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Does the abundance of ectoparasite in the nest affect nestling condition and 

fledging success? 

 

By: Tracy Alice O. Apienti 

 

 

ABSTRACT 
 

Nestlings of most passerine species face many stressors including early exposure to 

ectoparasites. Ectoparasites negatively impact the health of nestlings by feeding on their 

blood and feathers, leaving the nestlings in poor condition, and reducing their chance to 

fledge. European Starlings (Sturnus vulgaris) are cavity-nesting passerines; they nest in 

the holes of trees and artificial nest boxes which accumulate ectoparasites. Parents are 

known to line their nest with feathers to serve as a barrier to ectoparasites. Only one study 

on the ectoparasite community of European Starlings exists and it was done in Halifax, 

Nova Scotia (Fairn et al. 2014). My objectives were to 1) identify the abundance and 

types of ectoparasite in starling nests, 2) determine whether ectoparasite abundance 

reduces nestling condition and fledging success, and 3) determine whether the mass of 

feathers in the nest reduces ectoparasite abundance and to quantify the number of 

cigarette butts present in nests. This study was conducted in June 2020 on nine nests from 

the late broods of European Starlings. The number of ectoparasites per nest ranged from 

8-31. The only ectoparasites found were adult hen fleas (Ceratophyllus gallinae). I found 

no relationship between ectoparasite abundance and a) mean nestling condition in the 

brood, b) proportion of nestlings that fledged and c) mass of feathers. These results 

suggest that nestlings were not affected by this particular prevalence of ectoparasites. It 

also suggests that feathers do not serve as a barrier which may instead be present in the 

nest to attract the opposite sex. Future studies should examine the effects of different 

ectoparasite prevalences on nestlings. 

                                                                                                                    

                                                                                                                 April 27th, 2021 
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INTRODUCTION 

 

 Development is a crucial stage in a young organism’s life as ample energy is required to 

enable the successful growth of the various systems (such as the circulatory, digestive, 

and immune system) (Brzek and Konarzweksi 2007). The offspring of most birds and 

mammals usually depend heavily on their parents over their developmental period (Pryor 

and Castor 2017). Often, there is bi-parental care, where both parents are involved in 

taking care of the young (Moks and Tilgar 2014). However, even with a high degree of 

parental investment, external factors such as limited resources (food and water), predation 

and parasitism interfere with offspring development (Pryor and Castor 2017). The 

energetically costly demand of development combined with these external factors usually 

elevate the stress levels of young organisms and can reduce their growth rate and chance 

of survival (McCarty 2001). 

 

Developmental stressors of nestlings 

 Like the offspring of other animals, nestlings face numerous stressors in the environment 

during their developmental period which can negatively impact their health and survival 

(Pryor and Castor 2017). The possibility of predation intensifies anti-predator behaviour 

such as hiding or playing dead, at the cost of foraging, self-care, maintenance, and 

reproduction (Thomson et al. 2010). Usually, prey respond to predator attacks by fleeing 

(Nelson et al. 2004) or fighting in defense (Rupia et al. 2016). Nestlings, however, are 

vulnerable and cannot yet fly during an attack, resulting in increased predator pressure 

(Pryor and Castor 2017). When the risk of predation is high at a nest site, parents limit 
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their number of visits to the nest as a way of ensuring their own survival (Moks and 

Tilgar 2014). 

               Nestlings also face difficulties in regulating their body temperature during 

adverse weather conditions. They lack body feathers at early stages of development, and 

so have little insulation during cold temperatures (Merino and Potti 1996). Due to the 

ectothermic nature of nestlings and their inability to thermoregulate, parents tend to brood 

them for longer periods (Lyon and Montgomerie 1985). Thomas et al. (2001) found that 

nestlings lose a lot of body fluid in high temperatures which impact their condition and 

survival. Adverse weather conditions reduce food availability, limiting parental 

provisioning which increases sibling competition for food resources; larger nestlings 

typically outcompeting their smaller siblings (Pryor and Castor 2017). Smiseth et al. 

