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Abstract

Computational Science is now a central component of all scientific investigation, along with the
traditional modes of experimental and theoretical investigation. Computational Science involves
the development and solution of mathematical models, i.e., systems of equations, that represent
approximations to real world phenomenon in a wide variety of scientific areas. These mathematical
models typically do not have closed form solutions and thus the models are solved using computa-
tional software to obtain approximate solutions. Since these solutions are approximate, the question
that must be addressed is “How Good is the Computed Solution?”. This question is answered for a
given numerical solution through the computation of a good quality error estimate. This thesis will
discuss current work on answering this question in the area of computational methods for differential
equations that depend on time and/or one or more spatial dimensions. We will describe the use of
collocation, a general numerical method that can be used to obtain approximate solutions for a wide
range of problem classes, as well as our recent work in the development of efficiently computable
error estimates for collocation solutions based on special types of interpolants. We provide results
from numerical experiments to demonstrate the effectiveness of our approach.
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Chapter 1

Introduction

Differential equations (DEs) are often used for the mathematical modelling of real world phenomenon

such as the spread of a brain tumor or the spread of a disease within a population. These differen-

tial equations generally do not have a closed form solution, and as such one can only calculate an

approximate solution. Numerical methods are used in these situations to calculate an approximate

solution. As these solutions are approximate there is an error associated with them, which gives rise

to the question of what the error of a given approximation is. The true error of an approximation

can only be calculated given that the true solution is known, in which case one would not require an

approximate solution in the first place. However an error estimate can be calculated for an approx-

imation of the error and this can give a good indication of the accuracy of the numerical solution.

However, one can go further. Given a high quality error estimate, it is possible to implement adap-

tive methods. Adaptive methods allow for the calculation of an approximation that uses increased

resolution in regions where the error estimate is large while not incurring unnecessary computational

cost in regions where the error estimate is small. With error estimation and adaptive methods, one

can then implement error control, where a tolerance can be specified and a solution approximation

will be calculated such that the error estimate satisfies the specified tolerance.

One class of numerical methods for the numerical solution of differential equations is B-spline

Gaussian Collocation. A numerical solution calculated using this method will be a smooth, contin-
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uous approximation across the problem domain. The general concept of B-spline Gaussian Colloca-

tion is as follows. The approximate solution is expressed in terms of a set of known B-spline basis

functions with unknown coefficients. Then various points across the problem domain are chosen as

collocation points. Finally the coefficients of the B-spline basis functions are determined by requiring

that the approximate solution satisfy the DEs at the collocation points.

Once the approximate solution is obtained, the next step is to compute an error estimate for

the approximate solution. One class of error estimates is based on the use of interpolants to the

approximate solution that are of a different order of accuracy than the collocation solution. In this

thesis, we investigate the use of interpolation-based error estimates for B-spline collocation solutions

of boundary-value ordinary differential equations (BVODEs), 1D time-dependent partial differential

equations (PDEs), 2D elliptic PDEs (EPDEs), and 2D time-dependent PDEs.

This thesis is organized as follows. Chapter 2 presents the different classes of DEs which will be

considered within this thesis, as well as relevant background information for calculating a collocation

solution for each of these classes, and for calculating an error estimate for the one spatial dimension

problem classes. Chapter 3 presents a generalization of pre-existing 1D error estimation methods to

two spatial dimensions, as well as a new error estimation method which can be used in one or two

spatial dimensions. Chapter 4 provides an overview of the software created for this thesis. Chapter

5 contains the numerical results from various tests of the collocation and error estimation methods.

Chapter 6 finishes with our conclusions, and suggests topics for potential future work.

3



Chapter 2

Background

In this chapter we will first be introducing the various problem classes considered in this thesis,

as well as specific test problems from each of these problem classes. This chapter also contains an

overview of previous work in the area of B-spline Gaussian collocation for ODEs and PDEs in one

and two spatial dimensions, along with associated software. Finally this chapter will discuss error

estimation and control, along with associated algorithms.

2.1 Problem Classes

Within this thesis we will be considering four different classes of problems. For each of these problem

classes, there are two test problems that will be used to evaluate the performance of the numerical

methods that we consider. The problem classes represent all combinations of time-dependent or

time-independent problems, in one or two spatial dimensions.

2.1.1 Boundary Value Ordinary Differential Equations

BVODEs are the one spatial dimension, time-independent problem class. BVODEs can be used to

model the value of a function between two known points, such as the temperature throughout an

object with known temperatures at each end. While any order of solution derivative can appear

in a BVODE, in this thesis we will only consider second-order BVODEs, meaning that the second
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derivative is the highest order solution derivative present in the DE. The general form for a BVODE

that we consider in this thesis will include the ODE,

uxx(x) = f(x, u(x), ux(x)), (2.1)

where u(x) represents the true solution to the ODE, and f is some function of x, u(x), and ux(x).

The spatial domain is A ≤ x ≤ B, and the boundary conditions are u(A) = α, u(B) = β.

The test problems for this class are as follows.

BVODE Problem 1

The ODE given by,

uxx(x) = 2ux(x)− u(x) + xex − x, 0 ≤ x ≤ 2, (2.2)

with boundary conditions taken from the true solution:

u(x) =
1

6
x3ex − 5

3
xex + 2ex − x− 2. (2.3)

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

0

−4

−2

−3

−1

−4.5

−3.5

−2.5

−1.5

−0.5

Figure 2.1: The true solution to BVODE problem 1.
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BVODE Problem 2

The ODE given by,

uxx(x) = ex(x+ 2), 0 ≤ x ≤ 2, (2.4)

with boundary conditions taken from the true solution,

u(x) = x(ex − e). (2.5)

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

0

10

2

4

6

8

−1

1

3

5

7

9

Figure 2.2: The true solution to BVODE problem 2.

2.1.2 Parabolic Partial Differential Equations

Parabolic PDEs (PPDEs) are the one spatial dimension, time-dependent problem class. PPDEs are

commonly used to model the change of a function in time and across a spatial domain, such as the

diffusion of heat in a cross-section of some material. While a PPDE can contain any order of spatial

derivative, we will only be considering second-order spatial derivative PPDEs in this thesis. We will

also only consider PDEs for which only the first temporal derivative of the solution is present. The
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general form we will consider is,

ut(x, t) = f(x, t, u(x, t), ux(x, t), uxx(x, t))), (2.6)

where u(x, t) is the true solution of the PPDE. The spatial domain is A ≤ x ≤ B and the temporal

domain is t0 ≤ t ≤ tf . The initial condition is,

u(x, t0) = µ(x), (2.7)

where µ(x) is some function which represents the beginning state of the solution across the spatial

domain at the initial time. The boundary conditions are u(A, t) = α(t), u(B, t) = β(t).

The test problems for this class are as follows.

PPDE Problem 1

The PDE given by,

ut(x, t) = εuxx(x, t)− u(x, t)ux(x, t), (2.8)

where the problem dependent parameter, ε = 1
16 . The spatial domain is 0 ≤ x ≤ 1, and the temporal

domain is 0 ≤ t ≤ 1. The initial and boundary conditions are taken from the true solution,

u(x, t) =
1

2
− 1

2
tanh

(
x− t

2 − 0.25

4ε

)
. (2.9)
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Figure 2.3: The true solution to PPDE problem 1 at t = 1.

PPDE Problem 2

The PDE given by,

ut(x, t) =
1

16
uxx(x, t), (2.10)

The spatial domain is 0 ≤ x ≤ 1, and the temporal domain is 0 ≤ t ≤ 1. The initial condition is,

u(x, 0) = 2 sin (2πx) , (2.11)

boundary conditions are u(0, t) = u(1, t) = 0, and the true solution is

u(x, t) = 2 sin (2πx)e−
π2

4 t. (2.12)
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Figure 2.4: The true solution to PPDE problem 2 at t = 1.

2.1.3 Elliptic Partial Differential Equations

EPDEs are the two spatial dimension, time-independent problem class, and can be viewed as a

generalization of the BVODE class to two spatial dimensions. As with the previous problem classes,

we will only be considering second-order EPDEs. The general form we will consider in this thesis is,

uxx(x, y) + uyy(x, y) = f(x, y, u(x, y), ux(x, y), uy(x, y)), (2.13)

where u(x, y) is the true solution to the EPDE. The spatial domain is A ≤ x ≤ B, C ≤ y ≤ D.

The boundary conditions are u(A, y) = α(y), u(B, y) = β(y), u(x,C) = ζ(x), u(x,D) = η(x).

Note that, for consistency, we must have u(A,C) = α(C) = ζ(A), u(B,C) = β(C) = ζ(B),

u(A,D) = α(D) = η(A), and u(B,D) = β(D) = η(B).

EPDE Problem 1

The PDE given by,

uxx(x, y) + uyy(x, y) = xey. (2.14)
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The spatial domain is 0 ≤ x ≤ 2, 0 ≤ y ≤ 1, and boundary conditions taken from the true solution,

u(x, y) = xey. (2.15)
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Figure 2.5: The true solution to EPDE problem 1.

EPDE Problem 2

The PDE given by,

uxx(x, y) + uyy(x, y) = (x2 + y2)exy. (2.16)

The spatial domain is 0 ≤ x ≤ 2, 0 ≤ y ≤ 1, and boundary conditions taken from the true solution,

u(x, y) = exy. (2.17)
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Figure 2.6: The true solution to EPDE problem 2.

2.1.4 Two-Dimensional Parabolic Partial Differential Equations

Two-dimensional Parabolic PDEs (2DPPDEs) are the time-dependent, two spatial dimension prob-

lem class, and can be considered to be a generalization of the PPDE problem class to two spatial

dimensions. We will only be considering second-order spatial derivative 2DPPDEs, and with only

the first temporal derivative of the solution present. The general form we will consider in this thesis

is,

ut(x, y, t) = f(x, y, t, u(x, y, t), ux(x, y, t), uxx(x, y, t), uy(x, y, t), uyy(x, y, t), uxy(x, y, t)), (2.18)

where u(x, y, t) is the true solution to the 2DPPDE. The spatial domain is A ≤ x ≤ B, C ≤ y ≤ D,

and temporal domain is t0 ≤ t ≤ tf .

The initial condition is,

u(x, y, t0) = µ(x, y), (2.19)

where µ(x, y) is some function which represents the beginning state of the solution across the spatial

domain at the initial time. The boundary conditions are u(A, y, t) = α(y, t), u(B, y, t) = β(y, t),
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u(x,C, t) = ζ(x, t), u(x,D, t) = η(x, t). Note that, for consistency, we must have u(A,C, t) =

α(C, t) = ζ(A, t), u(B,C, t) = β(C, t) = ζ(B, t), u(A,D, t) = α(D, t) = η(A, t), and u(B,D, t) =

β(D, t) = η(B, t).

2DPPDE Problem 1

The PDE given by,

ut(x, y, t) = ε(uxx(x, y, t) + uyy(x, y, t)), (2.20)

where the problem dependent parameter, ε = 1
10 . The spatial domain is 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 and

the temporal domain is 0 ≤ t ≤ 1. The initial and boundary conditions are taken from the true

solution,

u(x, y, t) = sin
(π

2
x
)

sin
(π

2
y
)
e

−εtπ2

2 . (2.21)
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Figure 2.7: The true solution to 2DPPDE problem 1 at t = 1.

2DPPDE Problem 2

The PDE given by,

ut(x, y, t) = ε(uxx(x, y, t) + uyy(x, y, t))− u(x, y, t)(ux(x, y, t) + uy(x, y, t)), (2.22)
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where the problem dependent parameter, ε = 1
10 . The spatial domain is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and

the temporal domain is 0 ≤ t ≤ 1. The initial and boundary conditions are taken from the true

solution,

u(x, y, t) = (1 + e
x+y−t

2ε )−1. (2.23)
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Figure 2.8: The true solution to 2DPPDE problem 2 at t = 1.

2.2 B-spline Gaussian Collocation

B-spline Gaussian collocation is a specific family of methods from the more general class of collocation

methods. This section will begin by introducing the general concept of collocation, followed by an

explanation of B-spline Gaussian collocation. We will then describe how a collocation solution can

be calculated, along with examples of existing numerical software, for each of the four problem

classes.

The main idea of collocation is to create a space of potential approximate solutions as the span

of a set of basis functions, followed by the choosing of the collocation points, which are points in

the spatial domain at which the approximate solution is required to satisfy the differential equation.

Collocation can be used for time-dependent problems as well by applying this algorithm at multiple

time steps through the temporal domain.
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The spatial domain of a collocation problem is usually divided into smaller subintervals or rect-

angles determined by a set of mesh points. When this approach is used, the basis functions we

consider are defined across each of these subregions, and will be a polynomial or a bivariate poly-

nomial on each subregion. The collocation solution will therefore be a piecewise polynomial or a

bivariate piecewise polynomial across the spatial domain. B-spline basis functions are a common

choice for this algorithm class as they can be calculated such that the resulting piecewise polynomial

or bivariate piecewise polynomial will have any desired degree and continuity. Furthermore there are

easily available, established software packages for calculating B-splines, such as the de Boor B-spline

package [11].

By choosing the collocation points on each subregion to be the mapping of Gauss-Legendre

quadrature points from [−1, 1] onto each subregion of the spatial domain, we get Gaussian collo-

cation. Combining this with B-splines as the choice of basis functions, we get B-spline Gaussian

collocation. We express the collocation solution as a linear combination of the B-spline basis func-

tions with unknown coefficients. The unknown coefficients are determined by requiring that the

collocation solution satisfy the DE at the collocation points on each subregion and that it also

satisfies the boundary conditions at certain points.

This gives a non-linear system of equations in the time-independent cases or a system of time-

dependent, non-linear differential algebraic equations (DAEs) in the time-dependent cases. The

unknowns in these systems are the coefficients of the B-spline basis functions. When the collocation

and boundary conditions are ordered appropriately, the resulting linear systems will have what is

known as an almost block diagonal (ABD) structure. A system of this structure contains mostly

zeros apart from pairs of non-zero blocks which occur along the main diagonal; further discussion on

this structure in the context of collocation methods can be found in [16]. Matrices of this structure

can be solved more efficiently than ones having a fully dense structure by using software tools such

as COLROW [12] which allow for lesser time and space complexity than would be obtained if the

linear systems were assumed to be dense.

For the time-independent cases, the non-linear equations are solved using software that solves
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the equations to obtain B-spline coefficients that are accurate to within a given tolerance. In the

time-dependent cases, the DAE solver can enable temporal error control of the collocation solution.

The error of a collocation solution in a time-dependent problem class will consist of both a spatial

and temporal component. (This will be further discussed in section 2.3). By using a DAE solver

with error control, the temporal error in the collocation solution (i.e., the error in the B-spline

coefficients) can be controlled, which then requires just the spatial error to be controlled to achieve

full error control.

2.2.1 One-dimensional B-spline Gaussian Collocation

When computing one-dimensional collocation solutions there are two input parameters which will

affect the accuracy of the approximation. These are the degree, p, of the piecewise polynomials that

represent the collocation solution, and the mesh that divides the spatial domain, which within this

thesis is taken as a uniform partitioning of the spatial domain, creating N subintervals based on

N + 1 mesh points. The mesh points will be represented as xi : i = 1, 2, . . . , N + 1, where x1 = A,

xN+1 = B. The points are sorted in increasing order.

To define B-spline basis functions, bi(x), of degree p over N subintervals and having C1-continuity

imposed, we need to specify NCPTS = N(p− 1) + 2 knots across the spatial domain. These knots

take on the same values as the mesh points, but will contain repetitions of the mesh points. The

knot points, κi : i = 1, 2, . . . , NCPTS, are defined such that x1 and xN+1 appear p+ 1 times while

the remaining mesh points appear p − 1 times each, with the knots appearing in increasing order

of x-value. From these knots, the B-spline basis functions, bi(x) : i = 1, 2, . . . , NCPTS, are then

defined. See [11] for further details.

The basis functions, along with coefficients, ci : i = 1, 2, . . . , NCPTS, in the BVODE case, or

ci(t) : i = 1, 2, . . . , NCPTS, in the PPDE case, define the collocation solution, and allow for it to be

evaluated at any point in the spatial domain in the BVODE case, or the spatial-temporal domain

in the PPDE case.
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In the BVODE case the collocation solution, U(x), is given by,

U (x) =

NCPTS∑
i=1

cibi(x), (2.24)

while in the PPDE case, the collocation solution, U(x, t), has the form,

U (x, t) =

NCPTS∑
i=1

ci(t)bi(x). (2.25)

To discretize the spatial dependence of the collocation solution, we then define the collocation

points, γi : i = 1, 2, . . . , NCPTS− 2, such that each of the N subintervals contains p− 1 collocation

points. For each subinterval the collocation points will be the mapping of the set of (p− 1) Gauss-

Legendre points from [−1, 1] to [xi, xi+1], i = 1, 2, . . . , N . At each of these collocation points we will

require that the collocation solution exactly satisfy the ODE or PDE.

In the BVODE case these collocation conditions will be of form,

f (γi, U (γi) , Ux (γi))− Uxx (γi) = 0 : i = 1, 2, . . . , NCPTS − 2, (2.26)

while in the PPDE case they are of form,

f (γi, t, U (γi, t) , Ux (γi, t) , Uxx (γi, t))− Ut (γi, t) = 0 : i = 1, 2, . . . , NCPTS − 2. (2.27)

The remaining two conditions to determine the coefficients for the NCPTS B-spline basis func-

tions are obtained by requiring that the collocation solution satisfy the boundary conditions. These

conditions will have the following form in the BVODE case,

U(A)− α = 0, U(B)− β = 0, (2.28)
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while in the PPDE case, they will have the form,

U(A, t)− α(t) = 0, U(B, t)− β(t) = 0. (2.29)

As mentioned earlier, a system with an ABD structure can allow for greater efficiency and as

such it is desired that we construct the system of non-linear algebraic equations in such a way that

this structure will arise. Due to the locality of the B-spline basis functions, shown in Figures 2.9

and 2.10, where there are only p+1 potentially non-zero basis functions on each subinterval, a given

collocation or boundary condition will depend on at most p+ 1 B-spline coefficients.

Figure 2.9: B-Spline basis functions for a collocation solution with p = 4 and N = 3. At most 5 (i.e, p + 1),
basis functions are non-zero on any subinterval.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

Figure 2.10: Coefficient sharing between intervals for a collocation solution with p = 4, N = 3. The
three rectangles represent the three subintervals, and the solution on a given subinterval can depend on the
coefficients within the corresponding rectangle.

Thus by ordering the equations in the non-linear algebraic or differential algebraic system so that

the conditions appear in increasing order of the x-value at which the collocation solution is evaluated,

an ABD structure will arise. The system ordered this way will be as follows in the BVODE case,
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U (A)− α

f (γ1, U (γ1) , Ux (γ1))− Uxx (γ1)

...

f (γNCPTS−2, U (γNCPTS−2) , Ux (γNCPTS−2))− Uxx (γNCPTS−2)

U (B)− β


= 0. (2.30)

In the PPDE case, the system of boundary and collocation conditions has the form,



U (A, t)− α (t)

f (γ1, t, U (γ1, t) , Ux (γ1, t) , Uxx (γ1, t))− Ut (γ1, t)

...

f (γNCPTS−2, t, U (γNCPTS−2, t) , Ux (γNCPTS−2, t) , Uxx (γNCPTS−2, t))− Ut (γNCPTS−2, t)

U (B, t)− β (t)


= 0.

(2.31)

A number of software packages that employ B-spline Gaussian collocation to obtain approximate

solutions for BVODE or PPDE problems have been developed. An early example of B-spline Gaus-

sian collocation software for BVODE problems is the COLSYS software [4]. An early example of

B-spline Gaussian collocation software for the PPDE case is PDECOL [17], which led to EPDCOL

[15]. Another more recent example of B-spline Gaussian collocation software for the PPDE case

is the BACOL software [22]. Both the COLSYS and BACOL packages compute error controlled

collocation solutions. We discuss this later in the thesis.

2.2.2 Two-dimensional B-spline Gaussian Collocation

The approach discussed in this section employs a tensor-product of the B-spline basis functions, and

as such has much in common with a one-dimensional approach. In this case we will have degree p

piecewise polynomials in x, and degree q piecewise polynomials in y. We will also have a mesh in

x and y, defined by N and M subintervals across the x and y spatial domains. These mesh points

will be represented as, xi : i = 1, 2, . . . N + 1, and yi : i = 1, 2, . . . ,M + 1, in x and y, respectively.
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The B-spline basis functions will be determined by NCPTX = N(p − 1) + 2 knots in x, and

NCPTY = M(q − 1) + 2 knots in y. These knots will be constructed in the same manner as in the

one-dimensional case, where the exterior mesh points are repeated p + 1 or q + 1 times while the

interior points are repeated p − 1 or q − 1 times. The resulting knots, ki : i = 1, 2, . . . , NCPTX,

and li : i = 1, 2, . . . , NCPTY , will be sorted in increasing order of x and y value. These knots will

then be used to define the B-spline basis functions in x, bi(x) : i = 1, 2, . . . , NCPTX, and in y,

di(y) : i = 1, 2, . . . , NCPTY .

The basis functions, along with coefficients, ci,j or ci,j(t) : i = 1, 2, . . . , NCPTX, j = 1, 2, . . . , NCPTY ,

allow us to define the collocation solution.

In the EPDE case, the collocation solution U(x, y) is given by,

U (x, y) =

NCPTX∑
i=1

NCPTY∑
j=1

ci,jbi(x)dj(y). (2.32)

In the 2DPPDE case, the collocation solution U(x, y, t) is given by,

U (x, y, t) =

NCPTX∑
i=1

NCPTY∑
j=1

ci,j(t)bi(x)dj(y). (2.33)

The spatial domain is then discretized by defining the collocation points in x,

γi : i = 1, 2, . . . , NCPTX − 2, and y, δj : j = 1, 2, . . . , NCPTY − 2, such that each of the N or M

subintervals contains (p−1) or (q−1) collocation points. These points will be the mapping of the set

of (p−1) Gauss-Legendre points from [−1, 1] to [xi, xi+1] : i = 1, 2, . . . , N , for the collocation points

in x, and the set of (q−1) Gauss-Legendre points mapped from [−1, 1] to [yj , yj+1] : j = 1, 2, . . . ,M ,

for the collocation points in y. The collocation solution will be required to satisfy the DE at every

combination of collocation points in x and y to obtain the collocation conditions. In the EPDE case

these will be,

f (γi, δj , U (γi, δj) , Ux (γi, δj) , Uy (γi, δj))− Uxx (γi, δj)− Uyy (γi, δj) = 0, (2.34)
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i = 1, 2, . . . , NCPTX − 2, j = 1, 2, . . . , NCPTY − 2.

In the 2DPPDE case these will be

f (γi, δj , t, U (γi, δj , t) , Ux (γi, δj , t) , Uxx (γi, δj , t) , Uy (γi, δj , t) , Uyy (γi, δj , t) , Uxy (γi, δj , t))

−Ut (γi, δj , t) = 0, (2.35)

i = 1, 2, . . . , NCPTX − 2, j = 1, 2, . . . , NCPTY − 2.

The remaining conditions are obtained by requiring that the collocation solution satisfy the

boundary conditions at certain points. The boundary conditions require the evaluation of the collo-

cation solution at the projection of the collocation points in x onto the upper and lower bounds of

the y-domain, the projection of the collocation points in y onto the upper and lower bounds of the

x-domain, and at each of the four corners of the spatial domain. A pictoral representation of where

the various boundary conditions are evaluated can be seen in Figure 2.11. The boundary conditions

will be of the following form in the EPDE case,

0 = U(A,C)− α(C), 0 = U(A,D)− β(A), 0 = U(B,C)− ζ(B), 0 = U(B,D)− η(D),

0 = U(A, δj)− α(δj), 0 = U(B, δj)− η(δj), 0 = U(γi, C)− ζ(γi), 0 = U(γi, D)− β(γi),

i = 1, 2, . . . , NCPTX − 2, j = 1, 2, . . . , NCPTY − 2.

In the 2DPPDE case,

0 = U(A,C, t)− α(C, t), 0 = U(A,D, t)− β(A, t), 0 = U(B,C, t)− ζ(B, t),

0 = U(B,D, t)− η(D, t), 0 = U(A, δj , t)− α(δj , t), 0 = U(B, δj , t)− η(δj , t),

0 = U(γi, C, t)− ζ(γi, t), 0 = U(γi, D, t)− β(γi, t),

i = 1, 2, . . . , NCPTX − 2, j = 1, 2, . . . , NCPTY − 2.

As in the one-dimensional case, we also desire the resulting system of equations to be of block

diagonal form. While the B-splines have their locality within each spatial dimension, the tensor

product causes any given evaluation to be dependant on up to (p + 1)(q + 1) coefficients. The

dependency of coefficients per subinterval can be seen in Figure 2.12.
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0 = U(A,D)− β(A)

0 = U(A,C)− α(C) 0 = U(B,C)− ζ(B)

0 = U(B,D)− η(D)

0 = U(A, δj) 0 = U(B, δj)

0 = U(γi, C)− ζ(γi)

0 = U(γi, D)− β(γi)

−α(δj) −η(δj)

Figure 2.11: A pictorial representation of the boundary conditions and the points at which they evaluate
the collocation solution, for the case N = M = 1, p = q = 5.

