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Abstract

In this thesis, we consider the problems of numerically solving ordinary differ-
ential equation (ODE) and partial differential equation (PDE) Covid-19 models
with discontinuities. We then tackle the issue of computing accurate continu-
ous solutions to ODE problems through an efficient defect control scheme using
multistep interpolants. The defect is the amount by which a continuous approx-
imate solution fails to satisfy the ODE.

Using a Covid-19 ODE model with discontinuities and the R, Python, Scilab
and Matlab programming environment, we discuss how to handle issues with
time- and state-dependent discontinuities. Solving a Covid-19 PDE model with
an error control PDE solver with event detection capabilities, BACOLIKR [23],
we discuss issues associated with solving PDE models with time- and state-
dependent discontinuities.

Using the framework of multistep interpolants (Hermite-Birkhoff interpolants),
we derive efficient 4th, 6th and 8th order interpolants that can be used to per-
form defect control. We investigate several questions with this approach and
show how to obtain effective defect controlled continuous approximate solutions
to ODEs.

Humaid M. Agowun, Performance Analysis on Covid-19 Models with Discon-
tinuities and Efficient Defect Control for Initial Value ODE solvers, April 28
2022.



Chapter 1

Introduction

This thesis considers three projects, all associated with the numerical solution
of differential equations. The first two chapters address the effective numerical
solution to Covid-19 ordinary differential equations (ODE) with discontinuities
and Covid-19 partial differential equations (PDE) models with discontinuities,
respectively. The last chapter discusses an efficient approach for controlling the
size of the defect of a continuous approximate solution to an ODE. The defect
is the amount by which the continuous approximate solution fails to satisfy the
ODE.

The general form of an ODE considered in this thesis is

y′(t) = f(t, y(t)), (1.1)

and the general form of a PDE considered in this thesis is

ut(x, t) = f(x, t, u(x, t), ux(x, t), uxx(x, t)). (1.2)

All the code for this thesis can be found at the link provided in [5].

1.1 Performance analysis of ODE solvers on Covid-
19 ODE models with discontinuities

In Chapter 2, we discuss issues associated with computing solutions to discon-
tinuous Covid-19 models as they arise in the ODE case. The mathematical
theories that underlie modern numerical ODE solvers are built on the require-
ment that the function that defines the ODE model, f(t, y(t)), and some of
its higher derivatives are continuous. Therefore, discontinuities that are intro-
duced into an ODE problem can drastically change the performance of an ODE
solver. In this chapter, we will analyse the performance of ODE software on
a Covid-19 ODE model to which we will introduce (i) a time-dependent dis-
continuity and (ii) a state-dependent discontinuity. We will show that with a
sufficiently sharp tolerance, the time-dependent discontinuity problem can be
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solved by most solvers with reasonable accuracy but that using a form of dis-
continuity handling significantly improves the efficiency. We will then show that
special care needs to be taken to solve state-dependent discontinuity problems
and show how event detection allows for efficient and accurate results to be
obtained. Event detection is the capability of modern solvers to detect when a
given condition that depends in the solution being computed is satisfied.

1.2 Performance analysis of PDE solvers on Covid-
19 PDE models with discontinuities

In Chapter 3, we discuss the numerical solution of discontinuous Covid-19 PDE
problems. As was the case with ODEs, PDE solvers are not expected to per-
form well when faced with a discontinuous PDE problem. Using a Covid-19
PDE model to which we introduce a time-dependent or a state-dependent dis-
continuity, we will show that BACOLIKR [23], the only PDE solver that, to
our knowledge, can do event detection, can solve time-dependent discontinuity
problems using a sufficiently sharp tolerance but that it does so more efficiently
with discontinuity handling. We will then show that its ‘event detection’ ca-
pability allows it to solve the state-dependent discontinuity problem which it
otherwise cannot solve.

1.3 Efficient defect control using multistep in-
terpolants

In Chapter 4, we consider the concept of ‘defect control’. We discuss its impor-
tance and the efficiency issues associated with ODE solvers based on Runge-
Kutta methods [13] that control the maximum defect of a continuous approxi-
mate solution. Standard approaches typically makes use of continuous Runge-
Kutta methods [13] to perform defect control which typically involves perform-
ing several evaluations of the right hand side function of the ODE, f(t, y(t)). In
this chapter, we consider an approach to perform defect control using a multi-
step Hermite interpolant [13] that requires no additional function evaluations.
We will augment 4th, 6th and 8th order Runge Kutta methods with a Her-
mite cubic, with a sixth order Hermite-Birkhoff interpolant and an eighth order
Hermite-Birkhoff interpolant and show that high quality interpolants can be
obtained using no extra function evaluations. In its simplest form, a numerical
method typically solves an ODE by stepping from the initial time to the final
time, using stepsize h. It computes a solution approximation at the end of each
step. A method is said to be of order p, if the error associated with the solu-
tion approximations it computes behaves like O(hp). We will discuss challenges
associated with this approach and how these challenges can be addressed. We
then conclude with suggestions for additional work that can be done on this
project.
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Chapter 2

Performance Analysis of
ODE solvers on Covid-19
ODE models with
discontinuities

2.1 Introduction

In this chapter, we will discuss the results of a careful investigation of the
performance of a variety of software packages applied to typical initial value
ordinary differential equation (IVODEs) encountered in Covid-19 models (See,
e.g., [24]).

For any mathematical model, the accuracy requirements of the numerical
solution should be determined by the quality of the model and the accuracy of
the parameters that appear in the model. Numerical errors associated with the
computational techniques that are used to obtain the approximate solution must
always be negligible compared to the accuracy to which the model is defined.
Researchers deserve to obtain numerically accurate solutions to the models that
they are studying. In this chapter, we will show that the straightforward use
of standard IVODE solvers on typical Covid-19 models can lead to numerical
solutions that have large errors, sometimes of the same order of magnitude as
the solution itself. Most of the IVODE solvers that we consider in this chapter
allow the user to specify a parameter called a tolerance. The solvers use adaptive
algorithms to attempt to compute an approximate solution with a corresponding
error estimate that is approximately equal to the tolerance.

In Section 2.1.1, we review examples of how IVODEs are used in epidemi-
ology. In Section 2.1.2, we define the SEIR models which we will consider
throughout this chapter. In Section 2.1.3, we discuss numerical stability issues
that arise in problems (such as Covid-19 models) with exponentially growing
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solutions. In Section 2.1.4, we explain the difference between fixed step-size
and error-controlled IVODE solvers. The IVODE software packages from pro-
gramming environments that are typically used by researchers are described in
Section 2.1.4. We also make a note of issues with evaluation of approximate
solutions at output points that lead to inefficiencies for some of these solvers in
Section 2.1.5. In Section 2.1.6, we discuss the effects of problem discontinuities
on the performance of these solvers.

In Section 2.2.1, we apply the solvers to a Covid-19 problem with a time-
dependent discontinuity and show how, in some cases, this results in numerical
solutions with relative errors of the same magnitude as the solution being com-
puted. In Section 2.2.2, we will use discontinuity handling to accurately solve
the time-dependent discontinuity problem. In Section 2.2.3, we will use a range
of tolerances to discuss the effects of tolerance on the accuracy and efficiency of
some of the solvers.

In Section 2.3.1, we apply the solvers to a Covid-19 problem with a state-
dependent discontinuity and show how, when using a straightforward implemen-
tation of the problem, none of the solvers are able to obtain accurate solutions.
We will explain how even the use of very sharp tolerances is not sufficient to
improve the computed solutions in Section 2.3.2 and show that a more effective
way to solve this problem is through the use of event detection, which we will
describe in Section 2.3.3. We then provide an accurate solution to the state-
dependent discontinuity problem in Section 2.3.4 and perform a tolerance study
on this problem in Section 2.3.5.

In Section 2.4, we examine implementation details for solvers with excep-
tionally poor solutions to investigate the cause of their errors. We conclude the
chapter in Section 2.5 with a summary and a discussion of the potential for
future work projects.

2.1.1 Epidemiological modelling

One common form of an epidemiological study is forecasting. Using previously
obtained parameters, the researcher develops a mathematical model involving
differential equations which are solved using an ODE solver. Often, the solver
will be used to integrate over a large time period so that the researcher can
examine how the disease will spread. In Section 2.1.3, we discuss why it is
unrealistic to attempt to compute a numerical solution for large time periods
if the infection is still growing exponentially and how measures such as social
distancing when introduced into the model lead to changes in the numerical
solution that then allow solvers to reduce errors so that reasonably accurate
solutions can be computed over longer time periods by improving the stability
of the model. Before the addition of measures such as social distancing, the
SEIR problem has a component that is unstable. When measures are added,
the problem gain some stability and thus allow more accurate modeling.

A second type of epidemiology study involves parameter estimation. In this
kind of study, data points are collected about the spread of a virus and we try to
fit a mathematical model to that data. In so doing, we can estimate values for

4



some modelling parameters that will minimize the error in the fit. An example
of such a study can be found in Appendix 6.1. Parameter estimation studies
often involve using an ODE solver inside an optimization algorithm and thus
the computing time, especially for large problems, can be significant. Since the
computational cost is typically inversely proportional to the tolerance, we will
investigate to what extent coarse tolerances can be employed in the computation
of solutions to Covid-19 models.

2.1.2 Detailed description of two Covid-19 models with
discontinuities.

In this section, we describe the models that we are going to consider in this
chapter. They involve a typical SEIR model to which we add discontinuities.

An IVODE problem is defined by the equations and the initial conditions:

y′(t) = f(t, y(t)), y(t0) = y0

where f(t, y(t)) is a function that defines the derivative at time, t. A complete
definition also includes the initial values of the solution components. Given
f(t, y(t)) and y(t0), the goal is to find an approximation to y(t) using numerical
methods.

In this chapter, we consider the Covid-19 model [12]:

dS

dt
= µN − µS − β

N
IS,

dE

dt
=

β

N
IS − αE − µE,

dI

dt
= αE − γI − µI,

dR

dt
= γI − µR

In this SEIR model, we describe the epidemic over time. S is the number of
susceptible individuals, E is the number of exposed individuals, I is the num-
ber of infected individuals and R is the number of recovered individuals at a
point in time. We use N to represent the population size. The other param-
eters in this model are as follows: α−1 is the average incubation period, β is
the transmission rate, γ is the recovery rate and µ is the birth/death rate. In
this chapter, we assume that all these parameters are known. Our goal is to
investigate the performance of IVODE solvers on forms of this problem that
have discontinuities. We will see that we can get approximate solutions that are
not efficiently computed and/or that may have significant errors. This latter
issue can have serious consequences as the computed solution will fail to show
the actual impact of the virus corresponding to the actual epidemiology theo-
ries behind the mathematical models. These incorrect numerical solutions may
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lead epidemiologists into reaching incorrect conclusions and thus lead them into
questioning the mathematical models themselves when, in fact, it is the solvers
that are at fault.

The discontinuities we are going to consider involve the parameter β. Before
measures such as social distancing, masking, etc., are implemented, β has a
much higher value than after the measures are introduced. For the purpose of
this study, we will use a large β value equal to 0.9 before the measures and a
small β value equal to 0.005 after they are implemented, corresponding to a
highly contagious variant and extreme shut down measures, respectively. These
choices will highlight the different numerical issues as such an abrupt change
in a modelling parameter introduces a discontinuity as we will show in Section
2.1.6. We will consider two types of discontinuities. One depends only on t; the
other depends on the value of one of the solution components. We will refer to
the former as a time-dependent discontinuity and the latter as a state-dependent
discontinuity.

For the time-dependent discontinuity, we will assume that at some point in
time, measures are implemented that will lead to a reduction in the parameter
β. We would like to solve the problem through this discontinuity but as we will
show, this discontinuity introduces a numerical issue.

For the state-dependent discontinuity, we consider the following situation.
If the population of exposed people reaches a certain maximum threshold, mea-
sures are introduced, which decreases the value of β. This introduces a dis-
continuity. Then, when the population of exposed people drops below a certain
minimum threshold, the measures are relaxed, which increases β back to its orig-
inal value, which introduces another discontinuity. We will try to model this
problem through multiple instances of shut-downs followed by periods where
measures are relaxed. We consider a case where vaccines are not being used.
This corresponds to setting β back to its original value when the measures are
removed. We note that each time we change the parameter β, a discontinuity
is introduced and thus this problem is far more discontinuous than the previous
one, which had only one discontinuity. For this problem, we show that all the
solvers will fail.

The other parameters are assumed to be constant with N = 37,741,000 (the
approximate Canadian population size), α = 1/8, γ = 0.06, and µ = 0.01/365.
The initial values are E(0) = 103, I(0) = 1, R(0) = 0 and S(0) = N - E(0) - I(0)
- R(0). This gives us a complete system of IVODEs that is in a form that can
be solved by typical software packages.

2.1.3 Exponential growth and the issue of instability for
ODEs

Some of the solution components of the SEIR model exhibit exponential growth
over certain time periods. In this section, we discuss exponentially growing
solutions and their impact on the accurate computation of a numerical solution.
Firstly, we give a quick overview of stability for ODEs. Then we will show
that the SEIR model is unstable over certain time intervals and how changing
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the model in a way that corresponds to introducing measures such as social
distancing can improve the stability of the model because none of the solution
components are exponentially increasing. This is important as this essentially
means that before measures are implemented, accurate models are for the most
part very difficult to obtain but the addition of the measures such as social
distancing result in changes in the model so that the solution components are
exponentially decreasing instead of increasing. This represents a gain in stability
that can lead to the solvers being able to compute more accurate solutions.

The stability of an ODE is often defined in terms of the impact of small
changes to the initial values on the solution to the problem. An ODE is unstable
if a small change in the initial values results in a large change in the solution;
otherwise, the ODE is said to be stable.

It is straightforward to see that problems with a solution component that
exhibits exponential growth are unstable. As mentioned above, this is the case
with some of the solution components of a Covid-19 model. The population of
infected people, I, grows exponentially as long as no measures are introduced
to reduce the spread of the virus. This means that ODE solvers will experience
difficulties in obtaining accurate numerical solutions.

In Figure 2.1, we show exponentially growing solutions corresponding to
models with slightly different initial values for E(0). We can see that we get
different solutions, that become even more different as time increases.

Figure 2.1: When a solution exhibits exponential growth, relatively small
changes in the initial value can eventually lead to much different solution values.
Here we consider initial values of E(t) equal to 70, 80, .., 120.

However, when we introduce measures such as social distancing, which corre-
sponds to a smaller β value, the solution will exhibit slower exponential growth
or can even show exponential decay. Slower exponential growth means that the
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solution will not be as sensitive to changes to the initial values. Exponential
decay is even better as the solutions from different initial values will converge.

Epidemic modeling problems exhibit solutions with this type of behavior.
At first, the problem is unstable but as measures are implemented, which lead
to exponential decay rather than growth, the problem becomes stable. We show
this in Figure 2.2 for the problem with the time-dependent discontinuity. At
first, the solutions diverge when there is exponential growth, but the introduc-
tion of measures such as social distancing introduce exponential decay which
makes them converge. Thus the measures not only save lives but also improve
the capability of solvers to compute accurate solutions.

Figure 2.2: Unstable solutions in the region [0, 40] becomes stable in the region
[40, 90] as measures are implemented. Here we consider initial values of E(t)
equal to 70, 80, .., 120.

2.1.4 Brief overview of numerical software

We start by explaining how typical solvers attempt to solve an IVODE problem.
Given initial values (at the initial time, t0), the solver will use an initial step
size, h, to compute a solution at time, t1(= t0 + h). Similarly, the solver will
attempt to take a sequence of steps until it reaches the end time. High-quality
solvers will also employ an interpolation algorithm usually locally within each
step to get a continuous numerical solution. We note that a solver is said to have
order p if the difference between the true solution and the computed solution is
O(hp).

In the next section, we describe what a solver will attempt to do to improve
the accuracy of the computed solution. We then discuss the numerical solvers
we are going to use throughout our investigation. We will then provide an
additional discussion on the implementation of interpolation to get a continuous
numerical solution and how some programming environments have not set up
their ODE solvers to use interpolation in an optimal fashion.
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Fixed Step Size and Error Control Solvers

In this section, we explain the role of the tolerance and the difference between
fixed step size and adaptive step-size error control solvers.

The tolerance is a measure of how accurate we want the solution computed
by the solvers to be. A key point here is that solvers that can take a tolerance as
input must have some way of computing an estimate of the error of the solution
that they compute. Then that error estimate can be compared with the user-
provided tolerance. Generally, an absolute tolerance means that we want the
error estimate to be approximately equal to the tolerance, whereas a relative
tolerance means that we want the ratio of the error estimate and the computed
solution to be approximately equal to the tolerance. Some solvers will use a
blended combination of the provided absolute and relative tolerances.

A solver is said to have a fixed step size if the solver begins with an initial
step-size and this step-size is used throughout the whole integration. In this
case, the solver will step from one point to the next and will not check if the
numerical solution it obtains at the end of each step is sufficiently accurate.
Thus, the distance between the points, i.e, the step size, is constant throughout
the computation.

An error-controlled solver starts with an initial step size but as it takes a
step, it will compute an error estimate and, based on the tolerance, will repeat
the computation with a smaller step-size if the error estimate is larger than the
tolerance. It will repeat this process until the error estimate satisfies the given
tolerance. Only then will it move to the next step. Thus it reduces the step-size
as needed throughout the computation. We note that the error depends on the
step-size and that a smaller step-size generally leads to a smaller error. However,
a small step-size means that the computation is slower because more steps will
be needed and thus if the error estimate is much smaller than the tolerance,
the solver will increase the step-size for the next step. This allows it to make
sure that the given tolerance is satisfied over the whole problem interval and
that as large a step as possible is being taken to optimize the efficiency of the
computation.

Error control is not simple to implement. Some researchers may be tempted
to write their own solvers, based on a non-error control method like a simple
fixed step-size Euler or Runge-Kutta method [13]. We will show, using some
fixed step-size solvers, how these solvers simply cannot solve a Covid-19 model
with reasonable accuracy. Without error control, these solvers cannot handle
the discontinuity and stability issues that are present in these models and they
will give erroneous solutions, often without even a warning that the computed
solutions should not be trusted.

In this thesis, we will be referring to numerical solutions that have, what we
will call, reasonable accuracy. By this we mean numerical solutions that agree
with high accuracy solutions to at least two decimal places, which means that
when these solutions are plotted, they are visually indistinguishable from the
high accuracy solutions.
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The ODE Solvers

The ODE solvers are grouped into the following classes: Runge-Kutta methods,
Runge-Kutta pairs [13], and multi-step methods [13].

A Runge-Kutta method is a one-step method that uses function evaluations,
i.e, evaluations of f(t, y(t)), within the step. An example is the classical four-
stage, fourth-order Runge-Kutta method [13]. A simple solver based on this
type of method steps across the time domain with a fixed step-size and has no
error control.

A Runge-Kutta pair [13] uses two Runge-Kutta methods of order p and p+1
for some integer, p. One of the methods is used to compute a solution and the
other method is used to compute an error estimate. A solver that is based on
a Runge-Kutta pair resizes the step based on the error estimate, as discussed
previously. An example of such a solver is the DOPRI5 solver [13] that uses
a fifth-order method for the solution and a fourth-order method for the error
estimate.

A multi-step method is a solver that will use a linear combination of solution
and function values from the current and previous steps to take the next step.
An example of such a solver is LSODA [13]. Such solvers compute an error
estimate for the numerical solution that they return and use the error-estimate
to control the step-size as discussed above. Such solvers typically implement
a family of multi-step methods and thus also have the capability to adapt the
order of the method they used based on the error estimate.

R packages Scientists who solve ODE models in R commonly use the
deSolve package [30], and the ode() function within it. ode() provides many
numerical methods to solve a problem but we have focused our investigation only
on the following popular choices: ‘lsoda’, ‘daspk’, ‘euler’, ‘rk4’, ‘ode45’, ‘Radau’,
‘bdf’ and ‘adams’. The default method is ‘lsoda’ and the default tolerances are
10−6 for both the absolute and relative tolerances. We also note that we did not
consider the other integrators in the deSolve package like rkMethod(), which
provides other Runge-Kutta methods, and the other methods which are called
by the ode() function itself.

The error control solvers are:

� ‘lsoda’ calls the Fortran LSODA routine from ODEPACK [22]. It can
automatically detect stiffness and choose between a stiff Backward Differ-
entiation Formula (BDF) [13] and a non-stiff Adams solver [13].

� ‘daspk’ calls the Fortran DAE solver of the same name [32].

� ‘ode45’ calls an implementation of Dormand-Prince (4)5 (DOPRI5) Runge-
Kutta pair [13], written in C.

� ‘Radau’ calls the Fortran solver RADAU5 [20] which implements a Runge-
Kutta method of 5th order known as the RADAU IIA method.
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� ‘bdf’ calls the stiff solver inside the Fortran LSODA package which is
based on a family of BDF methods.

� ‘adams’ calls the non-stiff solver inside the Fortran LSODA package which
is based on a family of Adams methods.

The fixed step-size solvers are:

� ‘euler’ calls the classical Euler method which is implemented in C.

� ‘rk4’ uses the classical Runge-Kutta method of order 4 which is imple-
mented in C.

We will use these latter two methods to demonstrate what happens when
non-error-controlled solvers are applied to Covid-19 models.

We next consider the R interface for handling output. The ode() function is
given a vector of output points. The function will use interpolation by default
but the interpolation schemes for all the solvers are not implemented in the most
efficient way. As a result, the vector of output points affects the step sequence
and efficiency of the solver in a manner which we describe in Section 2.1.5.

Python packages In Python, researchers can use the scipy.integrate pack-
age [34], and will normally use the solve ivp() function due to its newer inter-
face. It lets the user apply the following methods: ‘RK23’, ‘RK45’, ‘DOP853’,
‘Radau’, ‘BDF’ and ’LSODA‘. In this chapter, we will investigate all of these
methods. The default solver in solve ivp() is ‘RK45’ and the default tolerance
is 10−3 for the relative tolerance and 10−6 for the absolute tolerance. All of
these solvers employ some form of error control:

� ‘RK23’ uses an explicit Runge-Kutta pair of order 3(2), the Bogacki-
Shampine pair of formulas [7]. It is a Python implementation.

� ‘RK45’ uses the DOPRI5 pair of formulas, an explicit Runge-Kutta pair
of order 5(4). It is a Python implementation.

� ‘DOP853’ uses an explicit Runge-Kutta triple of order 8(5, 3) [2]. It is a
Python implementation.

� ‘Radau’ uses the implicit Radau IIA method of order 5. It is a Python
implementation of the RADAU5 Fortran solver.

� ‘BDF’ uses a method based on BDF methods with the order varying au-
tomatically from 1 to 5. It is a Python implementation.

� ‘LSODA’ calls the Fortran LSODA routine from ODEPACK. It can auto-
matically detect stiffness and choose between a stiff Backward Differenti-
ation Formula (BDF) and a non-stiff Adams solver.
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We note that all solvers in solve ivp() have error control and that only
’LSODA’ uses the Fortran package itself; the others are a Python implementa-
tion and will likely be slower.

We next discuss Python’s solve ivp() interface. It can integrate, i.e, step
across the time domain, given only the initial time and the final time and it will
return the output at the end of each successful step. It can also take a t eval
vector of specified output points. The solver is allowed to take as big a step
as needed and required solution approximations, as specified by t eval vector,
are obtained using interpolation. Thus it does not suffer from the inefficiencies
described in Section 2.1.5. The interface also has a dense output flag. This
returns an interpolant for the solution over the whole time range.

Scilab packages In Scilab, researchers solve differential equations using a
method from the ode() function [10], which has the following methods: ‘lsoda’,
‘adams’, ‘stiff’, ‘rk’, ‘rkf’. The default integrator is ‘lsoda’. Default values for
the tolerances are 10−5 for the relative tolerance and 10−7 for the absolute
tolerance for all solvers used except ‘rkf’ for which the relative tolerance is 10−3

and the absolute tolerance is 10−4. All of these solvers are error control solvers.

� ‘lsoda’ calls the Fortran LSODA routine from ODEPACK. It can automat-
ically detect stiffness and choose between a stiff Backward Differentiation
Formula (BDF) and a non-stiff Adams solver.

� ‘stiff’ calls the stiff solver inside the Fortran LSODA package which is
based on a family of BDF methods.

� ‘adams’ calls the non-stiff solver inside the Fortran LSODA package which
is based on a family of Adams methods.

� ‘rk’ calls an adaptive Runge-Kutta method of order 4. It uses Richardson
extrapolation [28] for the error estimation. It is implemented in Fortran
in a program called ‘rkqc.f’ [4].

� ‘rkf’ calls the Fortran program written by Shampine and Watts based on
Fehlberg’s Runge-Kutta pair of order 4 and 5 (RKF45) pair [27]. It is
implemented in a Fortran program called ‘rkf45.f’ [4].

The ode() function in Scilab takes as input a vector of output points and
the code uses interpolation or stops the integration at the output points, as
described in Section 2.1.5, based on the method used. For example, Scilab’s
‘rkf’ is an interface to an old software package, ‘rkf45.f’ which does not have
any interpolation capabilities.

Matlab packages In Matlab, researchers can solve differential equations
with the ode suite [29] of functions. We will consider two of these: ode45() and
ode15s(). Default values for the tolerances are 10−3 for the relative tolerance
and 10−6 for the absolute tolerance.
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� Using ode45() calls a Matlab implementation of DOPRI5.

� Using ode15s() employs an algorithm that is a variable-step, variable-order
(VSVO) solver based on the numerical differentiation formulas (NDFs) [29]
of orders 1 to 5. Optionally, it can use BDF methods but these are usually
less efficient.

Functions in the ode suite takes the initial and final time only and this allows
a solver to take as big a step as needed. With such an interface, it does not
suffer from the issues discussed in Section 2.1.5.

How the packages relate We tried to find connections across the pro-
gramming environment where the solvers appear to be using the same source
code. Here is what we found:

In R, Python, and Scilab, the ‘lsoda’ method is a wrapper around the Fortran
LSODA code from ODEPACK.

The R ‘bdf’ method is equivalent to the Scilab ‘stiff’ method in that they
both use the LSODA code from ODEPACK; however, the Python ‘BDF’ method
is a different implementation in Python itself.

The R ‘adams’ method and the Scilab ‘adams’ method are the same since
they both use the LSODA code from ODEPACK.

The R and Python Runge Kutta 5(4) pairs are both implementations of
DOPRI5 but they have different source code as the version in Python is imple-
mented in Python while the R version is implemented in C. The ode45() function
in Matlab is a Matlab implementation of DOPRI5. The Scilab ‘rkf’ method does
not use the same pair; it uses the Shampine and Watts implementation of the
Fehlberg’s Runge-Kutta pair, not the Dormand-Prince pair.

The Scilab ‘rk’ method, which is of order 4, and the R ‘rk4’ method are
not the same solvers. The Scilab ‘rk’ method is adaptive (error-controlled with
Richardson extrapolation for the error estimate) whereas the R ‘rk4’ method is
a fixed step-size implementation of the classical 4-stage, 4th order Runge-Kutta
method.

The R and Python ‘Radau’ methods have different source code as Python
implements a Python version of RADAU5 while R calls the Fortran version of
RADAU5 through a C interface.

2.1.5 Observations on obtaining solution approximations
at output points

In this section, we discuss an issue that we encountered with some of the ODE
solvers in R and Scilab when it comes to obtaining output. In an ideal scenario,
the user’s desired output points should not interfere with the efficiency of the
solvers. However, in these two platforms, a method for handling output points
is used which makes treating a large number of output points very inefficient.

