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Abstract: The single crystal structure of bis(2,4,6-trimethylphenyl)phosphine oxide has been
determined. All interatomic distances and angles can be considered normal. The aryl substituents
adopt an intermediate configuration when compared to both sterically unhindered (e.g.,
diphenylphosphine oxide) and congested (e.g., bis(2,4,6-tri-tert-butylphenyl)phosphine oxide)
secondary phosphine oxides, illustrating the influence of steric congestion on the molecular structure.
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1. Introduction

The importance of organophosphorus compounds is illustrated by their widespread
applications in areas of organic [1,2], inorganic [3,4], medicinal [5–8], and material [9] chemistries.
Over the past decade, the synthetic potential of secondary phosphine oxides has become increasingly
well-established. These compounds are precursors to phosphinoyl radicals; they are effective
reagents in phosphorylation reactions [10–12] due to the accessible P–H bond dissociation energies
(ca. 80 kcal mol−1) [13], and also participate in olefin addition reactions [14,15]. Given the utility of
these compounds, it seemed pertinent to report the single crystal structure of the title compound
bis(2,4,6-trimethylphenyl)phosphine oxide, 1.

2. Results and Discussion

Crystals of the title compound were grown by pentane evaporation, and a crystal structure
was obtained (Figure 1). As expected based on spectroscopic data [16] and related secondary
phosphine oxides [16–19], the organophosphorus compound 1 exhibits a tetracoordinate geometry.
The hydrogen atom H1 was located in the difference map and allowed to freely refine giving
a P1–H1 distance of 1.319(17) Å. The P1–O1 distance measured 1.4854(13) Å and the P1–C1 and
P1–C10 distances were 1.8151(18) Å and 1.8162(18) Å, respectively. The mesityl rings exhibit a twist
of 31.93(16)◦ (measured as the dihedral angle between C1–C6–C10–C15) that is intermediate in
magnitude when compared to diphenylphosphine oxide [17] (1.2◦, relatively unhindered) and
bis(2,4,6-tri-tert-butylphenyl)phosphine oxide [19] (52.4◦, extremely congested), illustrating the
influence of steric congestion on the molecular structure of the compound. In the crystal, intermolecular
O···H–C contacts were identified between O1, H16C, and H17B with interatomic distances of 2.561(2) Å
and 2.653(2) Å, respectively (Figure 2). In the crystal, C–H···π interactions were also observed
between C6–H8B (2.879(3) Å) and C12–H18C (2.842(3) Å), which resulted in a stacking of the mesityl
rings (Figure 2).
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Figure 1. Single crystal structure of 1. Ellipsoids are shown at the 50% probability level. Hydrogen 
atoms (excluding H1) have been omitted for clarity. Selected bond lengths (Å) and angles (°): P1–H1 
1.319(17), P1–O1 1.4854(13), P1–C1 1.8151(18), P1–C10 1.8162(18), O1–P1–H1 111.7(7), C1–P1–H1 
103.9(7), C10–P1–H1 101.2(7), C1–P1–C10 108.07(8), O1–P1–C1 113.94(8), O1–P1–C10 116.64(8), C1–
C6–C10–C15 31.93(16)°.  

 
Figure 2. Packing diagram showing the close contacts in the crystal of 1 when viewed along the b axis. 
Selected distance (Å): O1–H16C 2.561(2). 

The NMR spectroscopic data in CDCl3 for the title compound were consistent with previous 
reports [16]. The 1H NMR spectrum contained resonances at 6.86 (d, 4JHP = 3.7 Hz), 2.39, and 2.28 ppm 
for the meta-aromatic, ortho-methyl, and para-methyl positions of the mesityl groups, respectively. 
The P-H resonance was identified at 8.55 ppm as a doublet with a coupling constant of 476 Hz, which 
is typical for P(V) 1JHP constants [18]. Additional evidence was given by the coalescence of this doublet 
into a singlet at 8.55 ppm in the 1H{31P} NMR spectrum. The 31P{1H} NMR spectrum contained one 
resonance at 10.1 ppm. All resonances in the 13C{1H} NMR spectrum were observed as doublets. The 
aromatic region contained resonances at 141.9 (4JCP = 2.7 Hz), 141.7 (2JCP = 10.4 Hz), 130.5  
(3JCP = 11.0 Hz), and 126.4 ppm (1JCP = 100.1 Hz) for the para, ortho, meta, and ipso carbon environments, 
respectively. Methyl environments were identified at 21.1 (5JCP = 1.0 Hz) and 20.8 ppm (3JCP = 7.8 Hz) 
for the ortho and para positions, respectively. 