As the coefficients will be stored in a 1D array indexed by, ci : i = 1, 2, . . . , NCPTX×NCPTY ,

the manner in which they get mapped into this one dimensional representation will determine how

the non-linear system needs to be ordered so that an ABD structure arises. In this thesis we will

use an x-major approach, meaning that given the coefficients, ci,j : i = 1, 2, . . . , NCPTX, j =

1, 2, . . . , NCPTY , they will be represented one-dimensionally in the order

[c1,1, c1,2, . . . , cNCPTX,NCPTY−1, cNCPTX,NCPTY ]. Using this mapping, we can then create a non-

linear system of ABD structure by ordering it such that the first conditions evaluate the collocation

solution at the minimal value of x, sorted in increasing order of the y point at which they require

evaluation of the collocation solution. This x-major pattern is followed to order the remaining

conditions. This will result in the system, F = 0, for the EPDE case, where F is as given in Figure

2.13. In the 2DPPDE case, the system of boundary and collocation conditions has the form F = 0,

where F is given in Figure 2.14.
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c1,1 c1,2 c1,3 c1,4 c1,5 c1,6 c1,7 c1,8 c1,9 c1,10 c1,11

c2,1 c2,2 c2,3 c2,4 c2,5 c2,6 c2,7 c2,8 c2,9 c2,10 c2,11

c3,1 c3,2 c3,3 c3,4 c3,5 c3,6 c3,7 c3,8 c3,9 c3,10 c3,11

c4,1 c4,2 c4,3 c4,4 c4,5 c4,6 c4,7 c4,8 c4,9 c4,10 c4,11

c5,1 c5,2 c5,3 c5,4 c5,5 c5,6 c5,7 c5,8 c5,9 c5,10 c5,11

c6,1 c6,2 c6,3 c6,4 c6,5 c6,6 c6,7 c6,8 c6,9 c6,10 c6,11

c7,1 c7,2 c7,3 c7,4 c7,5 c7,6 c7,7 c7,8 c7,9 c7,10 c7,11

c8,1 c8,2 c8,3 c8,4 c8,5 c8,6 c8,7 c8,8 c8,9 c8,10 c8,11

c9,1 c9,2 c9,3 c9,4 c9,5 c9,6 c9,7 c9,8 c9,9 c9,10 c9,11

c10,1 c10,2 c10,3 c10,4 c10,5 c10,6 c10,7 c10,8 c10,9 c10,10 c10,11

c11,1 c11,2 c11,3 c11,4 c11,5 c11,6 c11,7 c11,8 c11,9 c11,10 c11,11

Figure 2.12: Coefficient sharing between sub-rectangles for a collocation solution with p = q = 4, N = M = 3.
The rectangles represent the various subrectangles, and contain within them the coefficients which correspond
to the potential non-zero B-spline basis functions.



U(A,C)− α(C)
U(A, δ1)− α(δ1)
U(A, δ2)− α(δ2)

...
U(A, δNCPTY−2)− α(δNCPTY−2)

U(A,D)− β(A)
U(γ1, C)− ζ(γ1)

f (γ1, δ1, U (γ1, δ1) , Ux (γ1, δ1) , Uy (γ1, δ1))− Uxx (γ1, δ1)− Uyy (γ1, δ1)
f (γ1, δ2, U (γ1, δ2) , Ux (γ1, δ2) , Uy (γ1, δ2))− Uxx (γ1, δ2)− Uyy (γ1, δ2)

...
f (γ1, δNCPTY−2, U (γ1, δNCPTY−2) , Ux (γ1, δNCPTY−2) , Uy (γ1, δNCPTY−2))

−Uxx (γ1, δNCPTY−2)− Uyy (γ1, δNCPTY−2)
U(γ1, D)− β(γ1)

...
U(γNCPTX−2, C)− ζ(γNCPTX−2)

f (γNCPTX−2, δ1, U (γNCPTX−2, δ1) , Ux (γNCPTX−2, δ1) , Uy (γNCPTX−2, δ1))
−Uxx (γNCPTX−2, δ1)− Uyy (γNCPTX−2, δ1)

f (γNCPTX−2, δ2, U (γNCPTX−2, δ2) , Ux (γNCPTX−2, δ2) , Uy (γNCPTX−2, δ2))
−Uxx (γNCPTX−2, δ2)− Uyy (γNCPTX−2, δ2)

...
f
(
γNCPTX−2, δNCPTY−2, U (γNCPTX−2, δNCPTY−2) , Ux (γNCPTX−2, δNCPTY−2) ,

Uy (γNCPTX−2, δNCPTY−2)
)
− Uxx (γNCPTX−2, δNCPTY−2)− Uyy (γNCPTX−2, δNCPTY−2)
U(γNCPTX−2, D)− β(γNCPTX−2)

U(B,C)− α(C)
U(B, δ1)− η(δ1)
U(B, δ2)− η(δ2)

...
U(B, δNCPTY−2)− η(δNCPTY−2)

U(B,D)− β(B)


Figure 2.13: The ordering of boundary and collocation conditions for a general EPDE problem in order to
achieve an ABD structure.
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U(A,C, t)− α(C, t)
U(A, δ1, t)− α(δ1, t)
U(A, δ2, t)− α(δ2, t)

...
U(A, δNCPTY−2, t)− α(δNCPTY−2, t)

U(A,D, t)− β(A, t)
U(γ1, C, t)− ζ(γ1, t)

f
(
γ1, δ1, t, U (γ1, δ1, t) , Ux (γ1, δ1, t) , Uxx (γ1, δ1, t) , Uy (γ1, δ1, t) , Uyy (γ1, δ1, t) ,

Uxy (γ1, δ1, t)
)
− Ut (γ1, δ1, t)

f
(
γ1, δ2, t, U (γ1, δ2, t) , Ux (γ1, δ2, t) , Uxx (γ1, δ2, t) , Uy (γ1, δ2, t) , Uyy (γ1, δ2, t) ,

Uxy (γ1, δ2, t)
)
− Ut (γ1, δ2, t)
...

f
(
γ1, δNCPTY−2, t, U (γ1, δNCPTY−2, t) , Ux (γ1, δNCPTY−2, t) , Uxx (γ1, δNCPTY−2, t) ,

Uy (γ1, δNCPTY−2, t) , Uyy (γ1, δNCPTY−2, t) ,
Uxy (γ1, δNCPTY−2, t)

)
− Ut (γ1, δNCPTY−2, t)

U(γ1, D, t)− β(γ1, t)
...

U(γNCPTX−2, C, t)− ζ(γNCPTX−2, t)
f
(
γNCPTX−2, δ1, t, U (γNCPTX−2, δ1, t) , Ux (γNCPTX−2, δ1, t) , Uxx (γNCPTX−2, δ1, t) ,

Uy (γNCPTX−2, δ1, t) , Uyy (γNCPTX−2, δ1, t) ,
Uxy (γNCPTX−2, δ1, t)

)
− Ut (γNCPTX−2, δ1, t)

f
(
γNCPTX−2, δ2, t, U (γNCPTX−2, δ2, t) , Ux (γNCPTX−2, δ2, t) , Uxx (γNCPTX−2, δ2, t) ,

Uy (γNCPTX−2, δ2, t) , Uyy (γNCPTX−2, δ2, t) , Uxy (γNCPTX−2, δ2, t)
)
− Ut (γNCPTX−2, δ2, t)

...
f
(
γNCPTX−2, δNCPTY−2, t, U (γNCPTX−2, δNCPTY−2, t) , Ux (γNCPTX−2, δNCPTY−2, t) ,

Uxx (γNCPTX−2, δNCPTY−2, t) , Uy (γNCPTX−2, δNCPTY−2, t) , Uyy (γNCPTX−2, δNCPTY−2, t) ,
Uxy (γNCPTX−2, δNCPTY−2, t)

)
− Ut (γNCPTX−2, δNCPTY−2, t)

U(γNCPTX−2, D, t)− β(γNCPTX−2, t)
U(B,C, t)− α(C, t)
U(B, δ1, t)− η(δ1, t)
U(B, δ2, t)− η(δ2, t)

...
U(B, δNCPTY−2, t)− η(δNCPTY−2, t)

U(B,D, t)− β(B, t)


Figure 2.14: The ordering of boundary and collocation conditions for a general 2DPPDE problem in order
to achieve an ABD structure.
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Some examples of B-spline Gaussian collocation software for the two spatial dimension case are

the ELLPACK environment [20] which is able to approximate the solution to an EPDE problem

and the BACOL2D software [16] which approximates solutions to 2DPPDE problems.

2.3 Error Estimation and Control

As a collocation solution is an approximation to the true solution of a DE, it is guaranteed there will

be a difference between the collocation solution and the true solution. That is, when calculating any

approximation with numerical software there will be an error associated with the approximation.

This raises the question of what the error is. In most practical uses of numerical methods for DEs

the true solution is not known, and as such the true error can not be calculated. Instead an error

estimate must be calculated in an attempt to answer the above question.

While returning an error estimate along with the approximate solution allows the user to know

the quality of the approximation, it is more desirable that the user be able to specify a tolerance to

be applied to the error estimate. This concept is error control, which when employed by numerical

software, will require the software to return an approximation such that the corresponding error

estimate satisfies a user given tolerance. Error control is desirable in numerical software as it can

allow for the software to compute an approximation in less computational time. An example of this

can be seen in the BACOLI software [19], when solving the one-layer Burgers equation, where the

spatial mesh is adaptively refined in order to be able to follow a layer of difficult solution behaviour as

it moves across the spatial domain as time progresses. This is the essence of the spatial error control

algorithm employed by BACOLI. The package also employs a temporal error control DAE solver,

DASSL [18], to compute the B-spline coefficients. This allows BACOLI to compute an approximate

solution whose error estimate satisfies a given tolerance using lower computational costs than would

be required if a fixed and much finer spatial mesh was employed. (A finer mesh across the entire

spatial domain would be required in the non-adaptive algorithm in order to obtain a solution whose

error estimate satisfies the tolerance).
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2.3.1 Error of a Collocation Solution

The error of a Gaussian collocation solution is a research question that has been heavily explored.

In the BVODE case it has been proven that the error of a collocation solution based on a piecewise

polynomial of degree p will be O(hp+1) where h is the length of the longest subinterval, while at

the mesh points the error will be O(h2(p−1)) [10]. In the PPDE case these results have also been

proven [9], [13]. Furthermore in the BVODE case, it has been shown that there are points within

each subinterval where the collocation error is O(hp+2); see [5]. In the PPDE case, these points have

been experimentally shown to have an error that is O(hp+2); see, for example, [2]. These points will

be referred to as non-mesh super-convergent points (NMSCPs) in this thesis.

These aforementioned errors are the errors of the collocation solution associated with the spatial

domain. In the time-dependant cases there is also the temporal error associated with the compu-

tation of the B-spline coefficients. As mentioned above, by using a DAE solver with error control

the temporal error in the collocation solution can be controlled. This allows the development of

error controlled algorithms for calculating collocation solutions by having the DAE solver control

the temporal error to be within a user specified tolerance, and then applying a spatially adaptive

collocation algorithm so that the estimated spatial error meets the user specified tolerance.

2.3.2 Error Estimation

When calculating an error estimate for an approximation, a more accurate solution is often used in

place of the true solution. In other words, an error estimate is often calculated by looking at the

difference between a given approximation, and one of greater accuracy. One method of acquiring

the more accurate solution is through Richardson extrapolation, an example of which can be seen

in the COLSYS software [4]. When Ah represents a collocation solution calculated on a mesh with

a subinterval length of h and A represents the true solution, the error in Ah can be expressed as,

A−Ah = Khp+1 +O(hp+2), (2.36)
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where K is some constant. Then a second approximation is calculated on a mesh obtained by

halving each subinterval of the original mesh. For this latter mesh, the subinterval size is h
2 and the

corresponding approximate solution is Ah/2. In this case the error is,

A−Ah/2 = K

(
h

2

)p+1

+O(hp+2). (2.37)

Then

∣∣Ah −Ah/2∣∣,
=
∣∣A−Ah − (A−Ah/2)∣∣,

=
∣∣∣Khp+1 −K

(
h
2

)p+1
+O

(
hp+2

)∣∣∣,
=
∣∣∣Khp+1

(
1−

(
1
2

)p+1
)∣∣∣+O(hp+2).

Thus ∣∣Ah −Ah/2∣∣(
1−

(
1
2

)p+1
) = Khp+1 +O(hp+2), (2.38)

is an estimate of the leading order term in the error for Ah.

Another example of how an error estimate can be computed is shown in the BACOL software

[22] which calculates a collocation solution of degree p as the returned approximation, along with a

second collocation solution of degree p+1 that is used to estimate the error. The difference between

the two gives an error estimate for the lower order approximate solution.

While being able to calculate an error estimate is very desirable, calculating an error estimate

will have a computational cost. In the case of the BACOL software the cost of calculating the error

estimate is greater than the cost of calculating the returned solution. This extra computational

cost is undesirable, and it is important to be able to efficiently calculate an error estimate. An

alternative which can be less computationally expensive than calculating a second approximation

of greater accuracy, is to instead calculate one of lower accuracy than the returned solution. This

method is referred to as local extrapolation. While this method may require less computational cost,

the error estimate may not be as accurate.
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2.3.3 Interpolation-Based Error Estimation

The superconvergent interpolant (SCI) [1] addresses the issue associated with BACOL in which a

second higher order collocation solution is computed. In order to obtain an error estimate, the

SCI replaces the higher order collocation solution with a piecewise polynomial Hermite-Birkhoff

interpolant. A higher order interpolant is obtained by taking advantage of the increased accuracy

at the mesh points, as well as at the NMSCPs. The SCI will be a piecewise polynomial where the

degree is p + 1 on each of the subintervals. Enough interpolation points are chosen so that the

interpolation error is dominated by the spatial error of the solution and derivative approximations

at the points which are interpolated. The SCI is determined on each subinterval by interpolating

the collocation solution and derivative approximations at the end points of a given subinterval, as

well as the collocation solution at the p− 3 NMSCP within the subinterval, and the closest NMSCP

from each adjacent subinterval (or the two closest if there is only one adjacent subinterval). This is

a total of p+ 3 data values. The points where only the solution value is interpolated will be denoted

wi : i = 1, 2, . . . , p−1. The solution and derivative values are interpolated at the mesh points, s1, s2,

bounding the subinterval.

The lower order interpolant (LOI) [3] replaces the lower order collocation solution computed by

BACOL with an interpolant. As with the SCI, the LOI is also constructed as a piecewise polynomial

Hermite-Birkhoff interpolant. In this case it is desired that the interpolation error dominates the data

error. To do so, the LOI will interpolate only p+ 1 data values. The solution value is interpolated

at what would be the NMSCP within the subinterval for a collocation solution of degree p−1; these

points are denoted as wi : i = 1, 2, . . . , p− 4. The solution and derivative values are interpolated at

the mesh points, s1, s2, which bound the subinterval.

The general form used to evaluate the SCI and LOI is derived from the Hermite-Birkhoff form

presented by Finden [14], where s is the set of points which the solution and derivative values are

interpolated, and w are the points where just the solution values are interpolated. The general form

of the piecewise polynomial Hermite-Birkhoff interpolant upon which the SCI and LOI are based is,
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q (x) =

|s|∑
i=1

Hi (x)u (si) +

|s|∑
i=1

H̄i (x)ux (si) +

|w|∑
j=1

Gj (x)u (wj) , (2.39)

where,

Hi (x) = (1− (x− si)λi) Ĥi (x), H̄i (x) = (x− si) Ĥi (x),

Ĥi (x) =
ψ2
i (x)φ(x)

ψ2
i (si)φ(si)

, Gj (x) =
ψ2(x)φj(x)
ψ2(si)φj(si)

,

and where,

ψi (x) =
|s|∏
k=1
k 6=i

(x− sk), ψ (x) =
|s|∏
k=1

(x− sk),

φj (x) =
|w|∏
k=1
k 6=j

(x− wk), φ (x) =
|w|∏
k=1

(x− wk).

Both the SCI and LOI interpolation schemes are used within error estimation methods that make

use of a quadrature rule to estimate the L2 error of the collocation solution. (The L2 norm, e, of a

function, f(x), on the domain A ≤ x ≤ B, is calculated as, e =
√∫ B

A
f(x)2dx ).

This approach can be used for estimating the error across the entire spatial domain, which will

be referred to as the global error, or for a single subinterval. We will use xα and xω as the lower

and upper bounds, respectively, of the region across which the error is being estimated. We will also

use p as the degree of the collocation solution. The following formula is used to calculate an error

estimate for the subinterval [xα, xω],

E =

√∫ xω

xα

(
|U (x)− q (x) |

atol + rtol|U (x) |

)2

dx, (2.40)

where atol is the absolute error tolerance, rtol is the relative error tolerance, U(x) is the collocation

solution, and q(x) is the appropriate interpolant. For the PPDE case we replace U(x) and q(x) with

U(x, t) and q(x, t).
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Chapter 3

Interpolants for Error Estimation

The main purpose of this thesis is to explore potential interpolants to be used for spatial error esti-

mation of a two-dimensional collocation solution. Within this chapter we present three interpolants,

two being adaptations of the previously developed SCI and LOI 1D interpolants to two dimensions.

The third interpolant, although inspired by the LOI, is a new type of interpolant for this application,

and it has not been previously published.

3.1 SCI and LOI Interpolants in Two-Dimensions

Here we consider the 2D non-time-dependent case. The SCI and LOI interpolants, as described

earlier, estimate the spatial error for a collocation solution of a PDE with one spatial dimension. In

this thesis we present a generalization of the SCI and LOI schemes to two spatial dimensions using

a tensor-product approach. Given a collocation solution, U(x, y), of degree p in x, and degree q in

y, a desired point of evaluation, (x, y), and subintervals such that x ∈ [xα, xω], and y ∈ [yα, yω],

the 2D SCI or LOI can be evaluated through the following procedure. The points si : i = 1, 2, and

ti : i = 1, 2, are the x and y values at which solution and derivative values are interpolated; these

are set such that s1 = xα, s2 = xω, t1 = yα, t2 = yω. The points at which only the solution value

is interpolated, wi in x and vi in y, are chosen following the same method outlined in Chapter 2.

Then the interpolant can be constructed as follows:
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q(x, y) =

2∑
i=1

(Hi(x)η(si, y)) +

2∑
i=1

(H̄i(x)ζ(si, y)) +

|w|∑
j=1

(Gj(x)η(wj , y)), (3.1)

where

Hi (x) = (1− (x− si)λi) Ĥi (x), H̄i (x) = (x− si) Ĥi (x), Ĥi (x) =
ψ2
i (x)φ(x)

ψ2
i (si)φ(si)

,

Gj (x) =
ψ2(x)φj(x)
ψ2(si)φj(si)

, η(x, y) =
2∑
j=1

(Fj(y)U(x, tj)) +
2∑
j=1

(F̄j(y)Uy(x, tj)) +
|v|∑
j=1

(Ej(y)U(x, vj)),

ζ(x, y) =
2∑
j=1

(Fj(y)Ux(x, tj)) +
|v|∑
j=1

(Ej(y)Ux(x, vj)),

and

ψi (x) =
|s|∏
k=1
k 6=i

(x− sk), ψ (x) =
|s|∏
k=1

(x− sk), φj (x) =
|w|∏
k=1
k 6=j

(x− wk), φ (x) =
|w|∏
k=1

(x− wk),

λi =
|w|∑
j=1

1
si−wj + 2

2∑
j=1
j 6=i

1
si−sj , Fj(y) = (1− (y − tj)Λj)F̂j(y), F̄j(y) = (y − tj)F̂j(y),

F̂j(y) =
Ψ2
i (x)Φ(x)

Ψ2
i (si)Φ(si)

,

and

Ψi (y) =
|t|∏
k=1
k 6=i

(y − tk), Ψ (y) =
|t|∏
k=1

(y − tk), Φj (y) =
|v|∏
k=1
k 6=j

(y − vk), Φ (y) =
|v|∏
k=1

(y − vk),

Λi =
|v|∑
j=1

1
ti−vj + 2

2∑
j=1
j 6=i

1
ti−tj .

The above formulas are the result of a direct tensor product of the one-dimensional interpolant

form, with the H̄i(x)F̄j(y) terms removed. These terms are removed as the terms containing H̄i(x)

are those which interpolate the spatial derivative of the collocation solution in x, while the F̄i(x)

terms interpolate the spatial derivative with respect to y. As such, a term containing H̄i(x)F̄j(y)

would be interpolating the cross derivative, which is not expected to have sufficient convergence for

use with the SCI and LOI schemes. A visual representation of what values are interpolated at which

points is given below in Figures 3.1, 3.2, 3.3, for the case of the LOI interpolant with p = 7.

Furthermore, the way in which the SCI and LOI are used to calculate an error estimate must

also be generalized to two dimensions. To calculate an error estimate on the domain xα ≤ x ≤

xω, yα ≤ y ≤ yω, with the assumption p = q, the following formula is used:
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x

y

xα xω

yα

yω

w1

w2

w3

Figure 3.1: Points at which Ux(x, y) is interpolated, for the LOI when p = q = 7.

E =

√∫ xω

xα

∫ yω

yα

(
|U(x,y)−q(x,y)|
atol+rtol|U(x,y)|

)2

dy dx, (3.2)

where q(x, y) is the interpolant being used for error estimation.

3.2 LOI2 Interpolant

Due to reasons which will be discussed later in thesis, it was desired that we have an alternate

interpolant which does not make use of derivative values. The result of this is the LOI2 [21] which

replaces a lower order solution when calculating an error estimate in the same way as the LOI,

although the LOI2 aims to match the error polynomial of the higher order collocation solution,

while the LOI matches that of the lower order solution it is replacing.

The LOI2 is a standard Lagrange interpolant with the interpolation points chosen such that

the difference between the leading order term in the error of the higher order collocation solution

and the interpolation error of the LOI2 interpolant is minimized in the L2 norm. For a given

degree of collocation solution the leading order term in the collocation error has a known form [3].

For a Lagrange interpolant, the interpolation error has a well known form which depends on the

interpolation points. We choose the interpolation points for a given degree of collocation solution
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x

y

xα xω

yα

yω

v1 v2 v3

Figure 3.2: Points at which Uy(x, y) is interpolated, for the LOI when p = q = 7.

by minimizing the L2 norm between the collocation and interpolation errors. The interpolation

points are required to include the end points of the subinterval, while the remaining p− 2 points are

determined by the Scilab optim function. The resulting points for degrees four through seven, on

the interval [0, 1], are given in Figure 3.4.

3.2.1 LOI2 in One-dimension

Here we consider the non-time-dependent case. To evaluate the LOI2 in one dimension, the first

Barycentric form of the Lagrange interpolant is used [6]. Given a collocation solution, U(x), of

degree, p, the desired point of evaluation, x, the subinterval such that x ∈ [xα, xω], and the points

to interpolate, wi : i = 1, 2, . . . , p, the LOI2 can be evaluated as follows,

q (x) = L (x)

p∑
i=1

µi
(x− wi)

U (wi) , (3.3)

where

L (x) =
p∏
i=1

(x− wi), µi =
p∏
k=1
k 6=i

(wi − wk).

In the PPDE case, in equation 3.3, we replace q(x) with q(x, t) and U(wi) is replaced by U(wi, t).
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w1
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Figure 3.3: Points at which U(x, y) is interpolated, for the LOI when p = q = 7.

Degree (p) 4 5 6 7
w1 0 0 0 0
w2 0.302331973224813 0.179424182143275 0.143465814421734 0.107235231524833
w3 0.697668026790731 0.5 0.37051884018424 0.283676545203967
w4 1 0.820575567392312 0.629481160240031 0.5
w5 1 0.856534185886017 0.716323434111384
w6 1 0.892764777407028
w7 1

Figure 3.4: The relative values, wi, on [0, 1] at which the LOI2 interpolates the collocation solution for
various values of p.

3.2.2 LOI2 in Two-dimensions

Here we consider the non-time-dependent case. To evaluate the LOI2 in two-dimensions, we use a

Lagrange interpolant generalized to two dimensions based on a tensor product approach. Note that

a Barycentric form is not used in this case, although it would be straightforward to do so. Given a

collocation solution, U(x, y), of degree p in x, and degree q in y, a desired point of evaluation (x, y),

subintervals such that x ∈ [xα, xω] and y ∈ [yα, yω], and the points to interpolate, wi : i = 1, 2, . . . , p,

vi : i = 1, 2, . . . , q, the LOI2 can be evaluated as follows,

q (x, y) =

p∑
i=1

q∑
j=1

Gi (x)Ej (y)U (wi, vj) , (3.4)

where
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Gi(x) = φi(x)
φi(wi)

, Ej(y) =
Φj(y)
Φj(vj)

,

and

φi =
p∏
k=1
k 6=i

(x− wi), Φj =
q∏

k=1
k 6=j

(y − vj).
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Chapter 4

Implementation

In this chapter we provide an overview of the Scilab software we have developed. The source code

for the Scilab scripts is given in the Appendix of this thesis.

4.1 Overview of Software

As opposed to a single piece of software for each of the four problem classes, numerous Scilab scripts

have been created so that common functions may be reused across the problem classes. These scripts

are divided into three main levels: common, dimension, and problem class. The hierarchy of these

classes can be seen in Figure 4.1. The common level contains functions that are required in all

of the problem classes, while the dimension level contains the functions required for computing a

collocation solution and error estimate in either one or two spatial dimensions. Finally the problem

class contains the functions that are required for each problem class. A driver that loads the required

scripts is provided for each problem class.