Regarding the choice of a step-size, a standard ODE solver works as follows.
Using a default initial step-size, the solver will take a fixed step. It will then
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accept or reject the step based on whether the error estimate satisfies the toler-
ance and will adjust the step-size based on this to take the next step or retake
the current step. This process is repeated until the solver reaches the end of
the interval. However, often the users of an ODE solver will require output
at specific points and these points may be internal to the steps. The current
state-of-the-art approach to get solution approximations at these output points
is to construct a high accuracy interpolant on the given step and to return the
value of the interpolant at the required point. The interpolation error is usually
at least of order p if the numerical ODE solution is of order p. This way the ac-
curacy of the solution approximation at a point that is interior to a step should
be comparable to the accuracy of the solution approximation at the end of the
step. However some solvers use a lower order interpolant in order to reduce the
computational cost.

Note that the standard ODE solvers only control the error at the end of the
step. That is, an error estimate is generated for the solution approximation at
the end of the step and the step is accepted if this error estimate satisfies the
tolerance. It is hoped that the solution approximations obtained through the use
of the interpolant will be of comparable accuracy to the solution approximation
at the end of the step. It is typically the case that no error control is actually
applied to the continuous solution approximation.

In R and Scilab, the above approach for handling output points is not used
in all the solvers. Instead, some solvers in R and Scilab use the output points to
dictate the step-size. An issue arises when many output points appear between
the steps that would normally be taken by the solver. These solvers will use the
difference between the current point and the next output point to determine the
step-size. We note that some R solvers, such as the ‘ode45’ method, do have
interpolants but that their implementation still allows the user defined output
points in a way that will affect the efficiency of the solver.

In such approaches, the output points will limit the step-size that can be
taken and will lead to additional function evaluations being performed be-
cause the solver needs to compute a solution approximation using the numerical
method at each output point. This will lead to a considerable drop in efficiency
as we will show later in this chapter; see for example Tables 2.9 and 2.10. These
tables show that a problem that can be solved with 150 function evaluations
will be solved with 500 function evaluations when there are many output points.

This method of handling output points in which the solver steps to each
output point and uses the numerical method itself to compute a solution ap-
proximation also means that the accuracy of the solution depends on the space
between the output points. Thus, we get the unusual behavior that the accu-
racy is increased by putting the output points closer together and the accuracy
is decreased by putting them further apart. We will point out these inconsis-
tencies as they become relevant later in this chapter. We also note that spacing
the points closer together is not a good way to control the accuracy as it is im-
possible to know beforehand how close the points should be in order to obtain
a desired accuracy.
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Figure 2.3: The result of using the R ‘ode45’ method to solve the same problem
with a very coarse tolerance but with different spaces between the output points.
Here the space between the points are 1, 3, 5 and 7. These are plotted alongside
a highly accurate solution.

Figure 2.3 shows an experiment where we solve the time-dependent disconti-
nuity Covid-19 problem using the R ‘ode45’ method, which is an implementation
of DOPRI5 which has error control and uses interpolation but allows the output
points to affect the integration. We set both the absolute and relative tolerance
to 0.1 and thus expect low accuracy but very good efficiency. However, the
space between the output points becomes the limiting factor for the step-size.
When there are many output points, the computed solution has more accuracy
than is requested and is computed in a very inefficient manner considering the
required tolerance. We recorded the number of function evaluations in Table
2.1 and it can be seen that the solver is using many more function evaluations
than are needed to satisfy such a coarse tolerance. In Table 2.1, ‘spacing’ refers
to the distance between the output points and ‘nfev’ is the number of function
evaluations. A spacing of 1 means that the full set of output points [1, 2, ..., 95]
is required. A spacing of 3 means that only every third point from the above
list of output points is defined, and so on.

Table 2.1: R DOPRI5 output point spacing experiment number of function
evaluations.

spacing nfev
1 572
3 188
5 116
7 80
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From Figure 2.3 and Table 2.1, we note that we did not ask the solver for
an accurate solution but it is giving us a solution that is much more accurate
than requested when the spacing between the output points is small. This extra
accuracy comes at a price of around 500 more function evaluations. Accuracy
should ideally be completely determined by the tolerance but using this method
of stepping to the output points substantially interferes with this ideal. This
results in the solver not being allowed to take as big a step as it should be,
based on the tolerance, and this leads to substantial inefficiency.

It is important that users employ the interpolation option for an ODE solver
whenever such an option is readily available so that the solvers can run as
efficiently as possible. We also reiterate that the interpolant should have an
interpolation error that is at least of order p if the ODE solver gives a solution
with an error that is of order p so that the interpolation error is not larger than
the error of the numerical solution.

2.1.6 Discontinuities and their effects on solvers

The main purpose of this chapter is to discuss how to solve models with dis-
continuities and how these discontinuities affect the process of computing an
accurate numerical solution to the model. In this section, we will show what
happens when a solver encounters a discontinuity and how this discontinuity
leads to inaccurate solutions.

We first note that one of the core assumptions for all the solvers is that the
function f(t, y(t)) and a sufficient number of its higher derivatives are contin-
uous. If the right-hand side function is discontinuous, this can have a major
(negative) impact on the performance and accuracy of the solvers.

We will see that discontinuities will have huge impacts on the accuracy and
efficiency of the solvers, that some solvers, even with error control, will require
an extremely sharp tolerance in order to step over the discontinuity in a way
that allows them to obtain a reasonably accurate solution approximation, and
that fixed-step solvers simply cannot solve these problems accurately.

It is important to note that the step taken by a solver that first meets a
discontinuity will almost always fail. This is because in order for the solver to
step over a discontinuity, the step size needs to be much smaller than the one
that is typically being used before the discontinuity is encountered. The solver
will thus have to retake the step with a smaller step size and as long as the
error estimate associated with the numerical solution computed on the step is
not small enough, it will need to continue reducing the step-size. This leads to
a large number of function evaluations near the discontinuity.

In Figures 2.4 and 2.5, we run ‘LSODA’ and ‘DOP853’ from Python on
the time-dependent discontinuity problem where a discontinuity is introduced
at t=27 and plot the time at which the ith function evaluation occurs. We
show the spike in the number of function evaluations at the discontinuity as the
solvers repeatedly retake the step with smaller and smaller step-sizes.

Following from the above discussion, we can suggest that, for the case where
the location of the time discontinuity is unknown, researchers could carry out a
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Figure 2.4: Function evaluations for the Python ‘LSODA’ method for the time-
dependent discontinuity problem with a discontinuity at t=27.

manual discontinuity detection experiment to see if their model has a disconti-
nuity and if so, where it is located. A trivial experiment is done by collecting
data that shows the time at which the solver made the ith call to the func-
tion that evaluates the right hand side of the ODE. When a plot of the time
against the cumulative count of the function calls gives an almost vertical line,
it typically indicates that the function was called repeatedly at a specific time
and thus that the solver repeatedly changed the step-size in this region to step
over a discontinuity. In the remainder of this chapter, we will outline ways to
accurately and efficiently solve problems with such discontinuities.
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Figure 2.5: Function evaluations for the Python ‘DOP853’ method for the time-
dependent discontinuity problem with a discontinuity at t=27.
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2.2 Time-dependent discontinuity problem

In the time-dependent discontinuity problem, we change the value of the pa-
rameter β from 0.9 to 0.005 at t=27 until we integrate to tf = 95. (A β value
of 0.9 indicates a highly transmissible disease whereas a β value of 0.005 in-
dicates a slow transmission rate due to preventive measures.) This introduces
a discontinuity into the problem. We will show that this leads to inaccuracies
in the solutions computed by the solvers, especially the fixed-step solvers. We
then introduce a form of discontinuity handling, using what are known as cold
starts, to show how to obtain an efficient approach for solving time-dependent
discontinuity problems.

2.2.1 Naive solution of the Time dependent discontinuity
model

A naive implementation of the problem is to use an if-statement inside the
right-hand side function, f(t, y), to implement the change in β as measures are
implemented. An if-statement makes the function f(t, y) and its derivatives
discontinuous. This introduces issues as outlined in Section 2.1.6.

In pseudo code, this looks like:

f unc t i on mode l w i th i f ( t , y )
// . . .
beta = 0.005
i f t < 27 :

beta = 0 .9
// . . .
// return ( dSdt , dEdt , dIdt , dRdt )

Also, to stay true to a naive treatment, we will use the default tolerances in
this section. Discrepancies across the programming environments that are due
to tolerance issues are investigated in Section 2.2.3. We also note than for the
fixed step-size methods in the R environment, the step-size is 1 as the solvers
will default to the distance between two consecutive output points, and for these
experiments we have set the output points sequence to be 1, 2, 3, ..., 95.
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Naive solution to the time dependent discontinuity model in R

Figure 2.6: Solutions to the time-dependent discontinuity model using solvers
from R.

From Figure 2.6, we can see that all the methods except ‘euler’ and ‘rk4’ compute
solutions that give reasonable accuracy. The ‘rk4’ method gives a solution that
is somewhat close to the solutions obtained by the other solvers but the solution
computed by the ‘euler’ method is noticibly incorrect. We note that all the other
methods have error control while the ‘rk4’ and ‘euler’ methods are fixed step-size
solvers.

We also note that the ‘rk4’ method does better than the ‘euler’ method for
this specific problem as it has a higher order. But, since ‘rk4’ is using a fixed
step-size with no error control, its performance is still better than expected. We
show that this is entirely because of how output points are handled, as discussed
in Section 2.1.5. If we use a larger spacing between the output points, the ‘rk4’
methods gives results that are of similar accuracy to the results yielded by the
‘euler’ method. Figure 2.7 shows an experiment with ‘rk4’ used with different
spacing between the output points plotted against an accurate solution in red.
We can see that as we increase the spacing for ‘rk4’, it does not give good
results. Analyzing the source code for ‘rk4’ and ‘euler’ [1] shows that these
methods select the step size using the requested output points. Spacing out
the output points affects the step-size which affects the accuracy of the fixed
step-size solver.
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Figure 2.7: Solutions computed by ‘rk4’ in R with output point spacings com-
pared with an accurate solution computed by LSODA.

If a user wants to use ‘rk4’ or ‘euler’, to get an accurate solution, the user
would have to choose a small step-size. However, the user cannot know be-
forehand how small a step-size is small enough to deliver a desired accuracy.
Furthermore, there is the issue that a sufficiently small step-size can vary from
one part of the domain to another as the problem difficulty changes. A fixed
step-size solver will have to choose the smallest step required anywhere in the
domain and this can lead to substantial inefficiency. A better approach is to
not use fixed step-size solvers. Reliable methods with error control should be
preferred since these solvers can accurately step over a discontinuity by resizing
the step repeatedly, as needed.

21



Naive solution to the time dependent discontinuity model in Python

Figure 2.8: Solutions to the time-dependent discontinuity model using solvers
from Python.

From Figure 2.8, we can see that all the methods in the Python’s solve ivp()
function work reasonably well. There is some blurring at the peak, indicating
some disagreement among the methods, but all the methods provide reasonably
accurate results. Python only provides error-controlled packages and thus we
can see that error-control is all that is needed to step over this discontinuity.
This observation also leads us to another conclusion that a reasonably sharp
tolerance with an error-control method is what is required to step over this
type of discontinuity. (Recall that all Python methods use a default absolute
tolerance of 10−6 and a relative tolerance of 10−3.)
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Naive solution to the time dependent discontinuity model in Scilab

Figure 2.9: Solutions to the time-dependent discontinuity model using solvers
from Scilab.

From Figure 2.9, we can see that in Scilab, all the methods give similar solutions
except for ‘rkf’. This is interesting as we know that ‘rkf’ uses error control.
This is explained by noting that ‘rkf’ uses coarser default absolute and relative
tolerances. We will show, through a tolerance analysis in Section 2.2.3, that with
a sharp enough tolerance, ‘rkf’ also provides a reasonably accurate solution.

The other methods are all error-controlled and give similar results as ex-
pected. We note that all of the other methods have a higher default tolerance
than ‘rkf’ and thus this result is not surprising.

These results also point out that an error control solver with a sharp tol-
erance can step over this type of discontinuity while maintaining a reasonable
level of accuracy in the computed solution.
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Naive solution to the time dependent discontinuity model in Matlab

Figure 2.10: Solutions to the time-dependent discontinuity model using solvers
from Matlab.

Figure 2.10 shows that the Matlab solvers ode45 and ode15s are not in agree-
ment. This is unexpected because both are error controlled. We note that the
behaviour of ode45 is similar to what we have seen for ‘rkf’ in Scilab but the
methods are based on different algorithms. In Matlab, both ode45 and ode15s
have the same default tolerances so we can rule out that a tolerance difference
is the reason for this behavior. We will see that ode45 can give a similar result
to ode15s answers when the tolerance is sharp enough in Section 2.2.3 and thus
the issue may be associated with differences in the way that the two solvers
apply the absolute and relative tolerances.

Summary of naive approach of solving time dependent discontinuity
problems

Generally, the time dependent discontinuity problem can be solved accurately
by solvers that employ error control with a sufficiently sharp tolerance. However
as we will see in the next section, the solvers are quite inefficient in how they
handle the discontinuity. (See Section 2.1.6 for an explanation of why this
inefficiency arises.)

2.2.2 An improved approach for the solution of the time-
dependent discontinuity models

A better way to solve the time-dependent discontinuity problem is to make use
of cold starts. This means that we use the solver to step up to the discontinuity
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and we restart the solver using a cold start. Restarting a solver with a cold
start at the time of the discontinuity improves the accuracy as we will see in
this and the next section. It also improves the efficiency as fewer function calls
are required since we do not have the spike in function calls due to the repeated
step-size resizing described in Section 2.1.6.

A cold start means that we restart the solver with method parameters set
so that the solver starts the computation with no values from the previous
computation influencing the new integration. It will also involve using a small
initial step size and for methods of varying order like the ‘BDF’ and ‘Adams’
methods, they will restart with the default order which is order 1.

To solve the time dependent discontinuity problem, we will integrate from
time 0 to the time that measures are implemented, t=27, with one call to the
solver and then use the solution values at t=27 as the initial values to make
another call that will integrate (restarting with a cold start) from t=27 to tf .
The pseudo-code is as follows:

i n i t i a l v a l u e s = (S0 , E0 , I0 , R0)
t span be f o r e = [ 0 , 27 ]
s o l u t i o n b e f o r e = ode ( i n t i a l v a l u e s , mode l be fore measures ,
t span be f o r e )

i n i t i a l v a l u e s a f t e r = ex t r a c t l a s t r ow ( s o l u t i o n b e f o r e )
t s p an a f t e r = [ 27 , 95 ]
s o l u t i o n a f t e r = ode ( i n t i a l v a l u e s a f t e r ,
mode l a f te r measures , t s p an a f t e r )

s o l u t i o n = concatenate ( s o l u t i o n b e f o r e , s o l u t i o n a f t e r )

This technique can be applied to any problem where it is known when the
discontinuity is introduced. This is a much better approach than introducing a
time-dependent if-statement into the model.
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Solving the time dependent discontinuity model in R using a cold
start

Figure 2.11: Solutions to the time dependent discontinuity model using solvers
from R and a cold start at t=27.

From Figure 2.11, we see that the ‘euler’ method still fails even when the cold
start form of discontinuity handling is introduced. This is as expected as this
method has no error control and thus it still suffers from accuracy issues and
will require smaller steps to achieve even a modest degree of accuracy.

We see that breaking the integration into two parts makes ‘rk4’ perform
better. The method has a higher order, meaning that it does not need as
small a step-size as ‘euler’ to solve the two continuous problems to reasonable
accuracy but this exceptionally good performance is still unexpected. We will
show in Figure 2.12 that the performance of ‘rk4’ is associated with the method
of handling output points as described in Section 2.1.5.
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Figure 2.12: The R version of ‘rk4’ with bigger output point spacings and with
discontinuity handling.

Thus our recommendation to avoid fixed step size solvers still holds since
users will not typically know how small the step size needs to be to obtain
sufficient accuracy.

We also note again, that all the error-controlled solvers perform well. We
will see, from the efficiency data given in Table 2.2, that using cold starts is
more efficient. Using cold starts, the error control solvers do not have to step
over a discontinuity and we will not have the rise in the number of function
evaluations as we discussed in 2.1.6.

Table 2.2: R Efficiency data for the time-dependent discontinuity problem -
number of function evaluations.

method no discontinuity handling with discontinuity handling
euler 96 97
rk4 381 382
lsoda 332 272
ode45 735 599
radau 679 585
bdf 423 263

adams 210 176
daspk 517 521

Our analysis of the efficiency data in Table 2.2 starts by noting that the
non-error controlled solvers in the ‘euler’ and rk4’ methods have almost the
same number of function evaluations, the additional one being due to integrat-
ing twice at time 27. This indicates that they are just stepping from output

27



point to output point using the same fixed step-size both with and without the
discontinuity handling.

Next, we note significant decreases in the number of function evaluations
for all the remaining solvers except ‘daspk’. These reductions in the number
of function evaluations will have a significant impact on the CPU time for the
difficult problem. This improvement in efficiency is entirely explained in Section
2.1.6 where the error-controlled solvers have to repeatedly resize the step-size
as they encounter the discontinuity.

Finally, we explain the almost constant value of the number of function
evaluations for the ‘daspk’ method through the fact that it is not using an ap-
propriate interpolation scheme to obtain solution approximations at the output
points. Instead it is using the approach described in Section 2.1.5. In another
experiment with a larger spacing between output points, we found that ‘daspk’
uses 627 function evaluations without discontinuity handling and 522 function
evaluations with discontinuity handling. This result is more consistent with the
results from Table 2.2.

In Section 2.2.3, we will see that this discontinuity handling also allows us
to use coarser tolerances, which improves the efficiency of the computation.

Solving the time dependent discontinuity model in Python using a
cold start

Figure 2.13: Solutions to the time dependent discontinuity model using solvers
from Python and a cold start at t=27.

The Python solvers did not have significant accuracy issues even without dis-
continuity handling. This is because all the available methods use error control
and the default tolerances are sharp enough. From Figure 2.13, we can see that
the Python solvers again give reasonably accurate results. Furthermore, the
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slight blurring at the peak has been reduced indicating that there is an even
better agreement among the solvers. The addition of discontinuity handling
also significantly reduces the number of function evaluations. This can be seen
in Table 2.3.

Table 2.3: Python Efficiency data for the time-dependent discontinuity problem
- number of function evaluations.

method no discontinuity handling with discontinuity handling
lsoda 162 124
rk45 134 130
bdf 202 146

radau 336 220
dop853 329 181
rk23 152 127

We note that we are not using the dense output option here. However, the
Python solvers do not allow the space between the output points to affect the
accuracy. They use some form of local interpolation within each step where
there are output points.

From Table 2.3, we see that when discontinuity handling is introduced, the
methods use fewer function evaluations. There are some significant improve-
ments for ‘BDF’, ‘DOP853’ and ‘Radau’. There are slight decreases for ‘LSODA’
and ‘RK23’ and only a very small decrease for ‘RK45’.
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Solving the time dependent discontinuity model in Scilab using a cold
start

Figure 2.14: Solutions to the time dependent discontinuity model using solvers
from Scilab and a cold start at t=27.

We can see from Figure 2.14 that all the methods show good agreement and
thus the time-dependent discontinuity model is being solved to a reasonable
accuracy. The ‘rkf’ method is also giving reasonable results. This is despite
‘rkf’ having a coarser default tolerance.

The addition of discontinuity handling also significantly reduces the number
of function evaluations as seen in Table 2.4.

Table 2.4: Scilab Efficiency data for the time-dependent discontinuity problem
- number of function evaluations.

method no discontinuity handling with discontinuity handling
lsoda 346 292
stiff 531 362
rkf 589 590
rk 1649 1473

adams 304 221

From Table 2.4, we see that all the methods use fewer function evaluations
except for ‘rkf’. We see substantial decreases in the number of function evalua-
tions for ‘lsoda’, ‘stiff’, ‘rk’ and ‘adams’.

The unusual result for ‘rkf’ (the number of function evaluations does not
decrease) occurs because ‘rkf’ is using the method for handling output points as
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outlined in Section 2.1.5. The results, when we space out the output points more,
are 335 function evaluations without discontinuity handling and 292 function
evaluations with discontinuity handling.

We note that the high number of function evaluations in ‘rk’ with and with-
out discontinuity handling is because it is using Richardson extrapolation [28]
to get an error estimate. Richardson extrapolation involves using the Runge-
Kutta method twice, once to get the solution approximation at the end of the
step and once again with half the step-size to do two steps in the same interval
to get a more accurate solution to use to obtain an error estimate. Thus in one
actual step, there are three ‘steps’ and this leads to a large number of function
evaluations.

Solving the time dependent discontinuity model in Matlab using a
cold start

Figure 2.15: Solutions to the time dependent discontinuity model using solvers
from Matlab and a cold start at t=27.

From Figure 2.15 we can see that both solvers give similar solutions. We remem-
ber that with an if-statement inside the function f(t, y(t)), the two solvers gave
different solutions. As we will show in Section 2.2.3, the discontinuity handling
allows us to use a coarser tolerance and thus allows ode45 to give a reasonably
accurate result.

We also show in Table 2.5 that discontinuity handling allows the solvers to
use fewer function evaluations. From Table 2.5, ode45 uses 11 less function
evaluations while ode15s uses 31 less function evaluations.
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Table 2.5: Matlab Efficiency data for the time-dependent discontinuity problem
- number of function evaluations.

method no discontinuity handling with discontinuity handling
ode45 175 164
ode15s 144 113

2.2.3 Efficiency data and tolerance study for the time dis-
continuous problem

It is not uncommon for researchers to use an ODE solver in a loop or within an
optimization algorithm so that they can study models with different problem-
dependent parameter values. In such contexts, it may be reasonable to coarsen
the tolerances whenever the computation is taking too long. In this section, we
investigate how coarse we can set the tolerance while still obtaining reasonably
accurate results for the time-dependent discontinuity model.

We investigate ‘lsoda’ across R, Python, and Scilab as they all appear to
use the same source code. We use this experiment to show that discontinuity
handling allows us to use coarser tolerances.

We will also investigate ‘rkf’ in Scilab as it has a coarser default tolerance
than the other Scilab solvers, and ode45 in Matlab, both of which failed to solve
the time-dependent discontinuity model with an accuracy that was compara-
ble to that of the other solvers. We will show that they can solve the problem
without discontinuity handling only at sharper tolerances than the default toler-
ances. We also investigate solvers based on Runge-Kutta pairs of the same order
as the pair used in ‘rkf’ and ode45 in the other programming environments; R
and Python have versions of DOPRI5 but do not share the same source code.
The DOPRI5 in Python is a Python implementation and the one in R is an in-
terface to a C implementation. The solver called ode45 in Matlab uses DOPRI5
but it is implemented in the Matlab programming language.

Comparing LSODA across platforms for the time-dependent discon-
tinuity problem

Time discontinuity LSODA tolerance study in R In this section, we
run the R LSODA solver with multiple tolerances with and without discontinuity
handling. We will set both the relative and absolute tolerances to various values
and see how coarse we can set the tolerance while still obtaining reasonably
accurate results. We also look at efficiency data to observe decreases in the
number of function evaluations.
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Figure 2.16: Time discontinuity model tolerance study on the R version of
LSODA without a cold start.

Figure 2.17: Time discontinuity model tolerance study on the R version of
LSODA with a cold start.

From Figures 2.16 and 2.17, we can see that the addition of discontinuity
handling allows the solver to use coarser tolerances and still get a reasonable re-
sult; we need a tolerance at least as sharp as 10−3 without discontinuity handling
but can use a tolerance as coarse as 10−2 with it. This supports the observation
that the use of discontinuity handling when solving a discontinuous problem is
advantageous. Also, using coarser tolerances leads to better efficiency, as we
can see in Table 2.6.
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Table 2.6: The R LSODA time-dependent discontinuity model tolerance study
- number of function evaluations.

tolerance no discontinuity handling with discontinuity handling
1e-01 197 200
1e-02 214 206
1e-03 264 212
1e-04 264 224
1e-05 317 244
1e-06 332 272
1e-07 393 298

From Table 2.6, we see that for the coarser tolerances, the number of function
evaluations is roughly the same whether discontinuity handling is employed or
not. But with sharper tolerances, many more function evaluations are required
when discontinuity handling is not employed and thus if we had a user-provided
function that was expensive to evaluate, we would see clear reductions in com-
putation times.

A similar number of function evaluations for the coarser tolerances should
cause us to overlook the fact that the solver without discontinuity handling at
these tolerances gives results that are not as accurate as the results obtained
using the solver with discontinuity handling. The small differences of 3 function
evaluations for the 0.1 tolerance case and 8 function evaluations in the 0.01 case
do not excuse the fact that the solutions are significantly less accurate.

Time discontinuity LSODA tolerance study in Python In this sec-
tion, we run the Python version of the LSODA solver with multiple tolerances
with and without discontinuity handling. We note that the Python solvers give
sufficiently accurate results in both cases apart from some small disagreements
in the case where no discontinuity handling is employed but we will see how
coarse we can choose the tolerance while still obtaining reasonably accurate
results. We also look at efficiency data to see the decreases in the number of
function evaluations.
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Figure 2.18: Time discontinuity model tolerance study on the Python version
of LSODA without a cold start.

Figure 2.19: Time discontinuity model tolerance study on the Python version
of LSODA with a cold start.

From Figures 2.19 and 2.18, we see that with the use of the discontinuity han-
dling, a tolerance of 10−2 is enough to get a reasonably accurate result whereas
a tolerance of 10−3 is needed otherwise. Also, the use of coarser tolerances leads
to better efficiency. (See Table 2.7.)
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Table 2.7: The Python LSODA time-dependent discontinuity model tolerance
study - number of function evaluations.

tolerance no discontinuity handling with discontinuity handling
0.1 79 86
0.01 98 93
0.001 156 116
0.0001 185 146
1e-05 259 186
1e-06 283 228
1e-07 361 272

Again, in Table 2.7, we see that that at coarse tolerances, the number of
function evaluations is roughly the same whether discontinuity handling is em-
ployed or not. This similar number of function evaluations does not excuse
the fact that the coarser tolerances are not reasonably accurate solutions when
discontinuity handling is not employed.

At sharper tolerances, where solutions of reasonable accuracy are obtained
in all cases, the number of function evaluations is much smaller with disconti-
nuity handling than without. There are 40 fewer function evaluations at 0.001
and 0.0001 and there are substantially fewer function evaluations for sharper
tolerances. We note that if the function for the evaluation of the right-hand
side of the ODE was more time-consuming, this reduced number of function
evaluations will cause a significant decrease in the CPU times.

Time discontinuity LSODA tolerance study in Scilab In this sec-
tion, we run the Scilab version of the LSODA solver with multiple tolerances
with and without discontinuity handling. We investigate how coarse we can set
the tolerance while still getting reasonably accurate results.
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Figure 2.20: Time discontinuity model tolerance study on the Scilab version of
LSODA without a cold start.

Figure 2.21: Time discontinuity model tolerance study on the Scilab version of
LSODA with a cold start.

From Figures 2.20 and 2.21 we can see that for tolerances from 10−1 to
10−4, the Scilab version of LSODA without discontinuity handling does not
yield reasonably accurate solutions but we are able to use a tolerance as coarse
as 10−2 with discontinuity handling.