(2003) found that in Bluethroats (Luscinia svecica), parents tended to favour larger 

nestlings over smaller ones when feeding their offspring during food scarcity because 

they were more likely to survive. Finally, nestlings also deal with ectoparasites. 

                

Ectoparasites  

Ectoparasites are a diverse group of organisms that live on the outside of their host 

(Kupler and Fessler 2018), at their expense, deriving benefits such as food (Price 1980). 

Their abundance in the environment fluctuates across the seasons. Most ectoparasites 

(e.g., fleas, flies) prefer to live in warmer climates (Mehlhorn et al. 2010). Some depend 

on both their host and the resources in the environment to survive as they do not spend 

their entire life cycle on their host (such as the Ixodid tick; Ixodidae). Others depend 

heavily on their host for survival (such as lice; suborder Mallophaga; Esberard et al. 
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2005) which may be due to their monoxenous nature where they are associated with a 

specific host species and have reduced survival on an atypical host (Esberard et al. 2005). 

Tomkins and Clayton (1999) reported that transferring mallophagan lice to a new host 

resulted in a reduced fitness of the lice. They concluded that the novel host may have 

lacked the necessary resources required by the mallophagan lice (Tomkins and Clayton 

1999). 

               Ectoparasites affect many vertebrates such as dogs, birds, and humans, and 

negatively impact their health. Most research conducted (Lehmann 1993; Pryor and castor 

2017; Wolfs et al. 2012), detected an increase in anemia and a decrease in fitness of 

vertebrate hosts who were infested with hematophagous (blood-feeding) ectoparasites 

such as red mites (Dermanyssus gallinae). Other hematophagous ectoparasites such as the 

carnid fly (Carnus hemapterus) and hen fleas (Ceratophyllus gallinae) have also been 

found to decrease nestling survival (Lehmann 1993) by feeding on their blood (Fairn et 

al. 2014). Non-hematophagous species of ectoparasites such as chewing lice 

(Menacanthus eurysternus) leave wounds on their host which can become infected with 

bacteria. The open wound also invites other ectoparasites such as blowflies (Cochliomyia 

hominivorax), causing skin irritation (Mehlhorn et al. 2010). 

               Ectoparasites are vectors of many diseases. For example, the blacklegged tick 

(Ixodes scapularis), is a vector of Lyme disease, babesiosis and anaplasmosis by 

harbouring and transmitting Borrelia burgdorferi, Babesia microti and Anaplasma 

phagocytophilum respectively (Khatchikian et al. 2012). Vertebrates (e.g., humans) 

exposed to the bite of the blacklegged tick exhibited symptoms such as fever, muscular 

pains, and neurological and cardiac diseases (Khatchikian et al. 2012). The cat flea 



7 
 

(Ctenocephalides felis) is another example of an ectoparasitic disease vector. They 

harbour the bacteria Rickettsia and transmit it to their target hosts (humans, cats, and 

dogs; Turebekov et al. 2019), causing rickettsial disease. Research by Nguyen et. al 

(2020) reported that infected hosts (dogs) who were exposed to the bite of cat fleas 

showed disease symptoms such as fever, aching muscles, and a rash. 

 

Effects of ectoparasites on birds 

Common avian ectoparasites are carnid flies, hen fleas, chewing lice, red mites, and 

northern fowl mites (Ornithonyssus sylvarium) (Clayton et al. 2010). Some studies have 

reported that there are ectoparasites present in the nest material and on the feathers 

of most bird species (e.g., European starlings (Sturnus vulgaris); Fairn et al. 2014, Tree 

Swallows (Tachycineta bicolor); Rendell and Verbeek 1996, Harriman et al. 2013, and 