4.1.1 Common Scripts

The common level contains two scripts, core.sci, which contain the common functions for calculating

a collocation solution, and err.sci, which contains the common functions used for calculating an

error estimate. All of the functions within these scripts are internal functions and are not intended
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1-Dimensional 2-Dimensional

BVODE EPDE

2DPPDEPPDE

Figure 4.1: Hierarchy of Scilab scripts

to be called by the user. Within core.sci most of the functions are for calculating the B-splines,

including Fortran source code for the B-spline package, which is compiled and linked upon execution

of the script. The functions within err.sci provide access to the interpolation points used for the

various error estimation schemes, as well as the points and weights required for Gaussian quadrature.

This script also contains the supporting functions which are used to evaluate the Hermite-Birkhoff

interpolants.

4.1.2 Dimensional Scripts

As with the common scripts, the dimensional level is also broken into the scripts used for calculating

a collocation solution and the scripts for calculating an error estimate. In the one spatial dimension

classes these are core1D.sci and err1D.sci, while in the two spatial dimensions classes these are

core2D.sci and err2D.sci. The core scripts within this level handle the evaluation of the collocation

solution. The error scripts within this level contain functions to evaluate Hermite-Birkhoff, Lagrange,

and Barycentric-Lagrange interpolants, along with functions to evaluate these interpolants in order

to implement one of the error estimation schemes introduced in Chapters 2 and 3. Furthermore,
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these scripts contain functions to perform Gaussian quadrature and return an error estimate using

the error expressions presented in Chapters 2 and 3.

4.1.3 Problem Class Scripts

This level will contain two scripts for each problem class, the core script which contains functions to

calculate a collocation solution, and the problems script which contains a definition of the problem(s)

to be solved. The core script contains functions which represent the system of equations which will

be solved for the coefficients of the collocation solution, as well as a collocate function to be called

by the user which will calculate a collocation solution of a specified degree with a specified number

of subintervals.

4.2 Collocation Procedure

Within this subsection we will step through the process of how a collocation solution is computed

for each of the problem classes. We first outline the global variables which are used within the

problem classes. All problem classes have the following global variables which must be set by the

user before calculating a collocation solution: double atol, the absolute error tolerance, double rtol,

the relative error tolerance, and integer probNum, which specifies to the script which problem to

use. There are also global variables which will be set by the scripts, including coeffs, a vector

containing the B-spline coefficients of the collocation solution. There are also variables associated

with specifying the collocation method on the x domain: degree of collocation solution, integer

p, number of subintervals, integer N , the lower and upper bounds of the spatial domain, integers

A and B, the mesh points, double meshX, a vector of size N + 1, the B-spline knots, double

knotsX, a vector, and collocation points, double colX, a matrix where colX(i, j) represents the jth

collocation point on the ith subinterval. For the two spatial dimension problem classes we will have

an equivalent set of variables for the y domain; these will be q, M , C and D, meshY , knotsY ,

and colY . Furthermore in the one spatial dimension case we have NCPTS = N(p − 1) + 2, or in

the two spatial dimension case we have NCPTX = N(p − 1) + 2, NCPTY = M(q − 1) + 2, and
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NCPTS = NCPTX ×NCPTY .

4.2.1 BVODE

A problem is defined in this class by the following three functions.

y = g(x, u, ux, uxx),

y = bndxa(u(A)),

y = bndxb(u(B)),

where g(. . . ) = f(. . . )− uxx, and f(. . . ) represents the right hand side of the DE, (2.1). The bndxa

and bndxb functions return the boundary conditions at the boundaries of the spatial domain.

To calculate a collocation solution for this problem case, one must first set the global variables

outlined at the beginning of this subsection and then call the provided collocate function. The collo-

cate function takes as input the degree of the collocation solution, p, and the number of subintervals,

N . The function is called as follows:

info = collocate(p,N ).

collocate sets up the collocation and boundary conditions, then uses fsolve to solve the systems for

the B-spline coefficients. The fsolve function is a non-linear system solver with error control that is

included with Scilab, which returns the integer flag info.

The collocate function will begin by setting the spatial mesh and B-spline knot points using the

one-dimensional common buildMesh function. The buildMesh function requires no input, and will

return the spatial mesh as well as setting the global knots variable. After this, the collocation points

are set by iterating over the subintervals and calling the common getGaussPoints function. The

calling syntax is as follows.

pts = getGaussPts(l, r, numP ),

where l and r are the lower and upper bounds of the subinterval, and numP is the number of Gauss

points requested which, is p − 1 in this case. The vector pts is returned containing numP Gauss

points mapped onto the interval [l, r].
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Then, after this initialization, the fsolve function can be called to calculate the B-spline coeffi-

cients of the collocation solution. The calling syntax for fsolve is as follows,

[coeffs, v , info] = fsolve(fg , res, fjac, atol),

where fg is a vector of length NCPTS containing an initial guess for the B-spline coefficients. The

function res represents the system of equations. The user provided optional function, fjac, provides

the Jacobian of the system. atol is the previously mentioned tolerance. The returned coeffs is a

vector of length NCPTS which contains the B-spline coefficients of the collocation solution. The

returned vector v is treated as a dummy variable, while the integer info contains information from

fsolve, which will allow the user to know if the solver was unable to converge or meet the specified

tolerance.

The residual function takes an array of B-spline coefficients as its only input, which are then

used for any required evaluations of the collocation solution. The residual function returns a matrix

of size equal to the coefficients containing the residuals of the boundary and collocation conditions.

The residuals of the boundary conditions are calculated by the bndxa and bndxb functions. The

residual of the collocation conditions are calculated by evaluating the function g at each collocation

point. The form of the residual function is as follows.

function y = residual(coeff )

y(1) = bndxa(u(A))

for i = 1 : N

for j = 1 : (p− 1)

x = colX(i, j)

y((i− 1)(p− 1) + j + 1) = g(x, u(x), ux(x), uxx(x))

end

end

y(NCPTS) = bndxb(u(B))

endfunction
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4.2.2 PPDE

A problem is defined in this class by the following four functions:

y = g(t, x, u, ux, uxx, ut),

y = bndxa(t, u, ux),

y = bndxb(t, u, ux),

y = uinit(x),

where g(. . . ) = f(. . . )−ut, and f(. . . ) represents the right hand side of the DE, (2.6). The function

bndxa(t , u, ux ) represents the boundary condition at x = A evaluated at time t with u and ux

evaluated at x = A. The function bndxb(t , u, ux ) is similarly defined except with x = B. The

function uinit(x ) gives the initial solution at point x, and time, t0.

In this problem class, the collocate function has four inputs: the degree of collocation solution,

p, number of subintervals, N , the beginning time, t0, and the output time, tf . As in the BVODE

case, the collocate function begins by calculating the mesh and collocation points, and the size of the

system of equations which will be solved. The collocate function then calculates the initial values

for the B-spline coefficients based on the initial solution u(x, t0), which is defined by uinit. This is

done by projecting the initial solution onto the B-spline basis. This is done by requiring that the

collocation solution equal the initial solution at the two end points of the spatial domain, and at

the collocation points within each subinterval. The fsolve function is used to solve for these initial

B-spline coefficients.

The initial collocation solution together with the right hand side of the PDE is then used to

obtain the temporal derivative of the collocation solution at t0, which is then projected onto the

B-spline basis functions to obtain the initial values for the derivatives of the B-spline coefficients with

respect to time, at t0. The fsolve function is again used to calculate the initial temporal derivatives

of the B-spline coefficients.

The system which fsolve uses to evaluate the boundary and collocation conditions is represented

by a residual function. The residual function takes three inputs: the current time, t, the B-spline

coefficients, c, and their temporal derivatives, ct, all of which are used to perform any required
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evaluations of the collocation solution within the residual function. The output of the residual is a

matrix of size NCPTS where the first and last elements are the evaluations of the boundary condi-

tions at the current time t, with the collocation solution defined by the given B-spline coefficients.

The remaining elements are the collocation conditions, ordered in increasing magnitude of x. The

general form of this residual function is as follows:

function y = residual(t, c, ct)

y(1) = bndxa(t, u, ux)

for i = 1 : N

for j = 1 : (p− 1)

x = colX(i, j)

y((i− 1)(p− 1) + j + 1) = g(t, x, u(x), ux(x), uxx(x), ut(x))

end

end

y(NCPTS) = bndxb(t, u, ux)

endfunction,

where t is the current point in the temporal domain, c and ct are the B-spline coefficients and their

temporal derivatives at time t. These inputs are used for any required evaluation of the collocation

solution.

After the initial B-spline coefficients and their temporal derivatives have been computed, the

Scilab daskr function is called (this is a Scilab function which links to the Fortran code of daskr,

[8], [7]) with the following parameters: a matrix containing the initial B-spline coefficients and their

derivatives, the initial time, the output time, the tolerance, which is specified as a tenth of the global

atol value, the residual function, and the info list, which controls the operation of daskr. daskr is

a DAE solver featuring error control and root finding. The error control within daskr controls the

temporal error associated with the calculation of the B-spline coefficients. The root finding feature

is not required in our case, and is ignored.
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4.2.3 EPDE

A problem is defined in this class by the following five functions.

z = g(x, y, ux, uy, uxx, uyy),

z = bndxa(y, u, ux, uy), z = bndxb(y, u, ux, uy), z = bndyc(x, u, ux, uy), z = bndyd(x, u, ux, uy),

where g(. . . ) = f(. . . )−uxx−uyy, and f(. . . ) represents the right hand side of the DE, (2.13). The

function bndxa represents the boundary condition along x = A, and the other boundary conditions

follow this same pattern.

The collocate function for the EPDE problem case takes in two parameters, the degree of the

collocation solution and the number of subintervals of the spatial meshes in x and y. These inputs

can be vectors, in which case the first elements will be used for the degree and number of subintervals

in x, while the second elements will be used for those in y. These inputs can also be scalars, in which

case the degree and number of subintervals will be the same in x and in y. Then the mesh points,

collocation points, and knot sequence are calculated. Due to the rapidly growing computational

costs in the two-dimensional collocation solutions, all B-spline evaluations are saved for later use.

In this case, for simplicity, we use B-spline initial coefficients of zero and then call the fsolve

function. The fsolve function takes as input, the residual function, an optional function which

estimates the Jacobian, and the absolute tolerance. The residual function is ordered as outlined in

Figure 2.13.

4.2.4 2DPPDE

A problem is defined in this class by the following six functions.

z = g(t, x, y, ux, uy, uxx, uyy),

z = bndxa(y, t, u, ux, uy), z = bndxb(y, t, u, ux, uy),

z = bndyc(x, t, u, ux, uy), z = bndyd(x, t, u, ux, uy),

z = uinit(x, y),

where g(. . . ) = f(. . . )−ut, and f(. . . ) represents the right hand side of the DE, (2.20). The boundary
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conditions correspond to the point along their line at which they are evaluated. For example, bndxa

returns the value of the boundary condition at time t, x = A, and y. Finally the uinit(x, y) function

returns the value of the initial solution at point (x, y), and at time t0.

For this problem class the collocate function takes four inputs. These are the degrees of the

B-spline bases, the number of subintervals in the x and y domains, the initial time, and the output

time. The degree and number of subintervals are treated in the same manner as for the EPDE

collocate function. Then the mesh points, collocation points, and knot sequence in x and y are

calculated. As is done in the EPDE case, the B-spline evaluations are saved for re-use.

The next step in the collocate function is setting the initial values, starting with the B-spline

coefficients. This is done in an approach that is the obvious generalization of the approach used for

the PPDE case. The initial temporal derivatives of the B-spline coefficients are also obtained using

the same approach as in the PPDE case.

The residual function which represents the system in this case takes as input the time, the B-

spline coefficients, and their temporal derivatives. These are used to evaluate the boundary and

collocation conditions which are ordered as outlined in Figure 2.14.

After these initial values are set, the daskr function is called with the following input: a matrix

containing the initial B-spline coefficients and their temporal derivatives, the initial time, the output

time, the tolerance, which is specified as a tenth of the global absolute tolerance, the residual function,

and the info list which controls the operation of daskr.
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Chapter 5

Numerical Results

This chapter contains results investigating experimentally the order of convergence of collocation

solutions and the interpolants introduced within this thesis; the latter are also evaluated for the

accuracy of their error estimates. We will begin by introducing the methods used for these tests, as

well as the format in which the results are presented. For the time-dependent problem classes, the

output time used is the end of the temporal domain as introduced in Chapter 2.

The sections of this chapter are divided by problem class and within each of these problem class

sections there are two subsections, one for convergence results, and one for error estimation results.

The convergence results subsections will contain a table for each of the following: collocation solution,

SCI, LOI, and LOI2, which are labelled as GE, SCI−E, LOI−E, LOI2−E. These tables contain

convergence results for various combinations of degree (p), and subintervals (nint = N = M). In

the case of the SCI table and a one-dimensional problem class, this error would be,

(SCI − E)n = max
A≤x≤B

(|SCI(x)− u(x)|) , (5.1)

where SCI(x) evaluates the SCI calculated from a collocation solution with nint = N = 2n subin-

tervals and u(x) represents the true solution. For a two-dimensional problem class, this error would
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instead be,

(SCI − E)n = max
A≤x≤B
C≤y≤D

(|SCI(x, y)− u(x, y)|) , (5.2)

where the SCI is calculated from a collocation solution with nint = N = M = 2n.

It is important to note that these errors are not computed exactly, but instead are approximated

by evaluating the error at 1000 evenly spaced points across the spatial domain and then taking the

maximum of those evaluations. In the two dimensional cases, we instead evaluate at the Cartesian

product of 100 evenly spaced points within each spatial domain for a total of 10000 evaluation points.

Adjacent to the error columns there is also a rate column which will give the rate of convergence.

The rate value is calculated with the following formula,

raten = log2((SCI − E)n−1/(SCI − E)n), (5.3)

where n ≥ 2. As n approaches 5 or nint approaches 32 it is expected that the rate will begin to fall

below what is expected. This is caused by errors introduced from the solvers used (fsolve or daskr)

to calculate the B-spline coefficients, resulting in a lower bound on the error which can be achieved.

Furthermore for values of n close to 1 or nint close to 2, we may not see the expected rate either as

the subinterval size may not be sufficiently small for the lower order terms of the error expression

to be dominant. The region in between these two phenomenon is the asymptotic region, where the

errors behave as expected for a change of the subinterval size.

The error estimation subsections differ slightly in one and two dimensions. These subsections

will contain results from the SCI, LOI and LOI2 schemes, as well as a scaled LOI and LOI2. As the

LOI and LOI2 provide an error estimate for a collocation solution of an order less than the returned

collocation solution, the LOI and LOI2 error estimates are multiplied by the subinterval size, h, so

that the leading order terms are of the same order. These scaled versions will be labelled as LOI-S,

and LOI2-S, for the scaled versions of the LOI and LOI2.

We will first discuss the one-dimensional classes. Figure 5.1 shows the error estimates produced

from the various interpolants, as well as the true error of the collocation solution, for one of the test
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cases. Note that the error estimates are plotted per subinterval, and that the points on the plots

correspond to the error estimate on each subinterval in the spatial domain. The lines connecting

these points are plotted to allow easier visualization.

Figure 5.1: Actual and estimated subinterval errors for a collocation solution to PPDE problem 2 at t = 1
with p = 5 and nint = 32. SCI, LOI, and LOI2 are the SCI, LOI and LOI2 error estimates. LOI-S and
LOI2-S are the scaled LOI and LOI2 error estimates.

When evaluating an error estimation method, we are looking to see if it will provide an error

estimate that is at least of the right order of magnitude. This idea is also phrased as desiring the

error estimate to be bounded by a small multiple of the true error. Figure 5.1 does not allow one to

easily see if the error estimates are of the right order of magnitude, and therefore the error estimates

will instead be presented as

log10(estimated error/actual error), (5.4)

where the actual error is the L2 norm of the difference between collocation solution and the true

solution. The L2 norm is used as the SCI, LOI, and LOI2 have been developed for use within an

L2 error estimate. Figure 5.2 shows an example of this type of plot, for the same example that

was considered in Figure 5.1. The left subplot shows the error estimate in terms of equation (5.4),

which we will call the error log ratio, across the spatial domain, while the right subplot shows the
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occurrence rate of the error log ratios. An error log ratio of −1 corresponds to an error estimate

of one order less than the true error, while 1 would be one order above, and 0 would correspond to

the true error. Thus an accurate error estimate will have an error log ratio close to 0. The right

subplot is created by dividing the interval [min(−1, error log ratios),max(1, error log ratios)] into

subintervals of width 0.1, and then counting how many error log ratios fall within each of these

subintervals. These counts are then divided by the total number of error log ratios to calculate the

relative occurrence rate of each of the error log ratio intervals. In Figure 5.2 one can look at the SCI

in the left subplot and see that it has a consistent error log ratio of about −0.3; this can be seen

in the right subplot by the single point at occurrence rate 1 around the error log ratio of −3. With

the other interpolants one can see that they are less consistent by noting on the right subplot that

they have an occurrence plot that is more spread out. The plots of this type for the one-dimensional

problem classes all have nint = 32, and span degrees 4 through 7 for each of the test problems.

Figure 5.2: The log of the ratio of estimated error to actual error for each subinterval, and occurrence rate
of error log ratios for a collocation solution to PPDE problem 2 at t = 1 with p = 5 and nint = 32.

An example of an error estimation plot for the two dimensional problem classes can be seen in

Figure 5.3. The top left subplot shows the error log ratios for the SCI over the spatial domain, while

the bottom left shows the error log ratios for the LOI and LOI2. The top right subplot shows the

error log ratios for the scaled LOI and LOI2, while the bottom right shows the occurrence rates of
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the error log ratios for each case. For the three-dimensional plots it is important to note that the

error estimates are computed for each subrectangle, and this error estimate is plotted at the center

of the subrectangle. The surface plotted is the interpolation of these points, and serves only to show

any trends in the error estimates. The plots given for the two-dimensional problem classes all have

nint = 16 or N = M = 16, and span degrees 4 through 7, with p = q, for each of the test problems.

Figure 5.3: Error estimate results for a collocation solution to EPDE problem 2 with p = q = 4 and
nint = 16.

5.1 BVODEs

5.1.1 Convergence Results

Within this section the expected convergence rates are p + 1 for GE, p + 2 for SCI − E, and p

for LOI and LOI2. From Table 5.1 we see that the collocation solution does have the expected

convergence rate of p+1 for most of the entries, apart from the rates at nint = 32 for p = 6, 7 where

we see the error associated with the accuracy of the fsolve computations dominate as the errors

reach a minimum of about 10−13. The SCI, LOI, and LOI2 results are very similar, as can be seen

in Tables 5.2, 5.3, 5.4, respectively, where most of the entries agree with their expected convergence

rates apart from some of the entries for higher degrees and larger nint values.
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Degree (p)
4 5 6 7

nint GE rate GE rate GE rate GE rate

Problem 1

2 9.51× 10−3 5.31× 10−4 2.83× 10−5 1.25× 10−6

4 4.08× 10−4 4.54 1.26× 10−5 5.4 3.09× 10−7 6.51 6.87× 10−9 7.5
8 1.49× 10−5 4.78 2.39× 10−7 5.71 2.85× 10−9 6.76 3.19× 10−11 7.75
16 4.99× 10−7 4.9 4.13× 10−9 5.86 2.41× 10−11 6.88 1.60× 10−13 7.64
32 1.60× 10−8 4.96 6.72× 10−11 5.94 6.09× 10−13 5.31 3.06× 10−13 -0.94

Problem 2

2 2.54× 10−3 1.04× 10−4 3.73× 10−6 1.26× 10−7

4 9.77× 10−5 4.7 2.16× 10−6 5.59 3.77× 10−8 6.63 6.44× 10−10 7.61
8 3.39× 10−6 4.85 3.89× 10−8 5.8 3.35× 10−10 6.81 2.89× 10−12 7.8
16 1.12× 10−7 4.92 6.51× 10−10 5.9 2.81× 10−12 6.9 5.64× 10−14 5.68
32 3.57× 10−9 4.97 1.05× 10−11 5.96 2.20× 10−13 3.67 1.51× 10−13 -1.42

Table 5.1: Global errors (GE) and convergence rates of collocation solutions for varying BVODE problem
and degree.

Degree (p)
4 5 6 7

nint SCI − E rate SCI − E rate SCI − E rate SCI − E rate

Problem 1

2 4.50× 10−3 1.84× 10−4 8.36× 10−6 3.28× 10−7

4 1.09× 10−4 5.36 2.00× 10−6 6.52 4.69× 10−8 7.48 9.21× 10−10 8.48
8 2.19× 10−6 5.64 2.01× 10−8 6.64 2.18× 10−10 7.75 2.16× 10−12 8.74
16 3.90× 10−8 5.81 1.78× 10−10 6.82 8.82× 10−13 7.95 9.33× 10−14 4.53
32 6.50× 10−10 5.91 1.49× 10−12 6.9 5.20× 10−13 0.76 3.07× 10−13 -1.72

Problem 2

2 4.62× 10−4 9.90× 10−6 2.16× 10−7 5.83× 10−9

4 8.85× 10−6 5.71 9.13× 10−8 6.76 1.04× 10−9 7.69 1.39× 10−11 8.71
8 1.51× 10−7 5.87 7.68× 10−10 6.89 4.50× 10−12 7.86 3.38× 10−14 8.69
16 2.47× 10−9 5.94 6.20× 10−12 6.95 1.27× 10−13 5.14 5.02× 10−14 -0.57
32 3.94× 10−11 5.97 5.33× 10−14 6.86 2.07× 10−13 -0.7 1.53× 10−13 -1.61

Table 5.2: SCI errors (SCI − E) and convergence rates for varying BVODE problem and degree.
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Degree (p)
4 5 6 7

nint LOI − E rate LOI − E rate LOI − E rate LOI − E rate

Problem 1

2 1.36× 10−1 7.94× 10−3 5.61× 10−4 2.73× 10−5

4 1.33× 10−2 3.36 3.66× 10−4 4.44 1.27× 10−5 5.46 3.02× 10−7 6.5
8 1.04× 10−3 3.68 1.39× 10−5 4.71 2.40× 10−7 5.73 2.81× 10−9 6.75
16 7.27× 10−5 3.84 4.81× 10−7 4.86 4.13× 10−9 5.86 2.40× 10−11 6.87
32 4.80× 10−6 3.92 1.58× 10−8 4.93 6.74× 10−11 5.94 4.00× 10−13 5.91

Problem 2

2 6.58× 10−2 2.24× 10−3 1.06× 10−4 3.65× 10−6

4 5.42× 10−3 3.6 9.14× 10−5 4.61 2.17× 10−6 5.61 3.72× 10−8 6.62
8 3.90× 10−4 3.8 3.28× 10−6 4.8 3.89× 10−8 5.8 3.33× 10−10 6.81
16 2.62× 10−5 3.9 1.10× 10−7 4.9 6.52× 10−10 5.9 2.80× 10−12 6.89
32 1.70× 10−6 3.95 3.54× 10−9 4.95 1.05× 10−11 5.96 1.64× 10−13 4.09

Table 5.3: LOI errors (LOI − E) and convergence rates for varying BVODE problem and degree.

Degree (p)
4 5 6 7

nint LOI2− E rate LOI2− E rate LOI2− E rate LOI2− E rate

Problem 1

2 2.83× 10−2 2.42× 10−3 1.78× 10−4 9.88× 10−6

4 2.54× 10−3 3.47 1.14× 10−4 4.41 3.91× 10−6 5.51 1.08× 10−7 6.52
8 1.92× 10−4 3.73 4.34× 10−6 4.71 7.28× 10−8 5.75 9.96× 10−10 6.75
16 1.32× 10−5 3.86 1.49× 10−7 4.86 1.24× 10−9 5.87 8.45× 10−12 6.88
32 8.54× 10−7 3.95 4.91× 10−9 4.93 1.98× 10−11 5.98 3.34× 10−13 4.66

Problem 2

2 1.25× 10−2 7.11× 10−4 3.25× 10−5 1.30× 10−6

4 1.00× 10−3 3.64 2.87× 10−5 4.63 6.59× 10−7 5.63 1.32× 10−8 6.62
8 7.09× 10−5 3.82 1.02× 10−6 4.81 1.17× 10−8 5.81 1.18× 10−10 6.81
16 4.71× 10−6 3.91 3.41× 10−8 4.91 1.96× 10−10 5.91 1.01× 10−12 6.86
32 3.01× 10−7 3.97 1.10× 10−9 4.95 3.07× 10−12 5.99 1.55× 10−13 2.7

Table 5.4: LOI2 errors (LOI2 − E) and convergence rates for varying BVODE problem and degree.
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5.1.2 Error Estimation

For the BVODE problem class the SCI performs very well, providing consistent error log ratios in

most of the results presented. In Figure 5.11 we see the greatest underestimate of all the interpolants

from the SCI, with an error log ratio of about -0.4 and an occurrence rate of about 0.15, which

remains within a small multiple of the true error. The SCI does not overestimate the error for these

BVODE examples, and tends to produce a consistent error log ratio between −0.3 and 0.

