure

any manipulation of a CDI is via a TP specified in said list.

2. the system must maintain a list of relations limiting the CDIs which a TP may

manipulate given a current user.

3. the system must authenticate each user attempting to invoke a TP

4. “only the agent permitted to certify entities may change the list of such entities

associated with other entities. An agent that can certify an entity may not have

execution rights with respect to that entity.” [41]

It is interesting to note that this model is described with less mathematical rigor than

the Biba model. There are no proofs of the assertions that a system constrained in this

way maintains the integrity of the system. The burden of proof is then shifted to the

“certifying officer(s)” in charge of maintaining the list of valid TPs.

3.4.4 Brewer Nash

In 1989, Brewer and Nash released their “Chinese wall security policy” [42] paper. Moti-

vated by new laws imposed by banking regulations in the United Kingdom, the authors

adapted a model similar to Bell and LaPadula’s to support additional restrictions sur-

rounding “conflict of interest” classes.
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The goal of the policy was to prevent analysts (or other agents) working for banks

(or law firms, or any other agency with access to corporate data) from leaking critical

data between competing entities (whether deliberately or inadvertently). For example,

it would be permissible for the same agent to view the data from a company in the

software industry as well as data from a company in the mining industry. This is under

the assumption that the companies are not in direct competition, and the agent having

the information will not benefit either company unduly. On the other hand, the model

would forbid the same agent from subsequently accessing the data of a third company

if it operated in the same industry as either of the first two (software or mining). Their

policy for conflict classes “cannot be correctly represented by a Bell-LaPadula model”

[42]. To resolve this, the Bell LaPadula notion of a subject is extended to represent

a user and any program that might act on his behalf (this is similar to the “seteuid”

family of functions in POSIX [48]).

The model is described below.

• Objects: individual items of information, each concerning a single company.

• Company Dataset: group of objects which belong to the same corporation.

• Conflict of Interest Class: a group of company datasets whose corporations are in

competition.

The model extends the concepts defined by Bell and LaPadula [28], with a new rule;

access is only granted if the object requested meets the following criteria:

• it is in the same company dataset as an object already accessed by that subject;

or

• it belongs to a different conflict of interest class.

This rule has implications for how many people are required to operate the policy (as a

function of the number of entities within a conflict of interest class). The model dictates

that such accesses be recorded in an access matrix, which is queried to determine the

state of the conflict of interest classes in the system.
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Structure Closure? Associative? Identity? Inverse?

Magma Yes No No No

Semigroup Yes Yes No No

Monoid Yes Yes Yes No

Group Yes Yes Yes Yes

Partial Monoid No Yes Yes No

Table 3.1: Summary of Mathematical Structures

3.4.5 Harrison Ruzzo Ullman

Harrison et al [45] define a model (HRU) for protection (meaning controlling the integrity

of the access control matrix). Their work is similar to Graham/Denning’s model [47],

which deals primarily with how to add/remove subjects/objects and update the access

control matrix accordingly. The HRU model is also based on a matrix (subject ×
object) containing the current access rights. Compound operations of simple operations

are bundled as a transaction; the whole being successful only if all the components are

successful.

The authors note that the general property of security (”can a finite sequence of com-

mands add a right to previously empty cell?”) is undecidable.

The notion of matrix-based state control for access is embedded within other models,

including the Chinese Wall Security Policy [42] described in section 3.4.4.

3.5 The Mathematics of Strings

Generally the work in this section is based on three sources, Berstel and Perrin [114],

Shallit [115], and Bourbaki [116]. Berstel defines a word to be a sequence of characters

from a finite alphabet, and we adopt this definition. Many interesting properties of words

are given by Shallit, and we provide predicates and decision procedures for a selection

of them. The characterization of mathematical structures is based on the taxonomy and

hierarchy given by Bourbaki.

The key mathematical structure exhibited by Strings is that of a monoid. We have the

following hierarchy of increasing structure: magma, semigroup, monoid, group. The

differences are summarized in table 3.1 (operating on a set S with binary operation

∗ : S × S → S).
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Recall the following definitions, for a set S and a (possibly partial) binary operation

∗ : S × S → S:

• Closure/Totality: S is closed under ∗ if ∀a, b ∈ S, a ∗ b ∈ S;

• Associative: ∗ is associative if ∀a, b, c ∈ S, a ∗ (b ∗ c) = (a ∗ b) ∗ c;

• Identity: ∗ has an identity e ∈ S if ∀a ∈ Sa ∗ e = a = e ∗ a;

• Inverse: ∗ has inverses if ∀a ∈ S,∃a−1 ∈ S, a ∗ a−1 = e = a−1 ∗ a, where e is the

identity.

In order to make arguments rigorous, we define strings and concatenation formally as

follows.

Definition 1. A string is a finite sequence of symbols from a finite alphabet Σ. We

denote the set of all strings with S, and we call it a string monoid. The empty string is

the unique string of length 0, denoted as either “” or ().

Remark. A string s can therefore be written as s = a1a2...an where each ai ∈ Σ for

i = 1...n, and the length of s (denoted |s|) is n.

Definition 2. Concatenation (hereafter denoted ∗ for strings, ++ for lists and vectors)

is defined on x = a1...an and y = b1...bm as x ∗ y = a1...anb1...bm.

We present proof outlines that strings (often called words in mathematical literature

such as [114]) exhibit the structure of a monoid. Recall that monoids require closure,

associativity, and an identity element. The proofs that strings have these properties are

as follows:

• Closure: Let x = a1...an, y = b1...bm ∈ S, then n = |x| and m = |y| are both

finite. Since x ∗ y = a1...anb1...bm by definition, then |x ∗ y| = m + n is finite.

Therefore, x ∗ y ∈ S.

• Associative: Let x = a1...an, y = b1...bm, z = c1...cp ∈ S. Then (x ∗ y) ∗ z =

(a1...anb1...bm)c1...cp = a1...anb1...bmc1...cp = a1...an(b1...bmc1...cp) = x ∗ (y ∗ z).

• Identity: Let x = a1...an ∈ S, and let e = (), the empty string, where |e| = 0.

Then x ∗ e = a1...an() = a1...an = x, and e ∗ x = ()a1...an = x.

Therefore we can see that strings, under the operation of concatenation defined as above,

form a monoid (and thus also a semigroup and a magma).
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Similarly, we can show strings satisfy Functor and Monad laws. We state these properties

briefly as follows (full definitions in source code available online24):

• Functor: for two string monoids A,B, a functor F : A→ B acts as a homomor-

phism between strings, with the following laws under the operations ∗ : A×A→ A

and + : B ×B → B:

identity: if a ∈ A and b ∈ B are the identities, then F (a) = b

concatenation: F (a ∗ b) = F (a) + F (b).

• Monad supports the bind and return operations, and requires associativity.

• Foldable a type that may be accumulated into a single value from a collection

of values (in this case a string may be folded starting from an empty string and

accumulating a collection of characters).

The structures of strings with (see section 3.5.2) and without negatives (see section

3.5.1) are summarized in table 3.2.

Structure Without Negatives With Negatives

Magma Yes Yes

Semigroup Yes Yes

Monoid Yes Yes

Group No Yes

Partial Monoid Yes Yes

Table 3.2: Summary of mathematical properties of strings.

As shown above, the most structure exists when negatives are permitted, and the least

structure is available when they are not. These options are discussed in the following

sections.

3.5.1 Standard

As shown in the previous section, basic string types have the structure of a monoid.

This structure is available regardless of the representation (see section 8.1.5). Note that

there is no notion of inverses or “negative” characters in the standard formalization, and

as such, we cannot give the structure of a group.

24https://github.com/bgoodspeed/idris-strings
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3.5.2 Augmented with Negatives

We find a fundamental split between basic strings (words) and strings that also have

negatives. The so-called free-group can always be created given a semigroup. There is

a standard mechanism for constructing the “free group” associated with any semigroup

(or monoid). The intuition is to add a “negated” version of the alphabet, and then the

words are formed from the union of the two alphabets. Furthermore, the definition of

concatenation is augmented with the additional condition that “a” concatenated with

the string containing the inverse of “a” yields the empty string, “”. Full details of the

construction is available in Berstel and Perrin [114].

The full implementation in Idris is given online25, with key aspects discussed in section

8.1.5.1.

Remark. An interesting side effect of this is that it is possible to model edits from w1 ∈ S
to w2 ∈ S by concatenation. The proof sketch is based on the following equation:

w1 ∗ (−w1 ∗ w2) = w2. Clearly, this represents an inefficient upper bound (in fact equal

to |w1| + |w2| because |w−1| = |w|) on a more traditional edit distance, such as the

Levenshtein distance [117].

Another implication is that concatenation becomes a more complex operation to imple-

ment (as it requires a stack to track potentially cancellable elements) than it would be

without the possibility of cancellation. This increased complexity comes from the need

to continually check if pairs of characters cancel each time the string is “collapsed”. The

source code is given in figure 3.1.

This more complicated form of concatenation immediately rules out a vector based

representation. In brief, the reason for this is as follows: let v1 ∈ Cn and v2 ∈ Cm where

Cn and Cm denote the vector space of n and m copies of the alphabet C, respectively.

Then the concatenation, v1 ∗ v2 = vk ∈ Ck where 0 ≤ k ≤ n + m, violates the required

closure property. This is because two vectors spaces, Vn and Vm are considered distinct

unless n = m. At best, we would be able to show such a construction has the structure

of a category: non-closure, associative, identity, and non-inverse. See section 3.5 for

details of these structures and for a discussion of some implementation issues.

While interesting, it is not representative of strings as they exist “in the wild”, so this

is useful more for theoretical reasoning than practical use.

25https://github.com/bgoodspeed/idris-strings



Background 35

%assert_total

wordCollapseOneLevel : Word -> Word

wordCollapseOneLevel Empty = Empty

wordCollapseOneLevel (x # Empty) = x # Empty

wordCollapseOneLevel (x # (y # z)) = case (x ‘isInverseOf‘ y) of

True => wordCollapseOneLevel z

False => x # wordCollapseOneLevel (y # z)

%assert_total

wordCollapse : Word -> Word

wordCollapse x = let y = wordCollapseOneLevel x in

case (x == y) of

True => x

False => wordCollapse y

wordConcatAndCollapse : Word -> Word -> Word

wordConcatAndCollapse w1 w2 = let w = wordConcat w1 w2 in

wordCollapse w

Figure 3.1: Concatenate and collapse for the free group on strings.

3.5.3 Categories

As categories require less mathematical structure than semigroups and monoids, any

representation that is a semigroup or a monoid is automatically a category. However, as

certain representations cannot be officially considered semigroups (because of a lack of

closure/totality on the binary operation), we must fall back on these simpler structures.

For lists and cons cell representations, we have a monoidal structure, and thus the

monoidal category is sufficient. This is described in section 3.5.3.1.

Recall a category is a collection of objects and of arrows. The operation composition

is imposed on any pair of arrows, f : x → y, g : y → z such that g ◦ f : x → z. All

composed arrows must associate (i.e. h ◦ (g ◦ f) = (h ◦ g) ◦ f). Furthermore, each arrow

must have a left and right identity as follows: 1y ◦ f = f = f ◦ 1x.

3.5.3.1 Monoidal Category

There is a category associated with any monoid. In this case, we define it as follows:

there is only one object ; the set of Strings (or words, commonly written as the the Kleene
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closure of the alphabet, Σ∗). The arrows are defined one per word, and are denoted

πw : Σ∗ → Σ∗. Arrow composition is defined as πv ◦ πw = πwv

The required laws, associativity and identity are proven as follows:

• associativity: Let πx, πy, πz : Σ∗ → Σ∗ represent the arrows for the words x, y, z,

respectively. We denote concatenation of words x and y as xy. Then πx◦(πy◦πz) =

πx ◦ (zy) = (zy)x = z(yx) = z(πx ◦ πy) = (πx ◦ πy) ◦ πz.

• identity: In this case the left identity and right identity are the same, and it

is called e : Σ∗ → Σ∗, which corresponds to the empty word, “”. Therefore

e ◦ πx = x“” = x = “”x = πx ◦ e.

Thus, due to the associativity of concatenation, and the existence of the empty string,

we have a category.

3.6 Fundamental Limitations

It should be clarified at this point that the issues described in this thesis do not deal with

fundamental/physical aspects of security. Side channel analyses [118], such as power

fluctuation analysis [119] (where the actual power consumption during computation

leaks information about the signal being processed), is deliberately excluded from the

considerations here.



Chapter 4

Observations and Hypothesis

From examining all of the efforts surrounding formal methods in computer security

detailed in sections 2 and 3 a few patterns emerge. One pattern is that each system or

paper defines what “secure” means for their own context. Another pattern is that the

common workflow for verified software development (described in section 1) has several

phases, and each transition between phases presents an opportunity for defects to enter

the system. A further source of problems is that industry produces most software in use,

and those in industry are mostly interested in being able to produce software quickly

and efficiently (often in terms of cost). However, most security theorems are produced

by academics and researchers and are produced for other academics and researchers.

Due to this disconnect between the two communities, the barrier to entry is very high

for new developers to adopt formal verification in their own work.

4.1 Definitions of Security

For some systems, “secure” means that a system permits no unauthorized reading of

information at a higher security clearance than that of the user attempting to access the

information [26, 28, 51]. Others define security in terms of resilience to certain classes of

attack [3], or by statistical properties of messages created by the system [12]. Regardless

of how security is defined, to be formally verified, the definition needs to be rigorously

encoded in a way that is accessible to the model.

37
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Figure 4.1: Existing common workflow

4.2 Gaps

As it has been said, there is a gap between theory and practice (or “in theory, theory is

practice; in practice it’s not.”1). In particular, a problematic gap exists where a model

(about which proofs exist) is used only as a guide to the implementation. A costly

example of this was the recent Heartbleed bug [80] in an extension to the open source

cryptography library OpenSSL. While the cryptographic base framework was proven to

be sound (at least assuming the utilized problems are not in P ), the implementation

was not sound. To produce secure systems more reliably, we must reduce the number

and size of such gaps.

4.3 Industry vs Academia

There are barriers to entry to the use of formal methods. These barriers prevent large-

scale adoption, which ironically slows the progress of making adoption easier. This is

due to the lack of mathematical training that is required for formal proofs/modeling.

1Variations of this quote have been attributed to DaVinci, Fermat, Pascal and Einstein.
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Proof assistant systems are far more “rigorous” in their treatment of programming con-

structs than popular industry programming languages. This formality and rigor are not

familiar to industry programmers. This makes creating even unverified software with

these systems more challenging than users might expect.

These barriers imply that while a formally verified program might be safer, it is not

likely to be cheaper to produce/maintain. Regrettably, this makes industry less likely

to select these more rigorous options in all but the most security-critical applications.

4.4 Hypothesis

We derive our hypothesis, objectives and subsequent predictions and expected outcomes

via the following line of reasoning:

• If we appropriately select a starting research language (section 4.5.1), and

• if we guide the software development by proof statements (section 4.5.2), and

• if we produce the correct building blocks for provable software (section 4.5.3), and

• if we produce the correct lemmas and proof tools (section 4.5.4)

• then our software will have provably verifiable features (section 4.5.5), and

• our subsequent proof-driven software will be able to reuse both the proven com-

ponents and the proof tools (section 4.5.6).

This leads to the following thesis statement and overall hypothesis:

Dependent type systems enable a paradigm of programming, “Proof-driven

development”, which can reduce the efforts required to construct software

with provable properties, when there are available libraries of proven building

blocks.

4.5 Methods

The methods are in two parts. The first part is to determine an appropriate starting

point. Specifically, we will evaluate systems and determine which option satisfies the

conditions specified by the objectives described in section 4.5.1. The second part is to
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produce software via proof-driven development, and to measure our savings in time and

lines of code as we create new re-usable components.

We must identify a collection of languages or systems suitable for this research line.

We must decide whether they can extract an executable program, then identify if the

executable program is sufficiently performant to be useful.

We will find a suitable collection of programs to develop (for example a login program

and secure string handling functions), and a collection of relevant properties to prove.

There are numerous sources for such programs, including standard benchmark pro-

grams, common security programs and introductory/tutorial programs used in language

instruction.

After that, we will identify properties that can be verified only in a proof environment.

Specifically, the properties that are beyond the scope of test-driven development or

randomized statistical testing.

As we develop the programs, we will identify commonalities (data types, proofs and

useful functions). We will determine a way to package these components for re-use. Fi-

nally, we will use the shared components in our benchmark programs and other example

programs. We will then measure the difference in lines of code required to solve each

problem/complete each program, counting the number of lines of proof and code saved.

4.5.1 Objective: Selecting a Language

We must choose from among a collection of proof assistants (these will be identified and

discussed in chapter 5). We will do this based on the language’s expressive power as a

programming language, the language’s power as a theorem prover, the ability to extract

executable machine code, and the “acceptable” performance of the language.

There is a spectrum of languages ranging from pure theorem provers to general purpose

languages with a powerful enough type system to accomplish proofs. The further toward

general purpose languages we get on the spectrum, the more expressive as a programming

language the system tends to be. Similarly, the ability to extract a runnable program is

essential for our purposes. Not all languages listed can accomplish this; fewer still can

extract efficient enough code to have acceptable performance. We still need to be able

to exceed the power of fix-point assertions that test-driven development provides, and

as such we require certain features that only exist in theorem proving languages.
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Finally, the language must be able to produce programs that run efficiently enough to be

useful in practice. This means that they efficiently represent data types without wasting

unacceptable amounts of memory, or taking an unreasonably long time to complete

calculations.

4.5.2 Objective: Proof driven development (PDD)

As an extension of test driven development, we gain the ability to make assertions over

mathematically quantified types. That is to say, rather than just asserting that the

value of a function for a given input is a fixed value, we can now make assertions about

the behaviour with any appropriately typed inputs.

We must adapt test-driven development practices to the broader scope of proof-driven

practices. This will allow us to treat the processes we follow formally/rigorously, and

make them repeatable. This process permits us to close gaps in the common workflow

in figure 4.1. The new workflow with gaps closed is shown in figure 4.2.

Figure 4.2: Improved workflow for PDD.
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4.5.3 Objective: Provable Software Building Blocks

We must find appropriate building blocks for provable software. This would include

utility methods and data types. The notion of modularizing and packaging code for re-

use goes back to the earliest languages. In this case, we are dealing with the dependently

typed paradigm, which is an extension of the functional paradigm. These building blocks

must be made available to the public in an appropriate way.

4.5.4 Objective: Proof tactics and Lemmas

As with the packaging of dependently typed code, we must find out how to package and

re-use the proof tools and proof results we discover. Unlike prior paradigms, where test

suites and testing components are rarely considered a directly relevant or mandatory

component of the software being packaged, we must consider them as being much more

highly coupled.

In a traditional environment we can merely ship the software components. Only devel-

opers who desire to do automated testing would note the lack of testing components.

Specifically, automated testing calls for convenience methods/objects to help users cre-

ate their own new tests, and frequently requires the test suite that verifies the library to

be included in the new system. With proof driven development (and to a lesser extent

dependently typed systems as a whole) we do not have the luxury of not testing the

code that uses a verifiable component. The proof portion is central to the data type and

any functions that use it. Even calling the function or creating the data type requires

the user to supply a proof. It would be an unreasonable burden to leave that entirely to

clients of the library. Therefore, we must be able to package proof tactics, useful lemmas

and related mathematical tools along with our software libraries.

4.5.5 Prediction: Verifiable Features

We should be able to automatically verify a set of properties every time we alter the

software. The set of verifiable features will be strictly larger than those we could verify

with fixed value tests.

We must demonstrate that any property that can be verified in a traditional fixed value

quantification can also be verified in a proof assistant. We must further demonstrate
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there exists properties that can be verified only with a theorem prover and not by fixed

value quantification assertions.

4.5.6 Prediction: Subsequent Development

We should be able to successfully re-use both the software and the proof artifacts in

subsequent development effort. This re-use will save us time and reduce costs and

mental effort. We will be able to show where we used identical code from previous

programs, and likewise identical proof components.

4.6 Summary

In this section we have described the commonalities and the gaps we have found in

the processes used in prior research. The objectives and predictions described here are

elaborated in further sections of this work. The analysis of the language selection and

details of the chosen system are presented in section 5. Further details about the new

workflow (PDD) are presented in section 6. Our contributions of new datatypes, utility

functions, proof tactics and lemmas are presented in sections 8 and 9. The results of

cost savings and the evaluation of the predictions are given in section 10.
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Selecting a Language

We have decided to focus on a single language upon which to base further efforts. The

selected language is among the hundreds1 of languages that are in use today. It is not

feasible to evaluate every language, so we must consider only the languages that have

the possibility of success, given the goals defined in chapter 4.

Computer aided proof, and systems that support this idea are both recent and pre-

dominantly academically developed and used. Because of this, even our most popular

language option, Haskell [110], accounts for less than 0.2% according to the TIOBE2

rankings.

Some of the reasons for the minimal use are the relative age of these languages, their

complexity (and hence the lack of understanding), and the relative paucity of libraries

and frameworks. Furthermore, software developers would not get exposure to these

languages in typical undergraduate and trade school curricula.

As proof-related features are somewhat esoteric in the realm of programming languages,

we can begin our search with tools/languages that self-identify as proof assistants3. The

selection is based on the following factors:

• the language’s expressive power as a programming language, (section 5.1.1);

• the language’s power as a theorem prover (section 5.1.2);

• the ability to extract executable machine code (section 5.1.3), and;

1http://en.wikipedia.org/wiki/List of programming languages
2http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
3http://en.wikipedia.org/wiki/Proof assistant

44
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• the “acceptable” performance of the language (section 5.1.4).

5.1 Details

In this section we clarify the requirements stated previously. We give metrics for mea-

suring “expressive power” or “proving” capability. Furthermore, we consider various

aspects of performance from the perspectives of a developer and an end-user.

5.1.1 Expressive Power/Toolchain

For our purposes, we consider expressive power to be the ease with which a programmer

can use the language to solve a problem (often measured by the lines of code required).

A part of this power derives not from the language itself, but from the suite of related

programs required to construct software with the language – the “toolchain”. The soft-

ware development lifecycle (SDLC) often concerns itself with the processes surrounding

the design of software systems, and the order in which verification and development are

done. This is discussed in more detail in chapter 6. Here, we are concerned only with the

aspects of the SDLC related to compilation, development, and profiling (performance

measurement).

