
Hopf Algebras

Definitions and Examples

By Owen Sharpe

A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia
in Partial Fulfillment of the Requirements for the Degree of Bachelor

of Science, Honours Mathematics.

May 2020, Halifax, Nova Scotia

Copyright Owen Sharpe, 2020.

Approved: Dr. Mitja Mastnak

Approved: Mr. Andrew Hare

Date: May 21, 2020



Hopf Algebras

Definitions and Examples

By Owen Sharpe

Abstract

We define a Hopf algebra and give a variety of examples
of varying complexity. To facilitate the definition, we
first define the commutative diagram, the tensor prod-
uct, and an algebra/coalgebra/bialgebra. We briefly dis-
cuss the duality between algebras and coalgebras. Prior
to introducing the non-commutative Hopf algebras of
Sweedler and Taft, we define the q-binomial coefficient
and prove a related lemma from q-series which allows an
explicit formula for the coproduct of a Taft algebra.
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1. Introduction

A Hopf algebra is a special algebraic construction which arises in

associative algebra, algebraic topology, combinatorics, and quantum

physics. Hopf algebras are named after Heinz Hopf, a mathematician

who worked in algebraic topology in the 1940s. In 1941, Hopf pub-

lished a paper discussing a certain type of manifold and the special

structure of its cohomology ring. Topologists began to call rings with

this structure “Hopf algebras” in the 1950s. John Milnor and John

Moore coauthored a paper in 1965, in which their definition of Hopf

algebra coincides with the modern definition of a graded bialgebra [1].

The modern definition of Hopf algebra (a bialgebra with antipode) was

given by Moss Sweedler [10] in his book from 1969.

In the 1960s, algebraists began to study Hopf algebras separate from

their topological application. Sweedler and Earl Taft [11] introduced

the first examples of noncommutative noncocommutative Hopf alge-

bras, using ideas from q-series, around 1970. Irving Kaplansky gave a

set of ten conjectures on Hopf algebras in 1973, some of which have

been proven or disproven, and some of which remain open [9]. A large

part of the current algebraic research on Hopf algebras is classification;

for example, Nicolas Andruskiewitsch and Hans-Jurgen Schneider [2]

proposed a method of classifying pointed Hopf algebras via filtrations

and gradings.

Hopf algebras became important in quantum physics due to an in-

fluential paper of Vladimir Drinfeld [4] in 1988. Drinfeld defined a

quantum group to be the spectrum of a Hopf algebra and expressed his
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interest in non-commutative Hopf algebras. This led to generalizations

of Hopf algebras in the setting of braided monoidal categories [6].

With the recent developments in quantum computing, researchers

have noticed that category theory and Hopf algebras can character-

ize the structure of quantum circuits. For example, Naoki Sasakura

[8] wrote a paper in 2010 showing that any quantum circuit can be

described in terms of the operations of a Hopf algebra and unitary

transformations on a single qubit. We will describe this construction

in more detail in the section defining Hopf algebras.

Before proceeding to the linear algebraic foundations of Hopf alge-

bra theory, let us establish some conventions. We will usually omit

reference to the scalar field of vector spaces, assuming that all vector

spaces considered are over the same field k. (Occasionally we will refer

to k, especially in definitions and when we require that k have certain

properties). Rather than give an explicit formula when defining lin-

ear maps, we will usually define their action on a basis of their domain

(such as for our numerous examples of algebras, coalgebras, bialgebras,

and Hopf algebras) or, in the case of a linear map on tensors, on the

spanning set of simple tensors. Similarly, we will often define algebra

homomorphisms A→ B on a generating set of A for the same reason.

The reader may assume or verify that there is no contradiction derived

from these definitions. When defining a “canonical” monomorphism

or isomorphism (in particular the examples in the section on tensor

products), we will name it only when convenient.
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2. Commutative Diagram

Category theory is an axiom system alternative to set theory. In the

following definition we will use the word “collection” and the symbol ∈

with the understanding that a collection can be either a set or a proper

class.

Definition (Category). A category C consists of a collection of objects

C0 and arrows C1 satisfying the following axioms.

• Each arrow f is associated with a pair of objects dom(f) and

cod(f). If we label dom(f) = x and cod(f) = y, we typically

write f : x→ y and f ∈ Hom(x, y).

• Each pair of arrows of the form f : x → y and g : y → z

corresponds to a composite arrow g ◦ f : x→ z.

• Each object x corresponds to an identity arrow idx : x→ x such

that for each arrow of the form f : x→ y, we have f ◦ idx = f ;

and for each arrow of the form f : y → x, we have idx ◦f = f .