The LOI and LOI2 are quite consistent for the BVODE problem class, although they seem to be

impacted by the choice of p. In Figures 5.4 and 5.8, where p = 4, the LOI and LOI2 have error log

ratios mostly around 0.5 and 0.4 respectively, while their scaled versions have error log ratios around

0.3 and 0.1, respectively. For p = 7, in Figures 5.7 and 5.11, the LOI and LOI2 error log ratios tend

towards −0.1 and −0.2, while the scaled versions have error log ratios around −0.2 and −0.3. Apart

from this downward tendency as p increases, the error log ratios remain within [−0.5, 0.5] and thus

are a small multiple of the true error.

Figure 5.4: The log of the ratio of estimated error to actual error for each subinterval for a collocation
solution to BVODE problem 1 with p = 4 and nint = 32.
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Figure 5.5: The log of the ratio of estimated error to actual error for each subinterval for a collocation
solution to BVODE problem 1 with p = 5 and nint = 32.

Figure 5.6: The log of the ratio of estimated error to actual error for each subinterval for a collocation
solution to BVODE problem 1 with p = 6 and nint = 32.
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Figure 5.7: The log of the ratio of estimated error to actual error for each subinterval for a collocation
solution to BVODE problem 1 with p = 7 and nint = 32.

Figure 5.8: The log of the ratio of estimated error to actual error for each subinterval for a collocation
solution to BVODE problem 2 with p = 4 and nint = 32.
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Figure 5.9: The log of the ratio of estimated error to actual error for each subinterval for a collocation
solution to BVODE problem 2 with p = 5 and nint = 32.

Figure 5.10: The log of the ratio of estimated error to actual error for each subinterval for a collocation
solution to BVODE problem 2 with p = 6 and nint = 32.
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Figure 5.11: The log of the ratio of estimated error to actual error for each subinterval for a collocation
solution to BVODE problem 2 with p = 7 and nint = 32.

5.2 PPDEs

5.2.1 Convergence Results

Within this section the expected convergence rates are p+1 for GE, p+2 for SCI−E, and p for LOI

and LOI2. Within Table 5.5 we see that the collocation solution does have the expected convergence

rate of p+ 1 for most of the entries, although we see more entries outside of the asymptotic region

when compared to the BVODE results, including no results within the asymptotic region for p = 7.

We note that the minimum error achievable is about 10−10, which corresponds to the accuracy

delivered by the daskr solver. The SCI, LOI, and LOI2 results are very similar, as can be seen in

Tables 5.6, 5.7, 5.8, respectively, where most of the entries agree with their expected convergence

rates, apart from some of the entries for higher degrees and nint values. For p = 7, we do see a few

entries within the asymptotic region from the LOI and LOI2, for problem 1.
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Degree (p)
4 5 6 7

nint GE rate GE rate GE rate GE rate

Problem 1

2 9.05× 10−3 8.54× 10−4 7.62× 10−4 6.90× 10−5

4 1.47× 10−4 5.94 5.00× 10−5 4.09 5.72× 10−6 7.06 5.98× 10−7 6.85
8 1.22× 10−5 3.59 1.13× 10−6 5.47 4.17× 10−8 7.1 7.18× 10−9 6.38
16 5.47× 10−7 4.48 1.93× 10−8 5.87 1.38× 10−9 4.92 3.32× 10−10 4.44
32 1.81× 10−8 4.91 1.29× 10−9 3.9 4.13× 10−10 1.74 1.02× 10−9 -1.62

Problem 2

2 4.13× 10−3 6.46× 10−4 9.39× 10−6 4.64× 10−6

4 1.00× 10−4 5.36 5.74× 10−6 6.81 2.82× 10−7 5.06 1.25× 10−8 8.54
8 3.59× 10−6 4.8 1.13× 10−7 5.66 2.87× 10−9 6.62 2.01× 10−9 2.64
16 1.17× 10−7 4.94 3.98× 10−9 4.83 2.40× 10−9 0.26 1.89× 10−10 3.41
32 4.04× 10−9 4.86 2.18× 10−9 0.87 6.48× 10−10 1.89 4.29× 10−10 -1.18

Table 5.5: Global errors (GE) and convergence rates of collocation solutions for varying PPDE problem and
degree.

Degree (p)
4 5 6 7

nint SCI − E rate SCI − E rate SCI − E rate SCI − E rate

Problem 1

2 1.04× 10−2 3.12× 10−3 7.49× 10−4 2.12× 10−4

4 2.26× 10−4 5.53 4.37× 10−5 6.16 2.43× 10−6 8.27 5.30× 10−7 8.64
8 5.94× 10−6 5.25 3.26× 10−7 7.06 1.01× 10−8 7.91 1.16× 10−9 8.83
16 9.84× 10−8 5.92 2.34× 10−9 7.12 9.24× 10−10 3.45 3.24× 10−10 1.84
32 1.72× 10−9 5.84 1.01× 10−9 1.22 4.13× 10−10 1.16 1.02× 10−9 -1.65

Problem 2

2 4.93× 10−3 1.57× 10−4 1.28× 10−5 2.69× 10−7

4 2.02× 10−5 7.93 9.57× 10−7 7.35 2.37× 10−8 9.08 1.61× 10−9 7.39
8 2.53× 10−7 6.32 6.47× 10−9 7.21 5.26× 10−10 5.49 1.99× 10−9 -0.31
16 8.65× 10−9 4.87 2.75× 10−9 1.24 2.39× 10−9 -2.19 1.89× 10−10 3.4
32 1.81× 10−9 2.25 2.16× 10−9 0.35 6.48× 10−10 1.89 4.29× 10−10 -1.18

Table 5.6: SCI errors (SCI − E) and convergence rates for varying PPDE problem and degree.
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Degree (p)
4 5 6 7

nint LOI − E rate LOI − E rate LOI − E rate LOI − E rate

Problem 1

2 1.32× 10−2 9.73× 10−3 5.74× 10−4 6.93× 10−4

4 4.52× 10−3 1.55 9.10× 10−5 6.74 5.14× 10−5 3.48 5.15× 10−6 7.07
8 2.59× 10−4 4.12 1.02× 10−5 3.15 1.14× 10−6 5.5 4.04× 10−8 6.99
16 2.03× 10−5 3.68 5.05× 10−7 4.34 1.96× 10−8 5.86 7.74× 10−10 5.71
32 1.29× 10−6 3.97 1.82× 10−8 4.79 7.20× 10−10 4.77 1.02× 10−9 -0.4

Problem 2

2 3.44× 10−2 6.46× 10−4 4.52× 10−4 4.64× 10−6

4 1.84× 10−3 4.23 8.41× 10−5 2.94 5.45× 10−6 6.37 2.64× 10−7 4.14
8 1.54× 10−4 3.58 3.47× 10−6 4.6 1.13× 10−7 5.59 3.26× 10−9 6.34
16 1.03× 10−5 3.91 1.16× 10−7 4.91 3.62× 10−9 4.96 1.91× 10−10 4.09
32 6.51× 10−7 3.98 4.19× 10−9 4.79 6.75× 10−10 2.42 4.29× 10−10 -1.16

Table 5.7: LOI errors (LOI − E) and convergence rates for varying PPDE problem and degree.

Degree (p)
4 5 6 7

nint LOI2− E rate LOI2− E rate LOI2− E rate LOI2− E rate

Problem 1

2 8.42× 10−3 3.53× 10−3 7.32× 10−4 2.74× 10−4

4 9.28× 10−4 3.18 5.46× 10−5 6.02 1.80× 10−5 5.34 2.06× 10−6 7.05
8 5.39× 10−5 4.11 3.44× 10−6 3.99 3.56× 10−7 5.66 1.46× 10−8 7.15
16 3.71× 10−6 3.86 1.59× 10−7 4.44 6.57× 10−9 5.76 4.70× 10−10 4.96
32 2.30× 10−7 4.01 6.17× 10−9 4.68 4.98× 10−10 3.72 1.02× 10−9 -1.12

Problem 2

2 8.56× 10−3 6.46× 10−4 1.41× 10−4 4.64× 10−6

4 3.81× 10−4 4.49 2.70× 10−5 4.58 1.72× 10−6 6.36 9.38× 10−8 5.63
8 2.81× 10−5 3.76 1.08× 10−6 4.64 3.39× 10−8 5.66 2.32× 10−9 5.34
16 1.84× 10−6 3.93 3.61× 10−8 4.9 2.85× 10−9 3.57 1.90× 10−10 3.61
32 1.18× 10−7 3.97 2.44× 10−9 3.89 6.57× 10−10 2.12 4.29× 10−10 -1.17

Table 5.8: LOI2 errors (LOI2 − E) and convergence rates for varying PPDE problem and degree.
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5.2.2 Error Estimation

The SCI for the PPDE class is not as consistent as for the BVODE class, although it still provides

an accurate error estimate in most cases. In Figure 5.19 we see the greatest underestimation from

the SCI in the PPDE class with an error log ratio of about −0.75 for all of the subintervals. We

also see a similar underestimate in Figures 5.18 and 5.15 although these have occurrence rates of

only about 0.1. The SCI does not overestimate the error in any of the tested situations, and tends

to provide an error log ratio between −0.5 and −0.1 while also following a slight downward trend as

p increases.

The LOI and LOI2 perform moderately well for this class. We once again see a downward trend

in the error log ratio as p increases, although it is more pronounced in this case. With p = 4, in

Figures 5.12 and 5.16, we see the LOI and LOI2 producing error log ratios of about 0.5 and 0.3

respectively, while their scaled versions produce error log ratios of around 0.1 and 0 respectively.

The LOI tends to produce error log ratios between −0.5 and 0.5, with its scaled version producing

error log ratios between −0.7 and 0.3. The LOI2 produces error log ratios between −0.5 and 0.3,

with the scaled version producing error log ratios between −0.8 and 0. The scaling in this class

tends to cause the LOI and LOI2 to further underestimate the error.

Figure 5.12: The log of the ratio of estimated error to actual error of each subinterval for a collocation
solution to PPDE problem 1 with p = 4 and nint = 32.
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Figure 5.13: The log of the ratio of estimated error to actual error of each subinterval for a collocation
solution to PPDE problem 1 with p = 5 and nint = 32.

Figure 5.14: The log of the ratio of estimated error to actual error of each subinterval for a collocation
solution to PPDE problem 1 with p = 6 and nint = 32.
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Figure 5.15: The log of the ratio of estimated error to actual error of each subinterval for a collocation
solution to PPDE problem 1 with p = 7 and nint = 32.

Figure 5.16: The log of the ratio of estimated error to actual error of each subinterval for a collocation
solution to PPDE problem 2 with p = 4 and nint = 32.
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Figure 5.17: The log of the ratio of estimated error to actual error of each subinterval for a collocation
solution to PPDE problem 2 with p = 5 and nint = 32.

Figure 5.18: The log of the ratio of estimated error to actual error of each subinterval for a collocation
solution to PPDE problem 2 with p = 6 and nint = 32.
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Figure 5.19: The log of the ratio of estimated error to actual error of each subinterval for a collocation
solution to PPDE problem 2 with p = 7 and nint = 32.

5.3 EPDEs

5.3.1 Convergence Results

Within this section the expected convergence rates are p+ 1 for GE, p+ 2 for SCI − E, and p for

LOI and LOI2. In Table 5.9 we can see that the collocation solution does not agree exactly with

the expected convergence rate of p+ 1, but the results are still reasonable. For the rates associated

with p = 4 we see that the asymptotic region is being approached and the expected convergence rate

is being approached, but it is not achieved for the values of nint tested. For each higher p value,

once again the rate begins to be impacted by the lower bound which is again around 10−13 due to

the accuracy delivered by fsolve.

The SCI and LOI do not agree at all with the expected convergence rates as can be seen in Tables

5.10 and 5.11. The expected cause of this is that the SCI and LOI in two dimensions would require

sufficient convergence of collocation solution derivative values at points where it is not expected to

occur. This is also supported by seeing that the LOI2, which does not rely on solution derivative

values, delivers the expected convergence results.
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On the other hand, the LOI2 error agrees very closely with the expected convergence rate of p as

can be seen in Table 5.12, and contains many entries in or just approaching the asymptotic region.

There are a few entries which are impacted by the lower bound on the error, mostly those where

p = 7 but also sometimes when p = 6.

Degree (p)
4 5 6 7

nint GE rate GE rate GE rate GE rate

Problem 1

2 9.94× 10−6 1.89× 10−7 3.03× 10−9 4.61× 10−11

4 3.63× 10−7 4.774 3.49× 10−9 5.754 2.71× 10−11 6.802 2.11× 10−13 7.769
8 1.22× 10−8 4.892 5.93× 10−11 5.88 2.23× 10−13 6.927 2.98× 10−14 2.829
16 3.67× 10−10 5.06 9.65× 10−13 5.941 2.04× 10−13 0.126 1.02× 10−13 -1.773
32 1.17× 10−11 4.969 7.77× 10−14 3.635 5.99× 10−13 -1.552 - -

Problem 2

2 2.99× 10−4 1.09× 10−5 3.27× 10−7 1.02× 10−8

4 1.69× 10−5 4.149 2.80× 10−7 5.279 3.93× 10−9 6.379 6.20× 10−11 7.361
8 7.21× 10−7 4.546 5.69× 10−9 5.622 4.67× 10−11 6.396 3.32× 10−13 7.545
16 2.49× 10−8 4.858 1.20× 10−10 5.563 4.63× 10−13 6.656 9.64× 10−14 1.785
32 8.58× 10−10 4.859 3.99× 10−13 8.236 5.43× 10−13 -0.232 3.15× 10−13 -1.708

Table 5.9: Global errors (GE) and convergence rates of collocation solutions for varying EPDE problem and
degree.

Degree (p)
4 5 6 7

nint SCI − E rate SCI − E rate SCI − E rate SCI − E rate

Problem 1

2 2.42× 10−2 6.15× 10−3 7.19× 10−3 4.70× 10−3

4 6.85× 10−3 1.817 1.84× 10−3 1.741 2.16× 10−3 1.733 1.48× 10−3 1.668
8 1.85× 10−3 1.888 5.30× 10−4 1.796 6.03× 10−4 1.842 4.21× 10−4 1.811
16 3.93× 10−4 2.237 1.42× 10−4 1.899 1.59× 10−4 1.92 1.12× 10−4 1.906
32 8.50× 10−5 2.208 1.32× 10−6 6.746 4.10× 10−5 1.96 - -

Problem 2

2 7.86× 10−2 1.14× 10−2 1.74× 10−2 7.27× 10−3

4 3.19× 10−2 1.302 5.04× 10−3 1.175 7.52× 10−3 1.211 4.38× 10−3 0.731
8 1.09× 10−2 1.552 2.43× 10−3 1.051 3.12× 10−3 1.269 2.01× 10−3 1.123
16 2.79× 10−3 1.964 8.63× 10−4 1.493 1.03× 10−3 1.603 6.97× 10−4 1.53
32 6.28× 10−4 2.15 9.38× 10−6 6.525 2.96× 10−4 1.793 5.22× 10−5 3.738

Table 5.10: SCI errors (SCI −E) and convergence rates of collocation solutions for varying EPDE problem
and degree. The expected convergence rates are not achieved.
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Degree (p)
4 5 6 7

nint LOI − E rate LOI − E rate LOI − E rate LOI − E rate

Problem 1

2 1.99× 10−2 1.16× 10−2 2.49× 10−3 1.57× 10−3

4 4.07× 10−3 2.289 3.00× 10−3 1.946 5.83× 10−4 2.094 3.97× 10−4 1.982
8 8.84× 10−4 2.203 7.25× 10−4 2.05 1.44× 10−4 2.015 1.00× 10−4 1.987
16 1.91× 10−4 2.207 1.80× 10−4 2.007 2.29× 10−5 2.656 1.27× 10−5 2.979
32 3.18× 10−5 2.59 2.88× 10−5 2.644 4.12× 10−8 9.118 - -

Problem 2

2 1.53× 10−1 7.45× 10−2 2.33× 10−2 1.16× 10−2

4 3.34× 10−2 2.194 2.07× 10−2 1.847 5.24× 10−3 2.15 3.03× 10−3 1.941
8 7.35× 10−3 2.182 5.39× 10−3 1.941 1.23× 10−3 2.091 7.85× 10−4 1.948
16 1.56× 10−3 2.237 1.41× 10−3 1.935 1.98× 10−4 2.633 9.51× 10−5 3.045
32 2.66× 10−4 2.552 2.25× 10−4 2.647 3.81× 10−7 9.025 2.50× 10−5 1.927

Table 5.11: LOI errors (LOI −E) and convergence rates of collocation solutions for varying EPDE problem
and degree. The expected convergence rates are not achieved.

Degree (p)
4 5 6 7

nint LOI2− E rate LOI2− E rate LOI2− E rate LOI2− E rate

Problem 1

2 1.23× 10−4 3.06× 10−6 6.11× 10−8 1.10× 10−9

4 8.69× 10−6 3.825 1.08× 10−7 4.819 1.04× 10−9 5.873 9.70× 10−12 6.824
8 5.35× 10−7 4.022 3.61× 10−9 4.91 1.51× 10−11 6.107 6.44× 10−14 7.235
16 3.36× 10−8 3.993 1.16× 10−10 4.955 2.57× 10−13 5.881 1.02× 10−13 -0.659
32 5.40× 10−10 5.959 3.69× 10−12 4.977 6.00× 10−13 -1.225 - -

Problem 2

2 3.07× 10−3 1.37× 10−4 6.79× 10−6 2.47× 10−7

4 2.73× 10−4 3.487 5.76× 10−6 4.578 1.47× 10−7 5.529 2.70× 10−9 6.518
8 2.05× 10−5 3.738 2.20× 10−7 4.707 2.24× 10−9 6.038 1.68× 10−11 7.327
16 1.31× 10−6 3.965 8.46× 10−9 4.703 3.05× 10−11 6.199 1.49× 10−13 6.815
32 2.23× 10−8 5.876 2.94× 10−10 4.849 5.47× 10−13 5.799 3.15× 10−13 -1.077

Table 5.12: LOI2 errors (LOI2−E) and convergence rates of collocation solutions for varying EPDE problem
and degree.

5.3.2 Error Estimation

As can be seen in Tables 5.10 and 5.11 the convergence of the SCI and LOI are not as expected,

and this can be seen in the Figures within this section where the SCI and LOI consistently produce

an error estimate that is an order of magnitude greater than the true error.

The LOI2 performs well in this problem class, producing very consistent error log ratios for a

given degree. The decreasing trend in error log ratio as p increases is once again seen here and will

decrease the error log ratio by about 0.5 when comparing p = 4 to p = 7. For degrees 4 and 5, the

64



scaled LOI2 provides an error log ratio of about 0, while for degrees 6 and 7 the non-scaled LOI2

provides an error log ratio of about 0.

Figure 5.20: Error estimate results for a collocation solution to EPDE problem 1 with p = q = 4 and
nint = 16.

Figure 5.21: Error estimate results for a collocation solution to EPDE problem 1 with p = q = 5 and
nint = 16.
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Figure 5.22: Error estimate results for a collocation solution to EPDE problem 1 with p = q = 6 and
nint = 16.

Figure 5.23: Error estimate results for a collocation solution to EPDE problem 1 with p = q = 7 and
nint = 16.
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Figure 5.24: Error estimate results for a collocation solution to EPDE problem 2 with p = q = 4 and
nint = 16.

Figure 5.25: Error estimate results for a collocation solution to EPDE problem 2 with p = q = 5 and
nint = 16.
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Figure 5.26: Error estimate results for a collocation solution to EPDE problem 2 with p = q = 6 and
nint = 16.

Figure 5.27: Error estimate results for a collocation solution to EPDE problem 2 with p = q = 7 and
nint = 16.
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5.4 2DPPDEs

5.4.1 Convergence Results

As is shown by Table 5.13, the expected convergence rates for the collocation solution are not

achieved. It appears that there is an issue with the implementation for this case. As such we can

not evaluate the performance of the various error estimation methods for this problem class.

Degree (p)
4 5 6 7

nint GE rate GE rate GE rate GE rate

Problem 1

2 3.95× 10−4 6.03× 10−5 2.42× 10−5 2.81× 10−4

4 1.61× 10−5 4.612 9.35× 10−6 2.689 1.99× 10−6 3.606 8.97× 10−6 4.972
8 9.97× 10−7 4.018 7.82× 10−7 3.58 4.29× 10−6 -1.11 2.19× 10−6 2.032
16 8.56× 10−7 0.219 2.01× 10−5 -4.681 1.57× 10−5 -1.871 6.65× 10−5 -4.923
32 1.68× 10−5 -4.299 8.41× 10−6 1.254 - - - -

Problem 2

2 2.29× 10−3 3.73× 10−4 1.17× 10−4 2.32× 10−5

4 9.83× 10−5 4.541 2.20× 10−5 4.082 5.30× 10−5 1.147 9.67× 10−6 1.261
8 3.67× 10−6 4.745 1.14× 10−4 -2.373 3.15× 10−7 7.393 4.04× 10−6 1.26
16 9.90× 10−6 -1.433 2.67× 10−5 2.093 1.08× 10−4 -8.425 1.18× 10−4 -4.864
32 1.20× 10−4 -3.6 - - - - - -

Table 5.13: Global errors (GE) and convergence rates of collocation solutions for varying 2DPPDE problem
and degree.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Within this thesis we have discussed B-spline Gaussian Collocation for the problem classes, BVODE,

PPDE, EPDE, and 2DPPDE. We have also presented numerical convergence results from two test

problems from each of the BVODE, PPDE, and EPDE classes, which verify their expected con-

vergence rates for the collocation solutions using the software introduced within this thesis. An

overview of the source code and software itself are also included.

We have also introduced various interpolants for calculating an error estimate for a collocation

solution. These included the SCI and LOI, which have been also generalized to two spatial dimen-

sions, as well as a modified LOI, named LOI2, which can be used in one or two spatial dimensions.

We examined the performance of these interpolants for the BVODE, PPDE, and EPDE problem

classes. In the one spatial dimension classes, BVODE and PPDE, all of the interpolants were able

to provide an error estimate of the right order, while being more accurate for collocation solutions

of lower degree. For the EPDE case the SCI and LOI were unable to provide an error estimate

of the right order, while the LOI2 was. We also attempted to investigate the use of collocation

and interpolation based error estimates for the 2DPPDE problem class but ran into issues with the

implementation of these methods for this problem class.
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6.2 Future Work

There are two major next steps which present themselves from this thesis. The first is a further

investigation into the 2DPPDE problem class, including further investigation of the software so that

the expected convergence rates of the collocation solutions are seen. This would then be followed

by an assessment of the performance of the various error estimation interpolants in the 2DPPDE

problem class.

Another area for future work would be the development of more formal software in a more

efficient and compiled language that performs the same functions as the software presented in this

thesis. This is desirable as the calculation of a higher order collocation solution for a EPDE problem

using the existing software can take multiple hours.
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Appendix

README.txt

Before these scripts can be run , the following setup must be done:
In each of the main scripts , BVODE.sce , PPDE.sce , EPDE.sce , 2DPPDE.sce , the variable

codeDir
must be set to the directory where these files are. (example. codeDir = "C:\ Users\

name\Documents\SciCol ")
There are also the verbose and jacMode control parameters which are described in each

of the main scripts.

These scripts require the Scilab MinGw toolbox (to compile included Fortran code),
which requires the Equation solution Compiler gcc -6.2.0 package
the 32 bit version - http :// atoms.scilab.org/toolboxes/mingw /0.10.0/ files/gcc

-6.2.0 -32. exe
the 64 bit version - http :// atoms.scilab.org/toolboxes/mingw /0.10.0/ files/gcc

-6.2.0 -64. exe

After this has been downloaded and installed , in the Scilab console you can now
install the MinGw toolbox with the following command

atomsinstall ("mingw ")

Once this has completed you must log out of your Windows account , and back in to
enable it.

Now when Scilab is launched , there should be a message stating that MinGw has loaded ,
this may take a bit.

Finally , the main scripts can be executed with the following command
exec("C:\Users\name\Documents\SciCol\BVODE.sce",-1)

Where within the quotes should be the complete location to the desired main script.
This will compile the included Fortran and run the required provided Scilab code , and

now the collocate function can be called to calculate a collocation solution.