Development in the previous list refers to the interactive workflow of building the soft-

ware in the system itself. This category includes issues such as the presence and quality

of a read-eval-print-loop, the quality and clarity of error messages, and other system

specific features (for example Agda and Idris both feature support for “holes”, which

can be a convenient way to build programs iteratively).

A related area we must consider is the availability (and ability to construct) quality

libraries for common functions and data types. This concept is extended in proof as-

sistants, which unlike previous programming systems, can be helped by having libraries

just for proof tactics. These tactic libraries are discussed in chapter 9. The closest

mainstream programming construct to a proof library would be an automated testing

library such as xUnit frameworks (one example is jUnit for Java [68]).

As noted in depth in section 8.1, string handling is an important part of practical pro-

gramming. Further, web development tasks are very common, so if there are frameworks

to facilitate that, the language is much more likely to be used. The toolchain also in-

cludes tools for fetching and packaging these user-libraries, this is a common concept in
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mainstream programming languages. In Java, this can be done using ‘jars’, fetched by

the tool ‘maven’. In Ruby, they are called ‘gems’, in Python the tool is called ‘pip’.

Aside from the mechanical parts of the toolchain, like the compiler/debugger/profiler

and the library format, modern programming systems are often paired with Integrated

Development Environments (IDEs). The IDE support typically provides, at a minimum,

syntax highlighting and the ability to invoke the toolchain to build the system. More

advanced IDEs support graphical breakpoints and expression evaluation during debug-

ging, automated refactoring support, and built-in browser viewing (for web application

development).

5.1.2 Utility as a Theorem Prover

To consider a language a theorem prover for our discussions, we need at least universal

quantification over a predicate (e.g. ∀x, P (x) = true) rather than finite valued quantifi-

cation (e.g. ∀x ∈ {v1, . . . , vn}, P (x) = true). Some of the implications of this broader

ability are discussed in chapter 6.

General software systems (in particular, their functions/methods) may be specified only

for their behavior given fixed inputs/state. That is to say, we can determine the output

value of a function for a given fixed input. So-called “purely functional” languages force

users to explicitly model stateful functions. In this case we mean functions f where two

subsequent calls with the same input, f(x) need not produce the same output. Purely

functional languages provide some ability to reason about pure functions, because any

application of the function can be replaced with the once-computed value. This fits

nicely with symbolic rewrites and the lambda calculus.

In addition to pure functionality and symbolic rewriting, we need to be confident of two

other important properties: we need to be able to determine that all our functions cover

all execution paths (complete pattern matching), and we need to be able to determine

that our functions terminate. Theorem provers capable of asserting “total correctness”

require a termination guarantee to admit proofs [120]. If termination were not required,

the system may admit the Curry paradox4 and thus use the non-terminating proposition

to prove any other proposition in the sytem.

All “Turing-complete” programming languages have the same computational power. In

this thesis, expressive power will refer to the more qualitative aspects of the language.

4http://plato.stanford.edu/entries/curry-paradox/
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To clarify, a more expressive language might require fewer lines of code to implement the

same algorithm, require fewer instances of repetitive“boilerplate” code, or be able to do

with the standard/core language what another language can accomplish only extensive

third party libraries.

Evaluating systems specifically built to accomplish these goals is a much smaller problem

than evaluating the full list of languages. We only need to evaluate proof assistant

systems that support the criteria listed above, namely: universal quantification, pure

functions with termination and branch coverage properties.

Typically, the theorem provers give up portions of logic (namely the law of the excluded

middle/proof by contradiction [58]). This means an intuitionistic or constructivist form

of logic must be employed [58, 63]. The most common/popular formalizations are the

calculus of constructions (specifically the calculus of inductive constructions, CIC [58]),

and Martin-Löf type theory [63]. The CIC formalisms have been extended by the de-

pendently typed formalisms of Martin-Löf, due to the useful algebraic properties of the

types supported by such systems [54, 89], and form the basis of several systems like

Idris, Agda and Cayenne.

5.1.3 Runnable Code

Fundamentally, a system useful only for verification of mathematical models is not use-

ful as a practical programming language. It does not close the gap between specifi-

cation/proof and executable code (see figure 4.1). In particular we need to be able

to deal with the “messy” aspects of programming such as input/output, mutable data

structures and other stateful operations. As a result, if the toolchain provided cannot

produce a binary executable (or bytecode that can be interpreted by a virtual machine)

or interpreted by an interpreter capable of providing the necessary operations, then the

system is not suitable for systems programming.

Even in systems that support the extraction of runnable code, the extraction process

is not always built-in. For example, Coq has the ability to extract ML or Haskell

code which can then be made executable by the toolchains provided by Haskell and

ML. However, the extracted code sometimes loses some efficiency. An example of this

problem is shown in the ML code extracted from Coq sources in appendix 6. Further

issues related to extraction are described by Swierstra in his experience report [121] on

working with ML code extracted from Coq. This is exacerbated if the extracted code

needs to be modified.
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As some tools do not support either compilation or extraction, these tools are not suitable

for end-to-end software construction.

5.1.4 Performance/Usability

Assuming we can extract code or compile the software directly, we must be left with a

workable artifact. If the produced artifact is too slow to solve a real-world-scale problem

in a reasonable amount of time, then it is not usable. For instance, we need it to run

efficiently, that is it should solve real world problems at least as fast as some commonly

used language, Haskell for example.

Note that this does not have to be as fast as the fastest languages (e.g. C or assembler).

Ruby for many applications runs 2-100x slower for certain algorithms, yet still sees use

in the real world.

The toolchain (in C this would be the compiler/linker/debugger/profilers) must not

involve manual editing of any artifact in the chain. In terms of usability we need to

be able to go from an error (during development, nothing is perfect) in the executable

artifact back to the line/function/file in the source code. If we must manually edit any

artifact in the build chain, we can no longer be confident in the properties we have

proven about an artifact earlier in the production toolchain. This workflow is depicted

in figure 4.1. This is similar to the issues posed in chapter 4 where the proofs were

about the paper model. In this case, even if the proofs are automated and continually

verifiable, they refer to an artifact that is not the one being executed.

5.2 Coq

Formally, Coq implements the Gallina language, based on the Calculus of Inductive

Constructions [58]. Unlike standard Hoare triples, all terms in Gallina are strongly

normalizing5, and as such require a proof of termination along with their definition

before a definition is admitted. Gallina is a purely functional language, which is to say

that side effects (such as changes of state, reading input, writing output, etc) are not

permitted. As a result, standard imperative programming paradigms are not available

in Coq programs directly. These things need to be ‘bolted on’.

5that is, each expression can be reduced to an irreducible term and the procedure to reduce them
terminates
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Coq supports dependent types [54], which are essentially functions whose targets depend

on the values of their arguments. This form of type system admits the Curry-Howard

isomorphism [109], where logical proofs correspond to terms in the programming lan-

guage and vice versa. This idea is the core of Coq, and the reason that a program in

Coq denotes a proof of the proposition. These dependent types have also been used to

provide some of the non-functional/imperative aspects required by most programs. A

large collection of such things is provided by the Ynot library [53]. Ynot implements

“separation logic” (an extension of Hoare logic) which provides the ability to reason

about state via manipulation of heaps. As Chlipala says in his paper describing Ynot,

“Coq excludes general recursion, mutable state, exceptions, I/O and concurrency”, all

of which can be modeled by separation logic and the use of monads (similar to the

approach taken by the Haskell language to permit input and output).

The Coq style of interactive proof is not the only approach to formal verification or

machine-assisted proof systems. “A competing alternative to the common style of Coq

tactics is the declarative style, most frequently associated today with the Isar language.

A declarative proof script is very explicit about subgoal structure and introduction of

local names, aiming for human readability.” [15]

5.2.1 Tactics

“The word ‘proof’ is rather overloaded and can be used in several different ways. [In

Coq], we use ‘proof’ for a script to be presented to a machine for checking.” [57] Fur-

thermore, Coq typically uses an interactive prompt to work with the system towards a

proof. This method of proof is described by Bertot as follows:

“The usual approach to construct proofs is known as goal directed proof,

with the following type of scenario:

1. the user enters a statement that he wants to prove, using the command

Theorem or Lemma, at the same time giving a name for later reference,

2. the Coq system displays the formula as a formula to be proved, possi-

bly giving a context of local facts that can be used for this proof (the

context is displayed above a horizontal line written =====, the goal

is displayed under the horizontal line),

3. the user enters a command to decompose the goal into simpler ones,

4. the Coq system displays a list of formulas that still need to be proved,
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5. back to step 3.” [52]

The above can be thought of as a manual proof interaction, sometimes known as the

“video game” approach. However, Coq also has a tactic library to facilitate automated

proofs. The language embedded in Coq to define and extend the proof capabilities is

called “Ltac” [57]. The advantages to extending the tactics and techniques available

to the automated proof system are that they are more adaptable to changes in the

definitions and functions being reasoned about. If the manual version of the proof script

is too tightly coupled to the definitions/functions, then any change to the source will

perturb the validity of the proof.

5.2.2 Sample Code and Results

A sample, “hello world” program for Coq (using the Ynot [53] library) is shown in figure

5.1.

Require Import Ynot.
Require Import Basis.
Require Import String.

Open Local Scope string scope.
Open Local Scope stsepi scope.

Definition main : STsep ( ) (fun :unit ⇒ hprop empty).
refine (printStringLn “Hello World”);
sep fail auto.

Qed.

Figure 5.1: Coq “hello world”.

Due to the extracted code, the performance issues make the system very problematic at

runtime. Representation inefficiencies can be seen in the use of Lists of Ascii sequences

in place of character strings in figure 5.2.

To summarize the results of the Coq analysis, we find the results shown in table 5.1.

System Expressive? Provable? Extractable? Performance?

Coq Yes Yes Yes No

Table 5.1: Coq Results
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let rec matching_in_field idx token = function

| [] -> []

| x::y ->

if if prefix token

(nth idx x ((MlCoq.Ascii (false , true , true , true , false , false ,

true , false ))::(( MlCoq.Ascii (true , true , true , true , false ,

false , true , false ))::(( MlCoq.Ascii (false , false , false , false ,

true , false , true , false ))::(( MlCoq.Ascii (true , false , true ,

false , false , false , true , false ))::[])))))

then prefix

(nth idx x ((MlCoq.Ascii (false , true , true , true , false , false ,

true , false ))::(( MlCoq.Ascii (true , false , true , false , false ,

false , true , false ))::(( MlCoq.Ascii (false , true , true , false ,

true , false , true , false ))::(( MlCoq.Ascii (true , false , true ,

false , false , false , true , false ))::(( MlCoq.Ascii (false , true ,

false , false , true , false , true , false ))::[])))))) token

else false

then x

else matching_in_field idx token y

Figure 5.2: ML code extracted - fragment.

5.3 Agda

Agda [60] is a dependently typed language, based on Martin-Löf type theory [63]. Agda

was developed as a proof assistant based on the concept of “holes” that are to be

iteratively refined in a new style of development. Rather than creating a complete

function from start to finish before completing a program, a missing step (computation)

can be left in the form of a hole, denoted ?holeName. The type signatures (e.g. a

function consuming an Integer and returning a Boolean) of the holes can be interactively

queried. This workflow is novel and generally unfamiliar to developers using mainstream

programming languages.

Agda is focused on mathematics, with most libraries focused on arithmetic and various

forms of higher order logic [60].

While it does support direct compilation (unlike Coq), the artifacts produced are not

memory efficient. In particular the snippet in figure 5.3 (described in a posting on Stack

Overflow 6), yields a resulting artifact that is nearly 20MB in size7. This is substantially

larger than the typical binary sizes for typical languages like C (8.3Kb) or even a proof

assistant like Idris (89Kb). This is due to a similar data type bloating as seen in Coq

extractions to ML (see appendix 6). Agda programs can be compiled using the code

shown in figure 5.4.

6http://stackoverflow.com/questions/9472488/differences-between-agda-and-idris
7Compiled on a macbook air running OSX
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main : IO Unit main = putStrLn (toCostring “Hello, Agda!”)

Figure 5.3: Agda “hello world”.

save it to “./hello.agda”
download lib-0.6.tar.gz, and unpack it to somewhere, say DIR
cd DIR/ffi && cabal install
agda -i DIR/src -i . -c hello.agda

Figure 5.4: Agda compilation.

Agda has some advantages over traditional proof assistant languages like Isabelle and

Coq, in that is has a programming language “feel”. This is because proofs are just

functions, there are no distinctions between “proof mode” and “definition mode”. In

Coq, for example, the definition language Gallina [56] is an entirely separate sublanguage

from the proof definition language, LTac [57].

These differences are minor compared to other languages described here. Agda could be

used for the purposes of this thesis, but it is not built with systems programming as a

core function, and as such still seems more math-oriented than programming-oriented.

Extracted Agda code is substantially larger than equivalent Idris code.

5.3.1 Sample Code and Results

A sample, “hello world” program for Agda (found online at 8) is shown in figure 5.5.

module hello where
open import IO.Primitive using (IO; putStrLn)
open import Data.String using (toCostring; String)
open import Foreign.Haskell using (Unit)
main : IO Unit
main = putStrLn (toCostring “Hello, Agda!”)

Figure 5.5: Agda “hello world”.

As stated in the previous section, the code above compiles to an enormous executable

of approximately 20MB. This is due to representation issues similar to those shown for

the Coq extraction in figure 5.2. As a result, we have to consider the language to be

insufficiently performant to be a serious candidate for our purposes.

To summarize the results of the Agda analysis, we find the results shown in table 5.2.

8http://stackoverflow.com/questions/9692445/agda-as-a-programming-language
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System Expressive? Provable? Extractable? Performance?

Agda Yes Yes Yes No

Table 5.2: Agda Results

5.4 Haskell

Haskell [110] is a general purpose language. It has all the features we want from such a

language - a rich client library, web framework, executable code/compiler. It is also a

pure-functional language, with third-party support for termination checking and branch

coverage. Haskell, out of the box, does not support universal quantification or termi-

nation checking nor other proof assistant structures. However, we can add on many

“dialects” to make Haskell more like the proof assistant types. For example, generalized

algebraic data types (GADTs)9 are one effort to make Haskell’s type system closer to

a full dependently typed system. However, they are limited to “top level” types, and

cannot be used in sub-expressions [122]. This means they are not quite as powerful as

a full dependent type system.

While the QuickCheck [77] library adds statistical sampling support (to select and ver-

ify behavior for an arbitrarily large number of fixed inputs), we still deal with the

limitations of existential and non-universal quantification. Haskell extensions such as

“ExistentialQuantification”10 get us closer to full dependent type flexibility and general

universal quantification, but expressions remain that cannot be encoded with Haskell’s

“forall” statement [122].

Haskell is the most powerful general purpose language discussed here, and is closest to

the theorem provers. However, the gaps cited above are sufficient to rule it out as a

candidate for our purposes. Despite this, it is an excellent starting point for learning

related languages like Idris. In particular, the mathematical side of Haskell can be

explored by following along the “Haskell Road to Logic, Maths and Programming”

[123].

5.4.1 Sample Code and Results

A sample, “hello world” program for Haskell is shown in figure 5.6.

9https://en.wikibooks.org/wiki/Haskell/GADT
10https://en.wikibooks.org/wiki/Haskell/Existentially quantified types
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main = putStrLn “hello world”

Figure 5.6: Haskell “hello world”.

While Haskell is performant and expressive, we find ourselves unable to write full proofs.

Therefore, we cannot close some important gaps in the common workflow (described in

figure 4.1), nor solve the ‘existential problem’ (see section 6.2.1 for details).

To summarize the results of the Haskell analysis, we find the results shown in table 5.3.

System Expressive? Provable? Extractable? Performance?

Haskell Yes No Yes Yes

Table 5.3: Haskell Results

5.5 Isabelle

Isabelle [59] is a “generic system for implementing logical formalisms”11. It is construc-

tivist language, and is also very focused on the math side of things.

It does not support compilation directly, as the base language does not support In-

put/Output and related stateful functions12. It does support extraction for certain

subsets of the language, via a mechanism similar to Coq extraction. Isabelle extrac-

tions share the same issues of representation, type safety and performance that Coq

extractions exhibit.

The libraries are also focused on math and logic. There is little string-handling support,

no web development framework, and like Coq, stateful functions are bolted on via third

party libraries. Typically, the proofs associated with bolted-on state functions are based

on separation logic [53, 93] or traces [106].

5.5.1 Sample Code and Results

A sample theory (a “hello world” program requires substantial third party libraries and

ML support, and is not expressable in basic Isabelle syntax) in Isabelle is shown in figure

5.7.

11https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2015/doc/prog-prove.pdf
12https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2015/doc/codegen.pdf
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theory Prop
imports Main
begin
theorem A: “A → A ∨ B”
apply (rule impI)
apply (rule disjI1)
apply assumption
done
end

Figure 5.7: Isabelle basic theory (in lieu of “hello world” program).

While extractions are possible in Isabelle, the inability to do basic state and I/O ma-

nipulation makes the expressive power insufficient to be further considered. Due to the

extraction to ineffecient forms of ML (similar to Coq), we find the language unsuitable

for our purposes.

To summarize the results of the Isabelle analysis, we find the results in table 5.4.

System Expressive? Provable? Extractable? Performance?

Isabelle No Yes Yes No

Table 5.4: Isabelle Results

5.6 Idris

Idris is a “systems programming language with dependent types” [61]. It can be thought

of as a combination of Agda and Haskell. The similarities to Agda are that it supports

full proof statements, iterative refinement via “holes” and dependent types based on

Martin-Löf type theory. The similarities to Haskell are syntactic, as well as Haskell

being the implementation and extension language.

Idris is directly compilable, supports universal quantification and has good libraries for

web development. Full universal quantification support is essential to provide proofs.

Direct compilation has a number of benefits beyond extraction (the issues with extrac-

tion have been discussed in previous sections), including much smaller executables (for

example the “hello world” program in Idris compiles to an executable approximately

2000 times smaller than a comparable Agda executabe). Furthermore, direct compi-

lation precludes any manual editing of intermediate artifacts. The toolchain supports

debugging, with connection to the line numbers causing compilation issues. The IDE
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support, available in both vim and emacs, including syntax highlighting, proof querying

(similar to Agda) and interactive proof (similar to Coq).

By design Idris features:

“easy interoperability with C and high level language constructs to support

domain specific language implementation. Idris emphasises general-purpose

programming, rather than theorem proving, and as such includes higher level

programming constructs such as type classes and do notation. Idris also

supports tactic based theorem proving, and has a lightweight Hugs/GHCI

style interface.” 13

5.6.1 Sample Code and Results

A “hello world” program for Idris is given in figure 5.8.

module Main
main : IO ()
main = putStrLn “hello world”

Figure 5.8: Idris “hello world”.

Unlike proof assistants based on extraction, Idris is directly compilable, and as such

produces much more efficient runtime code than the competitors in this section. Further

details and benchmarks to prove this claim are mentioned in sections 8.3 and 10.1.

To summarize the results of the Idris analysis, we find the results in table 5.5.

System Expressive? Provable? Extractable? Performance?

Idris Yes Yes Yes Yes

Table 5.5: Idris Results

5.7 Summary

None of the languages have every feature we might want, some can be ruled out di-

rectly. Agda and Isabelle are too focused on math. Haskell is too general purpose,

13Idris FAQ: http://docs.idris-lang.org/en/latest/faq/faq.html
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without enough support for proofs. The remaining options are Coq and Idris. They

represent two competing sides: the CIC and Martin-Löf type theories. However, Coq’s

runtime/extraction is inefficient and hard to reconcile errors in the extracted side and

the original source code.

The criteria for selecting a language for this work were expressive power, theorem prov-

ing ability (sufficient to perform universal quantification), extraction/compilation, and

performance. Idris has sufficient expressive power to be used as a general purpose

language (by design) and has library support for many common tasks (including web

development). It supports machine verified proof and universal quantification over its

datatypes and can be directly compiled to produce efficiently sized executables with

reasonable performance (see section 10.1 for details). Because of these characteristics,

we have chosen Idris as the basis for our further work.

A summary of the evaluation results for the languages discussed in this section according

to the criteria above is presented in table 5.6.

System Expressive? Provable? Extractable? Performance?

Coq Yes Yes Yes No
Agda Yes Yes Yes No
Haskell Yes No Yes Yes
Isabelle No Yes Yes No
Idris Yes Yes Yes Yes

Table 5.6: Proof Assistant Options



Chapter 6

Proof Driven Development

(PDD)

The software development lifecycle (SDLC), for both “normal” software, and “mission

critical” software requiring the utmost security includes: specification, design, implemen-

tation and testing. However, there are many schools of thought concerning the “best”

way to organize the progress between these states during the construction of software.

In waterfall development (described in detail in section 6.1), the states are not revis-

ited, but progressed through linearly. In so-called “Agile” processes (see section 6.2),

such as “eXtreme Programming” (XP) [69], these states are visited repeatedly during

the construction of software, in a spiral pattern. These two schools of thought about

the construction of software tend to apply at different times. Waterfall is well-suited

to problem domains where the issues are well-understood, and new unknowns are not

likely to arise during construction. Agile is better suited to exploration and research, as

it does not make the assumption that all the facts are in before implementation begins,

and permits requirements to change during the construction process.

This workflow is pictured in figure 6.4. The numbers for each stage in the figure refer

to the artifacts, showing clearly the flow from specifications to mental model to mathe-

matical model to source code. The source code is then compiled into the program, and

finally the proofs are written.

In this section an argument is made for a mixed approach to secure software construction,

as there are important lessons to be learned from both approaches.

58
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6.1 Waterfall

Waterfall assumes that all design decisions can be made before the software/system is

constructed. This tends to apply in well-understood areas. Waterfall grew out of very

early attempts to formalize software construction processes [73]. These early approaches

were based on electrical and hardware engineering techniques. The authors admitted

that it was not an ideal approach due to the differences between these engineering disci-

plines (being well understood) and the mathematically/algorithmically oriented software

engineering discipline which was only just emerging.

Many Agile adherents [16, 17, 67, 69] argue that waterfall is costly and unrealistic.