It is interesting to see how inacurate the solution without discontinuity han-
dling is at a tolerance of 10−1. We also note that this behavior is different from
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the R and the Python version LSODA but this may be due to the way Scilab
applies the tolerances.

Table 2.8: The Scilab LSODA time-dependent discontinuity model tolerance
study - number of function evaluations.

tolerance no discontinuity handling with discontinuity handling
0.1 80 82
0.01 98 92
0.001 156 116
1e-4 185 146
1e-5 255 186
1e-6 280 228
1e-7 361 272

Again, in Table 2.8, we see that the number of function evaluations is roughly
the same at coarser tolerances whether discontinuity handling is employed or not
but that at sharp tolerances, where both computations give reasonably accurate
solutions and thus allow for a fair comparison, the solver with discontinuity
handling performs better than the solver without discontinuity handling. We
can use up to 90 fewer function evaluations through the use of discontinuity
handling.

Comparing solvers based on Runge-Kutta pairs across platforms for
the time dependent discontinuity problem

Time dependent discontinuity model tolerance study on the R ver-
sion of DOPRI5 In this section, we use the R version of DOPRI5, which is
the ‘ode45’ method of the ode function, with multiple tolerances with and with-
out discontinuity handling. We will investigate how coarse we can choose the
tolerance while still getting reasonably accurate results. We also look at effi-
ciency data to see the decreases in the number of function evaluations when
discontinuity handling is employed.
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Figure 2.22: Time Discontinuity model tolerance study on the R version of
DOPRI5 without discontinuity handling.

Figure 2.23: Time Discontinuity model tolerance study on the R version of
DOPRI5 with discontinuity handling.

From Figures 2.22 and 2.23, we see that the addition of discontinuity han-
dling lets us use a coarser tolerance and still get a reasonably accurate answer.
Without discontinuity handling, we had to use 10−4 for both the absolute and
relative tolerances but with discontinuity handling, we can use 10−1.

However, as we will see in the Python version of DOPRI5, the results from
Figures 2.22 and 2.23 are suspicious and stem from the fact that R is not using a
proper interpolation scheme to produce the results. It is using an algorithm that
depends on the selected output points and which affects efficiency and accuracy,
as discussed in Section 2.1.5.
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Table 2.9: The R DOPRI5 time-dependent discontinuity model tolerance study
- number of function evaluations.

tolerance no discontinuity handling with discontinuity handling
1e-01 572 574
1e-02 572 574
1e-03 572 574
1e-04 612 574
1e-05 692 587
1e-06 735 599
1e-07 926 702

Table 2.9 also confirms our suspicions since, at coarser tolerances, 10−1 to
10−3, the number of function evaluations does not change at all. This indicates
that something else, not the tolerance nor the discontinuity, is the limiting factor
for the number of function evaluations and that this other factor leads to a need
for around 572 or 574 function evaluations.

We suspect that the R version of DOPRI5 version is not using an appropriate
interpolation scheme to evaluate the numerical solution and that it is integrating
using the output points to determine the step-size. We therefore perform the
following experiment where we specify a smaller set of output points with the
points further spaced out from each other.

Figure 2.24: Time Discontinuity model tolerance study on the R version of
DOPRI5 without discontinuity handling and with output points more spaced
out.
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Figure 2.25: Time Discontinuity model tolerance study on the R version of
DOPRI5 with discontinuity handling and with output points more spaced out.

From Figures 2.24 and 2.25, we can now see a more significant change in
the solution when the output points are further spaced out. Also, we see in
Table 2.10 that the number of function evaluations actually changes with the
tolerance.

Using these two figures, we also see that discontinuity handling is allowing
us to use coarser tolerances while still obtaining reasonable accuracy. We can
use even a tolerance of 10−1 with discontinuity handling while getting a reason-
ably accurate result, whereas, without discontinuity handling, we need to use a
tolerance of 10−3 or sharper to get a reasonably accurate answer.

Table 2.10: The R DOPRI5 time-dependent discontinuity model tolerance study
with spaced output points - number of function evaluations.

tolerance no discontinuity handling with discontinuity handling
1e-01 116 112
1e-02 142 125
1e-03 168 131
1e-04 246 162
1e-05 352 235
1e-06 614 349
1e-07 796 542

Our analysis of Table 2.10 begins by noting that the set of output points is no
longer a limiting factor. We can see the number of function evaluations changes
with the tolerance now and this indicates that the tolerance is controlling the
step-size. This confirms our suspicion that the R implementation of DOPRI5
is not using an appropriate interpolation scheme. Instead, it is allowing the
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output points to determine the step-size and thus dictate the efficiency of the
solver.

Regarding the accuracy of the solver as we coarsen the tolerance we can see
from Figures 2.24 and 2.25 that even at a tolerance of 10−1, the solver with
the discontinuity handling is still able to produce reasonably accurate solutions
whereas it requires a tolerance of 10−3 for the solver without the discontinuity
handling.

The new table, Table 2.10, does offer some more insights. Again we can
see that at coarser tolerances, the decrease in the number of function evalu-
ations when discontinuity handling is employed is small but as the tolerance
is sharpened, the number of function evaluations when discontinuity handling
is employed decreases significantly. The relatively similar number of function
evaluations at the coarser tolerances must be viewed taking into account the
fact that the solver without discontinuity handling is not getting a reasonably
accurate answer.

Time dependent discontinuity model tolerance study on the Python
version of DOPRI5 In this section, we run the Python version of DOPRI5,
which is aliased under ’RK45’ from the solver ivp function, with multiple toler-
ances, with and without discontinuity handling. We will investigate how coarse
we can choose the tolerance while still obtaining reasonably accurate results.
We also look at efficiency data to determine the decreases in the number of
function evaluations when discontinuity handling is employed.

Figure 2.26: Time Discontinuity model tolerance study on the Python version
of DOPRI5 without discontinuity handling.
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Figure 2.27: Time Discontinuity model tolerance study on the Python version
of DOPRI5 with discontinuity handling.

From Figures 2.27 and 2.26, we can see clear differences in the computed
solutions at different tolerance values. From studying Python’s solve ivp inter-
face and source code, we note that Python is using a correct implementation of
interpolation.

We then compare the Python version of DOPRI5 with and without discon-
tinuity handling. We can see that the use of discontinuity handling allows us
to use coarser tolerances while still obtaining reasonably accurate results. We
see that we need a tolerance of 10−5 or sharper to get reasonably accurate solu-
tions without discontinuity handling while a tolerance of 10−2 is small enough
when discontinuity handling is employed. We will also see in Table 2.11 that
the solver with discontinuity handling is much more efficient.

Table 2.11: The Python DOPRI5 time-dependent discontinuity model tolerance
study - number of function evaluations.

tolerance no discontinuity handling with discontinuity handling
0.1 68 70
0.01 86 88
0.001 146 124
0.0001 224 172
1e-05 326 250
1e-06 488 370
1e-07 752 568

From Table 2.11, we see that at coarser tolerances, the number of function
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evaluations is greater with the discontinuity handling than without discontinuity
handling. We must point out that, DOPRI5 at coarse tolerances gives very
inaccurate results; the errors are too large to excuse the small gain in efficiency.

At sharper tolerances where we get reasonably accurate results both with
and without discontinuity handling, and thus a fair comparison can be done, we
can see that the code with discontinuity handling performs much better. At a
tolerance of 10−5 or sharper, the decrease in the number of function evaluations
is 75 or more.

Time dependent discontinuity model tolerance study on the Scilab
version of RKF45 In this section, we run the Scilab version of RKF45 aliased
as ‘rkf’ in the ode function with different tolerances. We note that the default
tolerance for the Scilab ‘rkf’ function was not sufficiently small to solve the
problem to reasonable accuracy without discontinuity handling but using cold
starts, we can solve the problem even with that default tolerance.

By running ‘rkf’ at various tolerances, we will show that it can also com-
pute reasonably accurate solutions at sharper tolerances without discontinuity
handling. Thus the anomaly we saw in Section 2.2.1 occurred entirely because
the solver has a coarser default tolerance than the other methods.

We will also see that using discontinuity handling leads to the use of fewer
function evaluations which, given a more complex problem, would result in a
significant improvement in computation times.

Figure 2.28: Time discontinuity model tolerance study on the Scilab version of
RKF45 without discontinuity handling.
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Figure 2.29: Time discontinuity model tolerance study on the Scilab version of
RKF45 with discontinuity handling.

We see from Figure 2.28 that using 10−4 for both the absolute and the rela-
tive tolerance gives reasonably accurate answers and that anything coarser leads
to somewhat inaccurate solutions. We then recall that the relative tolerance de-
faults to 10−3 and the absolute tolerance defaults to 10−4 for ‘rkf’ which is
slightly coarser than what is needed to get a reasonably accurate solution.

Figure 2.29 is also interesting as it seems to indicate that a tolerance of
10−1 is enough to get the correct solution with discontinuity handling. This is
surprising but consistent with our observations for the R and Python Runge-
Kutta pairs.

Table 2.12: The Scilab RKF45 time-dependent discontinuity model tolerance
study - number of function evaluations.

tolerance no discontinuity handling with discontinuity handling
0.1 577 584
0.01 577 584
0.001 583 584
1e-4 641 590
1e-5 674 608
1e-6 847 764
1e-7 924 830

We can see from Table 2.12 that the Scilab ‘rkf’ method is not using in-
terpolation. We can make this conclusion because at the coarser tolerances, it
is using the same number of function evaluations independent of the tolerance.
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There is also not much difference with and without discontinuity handling. Do-
ing the same experiment with the points further spaced out shows us that it is
the spacing of the output points that is causing the issue. We thus replicate the
experiments in the previous sections with the output points more spread out.

Figure 2.30: Time discontinuity model tolerance study on the Scilab version of
RKF45 without discontinuity handling.

Figure 2.31: Time discontinuity model tolerance study on the Scilab version of
RKF45 with discontinuity handling.

Figures 2.30 and 2.31 show a clear indication regarding why discontinuity
handling is important. We can see that without it, we need a tolerance of 10−3
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to get reasonably accurate results but with the discontinuity handling, we can
use a tolerance of 10−1. The impact on the number of function evaluations,
shown in Table 2.13, is clear.

Table 2.13: The Scilab RKF45 spaced out time-dependent discontinuity model
tolerance study - number of function evaluations.

tolerance no discontinuity handling with discontinuity handling
0.1 133 134
0.01 166 152
0.001 208 176
1e-4 322 254
1e-5 417 338
1e-6 606 482
1e-7 864 704

Table 2.13 shows that the number of function evaluations with discontinuity
handling is smaller. We also note that at coarse tolerances, the number of
function evaluations is similar but that at those tolerances, the code without
discontinuity handling is not obtaining reasonably accurate results. We can
thus conclude that using discontinuity handling lets us use coarser tolerances
and leads to a smaller number of function evaluations while improving accuracy.

Time-dependent discontinuity model tolerance study on the Mat-
lab version of DOPRI5 We perform the same experiment using ode45 in
Matlab. We recall that using the default tolerance, ode45 did not give a rea-
sonably accurate solution. We also recall that ode45 did not have a smaller
default tolerance than ode15s. In this section, we show that with a sharper
tolerance, ode45 is also capable of solving the problem without discontinuity
handling but we will see that it is more efficient with discontinuity handling.
Discontinuity handling will, again, allow us to use coarser tolerances and still
obtain reasonably accurate solutions.
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Figure 2.32: Time discontinuity model tolerance study on the Matlab version
of DOPRI5 without discontinuity handling.

We first note from Figure 2.32 that at sufficiently sharp tolerances, we can
get a reasonably accurate answer without discontinuity handling whereas the
default tolerances do not give a reasonably accurate solution.

Figure 2.33: Time discontinuity model tolerance study on the Matlab version
of DOPRI5 with discontinuity handling.

From Figures 2.32 and 2.33 we see that discontinuity handling allows us to
use coarser tolerances while still getting a reasonably accurate solution. We
note that we could use a tolerance of 10−1 with discontinuity handling but we
had to use a tolerance of 10−3 to get a reasonably accurate solution without
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discontinuity handling. We can also see that discontinuity handling allows the
solver to use fewer function evaluations in Table 2.14.

Table 2.14: The Matlab DOPRI5 time-dependent discontinuity model tolerance
study - number of function evaluations.

tolerance no discontinuity handling with discontinuity handling
0.1 85 146
0.01 121 146
0.001 169 158
0.0001 229 200
1e-05 355 302
1e-06 547 446
1e-07 823 692

Table 2.14 show that at coarser tolerances the solver without discontinuity
handling use fewer function evaluations. However, at these tolerances, the solver
did not give a reasonably accurate solution. At shaper tolerances, where the
solver without discontinuity handling gives a reasonably accurate solution, the
number of function evaluations for the solver with discontinuity handling is
lower.

2.2.4 Summary for the time-dependent discontinuity Covid-
19 ODE model

In this section, we have seen that the ODE solvers were able to solve the time-
dependent discontinuity Covid-19 ODE model without the use of discontinuity
handling when the tolerance is sharp enough. However using discontinuity han-
dling in the form of cold starts allow the solvers to be more accurate without
the use of sharp tolerances while being more efficient as they use less function
evaluations.
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2.3 State dependent discontinuity problem

In this section, we consider the state-dependent discontinuity problem. We start
by noting that this problem cannot be solved with the form of discontinuity han-
dling used in the previous problem since we do not know when the discontinuity
arises. Also, this problem will be more challenging than the time-dependent
discontinuity problem as the parameter β will be changed more than once as
we attempt to model the periods of imposition of Covid-19 measures followed
by periods where these measures are removed.

As in Section 2.2, changes in the modelling parameter β introduce disconti-
nuities in the function f(t, y(t)) and thus most solvers will “thrash” when trying
to solve the problem (as described in Section 2.1.6). We will show that the pres-
ence of several discontinuities makes the problem challenging enough that all
the ODE solvers we consider, even at very sharp tolerances, will not be able to
solve the problem with reasonable accuracy.

The problem uses the state variable, E(t), which is the number of Exposed
people, to determine when to change the parameter β. When the number of
exposed people is greater than 25000, measures will be introduced and thus β
will change from 0.9 to 0.005. When the number of exposed people drops to
10000, the measures will be relaxed and β is set to 0.9. We run this model
over a longer time period toggling the parameter β back and forth to model the
periods of alternating the imposition and relaxing of the measures. This scenario
corresponds to the case of an unvaccinated population where the only means of
controlling the spread of the virus is through measures such as social isolation,
masking, etc. The ability of the virus to infect people is not diminished as time
progresses, and when measures to stop the spread of the virus are removed,
the infection rate of the virus returns to its original value. More sophisticated
models could be introduced by considering the β parameter to be a function of
time. The numerical challenges would be similar.

We start with a simple treatment of the problem with if-statements applied
inside the function that defines the right-hand side of the ODE system. We
proceed to show how this form of the problem cannot be solved with reasonable
accuracy, even at sharp tolerances. Finally, we will introduce an approach to
efficiently and accurately solve the problem using event detection to handle the
discontinuities.

2.3.1 Simple treatment of Covid-19 state dependent dis-
continuity model

A simple treatment of this problem is to use global variables for tracking when
measures are implemented and relaxed and to toggle these global variables as
we reach the required thresholds. Global variables are needed because we need
to know if the number of exposed people is going up or down to know whether
we need to check for the maximum or the minimum threshold. We then have
an if-statement that will choose the value of parameter β based on whether
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measures are being implemented or not. The pseudo-code for this algorithm is
as follows:

measures implemented = False
d i r e c t i o n = ”up”

func t i on mode l w i th i f ( , y ) :
// . . .
global measures implemented , d i r e c t i o n
i f ( d i r e c t i o n == ”up” ) :

i f (E > 25000) :
measures implemented = True
d i r e c t i o n = ”down”

else :
i f (E < 10000) :

measures implemented = False
d i r e c t i o n = ”up”

i f measures implemented :
beta = 0.005

else :
beta = 0 .9

// . . .
return ( dSdt , dEdt , dIdt , dRdt )

Simple solution of the state dependent discontinuity model in R

Figure 2.34: Solutions to the state dependent discontinuity model in R, based
on the simple approach.
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In Figure 2.34, we show the results from the use of a number of solvers in R based
on the simple implementation described above using default tolerances. Figure
2.34 shows how difficult this problem is with a simple treatment. We note that
none of the solutions are aligned and that none of the solvers get a reasonably
accurate solution (described in Section 2.3.4) as none of the computed solutions
cleanly oscillate between 10000 and 25000 with clear peaks and troughs.

We note that none of the solvers, even the error-controlled ones, issued a
warning about the integration and thus users may be tempted to think that the
solver has solved the problem to within reasonable accuracy. Having no warning
also tells us that the error estimation and error control algorithms employed
by all the solvers did not detect anything abnormal; the solvers return with
an indication that the provided solutions are accurate to within the requested
tolerance.

As we are plotting E(t), we expect that each graph should go from 25000
to 10000 and back to 25000 repeatedly but none of these graphs do so in the
required pattern. We would also expect the solvers with error control to repeat-
edly reduce the step-size to satisfy the tolerance and compute solutions that
align with each other but Figure 2.34 shows that this is not the case.

We also note that the result for ‘euler’ is especially poor as it reaches a max-
imum of 40000. This is again as expected as ‘euler’ has no error control; ‘rk4’,
the other fixed step-size method, is also performing poorly; we see the solution
it computes reach approximately 30000 in its third peak. This is happening
even though the space between the output points is as small as it was when we
were investigating the time-dependent discontinuity problem. Because of this,
we will not run any spacing of output points experiments in this section. The
step-size for these fixed-step solvers is not small enough and further step-size
reductions would be needed to obtain results comparable to what the other
solvers are obtaining.

Another important fact to note is how poorly ‘Radau’, as shown in Figure
2.35, performs. This is not a problem with the R programming environment
as similar results will be seen in Python in the next section and in the Fortran
code in Section 2.4. The solution grows exponentially even after the parameter
β is switched to 0.005, which should force the solution to begin to decay. We
perform an analysis with the Fortran version of this solver later in this chapter
to show that β is indeed 0.005 while this exponential growth is happening. We
do not have an explanation for why the ‘Radau’ solver is performing this poorly.

We next proceed to show that sharp tolerances are not enough to solve this
problem as was the case for the time-dependent discontinuity problem. We
repeat the experiment at the sharpest tolerance that could be used prior to
some of the solvers failing. This was at 10−13 in the R environment. We set
both the absolute and relative tolerance to that value and show the results in
Figure 2.36.
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Figure 2.35: Solution by ‘Radau’ for the state dependent discontinuity model
in R, based on the simple approach.

Figure 2.36: Solutions to the state dependent discontinuity model in R with a
sharp tolerance, using the simple approach.

We can see from Figure 2.36 that the situation has only marginally im-
proved. None of the solvers give solutions that are in agreement with each other
and none of the solutions cleanly oscillate between 10000 and 25000. We note
that the error-controlled solvers are following the correct pattern and that until
about time, t, in the range from 20 to 30, some of them give solutions that
are in agreement, showing that sharp tolerance error-control can step over one
state-dependent discontinuity. (See the comparison against the final solution
in Section 2.3.1 to see that even this sharp tolerance solution is not reasonably
accurate.)

The fixed step-size method ‘euler’ and ‘rk4’ results are the same as in Figure
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2.34 since these codes do not employ a tolerance.
We can also point out that at such sharp tolerances ‘Radau’ no longer com-

putes solutions exhibiting the abnormal behavior we saw previously. From Fig-
ure 2.37, we can see that the solution computed by ‘Radau’ oscillates approxi-
mately between 10000 and 25000. From supplementary experiments, we observe
that ‘Radau’ starts performing at a level that is comparable to the other solvers
at a tolerance of 10−9 or sharper.

Figure 2.37: Solution by ‘Radau’ for the state dependent discontinuity model
in R with a sharp tolerance, using the simple approach.
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Simple solution of the state dependent discontinuity model in Python

Figure 2.38: Solutions to the state dependent discontinuity model in Python,
based on the simple approach.

Figure 2.38 shows what happens when the problem is solved using the simple
implementation and default tolerances in Python. We can see that the results
are similar to those obtained in R. This happens even though all solvers in
Python have error control.

We note that all the solvers except ‘RK23’ give solutions that at least oscil-
late between 10000 and 25000, though in completely dissimilar patterns. The
solutions have peaks and troughs at different times. No warnings were given by
the solvers.

The ‘RK23’ solver, whose solution is shown in purple, computes a solution
with a completely different pattern than the other solvers. It never reaches
25000 and only oscillates between around 10000 and 15000.

Again, as shown in Figure 2.39, ‘Radau’ computes a solution that has E(t)
growing exponentially even though the parameter β is eventually set to 0.005
which should give a solution with an exponential decay in the E(t) component
as we see with all other solvers.

We then used very sharp tolerances to solve the problem but, as is the case in
the R environment, none of the solvers obtained a reasonably accurate solution.
The highest tolerance we could use in Python without any method failing was
10−12. Both the absolute and relative tolerances were set to this value and
Figure 2.40 shows the results from this sharp tolerance experiment.
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Figure 2.39: Solution by ‘Radau’ for the state dependent discontinuity model
in Python, based on the simple approach.

Figure 2.40: Solutions to the state dependent discontinuity model in Python
with a sharp tolerance, using the simple approach.

Figure 2.40 shows that the results did improve. However, the solvers give
solutions that are not in agreement. We note that none of the solvers are
oscillating beyond 25000 as was the case with the fixed-step solvers in R. At
sharp tolerances, the solutions are aligned for the first few discontinuities with
only some blurring until about t=25 when the solvers begin to give substantially
different solutions. Though the pattern is correct, none of the solvers give
solutions that are in agreement telling us that none were able to compute a
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reasonably accurate solution. (See the comparison against the final solution in
Section 2.3.1 to see that even these sharp tolerance solutions are not accurate
enough.)

We note that ‘RK23’ is now following the correct pattern in that it oscillates
between 10000 and 25000 whereas it only reached 15000 at the default tolerance.

Figure 2.41: Solution by ‘Radau’ for the state dependent discontinuity model
in Python with a sharp tolerance, using on the simple approach.

Again, as shown in Figure 2.41, the ‘Radau’ solver begins to give reason-
able solutions at these sharp tolerances; the solutions follows the pattern we
are expecting but as we will show in Section 2.3.4, they are still not sufficiently
accurate solutions. The ‘Radau’ solver starts performing reasonably well at
around a tolerance of 10−10. We also note that the R and Python implemen-
tation of ‘Radau’ are different. The ‘Radau’ solver in Python is implemented
in Python with the NumPy library whereas R uses the Fortran version of the
solver. Thus we eliminate the possibility of a bug in the code as well as any
problem stemming from the interface from R to Fortran or from Python to
NumPy. The problem is simply in how the Radau algorithm treats this simple
implementation of the state-dependent discontinuity. In our experiments with
the Radau Fortran solver, in Section 2.4, the same behavior is observed.
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Simple solution of the state dependent discontinuity model in Scilab

Figure 2.42: Solutions to the state dependent discontinuity model in Scilab,
based on the simple approach.

Figure 2.42 shows the same issues that we saw before. None of the solvers
give solutions that are aligned which prompts us to conclude that none of them
are getting a reasonably accurate solution. All of the solvers in Scilab have
error control and we can also see that their solutions all follow the correct
pattern of oscillating approximately between 10000 and 25000. However, as we
will discuss in Section 2.3.4, none of the solutions are very accurate. We note
that the spacing between output points is not important in this analysis as at
the current spacing, even the solvers that depend on the spacing are getting
inaccurate answers.

We then repeat the experiment at sharp tolerances. The Scilab ‘rkf’ method
does not allow the use of very sharp tolerance as it has a cap of 3000 derivative
evaluations so it was omitted from this experiment. The sharpest tolerance we
can use in Scilab before the other methods fail is 10−13; the results are shown
in Figure 2.43.
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Figure 2.43: Solutions to the state dependent discontinuity model in Scilab with
a sharp tolerance, using the simple approach.

Again, in Figure 2.43 we can see that the use of sharp tolerances is not enough
to force the solvers to compute reasonably accurate solutions. The solutions did
improve as all the solvers follow the correct pattern but none oscillate between
10000 and 25000 with clear peaks and troughs at those values. For the time
period between 0 to 30, the solutions all seem to show reasonable agreement
but as we go further in time, the solutions diverge from each other. We also
note that none of the solvers compute solutions in reasonable agreement with
the solution discussed in Section 2.3.4. (See the comparison against the final
solution in Section 2.3.1 to see that even these sharp tolerance solutions are not
accurate enough.)
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Simple solution of the state dependent discontinuity model in Matlab

Figure 2.44: Solutions to the state dependent discontinuity model in Matlab,
based on the simple approach.

In Figure 2.44, we see the same incorrect solutions in Matlab as we did in the
previous environments as the solvers are run with the simple implementation at
the default tolerances. The solvers do not even consistently reach 25000. We
then use a sharper tolerance to see if the solutions are improved.

Figure 2.45: Solutions to the state dependent discontinuity model in Matlab
with a sharp tolerance, using the simple approach.

Figure 2.45 shows the results of the experiment at sharp tolerances. We get
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surprisingly good solutions compared to the solutions in the previous environ-
ments. However, as we will see in Section 2.3.4, these solutions are computed
extremely inefficiently and they are not as accurate as the solution presented in
Section 2.3.4, especially for later time periods. (See the comparison against the
final solution in Section 2.3.1 to see that even these sharp tolerance solutions
are not accurate enough.)

State dependent discontinuity model - tolerance comparisons

In all the previous subsections, we have maintained that even the sharp toler-
ance solutions, though more in agreement, are not sufficiently accurate. Here,
we present a comparison between the solution obtained by LSODA in Python
using the simple approach at the default tolerance and at the sharpest tolerance,
alongside an accurate solution that we will present shortly which is obtained us-
ing event detection. We can see from Figure 2.46 that the solutions from LSODA
both at default and the sharp tolerance obtained using the simple approach do
not agree with the more accurate solution.

Figure 2.46: Solutions to the state dependent discontinuity model from LSODA
based on the simple approach using the default tolerance and a sharp tolerance,
alongside an accurate solution.

2.3.2 Discussion on the reasons for inaccurate solutions
when using the simple treatment

In this section we discuss why sharp tolerances were not enough to force the
solvers to accurately solve the problem in the simple way it is coded, i.e, using
global variables and if-statements.

Whenever there is a change in the value of β, the step where the discontinuity
is first encountered will always be a failed step. As discussed in Section 2.1.6,
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the step-size at a discontinuity will always have to be much smaller than the
step-size being used on the continuous region to the left of the discontinuity.
Thus the first encounter of a solver with any discontinuity will always be in the
context of a failed step.

During this failed step, the value of E(t) will cross the threshold. The global
variables will thus be toggled. But then, when the solver attempts to retake the
step using a smaller step-size, to the left of the discontinuity, it will be using
the wrong β value. This observation is crucial as it allows us to conclude that
once a failed step has occurred due to the solver encountering a discontinuity,
the function evaluations made to the left of the discontinuity should be based
on the previous β value but they are in fact obtained using the new β value.
There is no straightforward way to address this behavior in the ODE function,
f(t, y(t)), since we do not know the time of the discontinuity.

The issue, in summary, is that the solvers need to figure out how to step
up to the discontinuity such that to the left of the time when E(t) reaches a
threshold value, the solver employs function evaluations that use the previous
β, and then after the time of the discontinuity, the solver employs function
evaluations that use the new β value. In the next few sections, we will present a
better approach for treating problems with state-dependent discontinuities that
will allow us to get reasonably accurate solutions in an efficient manner.