BVODE.sce

global codeDir verbose jacMode
codeDir = "" // This must be set to the directory where the Scilab scripts are
verbose = 0 // Determines the verbosity of the collocation procedure , 0 is no output ,

1 outputs information about the progress , while 2 also includes timing of
various stages.

jacMode = 0 // Determines if fsolve/daskr will calculate the Jacobian (0) , or if it
will be approximated using knowledge of the structure and finite difference
methods (1). Setting to 1 may speed up computation , or may also result in fsolve/
daskr failing to converge.

chdir(codeDir);

exec (codeDir+"\core.sci");
exec (codeDir+"\err.sci");

exec (codeDir+"\core1D.sci");
exec (codeDir+"\err1D.sci");

exec (codeDir+"\coreBVODE.sci");
exec (codeDir+"\probsBVODE.sci");
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PPDE.sce

global codeDir verbose jacMode
codeDir = "" // This must be set to the directory where the Scilab scripts are
verbose = 0 // Determines the verbosity of the collocation procedure , 0 is no output ,

1 outputs information about the progress , while 2 also includes timing of
various stages.

jacMode = 0 // Determines if fsolve/daskr will calculate the Jacobian (0) , or if it
will be approximated using knowledge of the structure and finite difference
methods (1). Setting to 1 may speed up computation , or may also result in fsolve/
daskr failing to converge.

chdir(codeDir);

exec (codeDir+"\core.sci");
exec (codeDir+"\err.sci");

exec (codeDir+"\core1D.sci");
exec (codeDir+"\err1D.sci");

exec (codeDir+"\corePPDE.sci");
exec (codeDir+"\probsPPDE.sci");

EPDE.sce

global codeDir verbose jacMode
codeDir = "" // This must be set to the directory where the Scilab scripts are
verbose = 0 // Determines the verbosity of the collocation procedure , 0 is no output ,

1 outputs information about the progress , while 2 also includes timing of
various stages.

jacMode = 0 // Determines if fsolve/daskr will calculate the Jacobian (0) , or if it
will be approximated using knowledge of the structure and finite difference
methods (1). Setting to 1 may speed up computation , or may also result in fsolve/
daskr failing to converge.

chdir(codeDir)

exec (codeDir+"\core.sci");
exec (codeDir+"\err.sci");

exec (codeDir+"\core2D.sci");
exec (codeDir+"\err2D.sci");

exec (codeDir+"\coreEPDE.sci");
exec (codeDir+"\probsEPDE.sci");

2DPPDE.sce

global codeDir verbose jacMode
codeDir = "" // This must be set to the directory where the Scilab scripts are
verbose = 0 // Determines the verbosity of the collocation procedure , 0 is no output ,

1 outputs information about the progress , while 2 also includes timing of
various stages.

jacMode = 0 // Determines if fsolve/daskr will calculate the Jacobian (0) , or if it
will be approximated using knowledge of the structure and finite difference
methods (1). Setting to 1 may speed up computation , or may also result in fsolve/
daskr failing to converge.

chdir(codeDir);

exec (codeDir+"\core.sci");
exec (codeDir+"\err.sci");

exec (codeDir+"\core2D.sci");
exec (codeDir+"\err2D.sci");

exec (codeDir+"\core2DPPDE.sci");
exec (codeDir+"\probs2DPPDE.sci");

core.sci
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// Global variables which are required by all PDE types.
global A // Lower x bound of the domain
global B // Upper x bound of the domain
global probNum // Specifies which problem is ’active ’
probNum = 1;
global ncpts // The number of equations total in the system
global p // Degree of the solution in x
global N // Number of intervals in x
global nconti // Number of continuity conditions imposed on the b-splines at mesh

points
nconti = 2;
global coeffs // Stores the coefficients of b-splines representing the solution
global atol rtol // Absolute and relative tolerance used for error estimation
atol = 1.d-4;
rtol = 0;
global meshX // The mesh points in x
global knotsX // The knots or breakpoint sequence in x used for the creation of b-

splines
global colX // The collocation points in x where the PDE must be satisfied
global dy // difference used for finite difference approximations
dy = 2 * sqrt(%eps);

// Builds a knot sequence from meshP to allow for a b-spline basis
// of degree deg over nint intervals with global nconti internal
// continuity conditions .
function knots = buildKnots(meshP , deg , nint)

// Check if calling from 1D case
if argn (2) == 1 then

deg = p
nint = N

end

// Find ncpt for this dimension
ncpt = (deg -1) * nint + nconti

// Set the end knots
for i = 1:(deg -1+ nconti)

knots(i) = meshP (1)
knots(i + ncpt) = meshP(nint +1)

end

// Set the internal knots
for i = 2:nint

ii = (i-2) * (deg -1) + (deg -1) + nconti
for j = 1:(deg -1)

knots(ii + j) = meshP(i)
end

end
endfunction

// Returns numP Gaussian points mapped between xL and xR
function x = getGaussPts(xL, xR , numP)

// Calculate midpoint and radius of interval
mid = (xR + xL)/2.0
radius = abs(xR - mid)

// p determines how many collocation points we have
select numP
case 2 then

x(1) = -(1/sqrt (3)) * radius + mid
x(2) = (1/ sqrt (3)) * radius + mid

case 3 then
x(1) = -sqrt (3/5) * radius + mid
x(2) = mid
x(3) = sqrt (3/5) * radius + mid

case 4 then
x(1) = -sqrt ((3/7) +(2/7)*sqrt (6/5)) * radius + mid
x(2) = -sqrt ((3/7) -(2/7)*sqrt (6/5)) * radius + mid
x(3) = sqrt ((3/7) -(2/7)*sqrt (6/5)) * radius + mid
x(4) = sqrt ((3/7) +(2/7)*sqrt (6/5)) * radius + mid

case 5 then
x(1) = -(1/3) * sqrt (5+2* sqrt (10/7)) * radius + mid
x(2) = -(1/3) * sqrt (5-2* sqrt (10/7)) * radius + mid
x(3) = mid
x(4) = (1/3) * sqrt (5-2* sqrt (10/7)) * radius + mid
x(5) = (1/3) * sqrt (5+2* sqrt (10/7)) * radius + mid

case 6 then
// Values taken from
// https :// pomax.github.io/ bezierinfo /legendre -gauss.html
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x(1) = -0.9324695142031521 * radius + mid
x(2) = -0.6612093864662645 * radius + mid
x(3) = -0.2386191860831969 * radius + mid
x(4) = 0.2386191860831969 * radius + mid
x(5) = 0.6612093864662645 * radius + mid
x(6) = 0.9324695142031521 * radius + mid

case 7 then
// Values taken from
// https :// pomax.github.io/ bezierinfo /legendre -gauss.html
x(1) = -0.9491079123427585 * radius + mid
x(2) = -0.7415311855993945 * radius + mid
x(3) = -0.4058451513773972 * radius + mid
x(4) = mid
x(5) = 0.4058451513773972 * radius + mid
x(6) = 0.7415311855993945 * radius + mid
x(7) = 0.9491079123427585 * radius + mid

case 8 then
x(1) = -0.9602898564975363 * radius + mid
x(2) = -0.7966664774136267 * radius + mid
x(3) = -0.5255324099163290 * radius + mid
x(4) = -0.1834346424956498 * radius + mid
x(5) = 0.1834346424956498 * radius + mid
x(6) = 0.5255324099163290 * radius + mid
x(7) = 0.7966664774136267 * radius + mid
x(8) = 0.9602898564975363 * radius + mid

case (9) then
x(1) = -0.9681602395076261 * radius + mid
x(2) = -0.8360311073266358 * radius + mid
x(3) = -0.6133714327005904 * radius + mid
x(4) = -0.3242534234038089 * radius + mid
x(5) = mid
x(6) = 0.3242534234038089 * radius + mid
x(7) = 0.6133714327005904 * radius + mid
x(8) = 0.8360311073266358 * radius + mid
x(9) = 0.9681602395076261 * radius + mid

else
disp(string(numP) + " Gauss points requested. Only 2-9 is supported.")
disp("Aborting execution.")
abort

end
endfunction

// Returns ileft as required by the B-spline basis functions. Input x is the point in
a domain

// where we are evaluating , kts is the knot sequence of that domain , and boolean isY
specifies

// if it is the x or y domain.
function i = getileft(x, kts , isY)

// Default to being in x
if argn (2) < 3 then

isY = %F
end

if ~isY then
ind = getInd(x, meshX , N)
i = nconti + (p-1) * ind

else
ind = getInd(x, meshY , M)
i = nconti + (q-1) * ind

end

endfunction

// Simplified call to bsplvd which evaluates the nder -1th derivative
// of the degree p/q b-splines at pt associated with the global
// knotsX/Y. Set isY to true to evaluate a y value.
function y = bsplv(pt, nder , isY)

if argn (2) < 3 then
isY = %F

end
if isY then

knots = knotsY
deg = q

else
knots = knotsX
deg = p

end
indS = (deg +1)*(nder -1)+1
indE = indS + deg
y = bsplvd(pt, nder , knots , deg , 2, isY)(indS:indE)

endfunction
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// Calls Fortran bsplvd to evaluate the b-splines associated with
// knots kts , and nconti internal continitui conditions . Returns
// the nder -1th derivative of degree deg b-splines at x. Set isY to
// true if evaluating a Y value.
function y = bsplvd(x, nder , kts , deg , nconti , isY)

if argn (2) == 5 then
isY = %F

end
ileft = getileft(x, kts , isY)
k = deg + nconti - 1
vnikx = zeros(nder *k, 1)
call(’bsplvd ’,kts ,1,’d’,k,2,’i’,x,3,’d’,ileft ,4,’i’ ,..
vnikx ,5,’d’,nder ,6,’i’)
y = vnikx

endfunction

// Returns the mesh index of point val within mesh meshP , with max
// of nint.
function i = getInd(val , meshP , nint)

if argn (2) == 1 then
meshP = meshX
nint = N

end
i = 1
while val >= meshP(i+1) && i < nint

i = i + 1
end

endfunction

// Change to the temp directory and create bsplvd.f and bsplvn.f
cd(TMPDIR)

bd = [’ SUBROUTINE BSPLVD ( XT, K, X, ILEFT , VNIKX , NDERIV )’
’ implicit none’
’ INTEGER K,NDERIV ,ILEFT’
’ DOUBLE PRECISION X’
’ DOUBLE PRECISION XT(*),VNIKX(K,NDERIV)’
’ INTEGER KO,IDERIV ,IDERVM ,KMD ,JM1 ,IPKMD ,JLOW’
’ DOUBLE PRECISION A(20 ,20)’
’ DOUBLE PRECISION FKMD ,DIFF ,V’
’ DOUBLE PRECISION ZERO , ONE’
’ PARAMETER (ZERO = 0.D0)’
’ PARAMETER (ONE = 1.D0)’
’ INTEGER I,J,M,L’
’ KO = K + 1 - NDERIV ’
’ CALL BSPLVN(XT ,KO ,1,X,ILEFT ,VNIKX(NDERIV ,NDERIV))’
’ IF (NDERIV .LE. 1) GO TO 130’
’ IDERIV = NDERIV ’
’ DO 20 I=2,NDERIV ’
’ IDERVM = IDERIV -1’
’ DO 10 J=IDERIV ,K’
’ VNIKX(J-1,IDERVM) = VNIKX(J,IDERIV)’
’ 10 CONTINUE ’
’ IDERIV = IDERVM ’
’ CALL BSPLVN(XT ,0,2,X,ILEFT ,VNIKX(IDERIV ,IDERIV))’
’ 20 CONTINUE ’
’ DO 40 I=1,K’
’ DO 30 J=1,K’
’ A(I,J) = ZERO’
’ 30 CONTINUE ’
’ A(I,I) = ONE’
’ 40 CONTINUE ’
’ KMD = K’
’ DO 120 M=2,NDERIV ’
’ KMD = KMD - 1’
’ FKMD = DBLE(KMD)’
’ I = ILEFT ’
’ J = K’
’ 50 CONTINUE ’
’ JM1 = J-1’
’ IPKMD = I + KMD’
’ DIFF = XT(IPKMD) -XT(I)’
’ IF (JM1 .NE. 0) THEN’
’ IF (DIFF .NE. ZERO) THEN’
’ DO 60 L=1,J’
’ A(L,J) = (A(L,J) - A(L,J-1))/DIFF*FKMD’
’ 60 CONTINUE ’
’ ENDIF’
’ J = JM1’
’ I = I - 1’
’ GO TO 50’
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’ ENDIF’
’ IF (DIFF .NE. ZERO) THEN’
’ A(1,1) = A(1,1)/DIFF*FKMD’
’ ENDIF’
’ DO 110 I=1,K’
’ V = ZERO’
’ JLOW = MAX(I,M)’
’ DO 100 J=JLOW ,K’
’ V = A(I,J)*VNIKX(J,M) + V’
’ 100 CONTINUE ’
’ VNIKX(I,M) = V’
’ 110 CONTINUE ’
’ 120 CONTINUE ’
’ 130 RETURN ’
’ END’];

bn = [’ SUBROUTINE BSPLVN ( XT, JHIGH , INDEX , X, ILEFT , VNIKX )’
’ implicit none’
’ DOUBLE PRECISION XT(*),X,VNIKX (*)’
’ INTEGER JHIGH ,INDEX ,ILEFT’
’ INTEGER IPJ ,IMJP1 ,JP1 ,JP1ML’
’ DOUBLE PRECISION VMPREV ,VM’
’ DOUBLE PRECISION ZERO , ONE’
’ PARAMETER (ZERO = 0.D0)’
’ PARAMETER (ONE = 1.D0)’
’ DOUBLE PRECISION DELTAM (20),DELTAP (20)’
’ INTEGER J’
’ INTEGER L’
’ DATA J/1/, DELTAM /20*0.D+0/, DELTAP /20*0.D+0/’
’ IF(INDEX.EQ.1) THEN’
’ J = 1’
’ VNIKX (1) = ONE’
’ IF (J .GE. JHIGH) GO TO 40’
’ ENDIF’
’ 20 CONTINUE ’
’ IPJ = ILEFT+J’
’ DELTAP(J) = XT(IPJ) - X’
’ IMJP1 = ILEFT -J+1’
’ DELTAM(J) = X - XT(IMJP1)’
’ VMPREV = ZERO’
’ JP1 = J+1’
’ DO 30 L=1,J’
’ JP1ML = JP1 -L’
’ VM = VNIKX(L)/( DELTAP(L) + DELTAM(JP1ML))’
’ VNIKX(L) = VM*DELTAP(L) + VMPREV ’
’ VMPREV = VM*DELTAM(JP1ML)’
’ 30 CONTINUE ’
’ VNIKX(JP1) = VMPREV ’
’ J = JP1’
’ IF (J .LT. JHIGH) GO TO 20’
’ 40 RETURN ’
’ END’];

mputl(bd, ’bsplvd.f’);
mputl(bn, ’bsplvn.f’);

// Link the newly created bsplvn.f and bsplvd.f
ilib_for_link ([’bsplvd ’, ’bsplvn ’], [..
’bsplvd.f’, ’bsplvn.f’], [], "f");
exec loader.sce;
linked = %T;

core1D.sci

global Y_a
global Y_b

// Evaluates the collocation solution at point x with coefficients coef.
function y=Y(coef , x)

y = beval(coef , x, 1)
endfunction

// Evaluates the first derivative of the collocation solution at point x
// with coefficients coef.
function y=Yx(coef , x)

y = beval(coef , x, 2)
endfunction

// Evaluates the second derivative of the collocation solution at point x
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// with coefficients coef.
function y=Yxx(coef , x)

y = beval(coef , x, 3)
endfunction

// Evaluates the (d -1) th derivative of the collocation solution at point x
// with coefficients coef.
function y = beval(coef , x, d)

basis = bsplv(x, d)
sum = 0
for i = 1:p+1

sum = sum + coef(i) * basis(i)
end
y = sum

endfunction

// Creates and returns the mesh points in x. Contains deprecated uneven mesh creation
.

function x = buildMesh(levels)
// Calculate the mesh points
x = linspace(A, B, N+1);

// Set the knots
global knotsX
knotsX = buildKnots(x)

endfunction

// Returns the indexes within the Jacobian that are non -zero for the
// cIndth coefficient .
function inds = nonZeroInds(cInd)

if cInd == 1 then
bndInd = 1
ind = 1

elseif cInd == ncpts
bndInd = ncpts
ind = N

else
bndInd = []
ind = getInt(cInd)

end
colInds = colInds(ind)
inds = cat(1, colInds , bndInd)

endfunction

// Returns the index of the collocation points in the xIndsth intervals .
function inds = colInds(xInds)

if size(xInds)(1) == 2 then
inds1 = colIndsI(xInds (1))
inds2 = colIndsI(xInds (2))

else
inds1 = colIndsI(xInds)
inds2 = []

end
inds = cat(1, inds1 , inds2)

endfunction

// Returns the index of the collocation points on the xIndth interval.
function inds = colIndsI(xInd)

startInd = 2 + (xInd - 1) * (p-1)
endInd = startInd + (p - 2)
inds = (startInd:endInd)’

endfunction

// Returns the intervals which are affected by the xith coefficient .
function ind = getInt(xi)

if xi <= p - 1 then
ind = 1

elseif xi >= ncpts - 2
ind = N

else
ind = 1
xi = xi - (p-1)
while xi > 0

xi = xi - nconti
if xi < 1 then

if ind + 1 <= N then
ind (2) = ind + 1

end
break

elseif xi <= (p + 1 - 2 * nconti) then
ind = ind + 1
break

end
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xi = xi - (p + 1 - 2 * nconti)
ind = ind + 1

end
end

endfunction

// Returns the index of the first coefficient for the ith interval.
function ind = firstCoef(i)

ind = (p-1) * (i - 1) + 1
endfunction

// Returns the index of the last coefficient for the ith interval.
function ind = last(i)

ind = firstCoef(i) + p
endfunction

// Evaluates the curent collocation solution at point x.
function y = U(x)

// Determine which interval X is in
index = getInd(x)

// Calculate using the appropriate coeeficients
y = Y(coeffs(firstCoef(index):last(index)), x)

endfunction

// Evaluates the first derivative of the collocation solution at point x.
function y = Ux(x)

index = getInd(x)

y = Yx(coeffs(firstCoef(index):last(index)), x)
endfunction

// Evaluates the second derivative of the collocation solution at point x.
function y = Uxx(x)

index = getInd(x)

y = Yxx(coeffs(firstCoef(index):last(index)), x)
endfunction

core2D.sci

// Global variables used for 2D collocation
global q M // Degree of solution and number of intervals in y
global C D // Lower and upper bound on y
global meshY // The mesh points in y
global knotsX knotsY // The knots in x and y used for creation of the b-splines
global colX colY // Collocation points in x and y
global ncpts ncptX ncptY
global bndAvals bndBvals bndCvals bndDvals
global colXBasisVals colYBasisVals
global meshXBasisVals meshYBasisVals
global colInds xBndInds yBndInds cornInds // The 1D index of conditions

// colInds(i, j, :) is the index of the (p -1) *(q -1) col. conds. in
// rectangle i, j.
// x/yBndInds(i, j, k) is the index of the (q -1) /(p -1) boundary conditions
// for the jth interval in x/y. i = 0 corresponds to x=A/y=C, and i = 1
// corresponds to x=B/y=D

// Evaluates the tensor product of b-splines at (x, y).
// derX/Y designate the desired order -1 of derivative with respect
// to X/Y
function z = U(x, y, derX , derY)

if argn (2) == 2 then
derX = 1
derY = 1

end
co = getCoefs(getInd(x, meshX , N), getInd(y, meshY , M))
bv = getBasisVals(x, y, derX , derY)
z = sum(co .* bv)

endfunction

// Retrieve the apropriate coefficients fpr the potentially non -zero
// b-spline basis functions in mesh square xInd , yInd. coefs is the
// vector containing all of the coefficients . co(i, j) contains the
// coefficient for the ith x b-spline multiplied by the jth b-spline.
function co = getCoefs(xInd , yInd)

xStart = (xInd - 1) * (p - 1) + 1
yStart = (yInd - 1) * (q - 1) + 1
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co = coefSq(xStart , yStart)
endfunction

// Calculate the product of the potential non -zero b-spline basis
// functions at point (x, y). derX/Y specifies which order of
// derivative with respect to X/Y. bv(i, j) will contain the product
// of the ith x b-spline multiplied by the jth b-spline.
function bv = getBasisVals(x, y, derX , derY)

// Check if x is col pt or mesh val
// If so then we can use the saved evaluation
xInd = getInd(x, meshX , N)
yInd = getInd(y, meshY , M)
if x == meshX(xInd) then

xVals = matrix(meshXBasisVals(xInd , :, derX), 1, p+1)’
elseif x == meshX(xInd +1) then

xVals = matrix(meshXBasisVals(xInd+1, :, derX), 1, p+1)’
else

for i = 1:(p-1)
if x == colX(xInd , i) then

xVals = matrix(colXBasisVals(xInd , i, :, derX), 1, p+1)’
i = -1

end
end

// Calculate it if it isn ’t a mesh or col pt
if i ~= -1 then

xVals = bsplv(x, derX)
end

end

// Check if y is col pt or mesh val
// If so then we can use the saved evaluation
if y == meshY(yInd) then

yVals = matrix(meshYBasisVals(yInd , :, derY), 1, q+1)’
elseif y == meshY(yInd +1) then

yVals = matrix(meshYBasisVals(yInd+1, :, derY), 1, q+1)’
else

for i = 1:(q-1)
if y == colY(yInd , i) then

yVals = matrix(colYBasisVals(yInd , i, :, derY), 1, q+1)’
i = -1

end
end

// Calculate it if it isn ’t a mesh or col pt
if i ~= -1 then

yVals = bsplv(y, derY , %T)
end

end
bv = xVals * yVals ’

endfunction

// Returns a square of coefficients (p+1) by (q+1)
// starting at firstX , firstY in x and y respectively .
function c = coefSq(firstX , firstY)

c(p+1,q+1) = 0
for i = 1:(p+1)

os = ncptY * (firstX + i - 2)
for j = 1:(q+1)

c(i,j) = coeffs(os + (firstY + j - 1))
end

end
endfunction

// Sets the global meshes using the global A, B, C
// D, N, and M.
function prepareMesh ()

global meshX meshY
meshX = linspace(A, B, N+1)
meshY = linspace(C, D, M+1)

endfunction

// Sets the global knots variables using global meshX/Y, p, q, N, M.
function prepareKnots ()

global knotsX knotsY
knotsX = buildKnots(meshX , p, N)
knotsY = buildKnots(meshY , q, M)

endfunction

// Sets the global colX/Y variables using p, N, meshX , q, M, and
// meshY.
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function prepareColP ()
global colX colY
colX = zeros(N, p-1)
colY = zeros(M, q-1)
for i = 1:N

colX(i,:) = getGaussPts(meshX(i), meshX(i+1), p-1)
end
for i = 1:M

colY(i,:) = getGaussPts(meshY(i), meshY(i+1), q-1)
end

endfunction

// Save the evaluations of basis functions which will be repeatedly used
// in colConds () to increase the efficiency .
function setSavedBasisVals ()

global colXBasisVals meshXBasisVals p q N M
global colYBasisVals meshYBasisVals
colXBasisVals = zeros(N, p-1, p+1, 3)
colYBasisVals = zeros(M, q-1, q+1, 3)
meshXBasisVals = zeros(N+1, p+1, 3)
meshYBasisVals = zeros(M+1, q+1, 3)

// Loop through the collocation points in x and save the basis values
for i = 1:N

for j = 1:(p-1)
colXBasisVals(i, j, :, :) = bsplvSave(colX(i, j))

end
end

// Loop through mesh points in x
for i = 1:N+1

meshXBasisVals(i, :, :) = bsplvSave(meshX(i))
end

// Loop through the collocation points in y and save the basis values
for i = 1:M

for j = 1:(q-1)
colYBasisVals(i, j, :, :) = bsplvSave(colY(i, j), %T)

end
end

// Loop through mesh points in y
for i = 1:M+1

meshYBasisVals(i, :, :) = bsplvSave(meshY(i), %T)
end

endfunction

// Version of bsplv () to be called by setSavedBasisVals () which
// returns the solution value , first , and second derivatives .
function y = bsplvSave(pt, isY)

if argn (2) < 2 then
isY = %F

end
if isY then

global q knotsY
knots = knotsY
deg = q

else
global p knotsX
knots = knotsX
deg = p

end
vec = bsplvd(pt, 3, knots , deg , 2, isY)
y(:,1) = vec (1:deg+1)
y(:,2) = vec(deg +2:2* deg+2)
y(:,3) = vec (2*deg +3:3* deg +3)

endfunction

// Saves the boundary value at the collocation points into the global
// bnd_vals variables.
function saveBoundaryEvals ()

global bndAvals bndBvals bndCvals bndDvals
for i = 1:M

for j = 1:(q-1)
bndAvals(i, j) = bndA(colY(i, j))
bndBvals(i, j) = bndB(colY(i, j))

end
end
for i = 1:N

for j = 1:(p-1)
bndCvals(i, j) = bndC(colX(i, j))
bndDvals(i, j) = bndD(colX(i, j))
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end
end

endfunction

// Converts the 1- dimensional index of a condition to a
// 2- dimensional coordinate
function [i, j] = toCoord(ind)

i = ceil(ind/ncptY)
j = pmodulo(ind -1, ncptY) + 1

endfunction

// Returns the indices of the jacobian which will be non zero for a given
// coefficient . Uses the pre - calculated indices provided.
function inds = nonZeroInds(cInd , colInds , xBndInds , yBndInds , cornInds)

// Get the coordinate of the coefficient
[xi , yi] = toCoord(cInd)