However, pre-loading the design and specification phases is very much what tends to

happen with secure software systems, especially considering the academic sources of

many designs/specifications. Many of the specifications/systems have been proven on

paper and published without the original authors intending to implement the systems

themselves. This allows for a great deal of caution and review from many expert eyes.

Indeed, the most common workflow is described in section 1 and figure 4.1, and is based

on this idea.

However, the criticisms of waterfall in terms of emerging issues, and the speed with

which the final system is available are valid, and it is clear that the waterfall approach

by itself is not sufficient.

6.2 Agile/TDD

Agile itself is a blanket term for many software development processes including Clean

Room [72] – which incorporates the use of formal methods such as model checking,

process algebras, and testing), XP [69], and SCRUM [17]. The core values of Agile

systems are embodied by their manifesto:

We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation
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• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on

the left more.1

Clearly, there is a large variety of so-called Agile methods, and they all vary from one

to the next. However, one key discipline is notable in a great deal of these methods,

called “test-driven development” or TDD. Test-driven development was described in

great detail by Kent Beck in his introductory guide to TDD [68], and it is described in

a great deal of related texts [16, 17, 67, 74, 124].

Test-driven development refers to the reversal of the “typical” workflow for creating

software. Instead of writing a piece of software, and then writing a test to determine

if the software is working correctly, the test is created first, to “drive” the creation

of the software required to satisfy the assertions in the test. This is important for

several reasons, described in detail by Beck and Martin in their works on software

craftsmanship[16, 68, 69]. First, budget and timeline pressure often forces things on the

end of the spectrum to be dropped (that is: the tests never get written). Second, the

tests “driving” (or “pulling”, in Toyota Production [125] or Lean [126] terminology) the

functionality helps to keep the system minimal (”lean”), with no unnecessary functions.

Third, the creation of tests up-front force the developers to think of the users of the code

(be it other systems or end-users). Finally, the tests form a suite of properties that can

be automatically verified, thus helping to avoid regression errors (re-introducing bugs

fixed before into new releases).

While TDD has gained substantial traction in recent years, with dozens of publications

extolling its virtues, the idea is not new. Anecdotally2, the Mercury Space Program at

NASA used a variant of TDD with their punch-card programming system: punching

the cards with the expected output, then programming the system until the output

punchcards matched. What has changed recently is the availability and quality of tools

built to support this new workflow. Many frameworks are based on early work by Beck

[68], who created the first “xUnit” unit testing framework, SUnit for Smalltalk. While

SUnit (and Smalltalk itself) did not gain a huge marketshare (below 0.21% according

to TIOBE 3), JUnit, a Java saw a great deal of success - with many books discussing

it, including Beck’s and Martin’s well known volumes on practical software construction

1http://agilemanifesto.org/
2http://c2.com/cgi/wiki?TenYearsOfTestDrivenDevelopment
3http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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[16, 68]. These frameworks made TDD approachable to industry, and promoted the

“red-green-refactor” workflow of creating a failing test case (red), making the test case

pass by creating the simplest code possible (green), then refactoring the code to make

it clean [124]. The workflow has had a remarkable effect on defect rates, with a study

at IBM showing a 50% reduction over ad-hoc testing [74].

Testing and test coverage (the proportion of code-paths covered by tests) are influenced

by the source language, and the complexity [76] of the methods/classes under test. The

limiting factor is that fundamentally all tests are instances of fixed value quantification

assertions4. That is, for a function f , we can specify the output, y, for any fixed input

y = f(x). We can do this for arbitrarily many values of x, but it is still finite instances

of fixed value quantification. We are saying there is an x for which this function behaves

correctly. Extending this idea with statistical sampling we arrive at the work of Claessen

and Hughes, QuickCheck [77]. Their work is based on the idea that any value from a

range of inputs should produce valid output within another well-defined range (and not

crash). The system uses these ranges as inputs and statistically samples values within

them (the number of which is configurable) and synthesizes new assertions/test cases.

This is analogous to how a human would extend the same tests, but without the tedium

of creating them manually.

Even with such statistical sampling, we cannot say the function is correct for any input.

In formal terms we cannot state “∀x, f(x) is valid.” Section 6.2.1 shows why this is still

a source of defects.

6.2.1 Example Fixed Value Quantification Problems

To illustrate why testing based on “arbitrarily many” fixed inputs is not sufficient to

cover all error cases that a universally quantified assertion would cover, we present the

following example. In mathematical terms, we define a function f(x) = x/x where the

inputs and outputs of f are the Real numbers. In code, this could be implemented as

shown in figure 6.1.

Plotting this function, we would see the graph in figure 6.2.

For arbitrarily many values this method gives the correct and expected return value,

1. However, for the input 0, this program causes a division by zero error. So, not only

4This is distinct from “fixed point” values, a mathematical concept denoting a value x such that
f(x) = x for some function f : X → X.
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double f(double x) {

return x/x;

}

Figure 6.1: C program with bug.

Figure 6.2: Graph with hole.

does one value (just one, out of as many distinct values as the data type supports) give

an unexpected result, this input actually crashes the program. While this is a contrived

example, the issue exposed here is very real.

It is not only numerical issues at play here, that can cause unexpected bugs during

translation from symbolic mathematics into computational datatypes and functions.
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Take for example the Java method in figure 6.3.

String convertBoolean(Boolean b) {

return b.toString();

}

Figure 6.3: Java program with bug.

It would seem that by testing the function with the values true and false, we would

exhaustively test this function. However, the Boolean data type in Java is actually tri-

state. It is possible to crash this program by passing null, a Boolean (distinct from the

primitive boolean data type) value that is neither true nor false. To be truly confident

in our reasoning about the behavior of functions we need to be able to assert behavior

for all possible values of our data types.

6.3 PDD

In order to close gaps in the workflow described in chapter 1 (figure 1.1), as shown

in the diagram 6.4, we extend the notion of test driven development and Clean Room

software engineering with what we dub “proof-driven development”, PDD. The term

has been used before by Bird to describe a similar technique used to iteratively refine

an algorithm to solve Sudoku puzzles [127]. However, the proofs described therein are

not machine verified (essentially Bird is talking more about proof-backed refactoring).

Using proof-driven development techniques without automation leaves the system (and

proofs) vulnerable to regression errors. Regression errors are a common problem in areas

that require change or evolution (as with nearly all software systems).

Using the power of dependent types in a proof assistant language chosen in chapter

5, we are able to express specifications with universal quantification. Furthermore, by

selecting a language with extraction/compilation (again, see section 5), we close an

entire problematic gap in the workflow diagram. The improved workflow is shown in

figure 6.5. The first two steps, creating specifications and synthesizing a mental model,

remain the same as in the original workflow. However, the next step is to create proof

statements of desired properties with the syntax of the proof assistant. These proofs (and

the output from the compiler/verifier) guide the creation of the mathematical model.

The mathematical model takes the place of the extracted/derived source code, and the

compiler directly produces a program.
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Figure 6.4: Original workflow (numbered).

As with TDD, success will depend on the quality of the framework and language upon

which the system is based. When we make a proof-based, universally quantified asser-

tion, such as “∀x, f(x) does not crash”, we need our system to tell us if in fact we have

changed f such that it is not longer true. Ideally during development, the system will

guide us/the user to the “correct” data types to complete the proof of correctness.

Systems like Agda and Idris that support “holes”, where the compiler can tell what type

of computation is needed to get from state A to state B, are close. Similarly, systems

with proof search such as Coq, Agda, and Idris, can make use of the compiler information

about the hole in the proof.

To illustrate this, consider the line of reasoning about transitivity of homomorphisms

in Idris in figure 6.6. This is a statement and partial proof of transitivity of semigroup

homomorphisms (see section 9 for details of this contribution). It states that two ho-

momorphisms h and h′ can be evaluated in either order. The proof steps are elided by

the holes “?prf1” and “?prf2”. The system can be queried as to the exact type required

for each hole (which in this case is a complex expression due to the dictionary tracking,

necessary for distinguishing which semigroup operation is being referenced).

This signature can then be passed to the proof search engine. For example, if we needed

a transformation from Nat (the type denoting natural numbers in Idris) to Bool (the
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Figure 6.5: Improved workflow (numbered).

type denoting boolean values in Idris), we could search as shown in figure 6.7. The

results of which shows us that the system knows two such predicates, isSucc (a decision

property to determine if a given natural number is a successor form (greater than zero),

and isZero, which matches if the natural number is zero.

homTrans : (adict : Semigroup a, bdict : Semigroup b,

cdict : Semigroup c) => Hom a b adict bdict ->

Hom b c bdict cdict -> Hom a c adict cdict

homTrans @{adict} @{bdict} @{cdict} (MkHom h preservesGroup)

(MkHom h’ preservesGroup’) =

MkHom @{adict} @{cdict} (\x => h’ (h x))

(\something, another =>

(h’ (h (something <+> another))) ={ ?prf1 }=

(h’ (h something <+> h another)) ={ ?prf2 }=

(h’ (h something) <+> h’ (h another)) QED)

Figure 6.6: Idris equational reasoning.

These two features, together with broader type libraries, utility lemmas and improved

error reporting should go a long to way to making PDD a viable secure software con-

struction method.
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> :search Nat -> Bool

= Prelude.Nat.isSucc : Nat -> Bool

= Prelude.Nat.isZero : Nat -> Bool

Figure 6.7: Idris proof search.

6.3.1 Design By Contract

Meyer, in his pioneering work on Design By Contract (DBC) [128], was one of the first

to realize this logical extension of Hoare logic (preconditions, invariants and postcon-

ditions). Proof driven development extends this idea further. The limitations of the

language’s type system define the limits of the assertions that can be made within the

contracts. These limitations include being limited to existential assertions, and the ca-

pabilities of statically typed systems with weaker foundations than dependent types. If

previous systems like Java, C#, C++, C, Python, Haskell, etc. supported dependent

types, design by contact frameworks would be capable of encoding very nearly the same

types of assertions (both existentially and universally quantified).

This class of limitations applies regardless of the “level” at which the predicate is tested.

Specifically, in DBC, three levels are available: preconditions, postconditions and (loop-)

invariants. At each level the same limitations of what properties can be asserted exist.

For example: Java types cannot define functional types, so a method cannot take another

method as an argument; also, Haskell’s type system (including algebraic data types) can

only parameterize based on existing top-level types (the full details of this are available

in Weirich’s paper “Depending on Types” [122]).

6.4 Examples

In this section, we show examples of the issues that arise following a “standard” ap-

proach. We illustrate the changes to design and how we can utilize the compiler and

error messages in a “PDD” approach.

The challenges that arise from a standard approach are discussed in section 6.4.1. The

alternative, PDD, approach is discussed in section 6.4.2. In order to provide a valid

comparison, we will show issues with creating a function to parse characters into integers.

For example, the character ‘1’ represents the integer 1, and should successfully parse.

On the other hand, the character ‘N’ does not represent a valid integer and should not

parse.
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6.4.1 Standard Approach

In this section we will work through the creation of a function and associated proof in

the “standard” workflow.

In Idris, the notion of parsing a character that may or may not be valid can be captured

with the definition in figure 6.8. We look for the 10 valid cases, and return Nothing if

it does not match any of them. (Clearly this code can be improved, but for illustration

purposes it is clear that it is correct).

parseInteger : Char -> Maybe Int

parseInteger ’0’ = Just 0

parseInteger ’1’ = Just 1

parseInteger ’2’ = Just 2

parseInteger ’3’ = Just 3

parseInteger ’4’ = Just 4

parseInteger ’5’ = Just 5

parseInteger ’6’ = Just 6

parseInteger ’7’ = Just 7

parseInteger ’8’ = Just 8

parseInteger ’9’ = Just 9

parseInteger _ = Nothing

Figure 6.8: Idris type declaration for parsing integers.

We would like to prove, then, that any character not between ‘0’ and ‘9’ yields Nothing.

Suppose we have a function “isNumeric” which takes a Char and returns a Boolean

(indicating whether the character is between ‘0’ and ‘9’). Then, we can define the

statement of such a proof as shown in figure 6.9.

invalidCharAlwaysNothing : (c : Char) -> (pf : isNumeric c = False) ->

parseInteger c = Nothing

invalidCharAlwaysNothing c pf = ?invalidCharAlwaysNothing_rhs

Figure 6.9: Idris proof statement.

When we attempt to prove the statement, the problem becomes intractable (figure 6.10).

This is because there is nothing to connect the implementation of “parseInteger” to the

stipulated portion of the proof, specifically that the character is numeric. To move

forward, we must examine the definition of our parse function, and change it to use

our numeric query function, or similarly sever the conditional logic. This happens after



Proof Driven Development (PDD) 68

parse> :p invalidCharAlwaysNothing_rhs

---------- Assumptions: ----------

c : Char

pf : isNumeric c = False

---------- Goal: ----------

{hole3} : parseInteger c = Nothing

Figure 6.10: Idris proof status.

10 lines of very obvious implementation code. The problem grows with larger code

segments.

As an example of a larger code segment, during string concatention, if we allow for

“negative characters” (such that ‘a’ concatenated with its negative would yield the

empty string) proving even a simple property such as that a string concatenated with

the empty string becomes extremely involved. The proof state corresponding to this is

shown in figure 6.11. (The full details of such string manipulation are available online5).

---------- Assumptions: ----------

c : SignedChar

w : Word

inductiveHypothesis : wordConcatAndCollapse w Empty = w

---------- Goal: ----------

{hole3} : case block in

wordCollapse (c # wordConcat w Empty)

(wordCollapseOneLevel (c # wordConcat w Empty))

(Words.Word instance of Prelude.Classes.Eq,

method == (c # wordConcat w Empty)

(wordCollapseOneLevel

(c # wordConcat w Empty))) = c # w

Figure 6.11: Idris complex proof status.

6.4.2 PDD Approach

As shown in figure 6.9, if we approach the same problem with a proof statement first

but before creating the code, the necessary connection between the qualifier (isNumeric)

and the implementation is more obvious. In fact, we can now encode the relationship

directly into the datatype (figure 6.12).

5https://github.com/bgoodspeed/idris-strings
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data NumChar : Type where

MkNumChar : (c : Char) -> (ok: isNumeric c = True) -> NumChar

Figure 6.12: Idris data type declaration.

parseInteger : NumChar -> Maybe Int

Figure 6.13: Idris improved parseInteger declaration (A).

This means we can declare the signature of our “parseInteger” function using the new

datatype (figure 6.13). Using this, we realize that we cannot even construct a call to

“parseInteger” using a non-numeric character. The compiler refuses to unify “False =

True” (figure 6.14). This means we can remove the possibility of failure from the method

signature, removing the Maybe clause (figure 6.15).

parse> parseInteger (MkNumChar ’c’ Refl)

(input):1:25:When elaborating argument ok to constructor Main.MkNumChar:

Can’t unify

x = x

with

isNumeric ’c’ = True

Specifically:

Can’t unify

False

with

True

Figure 6.14: Idris compilation error for bad invocation.

parseInteger : NumChar -> Int

Figure 6.15: Idris improved parseInteger declaration (B).

This small change in workflow for a trivial function has many improvements to the

resulting design. This is true not only to the design of the code developed here, but also

for any client code making use of the function. Now, rather than using a parse routine

and checking afterwards to see if something went wrong, it is up to the client to prove

nothing will go wrong before it is allowed to make the call.
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6.5 Impacts

As shown in the previous section, the use of PDD extends TDD (it is a strict superset)

and permits universal quantification of system properties. The use of proof assistants in

general close an important security gap, as shown in figures 4.1 and 4.2.

Just as TDD was shown to alter the structure of the code under test/development (by

making hooks for tests to assert intermediate results), so too does PDD. In this case,

we have intermediate placeholders for assertions, as well as intermediate dependent data

types (which carry their properties with them, similar to invariants in Hoare logic [94]).

It is possible for a proof script itself to contain errors, thus “locking in” erroneous

behavior in the system. Of course, this is true of ink and paper proofs as well. The

traditional remedy for such paper proofs is peer review. The corresponding software

quality technique is code review, which has been shown to positively impact quality

[129]. This is sometimes done during development, as in pair programming used by the

XP [69] process, and sometimes after the system is completed. The benefits arising from

code reviews happening after construction is that the system is viewed by someone not

involved in its creation. This has had a substantial impact on the quality of systems as

a whole [129, 130].

It should be noted that this is not a ‘silver bullet’ [131]. It should be easier to prove

properties about code created with proofs first than trying to prove properties post-

hoc. It is worth noting the extreme cost and difficulties associated with machine verified

proofs. Substantial work is required for making this easier for industrial users as well as

expert academics before this can become mainstream.



Chapter 7

Secure Programming

To provide a meaningful discussion of practical programming in a proof-assistant envi-

ronment, we present a discussion of a secure login program. Login programs solve the

“authentication” problem, thereby confirming a user is who he or she claims to be.

Implementing a login program exposes several key issues in secure programming in

Idris: string handling, cryptography, input/output and error handling. Furthermore,

the development of the program in the common workflow revealed several difficulties

associated with post-hoc proofs of correctness. These challenges helped motivate the

improved workflow described in section 6, several of the string handling functions in

section 8 and some of the mathematical tools described in section 9.

7.1 Authentication

Many authentication schemes exist. For example, HTTP defines seven mechanisms

supported by the web server Internet Information Server (IIS)1. All of these mechanisms

are based on “knowledge factors” which are authentication based on something the user

knows. Historically authentication systems have been based on this type of system,

including systems based on passwords, one-time hashes, etc.

However, two other categories exist2: “ownership factors” (something the user should

have, e.g. an ID card) and “inherence factors” (something fundamental to the user, e.g.

a fingerprint). When a security system uses “two-factor” authentication, it refers to the

1http://msdn.microsoft.com/en-us/library/ms789031(v=vs.110).aspx
2http://en.wikipedia.org/wiki/Authentication
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demand that authentication is provided from more than one category. These systems

and combined mechanisms are beyond the scope of this thesis.

Focusing on knowledge based authentication, passwords are by far the most common

type of authentication system. The default implementation is to store a cryptographic

hash 3 of user passwords in a database of varying types.

Unix based systems include the Linux family (Debian, Ubuntu, Redhat, etc), the BSD

family (Mac OS X, FreeBSD, OpenBSD, etc), and “traditional” Unix systems (Solaris,

AIX, etc). Many of these, including the BSD and Linux families support a variant of

the password-database-driven mechanism described herein. Two very common authen-

tication systems are BSD AUTH [132] and Pluggable Authentication Modules (PAM)4.

The password database, typically stored in /etc/passwd, or /etc/master.passwd5 is sup-

ported by both and is the default configuration for many systems, including OpenBSD.

Since Unix based open source systems provide a convenient and popular platform these

days6 we’ve chosen to focus on BSD Auth, specifically OpenBSD. A reduced C imple-

mentation showing the workflow is in figure 7.1. The system can also alter the hash

function to be used for password storage, by editing the appropriate configuration file

as described in section 7.1.2.

1 ...
2 as=auth open();
3 auth setoption(as,”login”,”yes”);
4 auth setitem(as,AUTHV NAME,username);
5 pwd=getpwnam(username);
6 auth setpwd(as,pwd);
7

8 auth verify(as,style,NULL,lc−>lc class, NULL);
9 authok=auth getstate(as);

10 auth close(as);
11

12 if(authok)
13 ...

Figure 7.1: Reduced C Login Program Logic.

3http://en.wikipedia.org/wiki/Cryptographic hash function
4http://www.opengroup.org/rfc/rfc86.0.html
5http://www.openbsd.org/cgi-bin/man.cgi?query=passwd&sektion=5
6http://w3techs.com/technologies/overview/operating system/all
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7.1.1 Implementation in practice

The OpenBSD system is well regarded as a secure open source operating system7, and

the project has strong ties with the popular OpenSSL cryptographic software project.

The implementation workflow shown in figure 7.1 is actually spread across several files

(assuming the MD5 hash algorithm is the configured digest): login.c8, auth subr.c9,

and md5 dgst.c10 This makes the information/code flow particularly difficult to reason

about. Proving theorems about the system would be exceedingly difficult.

Due to the interaction with sensitive information (specifically user passwords), and the

need to allocate system resources (such as spawning a shell, assigning a TTY to said

shell etc), the login program necessarily runs at a high privilege level (specifically it is

a seteuid root program, as described by the POSIX specification [48]). A search for

seteuid or setuid on the CVE shows how frequently this high privilege execution causes

security issues.

Since the password database must be readable by the login program, it is essential that

passwords not be stored in cleartext. As cryptographic methods are notoriously difficult

to implement correctly11, the authentication system (be it PAM or BSD AUTH), dele-

gates the calculation of hashes (which is what is actually stored in the password database)

to a full fledged cryptographic library. In the case of OpenBSD, using BSD AUTH, it is

delegated to the OpenSSL library12. This usage is discussed in the cryptography section

(7.1.2).

7.1.2 Cryptography

The standard configuration for BSD and related systems is for passwords to be stored

after being digested by a hash function. In BSD AUTH this is done in the login.conf13

file, and looks like this14:

7http://www.openbsd.org/security.html
8http://www.openbsd.org/cgi-bin/cvsweb/checkout/src/usr.bin/login/login.c
9http://www.openbsd.org/cgi-bin/cvsweb/checkout/src/lib/libc/gen/auth subr.c

10http://git.openssl.org/gitweb/?p=openssl.git;a=blob;f=crypto/md5/md5 dgst.c
11http://en.wikipedia.org/wiki/MD5#Collision vulnerabilities
12https://www.openssl.org/docs/apps/passwd.html
13http://www.openbsd.org/cgi-bin/man.cgi?query=login.conf&sektion=5
14http://www.openbsd.org/cgi-bin/cvsweb/checkout/src/etc/etc.i386/login.conf
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default:
:passwd format=md5:

Figure 7.2: Unix password database configuration.

Password hashes can be calculated on the fly using the command “openssl passwd -1

new password”. Per the man page on openssl passwd15, the default is md5.

Many hash functions suffice for calculating password hashes, and can be configured

within the BSD auth system. Historically MD2/5 was used, and modern systems use

SHA256/512 or Blowfish16.

However, many hash functions have had issues with birthday attacks 17, where two

messages that hash to the same value can be interchanged. Likewise, hash functions

using smaller keyspaces have been shown to be vulnerable.