Blue tits (Cyanistes caeruleus); Tripet and Richner 1997, Bouslama et al. 2002). When 

present in the nest, ectoparasites adversely impact the health of their avian host. Clayton 

(1990) showed that pigeon lice (Columbicola columbae) feed on the barbules of the 

abdominal feathers of its avian host. Moller (1991) suggested that chewing lice puncture 

holes in the vanes of pennaceous flight feathers, thereby reducing aerodynamic 

performance. High ectoparasite loads decrease the probability of finding a mate. Females 

prefer males with bright plumage which usually signals good genes or high 

fitness. Damage caused by feather lice reduces the luminosity of the plumage making that 

male unattractive to females (Tris et al. 2002).  

               Ectoparasites increase the resting metabolic rate (RMR) of nestlings. RMR 

refers to the lowest metabolic rate of an individual at rest (Sun et al. 2020). Nestlings 
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infested with ectoparasites are usually malnourished (Thomas and Shutler 2001) and have 

high immune activity as a result of energetically costly behaviours such as begging, 

which increases their RMR (Sun et al. 2020). Ectoparasites affect nestling condition by 

feeding on their blood and feathers which leads to high immune activity and a poorer 

body condition (Moss and Camin 1970). Prolonged feeding on nestlings by parasites 

significantly reduces the body mass of the nestlings and this can potentially decrease the 

chance that a nestling will fledge (Aviles et al. 2009). Weddle (2000) found a negative 

correlation between the mass of fledglings and load of hematophagous nest mites 

(Pellonyssus reedi). However, even if successful in leaving the nest, fledglings had a 

reduced survival rate due to their prior exposure to ectoparasites in the nest (Lehmann 

1993). 

 

How birds deal with ectoparasites 

 As ectoparasites pose a serious challenge to birds, birds have evolved several ways to 

reduce their ectoparasite abundance (Clayton et al. 2010). One of these techniques is 

water bathing (Rothschild and Clay 1952; Clayton et al. 2010). This behaviour not only 

results in a reduction in parasite accumulation on the host but also serves as a means of 

cooling down. Another technique known to be employed by birds is preening which 

involves pulling their feathers between their beak which removes ectoparasites that may 

be hiding in the feathers (Ash 1960; Boyd 1951). Most bird species spend a substantial 

amount of their day preening (Losito et al. 1990). Birds can also allopreen each other 

especially in the areas of the neck and head where it is impossible to self-preen (Harrison 

1965).  
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                Studies have suggested that nests of some bird species such as Song thrushes 

(Turdus philimelos), House finches (Haemorhous mexicanus) and European starlings 

contain cigarette butts (e.g., Hamel and Wagner 1984; Igic et al. 2009; Rodriguez et al. 

2012). These bird species likely add them for the nicotine alkaloid compound that is 

retained in smoked cigarettes which is believed to repel ectoparasites (Wu et al. 1997; 

Rodriguez et al. 2012). The nicotine alkaloid, produced by the tobacco plant (Nicotiana 

sp.) (Rodriguez et a. 2012) is used for self-defence against herbivores (Rodgman and 

Perfetti 2008). It has been introduced in agriculture to act as an arthropod repellent in 

crops (Rodgman and Perfetti 2008) and is also used to control ectoparasites in poultry 

(Lans and Turner 2011). 

               Lastly, birds are known to line their nest with feathers as a preventive method 

for ectoparasite accumulation. Feathers present in the nest are thought to repel 

ectoparasites by acting as a barrier to their movement (Stephenson et al. 2009; 

Mainwaring et al. 2016). However, some studies (Winkler 1993; Chaplain et al. 2002; 

Stephenson et al. 2009; Mainwaring et al. 2016) have suggested that feathers may instead 

serve as insulation to keep nestlings warm.  