// Determine what conditions are needed
if xi == 1 then // On the low X boundary

if yi == 1 then // On the low Y boundary
cornInd = cornInds(1, 1)
bndYinds = matrix(yBndInds(1, 1, :), 1, p-1)
yInd = 1

elseif yi == ncptY then // On the high Y boundary
cornInd = cornInds(1, 2)
bndYinds = matrix(yBndInds(2, 1, :), 1, p-1)
yInd = M

else // Not on a Y boundary
bndYinds = []
cornInd = []
yInd = getYint(yi)

end
bndXinds = matrix(xBndInds(1, yInd , :), 1, (q-1)*size(yInd)(1))
colInds = matrix(colInds(1, yInd , :), 1, (p-1)*(q-1)*size(yInd)(1))

elseif xi == ncptX then // On the high X boundary
if yi == 1 then // On the low Y boundary

cornInd = cornInds(2, 1)
bndYinds = matrix(yBndInds(1, N, :), 1, p-1)
yInd = 1

elseif yi == ncptY then // On the high Y boundary
cornInd = cornInds(2, 2)
bndYinds = matrix(yBndInds(2, N, :), 1, p-1)
yInd = M

else // Not on a Y boundary
bndYinds = []
cornInd = []
yInd = getYint(yi)

end
bndXinds = matrix(xBndInds(2, yInd , :), 1, (q-1)*size(yInd)(1))
colInds = matrix(colInds(N, yInd , :), 1, (p-1)*(q-1)*size(yInd)(1))

else // Not on an X boundary
xInd = getXint(xi)
if yi == 1 then // On the low Y boundary

bndYinds = matrix(yBndInds(1, xInd , :), 1, (p-1)*size(xInd)(1))
yInd = 1

elseif yi == ncptY then // On the high Y boundary
bndYinds = matrix(yBndInds(2, xInd , :), 1, (p-1)*size(xInd)(1))
yInd = M

else // Not on a Y boundary
bndYinds = []
yInd = getYint(yi)

end
cornInd = []
bndXinds = []
colInds = matrix(colInds(xInd , yInd , :), 1, (p-1)*(q-1)*size(xInd)(1)*size(

yInd)(1))
end

// Concatenate the various indices and return them
inds = cat(1, cornInd , bndXinds ’, bndYinds ’, colInds ’)

endfunction

// Returns the interval(s) in X which coefficient xi will affect.
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function indX = getXint(xi)
if xi <= (p + 1 - nconti) then

indX = 1
elseif xi >= ncptX - nconti

indX = N
else

indX = 1
xi = xi - (p - 1)
while xi > 0

xi = xi - nconti
if xi < 1 then

if indX + 1 <= N then
indX (2) = indX + 1

end
break

elseif xi <= (p + 1 - 2 * nconti) then
indX = indX + 1
break

end
xi = xi - (p + 1 - 2 * nconti)
indX = indX + 1

end
end

endfunction

// Returns the interval(s) in Y which coefficient yi will affect.
function indY = getYint(yi)

if yi <= (q + 1 - nconti) then
indY = 1

elseif yi >= ncptY - nconti
indY = M

else
indY = 1
yi = yi - (q-1)
while yi > 0

yi = yi - nconti
if yi < 1 then

if indY + 1 <= M then
indY (2) = indY + 1

end
break

elseif yi <= (q + 1 - 2 * nconti) then
indY = indY + 1
break

end
yi = yi - (q + 1 - 2 * nconti)
indY = indY + 1

end
end

endfunction

// Calculates the indices of the collocation conditions which occur in
// the rectangle with coordinate xInd , yInd
function inds = getColInds(xInd , yInd)

ind = 1
sqOs = ncptY * ((p-1) * (xInd - 1) + 1) + 1 + (q-1) * (yInd - 1)
for i = 1:p-1

colLOs = (i-1) * ncptY + sqOs
for j = 1:q-1

inds(ind) = colLOs + j
ind = ind + 1

end
end

endfunction

// Calculates the indices of the conditions which correspond to the X boundary.
// yInd is the interval in Y, while isHigh determines if it is the low or
// high X boundary (%F / %T)
function inds = getxBndInds(yInd , isHigh)

ind = 1
if ~isHigh then

sqOs = (q-1) * (yInd - 1) + 1
else

sqOs = (((p-1) * N) + 1) * ncptY + (q-1) * (yInd - 1) + 1
end
for i = 1:(q-1)

inds(ind) = sqOs + i
ind = ind + 1

end
endfunction

// Calculates the indices of the conditions which correspond to the Y boundary.
// xInd is the interval in X, while isHigh determines if it is the low or
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// high Y boundary (%F / %T)
function inds = getyBndInds(xInd , isHigh)

os = ncptY * ((xInd - 1) * (p-1) + 1)
if ~isHigh then

os = os - (ncptY - 1)
end
ind = os
for i = 1:(p-1)

ind = ind + ncptY
inds(i) = ind

end
endfunction

// Returns the index of the corner condition specified by xHigh , yHigh
// xHigh / yHigh = %T means it is the corner with the high X / Y boundary.
function ind = getCornerInd(xHigh , yHigh)

if ~xHigh then
if ~yHigh then

ind = 1
else

ind = ncptY
end

else
ind = ncpts
if ~yHigh then

ind = ind - ncptY + 1
end

end
endfunction

// Calculates and returns the indices of the collocation conditions for
// all N*M rectangles
function colInds = saveColInds ()

colInds = zeros(N, M, (p-1) * (q-1))
for i = 1:N

for j = 1:M
colInds(i, j, :) = getColInds(i, j)

end
end

endfunction

// Calculates and returns all of the X boundary condition indices.
function xBndInds = savexBndInds ()

xBndInds = zeros(2, M, q-1)
for i = 1:M

xBndInds(1, i, :) = getxBndInds(i, %F)
xBndInds(2, i, :) = getxBndInds(i, %T)

end
endfunction

// Calculates and returns all of the Y boundary condition indices.
function yBndInds = saveyBndInds ()

yBndInds = zeros(2, N, p-1)
for i = 1:N

yBndInds(1, i, :) = getyBndInds(i, %F)
yBndInds(2, i, :) = getyBndInds(i, %T)

end
endfunction

// Calculates and returns all of the corner condition indices.
function cornInds = saveCornInds ()

cornInds(1, 1) = getCornerInd(%F, %F)
cornInds(1, 2) = getCornerInd(%F, %T)
cornInds(2, 1) = getCornerInd(%T, %F)
cornInds(2, 2) = getCornerInd(%T, %T)

endfunction

// Returns which line of x a point is in along with which point in the
// line it is.
function [l, r] = getLine(ind)

l = 1
while ind > ncptY

ind = ind - ncptY
l = l + 1

end
r = ind

endfunction

// Returns the index of a collocation point for jacCond ()
function [inter , col] = getColPt(rem , isY)

// Set variables for x or y
if argn (2) < 2 then

isY = %F
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end
if isY then

deg = q
else

deg = p
end

// Find which interval and which col pt within the interval
col = rem - 1
inter = 1
while col > (deg -1)

inter = inter + 1
col = col - (deg - 1)

end
endfunction

// Quicker version of U to be used when evaluating the collocation solution at
// a collocation or boundary point in X and Y
function z = savedU(indX , indY , dx, dy)

if argn (2) == 2 then
dx = 1
dy = 1

end
if indX == 1 then

xVals = matrix(meshXBasisVals (1, :, dx), 1, p+1)’
interX = 1

elseif indX == ncptX then
xVals = matrix(meshXBasisVals(N+1, :, dx), 1, p+1)’
interX = N

else
[interX , pt] = getColPt(indX , %F)
xVals = matrix(colXBasisVals(interX , pt, :, dx), 1, p+1)’

end
if indY == 1 then

yVals = matrix(meshYBasisVals (1, :, dy), 1, q+1)’
interY = 1

elseif indY == ncptY then
yVals = matrix(meshYBasisVals(M+1, :, dy), 1, q+1)’
interY = M

else
[interY , pt] = getColPt(indY , %T)
yVals = matrix(colYBasisVals(interY , pt, :, dy), 1, q+1)’

end
bv = xVals * yVals ’
co = coefSq ((interX -1)*(p-1)+1,(interY -1)*(q-1) +1)
z = sum(co .* bv)

endfunction

coreBVODE.sci

// Function to build system passed to fsolve
function [func] = fsol(coef)

// Index to facilitate population of system
index = 1

// Two boundary conditions
// ------------------------------------------------------------------------
func(index) = Y(coef (1:(p+1)), meshX (1)) - Y_a
index = index +1

// --------------- end boundary conditions --------------------------------

// Collocation conditions
// -----------------------------------------------------------------------
// Loop through the N subintervals
for i = 1:N

// Loop for each collocation point per subinterval
for j = 1:(p-1)

func(index) = PDE(coef(firstCoef(i):last(i)), colX(i,j))
index = index + 1

end
end
// ----------- end collocation conditions ---------------------------------
func(index) = Y(coef(firstCoef(N):last(N)), meshX(N+1)) - Y_b
index = index +1

endfunction

function info = collocate(deg , nint)
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global N
global p
global colX
global meshX
global ncpts
global coeffs

p = deg

N = nint
ncpts = N * (p-1) + nconti
meshX = buildMesh ()

if verbose > 0 then
disp("probNum=" + string(probNum) + " p=" + string(p) + " N=" + string(N))

end

colX = zeros(N, p-1)
for i = 1:N

colX(i,:) = getGaussPts(meshX(i), meshX(i+1), p-1);
end
global Y_a Y_b
Y_a = actual(A) // Y value at A boundary
Y_b = actual(B)
// Calculate Jacobian

// Generate a first guess
fg = ones((p-1)*N+2,1);
fg(1) = Y_a
fg((p-1) * N + nconti) = Y_b
// Send system to fsolve
if verbose > 0 then

disp("Solving for coefficients.")
if verbose > 1 then

tic
end

end

if jacMode == 0 then
[coeffs , v, info] = fsolve(fg, fsol , atol *0.1)

elseif jacMode == 1 then
[coeffs , v, info] = fsolve(fg, fsol , fjac , atol *0.1)

end

if verbose > 0 then
disp("Coefficients set.")
if verbose > 1 then

time = toc()
disp("Elapsed time: " + string(time) + " seconds")

end
disp("fsolve info: " + string(info))
disp("fsolve max residual: " + string(max(abs(fsol(coeffs)))))

end
endfunction

// Approximates the Jacobian for fsolve
function r = fjac(coefs)

global coeffs t0 dy
inds = nonZeroInds (1)
coeffs = coefs

for k = 1:size(inds)(1)
ind = inds(k)
coeffs (1) = coefs (1)+dy
rp1 = condI(ind)
coeffs (1) = coefs (1)-dy
r(ind ,1) = (0.5* rp1 - 0.5* condI(ind))/dy

end
for i = 2:ncpts

inds = nonZeroInds(i)
coeffs(i-1) = coefs(i-1)
for k = 1:size(inds)(1)

ind = inds(k)
coeffs(i) = coefs(i)+dy
rp1 = condI(ind)
coeffs(i) = coefs(i)-dy
r(ind ,i) = (0.5* rp1 - 0.5* condI(ind))/dy

end
end

endfunction

// Returns a single entry of the residual
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function r = condI(ind)
global coeffs
if ind == 1 then

r = Y(coeffs (1:(p+1)), meshX (1)) - Y_a
elseif ind == ncpts then

r = Y(coeffs(firstCoef(N):last(N)), meshX(N+1)) - Y_b
else

i = ceil((ind -1)/(p-1))
j = ind -1-(i-1)*(p-1)
r = PDE(coeffs(firstCoef(i):last(i)), colX(i,j))

end
endfunction

corePPDE.sci

global t0 // The initial time for time integration
global errScheme // The currently ’active ’ error scheme. 1 = New LOI , 2 = LOI , 3 =

SCI
global tc // The time which global coeffs is a collocation solution for
global colPtBasisVals // (i, j, k, l) Stores the value of the (k -1) th

// derivative of the lth non -zero b-spline basis function at the jth
// collocation point within the ith interval

// Functions for reducing calls to B-spline functions
function y = bsplvSave(pt, nder)

vec = bsplvd(pt, nder , knotsX , p, 2)
y = zeros(p+1, 3)
y(:,1) = vec (1:p+1)
if nder >= 2 then

y(:,2) = vec(p+2:2*p+2)
end
if nder >= 3 then

y(:,3) = vec (2*p+3:3*p+3)
end

endfunction

function y = fastColPtU(i, j)
y = fastColPtEval(i, j, 1)

endfunction

function y = fastColPtUx(i, j)
y = fastColPtEval(i, j, 2)

endfunction

function y = fastColPtUxx(i, j)
y = fastColPtEval(i, j, 3)

endfunction

function y = fastColPtEval(i, j, nder)
coInd = firstCoef(i)
y = sum(coeffs(coInd:coInd+p) .* matrix(colPtBasisVals(i, j, nder , :), p+1))

endfunction

function saveColPtBasisVals(nder)
global colPtBasisVals
colPtBasisVals = zeros(N, p-1, 3, p+1)
for i = 1:N

for j = 1:(p-1)
colPtBasisVals(i, j, :, :) = bsplvSave(colX(i, j), nder)’

end
end

endfunction
// -------------

// The residual function for setting the initial temporal derivative of the
coefficients

function r = fsolD(coefDer)
r = res(t0 , coeffs , coefDer)

endfunction

// Function to build residual system passed to fsolve when setting initial
coefficients

function r = fsol(coef)
global coeffs
coeffs = coef
r(1) = uinit(A) - U(A)
ind = 2
for i = 1:N

for j = 1:(p-1)
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pt = colX(i, j)
r(ind) = uinit(pt) - U(pt)
ind = ind + 1

end
end
r(ncpts) = uinit(B) - U(B)

endfunction

// Takes in the derivative of the coefficients w.r.t time and returns the temporal
derivative of the collocation

// solution at the evaluation points
function ptDer = getPtDer(coDer)

global coeffs
temp = coeffs
coeffs = coDer
saveColPtBasisVals (1)
for i = 1:N

for j = 1:(p-1)
ptDer((i-1) * (p-1) + j) = fastColPtU(i, j)

end
end
coeffs = temp

endfunction

// Generates a first guess for the initial coefficients
function coeffs = iniCoeffs ()

coeffs = ones((p-1)*N+2,1);
coeffs (1) = uinit(A)
coeffs(ncpts) = uinit(B)
for i = 1:N

for j = 1:(p-1)
coeffs ((i-1)*(p-1)+j+1) = uinit(colX(i, j))

end
end

endfunction

// Sets the initial coefficient in the global coeffs
function initCoeffs ()

fg = iniCoeffs ()
global coeffs
if jacMode == 0 then

[coeffs ,n,inf] = fsolve(fg, fsol , 1.d-14)
elseif jacMode == 1 then

[coeffs ,n,inf] = fsolve(fg, fsol , fjac , 1.d-14)
end
if verbose > 1 then

disp("fsolve info: " + string(inf))
disp("fsolve residual: " + string(max(abs(fsol(coeffs)))))

end
endfunction

// Approximates the Jacobian for fsolve when setting the initial coefficients
function r = fjac(coefs)

y = coefs
mockY = y
ydot = zeros(ncpts ,1)
for i = 1:ncpts

inds = nonZeroInds(i)
mockY(i) = y(i)
for k = 1:size(inds)(1)

ind = inds(k)
mockY(i) = y(i)+dy
rp1 = resI(t0 , mockY , ydot , ind)
mockY(i) = y(i)-dy
r(ind ,i) = (0.5* rp1 - 0.5* resI(t0,mockY ,ydot , ind))/dy
mockY(i) = y(i)

end
end

endfunction

// Returns a single entry of the residual
function r = resI(t,y,ydot ,ind)

global coeffs
coeffs = y
if ind == 1 then

r = bndxa(t, U(A), Ux(A))
elseif ind == ncpts then

r = bndxb(t, U(B), Ux(B))
else

ptDer = getPtDer(ydot)
i = ceil((ind -1)/(p-1))
j = ind -1-(i-1)*(p-1)
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r = f(t, colX(i, j), fastColPtU(i, j), fastColPtUx(i, j), fastColPtUxx(i, j))
- ptDer(ind -1)

end
endfunction

// Approximates the Jacobian used for setting the initial spatial derivative of the
coefficients

function r = fjacD(ydot)
global coeffs t0 dy
inds = nonZeroInds (1)
y = coeffs
t = t0
mockYdot = ydot

for k = 1:size(inds)(1)
ind = inds(k)
mockYdot (1) = ydot (1)+dy
rdp1 = resI(t, y, mockYdot , ind)
mockYdot (1) = ydot (1)-dy
r(ind ,1) = (0.5* rdp1 - 0.5* resI(t, y, mockYdot , ind))/dy

end
for i = 2:ncpts

inds = nonZeroInds(i)
mockYdot(i-1) = ydot(i-1)
for k = 1:size(inds)(1)

ind = inds(k)
mockYdot(i) = ydot(i)+dy
rdp1 = resI(t, y, mockYdot , ind)
mockYdot(i) = ydot(i)-dy
r(ind ,i) = (0.5* rdp1 - 0.5* resI(t, y, mockYdot , ind))/dy

end
end

endfunction

// Sets the initial temporal derivative of coefficients
function y0p = initCoeffsDer ()

fg = ones((p-1)*N+2, 1)
if jacMode == 0 then

[y0p ,b,inf] = fsolve(fg , fsolD , atol * 0.1)
elseif jacMode == 1 then

[y0p ,b,inf] = fsolve(fg , fsolD , fjacD , atol * 0.1)
end

if verbose > 0 then
disp("fsolve info: " + string(inf))
disp("fsolve max residual: " + string(max(abs(fsolD(y0p)))))

end
endfunction

// Residual function for time integration
function [r, ires] = res(t, u, up)

global coeffs
ptDer = getPtDer(up)
coeffs = u
saveColPtBasisVals (3)
r(1) = bndxa(t, U(A), Ux(A))
ind = 2
for i = 1:N

for j = 1:(p-1)
r(ind) = f(t, colX(i, j), fastColPtU(i, j), fastColPtUx(i, j),

fastColPtUxx(i, j)) - ptDer(ind -1)
ind = ind + 1

end
end
r(ncpts) = bndxb(t, U(B), Ux(B))
ires = 0

endfunction

function coefs = collocate(deg , nint , ti , tOut)
// Calculate the collocation points
global N
global p
global colX
global meshX
global ncpts
global numPts
global u0 allPts t0 tc
t0 = ti
tc = t0
p = deg
N = nint
ncpts = N * (p-1) + nconti
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setBnds ()
meshX = buildMesh ()
if verbose > 0 then

disp("probNum=" + string(probNum) + " p=" + string(p) + " N=" + string(N))
if verbose > 1 then

tic()
end

end

colX = zeros(N, p-1)
for i = 1:N

colX(i,:) = getGaussPts(meshX(i), meshX(i+1), p-1);
end

// Set the coefficients
if verbose > 0 then

disp("Calculating initial coefficients.")
if verbose > 1 then

tic
end

end
initCoeffs ()
if verbose > 0 then

disp("Coefficients set.")
if verbose > 1 then

time = toc()
disp("Elapsed time: " + string(time) +" seconds")
tic

end
disp("Calculating initial derivative of coefficients.")

end
coDer = initCoeffsDer ()
if verbose > 0 then

disp("Derivative of coefficients set.")
if verbose > 1 then

time = toc()
disp("Elapsed time: " + string(time) + " seconds")
tic

end
disp("Beginning time integration.")

end

// Set DASSL options
info = list([], 1, [], [], [], 0, -ones(ncpts ,1), 0, 0, 0, 0, [], [], 0)
ng = 0
deff(’[rts] = gr1(t, y)’, ’rts = [1]’)

// Call DASSL
if jacMode == 0 then

[r, nn] = daskr ([coeffs , coDer], t0, tOut , atol * 0.1, res , ng , gr1 , info)
elseif jacMode == 1 then

[r, nn] = daskr ([coeffs , coDer], t0, tOut , atol * 0.1, res , qjacRes , ng , gr1 ,
info)

end

if verbose > 0 then
disp("Time integration complete.")
if verbose > 1 then

time = toc()
disp("Elapsed time: " + string(time) + " seconds")

end
end

global coeffs
for i = 1:max(size(tOut))

coefs(:, i) = r(2: ncpts+1, i)
end
coeffs = r(2: ncpts+1, size(r)(2))
tc = r(1, size(r)(2))

endfunction

// Efficient approximation of Jacobian requested by DASKR.
function r = qjacRes(t, y, ydot , cj)

inds = nonZeroInds (1)
mockY = y
mockYdot = ydot

for k = 1:size(inds)(1)
ind = inds(k)
mockY (1) = y(1)+dy
mockYdot (1) = ydot (1)+dy
rp1 = resI(t, mockY , ydot , ind)
rdp1 = resI(t, y, mockYdot , ind)
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mockY (1) = y(1)-dy
mockYdot (1) = ydot (1)-dy
r(ind ,1) = (0.5* rp1 - 0.5* resI(t,mockY ,ydot , ind))/dy
r(ind ,1) = r(ind ,1) + cj *(0.5* rdp1 - 0.5* resI(t, y, mockYdot , ind))/dy

end
for i = 2:ncpts

inds = nonZeroInds(i)
mockY(i-1) = y(i-1)
mockYdot(i-1) = ydot(i-1)
for k = 1:size(inds)(1)

ind = inds(k)
mockY(i) = y(i)+dy
mockYdot(i) = ydot(i)+dy
rp1 = resI(t, mockY , ydot , ind)
rdp1 = resI(t, y, mockYdot , ind)
mockY(i) = y(i)-dy
mockYdot(i) = ydot(i)-dy
r(ind ,i) = (0.5* rp1 - 0.5* resI(t,mockY ,ydot , ind))/dy
r(ind ,i) = r(ind ,i) + cj *(0.5* rdp1 - 0.5* resI(t, y, mockYdot , ind))/dy

end
end

endfunction

coreEPDE.sci

// Calculates a collocation solution of degree p with N intervals
// in x, and degree q with M subintervals in y. Stores the calculated
// coefficients in global coeffs
// function info = collocate(degX , intX , degY , intY , useFast , verbose)
function info = collocate(degs , ints)

degX = degs (1)
if max(size(degs)) == 2 then

degY = degs (2)
else

degY = degs (1)
end
intX = ints (1)
if max(size(ints)) == 2 then

intY = ints (2)
else

intY = ints (1)
end

// Set global variables
global p N q M ncpts AC AD BC BD ncptX ncptY
global colInds xBndInds yBndInds cornInds
p = degX
N = intX
q = degY
M = intY
ncptY = (M * (q-1) + 2)
ncptX = (N * (p-1) + 2)
ncpts = ncptX * ncptY
if verbose > 0 then

disp("p=" + string(p) + " N=" + string(N) + " q=" + string(q) + ..
" M=" + string(M))
end
setBounds ()

if verbose > 0 then
disp("Setting mesh , knot , and collocation points.")

end
// Set the mesh
prepareMesh ()

// Set the knot sequence
prepareKnots ()

// Set the collocation points
prepareColP ()

if verbose > 0 then
disp("Points set.")
disp("Saving reusable b-spline evaluations.")

end

// Save basis values at mesh and col points
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setSavedBasisVals ()
saveBoundaryEvals ()

if verbose > 0 then
disp("Saved.")

end

// Generate a random first guess
fg = zeros(ncpts ,1)

// Send collocation to fsolve and save in global coeffs
global coeffs
coeffs(ncpts) = 0
colInds = saveColInds ()
xBndInds = savexBndInds ()
yBndInds = saveyBndInds ()
cornInds = saveCornInds ()

if verbose > 0 then
disp("Solving for coefficients.")
if verbose > 1 then

tic
end

end

if jacMode == 0 then
[coeffs , b, info] = fsolve(fg, colConds , atol *0.1)

elseif jacMode == 1 then
[coeffs , b, info] = fsolve(fg, colConds , fjac , atol *0.1)

end

if verbose > 0 then
disp("Coefficients set.")
if verbose > 1 then

time = toc()
disp("Elapsed time: " + string(time) + " seconds")

end
mprintf("fsolve info: %d\n", info)

end

endfunction

// Calculates the residuals for given coefs for all of the collocation
// conditions .
function c = colConds(coefs)

// Set coefs to global coeffs
global coeffs
coeffs = coefs
c(ncpts) = 0

// Set x = A first
c(1) = savedU(1, 1, 1, 1) - bndA(C)
// Loop through the collocation points on x = A
for i = 1:M

for j = 1:(q-1)
c(i*q-i-q+j+2) = savedU(1, i*q-i-q+j+2, 1, 1) - bndAvals(i, j)

end
end
c(ncptY) = savedU(1, ncptY , 1, 1) - bndA(D)

// Loop through the collocation points in X
for i = 1:N

for j = 1:(p-1)

// Set the bottom boundary condition
c(ncptY*(i*p-i-p+j+1)+1) = ...
savedU(i*p-i-p+j+2, 1, 1, 1) - bndCvals(i, j)

// Loop up through the collocation points in Y
for ii = 1:M

for jj = 1:(q-1)
c(ncptY*(i*p-i-p+j+1)+ii*q-ii-q+jj+2) =...
savedPDE(i, j, ii, jj)

end
end
// Set the top boundary condition
c(ncptY*(i*p-i-p+j+2)) = savedU(i*p-i-p+j+2, ncptY , 1, 1) - bndDvals(i, j

)
end

end

// Set x = B
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c((ncptX -1)*ncptY +1) = savedU(ncptX , 1, 1, 1) - bndB(C)