2.3.3 Event detection

For the time-dependent discontinuity problem, we saw that if we used error-
controlled software, then the solvers can accurately work through one discon-
tinuity at sufficiently high tolerances. We also showed that this was not the
most efficient way to solve the problem. For the state-dependent discontinuity
problem, we showed in the previous section that the solvers, using even sharp
tolerances, are not be able to solve this problem with much accuracy. Because
we do not know when the discontinuities occur, we cannot use the discontinuity
handling technique, involving simply performing a cold restart, that we used to
solve the time-dependent discontinuity problem. However, the idea that we de-
veloped in Section 2.2.2 about integrating continuous sub-problems separately
and combining them into a final solution can be applied here.

To integrate continuous sub-problems, we need a way to detect that a thresh-
old has been met, and then as soon as we reach such a point, we can perform
a cold start. This will allow the solver to integrate the problem one continuous
subinterval at a time. In this section, we will explain the capability of modern
ODE solvers to detect events and we will show how to encode the E(t) thresh-
olds (either E(t)=25000 or E(t)=10000) as events so that the times at which
they occur can be determined. We can then perform a cold start at these times.

To perform event detection, an ODE solver requires two functions from the
user: the usual ODE right-hand side function, f(t, y(t)) and another function,
the root function (commonly denoted by g(t, y(t))), that defines the events.

The root function is a function that, given the value of the solution y(t) at
the end of the current step, will return a number. The root function, g(t, y(t)),
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is said to have a root whenever the value of the root function is zero. The key
idea is that each event must be written so that it occurs at a root of g(t, y(t)).

The solver calls the root function at the end of each successful step that it
takes and will record its value. It will then compare the value of the root function
with the value from the previous step to see if there has been a change of sign.
If the value of the root-function has changed sign, the solver will then run a
root-finding algorithm on that step to find the point where the root-function
equals zero. Most solvers will then return, allowing us to perform a cold start.

Using event detection thus entails defining a function that takes the value
of the ODE solution at the current point and returns a value of zero whenever
there is an event. For example, if we want to detect when the solution y to
ODE y′ = f(t, y) is 100, it is sufficient to define g(t, y) = (y − 100) as the root
function. In the next section, we will elaborate on how to use event detection
to accurately and efficiently solve the state-dependent discontinuity problem.

We also mention that many modern solvers have event detection built-in.
Thus users should be able to use event-detection solvers from within their pre-
ferred programming environments without any additional software being re-
quired.

2.3.4 Solving the state dependent discontinuity model us-
ing event detection

As mentioned earlier, each toggling between the values of the parameter β in-
troduces a discontinuity. As none of the provided solvers are designed to solve
discontinuous problems, we get the erroneous solutions reported in 2.3.1. We
have seen that although sharp tolerances do result in somewhat better solutions
being computed, none of the solvers were able to obtain a sufficiently accurate
solution. The use of such sharp tolerances leads to inefficiencies as well. We
will now present an approach using event detection that is both accurate and
efficient.

The idea is to use the thresholds that we have defined in our model to define
events and integrate up to the time at which each threshold is reached using the
event detection capability of the solver. We can then cold start from there and
repeat the process with another right-hand side function corresponding to the
new β value and with a different root function that encodes the next threshold
we are looking for. We repeat this process until we reach the end of the time
interval. This approach allows the solvers to integrate continuous sub-problems,
one at a time, and these sub-problems can then be combined into a final solution.

For our specific problem, event detection is used as follows: We start by
solving the problem with β=0.9 and with a root function that detects when
E(t) is equal to 25000. Once, using the event detection capability of the solver,
we detect the time at which E(t)=25000, we do a cold start. We evaluate the
solution computed by the solver at the time of the event and use that solution
as the initial value for our next call to the solver. This next call will have β
at 0.005 and a root function that detects a root when E(t)=10000. We again
integrate up to that new threshold and cold start when we reach it. The new
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cold start will have β=0.9 and the root function will look for E(t)=25000 as the
event. This is repeated until we reach the desired end time. The pseudo-code
is as follows:

f unc t i on model no measures ( t , y ) :
beta = 0 .9
// code to get dSdt , dEdt , dIdt , dRdt
return ( dSdt , dEdt , dIdt , dRdt )

func t i on root 25000 ( t , y ) :
E = y [ 1 ]
return E = 25000

func t i on model with measures ( t , y ) :
beta = 0.005
// code to get dSdt , dEdt , dIdt , dRdt
return ( dSdt , dEdt , dIdt , dRdt )

func t i on root 10000 ( t , y ) :
E = y [ 1 ]
return E = 10000

r e s = array ( )
t i n i t i a l = 0
y i n i t i a l = (S0 , E0 , I0 , R0)
while t i n i t i a l < 180 :

tspan = [ t i n i t i a l , 180 ]
i f ( measures implemented ) :

s o l = ode ( model with measures , tspan , y i n i t i a l ,
events=root 10000 )

measures implemented = False
else :

s o l = ode ( model no measures , tspan , y i n i t i a l ,
events=root 25000 )

measures implemented = True
t i n i t i a l = e x t r a c t l a s t t f r om s o l ( s o l )
y i n i t i a l = e x t r a c t l a s t r ow f r om s o l ( s o l )
r e s = concatenate ( res , s o l )

// use r e s as the f i n a l s o l u t i o n

Some programming environments, such as Python, by default, do not stop
the integration when the first event is detected. To do a cold start, we need
the solver to stop at events, and to make this happen, in some programming
environments, we need to set appropriate input parameters.
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Solving the state-dependent discontinuity model in R using event
detection

Figure 2.47: Solving the state dependent discontinuity model in R using event
detection.

Several of the solvers in R have event detection capabilities. These are: ‘adams’,
‘bdf’, ‘lsoda’, ‘Radau’, and they will be used in this section to solve the state
dependent discontinuity model using the approach described in the previous
subsection. From Figure 2.47, we can see that all the solvers give solutions
that are in agreement except ‘Radau’. This is in contrast with what happened
previously when we were attempting to solve this discontinuous problem, even
at sharp tolerances.

The case of ‘Radau’ is interesting as it was giving a poor quality solution at
the default tolerances, without event detection but it is now giving at least a
solution that is exhibiting a correct pattern. We note that at sharp tolerances
‘Radau’ with event detection gives results that approach the results from the
other solvers, as shown in Figure 2.48.
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Figure 2.48: Solving the state dependent discontinuity model in R using event
detection at a sharp tolerance.

We will show in Table 2.15 that introducing event detection also makes the
computation significantly more efficient while giving us more accurate results.

We note that it is unfair to compare the efficiency of the solvers with no
event detection and with default tolerances with the efficiency of the solvers
when they use event detection as the results for the former are inaccurate.

Table 2.15: Efficiency data for R state-dependent discontinuity model - number
of function evaluations.

method no event no event-sharp tol. with event with event-sharp tol.
lsoda 2135 4658 1248 3435
radau 1002 21835 2151 14681
bdf 3300 9803 1678 7963

adams 1368 3467 817 2689

We can see from Table 2.15 that with event detection we are gaining an
improvement of around 1000 function evaluations for ‘lsoda’, 7000 in ‘Radau’
(sharp tol comparison), 2000 in ‘bdf’, and 500 in ‘adams’ while obtaining more
accuracy. This significant decrease in the number of function evaluations will
lead to much faster CPU times, especially when the right-hand side function,
f(t, y) is more complex. Also, we can see from Table 2.15 that the solvers use
fewer function evaluations compared with event detection than without event
detection at the default tolerances. When comparing the values at the sharp
tolerances, the use of event detection also decreased the respective number of
function evaluations.
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Solving the state-dependent discontinuity model in Python using event
detection

Figure 2.49: Solving the state dependent discontinuity model in Python using
event detection.

All the solvers in Python have event detection and thus all will be used in
this part of the study. In Python, solve ivp() does not stop when an event is
detected by default. We thus need to set the terminal flag of the root functions.
(Example: root 10000.terminal = True). Again, Figure 2.49 shows that all
the solvers give solutions that are in agreement, suggesting that this is the
correct solution. This is different from our results at sharp tolerances when event
detection was not employed. We will also see that this is a much more efficient
approach across all the solvers. The solve ivp() implementation of ‘Radau’ is in
Python itself and thus it is different from the R implementation. We note that
we did not have to provide the Python ‘Radau’ implementation with a sharp
tolerance to make its performance align with the other solvers’ performances,
suggesting that the issue in R may be due to the C implementation of event
detection.

As is the case with R, we cannot compare the default tolerance efficiency data
to the event detection efficiency data as the former corresponds to inaccurate
results. So, in Table 2.16, we compare the sharp tolerance efficiency data with
the data from the event detection computation.

Table 2.16 shows that the number of function evaluations when the solvers
use event detection is far less when they do not; ‘LSODA’ used around 3000
fewer function evaluations, ‘BDF’ used 11000 less, ‘Radau’ used 74000 less,
‘RK45’ used 17000 less, ‘DOP853’ used 20000 less and ‘RK23’ used 246000 less.
The reduction in CPU times from this will be significant across all the solvers,
especially with a more complex right-hand side function.
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Table 2.16: Efficiency data for Python state-dependent discontinuity model -
number of function evaluations.

method no event no event with sharp tol. with event detection
lsoda 2357 4282 535
bdf 2301 11794 808

radau 211 74723 990
rk45 1484 17648 674

dop853 11129 21131 1514
rk23 4307 246644 589

Solving the state-dependent discontinuity model in Scilab using event
detection

Figure 2.50: Solving state discontinuity model in Scilab using event detection.

There is only one solver with root functionality in Scilab; it is ‘lsodar’, the
root-finding version of ‘lsoda’. The solution we obtain is unusual. Though it
correctly oscillates and goes sharply between 10000 and 25000, the number of
peaks the solution has, is different from the number of peaks found in the other
programming environments (13 in Scilab as opposed to 18 everywhere else).
Further work needs to be done to determine why the Scilab solver is not giving
accurate results.

From Table 2.17, we can see that the root-finding solver uses fewer function
evaluations that LSODA both at sharp and default tolerances.
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Table 2.17: Efficiency data for Scilab state-dependent discontinuity model -
number of function evaluations.

method no event no event with sharp tol. with event detection
lsoda 2794 4636 1327

Solving the state-dependent discontinuity model in Matlab using event
detection

Figure 2.51: Solving state discontinuity model in Matlab using event detection.

Both ode45 and ode15s have an event detection capability. The root functions
need to set an input parameter to indicate that the root is terminal in order to
allow a cold start to be performed. The root function signature in Matlab is
’function [value,isterminal,direction]] = g(t, y)’, where the function returns an
isterminal flag. This flag must be set to 1. We applied event detection to solve
the problem with the solvers in the Matlab environment and the results are
shown in Figure 2.51. We remember that the solutions in Matlab without event
detection were surprisingly accurate but were in disagreement with each other
at points further in time. We can see that with event detection, the solutions
are all in agreement at the default tolerances even at points further in time. We
also see, in Table 2.18, that the use of event detection is also more efficient than
the computation without event detection.

We can see in Table 2.18 that the computation with event detection uses
fewer function evaluations than the code without event detection at default and
sharp tolerances. We see that the computations with sharp tolerances, although
they give acceptable solutions, use 20000 more function evaluations for ode45
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Table 2.18: Efficiency data for Matlab state-dependent discontinuity model -
number of function evaluations.

method no event no event with sharp tol. with event detection
ode45 2023 22411 859
ode15s 1397 11550 620

than the computation with event detection and 11000 in the case of ode15s than
the computation with event detection.

2.3.5 Efficiency data and tolerance study for the state de-
pendent discontinuity problem

In this section, we will investigate how sharpening the tolerance improves the
results in the case where event detection is not used. We will also investigate
coarsening the tolerance with event detection to show how coarse a tolerance
we can use while still getting acceptable results.

We will perform this analysis on LSODA across R, Python, and Scilab, as
they appear to use the same source code, and with R and Python versions of
DOPRI5 which do not use the same code but do use the same Runge-Kutta
pair and with the Scilab version of RKF45 which is not the same code, nor the
same pair but is a Runge-Kutta pair of the same order. We also use ode45 in
Matlab as it is an implementation of DOPRI5 in Matlab.

Comparing LSODA across platforms for the state discontinuous prob-
lem

State dependent discontinuity LSODA tolerance study in R In
this section, we use the R version of LSODA at multiple tolerances. We set
both the relative and the absolute tolerance to various values and examine the
solutions.

Figure 2.52 shows that LSODA without event detection applied to the same
problem at different tolerances gives vastly different results. We would expect
the solutions at the sharper tolerances to be along very similar curves but that is
not the case. This further supports our statement that for any state-dependent
discontinuity, we cannot get reasonable results simply by sharpening the toler-
ance.

From Figure 2.53, we can see the clear advantage of using event detection.
Event detection allows us to use tolerances of 10−3 and sharper to get reasonable
results while the computation without event detection failed to yield reasonably
accurate results even at a tolerance of 10−13. We also analyze the differences in
efficiency between the two modes of operation of LSODA in Table 2.19.

Table 2.19 shows a decrease in the number of function evaluations when
event detection is employed across all tolerances which will translate into faster
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Figure 2.52: State dependent discontinuity model tolerance study on the R
version of LSODA without event detection.

Table 2.19: The R version of LSODA applied to state-dependent discontinuity
model tolerance study - number of function evaluations.

tolerance no event detection with event detection
1e-01 675 560
1e-02 1856 522
1e-04 1863 752
1e-06 2135 1248
1e-07 2676 1874
1e-08 2730 2060
1e-10 3337 2604
1e-11 3603 3054

CPU times when the right-hand side function is more complex. We note that
the comparison is unfair as the computations without event detection do not
give reasonably accurate results. Furthermore, the latter computations use more
function evaluations. This supports our conclusion that event detection is the
appropriate way to solve state-dependent discontinuity problems when the dis-
continuity can be characterized in terms of an event.

State dependent discontinuity model LSODA tolerance study in
Python In this section, we use the Python version of LSODA at multiple
tolerances to see how it performs. We recall that LSODA in Python without
event detection, even at very sharp tolerances, was still not giving accurate
results but we will see how the solutions change as the tolerance is sharpened.
We will also show that coarse tolerances can be used with the computation that
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Figure 2.53: State dependent discontinuity model tolerance study on the R
version of LSODA with event detection.

uses event detection.
Again Figure 2.54 exposes that LSODA applied to the same problem at

different tolerances gives substantially different results. We would expect the
computations at the sharper tolerances to give quite similar results but this is
not the case.

From Figures 2.55 and 2.54, we can see that the addition of event detec-
tion allows for the use of a coarser tolerance. We also note that the computa-
tions with event detection blur as we go further in time. This is because the
coarser tolerance computations are not giving a sufficiently accurate solution. In
Python, it is at a tolerance of 10−4 and sharper that we get reasonably accurate
results.

We analyse the efficiency of the computations in Table 2.20. We must note
that this analysis is unfair as the computation without event detection does
not give an accurate solution to the problem. Still, we will see that the event
detection computation uses fewer function evaluations while getting a more
accurate answer.

State dependent discontinuity model LSODA tolerance study in
Scilab We perform the same experiment in Scilab. We set the absolute and
relative tolerance to the same values as in the other experiments and run the
solvers. For the different tolerance values, we plot the solutions and examine
how the solutions computed without event detection change as the tolerance is
sharpened; we also examine how coarse a tolerance we can use with the event
detection solver.

Again, Figure 2.56 exposes the behavior whereby the same solver applied
to the same problem at different tolerances gives substantially different results.
We would expect the code at the sharper tolerances to give very similar curves
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Figure 2.54: State dependent discontinuity model tolerance study on the Python
version of LSODA without event detection.

but clearly, LSODA, even at sharp tolerances, does not.
From Figure 2.57, we can see that the use of the event detection allows us

to obtain a correctly oscillating solution. We note however that the solution
still has 13 peaks as opposed to 18 peaks at all the different tolerances and thus
that they are not the same as the ones obtained in the other platforms. As
mentioned previously, we leave this issue for investigation as future work.

Table 2.21 shows the number of function evaluations that LSODA uses with
and without event detection to solve the state dependent discontinuity problem
at multiple tolerances. We can see that even at coarse tolerances, using event
detection allows LSODA use fewer function evaluations while giving more ac-
curate solutions. This reinforces that event detection is the better way to solve
state-dependent discontinuity problems.

Comparing Runge-Kutta pairs across platforms for state discontinu-
ous problem

In this section, we consider solvers based on Runge-Kutta pairs of the same
order: DOPRI5 in R aliased as ‘ode45’, DOPRI5 in Python aliased as ‘RK45’,
DOPRI5 in Matlab through the ode45 function, and RKF45 in Scilab aliased
as ‘rkf’.

We recall that without event detection, none of these solvers across the
platforms solved the problem to reasonable accuracy even with sharp tolerances.
We will show what happens as the tolerance is sharpened. We also coarsen the
tolerance for the case where the solvers use event detection to see how coarse
the tolerance can be while still obtaining reasonable accuracy.
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Figure 2.55: State dependent discontinuity model tolerance study on the Python
version of LSODA with event detection.

Tolerance study on state dependent discontinuity model using the
R version of DOPRI5 The R version of DOPRI5 does not have event detec-
tion but we still perform the experiment on this solver without event detection.
We pick several values for the absolute and relative tolerances and run the
solvers. In so doing we see how the code performs as the tolerance is sharpened.

From Figure 2.58, we see that DOPRI5 applied to the same problem with
different tolerances, gives significantly different solutions. We then report the
efficiency data for this case in Table 2.22. Table 2.22 shows the number of
function evaluations the ‘ode45’ solver uses. As it does not have event detection,
unlike the equivalent solvers in Python and Matlab, we cannot compare how
the number of function evaluations differs with and without event detection.
However, looking at the efficiency data of the Runge-Kutta pairs in the other
environments and with R’s LSODA solver, we can argue that it too will use
fewer function evaluations with event detection (should this be provided at
some point) than without.

Tolerance study on state dependent discontinuity model using the
Python version of DOPRI5 We perform the same experiment in Python.
The Python version of DOPRI5 does have an event detection capability. The
absolute and relative tolerances are set to a range of values and the solver is run
both with and without event detection. We report on how the code performs as
the tolerance is sharpened in the case without event detection. Since the Python
version of DOPRI5 has event detection, we will see how coarse the tolerance can
be set while still giving us a reasonably accurate solution. We will use results
from the Runge-Kutta pair in Python and in Matlab, that both have event
detection, to suggest what we might expect the results from the Scilab ‘rkf’ and
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Table 2.20: The Python version of LSODA applied to state-dependent discon-
tinuity model tolerance study - number of function evaluations.

tolerance no event detection with event detection
1e-1 1207 425
1e-2 1627 454
1e-4 1968 689
1e-6 2122 1305
1e-7 2684 1807
1e-8 2730 2099
1e-10 3337 2639
1e-11 3603 3098

Table 2.21: The Scilab version of LSODA applied to state-dependent disconti-
nuity model tolerance study - number of function evaluations.

tolerance no event detection with event detection
1e-1 1141 287
1e-2 1606 262
1e-4 1968 523
1e-6 2122 983
1e-7 2684 1307
1e-8 2730 1567
1e-10 3380 1963
1e-11 3603 2331

the R ‘ode45’ solvers, which do not have event detection, to be. We note that
the solver crashes if we ask for a tolerance of 0.1.

In Figure 2.59 corresponding to the case with no event detection, we can see
that even at sharp tolerances, the solver is not able to compute a reasonably
accurate solution. In contrast, in Figure 2.60, which corresponds to the case
when we use event detection, the code can use very coarse tolerances. We
can see that a tolerance of 10−4 is sharp enough to solve the given problem
accurately; the blurring that occurs is due to the coarser tolerances. We present
the efficiency data in Table 2.23 to show how the code with event detection is
also far more efficient.

We can see in Table 2.23 that across all the different tolerances, the solver
with event detection requires fewer function evaluations; around several thou-
sand fewer for the sharper tolerances.

Tolerance study on state dependent discontinuity model using the
Scilab version of RKF45 Scilab uses RKF45 which is a different Runge-
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Figure 2.56: State dependent discontinuity model tolerance study on the Scilab
version of LSODA without event detection.

Kutta pair from what is used in DOPRI5 but the pairs have the same order.
It does not have event detection but we can still perform the experiment on
the solver without event detection. We pick several values for the absolute and
relative tolerances and run the solver. In so doing we see how the solver performs
as the tolerance is sharpened.

The Scilab version of ‘rkf’ can only integrate up to time 90 as it has a
hard cap of 3000 derivative evaluations but this is enough to see that even at
sharper tolerances, the solutions are not in agreement. Figure 2.61 shows that
the problem cannot be solved by simply using sharper tolerances.

Tolerance study on state dependent discontinuity model using the
Matlab version of DOPRI5 We apply different tolerances to the state prob-
lem with and without event detection the ode45 function which is a Matlab
implementation of DOPRI5.

From Figure 2.62, we can see that the solution obtained with a tolerance of
0.1 is of poor quality without event detection. It does not follow the correct
pattern of oscillating between 10000 and 25000. The computations of the other
tolerances follow the correct pattern but are not in agreement.

In Figure 2.63, when event detection is employed, we can see that the compu-
tations corresponding to most tolerances give solutions that are in agreement. A
tolerance of 0.1 now follows the correct pattern but is not in agreement with the
other tolerances at further points in time. For tolerances of 10−2 and sharper,
we get accurate solutions.

Table 2.25, although being an unfair comparison since the solver without
event detection did not give accurate solutions, shows that solving the problem
without event detection is also less efficient. At the tolerance of 0.1, the smaller
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Figure 2.57: State dependent discontinuity model tolerance study on the Scilab
version of LSODA with event detection.

number of function evaluations for the solver without event detection is not
relevant since the solution at a tolerance of 0.1 is very inaccurate. At all the
other tolerances, the code with event detection is both more accurate and more
efficient, usually using less than half the number of function evaluations.

2.3.6 Summary for the state-dependent discontinuity Covid-
19 ODE model

In this section, we have seen that the ODE solvers were not able to solve the
state-dependent discontinuity Covid-19 ODE model even at sharp tolerance.
However we have shown that we can use event detection to perform cold starts
at the discontinuities. Using event detection improved both the accuracy and
the efficiency of the solvers.
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Figure 2.58: State dependent discontinuity model tolerance study on the R
version of DOPRI5 without event detection.

Table 2.22: The R version of DOPRI5 applied to state-dependent discontinuity
model tolerance study - number of function evaluations.

tolerance no event detection
1e-01 1082
1e-02 1142
1e-04 2014
1e-06 2027
1e-07 2193
1e-08 2919
1e-10 5194
1e-11 7690

Table 2.23: The Python version of DOPRI5 apllied to state-dependent discon-
tinuity model tolerance study - number of function evaluations.

tolerance no event detection with event detection
1e-02 1400 664
1e-04 8462 806
1e-06 6248 1232
1e-07 6848 1754
1e-08 7082 2354
1e-10 10262 5066
1e-11 13058 7688
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Figure 2.59: State dependent discontinuity model tolerance study on the Python
version of DOPRI5 without event detection.

Figure 2.60: State dependent discontinuity model tolerance study on the Python
version of DOPRI5 with event detection.
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Figure 2.61: State dependent discontinuity model tolerance study on the Scilab
version of RKF45 without event detection.

Table 2.24: The Scilab version of RKF45 applied to state-dependent disconti-
nuity model tolerance study - number of function evaluations.

tolerance no event detection
0.1 547
0.01 732
0.001 1294
1e-4 1956
1e-5 2364
1e-6 2662
1e-7 2802

Table 2.25: The Matlab version of DOPRI5 applied to state-dependent discon-
tinuity model tolerance study - number of function evaluations.

tolerance no event detection with event detection
0.1 415 650
0.01 1339 661
0.0001 4891 901
1e-06 5803 1411
1e-07 7225 1873
1e-09 9739 4039
1e-10 12385 6043
1e-11 16357 9277
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Figure 2.62: State dependent discontinuity model tolerance study on the Matlab
version of DOPRI5 without event detection.

Figure 2.63: State dependent discontinuity model tolerance study on the Matlab
version of DOPRI5 with event detection.
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2.4 Investigation of the Radau software applied
to the state-dependent discontinuity model

2.4.1 Radau

In this section, we try to solve the state-dependent discontinuity problem with
the Fortran solver radau5.f. We recall that in both R and Python, ‘Radau’
exhibits an unusual behavior where the solution that is computed does not
oscillate between 10000 and 25000 but rather grows exponentially.

We also recall that the event detection in ‘Radau’ in R is added through a
C interface and that may explain why Radau in R and Python gives different
results when event detection is employed.

We first try the Fortran solver at a tolerance of 10−6 which is the default in
R.

Figure 2.64: Solution from the Fortran radau5.f solver at tolerance of 10−6.

From Figure 2.64, we again see the unusual behaviour. We also note that it
behaves exactly as in R. We then repeat the process with a tolerance of 10−12.
In Figure 2.65, we can see that the computed solution now follows the correct
pattern, although it is still not as accurate as the solution that we described in
Section 2.3.4.

From this investigation of the Fortran source code, we can conclude that
the issue is not with the interface from R to the Fortran solver or the Python
implementation. We also added ‘print’ statements during our investigation to
confirm that the parameter β was set to 0.005 when appropriate. The issue
appears to be with the ‘Radau’ algorithm itself. Further detailed investigation
of the ‘Radau’ algorithm will be required in order to determine the source of
this issue.
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Figure 2.65: Solution from the Fortran radau5.f solver at tolerance of 10−12.
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2.5 Summary

In this chapter, we considered the numerical solution of two Covid-19 models
based on a standard SEIR model. The models include discontinuities associated
with interventions introduced to slow down the spread of the virus. We were
particularly interested in investigating the performance of standard ODE solvers
available in computational platforms.

We reported on the stability and discontinuity issues associated with the
models. We showed how stability issues affect the accuracy of the computed
solutions even if there is only a relatively small change in the initial values. We
showed how discontinuities reduce the efficiency of the solvers and presented a
straightforward way to detect that the problem is discontinuous.

We then used ODE solvers in R, Python, Scilab, and Matlab to solve the
two Covid-19 problems, one with a time-dependent discontinuity and one with
a state-dependent discontinuity. A key assumption for both models is that we
first consider reasonable implementations that might typically be employed by
a researcher. This includes fixed-step size solvers as well as implementations
based on the introduction of if-else statements into the functions that define the
ODE systems.

For the time-dependent discontinuity problem, we have shown that error-
control ODE solvers can step over the one discontinuity that is present with
sufficiently sharp tolerances while fixed step-size solvers cannot. We have shown
that although error-controlled solvers can solve the problem to reasonable accu-
racy if the tolerance is sufficiently sharp, the use of discontinuity handling in the
form of cold starts leads to more efficient solutions that can be obtained using
coarser tolerances. We therefore recommend that if the time of a discontinuity
is known, cold starts at these times should be employed as they result in more
accurate, more efficient solutions that can be obtained at coarser tolerances.

For the state-dependent discontinuity problem, we have shown that even
error control solvers cannot successfully step over multiple state-dependent dis-
continuities. We then introduced event detection and showed how it can be
used to accurately and efficiently solve state-dependent discontinuity problems
by encoding the intervention imposition and relaxation thresholds as events
and applying cold starts. We conclude that using event detection provides an
efficient and accurate way to solve such problems.

