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Abstract 

Green roofs provide ecosystem services that help humans in urban environments. 

Ecosystem services provided by green roofs include reducing storm water run-off, better 

regulation of building temperatures, reduced heat flux and urban heat island effect and 

providing a place for wildlife to inhabit. This study aims to expand the knowledge of how 

plant species functional traits and the plant community’s functional diversity determine 

the ecosystem services green roofs provide. The experimental design compared seven 

species mixture treatments that differed in functional diversity, comprised of 11 plant 

species, with monoculture treatments. Nine replicates of each treatment were planted in 

trays and established on a roof in Halifax, NS, in a block design accounting for shading 

from an adjacent building. This study examined 10 response variables that indicate 

ecosystem services and used regression to assess the ability of functional diversity in the 

mixtures to predict ecosystem services. There was a very weak negative relationship 

between functional diversity and two response variables: canopy density and floral 

abundance. Position on the roof relative to shade showed that areas more sheltered by an 

adjacent building had greater stability in summer soil temperature regardless of functional 

diversity. While functional diversity was not positively related to any of the ecosystem 

services, several of the species mixture treatments outperformed the best monoculture 

treatments. Additional research on functional divergence as a predictor for green roof 

ecosystem services needs to be conducted. 
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1.0 Introduction 1 

 2 

1.1 Urbanization and Loss of Green Space 3 

The human population continues to grow at an alarming rate with an estimated population 4 

of more than 11 billion predicted for the year 2100 (Murdoch et al. 2018). This increased 5 

human population world-wide will create an increased the need for housing or space for 6 

these individuals. Urbanization of areas that were once filled with green space are now 7 

covered by roads and buildings. Building roads and infrastructure can cause loss in 8 

natural systems with the increase of storm water runoff, increase in erosion, urban heat 9 

island effect, loss of habitats and increased pollution (Harris 2008). Most architecture 10 

negatively affects the environment but around 32% of the horizontal surfaces on the 11 

building’s roof can be perfect to implement green roofs (Oberndorfer et al. 2007). These 12 

roofs can be utilized by installing sustainable architecture, which has been used in urban 13 

settings as far back as 2100 B.C. (Velazquez 2005). They provide ecosystem services to 14 

help offset human disturbance (Velazquez 2005).  15 

 16 

1.2 Green Roofs  17 

Green roofs are built on rooftops of buildings and are usually partially or completely 18 

covered by vegetation (Clarke 2018). A green roof is made up of a waterproof membrane, 19 

substrate and vegetation (Licht and Lundholm.2006). Choosing plant species for a green 20 

roof is determined by what soil depth is used. Green roof specialists tend to use a 21 

shallower substrate on green roof to reduce weight loading (Berardi et al., 2014). Shallow 22 

substrate green roofs (<20 cm deep) use plant species that don’t have large or long root 23 

structures because of the low soil depth, but usually require little to no maintenance 24 
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(Weddle 2012).  Shallow substrate green roofs have a small weight load, which allows for 25 

less reinforcement of the rooftop to handle increased weight (Weddle 2012).   26 

Many species of plants can be used on a green roof but for shallow substrate roofs, 27 

species that are generalist and can survive harsh conditions are most successful 28 

(Oberndorfer et al. 2007). Plant species on shallow substrate green roofs share similar 29 

characteristics, including low, mat-forming or compact growth; evergreen or tough 30 

foliage, twiggy growth; and other drought-tolerance or avoidance strategies (Oberndorfer 31 

et al. 2007). In Nova Scotia, plant species that are found on the coastal barrens are used 32 

because their natural habitat has similarities to rooftop environments. Coastal barren 33 

ecosystems endure harsh winds, low soil depth and salt spray (Licht and Lundholm 34 

2006). Native plant species are better than non-native species because they may have 35 

equal or better survival rate and they help with local biodiversity (Weddle 2012). On 36 

shallow substrate roofs Sedum species do the best because of shallow soil depth, drought 37 

tolerance, high light intensities and ability to handle harsh weather conditions 38 

(Oberndorfer et al. 2007). Other plant species used on shallow substrate green roofs are 39 

grasses and herbaceous perennials (Oberndorfer et al. 2007). These plant species all work 40 

together to help provide benefits to these constructed ecosystems. 41 

 42 

1.3 Environmental Benefits of Green Roofs 43 

Ecosystem services are benefits to humans provided through the functioning of natural or 44 

artificial ecosystems. Ecosystem services provided by green roofs include reducing storm 45 

water run-off (Oberndorfer et al. 2007), better regulation of building temperatures 46 

(Weddle 2012), reduced heat flux and urban heat island effect (Bass and Baskaran 2003) 47 

and provision of habitat for wildlife (Coffman and Davis 2005). Green roofs also increase 48 
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roof membrane longevity by reducing UV light exposure and are more visually appealing 49 

than conventional roofs (Oberndorfer et al. 2007). 50 

 51 

1.3.1 Water Retention 52 

Urban areas are subject to large quantities of storm water runoff because they are 53 

comprised of nonporous surfaces such as buildings and roads (Oberndorfer et al. 2007). 54 

The amount of storm water runoff produced by urban areas is roughly five times more 55 

than forested areas similar in size (Carter and Butler 2008). This increase of storm water 56 

runoff can become a problem for urbanized areas because of increased quantity of water 57 

input into sewage treatment plants, increased chances of flooding, increased erosion, 58 

spreading of harmful pollutants and harming of nearby habitats (Moran et al. 2005). 59 