// Loop through the collocation points on x = B
for i = 1:M

for j = 1:(q-1)
c((ncptX -1)*ncptY+i*q-i-q+j+2) = savedU(ncptX , i*q-i-q+j+2, 1, 1) -

bndBvals(i, j)
end

end
c(ncpts) = savedU(ncptX , ncptY , 1, 1) - bndB(D)

endfunction

function r = fjac(coefs)
global coeffs t0 dy
inds = nonZeroInds (1)
coeffs = coefs

for k = 1:size(inds)(1)
ind = inds(k)
coeffs (1) = coefs (1)+dy
rp1 = condI(ind)
coeffs (1) = coefs (1)-dy
r(ind ,1) = (0.5* rp1 - 0.5* condI(ind))/dy

end
for i = 2:ncpts

inds = nonZeroInds(i)
coeffs(i-1) = coefs(i-1)
for k = 1:size(inds)(1)

ind = inds(k)
coeffs(i) = coefs(i)+dy
rp1 = condI(ind)
coeffs(i) = coefs(i)-dy
r(ind ,i) = (0.5* rp1 - 0.5* condI(ind))/dy

end
end

endfunction

function c = condI(ind)

[line , rem] = getLine(ind)
if line == 1 then // x = A

c = savedU(line , rem)
elseif line == ncptX then // x = B

c = savedU(line , rem)
elseif rem == 1 then // y = C

c = savedU(line , rem)
elseif rem == ncptY then // y = D

c = savedU(line , rem)
else

cx = modulo(line -1,p-1)
cy = modulo(rem -1,q-1)
if cx == 0 then
cx = p-1
end
if cy == 0 then
cy = q-1
end
c = savedPDE(int((line -2)/(p-1))+1, cx,int((rem -2)/(q-1))+1, cy)

end
endfunction

core2DPPDE.sci

global calcJacMode
calcJacMode = %F;
global coefTimes // Stores the times of the coefficients in allCoeffs
global t0 // The starting time given to DASKR
global tc
global allCoeffs

// Calculates a collocation solution of degree p with N intervals
// in x, and degree q with M subintervals in y. Stores the calculated
// coefficients in global coeffs
function collocate(deg , nints , ti , tOut)

// Set global variables
global p N q M ncpts AC AD BC BD ncptX ncptY t0 tc coeffs
global colInds xBndInds yBndInds cornInds initY initYdot
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p = deg
N = nints
q = deg
M = nints
ncptY = (M * (q-1) + 2)
ncptX = (N * (p-1) + 2)
ncpts = ncptX * ncptY
if verbose > 0 then

disp("p=" + string(p) + " N=" + string(N) + " q=" + string(q) + ..
" M=" + string(M))
end
setBounds ()

if verbose > 0 then
disp("Setting mesh , knot , and collocation points.")

end
// Set the mesh
prepareMesh ()

// Set the knot sequence
prepareKnots ()

// Set the collocation points
prepareColP ()
if verbose > 0 then

disp("Points set.")
disp("Saving reusable b-spline evaluations.")

end

// Save basis values at mesh and col points
setSavedBasisVals ()

if verbose > 0 then
disp("Saved.")

end

t0 = ti
colInds = saveColInds ()
xBndInds = savexBndInds ()
yBndInds = saveyBndInds ()
cornInds = saveCornInds ()
if verbose > 0 then

disp("Calculating initial coefficients.")
if verbose > 1 then

tic
end

end
initCoeffs ()
if verbose > 0 then

disp("Coefficients set.")
if verbose > 1 then

time = toc()
disp("Elapsed time: " + string(time) +" seconds")
tic

end
disp("Calculating initial derivative of coefficients.")

end
coDer = initCoeffsDer ()
if verbose > 0 then

disp("Derivative of coefficients set.")
if verbose > 1 then

time = toc()
disp("Elapsed time: " + string(time) + " seconds")
tic

end
disp("Beginning time integration.")

end

// INFO list which controls running of DASKR
info = list([], 0, [], [], [], 0, -ones(1,ncpts), 0, 0, 0, 0, [], [], 0)

// Define the surfaces , which are required to call but not needed.
ng = 0
deff(’[rts] = gr1(t, y)’, ’rts = [1]’)

// Call DASSL
if jacMode == 0 then

[r, nn] = daskr ([coeffs , coDer], t0, tOut , atol *0.1, res ,ng, gr1 , info)
elseif jacMode == 1 then

[r, nn] = daskr ([coeffs , coDer], t0, tOut , atol *0.1, res ,qjacRes ,ng , gr1 ,
info)

end
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if verbose > 0 then
disp("Time integration complete.")
if verbose > 1 then

time = toc()
disp("Elapsed time: " + string(time) + " seconds")

end
end

// Save results from DASKR
global coeffs coefTimes allCoeffs
coeffs = r(2: ncpts+1, size(r)(2))
tc = r(1, size(r)(2))

endfunction

// Efficient approximation of Jacobian requested by DASKR.
function r = qjacRes(t, y, ydot , cj)

inds = nonZeroInds (1)
mockY = y
mockYdot = ydot

for k = 1:size(inds)(1)
ind = inds(k)
mockY (1) = y(1)+dy
mockYdot (1) = ydot (1)+dy
rp1 = resI(t, mockY , ydot , ind)
rdp1 = resI(t, y, mockYdot , ind)
mockY (1) = y(1)-dy
mockYdot (1) = ydot (1)-dy
r(ind ,1) = (0.5* rp1 - 0.5* resI(t,mockY ,ydot , ind))/dy
r(ind ,1) = r(ind ,1) + cj *(0.5* rdp1 - 0.5* resI(t, y, mockYdot , ind))/dy

end
for i = 2:ncpts

inds = nonZeroInds(i)
mockY(i-1) = y(i-1)
mockYdot(i-1) = ydot(i-1)
for k = 1:size(inds)(1)

ind = inds(k)
mockY(i) = y(i)+dy
mockYdot(i) = ydot(i)+dy
rp1 = resI(t, mockY , ydot , ind)
rdp1 = resI(t, y, mockYdot , ind)
mockY(i) = y(i)-dy
mockYdot(i) = ydot(i)-dy
r(ind ,i) = (0.5* rp1 - 0.5* resI(t,mockY ,ydot , ind))/dy
r(ind ,i) = r(ind ,i) + cj *(0.5* rdp1 - 0.5* resI(t, y, mockYdot , ind))/dy

end
end

endfunction

// Approximates the Jacobian used for setting the initial spatial derivative of the
coefficients

function r = fjacD(ydot)
global coeffs t0 dy
inds = nonZeroInds (1)
y = coeffs
t = t0
mockYdot = ydot

for k = 1:size(inds)(1)
ind = inds(k)
mockYdot (1) = ydot (1)+dy
rdp1 = resI(t, y, mockYdot , ind)
mockYdot (1) = ydot (1)-dy
r(ind ,1) = (0.5* rdp1 - 0.5* resI(t, y, mockYdot , ind))/dy

end
for i = 2:ncpts

inds = nonZeroInds(i)
mockYdot(i-1) = ydot(i-1)
for k = 1:size(inds)(1)

ind = inds(k)
mockYdot(i) = ydot(i)+dy
rdp1 = resI(t, y, mockYdot , ind)
mockYdot(i) = ydot(i)-dy
r(ind ,i) = (0.5* rdp1 - 0.5* resI(t, y, mockYdot , ind))/dy

end
end

endfunction

// Approximates the Jacobian used for setting the initial coefficients
function r = fjac(y)
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global coeffs t0 dy
inds = nonZeroInds (1)
coeffs = y

for k = 1:size(inds)(1)
ind = inds(k)
coeffs (1) = y(1)+dy
[xind ,yind] = toCoord(ind)
rp1 = savedU(xind ,yind)
coeffs (1) = y(1)-dy
r(ind ,1) = (0.5* rp1 - 0.5* savedU(xind ,yind))/dy

end
for i = 2:ncpts

inds = nonZeroInds(i)
coeffs(i-1) = y(i-1)
for k = 1:size(inds)(1)

ind = inds(k)
coeffs(i) = y(i)+dy
[xind ,yind] = toCoord(ind)
rp1 = savedU(xind ,yind)
coeffs(i) = y(i)-dy
r(ind ,i) = (0.5* rp1 - 0.5* savedU(xind ,yind))/dy

end
end

endfunction

// Efficient version of F which only makes the neccesarry evaluations .
// t is the time for which the PDE is being evaluated at.
// x/y is the index (not value) of the point to evaluate at.
// x = 1 -> x = A, x = 2 -> x = colX(1, 1), ..., x = ncptX -> x = B
function r = resF(t, x, y)

used = usedFEvals ()
evals = zeros(5, 1)
if used (1) then

evals (1) = savedU(x, y, 1, 1)
end
if used (2) then

evals (2) = savedU(x, y, 2, 1)
end
if used (3) then

evals (3) = savedU(x, y, 1, 2)
end
if used (4) then

evals (4) = savedU(x, y, 3, 1)
end
if used (5) then

evals (5) = savedU(x, y, 1, 3)
end
x = getPtFromInd(x)
y = = getPtFromInd(y, %T)
r = f(t, x, y, evals (1), evals (2), evals (3), evals (4), evals (5))

endfunction

// Efficient version of bnd. condition
// t is the time to evaluate the boundary condition at
// y is the index of the point in y to evaluate at.
function r = resBndxa(y, t)

used = usedBndEvals(’E’)
evals = zeros(3, 1)
if used (1) then

evals (1) = savedU(1, y, 1, 1)
end
if used (2) then

evals (2) = savedU(1, y, 2, 1)
end
if used (3) then

evals (3) = savedU(1, y, 1, 2)
end
pt = getPtFromInd(y, %T)
r = bndxa(pt, t, evals (1), evals (2), evals (3))

endfunction

// Efficient version of bnd. condition
// t is the time to evaluate the boundary condition at
// y is the index of the point in y to evaluate at.
function r = resBndxb(y, t)

used = usedBndEvals(’E’)
evals = zeros(3, 1)
if used (1) then

evals (1) = savedU(ncptX , y, 1, 1)
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end
if used (2) then

evals (2) = savedU(ncptX , y, 2, 1)
end
if used (3) then

evals (3) = savedU(ncptX , y, 1, 2)
end
pt = getPtFromInd(y, %T)
r = bndxb(pt, t, evals (1), evals (2), evals (3))

endfunction

// Efficient version of bnd. condition
// t is the time to evaluate the boundary condition at
// y is the index of the point in y to evaluate at.
function r = resBndyc(x, t)

used = usedBndEvals(’E’)
evals = zeros(3, 1)
if used (1) then

evals (1) = savedU(x, 1, 1, 1)
end
if used (2) then

evals (2) = savedU(x, 1, 2, 1)
end
if used (3) then

evals (3) = savedU(x, 1, 1, 2)
end
pt = getPtFromInd(x)
r = bndyc(pt, t, evals (1), evals (2), evals (3))

endfunction

// Efficient version of bnd. condition
// t is the time to evaluate the boundary condition at
// y is the index of the point in y to evaluate at.
function r = resBndyd(x, t)

used = usedBndEvals(’E’)
evals = zeros(3, 1)
if used (1) then

evals (1) = savedU(x, ncptY , 1, 1)
end
if used (2) then

evals (2) = savedU(x, ncptY , 2, 1)
end
if used (3) then

evals (3) = savedU(x, ncptY , 1, 2)
end
pt = getPtFromInd(x)
r = bndyd(pt, t, evals (1), evals (2), evals (3))

endfunction

// Returns the value of a point from its index.
// ind is the index of the point.
// isY is a boolean to specify if it is a point in x(T) or Y(F)
function pt = getPtFromInd(ind , isY)

if argn (2) < 2 then
isY = %F

end
select isY
case %F then

if ind == 1 then
pt = A

elseif ind == ncptX then
pt = B

else
[inter , colp] = getColPt(ind , isY)
pt = colX(inter , colp)

end
case %T then

if ind == 1 then
pt = C

elseif ind == ncptX then
pt = D

else
[inter , colp] = getColPt(ind , isY)
pt = colX(inter , colp)

end
end

endfunction

// Sets global coeffs to an interpolation of the initial conditions
// using fsolve.
function initCoeffs ()
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iniCoeffs ()
global coeffs
coeffs = ones(ncpts , 1)
info = 4
if jacMode == 0 then

[coeffs , n, info] = fsolve(coeffs , fsol , 1.d-14)
elseif jacMode == 1 then

[coeffs , n, info] = fsolve(coeffs , fsol , fjac , 1.d-14)
end
if verbose > 1 then

disp("fsolve info: " + string(info))
disp("fsolve residual: " + string(max(abs(fsol(coeffs)))))

end
endfunction

// Residual function for setting the initial condition so that they are
// interpolated . Parameter coefs gets set as the global coeffs and
// residual is calculated by the difference from the value of the
// collocation solution to the inital condition.
function c = fsol(coefs)

// Set coefs to global coeffs
global coeffs
coeffs = coefs

// Set x = A first
c(ncpts) = 0
c(1) = uinit(A, C) - savedU(1, 1)
// Loop through the collocation points on x = A
for i = 1:M

for j = 1:(q-1)
c(i*q-i-q+j+2) = uinit(A, colY(i,j)) - savedU(1, i*q-i-q+j+2)

end
end
c(ncptY) = uinit(A, D) - savedU(1, ncptY)

// Loop through the collocation points in X
for i = 1:N

for j = 1:(p-1)

// Save the reused collocation point
colP = colX(i, j)

// Set the bottom boundary condition
xInd = (i-1) * (p-1) + j + 1
c(ncptY*(i*p-i-p+j+1)+1) = uinit(colP , C) - savedU(xInd , 1)

// Loop up through the collocation points in Y
for ii = 1:M

for jj = 1:(q-1)
c(ncptY*(i*p-i-p+j+1)+ii*q-ii-q+jj+2) =...
uinit(colP , colY(ii, jj)) - savedU(xInd , (ii - 1) * (q-1) + jj +

1)
end

end
// Set the top boundary condition
c(ncptY*(i*p-i-p+j+2)) = uinit(colP , D) - savedU(xInd , ncptY)

end
end

// Set x = B
c((ncptX -1)*ncptY +1) = uinit(B, C) - savedU(ncptX , 1)

// Loop through the collocation points on x = B
for i = 1:M

for j = 1:(q-1)
c((ncptX -1)*ncptY+i*q-i-q+j+2) =...
uinit(B, colY(i, j)) - savedU(ncptX , i*q-i-q+j+2)

end
end
c(ncpts) = uinit(B, D) - savedU(ncptX , ncptY)

endfunction

// Creates a first guess of the coefficients for fsolve before solving for the
// initial conditions .
function iniCoeffs ()

// ind = 1

// Set coefs to global coeffs
global coeffs

// Set x = A first
coeffs(ncpts) = 0
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coeffs (1) = uinit(A, C)

// Loop through the collocation points on x = A
for i = 1:M

for j = 1:(q-1)
coeffs(i*q-i-q+j+2) = uinit(A, colY(i, j))

end
end
coeffs(ncptY) = uinit(A, D)

// Loop through the collocation points in X
for i = 1:N

for j = 1:(p-1)

// Save the reused collocation point
colP = colX(i, j)

// Set the bottom boundary condition
coeffs(ncptY*(i*p-i-p+j+1)+1) = uinit(colP , C)

// Loop up through the collocation points in Y
for ii = 1:M

for jj = 1:(q-1)
coeffs(ncptY*(i*p-i-p+j+1)+ii*q-ii-q+jj+2) =...
uinit(colP , colY(ii, jj))

end
end

// Set the top boundary condition
coeffs(ncptY*(i*p-i-p+j+2)) = uinit(colP , D)

end
end

// Set x = B
coeffs ((ncptX -1)*ncptY +1) = uinit(B, C)

// Loop through the collocation points on x = B
for i = 1:M

for j = 1:(q-1)
coeffs ((ncptX -1)*ncptY+i*q-i-q+j+2) = uinit(B, colY(i, j))

end
end
coeffs(ncpts) = uinit(B, D)

endfunction

// Residual function used for setting the derivative of coefficients initial
// guess given to DASKR.
function r = fsolD(coDer)

[r, ires] = res(t0 , coeffs , coDer)
endfunction

// Returns the initial guess of derivative of the coefficients w.r.t time
// Uses fsolve to minimize the residual at the inital time with the
// initial coefficients .
function y0p = initCoeffsDer ()

fg = zeros(ncpts , 1)
if jacMode == 0 then

[y0p , n, inf] = fsolve(fg , fsolD , 1.d-14)
elseif jacMode == 1 then

[y0p , n, inf] = fsolve(fg , fsolD , fjacD , 1.d-14)
end
if verbose > 1 then

disp("fsolve info: " + string(inf))
disp("fsolve max residual: " + string(max(abs(fsolD(y0p)))))

end
endfunction

// Residual function which is used by DASKR.
// t is the current time to calculate the residual at
// u is the coefficients passed in by DASKR
// up is the derivative w.r.t of the coefficients
function [c, ires] = res(t, u, up)

global coeffs

ptDer = getPtDer(up)
coeffs = u

// Set coefs to global coeffs
global coeffs

// Loop through the boundary conditions on x = A
for i = 1:ncptY

c(i) = resBndxa(i, t)
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end

// Loop through the vertical lines
for i = 2:( ncptX - 1)

c((i-1)*ncptY +1) = resBndyc(i, t)
for j = 2:( ncptY - 1)

c((i-1)*ncptY+j) = resF(t, i, j) - ptDer((i-1)*ncptY+j)
end
c(i*ncptY) = resBndyd(i, t)

end

// Loop through boundary conditions on x = B
for i = 1:ncptY

c((ncptX -1)*ncptY+i) = resBndxb(i, t)
end
ires = 0

endfunction

// Returns the indth residual as would appear from the res () function
// given input t, u, up
function c = resI(t, u, up , ind)

global coeffs
coeffs = u
[line , rem] = getLine(ind)
if line == 1 then // x = A

c = resBndxa(rem , t)
elseif line == ncptX then // x = B

c = resBndxb(rem , t)
elseif rem == 1 then // y = C

c = resBndyc(line , t)
elseif rem == ncptY then // y = D

c = resBndyd(line , t)
else

coeffs = up
ptDer = savedU(line , rem , 1, 1)
coeffs = u
c = resF(t, line , rem) - ptDer

end
endfunction

// Returns the derivative w.r.t of the condition points from a given
// derivative w.r.t of the b-spline coefficients .
function ptDer = getPtDer(coDer)

global coeffs
temp = coeffs
coeffs = coDer

ptDer(ncpts) = 0
for i = 1:ncptY

ptDer(i) = savedU(1, i, 1, 1)
end

for xInd = 2: ncptX - 1
ptDer((xInd -1)*ncptY +1) = savedU(xInd , 1, 1, 1)
for yInd = 2:ncptY - 1

ptDer((xInd -1)*ncptY+yInd) = savedU(xInd , yInd , 1, 1)
end
ptDer(xInd*ncptY) = savedU(xInd , ncptY , 1, 1)

end

for i = 1:ncptY
ptDer((ncptX -1)*ncptY+i) = savedU(ncptX , i, 1, 1)

end

coeffs = temp
endfunction

// Evaluates the known solution at the time of the collocation solution.
function z = truu(x, y)

z = correct(x, y, tc)
endfunction

probsBVODE.sci

// Specifies the bounds on x for solving the DE
function setBounds ()

global A B
select probNum
case 1 then
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A = 0
B = 2

case 2 then
A = 0
B = 2

end
endfunction

function y = actual(x) // The actual answer
select probNum
case 1 then

y = (1/6)*(x^3)*(%e^x) -(5/3)*x*(%e^x)+2*(%e^x)-x-2
case 2 then

y = x * (%e^x - %e)
end

endfunction

function y = truu(x)
y = actual(x)

endfunction

// The right hand side of PDE goes here
function y = PDE(coeff , x)

select probNum
case 1 then

y = Yxx(coeff , x) - 2 * Yx(coeff , x) + Y(coeff , x) - x*(%e^x) + x
case 2 then

y = Yxx(coeff , x) - %e^x * (x+2)
end

endfunction

probsPPDE.sci

// Problem parameters
global eps
eps = 1/16;

function setBnds ()
global A B
select probNum
case 1 then

A = 0
B = 1

case 2 then
A = 0
B = 1

end
endfunction

function r = bndxa(t, u, u_x)
select probNum
case 1 then

r = u - 0.5 + 0.5 * tanh (( -0.5*t -0.25) /(4* eps))
case 2 then

r = u
end

endfunction

function r = bndxb(t, u, u_x)
select probNum
case 1 then

r = 0.5 * tanh ((0.75 -0.5*t)/(4* eps)) -0.5 + u
case 2 then

r = u
end

endfunction

function y = uinit(x)
select probNum
case 1 then

y = 0.5 - 0.5 * tanh((x -0.25) /(4* eps))
case 2 then

y = 2 * sin(2 * %pi * x)
end

endfunction

function y = f(t, x, u, u_x , u_xx)
select probNum
case 1 then

y = eps * u_xx - u * u_x
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case 2 then
y = eps * u_xx

end
endfunction

function y = correct(x, t)
select probNum
case 1 then

y = 0.5 - 0.5 * tanh( (x -0.5*t -0.25) / (4*eps) )
case 2 then

y = 2 * sin(2* %pi * x) * %e^-(t*(%pi^2) /4)
end

endfunction

function y = trux(x)
select probNum
case 1 then

y = -1.25 * sech (1.25* tc - 2.5*x + 0.625) ^2
case 2 then

y = 4 * %pi * cos(2 * %pi * x) * %e^-(tc*(%pi ^2)/4)
end

endfunction

function y = truu(x)
y = correct(x, tc)

endfunction

probsEPDE.sci

// The PDE to be satisfied at collocation points
// Use this function to evaluate at any point (x, y)
function p = f(x, y)

select probNum
case 1 then

p = U(x,y,3,1)+U(x,y,1,3) - ..
x * %e^y

case 2 then
p = U(x,y,3,1)+U(x,y,1,3) - ..
(x^2 + y^2) * %e^(x*y)

end
endfunction

// Evaluates the PDE at a collocation point. xi and yi are the interval
// in x and y respectovely , while xj and yj are the index of the collocation
// point within that interval.
function p = savedPDE(xi , xj, yi, yj)

xInd = (xi -1)*(p-1)+xj+1
yInd = (yi -1)*(q-1)+yj+1
x = colX(xi, xj)
y = colY(yi, yj)
select probNum
case 1 then

p = savedU(xInd ,yInd ,3,1)+savedU(xInd ,yInd ,1,3) - ..
x * %e^y

case 2 then
p = savedU(xInd ,yInd ,3,1)+savedU(xInd ,yInd ,1,3) - ..
(x^2 + y^2) * %e^(x*y)

end
endfunction

// Boundary condition along x = A
function z = bndA(y)

select probNum
case 1 then

z = 0
case 2 then

z = 1
end

endfunction

// Boundary condition along x = B
function z = bndB(y)

select probNum
case 1 then

z = 2 * %e^y
case 2 then

z = %e^(2 * y)
end

endfunction
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// Boundary condition along y = C
function z = bndC(x)

select probNum
case 1 then

z = x
case 2 then

z = 1
end

endfunction

// Boundary condition along y = D
function z = bndD(x)

select probNum
case 1 then

z = %e * x
case 2 then

z = %e^x
end

endfunction

// Specifies the bounds on x and y for solving the PDE
function setBounds ()

global A B C D
select probNum
case 1 then

A = 0
B = 2
C = 0
D = 1

case 2 then
A = 0
B = 2
C = 0
D = 1

end
endfunction

// End functions defining the PDE being solved
// ----------------------------------------------------------------------------
// Information about the actual solution to the PDE , used for testing

// The true solution
function z = truu(x, y)

select probNum
case 1 then

z = x * %e^y
case 2 then

z = %e^(x * y)
end

endfunction

// End actual solution information

probs2DPPDE.sci

global eps // Problem parameter
eps = 0.1;