• For each triple of arrows of the form f : w → x, g : x→ y, and

h : y → z, we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

The most obvious example of a category is Set, whose objects are

sets and whose arrows are functions. Other important categories are

Vectk (k-vector spaces and linear maps), Algebrak (k-algebras and

algebra homomorphisms), and AModule (left A-modules and left A-

module homomorphisms).

We will not go far into category theory. Our main purpose in this

section is to introduce commutative diagrams. The formal definition of
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a commutative diagram requires too much category-theoretical back-

ground, so we will give a definition which emphasizes the graphical

nature of a diagram.

Definition (Commutative Diagram). A commutative diagram is a di-

rected graph which represents a functional equation. The vertices of

the graph are objects and the edges are arrows (where the codomain is

the vertex pointed to by the edge). If two different paths through the

graph have the same start and end point, the compositions of the arrows

corresponding to the edges are equal.

Example 2.1. The following diagram represents Euler’s identity.

R C

C \ {0}

ix

cos(x)+i sin(x)
ex

It is very common to describe functional equations in algebra with

commutative diagrams. We will do so in definitions but also write the

functional equations explicitly for ease of reading.

3. Tensor Product

Definition (Free Vector Space). Let X be a set. The free vector space

on X, denoted kX, is the unique vector space (up to isomorphism) with

an injective map i : X → kX such that the image of i is a basis of kX.
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Definition (Tensor Product). Let U, V be vector spaces and let R be

the subspace of k(U × V ) spanned by elements of the form

i(a+ b, v)− i(a, v)− i(b, v)

i(u, a+ b)− i(u, a)− i(u, b)

i(λu, v)− λi(u, v)

i(u, λv)− λi(u, v)

The tensor product of U and V , denoted by U⊗V , is the quotient space

k(U × V )/R. Elements in U ⊗ V of the form i(u, v) + R are denoted

u⊗ v.

Lemma 3.1. If A and B are bases for U and V respectively, then

{a⊗ b : a ∈ A, b ∈ B} is a basis for U ⊗ V .

Corollary 3.2. Every vector in U ⊗ V is a linear combination of ele-

ments of the form u⊗ v.

Corollary 3.3. dim(U ⊗ V ) = dim(U) dim(V )

Remark 3.4. Elements of U ⊗ V of the form u ⊗ v are called simple

tensors, but not every element of U ⊗ V is a simple tensor. Every

simple tensor u⊗v can be written (λu)⊗ (λ−1v) for all non-zero λ ∈ k,

so the projection of i(U × V ) is neither injective nor surjective. It is

also not linear, but it is bilinear.
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Definition (Bilinear Map). Let U, V,W be vector spaces. A bilinear

map f : U × V → W is a map satisfying

f(u1 + u2, v) = f(u1, v) + f(u2, v)

f(u, v1, v2) = f(u, v1) + f(u, v2)

f(λu, v) = λf(u, v) = f(u, λv)

for all u1, u2, u ∈ V, v1, v2, v ∈ V, λ ∈ k.

As we noted in the introduction, we will usually define linear maps

U ⊗V → W on the spanning set of simple tensors, and the reader may

assume that such maps are well-defined.

Definition (Flip Map). The flip map τ : U ⊗ V → V ⊗ U is the

isomorphism satisfying τ(u⊗ v) = v ⊗ u.

Remark 3.5. Sweedler [10, p. 49] calls the flip map the twist map,

but modern usage of “twist” in algebra usually refers to parametrized

deformations of Hopf algebras.

There are some additional canonical isomorphisms and monomor-

phisms which we will use frequently.

Example 3.6. Since k is a 1-dimensional vector space,

U ∼= U ⊗ k ∼= k⊗ U

The canonical isomorphisms take u to u⊗ λ and λ⊗ u respectively. In

particular,

k⊗ k ∼= k
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The canonical isomorphism takes λ⊗ µ to λµ.

Example 3.7. There is a canonical monomorphism φ : Hom(U,U ′) ⊗

Hom(V, V ′)→ Hom(U ⊗ V, U ′ ⊗ V ′) satisfying

φ(f ⊗ g)(u⊗ v) = f(u)⊗ g(v)

In practice we usually denote φ(f ⊗ g) by f ⊗ g for convenience.

Example 3.8. There is a canonical monomorphism φ : U∗ ⊗ U∗ →

(U ⊗ U)∗ satisfying

φ(f ⊗ g)(u⊗ v) = f(u)g(v)

If U is finite-dimensional, then φ is an isomorphism [7, p. 378].