  

Figure 1. Single crystal structure of 1. Ellipsoids are shown at the 50% probability level. Hydrogen
atoms (excluding H1) have been omitted for clarity. Selected bond lengths (Å) and angles (◦): P1–H1
1.319(17), P1–O1 1.4854(13), P1–C1 1.8151(18), P1–C10 1.8162(18), O1–P1–H1 111.7(7), C1–P1–H1
103.9(7), C10–P1–H1 101.2(7), C1–P1–C10 108.07(8), O1–P1–C1 113.94(8), O1–P1–C10 116.64(8),
C1–C6–C10–C15 31.93(16)◦.
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Figure 2. Packing diagram showing the close contacts in the crystal of 1 when viewed along the b axis.
Selected distance (Å): O1–H16C 2.561(2).

The NMR spectroscopic data in CDCl3 for the title compound were consistent with previous
reports [16]. The 1H NMR spectrum contained resonances at 6.86 (d, 4JHP = 3.7 Hz), 2.39, and 2.28 ppm
for the meta-aromatic, ortho-methyl, and para-methyl positions of the mesityl groups, respectively.
The P-H resonance was identified at 8.55 ppm as a doublet with a coupling constant of 476 Hz,
which is typical for P(V) 1JHP constants [18]. Additional evidence was given by the coalescence of
this doublet into a singlet at 8.55 ppm in the 1H{31P} NMR spectrum. The 31P{1H} NMR spectrum
contained one resonance at 10.1 ppm. All resonances in the 13C{1H} NMR spectrum were observed
as doublets. The aromatic region contained resonances at 141.9 (4JCP = 2.7 Hz), 141.7 (2JCP = 10.4 Hz),
130.5 (3JCP = 11.0 Hz), and 126.4 ppm (1JCP = 100.1 Hz) for the para, ortho, meta, and ipso carbon
environments, respectively. Methyl environments were identified at 21.1 (5JCP = 1.0 Hz) and 20.8 ppm
(3JCP = 7.8 Hz) for the ortho and para positions, respectively.

3. Materials and Methods

3.1. Materials

All reagents and non-deuterated solvents were purchased from Sigma-Aldrich
(Oakville, ON, Canada) and used without further purification. NMR solvents were purchased
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from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA) and stored over 4 Å molecular
sieves for a minimum of one day prior to use.

3.2. Instrumentation

3.2.1. General Remarks

NMR spectra were recorded at 298 K on a 300 MHz spectrometer (Bruker, Milton, ON, Canada)
and are reported in ppm. 1H-NMR spectra were collected in deuterated solvents and referenced
internally to tetramethylsilane (TMS, δ = 0 ppm). The 13C{1H} NMR spectrum was referenced
internally to CDCl3 relative to TMS (δ = 0 ppm). 31P NMR chemical shifts were referenced to
an external standard of 85% phosphoric acid (δ = 0 ppm). Coupling constants are reported in Hz
and given as absolute values. A sample of 1 was prepared as a KBr pellet for IR spectroscopy,
and measured using a Bruker ALPHA FT-IR spectrometer. High-resolution mass spectrometry was
performed on a micrOTOF from Bruker Daltonics with sample preparation as follows: A sample
of 1 was dissolved in dichloromethane (HPLC grade) and diluted (>10,000 times) with methanol
(HPLC grade). The sample was introduced to the mass spectrometer via syringe pump at a flow rate
of 2 µL min−1 and ionized (electrospray ionization, ESI, positive mode). ESI conditions: spray voltage
applied to the ESI needle = 4.0 kV; dry gas flow rate = 4 L min−1; nebulizer gas pressure = 1 Bar;
source temperature = 180 ◦C. The melting point of 1 was recorded on an Electrothermal MEL-Temp
3.0 using a glass capillary sealed under inert conditions and is uncorrected.