Since a strong cryptographic hash function SHA256 has been proven correct and imple-

mented in Coq by Appel [13], we do not prove the security of our hash function. He

demonstrated the implementation fulfills the specification FIPS-180 [11]. Additionally

he claims: “We know there’s no heartbleed in SHA.”

We elide the complexity of implementing and proving security properties of the hash

function in this implementation of a login/auth system. Since there are many options

for hash functions, and the choice doesn’t matter so much except for the property that for

any pair of messages m1,m2, and hash function h we have m1 6= m2 ⇒ h(m1) 6= h(m2)

with some strong probability, we employ a trivial function with only the above property,

the function that reverses the given string. The reversing function has no collisions and

is therefore suitable according to that criterion.

7.2 Formally Verified

Some work has been done on proving/verifying semantics of C code, notably the Com-

pCert compiler that has been proven to preserve semantics as it translates from Clight

(a subset of the C language) to PowerPC assembler [101]. However an alternative ap-

proach is to use a language with designed-in support for formal logic. There are several

15https://www.openssl.org/docs/apps/passwd.html
16http://openbsd.cs.toronto.edu/cgi-bin/cvsweb/src/etc/etc.i386/login.conf
17http://en.wikipedia.org/wiki/Birthday attack
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machine-assisted proof tools (several have been discussed in chapter 5). These languages

are often based on a pure-functional core. This means certain standard programming

languages features (mutable state, IO, etc) require some awkwardness. Often these are

addressed by the introduction of Monads [108].

Successful projects like CompCert C compiler [101], the seL4 verified microkernel [50],

the Quark web browser [84], and a verified implementation of SHA-256 [13] have been

implemented in Coq, and we have selected a related system, Idris (for more details

see chapter 5). The challenges in implementing and proving properties about the login

program described herein motivated several of the contributions noted in chapters 8 and

9.

The general process for building software within formal verification frameworks (includ-

ing Idris) is to develop definitions and functions in the formal language of the framework,

prove properties about the definitions and functions, then extract runnable or compilable

code from the formal language artifacts.

7.3 Implementation

The key to the authentication problem is the comparison of an encrypted password

to one stored for that user. We would like to perform formal verification against an

implementation which is as close as possible to what exists “in the wild”. While it is not

possible to prove something completely “secure”, it is possible to show certain classes of

errors cannot occur.

As discussed in previous sections, we elide several parts of the process (such as formal

cryptographic hashing, signal trapping, re-try policies and other details) to simplify the

workflow for discussion and proof.

In particular, we show that our implementation has the following properties:

1. improperly formatted password configuration lines (such as those without enough

data) cannot be added to the database. In this case, a properly formatted con-

figuration line contains exactly three colon (‘:’) delimited fields. This is shown in

part in figure 7.8,

2. an empty password database always leads to a rejected login regardless of username

and password applied. This is shown in part in figure 7.7,
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3. any login attempt with an incorrect username or password with either one or

two entries in the password database which do not match the credentials will be

rejected18 . This is shown in part in figure 7.6.

Section 7.3.1 contains high level pseudocode of the authentication problem, as well as

examples of the interesting cases the code needs to handle.

7.3.1 Examples and Pseudocode

Here is a snippet of a typical password database (typically stored in /etc/passwd):

nobody:C2/feOyBslbOzH//dJP4B1:-2:-2::0:0:Nobody
:/var/empty:/usr/bin/false
root:4t0I/EI66gdmLd02PALYB1:0:0::0:0:System Administra-
tor:/var/root:/bin/sh
daemon:wdy3JW/OPU6.sUnfFwPmV1:1:1::0:0:System Ser-
vices:/var/root:/usr/bin/false

Figure 7.3: Unix password database sample.

There are 3 important cases an authentication system needs to handle:

1. no such user (username: “bob”, supplied password: “somepassword”): in this case

the supplied username is matched against the value in field one, when the database

is exhausted, failure is returned.

2. bad password (username: “root”, supplied password: “bad password”): as above,

except the line with the matching username is parsed and field two is compared

to the hash of the supplied password, when it does not match failure is returned

3. success (username “root”, supplied password: “password”): as above except the

hashed password matches field two and success is returned.

In figure 7.4 we present the pseudocode for this logic.

In case 1, the first clause of the if statement on line 7 fails every time, as there is no user

“bob”.

18The logic for the proofs of these claims could be extended to an arbitrary number of password
database entries
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1 username=read input()
2 password=read input()
3 password db=read file()
4 for entry in password db
5 fields=split string(’:’,entry)
6 hashed=compute hash(password)
7 if (fields[0]==username) and (fields[1]==hashed) return(OK)
8 return(BAD)

Figure 7.4: Pseudocode for authentication.

In case 2, the first clause matches on line two of the password file, indicat-

ing the “root” user does exist. However the hash of the supplied password

evaluates to “qtweE/C4z2x48o5sE.uc.”, which does not match the stored hash:

“4t0I/EI66gdmLd02PALYB1”, so the second clause on line 7 fails.

Finally in case 3, the first clause matches as in case two, and the supplied password

hashes to the matching string in the database. Both clauses in the if statement are

satisfied and the loop terminates early with a code indicating a successful login.

Due to the types developed, we know that malformed entries in the password file do not

lead to records in the database, incorrect credentials will not yield a valid login.

7.3.2 Idris

Our implementation of the login workflow described previously is completed in Idris, as

selected in chapter 5.

The core of the implementation is the “validateLogin” function (figure 7.5), which

searches for the matching user record in the password database. It does this by delegat-

ing the check of each individual record to the “matchesLoginRecord” function, eventually

returning true if any record matches the given username and password hash.

This implementation is the basis about which we proved several specific properties.

In particular, this includes the fact that for any given entry in the database, and for

any invalid username or password (ones for which the “matchesLoginRecord” function

returns false), the system will not grant a login request. This proposition (“allBadLogin-

RecordsMeanFalseForAllUserAndPasswords”) and the proof are given in figure 7.6. A re-

lated proposition (“allBadLoginRecordsMeanFalseForAllUserAndPasswords2”), namely

that the same is true for any configuration with two login records will also reject bad lo-

gins, is also shown in figure 7.6, the difference being the need for more complex rewrites
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(specifically, we must use each proof twice, once for each “side” of the equation) of the

given assumptions in order to satisfy the proof checker. This type of logic can be ex-

tended to prove an arbitrary number of records in the database will maintain the same

behaviour.

In figure 7.7, we show that given an empty password database, any login attempt (re-

gardless of the supplied username or password) will always reject the login.

In figure 7.8, we verify that all candidate lines must have the appropriate number of

entries. We do this by converting the split string into a vector, and then successively

pattern matching against the number of elements in the vector. Only if the appropriate

size vector is obtained (in this case a 3 element vector) can we create a login record.

The proofs supplied are not proofs of the total security of the program. However,

they do illustrate a universally quantification proof statement surrounding a runnable

program. Despite the limited size of the password database, we have demonstrated

universal quantification over both the username and password choice, as well as the

contents of the first two lines of the password database.

It is also worth re-iterating that the choice of a toy “hash” function (merely reversing a

string) is not representative of real-world security. A real world version of this function

would need to make use of a cryptographic hash function, and would need to use the

salt values from the password database to defend against dictionary attacks.

The full details of our implementation , including source code and proofs as well as our

comparison implementation in Coq are available online19.

matchesLoginRecord : String -> String -> LoginRecord -> Bool

matchesLoginRecord u p lr = (u == (usernameFrom lr)) &&

(compute_hash p) == (hashedPasswordFrom lr)

validateLogin : String -> String -> PasswordDatabase -> Bool

validateLogin u p (MkPasswordDatabase list) =

any (matchesLoginRecord u p) list

Figure 7.5: Idris code snippet showing part of a login program.

19https://github.com/bgoodspeed/idris-secure
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allBadLoginRecordsMeanFalseForAllUserAndPasswords :

(u : String) -> (p : String) -> (lr : LoginRecord) ->

matchesLoginRecord u p lr = False ->

validateLogin u p (MkPasswordDatabase [lr]) = False

allBadLoginRecordsMeanFalseForAllUserAndPasswords u p lr prf = ?pfHole

Main.pfHole = proof

intros

rewrite prf

trivial

allBadLoginRecordsMeanFalseForAllUserAndPasswords2 :

(u : String) -> (p : String) -> (lr : LoginRecord) ->

(lr2 : LoginRecord) -> matchesLoginRecord u p lr = False ->

matchesLoginRecord u p lr2 = False ->

validateLogin u p (MkPasswordDatabase [lr, lr2 ]) = False

allBadLoginRecordsMeanFalseForAllUserAndPasswords2 u p lr lr2 prf prf1 =

?allBadLoginRecordsMeanFalseForAllUserAndPasswords2_rhs

Main.allBadLoginRecordsMeanFalseForAllUserAndPasswords2_rhs = proof

intros

rewrite prf

rewrite sym prf

rewrite prf1

rewrite sym prf1

trivial

Figure 7.6: Idris code snippet showing proofs how incorrect logins are handled.

emptyPasswdDB : PasswordDatabase

emptyPasswdDB = MkPasswordDatabase []

emptyPasswordDBMeansNoLogin : (u : String) ->

(p : String) -> validateLogin u p emptyPasswdDB = False

emptyPasswordDBMeansNoLogin u p = Refl

Figure 7.7: Idris code snippet showing login program behavior of empty passwords.
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data LoginRecord : Type where

MkLoginRecord : Vect 3 String -> LoginRecord

splitv : (s : String) -> Vect (length (split (== ’:’) s)) String

splitv x = let xs = split (== ’:’) x

vs = fromList xs in

vs

vectToLoginRecord : {n : Nat} -> Vect n String -> Maybe LoginRecord

vectToLoginRecord {n} xs = case natToFin 0 n of

Nothing => Nothing

Just z => let un = index z xs in

case natToFin 1 n of

Nothing => Nothing

Just o => let ep = index o xs in

case natToFin 2 n of

Nothing => Nothing

Just t => Just (MkLoginRecord [un, ep, (index t xs)])

Figure 7.8: Idris code snippet showing invalid configuration handling.



Chapter 8

Provable Software Building

Blocks

Now that we have selected a language (Idris) and are armed with a new process for

creating code in a language that supports proof, we turn our attention to the problem

of cost (in terms of time and mental effort). It has been established that “it is easier

to learn new facts that are comprised of more familiar elements” [133]. As software

construction can be viewed as the composition of ideas, this finding suggests familiar

libraries are an extremely valuable tool for learning new languages and techniques. To

this end, we use a standard approach in software engineering. Specifically, we provide

solutions to common problems and package the resulting software components for re-use.

8.1 String Handling

String-handling is an important tool for both practical programming and theoretical re-

search. In this section, we examine the implementation of strings in several programming

languages. We extract the common features, describe the mathematical structures they

exhibit, and present alternatives for formal representations of strings in proof assistant

languages (particularly in Idris).

81
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8.1.1 General purpose language string representations

C is still the most used language1, and is the basis for a number of other program-

ming languages (including C++, C#, Python, Ruby and others). As a result, many

languages have inherited C’s representation of Strings either directly (by exposing C

string primitives) or indirectly (by modeling their own representation in the same style

as C). C uses arrays (contiguous memory blocks) to store character data in sequence. C

strings need to be null-terminated (by a sentinel value, denoted ‘\0’). This usage causes

a special case of the semipredicate problem [134] (where a legitimate return value must

be reserved for signaling errors in a function).

Object oriented languages tend to use either a linked list behind the scenes, similar

to Lisp [135], or a structure containing the array as well as the length [136]. Both of

these approaches eliminate the sentinel value/null termination issue, and thus resolve

the semipredicate problem. Other data structures, such as trees and heaps, can be used

to represent strings, but these tend not to be used often.

Regardless of the representation, all mainstream programming languages support strings

either natively or in a standard library. Generally, the internal representation is not

accessible to programmers short of compiler/interpreter extensions [137].

8.1.2 Using Proof Assistants to Formalize Strings

Most general purpose languages permit mutable strings (a notable exception is Haskell

[110]). Mutable data structures and mutable state in general are a problem for formal

reasoning. Purely functional languages like Haskell do not support changes to state or

side effects in functions, and as a result it is possible to automatically reason about

their behavior. To alleviate this problem, proof assistants require either side-effect-

free functions (as in Haskell), or a type system that supports quantification over values

and types, such as a Martin-Löf type theory [63]. Therefore, to formalize strings in a

programming language context we require a proof assistant (for example one based on

the calculus of constructions [58] such as Coq [56]), or a dependently typed language,

such as Agda [60] or Idris [61].

Without the power of a proof assistant or dependently typed language, all of the

properties of strings can only be demonstrated at the fixed value quantification scale

1http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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i.e. for a finite (albeit arbitrarily large) number of inputs, we can automatically

verify the output. In other words we can only provide fixed value quantification

(∀x ∈ {v1, . . . , vn}|P (f(x))), not universal quantification (∀xP (f(x))). This distinction

is discussed in detail in chapter 6. Without the ability to quantify types over values, a

system is unable to automatically validate properties of arguments to functions (e.g. a

function that asks for the Nth value of a sequence with potentially fewer than N values

requires a sentinel value like Null). Similarly, we cannot be sure that the user has done

the appropriate check at runtime [e.g. if (str.length < N) handle error(); ]. With a

dependently typed language, we can build these checks directly into the type signature,

either at the data type level or the function declaration level.

Once we have a system capable of fixed value and universal quantification, we can make

statements using higher order connectives, e.g. ∀s : String, P (s) for some predicate P .

This is a step beyond conventional testing/correctness as it can be verified at the time

of program construction/compilation. This leads to the main idea of this section: make

a good string library (such as Ruby or Haskell) formally rigorous.

8.1.3 API

All mainstream string implementations share a similar core application programming

interface (API), including general purpose languages, proof assistants, and dependently

typed languages. This API includes several methods and predicates. These are available

independently of the representation of the strings. The representation can have an

effect on the performance (in terms of time and memory usage) of these methods and

predicates.

We examined C [138], C++ [136], Ruby [137], Haskell [110], Coq [56], Isabelle [59], Agda

[60] and Idris [61]. We found, among others, the following core methods:

• equals: decides if two strings are equal;

• length: calculate the number of characters in the string;

• concatenate: adds either a character or another string onto a string;

• any: returns true if any character satisfies the predicate;

• all: returns true if all characters satisfy the predicate;

• match: return true if the supplied regular expression matches the string;
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• split: breaks a string into a list of strings according to a supplied rule;

• nth: returns the nth symbol in the string, if one exists.

We also found a core collection of predicates operating on the characters in the alphabets

composing strings, namely:

• upper: returns true if the character is upper case;

• lower: returns true if the character is lower case;

• digit: returns true if the character is numeric;

• space: returns true if the character is a white-space character (including spaces,

newlines, and tab characters).

8.1.4 Primitive Delegation

Since proof assistants are built atop general purpose languages (Coq is built in OCaml,

Idris is built in Haskell, etc), it is sometimes the case that the proof assistants inherit

their implementation language’s string primitives. In Agda and Idris strings are dele-

gated to their primitive types, proofs about them tend to use assertions (for example

Idris uses the assertion “really believe me”, which always satisfies the type checker).

In Agda, we can see this in the standard library2. In Coq, a String is defined as a

List of Ascii characters [52]. Similarly, Isabelle declares strings to be synonymous3 with

character lists as shown in figure 8.1. Idris acknowledges these problems, and provides

type_synonym string = ‘char list’

Figure 8.1: Isabelle Type Synonym for Strings

alternative representations, namely StrM (see section 8.1.5.1), and List Char.

Primitive delegation makes it difficult to reason about their state. Given this, we have

chosen to model our strings manually, making them first class citizens.

2https://github.com/agda/agda-stdlib/blob/master/src/Data/String/Core.agda
3http://isabelle.in.tum.de/website-Isabelle2013/dist/library/HOL/String.html
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8.1.5 Representation

As described in section 8.1.1, we have several basic and popular choices for representa-

tion of strings, all of which support the standard string API described in section 8.1.3.

To provide a meaningful and grounded context for discussion, we will implement alter-

natives with and without negatives in Idris [61]. Due to the dependent type system in

Idris, we can prove properties of strings, and verify them with the compiler. Likewise,

we can encode conditions on arguments directly into function signatures and datatypes.

We build our own version of strings in order to control the behavior of concatenation

(which differs when negatives are permitted) and to allow parameterization over arbi-

trary alphabets (StrM is restricted to the ASCII character set type).

8.1.5.1 Cons Cells

The name “Cons Cells” stems from Lisp [135], and it derives from the operation “cons”

used to construct a list, based on a node data structure called a “cell”, which contains

a place to hold data and a pointer to the next cell. Cons cells and lists are very similar,

and have similar properties. Many implementations of linked lists (as opposed to array

lists and others) are based on a nearly identical node/cell data structure. In Idris,

such a pattern matching structure is stored internally as an abstract syntax tree (AST)

representation. An AST representation maintains the order of operations, which is not

required in this case because concatenation is associative (see chapter 3 for more details).

Figure 8.2 shows the built-in version of a cons cell representation. Note the delega-

tion to the primitive (base-language) operations to perform the actual concatenation

(“prim strCon”). The data type and the function both rely on this delegation.

strCons : Char -> String -> String

strCons = prim__strCon

data StrM : String -> Type where

StrNil : StrM ""

StrCons : (x : Char) -> (xs : String) -> StrM (strCons x xs)

Figure 8.2: Idris StrM cons cell built-in definition.

Our version, called “Word” (shown in figure 8.3) does not rely on delegation to the

primitive types, and permits parameterization over other alphabets (the built-in StrM
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supports only the ASCII character datatype, Char). Furthermore, defining our own

datatype allows us control of the behaviour of concatenation (which is necessary if

“negative” characters are permitted). The full implementation with proofs and API

methods is in appendix A.10.

data Word t = Empty | (#) t (Word t)

Figure 8.3: Our Idris Cons Cell definition parameterized.

An additional benefit to maintaining control of our implementation and to use a cons cell

representation (rather than relying on a list-based formalism), is we can now implement

a customized induction proof structure. The statement and proof are shown in figure

8.4.

wordInduction : (P : (Word t) -> Type) -> -- Property to show

(P Empty) -> -- Base case

((c : t) -> (w : (Word t)) -> P w -> P (c # w)) -> -- Step

( a : (Word t)) -> -- Show for all a

P a

wordInduction P p_Empty p_Concat Empty = p_Empty

wordInduction P p_Empty p_Concat (c # w) = p_Concat c w

(wordInduction P p_Empty p_Concat w)

Figure 8.4: Our Idris Cons Cell induction principle.

8.1.6 Printf/Scanf

Two very common mechanisms in procedural programming to handle string-based input

and output are the functions “printf” and “scanf” (denoting “print formatted” and

“scan formatted”, respectively). These are used extensively in the C programming

language [138]. The work presented here is an effort to apply dependent types to each

of these. Fortunately, McKenna discussed the output half (the “printf” function) of

these functions on his Youtube channel4, with a code snippet related to it5. The Idris

implementation he provides is similar structurally to that given in a paper by Augustsson

on Cayenne (another dependently typed research language) [62].

The code style is an informal implementation of dependent type providers [139]. Essen-

tially, this means that the code is structured such that return types of the core functions

4https://www.youtube.com/watch?v=fVBck2Zngjo
5https://gist.github.com/puffnfresh/11202637
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(in this case “printf” and “scanf”) are determined by function calls. Unlike the approach

by Weitz et al [140] for Java, we can take full advantage of the dependent type system.

The full implementation, based on McKenna’s work is in appendix A.11, and our con-

tribution of a scanf function (technically “sscanf”, a string scanning function that can

be used to build the input-driven “scanf” version) is in figure 8.5.

Compared to the versions of “scanf” and “printf” employed in the C standard library,

the dependently typed versions given here are much safer, and the type safety is verified

by the compiler. Specifically, a call to the function in C as in figure 8.6 will compile

(although fail at runtime due to a datatype mismatch), just as a correct call as in 8.7

will compile.

The Idris implementation can catch the data type error at compile time, as it is capable

of predicating the types of the remaining arguments based on the contents of the format

string.

8.2 Utilities

As discussed in section 6, the costs and effort required to build verified software are

quite high. In order to reduce this burden for future development, we discuss a number

of additional datatypes, mathematical utilities, and useful functions to extend the Idris

system.

8.2.1 Rational

Idris supports Natural numbers (the positive integers) and Floating point numbers (dou-

ble precision floating points, to represent the Reals in finite memory). However, Idris

lacks a numerically exact rational (Integer quotient) datatype. For our purposes, we

define a Rational as a pair consisting of the numerator and the denominator. Part of

the source code is shown in figure 8.8, with the full source code available online6.

6https://github.com/bgoodspeed/idris-misc
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8.2.2 Monadic State Helpers

Several state-based monads were used while porting the source code from the excellent

Haskell reference “The Haskell Road to Logic Maths and Programming” [123], and while

developing some of the benchmark programs in section 8.3. The monad structure is well

used in Idris as well, but the state monad was lacking a few utility methods: to run

and evaluate state. Their source code is shown in figure 8.9, with the full source code

available online7.

8.2.3 NFA

Finite automata and regular expressions are an enormously popular tool in theoretical

computer science [40, 141–143]. Idris does not have regular expression support as part of

the standard library. Inspired by a Haskell implementation8, we present an Idris regular

expression matcher, based on the non-deterministic finite automata construction (NFA).

Portions of the source code are shown in figure 8.10, and the full source is available

online9.

8.2.4 Power List

The power list is the list of all of sublists of a list. For example, the powerlist of [1,2,3]

is [ [1,2,3], [1,2], [1,3], [2,3], [1], [2], [3]]. This construct is useful for reasoning about

relationships as mappings between sets. An Idris representation is shown in figure 8.11,

and is available online10.

8.2.5 Permutations

Permutations represent all re-arrangements of a list. For example, the permutations of

[1,2,3] are [ [1,2,3], [1,3,2], [2, 1,3], [2, 3,1], [3, 1,2], [3, 2,1]]. These are very useful for

combinatorics research and string handling functions. An Idris representation is shown

in figure 8.11, and is available online11.