Example 3.9. There is a canonical isomorphism (U ⊗ V )⊗W → U ⊗

(V ⊗ W ) taking (u ⊗ v) ⊗ w to u ⊗ (v ⊗ w). This can be extended

to any number of vector spaces. In practice we usually identify both

(U ⊗ V )⊗W and U ⊗ (V ⊗W ) by U ⊗ V ⊗W and so on.

Definition (n-fold Tensor Product). The n-fold tensor product of U

is defined recursively by

U⊗0 = k

U⊗n+1 = U ⊗ U⊗n

Remark 3.10. Given f : U → V , we define f⊗n : U⊗n → V ⊗n in the

obvious way.
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4. Unital Associative Algebra

Definition (Unital Associative Algebra). A unital associative k-algebra

(A,∇, η) is a k-vector space A with a linear product map ∇ : A⊗A→ A

and a linear unit map η : k→ A such that the following diagrams com-

mute.

A⊗ A⊗ A

A⊗ A A⊗ A

A

∇⊗id

id⊗∇

∇
∇

k⊗ A A A⊗ k

A⊗ A

∼=

η⊗id

∼=

id⊗η
∇

Remark 4.1. The relations represented by the diagrams are

∇(∇(x⊗ y)⊗ z) = ∇(x⊗∇(y ⊗ z))

∇(η(λ)⊗ x) = ∇(x⊗ η(λ)) = λx

Given a vector space A, a product map and unit map induce the

structure of a unital ring on A and vice versa. We define xy = ∇(x⊗y)

and 1A = η(1k).
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We will shorten (A,∇, η) as A, “unital associative algebra” to “alge-

bra”, ∇(x⊗ y) to xy, and η(λ) to λ when convenient. Let us proceed

to some definitions.

Definition (Algebra Homomorphism). Given two algebras A and B,

an algebra homomorphism f : A→ B is a linear map satisfying

f(xy) = f(x)f(y)

f(1A) = 1B

for all x, y ∈ A.

Definition (Algebra Antimorphism). Given two algebras A and B, an

algebra antimorphism f : A→ B is a linear map satisfying

f(xy) = f(y)f(x)

f(1A) = 1B

for all x, y ∈ A.

Remark 4.2. We will use the definition of algebra homomorphism in a

lemma on bialgebras and the definition of algebra antimorphism in the

definition of the Hopf algebra antipode.

Example 4.3 (Field). A field k is an algebra over any of its subfields.

Example 4.4 (Free Algebra). The free algebra in {x1, · · · , xn} is the

non-commutative polynomial ring k〈x1, · · · , xn〉.

Example 4.5 (Matrix Algebra). The matrix ring Mn×n(k) is an algebra.

The unit map is given by η(1) = I, where I is the identity matrix.
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Example 4.6 (Monoid Algebra). Let M be a monoid. The monoid

algebra on kM has product and unit given by i(m)i(n) = i(mn) for

all m,n ∈M (where i is the canonical embedding of M into kM) and

η(1) = i(1M).

Definition (Left Module). Let A be a k-algebra. A left A-module

(M,m) is a k-vector space equipped with an action m : A ⊗M → M

such that the following diagrams commute.

k⊗M A⊗M

M

η⊗id

∼= m

A⊗ A⊗M

A⊗M A⊗M

M

∇⊗id

id⊗m

m
m

Remark 4.7. The relations represented by the diagrams are

m(η(λ)⊗ x) = λx

m(∇(a⊗ b)⊗ x) = m(a⊗m(b⊗ x))

A right A-module M is defined in a parallel manner, with m : M ⊗

A → M etc. We have chosen to work with left A-modules because
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the notation is closer to the familiar scalar multiplication from linear

algebra.

We will shorten (M,m) to M and m(a⊗ x) to ax when convenient.

5. Coalgebra

Definition (Counital Coassociative Coalgebra). A counital coassocia-

tive k-coalgebra (C,∆, ε) is a k-vector space C with a linear coproduct

map ∆ : C → C ⊗ C and a linear counit map ε : C → k such that the

following diagrams commute.

C

C ⊗ C C ⊗ C

C ⊗ C ⊗ C

∆

∆

∆⊗id

id⊗∆

k⊗ C C C ⊗ k

C ⊗ C

∼=

∼=

∆
ε⊗id

id⊗ε

Remark 5.1. The relations represented by the diagrams are

(∆⊗ id)(∆(x)) = (id⊗∆)(∆(x))

(ε⊗ id)(∆(x)) = 1⊗ x

(id⊗ε)(∆(x)) = x⊗ 1
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These diagrams are categorically dual to the diagrams for an algebra.

The property encoded by the first diagram is called coassociativity.