 

Sturnus vulgaris as a model  

 Sturnus vulgaris, also known as European starlings, belong to the order Passeriformes 

and are a member of the family Sturnidae. They are native to Europe and were introduced 

to North America in the 1800s (Linz et al. 2007). Starlings are cavity-nesting passerines; 

they nest in the holes of trees, crevices in buildings and in artificial nest boxes (Linz et al. 

2007). They are double-brooded with an early brood occurring from late April to early 
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June and a late brood occurring from early June to late July. Their eggs are ovoid in shape 

and pale blue in colour (Pryor and Castor 2017). Some clutches have eggs with reddish-

brown spots thought to be blood spots or fecal matter from the Dipteran fly, Carnus 

hemapterus (Feare 1984), that feeds on the incubating parents (Hornsby et al. 2013). 

Female starlings lay one egg per day and this usually occurs around 1000h. Clutch size 

ranges from 3-7 eggs (Feare 1984). Both parents incubate for twelve days and nestlings 

fledge at about 21-23 days of age (Linz et al. 2007). 

 

Knowledge gap 

 Starlings were chosen for this study because as cavity-nesting passerines, their nests 

accumulate more ectoparasites which makes them a good model for ectoparasite research 

(Pryor and Castor 2017). Most of the research conducted on starlings focuses on parental 

investment (e.g., Hornsby et al. 2013; Aviles et al. 2009; Pryor and Castor 2017), 

breeding success (e.g., Feare 1984; Wolfs et al. 2012), and the effects of brood size on 

nestling mortality (e.g., Kessel 1957; Crossner 1977). Few studies have focused on the 

detrimental effects that ectoparasites may have on starling nestlings (Mazgajski 2007; 

Pirrello et al. 2015). Furthermore, only one study has reported on the community of 

ectoparasites for this avian species in Halifax, Nova Scotia (Fairn et al. 2014). In their 

study, the prevalent ectoparasites identified were northern fowl mites, two different 

species of lice (Menacanthus eysternus and Brueelia nebulosa), the Carnid fly and hen 

fleas. My research aims to expand on this knowledge and identify the common species of 

ectoparasites in the nest material of European starlings to determine if they are similar to 
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those identified by Fairn et al. (2014), and whether they adversely affect nestling 

condition and fledging success.  

 

Objectives and Predictions 

 My first objective is to compare the abundance and types of ectoparasites found in 

European starling nests to those found at the same study site in past years (2009 and 

2010; Fairn et al. 2014). The second objective is to determine whether the abundance of 

ectoparasites present in nest material affects nestling condition. The final objective is to 

determine whether the mass of feathers reduce ectoparasite abundance in the nest, and to 

quantify the number of cigarette butts found.  

               Starlings clean out their nest boxes between broods, however, ectoparasites still 

accumulate in the nest. Clayton et al. (2010) suggested that ectoparasites find their way 

into the nest by hiding in the feathers of the parents and are transferred to the nestlings 

through contact. Parasite load is usually much higher for later-season broods compared to 

early-season broods (Feare 1984). Kessel (1957) found an increased mortality rate, poorer 

physical condition, and lower fledging success for nestlings of later-season than early-

season broods. 

                I predict that the nests with a greater mass of feathers would have a reduced 

parasite abundance. I also predict that nestlings in nests with more ectoparasites will have 

poorer body condition and reduced fledging success compared to nestlings in nests with 

fewer ectoparasites due to the adverse impacts documented in other studies that 

ectoparasites have on nestlings. 
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METHODS 

 

Field work 

This research was conducted in June 2020 on nine nests in which all nestlings had fledged 

from the late broods of European starlings. The nests of early broods (late April to early 

June) were not examined due to a province-wide lockdown resulting from the global 

COVID- 19 pandemic. Nest boxes were located across the campus of Saint Mary’s 

University (44.6313° N, 63.5815° W) in Halifax, Nova Scotia, Canada. The nests were 

checked daily until clutches were complete. They were again monitored during the hatch 

period; the first day of hatch was recorded as Day 0. On Days 5 and 11, nestling mass was 

determined to the nearest 0.5 grams using a Pesola spring scale. Mean tarsus length was 

also recorded with digital calipers to the nearest 0.1 mm. Mass and tarsus length on Day 5 