// The PDE which is to be satsisfied at the collocation points
function r = f(t, x, y, u, u_x , u_y , u_xx , u_yy)

select probNum
case 1 then

// Heat diffusion
r = eps * (u_xx + u_yy)

case 2 then
// Burgers equation
r = eps * (u_xx + u_yy) - u * (u_x + u_y)

end
endfunction

// The PDE which is used when calculating the jacobian
function p = jacPDE(xi, yi)

select probNum
case 1 then

// Heat diffusion
p = savedU(xi, yi , 3, 1) + savedU(xi , yi, 1, 3)

case 2 then
// Burgers equation
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p = savedU(xi, yi , 3, 1) + savedU(xi , yi, 1, 3) - savedU(xi,yi ,1,1)*( savedU(
xi, yi , 2, 1) + savedU(xi, yi, 1, 2))

end
endfunction

// Gives the initial conditions of a problem
function z = uinit(x, y)

select probNum
case 1 then

// z = sin(x*%pi /2) * sin(y*%pi /2)
z = correct(x, y, t0)

case 2 then
z = 1 / (1 + %e^((x+y)/(2 * eps)))

end
endfunction

// Specifies which evaluations must be made to evaluate the boundary
// conditions . The indices of used correspond to U, Ux , and Uy.
function used = usedBndEvals(letter)

select probNum
case 1 then

used = [%T, %F, %F]
case 2 then

used = [%T, %F, %F]
end

endfunction

// Specifies which evaluations must be made to evaluate the PDE.
// The indices of used correspond to U, Ux , Uy , Uxx , Uyy
function used = usedFEvals ()

select probNum
case 1 then

used = [%F, %F, %F, %T, %T]
case 2 then

used = [%T, %T, %T, %T, %T]
end

endfunction

// Boundary condition along x = A
function r = bndxa(y, t, u, u_x , u_y)

select probNum
case 1 then

r = u
case 2 then

r = u - correct(A, y, t)
end

endfunction

// Boundary condition along x = B
function r = bndxb(y, t, u, u_x , u_y)

select probNum
case 1 then

r = u
case 2 then

r = u - correct(B, y, t)
end

endfunction

// Boundary condition along y = C
function r = bndyc(x, t, u, u_x , u_y)

select probNum
case 1 then

r = u
case 2 then

r = u - correct(x, C, t)
end

endfunction

// Boundary condition along y = D
function r = bndyd(x, y, u, u_x , u_y)

select probNum
case 1 then

r = u
case 2 then

r = u - correct(x, D, t)
end

endfunction

// Specifies the bounds on x and y for solving the PDE
function setBounds ()

global A B C D
select probNum
case 1 then

A = 0
B = 2
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C = 0
D = 2

case 2 then
A = 0
B = 1
C = 0
D = 1

end
endfunction

// The known true solution to the PDE
function z = correct(x, y, t)

if calcJacMode then
z = 0
return

end
select probNum
case 1 then

z = sin((%pi /2) * x) * sin((%pi/2) * y) * %e^-(t*eps *((%pi/(B-A))^2 + (%pi/(D
-C))^2))

case 2 then
z = 1 / (1 + %e^((x+y-t)/(2 * eps)))

end
endfunction

err.sci

// Weight function for HBI
function y = gammaHBI(j, s, w)

y = 0
for i = 1:max(size(w))

y = y + (1/(s(j) - w(i)))
end

for i = 1:max(size(s))
if i ~= j then

y = y + 2 * (1/(s(j) - s(i)))
end

end
endfunction

// Weight function for HBI
function y = eta(x, j, s)

y = 1
for r = 1:max(size(s))

if r ~= j then
y = y * (x - s(r))

end
end

endfunction

// Weight function for HBI
function y = eta2(x, j, s)

y = eta(x, j, s)^2
endfunction

// Weight function for HBI
function y = phi(x, j, w)

y = 1
for r = 1:max(size(w))

if r ~= j then
y = y * (x - w(r))

end
end

endfunction

// Weight function for HBI
function y = G(x, j, s, w)

y = (phi(x, j, w) * eta2(x, -1, s))/(phi(w(j), j, w) * eta2(w(j), -1, s))
endfunction

// Weight function for HBI
function y = Hsup(x, j, s, w)

y = (eta2(x, j, s) * phi(x, -1, w))/(eta2(s(j), j, s) * phi(s(j), -1, w))
endfunction

// Weight function for HBI
function y = Hbar(x, j, s, w)

y = (x - s(j)) * Hsup(x, j, s, w)
endfunction
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// Weight function for HBI
function y = H(x, j, s, w)

y = (1 - (x - s(j)) * gammaHBI(j, s, w)) * Hsup(x, j, s, w)
endfunction

// Returns Gaussian quadrature weights for k points
function wts = getQuadWts(k)

select k
case 5 then

wts (1) = 0.2369268850561891
wts (2) = 0.4786286704993665
wts (3) = 0.5688888888888889
wts (4) = 0.4786286704993665
wts (5) = 0.2369268850561891

case 6 then
wts (1) = 0.1713244923791704
wts (2) = 0.3607615730481386
wts (3) = 0.4679139345726910
wts (4) = 0.4679139345726910
wts (5) = 0.3607615730481386
wts (6) = 0.1713244923791704

case 7 then
wts (1) = 0.1294849661688697
wts (2) = 0.2797053914892766
wts (3) = 0.3818300505051189
wts (4) = 0.4179591836734694
wts (5) = 0.3818300505051189
wts (6) = 0.2797053914892766
wts (7) = 0.1294849661688697

case 8 then
wts (1) = 0.1012285362903763
wts (2) = 0.2223810344533745
wts (3) = 0.3137066458778873
wts (4) = 0.3626837833783620
wts (5) = 0.3626837833783620
wts (6) = 0.3137066458778873
wts (7) = 0.2223810344533745
wts (8) = 0.1012285362903763

case 9 then
wts (1) = 0.0812743883615744
wts (2) = 0.1806481606948574
wts (3) = 0.2606106964029354
wts (4) = 0.3123470770400029
wts (5) = 0.3302393550012598
wts (6) = 0.3123470770400029
wts (7) = 0.2606106964029354
wts (8) = 0.1806481606948574
wts (9) = 0.0812743883615744

end
endfunction

// Returns numQp gaussian quadrature points and their weights
function [pts , wts] = getQuadPtsWts(meshL , meshH , numQp)

pts = getGaussPts(meshL , meshH , numQp)
wts = getQuadWts(numQp)

endfunction

// Function which returns the appropriate superconvergent points to use for
// the SCI on interval ind , on meshP having nint intervals , and for a
// collocation solution of degree deg.
function w = getsciW(ind , meshP , deg , nint)

// Get the superconvergent points internal to the subinterval
internal = scNonMeshP(meshP(ind:ind+1), deg , 1)

// External points depend on location of the interval
if ind == 1 then // Need to take both external from the next interval

if deg == 4 then
// Only one scp so need to use next mesh point
ext (1) = scNonMeshP(meshP (2:3), 4, 1)
ext (2) = meshP (3)

else
// Take the first two scp
ext = scNonMeshP(meshP (2:3) , deg , 1) (1:2)

end
elseif ind == nint then // Need to take both from last interval

if deg == 4 then
// Need to take meshpoint also
ext (1) = scNonMeshP(meshP(nint -1: nint), 4, 1)
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ext (2) = meshP(nint -1)
else

// Take the last two scp
ext = scNonMeshP(meshP(nint -1: nint), deg , 1)(deg -4:deg -3)

end
else

// Take last scp from last interval and first from next interval
ext (1) = scNonMeshP(meshP(ind -1:ind),deg ,1)(deg -3)
ext (2) = scNonMeshP(meshP(ind +1:ind+2),deg ,1)(1)

end

// Combine the internal and external points
w = gsort([ internal;ext], ’g’, ’i’)

endfunction

// Calculates and returns all the non -mesh super convergent points for
// meshP and deg. The values to calculate these points are taken from
// the BACOLI code
function p = scNonMeshP(meshP , deg , nint)

// Index for populating the points
ind = 1

// Loop over the subintervals
for i = 1:nint

// Calculate h for this subinterval
h = meshP(i+1) - meshP(i)

// Split on deg , which determines the number of scNonMeshP
if deg == 4 then // 1 SC point

p(ind) = meshP(i) + 0.5 * h
ind = ind+1

elseif deg == 5 then // 2 sc points -------------------------------------
p(ind) = meshP(i) + 0.3110177634953864 * h
ind = ind+1
p(ind) = meshP(i) + 0.6889822365046136 * h
ind = ind+1

elseif deg == 6 then // 3 sc points ------------------------------------
p(ind) = meshP(i) + 0.2113248654051871 * h
ind = ind+1
p(ind) = meshP(i) + 0.5 * h
ind = ind+1
p(ind) = meshP(i) + 0.7886751345948129 * h
ind = ind+1

elseif deg == 7 then // 4 sc points -------------------------------------
p(ind) = meshP(i) + 0.1526267046965671 * h
ind = ind+1
p(ind) = meshP(i) + 0.3747185964571342 * h
ind = ind+1
p(ind) = meshP(i) + 0.6252814035428658 * h
ind = ind+1
p(ind) = meshP(i) + 0.8473732953034329 * h
ind = ind+1

elseif deg == 8 then // 5 sc points -------------------------------------
p(ind) = meshP(i) + 0.1152723378341063 * h
ind = ind+1
p(ind) = meshP(i) + 0.2895425974880943 * h
ind = ind+1
p(ind) = meshP(i) + 0.5 * h
ind = ind+1
p(ind) = meshP(i) + 0.7104574025119057 * h
ind = ind+1
p(ind) = meshP(i) + 0.8847276621658937 * h
ind = ind+1

else
p(ind) = -1;

end
end

endfunction

// Returns the points between pL and pH to be interpolated by the L2 for
// a collocation solution of degree deg.
function pt = getL2pts(pL, pH, deg)

diam = pH - pL
select deg

case 4 then
pt(1) = pL
pt(2) = pL + diam * 0.302331973224813
pt(3) = pL + diam * 0.697668026790731
pt(4) = pH

case 5 then
pt(1) = pL
pt(2) = pL + diam * 0.179424182143275
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pt(3) = pL + diam * 0.5
pt(4) = pL + diam * 0.820575567392312
pt(5) = pH

case 6 then
pt(1) = pL
pt(2) = pL + diam * 0.143465814421734
pt(3) = pL + diam * 0.37051884018424
pt(4) = pL + diam * 0.629481160240031
pt(5) = pL + diam * 0.856534185886017
pt(6) = pH

case 7 then
pt(1) = pL
pt(2) = pL + diam * 0.107235231524833
pt(3) = pL + diam * 0.283676545203967
pt(4) = pL + diam * 0.5
pt(5) = pL + diam * 0.716323434111384
pt(6) = pL + diam * 0.892764777407028
pt(7) = pH

end
endfunction

err1D.sci

function val = evalGlobalErr(f, numQuadpts , hScale)

// Get the evaluation points and their weights
[pts , wts] = getQuadPtsWts(meshX (1), meshX(N+1), numQuadpts)

// Calculate the sum
val = 0
for i = 1: numQuadpts

temp = U(pts(i))
val = val + wts(i) * ((temp - f(pts(i)))/(atol+rtol*abs(temp)))^2

end

// Scale the quadrature
val = val * (B-A)/2
val = sqrt(val)

// Scale by max h
if hScale then

// Find the maximal h
maxH = 0
for i = 1:N

temp = meshX(i+1) - meshX(i)
if temp > maxH then

maxH = temp
end

end
val = val * maxH

end
endfunction

function val = evalRectErr(f, numQuadpts , hScale , nind , pScale)

if argn (2) < 5 then
pScale = %T

end

// Get the evaluation points and their weights
[pts , wts] = getQuadPtsWts(meshX(nind), meshX(nind +1), numQuadpts)

// Calculate the sum
val = 0
for i = 1: numQuadpts

temp = U(pts(i))
val = val + wts(i) * (abs(temp - f(pts(i)))/(atol+rtol*abs(temp)))^2

end

// Scale the quadrature
diam = meshX(nind +1) - meshX(nind)
val = val * diam/2
val = sqrt(val)

// Scale by h
pow = p+1
if hScale then

val = val * diam
pow = p+1
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end
if pScale then

val = val ^(1/ pow)
end

endfunction

// Function called by sci(x) and loi(x) which evaluates a H-B interpolant
// at x, with s as the points with a known solution and derivative , and
// w as the points with just a solution value
function y = evalHBI(x, s, w)

sum1 = 0
sum2 = 0
sum3 = 0
for j = 1:size(s)(2)

sum1 = sum1 + (H(x, j, s, w) * U(s(j)))
sum2 = sum2 + (Hbar(x, j, s, w) * Ux(s(j)))

end
for j = 1:size(w)(1)

sum3 = sum3 + (G(x, j, s, w) * U(w(j)))
end
y = sum1 + sum2 + sum3

endfunction

// Computes w_j for Barycentric Lagrange interpolation . Where
// wx are the x values of the points being interpolated , and j
// is the index of w which is being calculated .
function w = baryW(wx, j)

w = 1
for k = 1:size(wx)(1)

if k ~= j then
w = w * (wx(j) - wx(k))

end
end
w = 1/w

endfunction

// Calculates the value at x of a Lagarange interpolant to the
// collocation solution U at points wx.
function y = baryLagrange(x, wx)

y = 0
l = 1
for j = 1:size(wx)(1)

y = y + (baryW(wx , j)/(x - wx(j)))*U(wx(j))
l = l * (x - wx(j))

end
y = l * y
// Check for Nan
if isnan(y) then

ind = find(wx == x)
y = U(wx(ind))

end
endfunction

// Returns the necessary non -mesh super convergent points outside of a given
// interval for the SCI
function x = eScNonMeshP(ind)

if ind == 1 then // Use two from next interval
nextScnmp = scNonMeshP(meshX (2:3), p, 1)
x(1) = nextScnmp (1)
if p > 4 then

x(2) = nextScnmp (2)
else

x(2) = meshX (3)
end

elseif ind == N then
lastScnmp = scNonMeshP(meshX(N-1:N), p, 1)
x(1) = lastScnmp(p-3)
if p > 4 then

x(2) = lastScnmp(p-4)
else

x(2) = meshX(N - 1)
end

else
x(1) = scNonMeshP(meshX(ind -1: ind), p, 1)(p-3)
x(2) = scNonMeshP(meshX(ind+1: ind+2), p, 1)(1)

end
endfunction

// Function to evaluate the SCI of the current collocation solution at
// some x value.
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function y = sci(x)
// Find which subinterval x is within
ind = getInd(x)

// Get the internal and external non -mesh super convergent points
meshP = meshX(ind:ind+1)
inmscp = scNonMeshP(meshP , p, 1)
enmscp = eScNonMeshP(ind)
nmscp = cat(1, enmscp , inmscp)

// Evaluate the H-B interpolant for SCI
y = evalHBI(x, meshP , gsort(nmscp , ’r’,’i’))

endfunction

// Evalutates the LOI of saved Col.Sol. in coeffs at x
function y = loi(x)

// Find which subinterval x is within
ind = getInd(x)

// Get the mesh points of that subinterval
meshP = meshX(ind:ind+1)

// Get the internal points to interpolate at
intP = scNonMeshP(meshP , p - 1, 1)
if intP == -1 then

intP = []
end
y = evalHBI(x, meshP , intP)

endfunction

function y = l2(x)
ind = getInd(x)
intP = getL2pts(meshX(ind), meshX(ind+1), p)
y = baryLagrange(x, intP)

endfunction

// Returns the error estimate from the LOI for rectangle xi , yi
function e = rLoiErr(xi)

e = evalRectErr(loi , p+1, %T, xi)
endfunction

// Returns the error estimate from the LOI for rectangle xi , yi
function e = rLoiErrNS(xi)

e = evalRectErr(loi , p+1, %F, xi)
endfunction

// Returns the global error estimate from the LOI
function e = gLoiErr ()

e = evalGlobalErr(loi , p+1, %T)
endfunction

// Returns the error estimate from the L2 for rectangle xi , yi
function e = rL2Err(xi)

e = evalRectErr(l2, p+1, %T, xi)
endfunction

// Returns the error estimate from the L2 for rectangle xi , yi
function e = rL2ErrNS(xi)

e = evalRectErr(l2, p+1, %F, xi)
endfunction

// Returns the global error estimate from the L2
function e = gL2Err ()

e = evalGlobalErr(l2, p+1, %T)
endfunction

// Returns the error estimate from the SCI for rectangle xi , yi
function e = rSciErr(xi)

e = evalRectErr(sci , p+2, %F, xi)
endfunction

// Retruns the global error estimate from the SCI
function e = gSciErr ()

e = evalGlobalErr(sci , p+2, %F)
endfunction

// Returns the actual error for rectangle of coordinate xi , yi
function e = rActErr(xi)

e = evalRectErr(truu , p+2, %F, xi)
endfunction

// Returns the actual global error for the collocation solution
function e = gActErr ()
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e = evalGlobalErr(truu , p+1, %F)
endfunction

err2D.sci

// Evalauates a Hermite -Birkhoff interpolant at (x, y) based off of
// sx/y as the points in x/y where solution value and derivative with
// respect to x/y is interpolated . wx/y are points in x/y where just
// solution value is interpolated . Usx/y are the derivatives with
// respect to x/y which are evaluated , while Usw has all of the
// solution values being interpolated .
function z = evalHBI(x, y, sx, sy , wx , wy , Usx , Usy , Usw)

// Save H evals
Hx(1) = H(x, 1, sx, wx)
Hx(2) = H(x, 2, sx, wx)
Hy(1) = H(y, 1, sy, wy)
Hy(2) = H(y, 2, sy, wy)

// Save Hbar evals
Hbarx (1) = Hbar(x, 1, sx, wx)
Hbarx (2) = Hbar(x, 2, sx, wx)
Hbary (1) = Hbar(y, 1, sy, wy)
Hbary (2) = Hbar(y, 2, sy, wy)

// Save G evals
numWx = max(size(wx))
numWy = max(size(wy))
for i = 1:numWx

Gx(i) = G(x, i, sx, wx)
end
for i = 1:numWy

Gy(i) = G(y, i, sy, wy)
end

// Initialize the sum
z = 0

// Add value from Hx terms
for i = 1:2

// Set ind
if i == 2 then

ind = numWx+2
else

ind = 1
end

// HxGy terms
for j = 1:numWy

z = z + Hx(i) * Gy(j) * Usw(ind , j+1)
end

// HxHy terms
z = z + Hx(i) * Hy(1) * Usw(ind , 1)
z = z + Hx(i) * Hy(2) * Usw(ind , numWy +2)

// HxHbary terms
z = z + Hx(i) * Hbary (1) * Usy(1, ind)
z = z + Hx(i) * Hbary (2) * Usy(2, ind)

end

// Add value from Hbarx terms
for i = 1:2

// Set ind
if i == 2 then

ind = numWx+2
else

ind = 1
end

// HbarxGy terms
for j = 1:numWy

z = z + Hbarx(i) * Gy(j) * Usx(i, j+1)
end

// HbarHy terms
z = z + Hbarx(i) * Hy(1) * Usx(i, 1)
z = z + Hbarx(i) * Hy(2) * Usx(i, numWy +2)

end
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// Add value from Gx terms
for i = 1:numWx

// GxHy terms
z = z + Gx(i) * Hy(1) * Usw(i+1, 1)
z = z + Gx(i) * Hy(2) * Usw(i+1, numWy +2)

// GxHbary terms
z = z + Gx(i) * Hbary (1) * Usy(1, i+1)
z = z + Gx(i) * Hbary (2) * Usy(2, i+1)

// GxGy terms
for j = 1:numWy

z = z + Gx(i) * Gy(j) * Usw(i+1, j+1)
end

end
endfunction

// Returns the evaluation of a tensor product Lagrange interpolant
// at (x, y). wx / wy are the coordinates in X / Y that are interpolated
// and Uvals is the value to interpolate at those points.
function z = evalLI(x, y, wx, wy, Uvals)

z = 0
for i = 1:max(size(wx))

for j = 1:max(size(wy))
z = z + G(x, i, [], wx) * G(y, j, [], wy) * Uvals(i, j)

end
end

endfunction

// Calculates a scaled error based off of global atol and rtol with a L2 norm.
// f is the function used to calculate the error (Setting this as truu gives
// the actual error). numP is the number of points to use for the Gaussian
// quadrature . If hScale == %T then the error will be scale by the interval
// size in X and Y from the first interval of each.
function e = evalGlobalErr(func , numP , hScale)

xL = meshX (1)
xH = meshX(N+1)
yL = meshY (1)
yH = meshY(M+1)
ptsX = getGaussPts(xL, xH, numP)
ptsY = getGaussPts(yL, yH, numP)
weights = getQuadWts(numP)
e = 0
for ix = 1:numP

for iy = 1:numP
temp = U(ptsX(ix), ptsY(iy), 1, 1)
e = e + weights(ix) * weights(iy) * ((temp - func(ptsX(ix), ptsY(iy)))/

..
(atol + rtol*temp))^2

end
end
e = e * (xH -xL)/2 * (yH -yL)/2
e = sqrt(e)
if hScale then

e = e * (meshX (2) - meshX (1)) * (meshY (2) - meshY (1))
end

endfunction

// Calculates a scaled error for rectangle of coordinate xi , yi based off
// of global atol and rtol with a L2 norm. f is the function used to calculate
// the error (Setting this as truu gives the actual error). numP is the number
// of points to use for the Gaussian quadrature . If hScale == %T then the error
// will be scale by the interval size in X and Y from the first
// interval of each.
function e = evalRectErr(func , numP , hScale , ix , iy)

xL = meshX(ix)
xH = meshX(ix+1)
yL = meshY(iy)
yH = meshY(iy+1)
ptsX = getGaussPts(xL, xH, numP)
ptsY = getGaussPts(yL, yH, numP)
weights = getQuadWts(numP)
e = 0
for i = 1:numP

for j = 1:numP
temp = U(ptsX(i), ptsY(j), 1, 1)
e = e + weights(i) * weights(j) * ((temp - func(ptsX(i), ptsY(j)))/ ..
(atol + rtol*temp))^2

end
end
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e = e * ((xH -xL)/2) * ((yH-yL)/2)
e = sqrt(e)
if hScale then

e = e^(1/p)// * (xH -xL) * (yH -yL)
else

e = e^(1/(p+1))
end

endfunction

// Saves the function value sthat will be interpolated by a Lagrange
// interpolant . wx / wy are the points in X / Y to interpolate at.
function vals = saveSolVals(wx, wy)

for i = 1:size(wx)(1)
for j = 1:size(wy)(1)

vals(i, j) = U(wx(i), wy(j), 1, 1)
end

end
endfunction

// Returns function evaluations at the points for the SCI/LOI which can be reused
// sx/y is the mesh points in x/y for the interval being evaluated while
// wx/y are the points in x/y where just solution values are interpolated .
function [Usx , Usy , Usw] = saveFunctionEvals(sx, sy, wx , wy)

// Get the numbr of w points
numWx = size(wx)(1)
numWy = size(wy)(1)

// X derivatives
for i = 1:2

Usx(i, 1) = U(sx(i), sy(1), 2, 1)
for j = 1:numWy

Usx(i, j+1) = U(sx(i), wy(j), 2, 1)
end
Usx(i, numWy +2) = U(sx(i), sy(2), 2, 1)

end

// Y derivatives
for i = 1:2

Usy(i, 1) = U(sx(1), sy(i), 1, 2)
for j = 1:numWx

Usy(i, j+1) = U(wx(j), sy(i), 1, 2)
end
Usy(i, numWx +2) = U(sx(2), sy(i), 1, 2)

end

// Solution values
for i = 1:numWx+2

if i == 1 then
xp = sx(1)

elseif i == numWx+2 then
xp = sx(2)

else
xp = wx(i-1)

end
for j = 1:numWy+2

if j == 1 then
yp = sy(1)

elseif j == numWy+2
yp = sy(2)

else
yp = wy(j-1)

end
Usw(i, j) = U(xp , yp, 1, 1)

end
end

endfunction

// Returns the value of the SCI at (x, y)
function z = sci(x, y)

xInd = getInd(x, meshX , N)
yInd = getInd(y, meshY , M)
sx = [meshX(xInd);meshX(xInd +1)]
sy = [meshY(yInd);meshY(yInd +1)]
wx = getsciW(xInd , meshX , p, N)
wy = getsciW(yInd , meshY , q, M)
[Usx , Usy , Usw] = saveFunctionEvals(sx, sy, wx , wy)
z = evalHBI(x, y, sx, sy, wx, wy, Usx , Usy , Usw)

endfunction

// Returns the value of the L2 at (x, y)
function z = l2(x, y)
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xInd = getInd(x, meshX , N)
yInd = getInd(y, meshY , M)
wx = getL2pts(meshX(xInd), meshX(xInd +1), p)
wy = getL2pts(meshY(yInd), meshY(yInd +1), q)
z = evalLI(x, y, wx, wy, saveSolVals(wx, wy))

endfunction

// Returns the value of the loi at (x, y)
function z = loi(x, y)

xInd = getInd(x, meshX , N)
yInd = getInd(y, meshY , M)
sx = [meshX(xInd);meshX(xInd +1)]
sy = [meshY(yInd);meshY(yInd +1)]
wx = scNonMeshP(meshX(xInd:xInd +1) ’,p-1,1)
wy = scNonMeshP(meshY(yInd:yInd +1) ’,q-1,1)
[Usx , Usy , Usw] = saveFunctionEvals(sx, sy, wx , wy)
z = evalHBI(x, y, sx, sy, wx, wy, Usx , Usy , Usw)

endfunction

// Returns the error estimate from the LOI for rectangle xi , yi
function e = rLoiErr(xi, yi)

e = evalRectErr(loi , p+1, %T, xi, yi)
endfunction

function e = rLoiErrNS(xi, yi)
e = evalRectErr(loi , p+1, %F, xi, yi)

endfunction

// Returns the global error estimate from the LOI
function e = gLoiErr ()

e = evalGlobalErr(loi , p+1, %T)
endfunction

// Returns the error estimate from the L2 for rectangle xi , yi
function e = rL2Err(xi, yi)

e = evalRectErr(l2, p+1, %T, xi, yi)
endfunction

function e = rL2ErrNS(xi , yi)
e = evalRectErr(l2, p+1, %F, xi, yi)

endfunction

// Returns the global error estimate from the L2
function e = gL2Err ()

e = evalGlobalErr(l2, p+1, %T)
endfunction

// Returns the error estimate from the SCI for rectangle xi , yi
function e = rSciErr(xi , yi)

e = evalRectErr(sci , p+2, %F, xi, yi)
endfunction

// Retruns the global error estimate from the SCI
function e = gSciErr ()

e = evalGlobalErr(sci , p+2, %F)
endfunction

// Returns the actual error for rectangle of coordinate xi , yi
function e = rActErr(xi , yi)

e = evalRectErr(truu , p+1, %F, xi , yi)
endfunction

// Returns the actual global error for the collocation solution
function e = gActErr ()

e = evalGlobalErr(truu , p+1, %F)
endfunction
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