We will shorten (C,∆, ε) to C and “counital coassociative coalge-

bra” to “coalgebra” when convenient. Let us now introduce the n-fold

coproduct and the Sweedler notation.

Definition (n-fold Coproduct). The n-fold coproduct ∆n : C → C⊗n+1

is defined for each n recursively by

∆1 = ∆

∆n+1 = (∆⊗ id⊗n) ◦∆n

Lemma 5.2. Let n ≥ 2 and 0 ≤ j ≤ n. Then

∆n+1 = (id⊗j ⊗∆⊗ id⊗n−j) ◦∆n

Sweedler [10, p. 10] suggests the notation

∆(x) =
∑
(x)

x(1) ⊗ x(2)

(f ⊗ g)(∆(x)) =
∑
(x)

f(x(1))⊗ g(x(1))

and in general

∆n(x) =
∑
(x)

x(1) ⊗ · · · ⊗ x(n+1)

(f1 ⊗ · · · ⊗ fn+1)(∆n(x)) =
∑
(x)

f1(x(1))⊗ · · · ⊗ fn+1(x(n+1))
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This notation is widely used (sometimes even without a summation

symbol) and makes it much more convenient to describe functional

equations containing coproducts.

Definition (Subcoalgebra). A subcoalgebra V of C is a subspace of C

such that ∆(V ) ⊆ V ⊗ V .

Definition (Left, Right Coideal). A left (resp. right) coideal I of C is

a subspace of C such that ∆(I) ⊆ C ⊗ I (resp. ∆(I) ⊆ I ⊗ C).

Definition (Two-sided Coideal). A two-sided coideal I of C is a sub-

space of C such that ∆(I) ⊆ C ⊗ I + I ⊗ C and ε(I) = 0.

Remark 5.3. There are notions of subalgebras and ideals of algebras,

but they are simply the equivalent definitions in ring theory. We did

not include them in the previous section because it would make the

text too dense.

Definition (Coalgebra Homomorphism). Given two coalgebras C and

D, a coalgebra homomorphism f : C → D is a linear map satisfying

∆D(f(x)) =
∑
(x)

f(x(1))⊗ f(x(2))

εD(f(x)) = εC(x)

for all x ∈ C.
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Definition (Coalgebra Antimorphism). Given two coalgebras C and

D, a coalgebra antimorphism f : C → D is a linear map satisfying

∆D(f(x)) =
∑
(x)

f(x(2))⊗ f(x(1))

εD(f(x)) = εC(x)

for all x ∈ C.

Remark 5.4. Just as before, we use these notions of coalgebra homo-

morphism and antimorphism in the sections on bialgebras and Hopf

algebras respectively.

Definition (Cocommutative Coalgebra). C is said to be cocommuta-

tive if ∆ satisfies

∑
(x)

x(1) ⊗ x(2) =
∑
(x)

x(2) ⊗ x(1)

for all x ∈ C.

Example 5.5 (Field). A field k has coalgebra structure, with coproduct

and counit defined ∆(λ) = 1⊗ λ and ε(λ) = λ.
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Example 5.6 (Polynomial Coalgebra). The set of polynomials k[x] has

coalgebra structure, where the coproduct and counit are given by

∆(xn) =
n∑
j=0

n
j

xj ⊗ xn−j

ε(xn) =


1 n = 0

0 n ≥ 1

Example 5.7 (Matrix Coalgebra). The set of n × n matrices Mn×n(k)

has coalgebra structure. Let {ejk : 1 ≤ j, k ≤ n} be the canonical basis

for Mn×n(k). The coproduct and counit are given by

∆(ejk) =
n∑
`=1

ej` ⊗ e`k

ε(ejk) =


1 j = k

0 j 6= k

Example 5.8 (Grouplike Coalgebra). Let X be a set. The grouplike

coalgebra (sometimes free pointed coalgebra) on kX has coproduct

and counit given by ∆(x) = x⊗ x and ε(x) = 1 for all x ∈ X.

Definition (Grouplike Element). Let C be any coalgebra. A grouplike

element x ∈ C is an element satisfying ∆(x) = x⊗ x and ε(x) = 1.
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Example 5.9 (Trigonometric Coalgebra). Let T = {c, s}. The trigono-

metric coalgebra on kT has coproduct and counit given by

∆(c) = c⊗ c− s⊗ s

∆(s) = c⊗ s+ s⊗ c

ε(c) = 1

ε(s) = 0

Definition (Right Comodule). Let C be a k-coalgebra. A right C-

comodule (M, c) is a k-vector space equipped with an linear structure

map c : M →M ⊗ C such that the following diagrams commute.