(Figure 1) and Day 11 (Figure 2) were tightly correlated and they were good to use in 

determining nestling condition. Nestlings were banded on Day 5 with a plastic leg band 

of a different colour on their right tarsus so as to tell them apart from their siblings. When 

they were 11 days old, they received an aluminum Canadian Wildlife Service (CWS) 

band on their right tarsus. Nestlings fledged when they were between 21 and 23 days old 

(Feare 1984). 

 

Lab methods 

After nestlings fledged, all nine nests were each placed in a plastic bag and frozen at a 

temperature of -18 degrees Celsius for about three months. To separate the ectoparasites 

in the nests from the nesting material, the nests were first dried by transferring each one 
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into a baking pan and placing it in a Fisher Isotemp incubator/drying oven (Model 503) 

with two nests in the oven at a time for 48 hours (Dawson 2004), at a temperature of 50 

degrees Celsius. Each nest was then weighed using a 600gram digital weighing scale 

(Ohaus Scout Pro Balance) after they had cooled down for 15 minutes. Next, the nests 

were sieved for about 5 minutes with a 2mm, 0.0787inches U.S.A Standard Test Sieve to 

obtain ectoparasites. Then all nest material left in the sieve was manually examined to 

further remove any ectoparasites that were missed during sieving. All ectoparasites 

collected from the sieve and the manual process were transferred into vials containing 

70% ethanol to preserve them. They were then counted and identified (Bland and Jacques 

2010) with a dissecting microscope to the Genus level (Fairn et al. 2014) and were 

transferred back into the vials after identification. The mass of feathers that were in each 

nest were also quantified (Mainwaring et al. 2016; Stephenson et al. 2009) as were the 

number of cigarette butts found. 

 

Statistical analysis 

Normality of data for the number of ectoparasites, mass of feathers in each nest, as well 

as nestling condition were each tested using the Anderson-Darling normality test with 

GraphPad Prism 6.0 statistical software. The results were considered to be normally 

distributed when P > α (0.05). Next, I ran a linear regression of mass against mean tarsus 

length. Nestlings with residuals that were above the regression line on Day 5 (Figure 3) 

and Day 11 (Figure 4) were considered to be in good condition while those that fell below 

the regression line were considered to be in poor condition. Finally, I performed 

Pearson’s correlation tests to determine whether a relationship existed between the 
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number of ectoparasites in a nest and a) the mean nestling condition in the brood, and b) 

mass of feathers in each nest. Results were considered significant when P < 0.05. 

 

RESULTS 

 

Ectoparasite abundance, nestling condition and fledging success 

Ectoparasite abundance in the nest ranged from 8-31 per nest (Table 1), with adult hen 

fleas being the only ectoparasite found across broods in my study. Pupae of the carnid fly 

(Diptera: Carnidae; Carnus hemapterus) and blowfly (Diptera; Family: Calliphoridae) 

were also found (Table 2). Other arthropods (i.e., ants and beetles) were found across 

broods (Table 3). Four cigarette butts were also found in three different nests (Table 1). 

Ectoparasites did not influence nestling condition as no significant relationship was found 

between the abundance of ectoparasites and mean nestling condition on either Day 5 (rs = 

0.1345, n = 9, P = 0.73; Figure 5) or Day 11 (rs = 0.5799, n = 9, P = 0.11; Figure 6) of the 

nestling period. Brood condition was not significantly different on Days 5 and 11 (Mean 

+ SE: -1.801 + 0.74 vs. -4.573 + 1.86 respectively; Paired t = 1.692, df = 8, P = 0.13). 