Water retention on green roofs is very important with the increasing amount of 60 

urbanization that is happening with our growing populations. 61 

Green roofs are manufactured to provide a variety of ecosystem services but one 62 

of the most important is the reduction of storm water runoff (Heim 2013). Conventional 63 

roofs that are flat will help retain some water, but green roofs are shown to retain a larger 64 

percentage of rainfall (Burszta-Adamiak et al. 2019). On green roofs, rainwater can be 65 

used by the plants or stored in the substrate for delayed runoff or evapotranspiration 66 

(Oberndorfer et al. 2007). A study by Burszta-Adamiak et al. (2019) compared two green 67 

roofs to a conventional roof and the results showed that the average percentage of 68 

retained water for green roofs was between 81.2-81.5% whereas the conventional roof 69 

only retained 33.6% of the water (Burszta-Adamiak et al. 2019).  70 

 71 

 72 
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 73 

1.3.2 Urban Heat Island Effect, Heat Flux and Energy Conservation 74 

The urban heat island effect happens when urban areas have warmer air temperatures than 75 

other areas that are nearby (Bass and Baskaran 2001). The buildings and roads increase 76 

air temperature because they provide less shade and moisture compared to natural 77 

landscapes and they absorb more sun rays and produce additional heat (Bass and 78 

Baskaran 2001). The heat island effect can cause increased energy consumption, 79 

increased pollution and heat-related illness or death (Marafa and Alibaba 2019). Reducing 80 

the urban heat island effect by installing green roofs would help mitigate these increases 81 

in temperatures. A study by Marafa and Alibaba (2019) reported green roofs resulted in 82 

building energy savings between 86.2-86.5% because of decreased heat flux across the 83 

roof membrane. The amount of plant coverage on a green roof affects indoor 84 

environments and building energy demand (Yaghoobian and Srebric 2015). A study by 85 

Yaghoobian and Srebric (2015) concluded that green roofs are effective for urban heat 86 

island mitigation and affect the outdoor air temperature through convective heat transfer.  87 

Another study by Bass et al. (2002) showed a temperature decrease of 2 degrees Celsius 88 

in some areas by using a regional simulation model using 50% green roof evenly spaced 89 

out in Toronto. Energy conservation is determined by weather conditions, size of the roof, 90 

plant species, growth phase of plants, soil composition and building type (Zhou et al. 91 

2018). A green roof will decrease the daytime temperature of the roof surface in summer 92 

by intercepting solar radiation, and thus decreasing the energy consumption of the 93 

building by limiting air conditioning costs required as a response to the excess solar heat 94 

absorbed by the impervious surfaces of a rooftop (Simmons et al. 2008). 95 

 96 
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 97 

 98 

1.3.3 Wildlife Habitats 99 

Wildlife habitat and ecosystems have been destroyed and replaced by buildings and 100 

roads. This loss in natural ecosystems has been negatively impacting native plant and 101 

animal communities. Avian species have been negatively affected by urbanization of 102 

natural areas because of increased predation by domesticated animals and collision with 103 

human structures (Partridge and Clark 2018). Green roofs can reconcile some of these 104 

problems by providing shelter and food resources for invertebrates and avian species that 105 

once depended on the ecosystem that was lost (Coffman and Davis 2005). Green roofs 106 

can be used as a rest station for migrating avian species, which will increase the survival 107 

and reproductive success of these species (Partridge and Clark 2018). A green roof can be 108 

used to help with declining bee populations by limiting the distances between 109 

fragmentations of their habitat and resources (Colla et al. 2009).  A study by Colla et al. 110 

(2009) showed that green roofs have high bee diversity and can help offset the decreasing 111 

habitat loss, increased pesticide use, and pathogen spillover from managed bees and 112 

invasive species. Helping the bee populations increase to ensure that they can continue to 113 

pollinate many agricultural crops, which will help with our growing population (Colla et 114 

al. 2009). Humans need to think about aiding bee population by considering the plant 115 

species flowering time, size and quantity of flowers, colour of the flower and how tall the 116 

stock grows (Colla et al. 2009). These are all functional traits that can determine if the 117 

plants are suitable to be used by bees (Colla et al. 2009). 118 

1.4 Functional Traits and Functional Diversity 119 
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Plant communities vary in their species diversity, and green roofs range from 120 

monocultures of a single species or genus or can be highly diverse (Lundholm 2015).  121 

Ecosystems with diverse plant communities can outperform monocultures or low 122 

diversity plant communities when looking at multiple ecosystem services they provide 123 

(Lundholm 2015). A study by Butler and Orians (2011) study found during a drought, 124 

herbaceous species on a green roof would have higher survival rate when planted with 125 

Sedum species. This shows not all mixture treatments can perform at same rate because 126 

how the functional traits differ within plant communities can affect their performance. 127 

Functional traits are measurable features of a plant species that affect their fitness in 128 

an ecosystem (Bello et al. 2013). Some examples of functional traits are seed mass, leaf 129 

thickness, wood density and many more. Functional traits are used to help predict how a 130 

plant species fitness will be affected by environmental changes because functional traits 131 

show what resource and habitat requirements the species needs to survive (Bello et al. 132 