M M ⊗ C

M ⊗ k

c

∼=
id⊗ε

M

M ⊗ C M ⊗ C

M ⊗ C ⊗ C

c
c

c⊗id

id⊗∆

Remark 5.10. The relations represented by the diagrams are

(id⊗ε)(c(x)) = x⊗ 1

(c⊗ id)(c(x)) = (id⊗∆)(c(x))
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Remark 5.11. A left C-comodule is defined in a parallel manner, with

c : M → C ⊗M etc. We have chosen to work with right C-comodules

because of the duality with left C∗-modules (described later) and be-

cause the Sweedler notation for right C-modules is more convenient.

We will shorten (M, c) to M when convenient.

Definition (n-fold Comodule Structure Map). The n-fold comodule

structure map cn : M →M ⊗ C⊗n is defined for each n recursively by

c1 = c

cn+1 = (c⊗ id⊗n) ◦ cn

Lemma 5.12. Let n ≥ 2 and 1 ≤ j ≤ n. Then

cn+1 = (id⊗j ⊗∆⊗ id⊗n−j) ◦ cn

Sweedler [10, p. 32] extends his notation for coalgebras to comodules,

suggesting the notation

c(x) =
∑
(x)

x(0) ⊗ x(1)

(f ⊗ g)(c(x)) =
∑
(x)

f(x(0))⊗ g(x(1))

and in general

cn(x) =
∑
(x)

x(0) ⊗ · · · ⊗ x(n)

(f ⊗ g1 ⊗ · · · ⊗ gn) ◦ cn(x) =
∑
(x)

f(x(0))⊗ g1(x(1))⊗ · · · ⊗ gn(x(n))
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Note that the first symbol in the tensor product is indexed by 0 rather

than 1. This is because it is an element of M while the others are

elements of C.

6. Duality

Definition (Convolution Algebra). Let A be an algebra and C a coal-

gebra. The convolution algebra on Hom(C,A) satisfies η(1)(x) = ε(x)

and

∇(f ⊗ g)(x) =
∑
(x)

f(x(1))g(x(2))

Remark 6.1. The product of two functions f, g in the convolution al-

gebra is called the convolution of f and g and typically written f ∗ g.

Definition (Dual Algebra). Let C be a coalgebra. The dual algebra of

C is the convolution algebra on C∗ = Hom(C,A).

Lemma 6.2. Let A be a finite-dimensional algebra. Then for each

f ∈ A∗, there exists a unique linear map in A∗ ⊗ A∗

n∑
j=1

gj ⊗ hj

such that

f(xy) =
n∑
j=1

gj(x)hj(y)

for all x, y ∈ A.

Proof. Recall from Example 3.8 that the canonical monomorphism φ :

A∗⊗A∗ → (A⊗A)∗ is an isomorphism because A is finite-dimensional.
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Then write

φ−1(f ◦ ∇) =
n∑
j=1

gj ⊗ hj

It follows from definition of φ that

f(xy) =
n∑
j=1

gj(x)hj(y)

for all x, y ∈ A as desired. �

Definition (Dual Coalgebra). Let A be a finite-dimensional algebra.

The dual coalgebra of A is the coalgebra on A∗ satisfying ∆(f) = φ−1(f◦

∇) and ε(f) = f(1).

7. Bialgebra

Definition (Bialgebra). A k-bialgebra (B,∇,∆, η, ε) is a k-vector space

with algebra and coalgebra structure such that the following diagrams

commute.

B ⊗B B ⊗B ⊗B ⊗B

B

B ⊗B B ⊗B ⊗B ⊗B

∇

∆⊗∆

id⊗τ⊗id

∆

∇⊗∇

B ⊗B B

k⊗ k k

∇

ε⊗ε ε

∼=
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k B

k⊗ k B ⊗B

η

∼= ∆

η⊗η

k B

k

η

id ε

Remark 7.1. The relations represented by the diagrams are

∑
(xy)

(xy)(1) ⊗ (xy)(2) =
∑

(x),(y)

x(1)y(1) ⊗ x(2)y(2)

ε(xy) = ε(x)ε(y)

∆(λ) = 1⊗ λ

ε(λ) = λ

These diagrams are called the compatibility diagrams because they

express a compatibility between the algebra structure and the coalgebra

structure on B. There are examples of an algebra and coalgebra on

the same vector space which are not compatible to form a bialgebra

structure.

Lemma 7.2. Let B have algebra and coalgebra structure. Then the

following are equivalent:

• The product and unit maps are coalgebra homomorphisms.

• The coproduct and counit maps are algebra homomorphisms.

• B is a bialgebra.
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We will shorten (B,∇,∆, η, ε) to B when convenient.