Similarly, no significant relationship was detected between ectoparasite abundance and 

the proportion of nestlings that fledged (rs = 0.3404, n = 9, P = 0.37; Figure 7). Finally, 

the presence of feathers did not seem to reduce ectoparasite abundance; no significant 

relationship was found between ectoparasite abundance and the mass of feathers in each 

nest (rs = 0.1681, n = 9, P = 0.67; Figure 8). 
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Figure 1. Linear regression of mass against tarsus length on Day 5 of the nestling period. 

The black line is the regression line while the black dots represent each individual 

nestling on the study site (n = 71). 
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Figure 2. Linear regression of mass against tarsus length of Day 11 nestlings. Black dots  

represent each individual nestling on the study site (n = 58). 
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Figure 3. Residuals (index of condition) from a linear regression of nestling mass against 

tarsus length for Day 5 nestlings. The black dots are the residual points for each 

individual nestling. The residual points above the line at zero represent nestlings who are 

in a good condition while those below the line represent nestlings in poor condition. 
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Figure 4. Linear regression of nestling condition against length of tarsus on Day 11 of the 

nestling period. Black dots represent the residual points (condition) for each individual 

nestling. 
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Figure 5. Relationship between brood condition (average condition of all nestlings in a 

nest) and ectoparasite abundance for Day 5 nestlings (n = 9 broods).  
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Figure 6. Relationship between brood condition and ectoparasite abundance for Day 11 

nestlings (n = 9 broods).  
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Figure 7. Relationship between the proportion of nestlings that fledged in each nest and 

ectoparasite abundance (n = 9 broods).  
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Figure 8. Relationship between ectoparasite abundance and the mass of feathers 

incorporated into the nest (n = 9 nests). 

 

 

Table 1: The number of hematophagous ectoparasites (Hen fleas), feather mass and 

number of cigarette butts found in each nest box. 

 

Nest boxes Number of ectoparasites    Mass of feathers (g)             Number of cigarette butts 

       2                   9                 6.85 0 

       5                   8                 5.76 0 

       8                  10                 8.61 2 

       9                   9                 6.33 0 

      15                  31                 8.59 1 

      17                  10                 6.11 0 

      21                  18                 7.21 0 

      43                   4                 13.3 0 

      49                  13                12.78 1 
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Table 2: The number of pupae of carnid flies and blowflies found in each of the nine nest 

boxes.  

Nest boxes Carnus pupae Calliphorid pupae 

2 2 0 

5 0 0 

8 20 0 

9 1 0 

15 53 2 

17 4 0 

21 14 0 

43 46 0 

49 28 0 

 

Table 3: The number of non-parasitic arthropods found in each of the nine nest boxes. 

 

Nest boxes Carpenter ants Beetles 

2 16 20 

5 8 11 

8 8 10 

9 6 15 

15 44 20 

17 16 8 

21 22 16 

43 33 4 

49 54 16 

 

 

 

 

 

 



21 
 

DISCUSSION 

 

Ectoparasite load and nestling condition 

Contrary to my prediction, nest-dwelling ectoparasites did not influence nestling 

condition. This result is consistent with findings from other studies on European starling 

nestlings (e.g., Clark and Mason 1988; Fauth et al. 1991; Wolfs et al. 2012). One possible 

explanation is that ectoparasite numbers in this study were very low. In Fairn et al. (2014) 

study, ectoparasite abundance were found to be 141 and 155 in 2009 and 2010, 

respectively. It is unknown why this would be the case for this study, as late broods as 

those that I studied, typically have higher ectoparasite loads compared to early broods 

(Feare 1984), even after being cleaned out between broods either by the parents 

(Mazgajski et al. 2004) or by researchers. Fairn et al. (2014) also quantified the number of 

ectoparasites collected on the nestlings from dust ruffling which this study did not include 

and this could account for the low ectoparasite numbers in this study. Again, in my study, 

I only detected hen fleas; no living or dead Carnus hemapterus were found, although their 

pupae were evident in the nest. Fairn et al. (2014) found that the hematophagous 

ectoparasites in the nests they examined on my study site consisted mainly of mites 

(Ornithonyssus sylvarium), hen fleas (Ceratophyllus gallinae) and a small number of 

carnid fly (Carnus hemapterus).  