2013). Plant species that have a trait that is more valuable in a certain ecosystem usually 133 

will have a higher abundance of individuals in that community (Bello et al. 2013). Plant 134 

functional traits also affect the functioning and provision of services from ecosystems. A 135 

study by Cook-Patton and Bauerle (2012) shows that plant species should be chosen 136 

based on their functional traits that provide ecosystem services we need, such as helping 137 

reduce storm water runoff, roof cooling, habitat gain and other factors. To obtain the 138 

highest overall yield of ecosystem services, the plant community must be functionally 139 

diverse (Cook-Patton and Bauerle 2012). 140 

Functional diversity is the driving force behind understanding how ecosystems 141 

operate (Villéger et al. 2008). Functional diversity is calculated by three functional 142 

diversity indices which are: functional richness, functional evenness and functional 143 
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divergence (Villéger et al. 2008, Bello et al. 2013). However, this study only focussed on 144 

functional divergence because it quantifies the degree to which the species within a 145 

community are more similar or more different in terms of their trait values.  (Villéger et 146 

al. 2008, Bello et al. 2013). Functional divergence indicates the degree of niche 147 

differentiation and ideally you want high functional divergence because it lowers resource 148 

competition (Mason et al. 2005), and can result in overall higher resource uptake. 149 

Functional divergence is expected to increase ecosystem service provisioning in two 150 

ways. First, greater functional divergence in a plant community may lead to greater 151 

resource use and productivity, and the rate of resource use is important in determining 152 

green roof ecosystem services. The effect of plants on stormwater retention depends on 153 

their ability to use soil water; more functionally diverse communities are expected to use 154 

more water in total, leading to greater overall stormwater retention (Lundholm et al., 155 

2015). Likewise, for cooling the roof surface, greater amounts of aboveground biomass 156 

are associated with lower soil temperatures, so a functionally diverse community that can 157 

more efficiently use local resources should be able to produce more biomass and a 158 

stronger cooling effect. Second, when considering a suite of ecosystem services, species 159 

that are functionally different are likely to optimize different services, so having a mix of 160 

species with high functional divergence is likely to lead to greater ecosystem 161 

multifunctionality (Manning 2019). In other words, we expect higher performance across 162 

a range of different services if we have plants in the community with divergent functional 163 

traits.  164 

 165 

1.5 Research Objectives 166 
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This study aims to expand the knowledge of how plant species functional traits and plant 167 

community’s functional diversity determine the ecosystem services they provide. The 168 

research objectives of this project include:  169 

 170 

1) This study aims to determine if functionally different plant communities provide 171 

higher levels of ecosystem services than functionally similar plant communities. 172 

This study used functional divergence to create plant communities that range from 173 

functionally similar to functionally different. The treatments that have higher 174 

functional diversity could improve a single function or service by having multiple 175 

plant species working together to achieve the highest yield for a single ecosystem 176 

service or function. Higher functional diversity could also improve several 177 

functions or services at the same time by having multiple plant species working 178 

together in a treatment but optimizing different ecosystem services or functions 179 

while coexisting. 180 

 181 

2) This study aims to determine whether species-diverse communities provide higher 182 

levels of ecosystem services than monoculture communities. 183 

This study compared monoculture and diverse community treatments to help 184 

determine which provided more ecosystem services. 185 

 186 

2.0 Methods 187 
 188 
2.1.1 Experimental Design 189 
 190 
The experimental design and installation were completed by Amy Heim (PhD Student) in 191 

2018. This experiment utilized eleven plant species (Table 1) which were divided into 192 
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four groups based on functional trait characteristics. The functional traits of 146 vascular 193 

species of plants that occur naturally within one hour’s drive from Saint Mary’s 194 

University (44°37"N 63°34"W) were measured between 2016 and 2019. The traits 195 

analyzed were height, leaf thickness, specific leaf area, leaf dry matter content, 196 

specific root length, and root radius. All these traits were collected from the Chebucto 197 

Head coastal barren site (44°30"N 63°31"W) or from the Saint Mary’s University green 198 

roof. For each aboveground trait, 10 healthy adult plants of each species were randomly 199 

selected and was measured. The belowground traits were collected from their natural 200 

environment for all species but three species from five healthy adult plants of each 201 

species at the end of August 2019. Roots were stored in a solution containing 70% 202 

ethanol-30% water solution at 4⁰C until November 2019, at which time traits were 203 

calculated. The three species that weren’t collected from natural environment were 204 

collected from the SMU green roof or grown from seeds. Sedum spurium and Festuca 205 

rubra roots were collected from five healthy adult plants growing on a green roof 206 

adjacent to the green roof experiment. Deschamsia flexuosa roots were collected from 207 

five healthy plants grown in greenhouse located at Saint Mary’s University from seeds 208 

collected from Chebucto head.  209 

Seven species mixture treatments (Table 2) were used based on functional 210 

similarities and functional differences. Each of the seven treatments (Table 2) was 211 

selected by analyzing community traits through an R package created by Laliberté and 212 

Legendre (2010) to calculate average functional dispersion (Fdis). 213 

 214 
 215 
 216 
 217 
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Table 1. The eleven plant species scientific names, codes given for statistical analysis and 218 
different functional groups used in this experiment. 219 

 220 
 221 
Table 2. The seven treatments showing the different plant communities used in this 222 
experiment and if they are functionally similar or different.  223 
Treatment Community Community 

Codes 
Similar 

or 
Different 

1 Sedum acre, Sedum album, Sedum sexangular SA.SAL.SS Similar 
2 Solidago puberula, Solidago bicolor, Symphyotrichum novi-

belgii 
AM.SB.SN Similar 

3 Festuca rubra, Danthonia spicata, Deschampsia flexuosa FR.DS.DF Similar 
4 Danthonia spicata, Sibbaldiopsis tridentata, Sedum 

spurium 
DS.ST.PUR Similar 

5 Sedum acre, Solidago bicolor, Danthonia spicata SA.SB.DS Different 
6 Sedum acre, Solidago bicolor, Sibbaldiopsis tridentata SA.SB.ST Different 
7 Sedum acre, Sibbaldiopsis tridentata, Danthonia spicata SA.ST.DS Different 