3.2.2. X-ray Crystallography

Under inert conditions, crystals were prepared for mounting by suspending them in paratone-N
oil on a microscope slide. A single crystal was attached to the tip of an appropriately sized MiTeGen
loop with paratone-N oil and cooled to 125 K. Measurements were made on a Bruker APEX2
CCD-equipped diffractometer (30 mA, 50 mV) using monochromated Mo Kα radiation (λ = 0.71073 Å)
at 125 K. The initial orientation and unit cell were indexed [20] using a least-squares analysis of
a random set of reflections collected from three series of 0.5◦ wide scans, 10 seconds per frame,
and 12 frames per series that were well distributed in reciprocal space. For data collection, the frame
length was adjusted to 5 seconds per frame to give a predicted resolution of 0.65 Å, and five
ω-scan frame series were collected with 0.5◦ wide scans and 366 frames per series at varying 2θ,
ω, and ϕ angles (2θ = −28◦,ω = −28◦, ϕ = 0◦, 90◦, 180◦, 270◦; 2θ = 28◦ ω = 28◦, ϕ = 0◦) and a ϕ-scan
with 0.5◦ wide scans and 720 frames (2θ, ω, and ϕ = 0◦). Cell refinement and data reduction were
performed with the Bruker SAINT software [21] which corrects for beam inhomogeneity, possible
crystal decay, and Lorentz and polarization effects. Data processing and a multi-scan absorption
correction was applied using APEX3 software package [21]. The structure was solved using direct
methods [22] and all non-hydrogen atoms were refined anisotropically using the ShelXLE [23] graphical
user interface and SHELXL [24]. Hydrogen atoms (excluding H1) were included at geometrically
idealized positions and were fixed (Ar-H) or in the case of methyl groups, the dihedral angle of the
idealized tetrahedral CH3 fragment was allowed to refine. Hydrogen atoms were placed in calculated
positions using an appropriate riding model and coupled isotropic temperature factors. H1 was located
in the difference map and allowed to freely refine its position, with a coupled isotropic temperature
factor of −1.2 to P1. Figures were made using Ortep-3 for Windows [25] and Mercury [26].

3.3. Synthesis

The title compound was prepared from the hydrolysis of bis(2,4,6-trimethylphenyl)phosphorus
chloride according to a previously published literature procedure [16]. 31P-NMR (CDCl3): δ 10.1 ppm
(d, 1JPH = 476 Hz). 1H-NMR (CDCl3): δ 8.55 (d, 1JHP = 476 Hz, 1H, P-H), 6.86 (d, 4JHP = 3.7 Hz, 4H, m-Ar),
2.39 (s, 12H, o-CH3), 2.28 ppm (s, 6H, p-CH3). 13C{1H} NMR (CDCl3): δ 141.9 (d, 4JCP = 2.7 Hz, para-Ar),
141.7 (d, 2JCP = 10.4 Hz, ortho-Ar), 130.5 (d, 3JCP = 11.0 Hz, meta-Ar), 126.4 (d, 1JCP = 100.1 Hz, ipso-Ar),
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21.1 (d, 5JCP = 1.0 Hz, para-CH3), 20.8 ppm (d, 3JCP = 7.8 Hz, ortho-CH3). IR (KBr pellet): ν 3024 (m),
2957 (vs), 2917 (vs), 2853 (vs), 2737 (m), 2361 (vs, P-H), 2175 (w), 2149 (w), 1950 (w), 1920 (w), 1890 (w),
1764 (w), 1730 (w), 1605 (vs), 1558 (s) 1454 (vs) 1411 (vs), 1378 (vs), 1290 (m), 1274 (w), 1246 (s), 1190 (vs)
, 1170 (vs), 1082 (vs), 1034 (vs), 1003 (vs), 980 (vs), 959 (m), 914 (s), 850 (vs), 804 (w), 716 (m), 639 (vs),
612 (s), 572 (s), 562 (s), 545 (m), 517 (m), 505 (m), 440 (vs), 426 cm−1 (vs). m.p.: 135.5–141.3 ◦C.
HRMS (ESI TOF): [M + Na+]+ found 309.1391. [C18H23PO + Na+]+ requires 309.1384. Crystal data
for C18H23OP (M = 286.33 g mol−1): triclinic, space group P-1 (no. 2), a = 7.9123(6) Å, b = 8.2998(6) Å,
c = 12.4165(9) Å, α = 99.613(4)◦, β = 108.264(4)◦, γ = 91.343(4)◦, V = 760.94(10) Å3, Z = 2, T = 125(2) K,
µ(MoKα) = 0.174 mm−1, Dcalc = 1.250 g cm−3, 9674 reflections measured (1.757◦ ≤ 2Θ ≤ 29.210◦), 3786
unique (Rint = 0.0373, Rsigma = 0.0553) which were used in all calculations. The final R1 was 0.0467
(I > 2σ(I)) and wR2 was 0.1176 (all data). CCDC 1571849 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/
retrieving.html.

Supplementary Materials: The following are available online http://www.mdpi.com/1422-8599/2017/3/M957,
Figure S1: 1H NMR spectrum of 1, Figure S2: 1H{31P} NMR spectrum of 1, Figure S3: 13C{1H} NMR spectrum of 1,
Figure S4: 31P{1H} NMR spectrum of 1, Figure S5: 31P NMR spectrum of 1, Figure S6: IR spectrum of 1, Table S1:
Atomic coordinates and equivalent isotropic displacement parameters of 1, Table S2: Bond lengths [Å] and angles
[◦] for 1, Table S3: Anisotropic displacement parameters for 1, Table S4: Hydrogen coordinates and isotropic
displacement parameters for 1.
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