               Another possibility is that parents provisioned offspring at a higher rate in nests 

having higher ectoparasite loads. Nestlings beg to communicate their hunger level to 

parents (Granadeiro et al. 2000; Leonard and Horn 2001), and parents respond to 

increased begging by more provisioning visits (Corney and Barber 2018). Therefore, 

parents may have fed the nestlings more frequently to compensate for ectoparasites which 
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would have enhanced nestling condition (Stephenson et al. 2009; Johnson and Albrecht 

1993).  

               Finally, my study had a small sample size, and with a larger sample size, a 

relationship might have been detected. However, interestingly it looks like an increased 

number of hen fleas might result in nestlings being in better condition rather than the 

poorer condition that I had predicted. 

 

Ectoparasite load and fledging success  

Nestling fledging success was not influenced by ectoparasite abundance which is also 

consistent with other studies on European starlings (Powlesland 1977; Lack 1948; 

Mazgajski 2007). Mazgajski (2007) found a greater number of fledglings in their study 

due to adult starlings cleaning out their nest box before use. Powlesland (1977) also found 

that a higher percentage of eggs laid survived to fledging despite the nestlings being 

parasitized by the fowl mite Ornithonyssus bursa. However, Powlesland (1977) noticed 

that most of the nestlings were underweight and this was ascribed to malnourishment as 

the study was conducted during a period of drought in 1974-1975. In subsequent years 

(1975-1976) when precipitation was high, there was no difference in weight observed 

between heavily and lightly infested nestlings. In Lack’s (1948) study, even though 

majority of nestlings fledged, most of them died a few days after leaving the nest and this 

was attributed to the nestlings being underweight from malnourishment and parasite 

infestation. This further suggests that nestling fledging success could be dependent on 

different factors (e.g., malnourishment, ambient temperature, ectoparasite abundance) 

interacting together (Powlesland 1977). 
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               Although adult hen fleas were the only hematophagous ectoparasite present in 

the nests, Carnid fly pupae were also abundant, which suggests that adult Carnus had 

been present in the nests despite no adults being collected. Female carnid flies lay eggs in 

the nest; these eggs eclose into larvae which then feed on dead organic matter in the nest 

(Liker et al. 2001). The larvae then emerge into pupae which overwinter in the nest 

material (Roulin 1998) and are usually inactive. They are not considered as ectoparasites 

as this stage of life. The timing of these pupae emerging as adults is synchronized with 

the hatching of the nestlings (Liker et al. 2001). The Carnus flies are initially winged as 

adults (Grimaldi 1997; Roulin 1998) but lose their wings when they find a suitable host (a 

nestling) (Papp 1998; Grimaldi 1997). Once nestlings develop feathers, the adult flies 

disappear off the host or in some cases, die (Liker et al. 2001) which could account for 

why adult flies were not found in the nest material. 

               With regards to blowfly pupae found in the nest, adult blowflies lay eggs in the 

nest material and the eggs hatch within 24-48 hours (Sabrosky et al. 1989). The larvae 

feed on the blood of the nestlings and hence are considered parasitic (Wittmann and 

Beason 1991). They grow to about 15mm in length and pupate (Wittmann and Beason 

1991; Sabrosky et al. 1989). However, blowfly pupae are not parasitic and as only two 

pupae were found in the nest material, it could be that the larvae were not abundant in the 

nest to affect the nestlings. 