 224 
 225 
 226 
 227 

2.1.2 Experimental Procedure 228 

The plants were grown in the greenhouse from seed in growing trays between January 229 

2018 to May 2018 or harvested from a green roof on the Saint Mary's University campus, 230 

except for Solidago puberula and Deschampsia flexuosa which were harvested from 231 

abandoned lots in the HRM area. The treatments were applied to planter trays 232 

Species Code Functional Group 
Sedum album SAL Succulent 
Sedum sexangular SS Succulent 
Sedum acre SA Succulent 
Solidago bicolor SB Forb 
Solidago puberula AM Forb 
Symphyotrichum novi-belgii SN Forb 
Festuca rubra FR Grass 
Danthonia spicata DS Grass 
Deschampsia flexuosa DF Grass 
Sedum spurium PUR In Between 
Sibbaldiopsis tridentata ST In Between 
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("modules") such that each module received a single treatment. Each module (1ft by 1ft) 233 

had a drainage mat and 10 cm of SOPRAFLOR X soil (SOPREMA, Strasbourg, France) 234 

(Figure 2). The treatments comprised monocultures of each species, the seven mixture 235 

treatments and controls that had only the drainage mat and soil. The plants were 236 

transplanted from growing trays into modules in May 2018. The mixture treatments 237 

(Table 2) had nine equally spaced individuals per module and monocultures had nine 238 

equally spaced individuals per module of the same species. Nine replicates of each 239 

treatment were placed on Saint Mary’s University’s Atrium roof. One replicate was 240 

placed randomly in each of nine blocks to account for spatial variation in shading from 241 

the adjacent Science building (block 9 was closest to the adjacent building and most 242 

shaded; block 1 was least shaded). 243 

 244 

 245 

Figure 2. A diagram showing the different layers involved in a green roof module. 246 
Module layer is broken down into plant vegetation, growth medium (soil), the drainage 247 
mat, water retention layer and perforated bottom to allow water to drain freely. 248 
https://sites.google.com/site/lundholmlab/research/green-roof 249 
 250 
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2.2 Data Collection 251 

 252 

2.2.1 Temperature 253 

The soil temperatures (in °C) were recorded using a Taylor 9878 Slim-Line Pocket 254 

Thermometer Probe (Commercial Solutions Inc., Edmonton, Alberta, Canada) once a 255 

month from July 2019 to June 2019 and June 2020 to September 2020. Data collected in 256 

July 2019 was done by Amy Heim.  These readings were all taken within 2 hours from 257 

solar noon on the day of measurement, only on sunny days in order to record the 258 

maximum soil temperatures; lower maximum temperatures under hot conditions are 259 

associated with greater provisioning of the roof cooling service (Lundholm et al., 2010). 260 

If sky was cloudy then no measurements were taken because this would provide soil with 261 

less intense sun rays, in return giving lower soil temperatures.  The temperatures 262 

were taken at approximately 2cm below the soil substrate in the center of each module. 263 

The temperature reading was recorded once it was stable.  264 

 265 

2.2.2 Heights 266 

The plant heights (in cm) were recorded using a standard meter stick once a month from 267 

June 2020 to September 2020. The height of the tallest of each species in an individual 268 

module was recorded. The heights were taken from the base of the above ground living 269 

biomass to the top of plant including flowers. Heights were measured as they are 270 

associated with higher performance of several ecosystem services (Lundholm et al., 271 

2015). 272 

 273 

2.2.3 Water Retention 274 
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The volumetric water content percentage (VWC%) was recorded one day before a rain 275 

event and again the day after the rain event ended. The difference in VWC between these 276 

days was calculated to determine water retention. Measurements were taken once a month 277 

between July 2020 to September 2020. The VWC was measured by using a ProCheck 278 

handheld machine and a GS3 soil moisture sensor (Decagon 279 

Devices Inc., Pullman, Washington, United States). Sensor was 280 

inserted approximately 5cm below the soil substrate in the center of each module. VWC 281 

reading was recorded once it was stable. 282 

 283 

2.2.4 Floral Resources 284 

The floral coverage was recorded once every two weeks from June 2020 to September 285 

2020. The floral coverage was recorded using a 1ft by 1ft (55 squares by 55 squares) 286 

sheet of grid paper. Each square represents 0.033% of the modules surface area and was 287 

calculated by 1/(55x55) x 100 = 0.033%. The flower of each species was then placed on 288 

the grid paper to get the approximate floral coverage percentage. This was done for 289 

several flowers to get an average floral coverage percentage. Using the average floral 290 

coverage percentage, flowers were counted by species in each module. Only flowers that 291 

were completely open and weren’t dead were recorded because they could be accessed by 292 

pollinators. Grass species flower coverage was not used in this study because their 293 

flowers are wind pollinated; they usually have no pollinators visit them. 294 

 295 

2.2.5 Canopy density 296 

Canopy density data was collected by using a metal 3D square (Figure 3) and was 297 

recorded once every two weeks from June 2019 to September 2020. The pin frame square 298 
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was placed over each module and how many times each species' live aboveground 299 

biomass touched one of the rods it was recorded. If a species was in the module but failed 300 

to come in contact with a rod, it was recorded as 1. If all individuals of a species had died 301 

off, it was recorded as 0. Canopy density provides a general measure of plant size and 302 

aboveground biomass and is positively correlated with several ecosystem services 303 