From the usage of the different packages, we also found a certain inconsis-
tency. We noted that R and Scilab do not use the interpolation capabilities
for some of their solvers by default. We would advise software implementers to
take advantage of the capabilities of the solvers to use interpolation. Using the
method of forcing the solver to integrate exactly to given output points reduces
the efficiency of the solver.

We recommend using some form of discontinuity handling rather than intro-
ducing an if-statement into the right-hand side function that defines the ODE
wherever applicable.

When a researcher has a problem that has a time-dependent discontinuity
that occurs at a known time, we recommend that they use the form of disconti-
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nuity handling presented in this chapter. Using cold starts allows the researcher
to integrate continuous subintervals of the problem in separate calls leading to
efficient and accurate solutions.

When a researcher has a problem that has a state-dependent discontinuity,
they should identify the conditions under which these discontinuities occur and
use event detection with these conditions as events. They can then cold start
at each event and integrate continuous subintervals of the problem in separate
calls to the solvers. This leads to efficiency and accuracy that is not possible
using a simple implementation.
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Chapter 3

Performance Analysis of
Covid-19 PDE models with
Discontinuities

3.1 Introduction

In this chapter, we present an investigation of the numerical solution of Covid-
19 partial differential equation (PDE) models with discontinuities. Using a one
dimensional (1D) PDE problem typically encountered in epidemiological studies
(see, e.g., [33]), we investigate the impacts on the accuracy and efficiency of
the solution computed by an error-controlled solver when time-dependent and
space-dependent discontinuities are introduced into the model.

As stated in the previous chapter, it is vital that numerical errors associated
with the solutions computed by the solvers are negligible compared to the mod-
eling errors associated with the mathematical and theoretical definition of the
problem.

However, even more so than was the case for the Covid-19 ODE models, it
is often the case that researchers will use PDE solvers that do not have error
control. In Section 3.1.2 we introduce BACOLIKR [23] and explain its impor-
tance for the error-controlled numerical solution of PDEs. To our knowledge,
BACOLIKR is also the only error-control PDE solver capable of event detec-
tion, which as shown in the previous chapter, becomes vital for the efficient
computation of accurate solutions to state-dependent discontinuity problems.

In Section 3.1.1, we discuss thrashing in the presence of discontinuities for the
PDE case and outline the impacts this has on the efficiency of error-controlled
solvers. In Section 3.1.2, we provide a description of BACOLIKR and, in Section
3.1.3, we give a description of the epidemiological model used in this chapter.

We provide a treatment of the time-dependent discontinuity PDE problem
with and without discontinuity handling in Section 3.2 and a treatment of the
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state-dependent discontinuity PDE problem with and without event detection
in Section 3.3.

3.1.1 Thrashing in PDE models

As was the case with ODE solvers, PDE solvers are also based on mathematical
theories that assume that the solution and some of its higher derivatives are con-
tinuous. However, for the case of discontinuous problems, it has been observed
that error-control solvers can accurately integrate through discontinuities. They
do so at the cost of efficiency by repeatedly reducing the time step-size until
the error of the step that takes the solver past the discontinuity satisfies the
user-provided tolerance. This repeated reduction in the step-size implies that
the solver must make a large number of function evaluations (i.e., evaluations
of the right hand side of the PDE system) in a process called ‘thrashing’. This
phenomenon was discussed for the ODE cased in Section 2.1.6.

Thus, when a PDE solver integrates through a discontinuity, it repeatedly
reduces the step-size at that discontinuity until the step-size is small enough
to integrate through it. This leads to a spike in the number of function eval-
uations in the time interval near the discontinuity. Figure 3.1 shows such a
phenomenon. A PDE problem with a discontinuity at t = 30 is solved and we
plot the cumulative number of function evaluations at each time step. We see
a spike in the number of function evaluations at t = 30.

Figure 3.1: Thrashing in the PDE context.

In this chapter, we will show that a PDE solver with error-control, such
as BACOLIKR, can integrate through a time-dependent discontinuity but that
discontinuity handling leads to a more efficient solution. (See Section 3.2). We
will also show that state-dependent discontinuity problems cannot be accurately
solved without event detection (See Section 3.3).
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3.1.2 BACOLIKR, an error-control PDE solver with event
detection capability

BACOLIKR [23] is a member of the BACOL family of 1D PDE solvers. Its
underlying principle is that it solves PDE problems by employing a discretisa-
tion of the spatial domain using B-spline collocation; the B-spline collocation
method is based on a spatial mesh of points that partitions the spatial domain.
The collocation method is applied on the spatial domain to approximate the
PDE system with a larger time-dependent ODE system. This ODE system
together with the boundary conditions, represents a time-dependent system of
Differential-Algebraic Equations (DAEs) which are solved using the DAE solver,
DASKR (a DAE solver with root-finding capabilities) [8; 9]. DASKR provides
adaptive time-stepping and adaptive method order selection to control the error
of the time integration component of the computation. BACOLIKR also pro-
vides control over the spatial error through adaptive refinement of the spatial
mesh. It uses interpolation schemes to obtain low-cost spatial error estimates
for the numerical solution that it computes. Based on the spatial error estimate,
the spatial error can be controlled by increasing or decreasing the number and
the locations of spatial mesh points. See [23] for further details.

BACOLIKR tries to satisfy a user-provided tolerance in the most efficient
way possible using an adaptive spatial mesh and adaptive time-stepping and
method order selection. By using the root-finding DAE solver DASKR, BA-
COLIKR can also perform event detection and thus can be used to handle
discontinuities in a manner that is similar to what we saw in the ODE case in
the previous chapter. We wish to emphasize these two important qualities of
BACOLIKR, i.e., the error control and the event detection capability, as they
provide a level of accuracy and efficiency that other PDE solvers, especially
rudimentary ones, very rarely grant, for these types of problems.

3.1.3 Problem Definition

In this chapter, the PDE model we will investigate is an SEIR model that uses a
spatial variable, x, and a time variable, t. Similar PDE models have been used in
other applications (see [11]). Here we will represent the spread in geographical
location using the spatial variable.

In this chapter, a PDE problem is described using a system of PDEs of the
form:

ut(x, t) = f(x, t, u(x, t), ux(x, t), uxx(x, t)), (3.1)

over a spatial domain a ≤ x ≤ b and a temporal domain [t0, tfinal].
It requires a set of initial conditions of the form:

u(x, t) = u0(x), (3.2)

for x in the spatial domain, a ≤ x ≤ b.
It also requires boundary conditions of the form:

bL(t, u(a, t), ux(a, t)) = 0, bR(t, u(b, t), ux(b, t)) = 0, (3.3)
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for time, t ≥ t0.
We define an SEIR model based on the one developed in [12] and given

below. The model is obtained by introducing diffusion terms into the ODEs
that we saw in the previous chapter.

The system of PDEs is:

S(x, t)t = DS(x)S(x, t)xx + µN − µS(x, t)− β

N
S(x, t)I(x, t), (3.4)

E(x, t)t = DE(x)E(x, t)xx +
β

N
S(x, t)I(x, t)− αE(x, t)− µE(x, t), (3.5)

I(x, t)t = DI(x)I(x, t)xx + αE(x, t)− γI(x, t)− µI(x, t), (3.6)

R(x, t)t = DR(x)R(x, t)xx + γI(x, t)− µR(x, t). (3.7)

The spatial domain is −5 ≤ x ≤ 5 and the temporal domain is 0 ≤ t ≤ 70
for the time-dependent discontinuity problem and 0 ≤ t ≤ 200 for the space-
dependent discontinuity problem.

The parameters for the above SEIR model are as follows: µ, the birth/death
rate, is set to 0.01

365 , γ, the recovery rate is 0.06, α, the incubation rate is 0.125, and
we will vary the transmission rate, β, between 0.035 and 0.9 based on whether
measures, such as social distancing, etc., are implemented in the model. The
population size, N, is 3.7× 107.

The model also uses diffusion coefficients, DS(x), DE(x), DI(x) and DR(x),
to model the spread of the virus over the spatial domain. These are defined as
follows:

DS(x) = DE(x) = DR(x) = (maxDs −minDs)e
−10(

√
x2−1)2) +minDs, (3.8)

DI(x) = DE(x)/10, (3.9)

where the diffusivity parameters maxDs and minDs are 0.8 and 0.01, respec-
tively. See Figure 3.2 for a plot of Ds(x). This represents the case, for example,
when the population density is quite high and where there are clusters of unvac-
cinated people in certain regions, and thus the disease can diffuse through the
population in those regions more quickly. These regions are centered at x = ±1
in our model.
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Figure 3.2: Plot of the diffusion coefficient DS(x).

The set of initial conditions are defined over the spatial domain as follows:

S(x, 0) = N − I(x, 0), (3.10)

I(x, 0) = 100e−x2

, (3.11)

E(x, 0) = R(x, 0) = 0. (3.12)

These initial conditions represent the case where there is a relatively small group
of infected people at the location corresponding to x = 0. (See Figure 3.3).

Figure 3.3: Plot of the initial condition I(x, 0).

90



The boundary conditions are Neumann boundary conditions whereby the
spatial derivative for each solution component at each boundary is required to
be zero.

The above gives us a complete PDE problem definition. To this problem
we will add discontinuities as follows. In the time-dependent discontinuity case
(Section 3.2), we will integrate the model with β at a value of 0.9 from t = 0 to
t = 30; we will then change the value of β to 0.035 and integrate until t = 70.
This change in the parameter introduces a discontinuity into the right hand side
of the PDE system. This simulates a scenario where 30 days into a pandemic,
measures are introduced to slow the spread of the pathogen.

In the state-dependent discontinuity problem (Section 3.3), we start the
integration with the value of β equal to 0.9 and use this value as we integrate
forward in time until the spatial integral of E(x, t), i.e, the total number of
exposed people across the spatial domain at time, t, is 30000. When that
integral value reaches 30000, we change the value of β to 0.035 and keep it at
this value until the integral value of E(x, t) over the spatial domain decreases
to 10000. We then switch the model and continue with a value β of 0.9. We
repeat this process until t = 200. This process simulates a series of introducing
and relaxing measures, such as social distancing, based on the total number of
exposed individuals across the whole region.

3.2 Time Dependent Discontinuity Model

In this section, we investigate the numerical solution computed by BACOL-
IKR for the Covid-19 PDE model with a time-dependent discontinuity. The
time-dependent discontinuity is introduced by changing the value of the SEIR
modeling parameter, β from 0.9 to 0.035 at t = 30.

We note that this section demonstrates that the PDE time-dependent dis-
continuity PDE problem is similar to the ODE time-dependent discontinuity
problem. We will show that reasonably accurate solutions can be computed
without the use of discontinuity handling but that the use of discontinuity han-
dling through the use of a cold start dramatically improves the efficiency of the
computation.

For the following sections, we will plot E(x, t) at x = 0 to show both that
the problem initially has an exponentially growing solution component and the
rapid change of that component to exponential decay when the parameter β is
reduced.

3.2.1 Simple treatment of the time-dependent discontinu-
ity PDE model

The simple treatment for time-dependent discontinuities is to use if-statements
in the right-hand side function based on the value of the time argument, t, and
to use the default tolerance.
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For our model, we start with a value of β at 0.9 and from t = 30 onwards,
the value for β is reduced to 0.035. The pseudo-code for this approach is as
follows:

f unc t i on mode l w i th i f ( t , x , u , ux , uxx )
// . . .
beta = 0 .9
i f t >= 30 :

beta = 0.035
// . . .
return ( dSdt , dEdt , dIdt , dRdt )

This change in the β parameter introduces a discontinuity in the model,
which leads to thrashing as discussed in Section 3.1.1. However as we have
shown in Section 2.2 for the ODE case, error-control PDE solvers can also
reduce the time step-size to integrate through a time-dependent discontinuity
with reasonable accuracy. (See Figure 3.4.)

Figure 3.4: Simple treatment of the time dependent discontinuity Covid-19
Model (with a tolerance of 10−6).

From Figure 3.4, we can see that the computed solution is in good argument
with a high accuracy solution obtained from a computation with discontinuity
handling at a very sharp tolerance. Though the solution without discontinuity
handling is accurate, in the next section, we will show how a cold start can give
the same level of accuracy while using fewer function evaluations.
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3.2.2 Discontinuity handling for the time-dependent dis-
continuity PDE model

In this section, we discuss the use of discontinuity handling through the intro-
duction of cold starts. Though the error-controlled solver, BACOLIKR, was
able to get accurate solutions without discontinuity handling, we will show that
the use of cold starts allows it to be more efficient.

Recall that a solver is said to perform a cold start when it restarts by clearing
all its data structures, reducing the time step-size to the small initial step-
size, and reducing its time stepping method to first order (in the case where a
variable order DAE solver is employed). This way the solver does not allow any
effects from previous steps to influence the next step. Modern PDE solvers like
BACOLIKR have flags that a user can set to force it to perform a cold start.
We will use such a flag to set a cold start when one is needed.

The idea for performing time-dependent discontinuity handling is to use
BACOLIKR to solve up to the discontinuity, cold start at the discontinuity,
and then solve to tfinal. In our case, we solve the problem with one call from
t = 0 to t = 30 using 0.9 for the value of the β parameter. We then restart
with a cold start and integrate from t = 30 to the end of the time interval
with another call to the solver using β equal to 0.035. The pseudo-code for this
approach is as follows

func t i on mode l be fore ( t , x , u , ux , uxx ) :
// . . .
beta = 0 .9
// . . .

f unc t i on mode l a f t e r ( t , x , u , ux , uxx ) :
// . . .
beta = 0.035
// . . .

s o l u t i o n = pde so l v e r . i n i t ( . . . )
t span be f o r e = [ 0 , 30 ]
pde s o l v e r ( s o lu t i on , model before , t span be f o r e )

s o l u t i o n . c o l d s t a r t f l a g = True

t s p an a f t e r = [ 30 , 70 ]
pde s o l v e r ( s o lu t i on , mode l a f te r , t s p an a f t e r )
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Figure 3.5: Discontinuity handling for time discontinuity problem (with a tol-
erance of 10−6).

As expected, Figure 3.5 shows that BACOLIKR with the cold start is able
to provide a solution with the same accuracy as it did without the cold start.
We now note however that the use of a cold start allows the solver to make
359755 function evaluations whereas when the solver is used without a cold
start, it required 417505 function evaluations. We were thus able to make around
50000 fewer function evaluations when discontinuity handling is employed which
amounts to around a 14% gain in efficiency.

3.2.3 PDE time-dependent discontinuity problem toler-
ance study

As was the case with the Covid-19 ODE model, a researcher might want to
coarsen the tolerance if they need to run the solver in a loop or within an
optimization algorithm (see Appendix 6.1) in order to improve the speed of
the computation. We therefore now perform a tolerance study on this time-
dependent discontinuity problem to see whether discontinuity handling allows
us to use coarser tolerances as it did in the ODE case. We will also consider
the use of sharper tolerances to show how the use of discontinuity handling
significantly improves the efficiency.

Figures 3.6 shows the solutions obtained without discontinuity handling at
the different tolerances, while Figure 3.7 shows the solutions obtained with
discontinuity handling at the different tolerances. We plot E(x, t) at x = 0 in
both cases.
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Figure 3.6: Time dependent discontinuity tolerance study with BACOLIKR
without discontinuity handling.

Figure 3.7: Time dependent discontinuity tolerance study with BACOLIKR
using discontinuity handling.

We note that both for the case with discontinuity handling and for the case
without discontinuity handling, the solutions computed using a tolerance of 10−1

are inaccurate. We note that surprisingly, the discontinuity handling solution
at a tolerance of 10−3 is more accurate without discontinuity handling than
with. We explain this fact by noting that the step-size at a tolerance of 10−3

was much smaller than required in the case without discontinuity handling than
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in the case with discontinuity handling. Thus, although the solution is more
accurate, the solver without discontinuity handling is inefficient as it could have
satisfied this tolerance with a much larger step-size. This can be seen in Table
3.1 where we can see that the solver without discontinuity handling performs
about 2500 more function evaluations than required. For all tolerances sharper
than 10−3, the solutions are all reasonably accurate.

Table 3.1: PDE time discontinuity tolerance study - number of function evalu-
ations.

tolerance BACOLIKR simple BACOLIKR disc hand
1e-1 40800 55400
1e-3 79220 76750
1e-5 206980 208870
1e-7 733210 543850
1e-9 1904080 1653830
1e-11 7140875 4979555

Table 3.1 shows the improvement in efficiency when discontinuity handling is
employed. We note that the smaller number of function evaluations for the case
without discontinuity handling at a tolerance of 10−1 is not relevant because
the solutions at this tolerance are very inaccurate. At a tolerance of 10−5, the
discontinuity handling does more function evaluation than without. We then
note that for any of the sharper tolerances, the use of discontinuity handling
leads to a gain in efficiency and that at very sharp tolerance such as 10−11, the
solver does around 2 million fewer function evaluations with a cold start than
without (around a 30% gain in efficiency).

3.3 State Dependent Discontinuity Model

In this section, we discuss the state-dependent discontinuity problem. Again,
we note that state-dependent discontinuity problems are not as trivial as time-
dependent discontinuity problems and that for these problems, we do not have
a straightforward way to introduce a cold start since we do not know when
the discontinuities will arise. We will also attempt a longer integration in this
section as we will run the solver to t = 200 to see for how long a period of time
the solver can provide accurate solutions.

In state-dependent discontinuity problems, we use the value of one of the
components of the solution to dictate how the model should behave. We com-
pare one the solution component against a pre-determined threshold and if this
threshold is crossed, we change the model. However, unlike, in the ODE case, in
the PDE case, we have another dimension, the spatial dimension, to consider.
Some of the ways to include the spatial dimension are listed below:
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� Consider a spatial value, say x = 0, and sample the solution component at
this spatial point at the end of every time step. If the solution component
value meets a certain threshold, we apply a different model, otherwise we
continue with the same model

� Compute some statistical measure of the solution component (e.g., min,
max, average) across the spatial domain and use that value for the com-
parison with the threshold.

� Integrate the solution component over the spatial domain and use that
integral value for the comparison against the threshold.

In this chapter, we will use the third method. If the value of the integral of
the solution component reaches a maximum threshold (30000), the value of the
parameter β is changed from 0.9 to 0.035 and when we cross a certain minimum
threshold (10000), the value of the parameter β is changed back to 0.9. This
models the situation where a government looks at the total number of cases over
all geographical locations to inform a decision regarding introducing/relaxing
measures.

Again, we note that a discontinuity is introduced by the change in the pa-
rameter β.

For the following sections, we will plot the integral value of E(x, t) over the
spatial dimension. An accurate solution will thus have an integral oscillating
cleanly between 10000 and 30000 as the model is changed.

3.3.1 Simple treatment of the state-dependent discontinu-
ity model

Similar to the approach used for the ODE case in the previous chapter, a simple
treatment of this problem involves using global variables which are toggled based
on the integral value over the spatial domain to denote which model to use.
The global variable selects which value of β to use in the model function. When
measures are implemented, the value of β is 0.035; when measures are not
implemented the value of β is 0.9.

In this simple implementation, the user will have to specify the times at
which the solver should stop and run an integration over the spatial domain
to get a value to compare against the thresholds. This form of ‘manual’ time-
checking introduces another parameter, the ‘number of time intervals’, that the
user will have to fine-tune in order to obtain accurate results. We will show,
in this section and the next section, why this parameter is very difficult to get
right despite how crucial it is for the goal of obtaining accurate results. If the
number of time intervals is too small, we will toggle the global variable too late
as we will check the integral value after it had already crossed the threshold and
if the number of time intervals is too large, we will check the integral value too
often which will reduce the efficiency.

The simple approach will be to divide the time domain into num time intervals
equal intervals. The solver will solve the model from the beginning of each time
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interval to the end of that time interval. At the end of each interval, the solver
will estimate the integral of E(x, t) using a compound trapezoidal rule [21]. This
integral value will be compared against the threshold and if measures are not
implemented and the integral is greater than 30000, the maximum threshold,
the global variable indicating that measures are implemented will be switched
to true and the parameter β will be set to 0.035. When measures implemented
and the integral value is less than 10000, the minimum threshold, the global
variable is switched to false indicating that β is now at 0.9, corresponding to
measures being relaxed. The pseudo-code for this approach is as shown:

measures implemented = False

func t i on model ( t , x , u , ux , uxx ) :
// . . .
global measures implemented
i f ( measures implemented ) :

beta = 0.035
else :

beta = 0 .9
// . . .

t s t a r t = 0
ts top = 200
num t ime inte rva l s = 400
t im e s t e p s i z e = ( t s top = t s t a r t ) / num t ime inte rva l s
s o l u t i o n = pde so l v e r . i n i t ( . . . )

t c u r r e n t = t s t a r t
t nex t = t cu r r en t + t im e s t e p s i z e

while t c u r r en t < t s top :
tspan = [ t cu r r en t , t nex t ]
pde s o l v e r ( s o lu t i on , model , tspan )
i n t e g r a l v a l u e = in t e g r a t e ( s p a t i a l i n t e r p o l a t e ( s o l u t i o n ) )
i f (not measures implemented ) :

i f ( i n t e g r a l v a l u e >= 30000) :
measures implemented = True

else :
i f ( i n t e g r a l v a l u e <= 10000) :

measures implemented = False
t c u r r e n t = t next
t nex t = t next + t im e s t e p s i z e

Figure 3.8 shows the integral value of E(x, t) over the spatial domain with
400 time intervals and with 1000 time intervals together with a high accuracy
solution obtained via event detection using a sharp tolerance. We can see that
neither of the solutions obtained using the simple approach are in agreement
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with the high accuracy solution. In the next section, we will explain why the
simple implementation cannot obtain an accurate solution, and in the section
after that, we will show how event detection provides a better way to solve this
problem.

Figure 3.8: Integral value of E(x, t) from a simple treatment of the state-
dependent discontinuity problem with a tolerance of 10−6 using 400 and 1000
time intervals, compared with a high accuracy solution.

3.3.2 Why the simple approach cannot give an accurate
solution

The simple method cannot solve the problem accurately because of the issue of
choosing the correct number of time intervals. The check in which we compare
the integral of E(x, t) against the thresholds can only be performed at the end
of a time interval. Thus we can detect that the thresholds are crossed only after
they have been crossed rather than exactly at the point where a threshold is
crossed.

One idea to address this issue would be to use an exceedingly large number
of time intervals (e.g., 10000) so that we only take a small number of time steps
with the wrong β value. Figure 3.9 shows how doing so produces a solution
more in line with the high accuracy, event-detection solution. However, even
this plot does not approach the accurate solution, especially at later times.
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Figure 3.9: Integral value of E(x, t) from a simple treatment of the state-
dependent discontinuity problem with a tolerance of 10−6 using 1000 and 10000
time intervals, compared with a high accuracy solution.

We could use an even larger number of time intervals but using such a high
number of time intervals will lead to a substantial loss in efficiency. A much
better option is to use event detection. In the next section, we will show how
event detection provides an intuitive, efficient and accurate way of solving such
problems. It will allow us to correctly cold start when needed and thus have
BACOLIKR integrate only on continuous sub-problems of the state-dependent
discontinuity problem. It will also find the time at which the value of the integral
of E(x, t) crosses a threshold and will improve the efficiency of the computation
as well.

3.3.3 Event detection solution to the state-dependent dis-
continuity model

In the previous section, we have explained the issue with using manual time-step
checking to obtain an accurate solution. In this section, we will present event
detection for the PDE case, explain how it leads to more accurate results and
explain how it makes the minimum number of calls to the integration routine
required to obtain an accurate solution.

As mentioned earlier, BACOLIKR is an error control PDE solver with an
event detection capability. Event detection also works in the same way as it does
in the ODE case. To use event detection, the user provides a root function to
the PDE solver. The root function uses the solution available over the current
time step to evaluate an event function. A root is detected when the returned
value of the event function is 0. After each time step, the solver calls the root
function providing it with the solution on the current time step together with
the current spatial mesh. If the returned value from the root function changes
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sign between two consecutive steps, a root is present in the current step. The
solver will then employ a root-finding algorithm within the time-step to find the
time at which the root function is zero. The solver then returns, setting flags
indicating that it has found a root and providing the solution at the root.

To solve the state-dependent discontinuity problem, we define two pairs of
root and model functions. One pair is used for the case when there are no
measures in place. The model function will have the parameter β set to a value
of 0.9 and the root function that performs the integration of E(x, t) over the
spatial domain for the current time step will return the difference between the
integral value and the maximum threshold (30000). The second pair will have a
model function with β set to a value of 0.035 and the root function will return
the difference between the integral of E(x, t) and the lower threshold value of
10000. The solver starts with the first pair of functions as initially measures
are not implemented. It will return when the 30000 maximum threshold is met.
At this point, the cold start flag is set and the solver is called to continue with
the second pair of model-root functions. The solver will now return when the
integral of the E(x, t) equals 10000. When that happens, we perform a cold
start and run the solver with the first model-root function pair. We repeat this
process until the solver reaches t = 200. The pseudo-code for this approach is
as follows:
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f unc t i on model no measures ( t , x , u , ux , uxx ) :
// . . .
beta = 0 .9
// . . .

f unc t i on root max value ( t , s o l u t i o n ) :
// . . .
i n t e g r a l v a l u e = in t e g r a t e ( s p a t i a l i n t e r p o l a t e ( s o l u t i o n ) )
return i n t e g r a l v a l u e = 30000

func t i on model with measures ( t , x , u , ux , uxx ) :
// . . .
beta = 0.035
// . . .

f unc t i on root min va lue ( t , s o l u t i o n ) :
// . . .
i n t e g r a l v a l u e = in t e g r a t e ( s p a t i a l i n t e r p o l a t e ( s o l u t i o n ) )
return i n t e g r a l v a l u e = 10000

t s t a r t = 0
ts top = 200
t cu r r en t = t s t a r t
measures implemented = f a l s e

while t c u r r en t < t s top :
tspan = [ t cu r r en t , t s t op ]
i f ( measures implemented ) :

pde s o l v e r ( s o lu t i on , model with measures ,
tspan , root min va lue )

else :
pd e s o l v e r ( s o lu t i on , model no measures ,

tspan , root max value )

i f ( s o l u t i o n . r o o t f l a g == True ) :
s o l u t i o n . c o l d s t a r t f l a g = True
// switch model=root pa i r
measures implemented = not measures implemented

t cu r r en t = so l u t i o n . t

Figure 3.10 shows the solution we obtain using a tolerance of 10−6 and using
event detection to solve the state-dependent discontinuity problem. We can see
that the solution correctly oscillates between 10000 and 30000 and that for the
first few oscillations, it lines up with the highly accurate solution. We then see
that although it oscillates correctly, at later times, it is not completely aligned
with the high accuracy solution.
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Figure 3.10: Integral value plot of the event detection solution to state-
dependent discontinuity problem with a tolerance of 10−6.

We explain this misalignment by noting that the root-detection algorithm
employed inside BACOLIKR detects a root based on the tolerance. It signals
that it has detected a root when the root function value is within the tolerance.
Thus if we sharpen the tolerance and run the same experiment, the solutions
obtained using sharper tolerances will tend to align themselves more with the
high accuracy solution.

Figure 3.11 shows the result of solving this problem at a tolerance of 10−9.
At this higher tolerance, the root is detected when the root function returns
with a value within a tolerance of 10−9. Thus the solver approaches the correct
root times more accurately and the solutions are more aligned with the high
accuracy solution, especially at the later times, compared to the solution at a
tolerance of 10−6.
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Figure 3.11: Integral value plot of the event detection solution to state-
dependent discontinuity problem with a tolerance of 10−9.