7https://github.com/bgoodspeed/idris-misc
8http://pbrisbin.com/posts/regular expression evaluation via finite automata/
9https://github.com/bgoodspeed/idris-misc

10https://github.com/bgoodspeed/idris-misc
11https://github.com/bgoodspeed/idris-misc
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8.2.6 Cyclic Shifts

Cyclic shifts are rotations of a given list. For example, the list of all cyclic shifts of [1,2,3]

are [ [1,2,3], [3,1,2], [2,3,1] ]. These are useful for theoretical computer science, specifically

in dealing with automata theory and formal languages [115]. An Idris representation is

shown in figure 8.11, and is available online12.

8.3 Benchmarks

Benchmarks are programs used to measure the performance of languages. An excel-

lent benchmarking resource is the “Computer Language Benchmarks Game” 13. The

benchmark programs are solutions to specific problems with fixed inputs. Each language

must implement the solution with the same algorithm, because they are not seeking to

measure relative algorithm performance but language performance. The results are then

compared according to the solution’s runtime, memory usage and lines of code required.

The code presented here is ported from either the Haskell or ML implementations avail-

able for the Benchmarks Game.

The benchmarks main repository14 and the Idris versions15 are both available to the

public online. The results of the benchmarks are presented in chapter 10.

8.3.1 Fib

The Fibonacci sequence is obtained by taking the sum of the two prior elements in the

sequence, beginning with [1,1, ...]. In mathematical terms this is F (n) = F (n − 1) +

F (n− 2). This function is useful for benchmarking a program with rapid stack growth.

This is implemented as shown in figure 8.12.

12https://github.com/bgoodspeed/idris-misc
13http://benchmarksgame.alioth.debian.org/
14http://benchmarksgame.alioth.debian.org/
15https://github.com/bgoodspeed/idris-benchmarks
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8.3.2 Ackermann

The Ackermann function16 is a non-primitive recursive function which grows faster than

exponential and factorial functions. This function is useful for benchmarking numerical

computation of a fast-growing function. This is implemented as shown in figure 8.13.

8.3.3 Sieve

The sieve function produces the sequence of values that are all relatively co-prime to

the rest of the list. That is to say, all multiples of previous elements are removed from

the remainder of the list. This function is useful for benchmarking filtering of a large

list in memory. The implementation is shown in figure 8.14. Note that this particular

program makes use of the incomplete pattern matching feature of Idris (see “strictlast”,

which has undefined behavior in the event of an empty list).

8.3.4 Binary Trees

The binary trees program produces a series of balanced binary trees. This function

is designed to benchmark memory usage and traversal of structures in memory. Key

portions of the implementation are shown in figure 8.15, with the complete program

available online17.

8.4 Summary

In this section, we presented several useful building blocks for the Idris language. These

components are reusable, and can be employed for a broad selection of problems. The

reuse savings and benchmark results are discussed in chapter 10. The contributions

dealing with the mathematical and proof-oriented portions of Idris are detailed in chapter

9.

16https://en.wikipedia.org/wiki/Ackermann function
17https://github.com/bgoodspeed/idris-benchmarks
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-- Printf code based on:

-- https://gist.github.com/puffnfresh/11202637

-- written by:

-- Brian McKenna, https://www.youtube.com/watch?v=fVBck2Zngjo

-- Scanf code by Ben Goodspeed

data SFormat = SFInt SFormat

| SFOther Char SFormat

| SFString SFormat

| SFEnd

data Result : Type where

MkIntResult : Int -> Result

MkCharResult : Char -> Result

MkStringResult : String -> Result

sformat : List Char -> SFormat

sformat (’%’ :: ’d’ :: cs) = SFInt (sformat cs)

sformat (’%’ :: ’s’ :: cs) = SFString (sformat cs)

sformat (c :: cs) = SFOther c (sformat cs)

sformat [] = SFEnd

interpSFormat : SFormat -> Type

interpSFormat (SFInt f) = Int -> interpSFormat f

interpSFormat (SFOther _ f) = interpSFormat f

interpSFormat (SFString f) = String -> interpSFormat f

interpSFormat SFEnd = List Result

sformatString : String -> SFormat

sformatString x = sformat (unpack x)

toSFunction : (fmt : SFormat) -> (List Result) -> interpSFormat fmt

toSFunction (SFInt f) acc = \i => toSFunction f ((MkIntResult i) :: acc)

toSFunction (SFOther c f) acc = toSFunction f ((MkCharResult c) :: acc)

toSFunction (SFString f) acc = \s => toSFunction f

((MkStringResult s) :: acc)

toSFunction SFEnd acc = acc

sscanf : (s : String) -> interpSFormat (sformatString s)

sscanf s = toSFunction (sformatString s) []

Figure 8.5: Idris definition of dependently typed scanf.

char v;

sscanf("512", "%d", &v);

Figure 8.6: C version of an invalid sscanf call.
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int v;

sscanf("512", "%d", &v);

Figure 8.7: C version of a valid sscanf call.

module Rational

data Rational : Type where

MkRational : Nat -> (d : Nat) -> GT d Z -> Rational

quotRem : Nat -> Nat -> (Nat, Nat)

quotRem n d = (div n d, mod n d)

numerator : Rational -> Nat

numerator (MkRational x d prf) = x

denominator : Rational -> Nat

denominator (MkRational x d prf) = d

recip : Rational -> Rational

recip (MkRational Z d prf) = MkRational Z (S Z) (LTESucc LTEZero)

recip (MkRational (S k) d prf) = MkRational d (S k) (LTESucc LTEZero)

rationalMult : Rational -> Rational -> Rational

rationalMult (MkRational x Z prf) (MkRational y Z w) = absurd prf

rationalMult (MkRational x Z prf) (MkRational y (S k) w) = absurd prf

rationalMult (MkRational x (S k) prf) (MkRational y Z w) = absurd w

rationalMult (MkRational x (S k) prf) (MkRational y (S l) w) =

MkRational (x * y) ((S k) * (S l)) (LTESucc LTEZero)

rationalAdd : Rational -> Rational -> Rational

rationalAdd (MkRational x Z p1) (MkRational n Z p2) = absurd p1

rationalAdd (MkRational x Z p1) (MkRational n (S k) p2) = absurd p1

rationalAdd (MkRational x (S k) p1) (MkRational n Z p2) = absurd p2

rationalAdd (MkRational x (S k) p1) (MkRational n (S l) p2) =

MkRational ((x * (S l)) + (n * (S k))) ((S k) * (S l)) (LTESucc LTEZero)

Figure 8.8: Idris definition of a Rational data type.
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module StateUtils

import Control.Monad.Identity

import Control.Monad.State

runState : State s a -> s -> (a, s)

runState m = runIdentity . runStateT m

evalState : State s a -> s -> a

evalState m s = fst (runState m s)

Figure 8.9: Idris definition of state monad helper functions.
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module RegexNFA

import Control.Monad.Identity

import Control.Monad.State

import StateUtils

SID : Type

SID = Int -- State Identifier

data Pattern

= Empty -- ""

| Literal Char -- "a"

| Concat Pattern Pattern -- "ab"

| Choose Pattern Pattern -- "a|b"

| Repeat Pattern -- "a*"

record Rule : Type where

MkRule : (fromState : SID) -> (inputChar : Maybe Char) ->

(nextStates : List SID) -> Rule

record NFA : Type where

MkNFA : (rules : List Rule) -> (currentStates : List SID) ->

(acceptStates : List SID) -> NFA

...

accepted : NFA -> Bool

accepted nfa = any (\x => x ‘elem‘ (acceptStates nfa))

(currentStates nfa ++ freeStates nfa)

matches : String -> Pattern -> Bool

matches s = (\x => x ‘accepts‘ (unpack s)) . toNFA

main : IO ()

main = do

-- This AST represents the pattern /ab|cd*/:

let p = Choose

(Concat (Literal ’a’) (Literal ’b’))

(Concat (Literal ’c’) (Repeat (Literal ’d’)))

print $ "xyz" ‘matches‘ p

-- => False

print $ "cddd" ‘matches‘ p

-- => True

Figure 8.10: Idris definition of a regular expression matcher.
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module Utilities

cyclicShift : List a -> List a

cyclicShift [] = []

cyclicShift (x :: xs) = xs ++ [x]

allCyclicShiftsOf : List a -> List (List a)

allCyclicShiftsOf xs = iterateN (length xs) cyclicShift xs

permutations : (Eq a) => List a -> List (List a)

permutations [] = [[]]

permutations xs = [x::ys | x <- xs, ys <- permutations (delete x xs)]

powerList : List a -> List (List a)

powerList [] = [[]]

powerList (x::xs) = (powerList xs) ++ (map (x::) (powerList xs))

Figure 8.11: Idris definition of various utilty functions.

-- £Id: fibo.ghc,v 1.5 2005-04-25 19:01:38 igouy-guest Exp £

-- http://www.bagley.org/~doug/shootout/

-- ported to Idris by Ben Goodspeed

import System

fibI : Int -> Int

fibI n = case n < 2 of

True => 1

_ => fibI (n-2) + fibI (n-1)

fibonacci : Int -> Int

fibonacci n = if n < 2 then 1 else fibonacci (n-1) + fibonacci (n-2)

main : IO ()

main = do args <- getArgs

case args of

[self] => putStrLn ("usage: " ++ self ++ " <n>")

[_, n] => putStrLn (show (fibI (cast n)))

Figure 8.12: Idris definition of the fibonacci sequence.
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-- http://shootout.alioth.debian.org/

-- shortened by Bryn Keller, Einar Karttunen and Don Stewart

-- Ported to Idris by Ben Goodspeed

module Main

import System

ack : Int -> Int -> Int

ack 0 n = n+1

ack m n = ack (m-1) $ if n == 0 then 1 else ack m (n-1)

main : IO()

main = do

args <- getArgs

case args of

[self ] => putStrLn ("usage: " ++ self ++ " <n>")

[_, ns] => putStrLn ("Ack(3," ++ ns ++ "): " ++

show (ack 3 (cast ns)))

Figure 8.13: Idris definition of the Ackermann function.
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-- £Id: sieve.ghc,v 1.2 2004-11-23 08:08:45 bfulgham Exp £

-- http://www.bagley.org/~doug/shootout/

-- from Roland Dowdeswell

-- adjusted by Aaron Denney, borrowing strictness attempt

-- from Malcom Wallace’s matrix multiplication

-- ported to Idris by Ben Goodspeed

module Main

import System

force : List a -> Bool

force [] = True

force (x::xs) = force xs

strictlast : List (List a) -> List a

strictlast [x] = x

strictlast (x::xs) = let f = force x in strictlast xs

sieve : List Int -> List Int

sieve [] = []

sieve (h::t) = h :: sieve [x| x<-t, (x ‘mod‘ h) /= 0]

mytest : Int -> Int

mytest n = cast $ length $ strictlast $ map sieve $ replicate

(cast n) ([2..8192])

main : IO ()

main = do

args <- getArgs

case args of

[self] => putStrLn ("usage: " ++ self ++ " <n>")

[_, n] => putStrLn . ("Count: "++) . show . mytest $ cast n

Figure 8.14: Idris definition of a numeric sieve function.
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-- Contributed by Don Stewart in Haskell

-- Ported to Idris by Ben Goodspeed

import System

import Data.Bits

data Tree = Nil | Node Int Tree Tree

-- ...

make : Int -> Int -> Tree

make i 0 = Node i Nil Nil

make i d = let i2 = 2*i in

let d2 = d - 1 in

Node i (make (i2-1) d2) (make i2 d2)

-- ...

createTrees : Int -> IO ()

createTrees n = let maxN = max (minN + 2) n

stretchN = maxN + 1

c = check (make 0 stretchN)

vs = depth minN maxN

long = make 0 maxN in

do

io "stretch tree" stretchN c

mapM_ (\((m,d,i)) => io (show m ++ "\t trees") d i) vs

io "long lived tree" maxN (check long)

-- ...

Figure 8.15: Idris definition of binary tree creation and traversal.



Chapter 9

Proofs and Tactics

Formal verification is difficult and time consuming. This is because software systems

tend to exhibit “complex” behaviors. Here, we borrow Simon’s definition of complexity,

“given the properties of the parts and the laws of their interaction, it is not a trivial

matter to infer the properties of the whole” [144]. While constructing formally verified

software itself is often not substantially more costly than producing the same software

with a mainstream language, the formal verification can certainly be very expensive and

protracted.

We know the structure of code has changed as a result of TDD, and we have seen the

changes that PDD has on code. However, small changes to the structure of proven pieces

of software are likely to break a proof of a property of that code (because they are often

structural proofs). Because of these challenges, similar care to the proof side of things

must be given when developing libraries for re-use as the code itself. In addition to the

traditional libraries of building blocks described in chapter 8, we also provide building

blocks for proofs and proof-tactics (named as such for the LTac proof tactic library, [57])

as employed by proof search system within Coq [15, 52, 56] and Idris [61, 89, 139].

In this section, we show a list of lemmas and mathematical structures we’ve modeled

for use as building blocks in Idris.

9.1 Lists

Lists are well-supported in Idris, but we add several quantifiers and procedures. In Idris

a list is a linked list, with a cons cell making up each node. Each cons cell holds a value
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and a reference to the remainder of the list. The only constant is the empty list, denoted

“Nil” or “[]”.

As in LISP [135], lists are used in place of arrays, whose properties (such as numeric

indices) can be emulated. Similarly, they form the building blocks of other data types

such as Strings (lists of Characters). Details about this specific type are available in

section 8.1.

9.1.1 Quantifiers

The quantifiers presented in figure 9.1 (such as ‘Any’, ‘All’, etc) are based on similar

quantifiers available for Vectors1 (which are conceptually a List type parameterized by

a Natural number representing the number of elements). They define proof types for

‘Any’, which is satisfied if a predicate holds for at least one element in the list. Likewise

the ‘All’ type is satisfied if the predicate holds for every element in the list. Since the list

itself is defined by the head and the tail (the first element and the “rest”), both proofs

of ‘Any’ and ‘All are case-based, called ‘Here’, meaning the Head is valid at least, and

‘There’, meaning the Tail is valid at least.

To clarify these quantifiers, the function “isUpper” (which has the type Character →
Boolean) is a predicate, as it returns a boolean value depending on whether the character

is upper case. When applied to the list [‘A’, ‘b’], the ‘All’ quantifier could not be satisfied,

but the ‘Any’ quantifier could be satisfied using the fact that the head of the list contains

an upper case character.

This is implemented as shown in part in figure 9.1. The full implementation is available

online2.

9.1.2 Decision Procedures

We define several decision procedures for Lists (along with types associated with the

decision, denoted with the suffix “T”). In particular, we define predicates based on

prefixes (which are true if the first part of the list matches the supplied value), suffixes

(which hold when the end of the list matches the supplied value); and, palindromes

(which are lists which remain identical after reversing the order of the elements). The

1https://github.com/idris-lang/Idris-dev/blob/master/libs/base/Data/Vect/Quantifiers.idr
2https://github.com/bgoodspeed/idris-misc
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two versions (those types ending with a “T”), and the decidability data type are given

because of the tactics available in Idris 3 Conceptually they model the same relationships,

so the choice of which to use is at the discretion of the user. This is implemented as

shown in part in figure 9.2. The full implementation is available online4.

9.2 Boolean Values and Lazy Evaluation

Booleans, logical connectives and related control structures are supported by Idris. How-

ever, Idris is an eagerly evaluated language. Some of these features require a lazier

evaulation scheme.

In order to provide the expected semantics for logical connectives, in particular “AND”

(denoted “&&”) and “OR” (denoted “||”), the right hand side is forced to be lazily eval-

uated (using the Delay directive). This allows “short-circuiting” of logical expressions.

In other words, for the expressions “ True || X” and “ False && X”, the expression “X”

does not need to be evaluated. The same laziness is necessary for “if ... then ... else ...”

expressions. It is an error to evaluate the else branch when the condition is true, and

an error to evaluate the then branch when the condition is false.

Both of these are modeled in Idris using the Delay monad for lazy evaluation. This

makes proofs less straightforward, as the logical connective is not the expected type. It

would be reasonable to expect “A && B” to have the type signature “ Bool → Bool →
Bool”. The actual type signature is “ Bool → Lazy Bool → Bool”, which means logical

proof steps can fail.

Fortunately these difficulties can be resolved with the appropriate lemmas. For example,

the expression “∀b ∈ Bool, b && Lazy False = False” holds. Specifically, this shows

that if we know the sub-expression will eventually evaluate to False (Lazy False), we can

conclude the whole expression is False. This relationship can be proven in Idris as shown

in figure 9.3, encoded first as direct proof in the type “boolAndLazyFalseIsFalse”, and

later interactively in the type “boolAndLazyFalseIsFalse2”.

We have implemented these lemmas in Idris and made them available freely online5.

3For example, searching with “:apropos Dec” at the Idris prompt will show tactics usable with decision
types.

4https://github.com/bgoodspeed/idris-misc
5https://github.com/bgoodspeed/idris-misc
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9.3 Mathematical Structures

Isomorphisms are supported in the Idris standard library6. We added the notion of a

semigroup and monoid homomorphism (see figure 9.4).

Recall that a homomorphism, h from (S, ∗) to (T,+), is a mapping such that h(a ∗
b) = h(a) + h(b)∀a, b ∈ S. In addition to datatypes representing homormorphisms

between semigroups and monoids, the reflexivity (for a mapping this refers to the identity

function) and transitivity (for mappings this refers to composition) of homomorphisms

is proven, as shown in figure 9.5. These proofs use the technique of filling in “holes”

(called “?prf1” and “?prf2” in this case), and equational reasoning, as shown by the “={
... }= ... QED” syntax.

To provide clarity and consistency between “paper” proofs and Idris proofs, we will

illustrate the proof of transitivity of semigroup homomorphisms in both formats.

Theorem 9.1. If A,B,C are semigroups, and h : A → B, h‘ : B → C are semigroup

homomorphisms, then h ◦ h‘ : A→ C is also a semigroup homomorphism.

Proof:

Let a1, a2 ∈ A, and let ∗A, ∗B and ∗C denote the semigroup operations for A,B and C,

respectively.

h′(h(a1 ∗A a2))

= h′(h(a1) ∗B h(a2)) as h preserves ∗A in ∗B (in Idris, preservesGroup, figure 9.5)

= h′(h(a1)) ∗C h′(h(a2)) as h′ preserves ∗B in ∗C (in Idris, preservesGroup’, 9.5)

= (h ◦ h′)(a1) ∗C (h ◦ h′)(a2) by definition of composition.

∴ (h ◦ h′) : A→ B preserves ∗A in ∗C , and is transitive.

As shown in the paper proof above, the transitivity proof of the composition relies on

the fact that the mapping is in fact a homomorphism. This proof must be given when

the “Hom” datatype is created in Idris (see figure 9.4), and is shown in the argument

named “preservesGroup”. A very similar argument holds (and thus similar datatypes

exist) for monoid homomorphisms, which additionally require the correct handling of

the identity element.

6https://github.com/idris-lang/Idris-dev/blob/master/libs/base/Control/Isomorphism.idr
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The Idris code for a semigroup homomorphism datatype is shown in figure 9.4, and is

available along with the related monoid homomorphism definitions and proofs online7.

Isomorphisms are part of the standard library, and are declared as shown in figure 9.6.

9.4 Summary

In this section we presented several mathematical structures, encoded in the Idris type

system. These structures can serve as the basis for constructing more specific proofs and

arguments for the correctness of future programs. In traditional software development,

reusable libraries of functionality are crucial to the development of programs in a timely

fashion. This need is just as strong in dependently typed systems. In fact this require-

ment is broader, as the entire category of proof statements (including tactics and types)

requires support. There is no need and thus no support for such structures in traditional

system and library development. The results of this work, including cost savings and

re-use potential are discussed in section 10.