Definition (Primitive Element). A primitive element x ∈ B is a ele-

ment satisfying ∆(x) = 1⊗ x+ x⊗ 1 and ε(x) = 0.

Example 7.3 (Field). A field k with the previously defined algebra and

coalgebra structure is a bialgebra.

Example 7.4 (Polynomial Bialgebra). The polynomial ring k[x] with

the free algebra and polynomial coalgebra structure is a bialgebra.

Example 7.5 (Monoid Bialgebra). Let M be a monoid. The free vector

space kM with the monoid algebra and grouplike coalgebra structure

is a bialgebra.

Remark 7.6. The matrix algebra and coalgebra structures defined pre-

viously are not compatible.

8. Hopf Algebra

Definition (Hopf Algebra). A Hopf algebra (H,∇,∆, η, ε, s) is a bial-

gebra with a linear antipode map s : H → H such that the following

diagram commutes.

H ⊗H H ⊗H

H k H

H ⊗H H ⊗H

s⊗id

∇

ε

∆

∆

η

id⊗s

∇
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Remark 8.1. The relation represented by the diagram is

∑
(x)

s(x(1))x(2) =
∑
(x)

x(1)s(x(2)) = ε(x)

or equivalently,

s ∗ id = id ∗s = ε

Since the convolution algebra on Hom(H,H) is a ring, if id has a two-

sided inverse s, then s is unique. Not all bialgebras are Hopf algebras.

Most of the examples below have been collected by Dascalescu et al.

[3].

Example 8.2 (Field). The bialgebra on a field k is a Hopf algebra with

s = id.

Example 8.3 (Polynomial Hopf Algebra). The polynomial bialgebra on

k[x] is a Hopf algebra with antipode given by s(xn) = (−x)n.



24

Example 8.4 (Divided Power Hopf Algebra). Let D = {x[n] : n ∈ N0}.

Define a Hopf algebra on kD satisfying

x[m]x[n] =

m+ n

m

x[m+n]

∆(x[n]) =
n∑
j=0

x[j] ⊗ x[n−j]

η(1) = x[0]

ε(x[n]) =


1 n = 0

0 n ≥ 1

s(x(n)) = −
n−1∑
j=0

s(x[j])x[n−j]

If char(k) = 0, then kD is Hopf algebra isomorphic to k[x] under the

map which takes x[n] to
xn

n!
. If char(k) = p for a prime p, then this

map is undefined at x[p] because it would result in division by p! = 0.

In either case, kD is called the divided power Hopf algebra over k.

Example 8.5 (Group Hopf Algebra). Let G be a group. The free vector

space kG is a Hopf algebra with the monoid algebra and grouplike

coalgebra structures, and antipode satisfying s(i(g)) = i(g−1).

Remark 8.6. Let M be a monoid with at least one non-invertible ele-

ment x. Then the bialgebra on kM is not a Hopf algebra, because the

antipode would require s(i(x))i(x) = i(x)s(i(x)) = 1. Suppose towards
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contradiction such an element s(i(x)) exists and write it as

s(x) =
∑
m∈M

λmi(m)

But then

∑
m∈M

λmi(x)i(m) =
∑
m∈M

λmi(xm) = i(1M)

∑
m∈M

λmi(m)i(x) =
∑
m∈M

λmi(mx) = i(1M)

and yet the projection of at least one of these sums onto the span of

i(1M) is 0 because x is non-invertible. This is a contradiction.

Example 8.7. Let Q be a 2-dimensional C-vector space with basis

{|0〉, |1〉}. Extend this notation to Q⊗n by recursively defining

|0〉 ⊗ |b〉 = |0|b〉

|1〉 ⊗ |b〉 = |1|b〉

where b is a binary string and | is the concatenation operation. This is

the Dirac ket notation in quantum physics.

In a quantum computer, an array of n qubits may have any state in

Q⊗n of the form ∑
b∈{0,1}n

αb|b〉

where ∑
b∈{0,1}n

|αb|2 = 1
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A quantum gate or circuit is a unitary linear map on an array of qubits

(“gate” typically implies fewer qubits and “circuit” implies more). For

example, the CNOT gate on 2 qubits satisfies

CNOT(|00〉) = |00〉

CNOT(|01〉) = |01〉

CNOT(|10〉) = |11〉

CNOT(|11〉) = |10〉

Every quantum circuit can be constructed via tensors and compositions

of CNOT gates and single-qubit gates [8].

Now, consider the group structure on {|0〉, |1〉} where |0〉 is the iden-

tity. Then Q has an induced group Hopf algebra structure. Sasakura

notes that CNOT is equal to the map (id⊗∇)(∆⊗ id). Therefore every

quantum circuit may be described in terms of the usual Hopf algebra

operations.