(Lundholm et al., 2015).  304 

 305 

 306 

 307 
Figure 3. Metal 3D pin frame square that is 1ft cubed with 16 points of intersection. 308 

 309 
 310 
 311 
2.3 Data Analysis  312 
 313 
The temporal mean and standard deviation across all sampling dates was derived in excel 314 

for temperature, water retention, canopy density and height. Temporal means were used 315 

to estimate the overall performance of a given service. Generally, higher values are 316 

equated with greater provisioning of ecosystem services, except summer soil 317 

temperatures, for which lower temperature indicates greater provisioning of the roof 318 
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cooling service. Standard deviations were used as an index of temporal stability, with 319 

lower standard deviations considered to indicate greater stability. Floral resources were 320 

given sampling intervals between 0-7 that represented how many times out of the 7 321 

collection dates that flowers were present in an individual module (e.g. If a module had 322 

flowers blooming 3 out of 7 collection dates, then it would receive a 3) for an estimate of 323 

flowering duration (an estimate of temporal stability of floral resource provisioning). 324 

Total abundance of floral coverage was calculated by the sum of all floral coverage across 325 

all sampling times for each module. The ten response variables were then used for 326 

statistical analysis. 327 

A linear regression was applied to all ten response variables (only including mixture 328 

treatments) against Fdis value for each replicate. A one-way mixed model ANOVA, with 329 

"block" as a random effect was used to compare planting treatments (including 330 

monocultures and controls) for each of the ten response variables. 331 

 332 
3.0 Results 333 
 334 

3.1 Linear Regression 335 

An analysis was done on the ten response variables using a linear regression and the 336 

results in table 3 showed that height mean and height standard deviation had a strong 337 

negative relationship with functional divergence (Fdis), indicating that the most 338 

functionally diverse treatments tended to be consistently short throughout the growing 339 

season. There were two other significantly negative relationships between response 340 

variables and Fdis (floral abundance and canopy density) (Table 3). Other variables had 341 

no significant relationships with functional divergence. 342 

 343 
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 344 
Table 3. Linear regressions for response variables vs functional diversity (Fdis). 345 

 346 

3.2 ANOVA 347 

The results of the ANOVA test on all ten response variables showed that nine out of the 348 

ten had significant differences attributable to planted treatment. For soil temperature 349 

mean, ANOVA test results showed that mixture treatment DS.ST.PUR (24.2±0.7) is 350 

significantly cooler than all other groups except for SA.SAL.SS (25.3±0.6) and 351 

FR.DS.DF(25.4±0.7) (Figure 4). This result also showed that monoculture treatments DS 352 

(26.4±0.7), ST (27.5±0.7) and PUR (27.1±0.9) were much warmer than DS.ST.PUR 353 

(Figure 4). For temporal stability of soil temperature, most monoculture treatments 354 

significantly had more temperature temporal stability than mixture treatments (Figure 5). 355 

 356 

Response Variable 
 

Regression 
Coefficient P Value T Value 

Degree of 
Freedom R Squared 

Temperature Mean 0.14790 0.451 0.755 243.0058 0.00159492 
Temperature Standard Deviation 0.10869 0.159 1.412 243.0017 0.00309909 
Flower Abundance -0.34580 0.040 -2.063 250.0000 0.01280000 
Flowering Duration -0.22250 0.150 -1.446 250.0000 0.00432500 
Height Mean -3.90000 4.17E-05 -4.174 243.0142 0.05686632 
Height Standard Deviation -3.72980 7.33E-06 -4.583 243.0346 0.07441932 
Water Retention Mean 0.04732 0.908 0.115 243.0280 5.02E-05 
Water Retention Standard 
Deviation 0.50150 0.214 1.246 243.0370 0.00593618 
Canopy Density Mean -0.11315 0.041 -2.056 243.0306 0.01578776 
Canopy Density Standard Deviation -0.08265 0.148 -1.450 243.0322 0.00795492 
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   357 
Figure 4. A one-way mixed model ANOVA, with "block" as a random effect was used to 358 
compare planting treatments for the average temporal temperature mean ± standard error. 359 
The result of the ANOVA test was significant with p-value<0.05.  This bar graph shows 360 
the overall ecosystem service performance for the average temporal mean for temperature 361 
for all treatments (n=152) and y-axis begins at 23 because there was no value lower. Bars 362 
that share a letter are not significantly different. 363 
 364 
 365 

 366 
Figure 5. A one-way mixed model ANOVA, with "block" as a random effect was used to 367 
compare planting treatments for the average temporal standard deviation for temperature 368 
mean ± standard error. The result of the ANOVA test was significant with p-value<0.05. 369 
The graph shows the temporal stability of ecosystem services for the average temporal 370 
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standard deviation for temperature for all treatments(n=152) and y-axis begins at 4 371 
because there was no value lower. Bars that share a letter are not significantly different. 372 