7https://github.com/bgoodspeed/idris-misc
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data Any : (P : a -> Type)-> List a -> Type where

Here : {P : a -> Type} -> {xs : List a} -> P x -> Any P (x :: xs)

There : {P : a -> Type} -> {xs : List a} -> Any P xs -> Any P (x :: xs)

anyNilAbsurd : {P : a -> Type} -> Any P Nil -> Void

anyNilAbsurd (Here _) impossible

anyNilAbsurd (There _) impossible

anyElim : {xs : List a} -> {P : a -> Type} -> (Any P xs -> b) ->

(P x -> b) -> Any P (x :: xs) -> b

anyElim _ g (Here p) = g p

anyElim f _ (There p) = f p

any : {P : a -> Type} -> (dec : (x : a) -> Dec (P x)) ->

(xs : List a) -> Dec (Any P xs)

any _ [] = No anyNilAbsurd

any p (x :: xs) with (p x)

| Yes prf = Yes (Here prf)

| No prf = case any p xs of

Yes prf’ => Yes (There prf’)

No prf’ => No (anyElim prf’ prf)

data All : (P : a -> Type) -> List a -> Type where

Nil : {P : a -> Type} -> All P Nil

(::) : {P : a -> Type} -> {xs : List a} -> P x ->

All P xs -> All P (x :: xs)

notAllHere : {P : a -> Type} -> {xs : List a} -> Not (P x) ->

All P (x :: xs) -> Void

notAllHere _ Nil impossible

notAllHere np (p :: _) = np p

notAllThere : {P : a -> Type} -> {xs : List a} -> Not (All P xs) ->

All P (x :: xs) -> Void

notAllThere _ Nil impossible

notAllThere np (_ :: ps) = np ps

all : {P : a -> Type} -> (dec : (x : a) -> Dec (P x)) ->

(xs : List a) -> Dec (All P xs)

all _ Nil = Yes Nil

all d (x :: xs) with (d x)

| No prf = No (notAllHere prf)

| Yes prf = case all d xs of

Yes prf’ => Yes (prf :: prf’)

No prf’ => No (notAllThere prf’)

Figure 9.1: Idris definition of various List Quantifiers.
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module ListDecisions

import Decidable.Equality

import DecHelper

isPrefixOfT : (Eq a) => List a -> List a -> Type

isPrefixOfT xs ys = isPrefixOf xs ys = True

isPrefixOfDec : (Eq a) => (xs : List a) -> (ys : List a) ->

Dec (isPrefixOfT xs ys)

isPrefixOfDec xs ys with (isPrefixOf xs ys)

| True = Yes Refl

| False = No falseNotTrue

isSuffixOfT : (Eq a) => List a -> List a -> Type

isSuffixOfT xs ys = isSuffixOf xs ys = True

isSuffixOfDec : (Eq a) => (xs : List a) -> (ys : List a) ->

Dec (isSuffixOfT xs ys)

isSuffixOfDec xs ys with (isSuffixOf xs ys)

| True = Yes Refl

| False = No falseNotTrue

isPalindrome : (Eq a) => List a -> Bool

isPalindrome xs = (reverse xs) == xs

isPalindromeT : (Eq a) => List a -> Type

isPalindromeT xs = isPalindrome xs = True

isPalindromeDec : (Eq a) => (xs : List a) -> Dec (isPalindromeT xs)

isPalindromeDec xs with (isPalindrome xs)

| True = Yes Refl

| False = No falseNotTrue

Figure 9.2: Idris definition of various List Decision Predicates.
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boolAndLazyFalseIsFalse : (b : Bool) -> b && False = False

boolAndLazyFalseIsFalse b = case b of

True => Refl

False => Refl

boolAndLazyFalseIsFalse2 : (b : Bool) -> b && False = False

boolAndLazyFalseIsFalse2 b = ?boolAndLazyFalseIsFalse2Proof

---------- Proofs ----------

Main.boolAndLazyFalseIsFalse2Proof = proof

intros

case b

trivial

trivial

Figure 9.3: Idris lemma for dispatching lazy evaluation of booleans.

data Hom : (a, b : Type) -> Semigroup a -> Semigroup b -> Type where

MkHom : (actxt : Semigroup a, bctxt : Semigroup b) => (h : a -> b) ->

(preservesGroup : (a1 : a) -> (a2 : a) ->

h ((<+>) @{actxt} a1 a2) = (<+>) @{bctxt} (h a1) (h a2)) ->

Hom a b actxt bctxt

Figure 9.4: Idris definition of a homomorphism.
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homRefl : (as : Semigroup a) => Hom a a as as

homRefl = MkHom id (\x,y => Refl)

homTrans : (adict : Semigroup a, bdict : Semigroup b,

cdict : Semigroup c) =>

Hom a b adict bdict -> Hom b c bdict cdict ->

Hom a c adict cdict

homTrans @{adict} @{bdict} @{cdict} (MkHom h preservesGroup)

(MkHom h’ preservesGroup’) =

MkHom @{adict} @{cdict} (\x => h’ (h x))

(\something, another =>

(h’ (h (something <+> another))) ={ ?prf1 }=

(h’ (h something <+> h another)) ={ ?prf2 }=

(h’ (h something) <+> h’ (h another)) QED)

Homomorphism.prf2 = proof

intros

rewrite preservesGroup’ (h something) (h another)

trivial

Homomorphism.prf1 = proof

intros

rewrite preservesGroup something another

trivial

Figure 9.5: Idris proofs of Homomorphism properties.

data Iso : Type -> Type -> Type where

MkIso : (to : a -> b) ->

(from : b -> a) ->

(toFrom : (y : b) -> to (from y) = y) ->

(fromTo : (x : a) -> from (to x) = x) ->

Iso a b

Figure 9.6: Idris definition of an isomorphism.
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Code Savings and Benchmark

Results

After identifying the five proof assistants, we evaluated them according to the features

required in table 5.6 in section 5. The selected proof assistant, Idris, was then used in the

development of several programs and proofs. A total of 25 programs were developed. We

selected two secure programs, three benchmark programs, 20 tutorial programs. These

comprise approximately 11,000 lines of code, of which we were able to extract about 1200

lines (roughly 350 lines of proofs and proof tactics, and 850 lines of utility functions and

types), and reuse them, saving about 2400 lines. The numerical breakdown of these

savings is shown in table 10.1. Concrete examples of the software before and after are

shown in figures 10.1 and 10.2 respectively.

These libraries were developed using a mixture of the “common” workflow and the newly

proposed “proof-driven development” workflow. This division was to provide a context in

which to compare the two workflows. The differences in quality and time-to-completion

were discussed in chapter 6.

We find that about 1200 lines of functions, types and proofs were able to be reused,

leading to a savings of 2400 lines in about 11,000 lines of code. In table 10.2 we see that

certain programs are more amenable to reuse, and that frequently proof-oriented code

is clustered together. This table shows the number of lines of code, lines of proof, and

the number of lines saved (this quantity includes both lines of code and proof saved, if

applicable) by importing the functionality from the reusable libraries that we created.

This segregation of verification and implementation code is typical of code produced
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data Rational : Type where

MkRational : Nat -> (d : Nat) -> GT d Z -> Rational

-- Definitions for: rational multiplication

-- rational additional

-- reciprocal

-- ...

-- elided

iterateN : Nat -> (f : a -> a) -> (x : a) -> List a

iterateN Z f x = []

iterateN (S n) f x = x :: iterateN n f (f x)

mechanicsRule : Rational -> Rational -> Rational

mechanicsRule p x = rationalMult (rationalAdd

x (rationalMult p (recip x))) (1,2)

mechanics : Rational -> Rational -> Stream Rational

mechanics p x = iterateN 100 (mechanicsRule p) x

Figure 10.1: Idris Code Before

import Rational

import Utilities

mechanicsRule : Rational -> Rational -> Rational

mechanicsRule p x = rationalMult (rationalAdd

x (rationalMult p (recip x))) (1,2)

mechanics : Rational -> Rational -> Stream Rational

mechanics p x = iterateN 100 (mechanicsRule p) x

Figure 10.2: Idris Code After

under test driven development as well: for example, the default configuration for Java

unit testing is for the unit test source code to exist in a separate directory which is then

excluded from release builds1.

1http://junit.org
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Utility Lines of Code Times Used Lines Saved

CharDec 94 2 188
DecHelper 4 9 36
GS 174 2 348
Homomorphism 68 2 136
LTE 44 1 44
ListCharDec 69 1 69
ListDecisions 35 1 35
ListQuantifiers 53 3 159
Polynomials 76 3 228
PowerSeries 28 1 28
Rational 57 1 57
RegexNFA 175 1 175
STAL 186 2 372
SetEq 75 1 75
StateUtils 14 1 14
Utilities 75 6 450

Total 2414

Table 10.1: Code reuse

Program Lines of Code Lines of Proof Lines Saved

ackerman 20 0 0
binarytree 94 0 0
fibo 23 0 0
hello 5 0 0
sieve 41 0 0
CharDec 94 94 4
ConsCellWord 251 67 94
ListCharDec 69 69 147
ListDecisions 53 53 79
ListQuantifiers 53 53 4
WordCombinatorics 156 44 74

Table 10.2: Code savings

10.1 Benchmark Results

Here we present a comparison of Idris code with a similar but less proof oriented lan-

guage, Haskell. The details of the algorithms described in section 8 are based on bench-

marks from the excellent Computer Language Benchmarks Game2.

In order to provide an up-to-date comparison, the Haskell (7.10.1) and Idris (0.9.16)

programs were run on the same MacBook Air, using the Unix “time” utility with the

2http://benchmarksgame.alioth.debian.org/
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results shown below (averaged over 5 runs). Both programs were compiled with default

compiler settings and no optimizations, with Haskell using “ghc PROG.hs -o PROG”,

and Idris using “idris PROG.idr -o PROG”.

The functions include: hello world (which benchmarks initialization and simple IO),

ackermann (which benchmarks a very fast growing mathematical function), fibonacci

(which benchmarks the performance as the stack grows during recursion), binary trees

(which benchmarks garbage collection) and sieve (which benchmarks a large list filtering

in memory). The results are summarized in table 10.3.

Program Argument Haskell Runtime Idris Runtime

hello world - 0.007s 0.007s
ackermann 10 2.595s 0.888s
ackermann 8 0.141s 0.061s
binarytrees 20 2.083s 9.057s
binarytrees 14 0.038s 0.019s
fibonacci 35 1.873s 4.287s
fibonacci 28 0.049s 0.113s
sieve 13 0.489s 17.351s
sieve 10 0.383s 13.563s

Table 10.3: Benchmark Results

As with all benchmarks, these results should be not interpreted as a guarantee of future

performance. The early results suggest for programs using a lot of heap memory or stack

space, Haskell still runs substantially faster. However, for raw numeric computations

Haskell and Idris are comparable in performance.

10.2 Contributions Revisited

As stated in section 4, we sought to make contributions in five key areas. We address

these contributions as follows:

• an evaluation of potential systems to support the goals stated, the details of this

evaluation of Coq, Idris, Agda, Haskell and Isabelle along with the rationale for

selecting Idris are in section 5;

• a security-focused program, along with proofs of security properties, described

in section 4.5 and are available online3, including both Idris and Coq sources;

3https://github.com/bgoodspeed/idris-secure
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• a new workflow, “proof-driven development”, a superset of test-driven develop-

ment, described in detail in section 6;

• a number of new data types and libraries of reusable functions and proofs.

The sources for string handling functions4 and general utility functions and types5

are both available online;

• a collection of benchmark programs are available online6 and the runtime re-

sults are in section 10.1.

4https://github.com/bgoodspeed/idris-strings
5https://github.com/bgoodspeed/idris-misc
6https://github.com/bgoodspeed/idris-misc
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Related Work

As this work spans a variety of areas, there is a great deal of related work. In this chap-

ter, we look at this work from the point of view of the PDD workflow elaborated in this

thesis. The key areas we will revisit are: formalism in security, cryptographic protocol

verification, secure software development, dependently typed programming & proof as-

sistants for software development and test-driven development & software development

workflows.

Formalism in computer security has a long history by the standards of computer science.

The seminal work on security modeling by Bell and LaPadula from 1973 [28] can be

seen as the most important early work in the area. This formed the basis of many other

modeling efforts [29, 30, 33, 41–43, 45, 102, 113]. These models found their way into

specifications and guidelines for secure systems construction, including the Department

of Defense “Rainbow Series” [26, 34–38], and more recent versions like the Common

Criteria [51] and Posix guidelines [48]. These models are generally mathematical and

descriptive, and while groundbreaking and exquisitely detailed, they are not machine

verifiable, and thus suffer from the issues identified in the workflow described in section

1 and figure 4.1.

The same issues (due to gaps in the workflow) have been addressed by various authors in

different ways. In particular the cryptographic community has tended towards process

calculi for verification of protocols [2, 6–9, 12, 13]. In some cases, these protocol descrip-

tions have been machine verified (and thus regression issues can be avoided). However,

despite this success, there is still the problematic gap of the implemented system not

being the artifact about which the proofs argue.
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The issues surrounding implementation of the models described by the formalisms have

also been studied, often with restricted subsets of existing general purpose languages

[85, 101]. There have been several successful projects using this technique, perhaps

most notable the SEL4 verified microkernel [50]. However, the formalized semantics of

these sub-languages are not as expressive as proof assistants [15, 55, 59, 93]. Recent

efforts have been made to use these systems as the basis for further development (as we

have done) [13, 14, 84]. These authors were able to close gaps in the secure software

development process, but still followed a more common specification, design, implement,

prove workflow.

New studies into dependently typed programming [54, 89, 91, 111, 122, 139, 145] have

shown that dependently typed programs (the basis of several proof assistants, such as

Coq [56], Agda [60] and Idris [61]) have levels of power beyond what any prior system can

exhibit [122]. The issues with these systems are that the best practices for programming

in them are unknown, and the costs for developing software as a result is very high

(both due to limited available expertise and time required). This work seeks to help

ameliorate some of the learning curve associated with transitioning into this paradigm

of programming. We do this by introducing a new but familiar workflow, PDD, by

providing many utilities and proof types.

The study of workflow in software engineering has grown substantially in recent mem-

ory. From early descriptions of Waterfall [73], to newer Agile processes [17, 69], many

changes have been implemented resulting in higher quality code [16, 68, 74]. This work

is also not the first to attempt to bridge the gap between “efficiency” oriented processes

and “security” oriented ones [67]. As with the cryptographic studies, these have often

focused on protocols [6, 8] and message passing semantics and traces [6, 53, 86, 93, 106].

Our workflow combining the power of proof assistants, dependent types and test-driven

development represents a new way of combining a number of the most effective ideas of

these authors.
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Conclusion

We showed that our new workflow, PDD, is a strict superset of TDD, which itself had

desirable properties in the software development lifecycle. We provided a number of new

data types and utility functions to help facilitate the use of a particular dependently

typed language (Idris), and discussions of where difficulties lie. We then analyzed the

available dependently typed systems, and justified our choice of Idris for this research.

We have used the lessons of other recent developments with related languages and for

related goals to avoid re-inventing the wheel.

Though we were able to demonstrate proofs that some classes of errors cannot occur,

we have not been able to show that unexpected classes of error are prevented. We have

shown only the ability to be more robust in our handling and verification of expected

error classes. This is a fundamental and unresolved challenge in security.

While several steps have been taken, some important issues of difficulty and utility of

these systems remain unsolved before widespread industrial use is likely. We discuss

several avenues of research work below in the hopes that some of these can be addressed

in the future.

12.1 Future Work

This is a young discipline, and the paradigm of dependently typed programming is

not well understood. The implications of design decisions are not clear, nor are best

practices. Much experimentation will be required before we can tell the long term

ramifications of our type designs.

115



Conclusion 116

12.1.1 Error Messages

As with TDD, the quality of error messages determines the utility of the workflow - if we

want the process to guide us towards correct code, we need to know where we have gone

wrong. With the availability of proof search, and the compiler’s ability to query for the

type required to fill a hole in a program, it should be possible to generate suggestions

within the system library. This would give: a) the exact signature required of a method

to complete the program; and, b) and known methods that have the required signature.

A more flexible search to return results that might be a likely interim result/datatype

would be useful as well.

When proofs fail to unify (as when assertions fail to pass), it would be extremely helpful

to have a return value saying why and exactly where it failed. In particular, Idris does

not inform the user during interactive proofs that a rewrite has failed. The compiler

silently fails to change the target expression.

12.1.2 Proof Targeting

It would be useful to support pre-order reasoning (as in equational reasoning in math-

ematical proof), so that intermediate transformations can happen. This would more

closely mimic the way mathematics are done without computer assistance, and would

therefore be a more familiar and gentler introduction to mathematical verification.

12.2 Summary

The new workflow described in this thesis, combined with solutions to the issues posed

in the previous section, can help to bring rigor to a discipline in need of security. Fully

utilizing the newest technology and tools will allow us further trust our ever-present

software and hardware.
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Appendix - Idris Syntax Guide

This section provides a concise guide to Idris syntax and references to resources to learn

more about the language.

The official web page1 contains links to documentation2, the wiki3, and the source code

repository on github4. The tutorial5 is an excellent starting point.

Figure 1 shows examples of some of the most common syntactic elements in Idris.

• : the colon operator defines a type.

• :: double colons denote concatenation.

• -> the arrow operator separates arguments.

• the underscore is a placeholder for pattern matching (matches anything).

• () parenthesis group arguments for pattern matching and control order of evalua-

tion. Empty parentheses denote the empty type, ”void”.

• ’ single quotes enclose character literals.

• ” double quotes enclose strings.

• case ... of introduces pattern matching.

• ?name denotes a ”hole” in the program.

• <- is shorthand for reading from a monad.

1idris-lang.org
2http://www.idris-lang.org/documentation/
3https://github.com/idris-lang/Idris-dev/wiki
4https://github.com/idris-lang/Idris-dev
5http://docs.idris-lang.org/en/latest/tutorial/index.html#tutorial-index
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funcName : Nat -> Char

funcName Z = ’Z’

funcName (S Z) = ’S’

funcName _ = ’N’

otherFunc : (c : Char) -> (pf : isUpper c = True) -> Char

otherFunc c pf = ?holeNameWithProofAccessible

ArgType : Type

ArgType = Type

data SomeType : Type where

MkSomeType : (t : ArgType) -> SomeType

oneMore : String -> Bool

oneMore x = case length x of

0 => let v = 123 in

False

_ => True

main : IO ()

main = do

args <- getArgs

case args of

[self] => putStrLn "usage: ..."

[_, f] => do { contents <- readFile f

-- More functions

{- long comment

-}

}

Figure 1: Idris syntax samples.

• do { ... } do-notation, used for blocks of repeated monad usage and sequential

operations.

• let ... in declares a new variable for the following scope.

• => denotes the body of a matched pattern. Also denotes the body of a lambda

expression.

• data ... where introduces a new type with the constructors given after the

”where” keyword

• Type the type of the top-level type.
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• – used for single line comments.

• {- ... -} used for multiple line comments.



Appendix - Code

This code may be periodically updated, and the latest versions are available online in

the following repositories:

• https://github.com/bgoodspeed/idris-strings

• https://github.com/bgoodspeed/idris-misc

• https://github.com/bgoodspeed/idris-secure

• https://github.com/bgoodspeed/idris-benchmarks

A.1 Extracted Code

This is the extracted code in OCaml for the modules StringHelper, AuthenticationSys-

tem and Login, per the extraction settings in Extract.

1 (∗∗ val app : ’a1 list −> ’a1 list −> ’a1 list ∗∗)
2

3 let rec app l m =

4 match l with

5 | [] −> m

6 | a::l1 −> a::(app l1 m)

7

8 (∗∗ val nth : MlCoq.nat −> ’a1 list −> ’a1 −> ’a1 ∗∗)
9

10 let rec nth n l default =

11 match n with

12 | MlCoq.O −>
13 (match l with

132
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14 | [] −> default

15 | x::l’ −> x)

16 | MlCoq.S m −>
17 (match l with

18 | [] −> default

19 | x::t −> nth m t default)

20

21 (∗∗ val rev : ’a1 list −> ’a1 list ∗∗)
22

23 let rec rev = function

24 | [] −> []

25 | x::l’ −> app (rev l’) (x::[])

26

27 (∗∗ val map : (’a1 −> ’a2) −> ’a1 list −> ’a2 list ∗∗)
28

29 let rec map f = function

30 | [] −> []

31 | a::t −> (f a)::(map f t)

32

33 (∗∗ val append : MlCoq.ascii list −> MlCoq.ascii list −> MlCoq.ascii list ∗∗)
34

35 let rec append s1 s2 =

36 match s1 with

37 | [] −> s2

38 | c::s1’ −> c::(append s1’ s2)

39

40 (∗∗ val substring :

41 MlCoq.nat −> MlCoq.nat −> MlCoq.ascii list −> MlCoq.ascii list ∗∗)
42

43 let rec substring n m s =

44 match n with

45 | MlCoq.O −>
46 (match m with

47 | MlCoq.O −> []

48 | MlCoq.S m’ −>
49 (match s with

50 | [] −> s

51 | c::s’ −> c::(substring MlCoq.O m’ s’)))

52 | MlCoq.S n’ −>
53 (match s with

54 | [] −> s
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55 | c::s’ −> substring n’ m s’)

56

57 (∗∗ val prefix : MlCoq.ascii list −> MlCoq.ascii list −> bool ∗∗)
58

59 let rec prefix s1 s2 =

60 match s1 with

61 | [] −> true

62 | a::s1’ −>
63 (match s2 with

64 | [] −> false

65 | b::s2’ −> if (=) a b then prefix s1’ s2’ else false)

66

67 type ’t sT = ’t STImpl.axiom ST

68

69 type ’t sTsep = ’t sT

70

71 (∗∗ val printStringLn : MlCoq.ascii list −> unit sTsep ∗∗)
72

73 let printStringLn = BasisImpl.axiom printStringLn

74

75 (∗∗ val split string r :

76 MlCoq.ascii −> MlCoq.ascii list −> MlCoq.ascii list −> MlCoq.ascii list

77 list −> MlCoq.ascii list list ∗∗)
78

79 let rec split string r delimiter str current word accumulated words =

80 match str with

81 | [] −> current word::accumulated words

82 | a::b −>
83 if prefix (delimiter::[]) str

84 then split string r delimiter b [] (current word::accumulated words)

85 else split string r delimiter b

86 (append current word (substring MlCoq.O (MlCoq.S MlCoq.O) str))

87 accumulated words

88

89 (∗∗ val split string :

90 MlCoq.ascii −> MlCoq.ascii list −> MlCoq.ascii list −> MlCoq.ascii list

91 list −> MlCoq.ascii list list ∗∗)
92

93 let split string delimiter str current word accumulated words =

94 rev (split string r delimiter str current word accumulated words)

95
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96 (∗∗ val matching in field :

97 MlCoq.nat −> MlCoq.ascii list −> MlCoq.ascii list list list −>
98 MlCoq.ascii list list ∗∗)
99

100 let rec matching in field idx token = function

101 | [] −> []

102 | x::y −>
103 if if prefix token

104 (nth idx x ((MlCoq.Ascii (false, true, true, true, false, false,

105 true, false))::((MlCoq.Ascii (true, true, true, true, false,

106 false, true, false))::((MlCoq.Ascii (false, false, false, false,

107 true, false, true, false))::((MlCoq.Ascii (true, false, true,

108 false, false, false, true, false))::[])))))

109 then prefix

110 (nth idx x ((MlCoq.Ascii (false, true, true, true, false, false,

111 true, false))::((MlCoq.Ascii (true, false, true, false, false,

112 false, true, false))::((MlCoq.Ascii (false, true, true, false,

113 true, false, true, false))::((MlCoq.Ascii (true, false, true,

114 false, false, false, true, false))::((MlCoq.Ascii (false, true,

115 false, false, true, false, true, false))::[])))))) token

116 else false

117 then x

118 else matching in field idx token y

119

120 (∗∗ val string rev : MlCoq.ascii list −> MlCoq.ascii list ∗∗)
121

122 let rec string rev = function

123 | [] −> []

124 | c::rest −> append (string rev rest) (c::[])

125

126 (∗∗ val compute hash : MlCoq.ascii list −> MlCoq.ascii list ∗∗)
127

128 let rec compute hash input =

129 string rev input

130

131 (∗∗ val check login :

132 MlCoq.ascii list −> MlCoq.ascii list −> MlCoq.ascii list list −>
133 MlCoq.ascii list ∗∗)
134

135 let rec check login user pass auth db =

136 let entry =
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137 matching in field MlCoq.O user

138 (map (fun str −>
139 split string (MlCoq.Ascii (false, true, false, true, true, true,

140 false, false)) str [] []) auth db)