We now note that both solutions with event detection, even the one com-
puted using a tolerance of 10−6 are much more accurate than the simple solu-
tions that were computed using manual selection of the time intervals. Table
3.2 shows the number of function evaluations.

Table 3.2: PDE state discontinuity model - number of function evaluations.

method nfev
simple implementation with 400 steps 1184880
simple implementation with 1000 steps 1280080
simple implementation with 10000 steps 1272030

event detection at 10−6 tol. 1937730
event detection at 10−9 tol. 7915085

Table 3.2 shows that event detection required more function evaluations
than the solutions without event detection. However these non-event detection
solution were very inaccurate and thus the associated function evaluation counts
are not relevant.

We also discuss the fact that that the number of function evaluations is
not the only measure of efficiency in this case as we also need to consider the
number of times the integration routine is called. We note that for the simple
implementation, if we are using n time intervals, then the integration routine
is called n times. For the event detection approach, the number of times the
integration routine is called is the number of times the root function is called.
With a tolerance of 10−6, the integration routine is called 2149 times and with
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a tolerance of 10−9, the integration routine is called 5059 times. We note that
the integration routine is thus called less than 10000 times in both cases and
that the simple implementation did not get accurate results even with 10000
calls to the integration routine.

We now note that even with event detection, we are faced with the problem
of finding a good trade-off between efficiency and accuracy. Improving the
accuracy comes at the price of efficiency. In the next section, we will perform a
tolerance study to analyze this trade-off.

3.3.4 State-dependent discontinuity problem tolerance study

In this section, we perform a tolerance study on the different solutions to the
state-dependent discontinuity problem. We use the simple implementation with
a number of time intervals of 1000 and 10000 to see if using sharper tolerances
allows us to get more accurate results in either case. We also perform a tolerance
study on the event detection approach to show the efficiency/accuracy trade-off.

Figure 3.12: Integral value plot of simple treatment of the state-dependent
discontinuity problem at several tolerances using 1000 time intervals.
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Figure 3.13: Integral value plot of simple treatment of the state-dependent
discontinuity problem at several tolerances using 10000 time intervals.

BACOLIKR without event detection Figures 3.12 and 3.13 show that
the solutions at different tolerances with the simple implementation at 1000 and
10000 time intervals. We can see that increasing the number of time intervals
does increase the accuracy of the solvers, as with 10000 steps, the solutions
oscillate more cleanly between 10000 and 30000. We note that in both cases,
very coarse tolerances like 10−1 and 10−3 provide very inaccurate solutions.
Surprisingly, at very sharp tolerances like 10−9 and 10−11, the solutions are
aligned with each other and with the more accurate solution up to the second
root. However, even very sharp tolerances fail to provide accurate solutions for
long-term forecasts. See Table 3.3 and Table 3.4 for an efficiency comparison
between the simple implementation and the implementation that uses event
detection.
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Figure 3.14: Integral value plot of event detection solutions to state-dependent
discontinuity problem at several tolerances.

BACOLIKR with event detection With event detection, the solutions os-
cillate correctly between 10000 and 30000 for all tolerances except for 10−1. The
other solutions are only slightly misaligned but this can be explained because
of the tolerance used in the root-finding function. Depending on the tolerance,
the root is detected at a slightly different location by the root-finding algorithm
and thus different tolerances lead to detection of the roots at slightly different
times. These errors compound; the solutions are aligned for the first few roots
but for accurate longer-term forecasts, a sharp tolerance is required. Despite
this, event detection can provide accurate solutions at a tolerance of only 10−7,
something which the simple implementation could not do even with 10000 time
intervals at a tolerance of 10−11.

Table 3.3: State-dependent discontinuity model tolerance study - number of
function evaluations.

tolerance simple 1000 simple 10000 with event detection
1e-1 101250 112600 137300
1e-3 290600 343410 376855
1e-5 848080 862960 1052920
1e-7 2217610 2215690 3217450
1e-9 6040485 5811165 7915085
1e-11 16402140 18508725 21256400
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Table 3.4: Number of times the integration routine is called using event detection
for the state-dependent discontinuity problem.

tolerance number of calls to integration routine with event detection
1e-1 420
1e-3 940
1e-5 1634
1e-7 3405
1e-9 5059
1e-11 9753

Efficiency of the solvers Table 3.3 shows that we are forced to sacrifice
efficiency for accuracy in this problem. We note that all simple solutions de-
pend highly on the time checking and thus should not be trusted for accurate
solutions. Though they use fewer function evaluations than the event detection
solutions of the same tolerance, the solutions they yield are not even reasonably
accurate.

We also note that Table 3.4 shows that for the case of the simple imple-
mentation with 10000 time intervals, the integration routine is called less with
event detection at all the tolerances as this simple implementation and all other
implementations with more time intervals will call the integration routine more
frequently (once at the end of each interval). The poor accuracy of the simple
implementation of the solution to the state-dependent discontinuity problem
should not be overlooked. Event detection is a better way of solving such prob-
lems with reasonable accuracy.
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Chapter 4

Efficient defect control for
IVODES based on
multistep Hermite-Birkhoff
interpolants

4.1 Introduction

In this chapter, we present an efficient defect control technique for use in the
numerical solution of initial value ordinary differential equations (ODE). We will
assume that the underlying numerical method is a Runge-Kutta (RK) method
since the vast majority of the literature on the use of defect control for numerical
solution of IVODEs focuses on RK methods. Solvers based on Runge-Kutta
methods only provide a discrete numerical solution. They adaptively divide
the time domain into steps and return an estimate of the solution at the end
of each step. To get a continuous solution approximate, the user has to fit an
interpolant over the whole region.

The issue is that there is no guarantee that the interpolant will be as accurate
as the discrete solution calculated by the solver. Thus if the solver returned a
solution that satisfied a tolerance of 10−i, there are no guarantee that in the
middle of a step, the interpolant will also deliver approximate solution values
whose accuracy is approximately 10−i.

High quality contemporary IVODE solvers typically have a built-in inter-
polant that provides a continuous solution approximation. However the solvers
typically do not provide any type of explicit control of the accuracy of the con-
tinuous solution approximate. We show in Section 4.1.2, that even for the robust
IVODE solvers in Python, using interpolation does not guarantee solution ap-
proximations that have the same accuracy as the solution approximations at
the end of each step.
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There has been some work towards addressing this issue in the area of control
of the defect of the continuous solution approximation [19; 18; 17; 16; 14; 15].
The defect is the amount by which the continuous solution approximation fails
to satisfy the IVODE. We discuss this work in Section 4.1.3. Typically, the
interpolants employed in algorithms for defect control are based on the use of
Continuous Runge-Kutta methods and the computational costs are substantial.

In this paper we will discuss an efficient method for defect control of the
continuous solution using multistep Hermite Birkhoff interpolants. For related
work, see [16; 31; 25]and the references within. We will control an estimate
of the maximum defect along a step and show how that yields a continuous
solution approximation over the whole time domain whose defect is typically
within the tolerance.

We start by discussing the ODE problems we will use to demonstrate our
approach in Section 4.1.1. We then give an overview of the issue with using
error control only at the end of the step in Section 4.1.2. We discuss related
work in Section 4.1.3. We give a description of the solvers that we use in Section
4.1.4.

We discuss several multistep interpolants that we have constructed based
on a Runge-Kutta method of order 4 in Section 4.2 and extend them to higher
order Runge-Kutta methods in Section 4.3. We then discuss possible solutions
to a fundamental issue with our approach in Section 4.4 and give some final
recommendations on building a final solver in Section 4.5.

4.1.1 Test Problems

In this section, we discuss the three problems that we use [26].
The first problem has the ODE:

y′(t) = −y3(t)

2
(4.1)

The initial condition is y(0) = 1 and the time domain is [0, 10].
The solution to this problem is

y(t) =
1√
1 + t

. (4.2)

as shown in Figure 4.1.
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Figure 4.1: Solution to the first ODE problem.

The second problem has the ODE:

y′(t) =
y(t)(1− y(t)

20 )

4
. (4.3)

The initial condition is y(0) = 1 and the time domain is [0, 10].
The solution to this problem is

y(t) =
20e

t
4

e
t
4 + 19

, (4.4)

as shown in Figure 4.2.

Figure 4.2: Solution to the second ODE problem.
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The third problem has the ODE:

y′(t, y) = −0.1y − e−0.1t sin(t) (4.5)

The initial condition is y(0) = 1 and the time domain is [0, 10].
The solution to this problem is

y(t) = e−0.1t cos(t), (4.6)

as shown in Figure 4.3.

Figure 4.3: Solution to the third ODE problem.

4.1.2 Absence of control of the continuous solution ap-
proximation for typical IVODE solvers

In this section, we discuss how conventional solvers employed in popular pack-
ages like the Scipy library solve IVODE problems. These libraries will often
have the option of using an error control solver based on a Runge-Kutta pair
which works as follows. The pair comes with a low order method and a high
order method and will solve an ODE by taking a sequence of steps. The solver
will take each step with both methods and use the difference between the higher
order method and the lower order method to generate an error estimate for the
discrete numerical solution at the end of the step. If the error estimate is within
the user provided tolerance, the solver will accept the step and proceed to the
next step. If the error estimate is not within the tolerance, the solver will reduce
the step-size and attempt to take the step again. As the error of Runge-Kutta
methods depends on the step-size, a smaller step-size will produce a smaller
error. The solver will keep reducing the step-size until the user tolerance is
satisfied and will then proceed to the next step. In an attempt to improve the
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efficiency, solvers will also increase the step-size when the estimated error is
significantly smaller than the tolerance.

An issue with this approach is that the error estimate is computed only for
the discrete numerical solution computed at the end of a step and thus the error
control is only applied at the end of the step. An interpolant that provides a
continuous solution approximation across the entire step is typically constructed
by the solver and it is hoped that the error of the interpolant at points within
the step is within the user-provided tolerance. However, as we will show below,
this is sometimes not the case.

For this interpolant to provide a solution within the user provided tolerance,
the theoritical interpolation error must be less than or equal to the error of
the data being fitted. Thus we would ideally use an interpolant of at least
order O(hp) if the discrete solution is of order O(hp). However, for high order
methods, it becomes too expensive to construct an interpolant of the appropriate
order. IVODE solvers will thus usually compromise and employ a lower order
interpolant, that is less costly, but deliver less accuracy.

Therefore, we are not guaranteed that the continuous approximate solution
is error-controlled and not guaranteed that the interpolation error will not affect
the continuous solution approximation. Figures 4.4 and 4.5 show some results
obtained when Runge-Kutta solvers are applied to some of the test problems
introduced in the previous section. In these figures, we plot the global error of
the numerical solution, this is the difference between the exact solution and the
computed solution over the time domain. The solvers apply error control to the
discrete numerical solution at the end of the step but no error control of any
type to the continuous numerical solution across the step.

Figure 4.4: The Python ‘DOP853’ solver on problem 2 with an absolute tol-
erance of 10−6 and a relative tolerance of 10−6. Steps are represented by the
vertical lines.
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Figure 4.5: The Python ‘RK45’ solver on problem 3 with an absolute tolerance
of 10−6 and a relative tolerance of 10−6. Steps are represented by the vertical
lines.

Figure 4.4 and 4.5 shows the errors in the middle of each step obtained when
applying ‘DOP853’ to problem 2 and ‘RK45’ to problem 3 with an absolute tol-
erance of 10−6 and a relative tolerance of 10−6. We can see that the solution
values at the end of each step typically satisfy the tolerance. However we can
clearly see that the solution values (obtained from the built-in interpolant con-
structed by the solver) at points within each steps, have errors up to one order
of magnitude larger than the tolerance.

We note that when a user asks for a solution whose estimated error is within
a tolerance of 10−i, they expect the solution to have an estimated error that
is within that tolerance for the whole time domain. However, the decision
to not satisfy the user provided tolerance throughout the step is made in the
interest of efficiency and the loss of accuracy in the middle of the step is the
tradeoff. The goal of modern IVODE solvers is to provide a continuous solution
approximation across the whole time domain. The user’s expectation is that
the solution approximations across each step also satisfies the tolerance as ODE
solvers can be integral part of larger software packages where their approximate
solutions are differentiated, integrated and manipulated in ways such that a
sufficiently accurate continuous approximate solution is required.

In this chapter, we attempt to provide an efficient way of constructing inter-
polants that can then be used to control the defect of the continuous approxi-
mate solution across the step and thus throughout the whole time domain.
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4.1.3 Defect control and the cost of traditional Continu-
ous Runge-Kutta methods

In this section we introduce the ‘defect’ of a continuous approximate solution
of an ODE and explain how the control of that defect provides a type of error
control of the continuous numerical solution.

In the context of numerical ODEs, the defect, denoted by δ(t), is the amount
by which the continuous numerical solution, u(t), fails to satisfy the ODE. When
the ODE is y′(t) = f(t, y(t)), the defect is

δ(t) = |u′(t)− f(t, u(t))|. (4.7)

Calculating the defect requires that the continuous approximate solution
computed by the solver to also be differentiable. The idea of defect control is
relatively new as differentiable solutions to ODEs can be expensive to calculate.
Several investigations in this direction are outlined in [19; 18; 17; 16; 14; 15].
In this work, the defect control method employs a continuous RK method for
which the number of stages grows exponentially with the order of the method
as shown in Table 4.1. In this chapter, we will compute a defect controlled
continuous solution with no additional cost. A typical Runge-Kutta solver will
thus be able to employ the usual number of stages required for the discrete
Runge-Kutta method and still produce an accurate continuous solution.

Table 4.1: Number of stages for discrete vs continuous RK method.

order discrete continuous asymptotically correct defect
4 4 4 8
5 5 6 12
6 6 7 15
7 7 9 20
8 8 13 27

Though the defect is defined for the whole step, the estimation of the max-
imum defect within a step is what is important. If the maximum defect is
within the tolerance, then the defect of the whole solution within the given step
is within the tolerance. The key task is to find the location of the maximum
defect within the step. One approach would be to sample the defect at several
points and use the maximum value sampled. The problem with this approach
is that each sampling of the defect requires an additional function evaluation.
Thus we should not do too many samples. Work in this direction (cited above)
involves constructing special interpolants that guarantee that (asymptotically)
the maximum defect is at the same location within every step for every prob-
lem. This way only one function evaluation is required to sample the defect to
obtain an estimate of the maximum defect. This is referred to as asymptotically
correct defect control.
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In the approach outlined in this chapter, we have observed experimentally
that the maximum defect will tend to appear at one of two locations within the
step. Thus in our approach, only two defect samplings must be done to get the
maximum defect. Though we make an additional function evaluation compared
to the asymptotically correct defect control, using no function evaluations to
construct the interpolant guarantees that our method is more efficient especially
for higher orders.

4.1.4 Overview of our approach

In this chapter, we will discuss simple IVODE solvers based on discrete Runge-
Kutta methods of order 4, 6 and 8 and show that we can provide accurate
continuous interpolant to augment the discrete solution computed by these RK
methods without having to compute any additional function evaluations. In
this section, we give an outline of the approach.

The first Runge-Kutta method upon which we build a prototype defect con-
trol solver is the classical 4th order method that uses 4 stages; the second method
is a Verner 6th order method, taken from his 6(5) pair [3] that uses 9 stages,
and the last method is a Verner 8th order method from an 8(7) pair that uses
13 stages [16].

The solvers that we have written use a simple step selection strategy. If the
estimated maximum defect is greater than tol, the solver rejects the step and
attempts to retake it again with half the step-size. If the estimated maximum
defect is less than 0.1tol, the solver accepts the step and doubles the step-size
for the next step. We will elaborate on the initial step-size used by each solver
later in the chapter.

We now note that the solver is not optimised. A more thorough analysis
of how the solver behaves and thus a more refined step selection algorithm will
produce a better solver in practice. The software we consider in this chapter
only serves as a proof of concept for a more elaborate solver.

4.2 Multistep interpolants for zero-cost defect
control for a Runge Kutta method

In this section we will consider a multistep interpolant approach, built on the
classical 4th order Runge Kutta method (RK4), that allows for defect control.
We will augment the discrete Runge-Kutta solution with interpolants of 4th,
6th and 8th orders respectively and explain the challenges and the efficiency and
accuracy of each interpolant.

We first note that Runge-Kutta methods are very convenient in that they
are one step methods. At any point, when taking the next step, the method
does not have to take into consideration the size of the previous steps and this is
convenient as the solver can choose the size of the next step in the most optimal
way based only on how the error estimate compares with the tolerance for the
current step.
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The first interpolant that we discuss is a single step interpolant. It is the
classical Hermite cubic of order 4. We will show how this interpolant can be
used to perform defect control and discuss the limitations of this interpolant.

We then show how a Hermite-Birkhoff interpolant of 6th order can address
the issues that we identified for the 4th order interpolant. We will give an
overview of how a 6th order interpolant is derived and show the results of ap-
plying defect control using this interpolant to solve the three test problems.

We will then use a similar approach to derive an 8th order Hermite-Birkhoff
interpolant and show why the approach used for the 6th order interpolant needs
to be modified for the 8th order. We then discuss another approach to derive an
8th order interpolant that addresses the issue with the previous one and show
the results of using this 8th order interpolant as the basis for computing defect
controlled numerical solutions of the three test problems.

4.2.1 The Classical 4th order RK method with a 4th order
Hermite Cubic Interpolant

The Hermite cubic spline is a very widely used interpolant. The basic idea is
that we can use the derivative values and not just the solution values to get more
data to fit an interpolant. Given points (ti, yi) and (ti+1, yi+1) with derivatives
fi and fi+1 (here fi = f(ti, yi) and fi+1 = f(ti+1, yi+1)), respectively, the
interpolant across the step [ti, ti+1] of size hi is defined as:

u(ti + θh) = h00(θ)yi + hih10(θ)fi + h01(θ)yi+1 + hih11(θ)fi+1, (4.8)

and its derivative is:

u′(ti + θh) = h′
00(θ)yi/hi + h′

10(θ)fi + h′
01(θ)yi+1/hi + h′

11(θ)fi+1. (4.9)

The quantity θ is:
θ = (t− ti)/hi. (4.10)

The functions h00(θ), h01(θ), h10(θ) and h11(θ) are each cubics defined such
that u(ti) = yi, u

′(ti) = fi, u(ti+1) = yi+1 and u′(ti+1) = fi+1. When θ is 0,
ti + θhi is ti and thus only h00(0) should be 1 and all the others cubic should
evaluate to 0. Also only h′

10(0) should be 1 and the derivatives of all the other
cubics should evaluate to 0. When θ is 1, ti + θhi is ti+1 and thus only h01(1)
should be 1 and all the other cubics should evaluate to 0. Also only h′

11(1)
should be 1 and the derivatives of all the other cubics should be 0.

We will assume that each of the cubics has the form aθ3+bθ2+cθ+d, where
a, b, c and d are coefficients to be determined, and note that for each cubic we
know its value for θ at 0 and 1 and the values of its derivatives for θ at 0 and
1. We thus have 4 equations for each cubic. Thus we can solve the system for
each cubic to get the values of a, b, c and d for each cubic.

We now note that from equations 4.8 and 4.10, we can evaluate both the
interpolant and its derivative for any θ in [ti, ti+1] and therefore we can form
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δ(t+ θhi) = u′(ti + θhi)− f(ti + θhi, u(ti + θhi)) which can be used to sample
the defect for any θ.

We will show below experimentally that the maximum defect occurs consis-
tently approximately either at xi+0.2hi or at xi+0.8hi so that we just need to
sample the defect twice in order to obtain an estimate of the maximum defect
on the step.

We now note that the interpolant comes at no additional cost. We only
need (xi, yi, fi) and (xi+1, yi+1, fi+1) to be stored as the discrete solution ap-
proximation are computed by the RK method. No additional stages or function
evaluations are required for the construction of the interpolant itself.

For the remainder of this chapter, we will refer to the Hermite cubic inter-
polant as ‘HB4’.

Problem 1 results Figures 4.6, 4.7 and 4.8 shows the results of using RK4
with HB4 on Problem 1. We note that an absolute tolerance of 10−6 is applied
on the maximum defect estimate within the step and this can be observed to
occur at 0.2h and 0.8h for a step of size h. See Figure 4.8, to see the scaled
defect reaching a maximum near these points. (The figure shows the shape of
the defect for each of the steps that were taken to solve Problem 1 using RK4
with HB4. All the defects were scaled vertically to be in the range [0, 1] and
scaled horizontally so that they map onto [0, 1]. We see that over all steps and
problems, the defect has two clear peaks at 0.2h and 0.8h.) We note that we
are able to successfully control the defect of the continuous numerical solution
using this approach; see Figure 4.6. To obtain these results, we sampled the
defect at many points within each step.

Figure 4.6: Defect across the entire domain for RK4 with HB4 on problem 1 at
an absolute tolerance of 10−6.
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Figure 4.7: Global Error for RK4 with HB4 on problem 1 at an absolute toler-
ance of 10−6.

Figure 4.8: Scaled defects over all steps for RK4 with HB4 on problem 1 at an
absolute tolerance of 10−6 mapped onto [0, 1]. The defect has the same shape
on every step.

Problem 2 results Figures 4.9, 4.10 and 4.11 shows the results of using RK4
with HB4 on Problem 2. We note that an absolute tolerance of 10−6 is applied
on the maximum defect estimate within the step and this can be observed to
occur at 0.2h and 0.8h for a step of size, h. See Figure 4.11, to see the scaled
defect reaching a maximum near these points. We note that we are able to
successfully control the defect of the continuous numerical solution using this
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approach; see Figure 4.9. For Problem 2, the defect is noisy on small steps and
we do not get two clean peaks. However, we note that we quite consistently
get the maximum defects at 0.2h and 0.8h and thus we only require two defect
samplings.

Figure 4.9: Defect across the entire domain for RK4 with HB4 on problem 2 at
an absolute tolerance of 10−6.

Figure 4.10: Global Error for RK4 with HB4 on problem 2 at an absolute
tolerance of 10−6. There is more variation in the shape of the defect for this
problem but the maximum defect occurs near either 0.2h or 0.8h.
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Figure 4.11: Scaled defects over all steps taken for RK4 with HB4 on problem
2 at an absolute tolerance of 10−6 mapped onto [0, 1]. There is more variation
in the shape of the defect for this problem but the maximum defect occurs near
either 0.2h or 0.8h.

Figure 4.12: Scaled defects small steps taken RK4 with HB4 on problem 2 at
an absolute tolerance of 10−6 mapped onto [0, 1].

Problem 3 results Figures 4.13, 4.14 and 4.15 shows the results of using
RK4 with HB4 on Problem 3. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.2h and 0.4h along a step of size, h. See Figure 4.15, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
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control the defect of the continuous numerical solution using this approach, see
Figure 4.13.

Figure 4.13: Defect across the entire domain for RK4 with HB4 on problem 3
at an absolute tolerance of 10−6.

Figure 4.14: Global Error of RK4 with HB4 for problem 3 at an absolute toler-
ance of 10−6.
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Figure 4.15: Scaled defects over all steps taken for RK4 with HB4 on problem
3 at an absolute tolerance of 10−6 mapped onto [0, 1]. The shape of the defect
stays relatively similar but there are two peaks, one at 0.2h and another at 0.8h.

Efficiency data and discussion of the interpolation error We now present
the number of steps that were taken by the solver to solve each problem along
with the number of successful steps.

Table 4.2: Number of steps taken by RK4 using defect control with HB4.

Problem successful steps total steps
1 88 88
2 59 62
3 225 232

The Hermite cubic, HB4, is an interpolant of 4th order. However, to perform
defect control we need to calculate the derivative of this interpolant. Since
we are differentiating the interpolant, the order of the derivative is 3. The
numerical solution is of order 4 as we are using RK4 and thus the derivative of
the interpolant is less accurate than the ODE solution. We need a way to get
an interpolant whose derivative is at least of order 4 so that the error of the
derivative of the interpolant is not larger than the error of the discrete numerical
solution obtained from the RK4 method.

To do that, in the next section, we will introduce a new interpolation scheme
based on a Hermite-Birkhoff interpolant which is of 6th order and will thus have
a derivative of order 5.
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4.2.2 RK4 with a 6th order Hermite-Birkhoff interpolant

We first start by noting that this interpolant is a multistep interpolant as it
depends on the previous step.

Suppose that the step taken by a solver to go from ti to ti+1 is of size h.
We can define the size of the step from ti−1 to ti by using a weight α such that
the size of the step from ti−1 to ti is αh. Then given the solution values and
the derivative values at all the three points, i.e, (ti−1, yi−1, fi−1), (ti, yi, fi) and
(ti+1, yi+1, fi+1), we can fit a two-step quintic interpolant of order 6 defined as
such:

u(ti + θh) = d0(θ)yi−1 + hid1(θ)fi−1

+d2(θ)yi + hid3(θ)fi + d4(θ)yi+1 + hid5(θ)fi+1,
(4.11)

and its derivative is

u′(ti + θh) = d′0(θ)yi−1/hi + d′1(θ)fi−1

+d′2(θ)yi/hi + d′3(θ)fi + d′4(θ)yi+1/hi + d′5(θ)fi+1.
(4.12)

As before, θ is:
θ = (t− ti)/hi. (4.13)

This time θ is allowed to vary between -α and 1 such that ti + θh is ti−1

when θ is −α, ti when θ is 0 and ti+1 when θ is 1.
Each of d0(θ), d1(θ), d2(θ), d3(θ), d4(θ), and d5(θ) is a quintic of the form

aθ5 + bθ4 + cθ3 + dθ2 + eθ + f where the six coefficients for each can be found
by solving a linear system of 6 equations in terms of α. The six equations are
obtained as follows. First, for θ = −α, only d0(θ) evaluates to 1 and all the
other quintic polynomials evaluate to 0 as u(ti − αh) = u(ti−1) = yi−1. Also
at this θ, only the derivative of d1(θ) evaluates to 1 and all the other quintic
polynomials’ derivatives evaluate to 0 as u′(ti − αh) = u′(ti−1) = fi−1. When
θ is 0, only d2(θ) evaluates to 1 and all the other polynomials evaluate to 0
as u(ti − 0(h)) = u(ti) = yi. Also at this θ value, only the derivative of d3(θ)
evaluates to 1 and all the other quintic polynomial derivatives evaluate to 0 as
u′(ti − 0(h)) = u′(ti) = fi. When θ is 1, only d4(θ) evaluates to 1 and all the
other polynomials evaluate to 0 as u(ti+1(h)) = u(ti+1) = yi+1. Also at this θ,
only the derivative of d5(θ) evaluates to 1 and all the other quintic polynomial
derivatives evaluate to 0 as u′(ti − 1(h)) = u′(ti+1) = fi+1. With these six
conditions, we can get six equations for each quintic in terms of α and, using a
symbolic management package, we can solve all of these to find the six quintic
polynomials. (Their coefficients will be given in terms of α.)

We again note that as the solver is stepping across the problem domain,
these interpolants are constructed for no additional cost in terms of evaluation of
f(t, y(t)). We just need to store (ti−1, yi−1, fi−1), (ti, yi, fi) and (ti+1, yi+1, fi+1)
as these quantities are being computed by the RK method. We will also observe
that the defect peaks at two positions within the new step, [ti, ti+1], and thus, we
can find the maximum defect by only sampling the defect twice. This technique
provides an efficient defect control of a continuous approximate solution.
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The interpolant defined as above will be referred to as ‘HB6’ for the remain-
der of this chapter. We note that it is of order 6 and its derivative is of order
5.