 373 

For total floral abundance, the monoculture treatment SA (47.212±4.708) had 374 

roughly twice as much floral abundance than all other treatments (Figure 6). Any 375 

treatment that had SA had more floral abundance than those that didn’t (Figure 6). All 376 

mixture treatments had more floral abundance, even if not significantly different 377 

monoculture treatments excluding SA monoculture (Figure 6). The flowering duration 378 

was calculated and averaged to figure out which treatment had the longest flowering time, 379 

this ranged from 0 to 7. Mixture treatments tended to have the longest flowering 380 

durations, even if not significantly different from monocultures (Figure 7). 381 

 382 

 383 
Figure 6. A one-way mixed model ANOVA, with "block" as a random effect was used to 384 
compare planting treatments for the average floral abundance mean ± standard error. The 385 
result of the ANOVA test was significant with p-value<0.05. This bar graph shows the 386 
overall ecosystem service performance for the average temporal floral abundance for all 387 
treatments (n=152). Bars that share a letter are not significantly different. 388 
 389 
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 390 
Figure 7. A one-way mixed model ANOVA, with "block" as a random effect was used to 391 
compare planting treatments for the average temporal flowering duration mean ± standard 392 
error. The result of the ANOVA test was significant with p-value<0.05.  The graph shows 393 
the temporal stability of ecosystem services for the average temporal flowering duration 394 
for all treatments(n=152). Bars that share a letter are not significantly different. 395 
 396 

The height was measured for all plant species and the data showed that the 397 

monoculture treatments FR (46.99±3.81), DF (34.88±4.58) and DS (25.59±3.77) were 398 

significantly the tallest plant species (Figure 8). The mixture treatment FR.DS.DF 399 

(23.74±3.77) outperformed all other mixture treatments and was significantly different 400 

from all other mixture treatments other than SA.SB.DS (17.34±3.76) treatment (Figure 401 

8). Several of the mixture treatments were significantly less consistent in height temporal 402 

stability than some of the monocultures (Figure 9). 403 
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 405 
Figure 8. A one-way mixed model ANOVA, with "block" as a random effect was used to 406 
compare planting treatments for the average temporal height mean ± standard error. The 407 
result of the ANOVA test was significant with p-value<0.05. This bar graph shows the 408 
overall ecosystem service performance for the average temporal mean for height for all 409 
treatments (n=152). Bars that share a letter are not significantly different. 410 
 411 

 412 
Figure 9. A one-way mixed model ANOVA, with "block" as a random effect was used to 413 
compare planting treatments for the average temporal standard deviation for height mean 414 
± standard error. A coefficient of variation as an index of temporal variability was used to 415 
erase the effect of the mean. The result of the ANOVA test was significant with p-416 
value<0.05. The graph shows the temporal stability of ecosystem services for the average 417 
temporal standard deviation for height for all treatments(n=152). Bars that share a letter 418 
are not significantly different. 419 
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 420 
For mean stormwater retention, the mixture treatment AM.SB.SN (15.53±2.99) 421 

was statistically better at water retention than monoculture treatment SS (9.57±2.99) 422 

(Figure 10). There was no significant difference in water retention standard deviation 423 

among treatments (Figure 11).  424 

 425 

    426 
Figure 10. A one-way mixed model ANOVA, with "block" as a random effect was used 427 
to compare planting treatments for the average temporal water retention mean ± standard 428 
error. The result of the ANOVA test was significant with p-value<0.05. This bar graph 429 
shows the overall ecosystem service performance for the average temporal mean for 430 
water retention for all treatments (n=152). Bars that share a letter are not significantly 431 
different. 432 
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 434 
Figure 11. A one-way mixed model ANOVA, with "block" as a random effect was used 435 
to compare planting treatments for the average temporal standard deviation for water 436 
retention mean ± standard error. A coefficient of variation as an index of temporal 437 
variability was used to erase the effect of the mean. The result of the ANOVA test was 438 
not significant with p-value>0.05. The graph shows the temporal stability of ecosystem 439 
services for the average temporal standard deviation for water retention for all 440 
treatments(n=152). Bars that share a letter are not significantly different. 441 
 442 

For canopy density, monoculture treatment SS (42.10±4.53) had a significantly 443 

higher mean canopy density than all treatments except for monoculture treatment FR 444 

(38.25±4.53) (Figure 12). Monocultures have the greatest temporal stability for canopy 445 

density (Figure13). The mixture treatments AM.SB.SN (0.834±0.132) and FR.DS.DF 446 

(0.808±0.132) were significantly less consistent in canopy density temporal stability than 447 

monocultures excluding AM (0.640±0.164) treatment (Figure 13). 448 
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  449 
Figure 12. A one-way mixed model ANOVA, with "block" as a random effect was used 450 
to compare planting treatments for the average temporal canopy density mean ± standard 451 
error. The result of the ANOVA test was significant with p-value<0.05. This bar graph 452 
shows the overall ecosystem service performance for the average temporal mean for 453 
water retention for all treatments (n=152). Bars that share a letter are not significantly 454 
different. 455 

 456 
Figure 13. A one-way mixed model ANOVA, with "block" as a random effect was used 457 
to compare planting treatments for the average temporal standard deviation for canopy 458 
density mean ± standard error. A coefficient of variation as an index of temporal 459 
variability was used to erase the effect of the mean.  The result of the ANOVA test was 460 
significant with p-value<0.05. The graph shows the temporal stability of ecosystem 461 
services for the average temporal standard deviation for canopy density for all 462 
treatments(n=152). Bars that share a letter are not significantly different. 463 
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 464 
4.0 Discussion 465 