                Arthropods not classified as ectoparasites were also found in the nest, with 

carpenter ants (Formicidae: Camponotus herculeanus) being the dominant species present 

across nest boxes (Table 3). Beetles (Order: Coleoptera), belonging to the Family 

Carabidae (ground beetle), Dermestidae (skin beetle), Elateridae (click beetle) and 
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Staphilinidae (rove beetles) were also present in the nest boxes. These arthropods have 

rarely been reported in European starling nests (Feare 1984) and are not considered to be 

ectoparasites. Furthermore, they may have been serving different roles in the nest. For 

example, beetle larvae serve as food for the nestlings and were probably brought in by the 

parents. Adult beetles also feed on other invertebrates such as ants as well as small 

flowers and leaves in the nest. Although carpenter ants are not known to be ectoparasites, 

they can cause discomfort and disturbance to the nestlings through their biting and 

stinging behaviour.  

 

Ectoparasite abundance and feathers in the nest 

Feathers present in the nest did not prevent ectoparasites from living in the nest, although 

ectoparasite abundance was low. This result supports those found by Lombardo et al. 

(1995) and Stephenson et al. (2009) where no relationship was found between the number 

of feathers and ectoparasite abundance in the nests of Tree Swallows. In my study, the 

nests at the two extremes of feather mass (5.7 vs. 13.3 g) had ectoparasites. This finding 

suggests that feathers may not act as an ectoparasite barrier and may instead be present in 

the nests to serve as insulation (Pryor and Casto 2017; Mainwaring et al. 2016; 

Stephenson et al. 2009). In addition, feathers in the nest may play a role in courtship. The 

courtship hypothesis (Mainwaring et al. 2016; Gwinner et al. 2000; Gwinner 1997; Fauth 

et al. 1991) suggests that males carry feathers into the nest as decoration, when a female 

is watching, and they usually do this to attract the female to pair with them.  
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Cigarette butts, green vegetation and ectoparasite abundance 

European starlings on my study site did incorporate cigarette butts into their nests. 

However, they were few; only four cigarette butts (2:1:1) were found in three different 

nests, and these nests still had ectoparasites within them. This suggests that cigarette butts 

may have not been enough to influence ectoparasite abundance. 

               Numerous studies have also tested for the effects that green vegetation might 

have on ectoparasite abundance (Gwinner et al. 200; Dawson 2004; Wimberger 1984; 

Clark and Mason 1988; Milton and Dean 1998; Rodgers et al. 1988; Sengupta 1981). 

Starling males are known to incorporate fresh vegetation (e.g., tree leaves and pine 

needles, cedar, herbs, and grasses) in the nest. Gwinner (1997) suggested that male 

European starlings exhibit this behaviour for courtship purposes as vegetation can 

potentially attract a female. Moreover, the green vegetation contains volatile compounds 

which may have insecticidal properties that repel ectoparasites (Dawson 2004; Gwinner 

et al. 2000). Therefore, vegetation may have played a role in improving the body 

condition of the nestlings in my study by repelling ectoparasites and reducing their 

numbers in the nest. But since I did not quantify the amount of greenery nor test the 

effects that the greenery has on nest-dwelling ectoparasites, I cannot comment on this. In 

addition, the effects of green vegetation on ectoparasite abundance in the nest is quite 

difficult to determine as there might be other materials (e.g., feathers, cigarette butts) and 

environmental factors (e.g., ambient temperature) (Merino and Potti 1996) present that 

could be influencing ectoparasite numbers. 
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CONCLUSION 
 

To summarize, nest-dwelling hematophagous ectoparasites did not affect nestling 

condition or fledging success in this population of European starlings, although 

ectoparasite abundance was low. Feathers and cigarette butts incorporated into nests also 

did not appear to deter ectoparasites from being present in the nest.  

 

FUTURE RESEARCH 

 
Future studies should examine the effects that ectoparasites at different intensities have on 

nestlings and determine why adults incorporate so many feathers into their nest. Future 

research should also take into consideration the amount of greenery in the nest material to 

determine whether greenery does play a role in reducing ectoparasite abundance. 
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