We now note that for RK4 as the solution values are only accurate to 4th

order. We want the derivative of the interpolant to be of order 4 or higher
so that interpolation error is relatively negligible. This scheme satisfies this
condition and we will see below how this allows us to take fewer time steps to
solve a given problem than when HB4 was used with RK4.

Problem 1 results Figures 4.16, 4.17 and 4.18 shows the results of using
RK4 with HB6 on Problem 1. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.3h and 0.8h along a step of size, h. See Figure 4.18, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
control the defect of the continuous numerical solution using this approach; see
Figure 4.16.

Figure 4.16: Defect across the entire domain for RK4 with HB6 on problem 1
at an absolute tolerance of 10−6.
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Figure 4.17: Global Error for RK4 with HB6 on problem 1 at an absolute
tolerance of 10−6.

Figure 4.18: Scaled defects for RK4 with HB6 on problem 1 at an absolute
tolerance of 10−6 mapped into [0, 1].

Problem 2 results Figures 4.19, 4.20 and 4.21 shows the results of using
the modification of RK4 with HB6 on Problem 2. We note that an absolute
tolerance of 10−6 is applied on the maximum defect within the step and this
can be shown to occur at 0.8h along a step of size, h. See Figure 4.21, to see the
scaled defect reaching a maximum near these points. We note that we are able
to successfully control the defect of the continuous numerical solution using this
approach, see Figure 4.19. For Problem 2, the defect is noisy on small steps and
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we do not get two clean peaks. However, we note that we quite consistently get
the maximum defects at 0.4h and 0.8h and thus we only require two samplings.

Figure 4.19: Defect across the entire domain for RK4 with HB6 on problem 2
at an absolute tolerance of 10−6.

Figure 4.20: Global Error for RK4 with HB6 on problem 2 at an absolute
tolerance of 10−6.
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Figure 4.21: Scaled defects for RK4 with HB6 on problem 2 at an absolute
tolerance of 10−6 mapped into [0, 1].

Figure 4.22: Scaled defects for RK4 with HB6 on small steps on problem 2 at an
absolute tolerance of 10−6 mapped into [0, 1]. Despite the noise, the maximum
defect occurs near 0.8h.

Problem 3 results Figures 4.23, 4.24 and 4.25 shows the results of using
RK4 with HB6 on Problem 3. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.8h along a step of size, h. See Figure 4.25, to see the scaled defect reaching
a maximum near these points. We note that we are able to successfully control
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the defect of the continuous numerical solution using this approach, see Figure
4.23.

Figure 4.23: Defect across the entire domain for RK4 with HB6 on problem 3
at an absolute tolerance of 10−6.

Figure 4.24: Global Error for RK4 with HB6 on problem 3 at an absolute
tolerance of 10−6.
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Figure 4.25: Scaled defects for RK4 with HB6 on problem 3 at an absolute
tolerance of 10−6 mapped into [0, 1].

We note that the defects are not as clean they were in the case with HB4.
There are two peaks most of the time at around 0.4h and 0.8h but as was the
case in the third problem, the peak sometimes appears at 0.6h. However, we
can see that the defect is still being controlled. We will also see that it is twice
as fast as it uses around half the number of steps as HB4.

Table 4.3: Number of steps taken by RK4 when modified to do defect control
with HB6 vs HB4.

Problem succ. steps HB4 succ. steps HB6 nsteps HB4 nsteps HB6
1 88 27 88 27
2 59 36 62 40
3 225 62 232 73

Table 4.3 shows how the number of steps is less than half when we use HB6
as opposed to HB4. This is entirely because the error of the interpolant and its
derivative are smaller than the error of the discrete solution values at the end
of each step.

Issues with α values The issue with this scheme is that the interpolant is a
multistep interpolant while the Runge-Kutta method is a one step method. The
Hermite Birkhoff interpolant, HB6, is based on two steps and the parameter α
defines how big the previous step is compared to the actual step. The error
term in the Hermite-Birkhoff interpolant is minimised when the size of the two
steps are the same size, i.e, when α is 1. The error term is proportional to
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(t + α)2t2(t − 1)2. When α differs from 1, the accuracy of the interpolant is
reduced.

In Figure 4.26, we show the results of a simple experiment to illustrate how
the accuracy of this scheme depends on the value of α. We place 3 data points
along the t-axis such that their distances apart are αh and h for several values
of α and we vary h from 1 to 10−7; we then report on the maximum defect for
each h.

Figure 4.26: HB6 maximum defect based on different values of α.

Figure 4.26 shows that at α = 2, 1
2 , 4 and 1

4 , the defect are comparable to
those that we get when α is at 1. However, we see that α = 256 and 1

256 , the
smallest defect that we can obtain for any h value is much larger.

We note that in solving the 3 test problems, α is very rarely bigger than 4
or smaller than 1

4 and thus, we can be satisfied with the approach that we have
considered in this section. We discuss the situation further in Section 4.4. We
note that in order for the results given in Figure 4.26 to be relevant, we would
have to be considering a very sharp tolerance since for reasonable values of α,
e.g, 2, 1

2 , 4 and 1
4 , the interpolants all deliver very small defects of 10−12 to

10−14.
Another idea would be to use an even higher order interpolant so as to reduce

the interpolation error more. We note that with with the approach we consider
here, there is no additional cost to get the higher order interpolant. In the next
section, we discuss an 8th order interpolant and show how to derive such an
interpolant.

4.2.3 RK4 with an 8th order Hermite-Birkhoff interpolant

Derivation of HB8 In this section, we discuss a derivation of an 8th order
interpolant. To derive an 8 order interpolant, we need 4 data points over 3 steps.
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We need the data values to be (ti, yi, fi), as well as the two previous steps
(ti−1, yi−1, fi−1) and (ti−2, yi−2, fi−2), and the right hand end of the current
step step, (ti+1, yi+1, fi+1). We present two schemes:

� The first scheme has the parameters α and β are associated with the previ-
ous two steps, so the three steps are of the size βh, αh and h respectively.
Thus the scheme establishes the base step-size to be that of the third step.

� The second scheme has the parameter α associated with the rightmost
step and the parameter β associated with the previous step; the middle
step is the base step. Thus the sizes for the steps are αh, h and βh.

First HB8 Scheme In the first scheme, the step sizes are βh, αh and h respec-
tively. The interpolant defined on (ti−2, yi−2, fi−2), (ti−1, yi−1, fi−1), (ti, yi, fi)
and (ti+1, yi+1, fi+1) is defined as such:

u(ti + θh) = d0(θ)yi−2 + hid1(θ)fi−2 + d2(θ)yi−1 + hid3(θ)fi−1

+d4(θ)yi + hid5(θ)fi + d6(θ)yi+1 + hid7(θ)fi+1,
(4.14)

and the derivative is:

u′(ti + θh) = d′0(θ)yi−2/hi + d′1(θ)fi−2 + d′2(θ)yi−1/hi + d′3(θ)fi−1

+d′4(θ)yi/hi + d′5(θ)fi + d′6(θ)yi+1/hi + d′7(θ)fi+1.
(4.15)

Again θ is:
θ = (t− ti)/hi. (4.16)

This time θ is allowed to vary between −α − β and 1 such that ti + θh is
ti−2 when θ is −α − β, ti−1 when θ is −α, ti when θ is 0 and ti+1 when θ is
1. Also d0(θ), d1(θ), d2(θ), d3(θ), d4(θ), d5(θ), d6(θ) and d7(θ) are all septic
polynomials that will each have 8 coefficients.

Each septic polynomial is assumed to have the form aθ7 + bθ6 + cθ5 + dθ4 +
eθ3+fθ2+gθ+h where the eight coefficients for each can be found in terms of α
and β by solving a linear system of 8 equations in terms of α and β. First at θ =
−α−β, only d0(θ) evaluates to 1 and all the other septic polynomials evaluate to
0 as u(ti−(α+β)h) = u(ti−2) = yi−2. Also at this θ value, only the derivative of
d1(θ) evaluates to 1 and all the other septic polynomial derivatives evaluate to 0
as u′(ti − (α+ β)h) = u′(ti−2) = fi−2. When θ = −α, only d2(θ) evaluates to 1
and all the other septic polynomials evaluate to 0 as u(ti−αh) = u(ti−1) = yi−1.
Also at this θ value, only the derivative of d3(θ) evaluates to 1 and all the other
septic polynomial derivatives evaluate to 0 as u′(ti − αh) = u′(ti−1) = fi−1.
When θ is 0, only d4(θ) evaluates to 1 and all the other polynomials evaluate
to 0 as u(ti − 0(h)) = u(ti) = yi. Also at this θ value, only the derivative of
d5(θ) evaluates to 1 and all the other septic polynomial derivatives evaluate to
0 as u′(ti − 0(h)) = u′(ti) = fi. When θ is 1, only d6(θ) evaluates to 1 and all
the other polynomials evaluate to 0 as u(ti + 1(h)) = u(ti+1) = yi+1. Also at
this θ value, only the derivative of d7(θ) evaluates to 1 and all the other septic
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polynomial derivatives evaluate to 0 as u′(ti − 1(h)) = u′(ti+1) = fi+1. With
these eight conditions, we can get eight equations for each polynomial in terms
of α and β and, using a symbolic management package, we can solve all of these
to find the eight septic polynomials.

We again note that as the solver is stepping through the problem, these
interpolants can be obtained without the need for any extra evaluations of f . We
just need to store the 4 data points (ti−1, yi−1, fi−1), (ti−1, yi−1, fi−1), (ti, yi, fi)
and (ti+1, yi+1, fi+1).

The interpolant defined as above will be referred to as ‘HB8 First Scheme’
for the remainder of this chapter. We note that it is of order 8 and its derivative
is of order 7.

Unfortunately, this scheme has a serious issue. The accuracy of the inter-
polant is very sensitive to a slight change in α and/or β. This is because the
error term is now proportional to (t+α+ β)2(t+α)2(t)2(t− 1)2. We note that
the first term depends on both α and β and thus very small deviations of these
values from 1 will result in reduced accuracy.

In Figure 4.27, we present the results of a simple experiment to illustrate
this issue. We place 4 data points along the t-axis such that their distances
apart are βh, αh and h for several values of α and β and we vary h from 1 to
10−10; we then report on the order of the maximum defect at each h for these
values.

Figure 4.27: HB8 First Scheme - maximum size of the defect based on different
values of α and β.

From Figure 4.27, we can see the issue with this scheme. It only works if
both α and β are 1 and even small deviations from 1 for either α or β drastically
reduces the accuracy. More importantly, we can never halve the step with this
method as if either α or β is 2, the interpolant is not accurate to even one order
of magnitude. We will now consider a second scheme which is more stable with
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respect to changes in α and β.

Second HB8 Scheme In this second scheme, we still use a 3 step inter-
polant with 4 data points (ti−1, yi−1, fi−1), (ti−2, yi−2, fi−2), (ti, yi, fi) and
(ti+1, yi+1, fi+1) but now the distance between the points are αh, h and then
βh. The middle step is the base step. This way the error term is approximately
proportional to (t − (1 + α))2(t − 1)2t2(t + β)2. We avoid the (t − (α + β))2

factor. We will show that this scheme is more resilient to changes in α and β.
Its derivation is very similar to the first scheme. The equation for the inter-

polant is:

u(ti + θh) = d0(θ)yi−2 + hid1(θ)fi−2 + d2(θ)yi−1 + hid3(θ)fi−1

+d4(θ)yi + hid5(θ)fi + d6(θ)yi+1 + hid7(θ)fi+1,
(4.17)

and its derivative is:

u′(ti + θh) = d′0(θ)yi−2/hi + d′1(θ)fi−2 + d′2(θ)yi−1/hi + d′3(θ)fi−1

+d′4(θ)yi/hi + d′5(θ)fi + d′6(θ)yi+1/hi + d′7(θ)fi+1.
(4.18)

Again θ is:
θ = (t− ti)/hi. (4.19)

This time θ is allowed to vary between −1 − α and β such that ti + θh is
ti−2 when θ is −1 − α, ti−1 when θ is -1, ti when θ is 0 and ti+1 when θ is
β. Also d0(θ), d1(θ), d2(θ), d3(θ), d4(θ), d5(θ), d6(θ) and d7(θ) are all septic
polynomials and will each have 8 conditions from which we can build a system
to find their coefficients in terms of α and β.

Each is a septic of the form aθ7 + bθ6 + cθ5 + dθ4 + eθ3 + fθ2 + gθ + h
where the eight coefficients for each can be found in terms of α and β by solving
a linear system of 8 equations in terms of α and β. First at θ = −1 − α,
only d0(θ) evaluates to 1 and all the other septic polynomials evaluate to 0 as
u(ti−(1+α)h) = u(ti−2) = yi−2. Also at this θ value, only the derivative of d1(θ)
evaluates to 1 and all the other septic polynomial derivatives evaluate to 0 as
u′(ti− (1+α)h) = u′(ti−2) = fi−2. When θ = −1, only d2(θ) evaluates to 1 and
all the other septic polynomials evaluate to 0 as u(ti − 1(h)) = u(ti−1) = yi−1.
Also at this θ value, only the derivative of d3(θ) evaluates to 1 and all the other
septic polynomials’ derivatives evaluate to 0 as u′(ti − 1(h)) = u′(ti−1) = fi−1.
When θ is 0, only d4(θ) evaluates to 1 and all the other polynomials evaluate
to 0 as u(ti − 0(h)) = u(ti) = yi. Also at this θ value, only the derivative of
d5(θ) evaluates to 1 and all the other septic polynomials’ derivatives evaluate
to 0 as u′(ti − 0(h)) = u′(ti) = fi. When θ is β, only d6(θ) evaluates to 1 and
all the other polynomials evaluate to 0 as u(ti + βh) = u(ti+1) = yi+1. Also at
this θ value, only the derivative of d7(θ) evaluates to 1 and all the other septic
polynomial derivatives evaluate to 0 as u′(ti − βh) = u′(ti+1) = fi+1. With
these eight conditions, we can get eight equations for each septic in terms of α
and β and using a symbolic management package, we can solve all of these to
find the 8 coefficients for each septic polynomial.
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We now perform a simple experiment to show that the resultant interpolant
is more resilient to changes in α and β. We place 4 data points along the x-axis
such that their distance apart are αh, h and βh for several values of α and β
and we vary h from 1 to 10−10, we then report on the maximum defect at each
h for these values.

Figure 4.28: HB8 Second Scheme - maximum order of accuracy based on differ-
ent values of alpha and beta.

From Figure 4.28, we can see how this scheme is better than the first scheme.
We can use α and β equal to 2 and to 1/2 and still get a maximum defect of
around 10−12 and we can even be accurate to 10−10 for both α and β equal to
4 and 1

4 .
For the remainder of this chapter, we will denote this 8th order interpolant

by HB8. Its derivative has order 7 and any subsequent higher derivative will
have one less order.

Results We will now use RK4 with the second HB8 scheme and use the new
defect control solver to solve the three test problems. We will show that we
need to sample the defect only twice to estimate the maximum defect and that
this scheme can provide good quality defect control.

Problem 1 results Figures 4.29, 4.30 and 4.31 shows the results of using
RK4 with HB8 on Problem 1. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.3h and 0.8h along a step of size, h. See Figure 4.31, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
control the defect of the continuous numerical solution using this approach, see
Figure 4.29.
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Figure 4.29: Defect across the entire domain for RK4 with HB8 on problem 1
at an absolute tolerance of 10−6.

Figure 4.30: Global Error for RK4 with HB8 on problem 1 at an absolute
tolerance of 10−6.
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Figure 4.31: Scaled defects for RK4 with HB8 on problem 1 at an absolute
tolerance of 10−6 mapped into [0, 1].

Problem 2 results Figures 4.32, 4.33 and 4.34 shows the results of using
RK4 with HB6 on Problem 2. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.8h along a step of size, h. See Figure 4.34, to see the scaled defect reaching
a maximum near these points. We note that we are able to successfully control
the defect of the continuous numerical solution using this approach, see Figure
4.32.

Figure 4.32: Defect across the entire domain for RK4 with HB8 on problem 2
at an absolute tolerance of 10−6.
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Figure 4.33: Global Error for RK4 with HB8 on problem 2 at an absolute
tolerance of 10−6.

Figure 4.34: Scaled defects of RK4 with HB8 for problem 2 at an absolute
tolerance of 10−6 mapped into [0, 1].

Problem 3 results Figures 4.35, 4.36 and 4.37 shows the results of using
RK4 with HB6 on Problem 3. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.3h or 0.8h along a step of size, h. See Figure 4.37, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
control the defect of the continuous numerical solution using this approach, see
Figure 4.35.
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Figure 4.35: Defect across the entire domain of RK4 with HB8 on problem 3 at
an absolute tolerance of 10−6.

Figure 4.36: Global Error of RK4 with HB8 on problem 3 at an absolute toler-
ance of 10−6.
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Figure 4.37: Scaled defects of RK4 with HB8 on problem 3 at an absolute
tolerance of 10−6 mapped onto [0, 1].

We note that the defects are not as clean they were in the case with HB4.
There are two peaks most of the time at around 0.3h and 0.8h but as was the
case for the third problem in the previous tests, the peak sometimes appears at
0.6h. However, we can see that the defect is still being controlled and thus that
the error is still being controlled. We will also see that it is twice as fast as it
uses around half the number of steps as HB4.

Table 4.4: Number of steps taken by RK4 when modified to do defect control
with HB8 vs when modified with HB6.

Problem succ. steps HB8 succ. steps HB6 nsteps HB8 nsteps HB6
1 20 27 20 27
2 37 36 60 40
3 69 62 89 73

From Table 4.4, we can see that the number of steps with HB6 and with
HB8 are relatively similar. This indicates that the interpolation error is no
longer the limiting factor, even in HB6. The limiting factor is the discrete
numerical solution which is as required. Thus though we can use RK4 with
HB8 at the same cost as modifying RK4 with HB6, using HB8 does not improve
the efficiency. Furthermore, HB8 is less stable to changes in α and β than HB6
is to changes to α. Thus RK4 is best augmented with HB6. However HB8
provides a new opportunity, we can now augment a 6th order Runge Kutta
method and possibly an 8th order Runge-Kutta method, but in the latter case,
the interpolation error will still affect the accuracy. Augmenting higher order
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methods with our HB6 and HB8 schemes is significant because as we have
discussed in Section 4.1.3 when using continuous Runge-Kutta solvers to obtain
the interpolants, the number of stages grows exponentially with the order of
the method. Our scheme is zero-cost and thus effective defect control using this
approach will be relatively more efficient.

4.3 Higher Order Runge Kutta Methods

In this section, we attempt to perform defect control based on efficient multistep
interpolants for higher order Runge-Kutta methods. We recall that related
previous work used significantly more stages to obtain a continuous 6th order
Runge-Kutta method and a continuous 8th order Runge-Kutta method.

In this section, we will first augment the RK6 method (see Section 4.1.4 for
details about the discrete method) with HB6 and then with HB8. We hope
to perform defect control and to find that the use of HB8 allows significantly
fewer steps. We will then augment the RK8 method (see Section 4.1.4 for more
details) with HB8 to show that though interpolation error is present, the scheme
does allow defect control of a continuous 8th order solution.

For both methods, we will sample the defect only twice in a step, at 0.4h
and 0.8h in a step of size h, as the previous experiments appears to indicate
that the maximum defects tend to occur at these locations within each step.

4.3.1 RK6 with HB6

Problem 1 results Figures 4.38, 4.39 and 4.40 shows the results of using
RK6 with HB6 on Problem 1. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.3h and 0.8h along a step of size, h. See Figure 4.40, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
control the defect of the continuous numerical solution using this approach, see
Figure 4.38.
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Figure 4.38: Defect across the entire domain for RK6 with HB6 on problem 1
at an absolute tolerance of 10−6.

Figure 4.39: Global Error for RK6 with HB6 on problem 1 at an absolute
tolerance of 10−6.
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Figure 4.40: Scaled defects for RK6 with HB6 on problem 1 at an absolute
tolerance of 10−6 mapped onto [0, 1].

Problem 2 results Figures 4.41, 4.42 and 4.43 shows the results of using
RK6 with HB6 on Problem 2. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.3h or 0.8h along a step of size, h. See Figure 4.43, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
control the defect of the continuous numerical solution using this approach, see
Figure 4.41.

Figure 4.41: Defect across the entire domain for RK6 with HB6 on problem 2
at an absolute tolerance of 10−6.
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Figure 4.42: Global Error for RK6 with HB6 on problem 2 at an absolute
tolerance of 10−6.

Figure 4.43: Scaled defects for RK6 with HB6 on problem 2 at an absolute
tolerance of 10−6 mapped onto [0, 1].
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Figure 4.44: Scaled defects for RK6 with HB6 on small steps on problem 2 at
an absolute tolerance of 10−6 mapped onto [0, 1]. Despite the noise, for most
steps, the maximum defect mostly appears near 0.8h.

Problem 3 results Figures 4.45, 4.46 and 4.47 shows the results of using
RK6 with HB6 on Problem 3. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.3h or 0.8h along a step of size, h. See Figure 4.47, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
control the defect of the continuous numerical solution using this approach, see
Figure 4.45.
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Figure 4.45: Defect across the entire domain for RK6 with HB6 on problem 3
at an absolute tolerance of 10−6.

Figure 4.46: Global Error for RK6 with HB6 on problem 3 at an absolute
tolerance of 10−6.
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Figure 4.47: Scaled defects for RK6 with HB6 on problem 3 at an absolute
tolerance of 10−6 mapped onto [0, 1].

Figure 4.48: Scaled defects for RK6 with HB6 on small steps on problem 3 at
an absolute tolerance of 10−6 mapped onto [0, 1].

4.3.2 RK6 with HB8

Problem 1 results Figures 4.49, 4.50 and 4.51 shows the results of using
RK6 with HB8 on Problem 1. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.4h and 0.8h along a step of size, h. See Figure 4.51, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
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control the defect of the continuous numerical solution using this approach, see
Figure 4.49.

Figure 4.49: Defect across the entire domain for RK6 with HB8 on problem 1
at an absolute tolerance of 10−6.

Figure 4.50: Global Error for RK6 with HB8 on problem 1 at an absolute
tolerance of 10−6.
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Figure 4.51: Scaled defects for RK6 with HB8 on problem 1 at an absolute
tolerance of 10−6 mapped onto [0, 1].

Problem 2 results Figures 4.52, 4.53 and 4.54 shows the results of using
RK6 with HB8 on Problem 2. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.8h along a step of size, h. See Figure 4.54, to see the scaled defect reaching
a maximum near these points. We note that we are able to successfully control
the defect of the continuous numerical solution using this approach, see Figure
4.52.

Figure 4.52: Defect across the entire domain for RK6 with HB8 on problem 2
at an absolute tolerance of 10−6.
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Figure 4.53: Global Error for RK6 with HB8 on problem 2 at an absolute
tolerance of 10−6.

Figure 4.54: Scaled defects for RK6 with HB8 on problem 2 at an absolute
tolerance of 10−6 mapped onto [0, 1].

150



Figure 4.55: Scaled defects for RK6 with HB8 on small steps on problem 2 at an
absolute tolerance of 10−6 mapped onto [0, 1]. Despite the noise, the maximum
defect mostly appears near 0.8h.

Problem 3 results Figures 4.56, 4.57 and 4.58 shows the results of RK6 with
HB8 on Problem 3. We note that an absolute tolerance of 10−6 is applied on
the maximum defect within the step and this can be shown to occur at either
0.4h or 0.8h along a step of size, h. See Figure 4.58, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
control the defect of the continuous numerical solution using this approach, see
Figure 4.56.
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Figure 4.56: Defect across the entire domain for RK6 with HB8 on problem 3
at an absolute tolerance of 10−6.

Figure 4.57: Global Error for RK6 with HB8 on problem 3 at an absolute
tolerance of 10−6.
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Figure 4.58: Scaled defects for RK6 with HB8 on problem 3 at an absolute
tolerance of 10−6 mapped onto [0, 1].

Figure 4.59: Scaled defects for RK6 with HB8 on small steps on problem 3 at an
absolute tolerance of 10−6 mapped onto [0, 1]. Despite the noise, the maximum
defect mostly appears near 0.8h.

From Table 4.5, we can see that again, using an interpolant whose interpo-
lation error and especially the interpolation error of its derivative is of higher
order than the ODE solution drastically reduces the number of steps. The solver
becomes more efficient as a result. Since RK6 with HB6 and with HB8 is behav-
ing similarly to RK4 with HB4 and with HB6, we expect that using a 10th order
method would not improve the situation more than HB8 has over HB6. Though
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Table 4.5: Number of steps taken by RK6 when modified to do defect control
with HB8 vs when modified with HB6.

Problem succ. steps HB8 succ. steps HB6 nsteps HB8 nsteps HB6
1 18 26 18 27
2 14 18 17 23
3 24 42 26 51

fitting RK6 with HB10 will be as efficient as fitting it with HB8, the fact that
the interpolation error is no longer the limiting factor means that HB10 will not
improve the situation. For RK6, HB8 is the preferred interpolant.

We also note that during the solving of the 3 problems, the value of α with
HB6 rarely was bigger than 4 or smaller than 1

4 . The values of α and β with
HB8 also rarely were bigger than 4 or smaller than 1

4 .

4.3.3 RK8 with HB8

In this section, we fit the RK8 method, described in Section 4.1.4, with HB8.
Though we expect the interpolation error to reduce the efficiency of this scheme,
we provide a proof of concept that an RK8 can have defect control with the
scheme presented in this chapter. We will look into the challenges and possibil-
ities of deriving an HB10 scheme in the Future Work section.

Problem 1 results Figures 4.60, 4.61 and 4.62 shows the results of using
RK8 with HB8 on Problem 1. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.3h and 0.8h along a step of size, h. See Figure 4.62, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
control the defect of the continuous numerical solution using this approach, see
Figure 4.60.
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Figure 4.60: Defect across the entire domain for RK8 with HB8 on problem 1
at an absolute tolerance of 10−6.

Figure 4.61: Global Error for RK8 with HB8 on problem 1 at an absolute
tolerance of 10−6.
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Figure 4.62: Scaled defects for RK8 with HB8 on problem 1 at an absolute
tolerance of 10−6 mapped onto [0, 1].

Problem 2 results Figures 4.63, 4.64 and 4.65 shows the results of using
RK8 with HB8 on Problem 2. We note that an absolute tolerance of 10−6 is
applied on the maximum defect within the step and this can be shown to occur
at 0.3h or 0.8h along a step of size, h. See Figure 4.65, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
control the defect of the continuous numerical solution using this approach, see
Figure 4.63.

Figure 4.63: Defect across the entire domain for RK8 with HB8 on problem 2
at an absolute tolerance of 10−6.
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Figure 4.64: Global Error for RK8 with HB8 on problem 2 at an absolute
tolerance of 10−6.

Figure 4.65: Scaled defects for RK8 with HB8 on problem 2 at an absolute
tolerance of 10−6 mapped onto [0, 1].
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Figure 4.66: Scaled defects of RK8 with HB8 on small steps on problem 2 at an
absolute tolerance of 10−6 mapped onto [0, 1]. Despite the noise, the maximum
defect mostly appears near 0.8h.

Problem 3 results Figures 4.67, 4.68 and 4.69 shows the results of using
the modification of RK8 with HB8 on Problem 3. We note that an absolute
tolerance of 10−6 is applied on the maximum defect within the step and this
can be shown to occur at 0.3h or 0.8h along a step of size, h. See Figure 4.69, to
see the scaled defect reaching a maximum near these points. We note that we
are able to successfully control the defect of the continuous numerical solution
using this approach, see Figure 4.67.
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Figure 4.67: Defect across the entire domain for RK8 with HB8 on problem 3
at an absolute tolerance of 10−6.