Example 8.8 (Tensor Algebra). Let V be a vector space and let T V =⊕∞
j=0 V

⊗j. To avoid ambiguity, let � be the symbol for the tensor of

elements of T V . The tensor algebra on V is T V with Hopf algebra
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structure satisfying

∇((x1 ⊗ · · · ⊗ xm) � (y1 ⊗ · · · ⊗ yn)) = x1 ⊗ · · · ⊗ xm ⊗ y1 ⊗ · · · ⊗ yn

∆((x1 ⊗ · · · ⊗ xn)) = (x1 ⊗ · · · ⊗ xn) � 1

+ 1 � (x1 ⊗ · · · ⊗ xn)

η(1) = 1

ε(1) = 1

ε(x1 ⊗ · · · ⊗ xn) = 0, n ≥ 1

s(x1 ⊗ · · · ⊗ xn) = (−1)nxn ⊗ · · · x1

Definition (Hopf Module). Let H be a Hopf algebra. A right H-Hopf

module is a k-vector space with right H-module and right H-comodule

structure such that the following diagram commutes.

M ⊗H M ⊗H ⊗H ⊗H

M

M ⊗H M ⊗H ⊗H ⊗H

c⊗∆

m

id⊗τ⊗id

c

m⊗∇

Remark 8.9. The relation represented by the diagram are

∑
(xh)

(xh)(0) ⊗ (xh)(1) =
∑

(x),(h)

x(0)h(1) ⊗ x(1)h(2)
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9. q-series

We now take a brief detour from algebra and consider q-series. The

theory of q-series deals with combinatorial and analytic identities which

are deformed by an additional parameter q. Many of the constructions

of noncommutative Hopf algebras, such as the Taft algebras, depend

on a parameter q in this way.

Definition (q-Shifted Factorial). The q-shifted factorial (x; q)n is de-

fined

(x; q)n =


1 n = 0

(1− x)(1− xq)(1− xq2) · · · (1− xqn−1) n ≥ 1

Remark 9.1. In particular we have the identity

(q; q)n =


1 n = 0

(1− q)(1− q2) · · · (1− qn) n ≥ 1

It can be shown that 1
(q;q)n

is the ordinary generating function (in q)

for integer partitions whose parts are at most n. There are many other

combinatorial formulas related to integer partitions involving the q-

shifted factorial.

Definition (q-Binomial Coefficient). The q-binomial coefficient

n
k


q

is defined n
k


q

=
(q; q)n

(q; q)k(q; q)n−k
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Remark 9.2. Another partition identity is that

m+ n

k


q

is the ordi-

nary generating function of the number of integer partitions with at

most m parts each at most n.

Lemma 9.3. The q-binomial coefficient satisfiesn
k


q

=

 n

n− k


qn

0


q

=

n
n


q

= 1

n+ 1

k


q

= qk

n
k


q

+

 n

k − 1


qn+ 1

k


q

=

n
k


q

+ qn−k+1

 n

k − 1


q

Proof. The first identity follows because of the symmetry between k

and n − k in the denominator. The second identity follows by direct
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substitution. The third identity requires a little more work.n+ 1

k


q

=
(q; q)n+1

(q; q)k(q; q)n+1−k

=
(q; q)n(1− qn+1)

(q; q)k(q; q)n−k+1

=
(q; q)n(qk − qn+1)

(q; q)k(q; q)n−k+1

+
(q; q)n(1− qk)

(q; q)k(q; q)n−k+1

= qk
(q; q)n(1− qn−k+1)

(q; q)k(q; q)n−k(1− qn−k+1
+

(q; q)n(1− qk)
(q; q)k−1(q; q)n−k+1(1− qk)

= qk

n
k


q

+

 n

k − 1


q

The fourth follows from the first and third by substituting n − k + 1

for k. n+ 1

k


q

=

 n+ 1

n− k + 1


q

= qn−k+1

 n

n− k + 1


q

+

 n

n− k


q

= qn−k+1

 n

k − 1


q

+

n
k


q

�

The following lemma gives the formula which we will use to give an

explicit coproduct for the Taft algebra.
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Lemma 9.4. Let x, y be elements of an algebra and q ∈ k such that