 466 

4.1 Linear Regression 467 

Two response variables, height mean and standard deviation, had negative relationships 468 

with functional divergence (Fdis) within the plant community (Table 3). The results also 469 

showed that canopy density mean and floral abundance had weak negative relationships 470 

with Fdis (Table 3). These results contrast with the prediction that Fdis should be 471 

positively correlated to ecosystem service provisioning and I found that none of the 472 

ecosystem service indicators was positively correlated with Fdis. Potential reasons for 473 

these negative correlations could be combining the five functional traits into one 474 

measurement (Fdis), using functional traits that aren’t good ecosystem service predictors, 475 

only looking at functional divergence index, and functional traits may be poor predictors 476 

of ecosystem services. 477 

 Combining all five traits together to generate the index of functional dispersion 478 

(Fdis), may include traits that do not affect ecosystem services or affect them in opposite 479 

ways. Using the combined index could obscure any positive correlation between a 480 

dispersion in a single trait and the response variable. Additional analysis should be done 481 

for each trait to compare single functional divergence values to each ecosystem service. 482 

Those functional divergence variables could be predictors of any of the ecosystem 483 

services. A study by Mason et al. (2005) stated that when measuring functional diversity 484 

using multiple characters, you must ensure that the functional characters used are not 485 

directly correlated because this may result in high or low values of functional diversity.	486 

To ensure that this wasn’t a factor the data could be reanalyzed to compare each 487 
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individual trait to each response variable. This could result in a positive correlation 488 

between functional dispersion in certain traits and certain response variables and show 489 

that some traits can be used as predictors for ecosystem service provisioning.  490 

 Several of the functional traits chosen for this study have been shown to be good 491 

predictors of ecosystem services (Reich 2012; Bardgett et al. 2014). Determining which 492 

of the traits analyzed were positively correlated with functional diversity, if any could 493 

result in finding a good predictor of ecosystem services. Comparing the data collected to 494 

other functional traits that weren’t used in this study could also show that one of them 495 

would be a good predictor for ecosystem service provisioning. This would be helpful in 496 

future green roof research and help with choosing the plant species that work best 497 

together, while providing the most ecosystem services.  498 

 This study looked at the functional groups and how different or similar their 499 

functional traits were. Functional diversity has been generally accepted to consist of three 500 

independent components- functional divergence, functional richness and functional 501 

evenness (Mason et al. 2005). Only looking at the functional divergence index could have 502 

affected the results. Functional richness has been defined as the amount of functional trait 503 

space filled and functional evenness is defined as the evenness of abundance distributed 504 

in filled trait space (Mason and Mouillot 2013). When looking at divergence we assumed 505 

all three indices are independent from one another. A study by Villéger et al. (2008) 506 

showed that none the three indices were able to meet all the criteria for functional 507 

diversity and you need the combination of all three to being able to predict ecosystem 508 

functioning. The results could be reanalyzed using all three indices and that may lead to a 509 

positive correlation. 510 
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 Using functional traits to predict ecosystem services might be hard because they 511 

aren’t consistent or there might be other factors to be aware of. A study by von der Plas et 512 

al. (2020) results suggest that there is a limit to what functional traits can predict for long-513 

term biodiversity. Analyzing the abiotic factors might improve the prediction of 514 

ecosystem services that the community can provide (von der Plas et al. 2020).  515 

 516 

 517 

4.2 ANOVA  518 

The results of the ANOVA test on all ten response variables showed that nine out of the 519 

ten had significant differences in the performance of ecosystem services among planted 520 

treatments. There was no significant difference in water retention standard deviation. 521 

When looking at the temperatures average temporal means it showed that the mixture 522 

treatment DS.ST.PUR (24.2±0.7) is significantly cooler than all other groups except for 523 

SA.SAL.SS (25.3±0.6) and FR.DS.DF(25.4±0.7) (Figure 4). This was interesting 524 

because the DS (26.4±0.7), ST (27.5±0.7) and PUR (27.1±0.9) monoculture treatments 525 

all had higher temperatures than DS.ST.PUR (Figure 4). This shows that when these three 526 

species are planted in the same community, they lower soil temperature between 0.8 to 527 

3.3 degrees Celsius. A study by Lundholm et al. (2010) showed that combining three 528 

different plant species containing Danthonia spicata, Sedum spurium and a forb 529 

decreased the temperature of the soil more than any of the monocultures. This 530 

compliments the findings of this study by showing mixture treatments containing 531 

different groups of plants will usually outperform monocultures. For temporal stability of 532 

soil temperature, most monoculture treatments significantly had more temperature 533 

temporal stability than mixture treatments (Figure 5). Most monoculture treatments had 534 
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more temporal stability than the control but monocultures ST (6.49±0.41) and SN 535 

(6.61±0.4) (Figure 5). This shows that more diverse communities usually can lower soil 536 

temperature and be more consistent in lowering soil temperature than monocultures.  537 

 The ANOVA test showed that the monoculture treatment SA (47.212±4.708) had 538 

roughly twice as much floral abundance than all other treatments (Figure 6). All 539 

treatments that contained SA had a higher floral abundance compared to those without 540 

SA (figure 6). To ensure that floral abundance is high in a plant community for 541 

pollinators and other species that use flowers for shelter or nutrients; the species Sedium 542 

acre should be included. All mixture treatments tended to have a longer flowering 543 

duration then monocultures, even though they weren’t significantly different (Figure 7). 544 

This shows that having different species that flower at different times will allow for 545 

pollinators to have longer access to this food source.  546 

Height is an important trait that is correlated with many ecosystem services such 547 

as stormwater retention, substrate cooling, substrate winter temperature increase and 548 

reducing UV light (Lundholm et al. 2015). The monoculture treatments FR (46.99±3.81), 549 