141 in

142 let passwd crypted = compute hash pass in

143 let db passwd =

144 nth (MlCoq.S MlCoq.O) entry ((MlCoq.Ascii (false, true, false, false,

145 false, false, true, false))::((MlCoq.Ascii (true, false, false, false,

146 false, false, true, false))::((MlCoq.Ascii (false, false, true, false,

147 false, false, true, false))::((MlCoq.Ascii (false, false, false, false,

148 true, false, true, false))::((MlCoq.Ascii (true, false, false, false,

149 false, false, true, false))::((MlCoq.Ascii (true, true, false, false,

150 true, false, true, false))::((MlCoq.Ascii (true, true, false, false,

151 true, false, true, false))::((MlCoq.Ascii (true, true, true, false,

152 true, false, true, false))::((MlCoq.Ascii (true, true, true, true,

153 false, false, true, false))::((MlCoq.Ascii (false, true, false, false,

154 true, false, true, false))::((MlCoq.Ascii (false, false, true, false,

155 false, false, true, false))::[])))))))))))

156 in

157 if if prefix passwd crypted db passwd

158 then prefix db passwd passwd crypted

159 else false

160 then (MlCoq.Ascii (true, true, true, true, false, true, true,

161 false))::((MlCoq.Ascii (true, true, false, true, false, true, true,

162 false))::[])

163 else (MlCoq.Ascii (false, true, true, true, false, true, true,

164 false))::((MlCoq.Ascii (true, true, true, true, false, true, true,

165 false))::[])

166

167 (∗∗ val main : unit sTsep ∗∗)
168

169 let main =

170 printStringLn

171 (check login ((MlCoq.Ascii (true, false, true, false, true, true, true,

172 false))::((MlCoq.Ascii (true, true, false, false, true, true, true,

173 false))::((MlCoq.Ascii (true, false, true, false, false, true, true,

174 false))::((MlCoq.Ascii (false, true, false, false, true, true, true,

175 false))::[])))) ((MlCoq.Ascii (false, false, false, false, true, true,

176 true, false))::((MlCoq.Ascii (true, false, false, false, false, true,

177 true, false))::((MlCoq.Ascii (true, true, false, false, true, true,
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178 true, false))::((MlCoq.Ascii (true, true, false, false, true, true,

179 true, false))::((MlCoq.Ascii (true, true, true, false, true, true,

180 true, false))::((MlCoq.Ascii (false, false, true, false, false, true,

181 true, false))::[])))))) (((MlCoq.Ascii (false, false, true, false,

182 false, true, true, false))::((MlCoq.Ascii (true, false, false, true,

183 false, true, true, false))::((MlCoq.Ascii (false, true, true, false,

184 false, true, true, false))::((MlCoq.Ascii (false, true, true, false,

185 false, true, true, false))::((MlCoq.Ascii (true, false, true, false,

186 false, true, true, false))::((MlCoq.Ascii (false, true, false, false,

187 true, true, true, false))::((MlCoq.Ascii (true, false, true, false,

188 false, true, true, false))::((MlCoq.Ascii (false, true, true, true,

189 false, true, true, false))::((MlCoq.Ascii (false, false, true, false,

190 true, true, true, false))::((MlCoq.Ascii (false, true, false, true,

191 true, true, false, false))::((MlCoq.Ascii (true, false, false, false,

192 false, true, true, false))::((MlCoq.Ascii (true, true, false, false,

193 true, true, true, false))::((MlCoq.Ascii (false, false, true, false,

194 false, true, true, false))::((MlCoq.Ascii (false, true, true, false,

195 false, true, true, false))::((MlCoq.Ascii (false, true, false, true,

196 true, true, false, false))::((MlCoq.Ascii (true, true, true, false,

197 true, true, true, false))::((MlCoq.Ascii (false, false, false, true,

198 false, true, true, false))::((MlCoq.Ascii (true, false, false, false,

199 false, true, true, false))::((MlCoq.Ascii (false, false, true, false,

200 true, true, true, false))::((MlCoq.Ascii (true, false, true, false,

201 false, true, true, false))::((MlCoq.Ascii (false, true, true, false,

202 true, true, true, false))::((MlCoq.Ascii (true, false, true, false,

203 false, true, true, false))::((MlCoq.Ascii (false, true, false, false,

204 true, true, true, false))::((MlCoq.Ascii (false, true, false, true,

205 true, true, false, false))::((MlCoq.Ascii (true, false, false, true,

206 false, true, true, false))::((MlCoq.Ascii (false, true, false, false,

207 true, true, true, false))::((MlCoq.Ascii (false, true, false, false,

208 true, true, true, false))::((MlCoq.Ascii (true, false, true, false,

209 false, true, true, false))::((MlCoq.Ascii (false, false, true, true,

210 false, true, true, false))::((MlCoq.Ascii (true, false, true, false,

211 false, true, true, false))::((MlCoq.Ascii (false, true, true, false,

212 true, true, true, false))::((MlCoq.Ascii (true, false, true, false,

213 false, true, true, false))::((MlCoq.Ascii (false, true, true, true,

214 false, true, true, false))::((MlCoq.Ascii (false, false, true, false,

215 true, true, true,

216 false))::[]))))))))))))))))))))))))))))))))))::(((MlCoq.Ascii (true,

217 false, false, false, false, true, true, false))::((MlCoq.Ascii (false,

218 true, true, true, false, true, true, false))::((MlCoq.Ascii (true,
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219 true, true, true, false, true, true, false))::((MlCoq.Ascii (false,

220 false, true, false, true, true, true, false))::((MlCoq.Ascii (false,

221 false, false, true, false, true, true, false))::((MlCoq.Ascii (true,

222 false, true, false, false, true, true, false))::((MlCoq.Ascii (false,

223 true, false, false, true, true, true, false))::((MlCoq.Ascii (false,

224 true, false, true, true, true, false, false))::((MlCoq.Ascii (true,

225 true, true, false, true, true, true, false))::((MlCoq.Ascii (false,

226 false, false, true, false, true, true, false))::((MlCoq.Ascii (true,

227 false, false, false, false, true, true, false))::((MlCoq.Ascii (false,

228 false, true, false, true, true, true, false))::((MlCoq.Ascii (true,

229 false, true, false, false, true, true, false))::((MlCoq.Ascii (false,

230 true, true, false, true, true, true, false))::((MlCoq.Ascii (true,

231 false, true, false, false, true, true, false))::((MlCoq.Ascii (false,

232 true, false, false, true, true, true, false))::((MlCoq.Ascii (false,

233 true, false, true, true, true, false, false))::((MlCoq.Ascii (true,

234 false, false, false, false, true, true, false))::((MlCoq.Ascii (true,

235 true, false, false, true, true, true, false))::((MlCoq.Ascii (false,

236 false, true, false, false, true, true, false))::((MlCoq.Ascii (false,

237 true, true, false, false, true, true,

238 false))::[])))))))))))))))))))))::(((MlCoq.Ascii (true, false, true,

239 false, true, true, true, false))::((MlCoq.Ascii (true, true, false,

240 false, true, true, true, false))::((MlCoq.Ascii (true, false, true,

241 false, false, true, true, false))::((MlCoq.Ascii (false, true, false,

242 false, true, true, true, false))::((MlCoq.Ascii (false, true, false,

243 true, true, true, false, false))::((MlCoq.Ascii (false, false, true,

244 false, false, true, true, false))::((MlCoq.Ascii (true, true, true,

245 false, true, true, true, false))::((MlCoq.Ascii (true, true, false,

246 false, true, true, true, false))::((MlCoq.Ascii (true, true, false,

247 false, true, true, true, false))::((MlCoq.Ascii (true, false, false,

248 false, false, true, true, false))::((MlCoq.Ascii (false, false, false,

249 false, true, true, true, false))::((MlCoq.Ascii (false, true, false,

250 true, true, true, false, false))::((MlCoq.Ascii (false, true, true,

251 false, false, true, true, false))::((MlCoq.Ascii (true, true, true,

252 true, false, true, true, false))::((MlCoq.Ascii (true, true, true,

253 true, false, true, true, false))::[])))))))))))))))::(((MlCoq.Ascii

254 (true, false, true, true, false, true, true, false))::((MlCoq.Ascii

255 (true, true, true, true, false, true, true, false))::((MlCoq.Ascii

256 (false, true, true, true, false, true, true, false))::((MlCoq.Ascii

257 (true, true, false, true, false, true, true, false))::((MlCoq.Ascii

258 (true, false, true, false, false, true, true, false))::((MlCoq.Ascii

259 (true, false, false, true, true, true, true, false))::((MlCoq.Ascii
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260 (false, true, false, true, true, true, false, false))::((MlCoq.Ascii

261 (false, true, false, false, false, true, true, false))::((MlCoq.Ascii

262 (true, false, true, false, true, true, true, false))::((MlCoq.Ascii

263 (false, false, true, false, true, true, true, false))::((MlCoq.Ascii

264 (false, false, true, true, false, true, true, false))::((MlCoq.Ascii

265 (true, false, true, false, false, true, true, false))::((MlCoq.Ascii

266 (false, true, false, false, true, true, true, false))::((MlCoq.Ascii

267 (false, true, false, true, true, true, false, false))::((MlCoq.Ascii

268 (true, false, false, true, false, true, true, false))::((MlCoq.Ascii

269 (true, false, false, true, false, true, true, false))::((MlCoq.Ascii

270 (true, false, false, true, false, true, true, false))::((MlCoq.Ascii

271 (true, false, false, true, false, true, true,

272 false))::[]))))))))))))))))))::[])))))



Appendix - String Handling Code

A.2 Homomorphism

module Homomorphism

import Syntax.PreorderReasoning

--Thanks to David Christiansen from the Idris mailing list for fixing this.

data Hom : (a, b : Type) -> Semigroup a -> Semigroup b -> Type where

MkHom : (actxt : Semigroup a, bctxt : Semigroup b) => (h : a -> b) ->

(preservesGroup : (a1 : a) -> (a2 : a) ->

h ((<+>) @{actxt} a1 a2) = (<+>) @{bctxt} (h a1) (h a2)) ->

Hom a b actxt bctxt

homRefl : (as : Semigroup a) => Hom a a as as

homRefl = MkHom id (\x,y => Refl)

homTrans : (adict : Semigroup a, bdict : Semigroup b,

cdict : Semigroup c) =>

Hom a b adict bdict -> Hom b c bdict cdict ->

Hom a c adict cdict

homTrans @{adict} @{bdict} @{cdict} (MkHom h preservesGroup)

(MkHom h’ preservesGroup’) =

MkHom @{adict} @{cdict} (\x => h’ (h x))

(\something, another =>

140
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(h’ (h (something <+> another))) ={ ?prf1 }=

(h’ (h something <+> h another)) ={ ?prf2 }=

(h’ (h something) <+> h’ (h another)) QED)

data MonoidHom : (a, b : Type) -> Semigroup a -> Semigroup b ->

Monoid a -> Monoid b -> Type where

MkMonoidHom : (actxt : Semigroup a, bctxt : Semigroup b,

actxtM : Monoid a, bctxtM : Monoid b) =>

(h : a -> b) ->

(preservesGroup : (a1 : a) -> (a2 : a) ->

h ((<+>) @{actxt} a1 a2) =

(<+>) @{bctxt} (h a1) (h a2)) ->

(preservesNeutral : h (neutral @{actxtM}) =

neutral @{bctxtM}) ->

MonoidHom a b actxt bctxt actxtM bctxtM

monoidHomRefl : (as : Semigroup a, am : Monoid a) =>

MonoidHom a a as as am am

monoidHomRefl = MkMonoidHom id (\x,y => Refl) Refl

monoidHomTrans : (as : Semigroup a, bs : Semigroup b,

cs : Semigroup c, am : Monoid a,

bm : Monoid b, cm : Monoid c) =>

MonoidHom a b as bs am bm ->

MonoidHom b c bs cs bm cm ->

MonoidHom a c as cs am cm

monoidHomTrans @{actxt} @{bctxt} @{cctxt} @{am} @{bm} @{cm}

(MkMonoidHom h preservesGroup preservesNeutral)

(MkMonoidHom h’ preservesGroup’ preservesNeutral’) =

MkMonoidHom @{actxt} @{cctxt} @{am} @{cm}

(\x => h’ (h x))

(\p,q =>

(h’ (h ((<+>) @{actxt} p q)))

={ cong $ preservesGroup p q }=
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(h’ ((<+>) @{bctxt} (h p) (h q)))

={ preservesGroup’ (h p) (h q) }=

((<+>) @{cctxt} (h’ (h p)) (h’ (h q))) QED)

?monoidIdentProof

---------- Proofs ----------

Homomorphism.monoidIdentProof = proof

intros

compute

rewrite sym preservesNeutral

rewrite sym preservesNeutral’

trivial

Homomorphism.prf2 = proof

intros

rewrite preservesGroup’ (h something) (h another)

trivial

Homomorphism.prf1 = proof

intros

rewrite preservesGroup something another

trivial

A.3 ListQuantifiers

module ListQuantifiers

import DecHelper

-- This is identical to the Data.Vect.Quantifiers but for lists.

%default total
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data Any : (P : a -> Type)-> List a -> Type where

Here : {P : a -> Type} -> {xs : List a} -> P x -> Any P (x :: xs)

There : {P : a -> Type} -> {xs : List a} -> Any P xs -> Any P (x :: xs)

anyNilAbsurd : {P : a -> Type} -> Any P Nil -> Void

anyNilAbsurd (Here _) impossible

anyNilAbsurd (There _) impossible

anyElim : {xs : List a} -> {P : a -> Type} -> (Any P xs -> b) -> (P x -> b)

-> Any P (x :: xs) -> b

anyElim _ g (Here p) = g p

anyElim f _ (There p) = f p

any : {P : a -> Type} -> (dec : (x : a) -> Dec (P x)) -> (xs : List a) ->

Dec (Any P xs)

any _ [] = No anyNilAbsurd

any p (x :: xs) with (p x)

| Yes prf = Yes (Here prf)

| No prf = case any p xs of

Yes prf’ => Yes (There prf’)

No prf’ => No (anyElim prf’ prf)

data All : (P : a -> Type) -> List a -> Type where

Nil : {P : a -> Type} -> All P Nil

(::) : {P : a -> Type} -> {xs : List a} -> P x

-> All P xs -> All P (x :: xs)

negAnyAll : {P : a -> Type} -> {xs : List a} -> Not (Any P xs) ->

All (\x => Not (P x)) xs

negAnyAll {xs=Nil} _ = Nil

negAnyAll {xs=(x::xs)} f = (\x => f (Here x)) ::

negAnyAll (\x => f (There x))

notAllHere : {P : a -> Type} -> {xs : List a} -> Not (P x) ->
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All P (x :: xs) -> Void

notAllHere _ Nil impossible

notAllHere np (p :: _) = np p

notAllThere : {P : a -> Type} -> {xs : List a} -> Not (All P xs) ->

All P (x :: xs) -> Void

notAllThere _ Nil impossible

notAllThere np (_ :: ps) = np ps

all : {P : a -> Type} -> (dec : (x : a) -> Dec (P x)) -> (xs : List a) ->

Dec (All P xs)

all _ Nil = Yes Nil

all d (x :: xs) with (d x)

| No prf = No (notAllHere prf)

| Yes prf = case all d xs of

Yes prf’ => Yes (prf :: prf’)

No prf’ => No (notAllThere prf’)

A.4 ListCharDec

module ListCharDec

import CharDec

import ListQuantifiers

%default total

allUpperDec : (cs : List Char) -> Dec (All isUpperT cs)

allUpperDec cs = all isUpperDec cs

anyUpperDec : (cs : List Char) -> Dec (Any isUpperT cs)

anyUpperDec cs = any isUpperDec cs

allLowerDec : (cs : List Char) -> Dec (All isLowerT cs)
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allLowerDec cs = all isLowerDec cs

anyLowerDec : (cs : List Char) -> Dec (Any isLowerT cs)

anyLowerDec cs = any isLowerDec cs

allAlphaDec : (cs : List Char) -> Dec (All isAlphaT cs)

allAlphaDec cs = all isAlphaDec cs

anyAlphaDec : (cs : List Char) -> Dec (Any isAlphaT cs)

anyAlphaDec cs = any isAlphaDec cs

allDigitDec : (cs : List Char) -> Dec (All isDigitT cs)

allDigitDec cs = all isDigitDec cs

anyDigitDec : (cs : List Char) -> Dec (Any isDigitT cs)

anyDigitDec cs = any isDigitDec cs

allAlphaNumDec : (cs : List Char) -> Dec (All isAlphaNumT cs)

allAlphaNumDec cs = all isAlphaNumDec cs

anyAlphaNumDec : (cs : List Char) -> Dec (Any isAlphaNumT cs)

anyAlphaNumDec cs = any isAlphaNumDec cs

allNLDec : (cs : List Char) -> Dec (All isNLT cs)

allNLDec cs = all isNLDec cs

anyNLDec : (cs : List Char) -> Dec (Any isNLT cs)

anyNLDec cs = any isNLDec cs

allHexDigitDec : (cs : List Char) -> Dec (All isHexDigitT cs)

allHexDigitDec cs = all isHexDigitDec cs
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anyHexDigitDec : (cs : List Char) -> Dec (Any isHexDigitT cs)

anyHexDigitDec cs = any isHexDigitDec cs

allOctDigitDec : (cs : List Char) -> Dec (All isOctDigitT cs)

allOctDigitDec cs = all isOctDigitDec cs

anyOctDigitDec : (cs : List Char) -> Dec (Any isOctDigitT cs)

anyOctDigitDec cs = any isOctDigitDec cs

allSpaceDec : (cs : List Char) -> Dec (All isSpaceT cs)

allSpaceDec cs = all isSpaceDec cs

anySpaceDec : (cs : List Char) -> Dec (Any isSpaceT cs)

anySpaceDec cs = any isSpaceDec cs

A.5 ListDecisions

module ListDecisions

import Decidable.Equality

import DecHelper

import Utilities

isPrefixOfT : (Eq a) => List a -> List a -> Type

isPrefixOfT xs ys = isPrefixOf xs ys = True

isPrefixOfDec : (Eq a) => (xs : List a) -> (ys : List a) ->

Dec (isPrefixOfT xs ys)

isPrefixOfDec xs ys with (isPrefixOf xs ys)

| True = Yes Refl

| False = No falseNotTrue

isSuffixOfT : (Eq a) => List a -> List a -> Type
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isSuffixOfT xs ys = isSuffixOf xs ys = True

isSuffixOfDec : (Eq a) => (xs : List a) -> (ys : List a) ->

Dec (isSuffixOfT xs ys)

isSuffixOfDec xs ys with (isSuffixOf xs ys)

| True = Yes Refl

| False = No falseNotTrue

isPalindrome : (Eq a) => List a -> Bool

isPalindrome xs = (reverse xs) == xs

isPalindromeT : (Eq a) => List a -> Type

isPalindromeT xs = isPalindrome xs = True

isPalindromeDec : (Eq a) => (xs : List a) -> Dec (isPalindromeT xs)

isPalindromeDec xs with (isPalindrome xs)

| True = Yes Refl

| False = No falseNotTrue

possibleBordersFor : (Eq a) => List a -> List (List a)

possibleBordersFor xs = let prefixes = inits xs

lxs = (div (length xs) 2) in

filter (\x => (length x > 0) &&

(length x <= lxs)) prefixes

isBordered : (Eq a) => List a -> Bool

isBordered xs = let valid_prefixes = possibleBordersFor xs in

any (\pfx => isSuffixOf pfx xs) valid_prefixes

isBorderedT : (Eq a) => List a -> Type

isBorderedT xs = isBordered xs = True

isBorderedDec : (Eq a) => (xs : List a) -> Dec (isBorderedT xs)

isBorderedDec xs with (isBordered xs)
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| True = Yes Refl

| False = No falseNotTrue

A.6 ListWord

module ListWord

%default total

Str : Type

Str = List Char

strLength : Str -> Nat

strLength [] = Z

strLength (x :: xs) = S( strLength xs )

listAppendIsAssociative : (l : List Char) -> (c : List Char) ->

(r : List Char) ->

(l ++ (c ++ r)) = ((l ++ c) ++ r)

listAppendIsAssociative [] c r = Refl

listAppendIsAssociative (x :: xs) c r =

let inductiveHypothesis = listAppendIsAssociative xs c r in

?listAppendIsAssociativeStepCase

-- list a already gives us Eq, Semigroup, Monoid

instance [verifiedSemigroupWord] VerifiedSemigroup Str where

semigroupOpIsAssociative = listAppendIsAssociative

listAppendNeutralIsNeutralL : (l : List Char) -> (l ++ []) = l

listAppendNeutralIsNeutralL [] = Refl

listAppendNeutralIsNeutralL (x :: xs) =

let inductiveHypothesis = listAppendNeutralIsNeutralL xs in

?listAppendNeutralIsNeutralLStepCase
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listAppendNeutralIsNeutralR : (r : List Char) -> [] ++ r = r

listAppendNeutralIsNeutralR [] = Refl

listAppendNeutralIsNeutralR (x :: xs) =

let inductiveHypothesis = listAppendNeutralIsNeutralR xs in

?listAppendNeutralIsNeutralRStepCase

instance [verifiedMonoidWord] VerifiedMonoid Str where

monoidNeutralIsNeutralL = listAppendNeutralIsNeutralL

monoidNeutralIsNeutralR = listAppendNeutralIsNeutralR

concatIsInvInjective : (c : Char) -> (s1 : Str) -> (s2 : Str) ->

(pf : s1 = s2) -> c :: s1 = c :: s2

concatIsInvInjective c s1 s2 pf = ?concatIsInvInjectivePf

concatIsInjective : (c : Char) -> (s1 : Str) -> (s2 : Str) ->

{auto pf : c :: s1 = c :: s2 } -> s1 = s2

concatIsInjective _ _ _ {pf = Refl} = Refl

---------- Proofs ----------

ListWord.concatIsInvInjectivePf = proof

intros

rewrite pf

trivial

ListWord.listAppendNeutralIsNeutralRStepCase = proof

intros

trivial

ListWord.listAppendNeutralIsNeutralLStepCase = proof

intros

rewrite inductiveHypothesis
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trivial