yx = qxy. Then for all n ∈ N,

(x+ y)n =
n∑
j=0

n
j


q

xjyn−j

Proof. We prove this by induction. For n = 0, the left- and right-hand

sides are both 1. Suppose the identity holds for a given n. Then

(x+ y)n+1 = (x+ y)
n∑
j=0

n
j


q

xjyn−j

=

 n∑
j=0

n
j


q

xj+1yn−j

 +

 n∑
j=0

n
j


q

yxjyn−j



=

 n∑
j=0

n
j


q

xj+1yn−j

 +

 n∑
j=0

n
j


q

qjxjyn−j+1



=

n+1∑
j=1

 n

j − 1


q

xjyn−j+1

 +

 n∑
j=0

qj

n
j


q

xjyn−j+1



= yn+1 + xn+1 +
n∑
j=1


 n

j − 1


q

+ qj

n
j


q

xjyn−j+1

=
n+1∑
j=0

n+ 1

j


q

xjyn−j+1

as desired. �
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If the reader is interested in the theory of q-series, we refer them to

the excellent course notes taken by Heesung Yang [12] at a seminar on

q-series given by Mourad Ismail.

10. Sweedler Algebra / Taft Algebra

Moss Sweedler introduced the first examples of Hopf algebras that

are neither commutative or cocommutative [3, p. 166]. The bet-

ter known example is 4-dimensional, but this is in fact a quotient of

Sweedler’s infinite-dimensional example [10, p. 89].

Definition. The infinite-dimensional Sweedler algebra is the Hopf al-

gebra on k〈x, x−1, y〉 given by

∆(x) = x⊗ x ∆(x−1) = x−1 ⊗ x−1 ∆(y) = y ⊗ x+ 1⊗ y

ε(x) = 1 ε(x−1) = 1 ε(y) = 0

s(x) = x−1 s(x−1) = x s(y) = −yx−1

Remark 10.1. This algebra is not commutative because x and y are

independent and do not commute. It is not cocommutative because

∆(y) = y ⊗ x+ 1⊗ y 6= x⊗ y + y ⊗ 1.

Definition (Sweedler Algebra). The 4-dimensional Sweedler algebra is

the quotient of the infinite-dimensional Sweedler algebra by the relations

x2 = 1

y2 = 0

yx = −xy
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Remark 10.2. This algebra is not quite commutative because of the

negative sign in the final identity. Note that the relation x2 = 1 im-

plies x = x−1, so this algebra is also a quotient of k〈x, y〉. It is also

not cocommutative because the additional relations do not modify the

definition ∆(y) = y ⊗ x+ 1⊗ y.

Earl Taft generalized the 4-dimensional Sweedler algebra in a differ-

ent direction.

Definition. Let n ≥ 2 and assume that k contains a primitive n-th

root of unity q. The n-th Taft algebra Tn is the quotient of k[x, y] by

the relations

xn = 1

yn = 0

yx = qxy

Tn extends to a Hopf algebra with coproduct, counit, and antipode sat-

isfying

∆(x) = x⊗ x ∆(y) = y ⊗ x+ 1⊗ y

ε(x) = 1 ε(y) = 0

s(x) = xn−1 s(y) = −yxn−1

Remark 10.3. The only primitive square root of unity is −1, and indeed

T2 is isomorphic to the 4-dimensional Sweedler algebra. In general, the

q-commutativity relation leads to some complicated identities. The
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following lemma gives the action of ∆ on the basis {xjyk : 0 ≤ j <

n, 0 ≤ y < n}.

Lemma 10.4. Consider the n-th Taft algebra Tn. For all j, k ≤ n,

∆(xjyk) =
k∑
`=0

k
`


q

xjy` ⊗ xj+`yk−`

Proof. Since ∆ is an algebra homomorphism, ∆(xjyk) = (∆(x))j(∆(y))k.

Calculate that (1⊗ y)(y ⊗ x) = q(y ⊗ x)(1⊗ y). By Lemma 9.4,

(∆(y))k = (y ⊗ x+ 1⊗ y)k

=
k∑
`=0

k
`


q

(y ⊗ x)`(1⊗ y)k−`

=
k∑
`=0

k
`


q

y` ⊗ x`yk−`

=⇒ ∆(xjyk) = (x⊗ x)j
k∑
`=0

k
`


q

y` ⊗ x`yk−`

= (xj ⊗ xj)
k∑
`=0

k
`


q

y` ⊗ x`yk−`

=
k∑
`=0

k
`


q

xjy` ⊗ xj+`yk−`

�
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11. Research

We are currently working on classification of Nichols algebras using

the GAP computer algebra system [5]. A Nichols algebra is a special

quotient of the tensor algebra of a Yetter-Drinfeld module. A Yetter-

Drinfeld module is not a Hopf module, but a different type of mod-

ule over a Hopf algebra in a braided monoidal category. Our method

mostly consists of running algorithms to find Grobner bases of Nichols

algebras in an attempt to find finite generating sets of the quotient

relations.
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