DF (34.88±4.58) and DS (25.59±3.77) were significantly the tallest (Figure 8). The 550 

mixture treatment containing all three grass species FR.DS.DF (23.74±3.77) 551 

outperformed all other mixture treatments and monocultures except the three 552 

monocultures FR, DF and DS (Figure 8). Several of the mixture treatments were 553 

significantly more consistent in height temporal stability than some of the monocultures 554 

(Figure 9). This data shows that plant communities that are more diverse have a steadier 555 

growth in height than monocultures. 556 
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Storm water runoff is a problem in urban areas and green roof help with this 557 

problem by retaining and using some of the water (Burszta-Adamiak et al. 2019). The 558 

results for mean stormwater retention showed that mixture treatment AM.SB.SN 559 

(15.53±2.99) was statistically better at water retention than monoculture treatment SS 560 

(9.57±2.99) (Figure 10). The data also showed that all mixture treatments had higher 561 

water retention than monocultures and control treatments (Figure 10). All monocultures 562 

had less water retention than control treatment. This shows that not only do mixture 563 

treatments increase water retention, but having only one species can decrease water 564 

retention. There was no significant difference in water retention standard deviation among 565 

treatments (Figure 11). There was significant difference but several of the monoculture 566 

treatments were less consistent at retaining water than the control treatment (Figure 11).  567 

The ANOVA test showed that canopy density for monoculture treatment SS 568 

(42.10±4.53) had a significantly higher mean canopy density than all treatments except 569 

for monoculture treatment FR (38.25±4.53) (Figure 12).  A study by Lundholm et al. 570 

(2015) results showed that grass species tend to have higher canopy density and Festuca 571 

rubra had the highest canopy density. Several of the monoculture treatments had more 572 

canopy density than mixture treatments (Figure 12). Monoculture treatments have the 573 

greatest temporal stability for canopy density (Figure13). The mixture treatments 574 

AM.SB.SN (0.834±0.132) and FR.DS.DF (0.808±0.132) were significantly less 575 

consistent in canopy density temporal stability than monocultures excluding AM 576 

(0.640±0.164) treatment (Figure 13). 577 

The results have several mixture treatments that outperform most of the 578 

monoculture treatments. To determination of the best mixture treatment from this data, 579 
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we looked at the four means for height, water retention, canopy density and soil 580 

temperature because grass data was not collected for floral abundance and flowering 581 

duration. There were two mixture treatments that seemed to overall outperform all other 582 

mixture treatments. The first mixture treatment FR.DS.DF was the tallest mixture 583 

treatment (23.74±3.77), the third lowest soil temperatures (25.4±0.7), the fourth for 584 

water retention (14.99±2.98) and best mixture treatment for canopy density (14.2±4.53). 585 

The other mixture treatment SA.SAL.SS was one of the shortest treatments (10.79±3.77), 586 

second for soil temperature (25.3±0.7), the second for water retention (15.19±2.98) and 587 

second-best mixture treatment for canopy density (14.15±0.4.54). These would be 588 

considered the best two mixture treatments and depending on which ecosystem services 589 

you believe are more valuable, that would determine which treatment you would choose. 590 

Mixture treatment FR.DS.DF would provide better canopy density and taller plants. 591 

Mixture treatment SA.SAL.SS would provide lower soil temperatures and more water 592 

retention. Other factors to determine which treatment is better could be that succulents are 593 

drought resistant (Li and Yeung 2014) and they produce flowers that are not wind 594 

pollinated, which allows for pollinators to visit them for nutrients and shelter (Colla et al. 595 

2009).  596 

A study by Li and Yeung (2014) stated Sedum spp. have been able to survive 597 

around 113 days without watering depending on soil types. This would make Sedum spp. 598 

an ideal choice on green roofs, especially in dryer areas. Grass species need more water to 599 

be able to survive than Sedum spp. All of the Sedum spp. used in this study have flowers 600 

that pollinators can use for nutrients and shelter, while the grass species are typically 601 

wind pollinated (Colla et al. 2009). Mixture treatment SA.SAL.SS was fifth highest in 602 
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floral abundance (47.212±4.708) and flowering duration (3.244±1.097). Even though 603 

other mixture treatments outperformed mixture treatment SA.SAL.SS in floral abundance 604 

and flowering duration, none of those treatments outperformed in the other response 605 

variables.  606 

 607 

5.0 Conclusion 608 

This study aimed to look at functional traits as a predictor of ecosystem services by using 609 

a functional divergence index. Another objective of this study was to compare mixture 610 

treatments and monoculture treatments to see which provided better quality and more 611 

ecosystem services. Functional diversity was not positively related to any of the 612 

ecosystem services. The results did show that several of the species mixture treatments 613 

outperformed the best monoculture treatments. Several studies concluded similar results 614 

that more diverse plant communities provide more and better-quality ecosystem services 615 

than monoculture communities (Lundholm et al. 2010, Bello et al. 2013, Marafa et al. 616 

2019). The two best mixture treatments in this study were SA.SAL.SS and FR.DS.DF. I 617 

do believe mixture treatment SA.SAL.SS would perform more ecosystem services than 618 

FR.DS.DF because the treatment also has the ability to produce flowers that can aid in 619 

nutrients and shelter for avian and invertebrate species (Coffman and Davis 2005; Colla 620 

et al. 2009). Additional research on functional divergence as a predictor for green roof 621 

ecosystem services needs to be conducted. 622 

 623 

 624 
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