ListWord.listAppendIsAssociativeStepCase = proof

intros

rewrite inductiveHypothesis

trivial

A.7 VectorWord

module VectorWord

import Data.Vect

%default total

Str : Nat -> Type -> Type

Str n t = Vect n t

strConcat : (Str n t) -> (Str m t)-> (Str (n + m) t)

strConcat x x1 = x ++ x1

instance VerifiedMonoid (Str n) where

monoidNeutralIsNeutralL = ?listAppendNeutralIsNeutralL

monoidNeutralIsNeutralR = ?listAppendNeutralIsNeutralR

A.8 WordCombinatorics

-- Inspired by A second course in formal languages and automata by Shallit

module WordCombinatorics
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import DecHelper

Word : Type

Word = String

%default total

intDivCeil2 : Nat -> Nat

intDivCeil2 k = (div k 2) + (mod k 2)

prefixLengthRange : Word -> List Nat

prefixLengthRange w = [0..(intDivCeil2 (length w))]

prefixesOf : Word -> List Word

prefixesOf w with (unpack w)

| [] = []

| xs = let segs = inits xs in

map pack segs

primitivePrefixCandidatesOf : Word -> List Word

primitivePrefixCandidatesOf w = let prefixes = prefixesOf w in

filter (\x => (length x > 0) &&

(length x <= intDivCeil2 (length w)) &&

(mod (length w) (length x) == 0 ) ) prefixes

primitivePrefixCandidateLengthPairsOf : Word -> List (Word, Nat)

primitivePrefixCandidateLengthPairsOf w =

let prefixes = primitivePrefixCandidatesOf w in

map (\x => (x, div (length w) (length x))) prefixes

wordMult : Word -> Nat -> Word

wordMult x Z = ""
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wordMult x (S k) = x ++ (wordMult x k)

computeCandidates : List (Word, Nat) -> List (Word)

computeCandidates xs = map (\(w,n) => wordMult w n) xs

prefixPowerOf : Word -> (Word, Nat)

prefixPowerOf x =

let candidatePairs = primitivePrefixCandidateLengthPairsOf x

validCandidates = filter (\(w,n) =>

(wordMult w n) == x) candidatePairs in

case validCandidates of

[] => (x, 1)

(apair :: pairs) => apair

isPrimitive : Word -> Bool

isPrimitive w = let (p,n) = prefixPowerOf w in

p == w

isPower : Word -> Bool

isPower w = not (isPrimitive w)

isPrimitiveP1 : isPrimitive "dodo" = False

isPrimitiveP1 = Refl

isPrimitiveP2 : isPrimitive "door" = True

isPrimitiveP2 = Refl

--TODONOTE could make a circular shift dat structures

cyclicShift : List a -> List a

cyclicShift [] = []

cyclicShift (x :: xs) = xs ++ [x]

cyclicShiftWord : Word -> Word
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cyclicShiftWord w = pack . cyclicShift $ unpack w

--TODONOTE TODO iterateN is a handy utility function

iterateN : Nat -> (f : a -> a) -> (x : a) -> List a

iterateN Z f x = []

iterateN (S n) f x = x :: iterateN n f (f x)

allCyclicShiftsOf : Word -> List Word

allCyclicShiftsOf w = iterateN (length w) cyclicShiftWord w

isConjugateOf : Word -> Word -> Bool

isConjugateOf w1 w2 = any (== w2) (allCyclicShiftsOf w1)

isConjugateOfP1 : isConjugateOf "listen" "enlist" = True

isConjugateOfP1 = Refl

isPrimitiveT : Word -> Type

isPrimitiveT x = isPrimitive x = True

isPrimitiveDec : (w : Word) -> Dec (isPrimitiveT w)

isPrimitiveDec w with (isPrimitive w)

| True = Yes Refl

| False = No falseNotTrue

isPowerT : Word -> Type

isPowerT x = isPower x = True

isPowerDec : (w : Word) -> Dec (isPowerT w)

isPowerDec w with (isPower w)

| True = Yes Refl

| False = No falseNotTrue
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isConjugateOfT : Word -> Word -> Type

isConjugateOfT x x1 = isConjugateOf x x1 = True

isConjugateOfDec : (w1 : Word) -> (w2 : Word) -> Dec (isConjugateOfT w1 w2)

isConjugateOfDec w1 w2 with (isConjugateOf w1 w2)

| True = Yes Refl

| False = No falseNotTrue

nthConjugateOf : Nat -> Word -> Word

nthConjugateOf Z x = x

nthConjugateOf (S k) x = nthConjugateOf k (cyclicShiftWord x)

cyclicShiftIsConjugate : (w1 : Word) -> (w2 : Word) ->

{ auto ok: cyclicShiftWord w1 = w2 } ->

isConjugateOfT w1 w2

cyclicShiftIsConjugate w1 w2 = ?cyclicShiftIsConjugate_pf

data Power : Word -> Word -> Nat -> Type where

MkPower : (w : Word) -> (p : Word) -> (n : Nat) ->

{ auto ok: wordMult p n = w } -> Power w p n

data Conjugate : Word -> Word -> Nat -> Type where

MkConjugate : (w : Word) -> (x : Word) -> (n : Nat) ->

{ auto ok: nthConjugateOf n x = w } -> Conjugate w x n

splitConjugate : (Conjugate w x n) -> {u : Word} -> {v : Word} ->

((Word, Word) , ((w = u ++ v), (x = v ++ u)))

splitConjugate (MkConjugate w x n ) = ?splitConjugateProof
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theorem2_4_2DT : (w : Word) -> (x : Word) -> (Conjugate w x n) ->

(Power w pw kw) -> wordMult px kx = x

theorem2_4_2DT w x (MkConjugate w x n) (MkPower w pw kw) = ?thm242Proof

A.9 SignedConsCellWord

module SignedConsCellWord

%default total

-- Data Types

%elim

data SignedChar : Type where

Pos : Char -> SignedChar

Neg : Char -> SignedChar

%name SignedChar c,x,y,z

infixr 8 #

%elim

data Word = Empty | (#) SignedChar Word

%name Word w, w2, w3, w4

-- Equivalence

instance Eq SignedChar where

(Pos x) == (Neg y) = False

(Neg x) == (Pos y) = False

(Pos x) == (Pos y) = x == y

(Neg x) == (Neg y) = x == y

x /= y = not (x == y)
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instance Eq Word where

(a # b) == Empty = False

Empty == (a # b) = False

Empty == Empty = True

(a # b) == (c # d) = (a == c) && (b == d)

x /= y = not (x == y)

-- Methods

signedCharInverse : SignedChar -> SignedChar

signedCharInverse (Pos x) = Neg x

signedCharInverse (Neg x) = Pos x

wordLength : Word -> Nat

wordLength Empty = Z

wordLength (x # y) = S (wordLength y)

wordSignedFromCharList : (Char -> SignedChar) -> List Char -> Word

wordSignedFromCharList f [] = Empty

wordSignedFromCharList f (x :: xs) = (f x) #

(wordSignedFromCharList f xs)

wordFromCharList : List Char -> Word

wordFromCharList xs = wordSignedFromCharList Pos xs

wordInverseFromCharList : List Char -> Word

wordInverseFromCharList xs = wordSignedFromCharList Neg xs

wordFromString : String -> Word

wordFromString x = wordFromCharList (unpack x)

wordInverseFromString : String -> Word
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wordInverseFromString x = wordInverseFromCharList (unpack (reverse x))

stringFromWord : Word -> String

stringFromWord Empty = ""

stringFromWord ((Pos x) # y) = (singleton x) ++ stringFromWord y

stringFromWord ((Neg x) # y) = (singleton x) ++ stringFromWord y

wordConcat : Word -> Word -> Word

wordConcat Empty x1 = x1

wordConcat (x # y) x1 = x # (wordConcat y x1)

isInverseOf : SignedChar -> SignedChar -> Bool

isInverseOf (Pos _) (Pos _) = False

isInverseOf (Neg _) (Neg _) = False

isInverseOf (Neg x) (Pos y) = x == y

isInverseOf (Pos x) (Neg y) = x == y

%assert_total

wordCollapseOneLevel : Word -> Word

wordCollapseOneLevel Empty = Empty

wordCollapseOneLevel (x # Empty) = x # Empty

wordCollapseOneLevel (x # (y # z)) = case (x ‘isInverseOf‘ y) of

True => wordCollapseOneLevel z

False => x # wordCollapseOneLevel (y # z)

%assert_total

wordCollapse : Word -> Word

wordCollapse x = let y = wordCollapseOneLevel x in

case (x == y) of

True => x

False => wordCollapse y

wordConcatAndCollapse : Word -> Word -> Word

wordConcatAndCollapse w1 w2 = let w = wordConcat w1 w2 in

wordCollapse w
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wordSignedCharAtMaybe : Nat -> Word -> Maybe SignedChar

wordSignedCharAtMaybe Z Empty = Nothing

wordSignedCharAtMaybe Z (x # xs) = Just x

wordSignedCharAtMaybe (S k) Empty = Nothing

wordSignedCharAtMaybe (S k) (x # xs) = wordSignedCharAtMaybe k xs

wordInverse : Word -> Word

wordInverse Empty = Empty

wordInverse (x # y) = wordConcat (wordInverse y)

(signedCharInverse (x) # Empty)

isPrefixOf : Word -> Word -> Bool

isPrefixOf Empty w2 = True

isPrefixOf (x # y) Empty = False

isPrefixOf (x # y) (z # w) = (x == z) && (isPrefixOf y w)

-- Semigroup Properties

instance Semigroup Word where

x <+> y = wordConcatAndCollapse x y

wordInduction : (P : Word -> Type) -> -- Property to show

(P Empty) -> -- Base case

((c : SignedChar) -> (w : Word) -> P w -> P (c # w)) -> -- Step

( a : Word ) -> -- Show for all a

P a

wordInduction P p_Empty p_Concat Empty = p_Empty

wordInduction P p_Empty p_Concat (c # w) =

p_Concat c w (wordInduction P p_Empty p_Concat w)

instance Monoid Word where

neutral = Empty
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wordConcatEmptyRightNeutral : (w : Word) -> wordConcat w Empty = w

wordConcatEmptyRightNeutral Empty = Refl

wordConcatEmptyRightNeutral (c # w) =

let inductiveHypothesis = wordConcatEmptyRightNeutral w in

?wordConcatEmptyRightNeutralStepCase

wordConcatAndCollapseEmptyRightNeutral : (w : Word) ->

wordConcatAndCollapse w Empty = w

wordConcatAndCollapseEmptyRightNeutral Empty = Refl

wordConcatAndCollapseEmptyRightNeutral (c # w) =

let inductiveHypothesis = wordConcatAndCollapseEmptyRightNeutral w in

?wordConcatAndCollapseEmptyRightNeutralStepCase

instance Group Word where

inverse = wordInverse

wordInverseIsGroupInverseL : (l : Word) ->

wordConcat l (wordInverse l) = Empty

wordInverseIsGroupInverseL Empty = Refl

wordInverseIsGroupInverseL (c # w) =

let inductiveHypothesis = wordInverseIsGroupInverseL w in

?wordInverseIsGroupInverseLStepCase

instance VerifiedGroup Word where

groupInverseIsInverseL = wordInverseIsGroupInverseL

groupInverseIsInverseR = ?wordInverseIsGroupInverseR

---------- Proofs ----------

SignedConsCellWord.wordConcatEmptyRightNeutralStepCase = proof

intros

rewrite inductiveHypothesis

trivial
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A.10 ConsCellWord

module ConsCellWord

import Prelude.Functor

import CharDec

%default total

-- Data types

infixr 8 #

data Word t = Empty | (#) t (Word t)

infixr 2 ##

(##) : Word t -> Word t -> Word t

(##) Empty w = w

(##) (c # w) w2 = c # (w ## w2)

-- Instances

instance (Eq t) => Eq (Word t) where

Empty == Empty = True

(a # x) == Empty = False

Empty == (b # y) = False

(a # x) == (b # y) = (a == b) && (x == y)

instance Functor Word where

map f Empty = Empty

map f (c # w) = (f c) # (map f w)

instance Semigroup (Word t) where

(<+>) = (##)

instance Monoid (Word t) where
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neutral = Empty

instance (Show t) => Show (Word t) where

show xs = "(" ++ show’ "" xs ++ ")" where

show’ acc Empty = acc

show’ acc (c # Empty) = acc ++ show c

show’ acc (c # w) = show’ (acc ++ show c ++ " # ") w

||| A tail recursive right fold on Words

total foldrImpl : (t -> acc -> acc) -> acc -> (acc -> acc) ->

Word t -> acc

foldrImpl f e go Empty = go e

foldrImpl f e go (c # w) = foldrImpl f e (go . (f c)) w

instance Foldable Word where

foldr f e xs = foldrImpl f e id xs

instance Applicative Word where

pure x = x # Empty

fs <$> vs = concatMap (\f => map f vs) fs

instance Traversable Word where

traverse f Empty = pure Empty

traverse f (c # w) = [| (#) (f c) (traverse f w) |]

instance Monad Word where

m >>= f = concatMap f m

instance Alternative Word where

empty = Empty
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(<|>) = (##)

-- Proofs and properties

wordInduction : (P : (Word t) -> Type) -> -- Property to show

(P Empty) -> -- Base case

((c : t) -> (w : (Word t)) -> P w -> P (c # w)) -> -- Step

( a : (Word t)) -> -- Show for all a

P a

wordInduction P p_Empty p_Concat Empty = p_Empty

wordInduction P p_Empty p_Concat (c # w) =

p_Concat c w (wordInduction P p_Empty p_Concat w)

wordConcatIsAssociative : (l : Word t) -> (c : Word t) ->

(r : Word t) -> (l ## (c ## r)) = ((l ## c) ## r)

wordConcatIsAssociative Empty c r = Refl

wordConcatIsAssociative (x # y) c r =

let inductiveHypothesis = wordConcatIsAssociative y c r in

?wordConcatIsAssociativeStepCase

instance VerifiedSemigroup (Word t) where

semigroupOpIsAssociative = wordConcatIsAssociative

wcN : (w : Word t) -> (w ## Empty) = w

wcN Empty = Refl

wcN (x # y) = let iH = wcN y in

?theRest1

wordConcatNeutralIsNeutralL : (w : (Word t)) -> (w ## Empty) = w

wordConcatNeutralIsNeutralL Empty = Refl

wordConcatNeutralIsNeutralL (x # y) =

let inductiveHypothesis = wordConcatNeutralIsNeutralL y in

?wordConcatNeutralIsNeutralLStepCase
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wordConcatNeutralIsNeutralR : (w : (Word t)) -> (Empty ## w) = w

wordConcatNeutralIsNeutralR Empty = Refl

wordConcatNeutralIsNeutralR (x # y) =

let inductiveHypothesis = wordConcatNeutralIsNeutralR y in

?wordConcatNeutralIsNeutralRStepCase

instance VerifiedMonoid (Word t) where

monoidNeutralIsNeutralL = wordConcatNeutralIsNeutralL

monoidNeutralIsNeutralR = wordConcatNeutralIsNeutralR

wordConcatIsInvInjective : (c : t) -> (w1 : (Word t)) ->

(w2 : (Word t)) -> (pf : w1 = w2 ) -> c # w1 = c # w2

wordConcatIsInvInjective c w1 w2 pf = ?wordConcatIsInvInjective_rhs

wordConcatIsInjective : (c : t) -> (w1 : (Word t)) ->

(w2 : (Word t)) -> {auto pf : c # w1 = c # w2 } -> w1 = w2

wordConcatIsInjective _ _ _ {pf = Refl} = Refl

functorIdentityProof : (x : Word t) -> map id x = x

functorIdentityProof Empty = Refl

functorIdentityProof (x # y) =

let inductiveHypothesis = functorIdentityProof y in

?functorIdentityProofStepCase

functorCompositionProof : (x : Word a) -> (g1 : a -> b) ->

(g2 : b -> c) -> map (g2 . g1) x = map g2 (map g1 x)

functorCompositionProof Empty g1 g2 = Refl

functorCompositionProof (x # y) g1 g2 =

let inductiveHypothesis = functorCompositionProof y g1 g2 in

?functorCompositionProofStepCase

instance VerifiedFunctor Word where
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functorIdentity = functorIdentityProof

functorComposition = functorCompositionProof

applicativeMapProof : (x : Word a) -> (g : a -> b) ->

map g x = ((map g x) ## Empty)

applicativeMapProof Empty g = Refl

applicativeMapProof (x # y) g =

let inductiveHypothesis = applicativeMapProof y g in

?applicativeMapProofStepCase

applicativeIdentityProof : (x : Word a) -> ((map id x) ## Empty) = x

applicativeIdentityProof Empty = Refl

applicativeIdentityProof (x # y) =

let inductiveHypothesis = applicativeIdentityProof y in

?applicativeIdentityProofStepCase

applicativeCompositionProof : (x : Word a) -> (g1 : Word (a -> b)) ->

(g2 : Word (b -> c)) ->

((pure (.) <$> g2) <$> g1) <$> x = g2 <$> (g1 <$> x)

applicativeCompositionProof Empty g1 g2 =

?applicativeCompositionProofBaseCase

applicativeCompositionProof (x # y) g1 g2 =

?applicativeCompositionProof_rhs_2

applicativeHomomorphismProof : (x : a) -> (g : a -> b) ->

((g x) # Empty) = ((g x) # Empty)

applicativeHomomorphismProof x g = Refl

applicativeInterchangeProof : (x : a) -> (g : Word (a -> b)) ->

g <$> pure x = pure (\g’ : a -> b => g’ x) <$> g

applicativeInterchangeProof x g = ?applicativeInterchangeProof_rhs_1
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instance VerifiedApplicative Word where

applicativeMap = applicativeMapProof

applicativeIdentity = applicativeIdentityProof

applicativeComposition = applicativeCompositionProof

applicativeHomomorphism = applicativeHomomorphismProof

applicativeInterchange = applicativeInterchangeProof

instance VerifiedMonad Word where

monadApplicative = ?monadApplicativeProof

monadLeftIdentity = ?monadLeftIdentityProof

monadRightIdentity = ?monadRightIdentityProof

monadAssociativity = ?monadAssociativity

---------- Proofs ----------

ConsCellWord.theRest1 = proof

intros

rewrite iH

trivial

ConsCellWord.wordConcatNeutralIsNeutralLStepCase = proof

intros

rewrite inductiveHypothesis

trivial

ConsCellWord.applicativeIdentityProofStepCase = proof

intros

rewrite inductiveHypothesis

trivial

ConsCellWord.applicativeMapProofStepCase = proof

intros

rewrite inductiveHypothesis
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trivial

ConsCellWord.functorCompositionProofStepCase = proof

intros

rewrite inductiveHypothesis

trivial

ConsCellWord.functorIdentityProofStepCase = proof

intros

rewrite inductiveHypothesis

trivial

ConsCellWord.wordConcatIsInvInjective_rhs = proof

intros

rewrite pf

trivial

ConsCellWord.wordConcatNeutralIsNeutralRStepCase = proof

intros

trivial

ConsCellWord.wordConcatIsAssociativeStepCase = proof

intros

rewrite inductiveHypothesis

trivial
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A.11 Printf and Scanf

-- Printf code based on:

-- https://gist.github.com/puffnfresh/11202637

-- written by:

-- Brian McKenna, https://www.youtube.com/watch?v=fVBck2Zngjo

-- Scanf code by Ben Goodspeed

module Printf

%default total

data Format = FInt Format -- %d

| FString Format -- %s

| FOther Char Format -- [a-zA-Z0-9]

| FEnd --

format : List Char -> Format

format (’%’::’d’::cs) = FInt (format cs)

format (’%’::’s’::cs) = FString (format cs)

format (c::cs) = FOther c (format cs)

format [] = FEnd

interpFormat : Format -> Type

interpFormat (FInt f) = Int -> interpFormat f

interpFormat (FString f) = String -> interpFormat f

interpFormat (FOther _ f) = interpFormat f

interpFormat FEnd = String

formatString : String -> Format

formatString s = format (unpack s)

toFunction : (fmt : Format) -> String -> interpFormat fmt

toFunction (FInt f) a = \i => toFunction f (a ++ show i)

toFunction (FString f) a = \s => toFunction f (a ++ s)

toFunction (FOther c f) a = toFunction f (a ++ singleton c)
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toFunction FEnd a = a

printf : (s : String) -> interpFormat (formatString s)

printf s = toFunction (formatString s) ""

data SFormat = SFInt SFormat

| SFOther Char SFormat

| SFString SFormat

| SFEnd

data Result : Type where

MkIntResult : Int -> Result

MkCharResult : Char -> Result

MkStringResult : String -> Result

sformat : List Char -> SFormat

sformat (’%’ :: ’d’ :: cs) = SFInt (sformat cs)

sformat (’%’ :: ’s’ :: cs) = SFString (sformat cs)

sformat (c :: cs) = SFOther c (sformat cs)

sformat [] = SFEnd

interpSFormat : SFormat -> Type

interpSFormat (SFInt f) = Int -> interpSFormat f

interpSFormat (SFOther _ f) = interpSFormat f

interpSFormat (SFString f) = String -> interpSFormat f

interpSFormat SFEnd = List Result

sformatString : String -> SFormat

sformatString x = sformat (unpack x)

toSFunction : (fmt : SFormat) -> (List Result) ->

interpSFormat fmt

toSFunction (SFInt f) acc i =

\i => toSFunction f ((MkIntResult i) :: acc)

toSFunction (SFOther c f) acc =
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toSFunction f ((MkCharResult c) :: acc)

toSFunction (SFString f) acc =

\s => toSFunction f ((MkStringResult s) :: acc)

toSFunction SFEnd acc = acc

sscanf : (s : String) -> interpSFormat (sformatString s)

sscanf s = toSFunction (sformatString s) []


	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	

	
	
	
	
	
	

	
	
	
	
	


	

	
	
	
	
	
	
	
	
	
	
	
	

	

	
	
	
	
	
	

	
	
	

	
	

	
	

	
	

	
	

	

	
	
	
	

	
	

	
	
	

	

	
	
	
	

	
	
	
	


	
	
	
	
	
	
	
	

	

	
	
	
	
	
	
	

	
	
	
	
	

	

	
	
	
	

	
	
	

	
	
	

	
	
	
	
	

	

	
	
	
	

	
	
	
	
	
	
	
	
	
	
	