Figure 4.68: Global Error for RK8 with HB8 on problem 3 at an absolute
tolerance of 10−6.
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Figure 4.69: Scaled defects for RK8 with HB8 on problem 3 at an absolute
tolerance of 10−6 mapped onto [0, 1]. Despite the noise, the maximum defect
mostly appears near 0.8h.

Figure 4.70: Scaled Defects of RK8 with HB8 on small steps on problem 3 at
an absolute tolerance of 10−6 mapped onto [0, 1].
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Table 4.6: Number of steps taken by RK8 when modified to do defect control
with HB8.

Problem succ. steps nsteps
1 18 19
2 12 15
3 24 29

4.4 Using the previous interpolants to keep the
weight parameters at 1

One idea to solve the problem of the loss in accuracy due to deviation of the α
and β parameters from 1 is to construct the interpolant using a value of 1 for
these parameters. We note that the best accuracy we can hope to get is with a
value of 1 and thus employing data values situated at uniform distances apart
guarantees the minimum error.

HB6 For the HB6 case, a simple way to guarantee that the value of α is 1 is by
using the previous interpolants to get the required values at xi−1 = xi − h. Say
we are at a value xi and we took a step of size h to get to the value xi+1 where
the function evaluation was fi+1 and the solution was yi+1. We could use the
previous interpolants defined on the range [0, xi] to get a value at xi −h for the
solution approximation, yi−1, and then we can use this yi−1 value to compute
f(ti−1, yi−1) to get the derivative fi−1. We could thus create the new interpolant
using these data points to guarantee that α stays at 1. This technique costs one
extra function evaluation to obtain fi−1.

This technique works (see Figures 4.71 to 4.80 to see the defect being con-
trolled) but will require that the step-size is artificially limited on the first few
steps so that we can interpolant back xi − h and still be in a range where our
interpolants are correctly defined. For example, If we go from t0 to t0 + h and
the error estimate is much lower than the tolerance, we cannot use a step size of
2h as t0 + h− 2h = t0 − h because we do not have an interpolant in the region
≤ t0. However this is not an issue as we can perform the first few steps with a
CRK scheme for example.

Problem 1 results Figures 4.71, 4.72 and 4.73 shows the results of using the
RK4 with HB6 and α = 1 on Problem 1. We note that an absolute tolerance of
10−6 is applied on the maximum defect within the step and this can be shown
to occur at 0.3h and 0.8h along a step of size, h. See Figure 4.73, to see the
scaled defect reaching a maximum near these points. We note that we are able
to successfully control the defect of the continuous numerical solution using this
approach, see Figure 4.71.
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Figure 4.71: Defect across the entire domain for RK4 with HB6 using α = 1 on
problem 1 at an absolute tolerance of 10−6.

Figure 4.72: Global Error for RK4 with HB6 using α = 1 on problem 1 at an
absolute tolerance of 10−6.
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Figure 4.73: Scaled defects for RK4 with HB6 using α = 1 on problem 1 at an
absolute tolerance of 10−6 mapped onto [0, 1].

Problem 2 results Figures 4.74, 4.75 and 4.76 shows the results of using
RK4 with HB6 and α = 1 on Problem 2. We note that an absolute tolerance of
10−6 is applied on the maximum defect within the step and this can be shown
to occur at 0.8h along a step of size, h. See Figure 4.76, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
control the defect of the continuous numerical solution using this approach, see
Figure 4.74.

Figure 4.74: Defect across the entire domain for RK4 with HB6 using α = 1 on
problem 2 at an absolute tolerance of 10−6.
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Figure 4.75: Global Error for RK4 with HB6 using α = 1 on problem 2 at an
absolute tolerance of 10−6.

Figure 4.76: Scaled defects for RK4 with HB6 using α = 1 on problem 2 at an
absolute tolerance of 10−6 mapped onto [0, 1].
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Figure 4.77: Scaled defects for RK4 with HB6 using α = 1 on small steps on
problem 2 at an absolute tolerance of 10−6 mapped onto [0, 1]. Despite the
noise, the maximum defect mostly appears near 0.8h.

Problem 3 results Figures 4.78, 4.79 and 4.80 shows the results of using
RK4 with HB6 and α = 1 on Problem 3. We note that an absolute tolerance of
10−6 is applied on the maximum defect within the step and this can be shown
to occur at 0.3h or 0.8halong a step of size, h though this problem produces a
more diverse location for the peaks. See Figure 4.80, to see the scaled defect
reaching a maximum near these points. We note that we are able to successfully
control the defect of the continuous numerical solution using this approach, see
Figure 4.78.
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Figure 4.78: Defect across the entire domain for RK4 with HB6 using α = 1 on
problem 3 at an absolute tolerance of 10−6.

Figure 4.79: Global Error for RK4 with HB6 using α = 1 on problem 3 at an
absolute tolerance of 10−6.
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Figure 4.80: Scaled defects for RK4 with HB6 using α = 1 on problem 3 at an
absolute tolerance of 10−6 mapped onto [0, 1].

Table 4.7: Number of steps taken by RK4 when modified to do defect control
with HB6 when we fix α at 1 vs when we allow it to fluctuate during the
integration.

Problem succ. steps α=1 succ. nsteps α=1 nsteps
1 27 29 27 33
2 36 34 40 36
3 62 65 73 82

Table 4.7 shows how the solver with α fixed at 1 and the solver with α
allowed to vary differ in the number of steps that they take. The results are
very similar because, as we noted before, α tends to stay close to 1 and rarely
deviates to a value smaller than 1

4 or larger than 4.

HB8 For the HB8 case, a simple way to guarantee that the values of α and β
are 1 is by using the previous interpolants to get the required values at xi−1 =
xi − h and xi−2 = xi − 2h. Suppose that we are at xi and we took a step of
size h to get to the value xi+1 where the function evaluation was fi+1 and the
solution was yi+1. We could get the values of the solution and the derivative
by using the previous interpolants defined on the range [0, xi] to get the value
at exactly xi − h for the solution, yi−1, and then evaluate f(ti−1, yi−1) to get
the derivative fi−1. We can also use the previous interpolants on [0, xi] to get
the values of the solution, yi−2 and use it to evaluate f(ti−2, yi−2) to get the
values of the derivative, fi−2, at xi−2 = xi−2h. We could thus create create the
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new interpolant using the data values defined as such to guarantee that α and β
equal to 1. We note that we have built interpolants for both the solution and the
derivative that can interpolate up to xi for all cases except for the case xi = 0
or for the first few steps. This scheme uses two more function evaluations.

This technique works (see Figures 4.81 to 4.91 to see the defect being con-
trolled) but will require that the step-size is artificially limited on the first few
steps so that we can interpolant back xi − h and/or xi − 2h and still be in a
range where our interpolants are correctly defined. This is not an issue as a
CRK scheme could be used for the first few steps.

Problem 1 results Figures 4.81, 4.82 and 4.83 shows the results of using
RK6 with HB8 and α = 1 and β = 1 on Problem 1. We note that an absolute
tolerance of 10−6 is applied on the maximum defect within the step and this
can be shown to occur at 0.4h or 0.8h along a step of size, h. See Figure 4.83, to
see the scaled defect reaching a maximum near these points. We note that we
are able to successfully control the defect of the continuous numerical solution
using this approach, see Figure 4.81.

Figure 4.81: Defect across the entire domain for RK6 with HB8 using α and β
= 1 on problem 1 at an absolute tolerance of 10−6.
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Figure 4.82: Global Error for RK6 with HB8 using α and β = 1 on problem 1
at an absolute tolerance of 10−6.

Figure 4.83: Scaled Defects for RK6 with HB8 using α and β = 1 on problem
1 at an absolute tolerance of 10−6 mapped onto [0, 1].

Problem 2 results Figures 4.84, 4.85 and 4.86 shows the results of using
RK6 with HB8 and α = 1 and β = 1 on Problem 2. We note that an absolute
tolerance of 10−6 is applied on the maximum defect within the step and this
can be shown to occur at 0.8h along a step of size, h. See Figure 4.86, to see the
scaled defect reaching a maximum near these points. We note that we are able
to successfully control the defect of the continuous numerical solution using this
approach, see Figure 4.84.
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Figure 4.84: Defect across the entire domain for RK6 with HB8 using α and β
= 1 on problem 2 at an absolute tolerance of 10−6.

Figure 4.85: Global Error for RK6 with HB8 using α and β = 1 on problem 2
at an absolute tolerance of 10−6.
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Figure 4.86: Scaled Defects for RK6 with HB8 using α and β = 1 on problem
2 at an absolute tolerance of 10−6 mapped onto [0, 1].

Figure 4.87: Scaled Defects for RK6 with HB8 using α and β = 1 on small steps
on problem 2 at an absolute tolerance of 10−6 mapped onto [0, 1]. Despite the
noise, the maximum defect mostly appears near 0.8h.

Problem 3 results Figures 4.88, 4.89 and 4.90 shows the results of using
RK6 with HB8 and α = 1 and β = 1 on Problem 3. We note that an absolute
tolerance of 10−6 is applied on the maximum defect within the step and this can
be shown to occur at 0.3h and 0.8h along a step of size, h. See Figure 4.90, to
see the scaled defect reaching a maximum near these points. We note that we
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are able to successfully control the defect of the continuous numerical solution
using this approach, see Figure 4.88.

Figure 4.88: Defect across the entire domain for RK6 with HB8 using α and β
= 1 on problem 3 at an absolute tolerance of 10−6.

Figure 4.89: Global Error for RK6 with HB8 using α and β = 1 on problem 3
at an absolute tolerance of 10−6.
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Figure 4.90: Scaled Defects for RK6 with HB8 using α and β = 1 on problem
3 at an absolute tolerance of 10−6 mapped onto [0, 1].

Figure 4.91: Scaled Defects for RK6 with HB8 using α and β = 1 on small steps
on problem 3 at an absolute tolerance of 10−6 mapped onto [0, 1]. Despite the
noise, the maximum defect mostly appears near 0.8h.

Table 4.8 shows how the solver with α and β fixed at 1 and the solver with α
and β allowed to vary differs in the number of steps that they take. The results
are somewhat similar because, as we noted before, α and β tends to stay close
to 1 and rarely deviates to a value smaller than 1

4 or larger than 4.
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Table 4.8: Number of steps taken by RK6 when modified to do defect control
with HB8 with α and β forcibly at 1 and variable α and β.

Problem succ. params=1 succ. steps nsteps params=1 nsteps
1 18 23 18 31
2 14 18 17 21
3 24 26 26 27

4.5 Final recommendations

As we have noted before, all the interpolants have a V-shaped defect. We should
note that experimentally, the trough for these V-shapes seem to be problem-
independent. We thus used the optimal h value, that is the h value where the
minimum maximum defect is found, as the initial h value for each solver. We
need this, especially in the variable parameter case, so that the first few steps
are accepted. These optimal values are as follows. For HB4, the optimal h value
seems to be at about 10−3, for HB6, the optimal h value seems to be at around
10−2 and for HB8, the optimal value seems to be at around 10−1 and 10−2. See
Appendix 6.2.1 for more details.

We also experimented with using representations of the polynomials other
than the monomial form to reduce the effect of the rounding-off error. We can
look to use the Barycentric or Horner form of the polynomials to improve the
accuracy for example. (See Appendix 6.2.2 for more details.)

Some recommendations for a final solver will be to start with the optimal h
for the respective interpolant as the first step size so that the α and β parameters
do not get too large or too small for the first steps. In an ideal case, we would
like to keep accepting steps at the start and allow the parameters to be close to
1 for as long as possible.

We should solve with a solver with variable α at the start and then if the
solver fails too many step repeatedly, that is, the parameters get too far from
1, we should use the technique of forcing the parameters to be 1 and using the
previous interpolants.

The first recommendation guarantees that the first few steps are taken at
the minimum error possible and thus that they succeed. The second recommen-
dation guarantees that if we meet a challenging behaviour at some point, we
would be able to step through it with static parameters at the cost of additional
function evaluations.

We note that because of the V-shape, there is a high likelihood that we can-
not solve any problem at very sharp tolerances (as sharper as 10−12). However,
as have shown in Appendix 6.2.3, the solvers that were created were able to
solve for tolerances of 2.5× 10−12.
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Chapter 5

Conclusions and Future
Work

5.1 Conclusions

5.1.1 Performance analysis of ODE solvers on Covid-19
ODE models with discontinuities

In this chapter, we discussed issues associated with Covid-19 ODE modeling
including stability issues and discontinuity issues as measures are introduced.
We also discussed some issues with the ODE solvers provided in some widely
used programming environments. Using several solvers from across 4 different
programming environments, we have shown that time-dependent discontinuity
problems can be solved with a sufficiently sharp tolerance but that discontinuity
handling with cold starts significantly improves the efficiency of the computa-
tions. We then showed that state-dependent discontinuity problems cannot be
solved using a simple approach even at sharp tolerances and discussed why this
was the case. We then discussed event detection and how to use it to efficiently
solve state-dependent problems. We have shown that event detection can pro-
vide efficient and accurate solutions to state-dependent discontinuity problems.

5.1.2 Performance analysis of PDE solvers on Covid-19
PDE models with discontinuities

In this chapter, we discussed Covid-19 PDE problems with time-dependent and
state-dependent discontinuities and showed the efficiency and accuracy of BA-
COLIKR when solving these problems. We have shown that BACOLIKR can
solve the time-dependent problem using a straightforward approach but that
discontinuity handling through cold starts can improve the efficiency. We have
shown that BACOLIKR cannot solve the state-dependent discontinuity prob-
lem using a simple approach and how the use of event detection allows it to
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solve the problem more accurately snd efficiently.

5.1.3 Efficient defect control using multistep interpolants

In this chapter, we discussed the importance of defect control and the challenges
that the standard approach faces in implementing it. We then derived 4th, 6th

and 8th order Hermite-Birkhoff interpolants (HB4, HB6, HB8) that were used
to augment the Classical 4th order Runge-Kutta method (RK4). We showed
that HB4 is not an appropriate way to provide an interpolant for defect control
of RK4 as the interpolation error of the derivative is of a lower order than
the numerical solution computed by RK4. We then showed that HB6 provides
reliable and efficient defect control and that HB8 does not provide much of an
improvement over HB6. We next showed how the HB6 and HB8 interpolants can
be used to augment 6th and 8th order Runge-Kutta methods to allow them to
provide efficient defect control. We also noted throughout the chapter that the
multistep interpolants HB6 and HB8 have accuracies that rely on their step-size
parameters, α and β, being close to 1. We then discussed an interpolant that
forces these parameters to be 1 by using the evaluations of previous interpolants.

5.2 Future Work

5.2.1 Performance analysis of ODE solvers on Covid-19
ODE models with discontinuities

In this chapter, we have identified an issue with the method of obtaining output
points that some of the solvers in some programming environments employ. We
have shown how this leads to a decrease in efficiency. Potential future work in
this area is to develop newer and less computationally expensive interpolants so
that these solvers can use an interpolant of sufficiently high order.

We have also discovered an issue with the RADAU5 algorithm since several
environments and the Fortran code itself failed to provide a reasonable solution
to the state-dependent discontinuity problem. As future work, we could look to
investigate this issue.

We also need to perform a further analysis on why the Scilab ‘lsodar’ solver
comes up with a solution with 13 peaks when the other solvers provide a solution
with 18 peaks for the state-dependent discontinuity problem.

We also note that throughout this Covid-19 ODE chapter, we have used cut-
off transitions in the value of the parameter β where β just changes from a high
value to a low value rapidly. Another potential for future work is by considering
a smooth transition to the parameter β and seeing whether or not a smooth
transition introduces a discontinuity. We expect smooth transitions to produce
continuous problems but a transition of β using an exponential function, for
example, might introduce a discontinuity.
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5.2.2 Performance analysis of PDE solvers on Covid-19
PDE models with discontinuities

In this section, we have identified that event detection has allowed us to solve the
state-dependent discontinuity problem when even sharp tolerances did not allow
us to solve the problem with a simple approach. Event detection is relatively
new in the context of PDEs and identifying and understanding other problems
that it now allows us to solve could be potential future work.

Another important direction for future work is to write wrappers for BACO-
LIKR across several programming environments so that it is easier to use. This
will allow more people to access event detection for PDE problems and could
potentially allow them to solve harder problems.

As we have noted in this chapter, the current implementation of BACOLIKR
uses the same tolerance for the root-finding algorithm as is used for the numerical
solution of the PDE. A sharper tolerances than the user-provided tolerance could
potentially be used for the root-finding algorithm at some cost in efficiency.
Another potential direction for future work is to analyse how using a sharper
tolerance for the root-finding algorithm reduces the efficiency of the solver.

As with the ODE case, throughout this Covid-19 PDE chapter, we have used
cut-off transitions in the value of the parameter β where β just changes from
a high value to a low value rapidly. Another potential for future work is by
considering a smooth transition to the parameter β and seeing whether or not a
smooth transition introduces a discontinuity. We expect smooth transitions to
produce continuous problems but a transition of β using an exponential function,
for example, might introduce a discontinuity.

5.2.3 Efficient defect control using multistep interpolants

The first few steps Throughout this chapter we have used the exact solution
values for the first few steps in order to allow us to create the first interpolant.
Another important research project in this area is to try different techniques
including but not limited to the use of CRK methods, error control with a
sharper tolerance than the user provided tolerance, and possibly other methods
to perform the first few steps.

Asymptotically correct defect control with multistep interpolants We
can also look into developing interpolants that could lead to asymptotically cor-
rect defect control. This would guarantee that the maximum defect is always
at the same relative location within each step and would thus only require one
function evaluation to sample the defect.

HB10 An idea for future work is to derive a 10th order interpolant. Such an
interpolant will be forced to use 3 step-size parameters but an idea is to fix one
or more of the parameters at 1. This can be done by using the technique that
we employed in Section 4.4 or by using another technique such as computing
a solution value in the middle of the step [xi−1, xi] using the interpolant from
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that step and performing an additional function evaluation at that data point to
obtain the two values required to build an interpolant. Thus we get to use just
two parameters α and β for the step from xi to xi+1 and the step from xi−2 to
xi−1. This will give the required 10 data points to produce such an interpolant
which could then be used to augment RK8 to provide a more efficient defect
control scheme for the 8th order case.

Early explorations into creating an HB10 interpolants seem to be promising.
See Figure 5.1 to see how an HB10 derived by ‘breaking the middle step’ is
resilient to changes to its parameters α and β. We note that the interpolant
was built with step-size [αh, h

2 ,
h
2 , βh] and thus α and β is usually 2 when there

are no step-size changes. We also note that θ was allowed to vary between
−2− α to β.

Figure 5.1: V-shape of HB10 created by ‘breaking the middle step’.

Error control instead of defect control Another idea is to consider error
control instead of defect control for the continuous approximate solution. We
would thus need a way to create two interpolants, one of a higher order and
one of a lower order and sample the difference between these two interpolants
to estimate the error of the continuous solution approximation. A step-size
selection algorithm based on that error estimate could provide an effective error
controlled solution.

An issue with defect control is the V-shape of the defect. We know that this
is entirely because of the 1

h in the derivative definition of the Hermite-Birkhoff
interpolants as the interpolant itself does not suffer from round-off error but its
derivative does.

For all the schemes, the defect is V-shaped but the error itself is not. This is
because the Hermite-Birkhoff interpolant does not contain a term in 1

h whereas
its derivative does contain such a term. Figure 5.2 and 5.3 shows this phe-
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nomenon for HB6 but the same can be see for HB4 and HB8.

Figure 5.2: Defect has V-shape.

Figure 5.3: Error does not have V-shape.
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Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

182



Chapter 6

Appendix

6.1 Appendix: Parameter fitting in an SEIR
Model

In [6], the researcher uses data from the Ebola spread in three different West
African countries to understand the impact of the implemented control mea-
sures. To do this, the researcher needed to estimate parameters like the basic
and effective reproduction numbers of the virus.

These parameters are estimated by doing a best fit optimization on the
parameters present in an SEIR model. The experiment is to use an ODE model
with certain values of these parameters and calculate the error of these models
based on real-life data. The model with the minimum error is the ‘best fit’
model and the corresponding parameter values are the optimal choices for these
parameters. The idea is to optimally choose the parameters in the SEIR model
so that the numerical solution of the model gives the best fit to the available
data.

We note that the ODE model is run inside an optimization algorithm and
thus its efficiency is critical as the algorithm will need to solve the ODE model
with each different set of parameters.

The following is the pseudo-code for our attempt at replicating the experi-
ment reported in [6]:
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data = read csv ( ” ebo la data . csv ” )

func t i on model ( t , y , parms ) :
// d e f i n e the SEIR model
return ( dSdt , dEdt , dIdt , dRdt )

func t i on ssq ( parms ) :
// get the model
out = ode (model , i n i t i a l v a l u e , times , parms )
// c a l c u l a t e the e r r o r from the data po in t s as such :
s sq = abs ( out .C = data .C) + abs ( out .D = data .D)
return s sq

parms = c ( beta =0.27 , f =0.74 , k=0.0023)
// g ive e r r o r func t i on and manipulatable parameters
// to an opt im i sa t i on a lgor i thm
f i t = opt imise ( par=parms , errorFunc=ssq )

// f i t w i l l conta in the optimal parameter va lue s . . .

The figure that was reported in [6] is shown in Figure 6.1. Our results are as
shown in Figures 6.2, 6.3 and 6.4. We see good agreement between our results
and those reported in [6].

Figure 6.1: Original figure in Ebola paper.
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Figure 6.2: Our Guinea Figure.

Figure 6.3: Our Sierra Leone Figure.
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Figure 6.4: Our Liberia Figure.
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6.2 Recommendation for applying defect con-
trol at sharp tolerances

6.2.1 The Vshaped graph and dependence on unit weight
parameters

As we have shown several times in this thesis, the maximum order of accuracy
of an interpolant depends on the value of the parameter α for the HB6 case and
α and β in the HB8 case. Furthermore, the accuracy also follows a V-shape
as the interpolation error for sufficiently small h reaches the round-off error.
This is because the derivative of the interpolant uses a term in O( 1h ) where h is
the step-size. In this section we will look into how much these issues affect our
interpolation.

HB4 In HB4, the error across several problems, across several sampling points,
and at different step-sizes is as shown in Figure 6.5. We note that this is without
any parameters and at each h and each point x, we sampled at x and x + h
to create the interpolant. The scheme suffers from an O( 1h ) rounding off error
inherently.

Figure 6.5: V-shape of HB4 across problems at several sampling points and with
h.

We note that there is a clear optimal h at about 10−3 and that we are
able to achieve a tolerance of 10−14 with some problems and 10−12 with almost
every other problem. This gives us hope that this scheme can be used at very
sharp tolerances. In this section, we will try several techniques to improve the
situation.
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HB6 In HB6, the error across several problems, across several sampling points,
and at different step-sizes is as shown in Figure 6.6. We note that that the
parameter α is constant at 1 throughout the whole process as we sample at the
point, x and the points x+h and x−h. This is the ideal case as the interpolation
error is thus minimised.

Figure 6.6: V-shape of HB6 across problems at several sampling points and with
h.

We note that α was kept at 1 in Figure 6.6. To see how the parameter α
reduces the accuracy as it deviates from 1, see Figure 4.26.

We can see that the optimal h is at around 10−2. We note that in most
cases we were able to reach an error of 10−14 but in some cases we were only
able to solve at 10−12.

HB8 In HB8, the error across several problems, across several sampling points,
and at different step-sizes is as shown in Figure 6.7. We note that that both
parameters α and β were constant at 1 throughout the whole process as we
sample at the point, x and the points x+ h, x− h and x− 2h. This is the ideal
case as the interpolation error is thus minimised.
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Figure 6.7: V-shape of HB8 across problems at several sampling points and with
h.

We note that both α and β were kept at 1 in Figure 6.7. To see how the
parameters α and β reduces the accuracy as it deviates from 1, see Figure 4.28.

We can see that the optimal h is at around 10−1 and 10−2. We note that in
most cases we were able to reach an error of 10−14 but in some cases we were
only able to solve at 10−13.

6.2.2 Horner’s and Barycentric interpolants to get to lower
tolerances.

We note that up to this form, we have been using the monomial form of each
of the cubic, quintic and septic polynomials that we have derived. In the pre-
vious section, we have shown how these were suffering from being eventually
dominated by the rounding-off error as we use smaller and smaller step-sizes.
One idea to deal with the loss of accuracy due to the interference from the
rounding-off error is to use a different representation of the polynomials.

One idea is to use the Horner’s form of the polynomials. The Horner’s
form of a polynomial minimises the number of multiplications that need to be
undertaken during the evaluation. It is faster and also a less prone to rounding-
off errors since fewer arithmetic operations are involved.

Another idea is to use a Barycentric interpolant. At the time of the creation
of the interpolant, if it is of order n over the interval [a, b], we can find n
Chebyshev points in the interval and then sample the interpolant at these n
points and then fit a Barycentric interpolant to these data points. A Barycentric
interpolant using n data points is of order n and if such an interpolant is used to
interpolate a polynomial of order n, it perfectly matches the polynomial that is,
this process gives a different but exact representation of the original polynomial.
The Chebyshev points are used to guarantee the minimum interpolation error.
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We will use these two interpolation schemes to supplement the Hermite
Birkhoff interpolants HB4, HB6 and HB8 at a few different sampling points at
different problems and report on the improvements that they give.

Figure 6.8: Typical plot of the HB4 interpolant monomial form vs the Horner
form vs the Barycentric form.

Figure 6.8 shows a typical plot of HB4 in the monomial form alongside
its Horner form and Barycentric interpolation forms. We can report that the
Horner form almost always matches the accuracy of the interpolant but that the
Barycentric form slightly improves the accuracy. The V-shape is inevitable as
both forms either themselves suffer from O( 1h ) rounding-off error or interpolate
over an interpolant that suffers from such a rounding-off error.
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Figure 6.9: Typical plot of the HB6 interpolant monomial form vs the Horner
form vs the Barycentric form.

Figure 6.9 shows a typical plot of HB6 in the monomial form alongside its
Horner form and Barycentric interpolation forms. We note that the parameter
α is kept at 1 in the above plot. We can report that the Horner form almost
always matches the accuracy of the interpolant but that the Barycentric form
slightly improves the accuracy. The V-shape is inevitable as both forms either
themselves suffer from O( 1h ) rounding-off error or interpolate over an interpolant
that suffers from such a rounding-off error.

Figure 6.10: Typical plot of the HB8 interpolant monomial form vs the Horner
form vs the Barycentric form.
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Figure 6.10 shows the typical plot of HB6 in the monomial form alongside its
Horner form and Barycentric interpolation forms. We note that the parameters
α and β are kept at 1 in the above plot. For the case of HB8, the use of the
Horner method or even the Barycentric method does not improve the situation.
The monomial form is as accurate as we can get. The V-shape is inevitable as
both forms either themselves suffer from O( 1h ) rounding-off error or interpolate
over an interpolant that suffers from such a rounding-off error.

6.2.3 Solving at sharp tolerances

Using the recommendations, we show that the scheme can be used at very sharp
tolerances for RK4 with HB6 and RK6 with HB8. In the plots below, we do
not employ the switch from variable parameters to static parameters as they
are not needed. The first few steps are all necessarily small and thus do not go
out of range. The initial h value is the experimental optimal h value and we use
the static parameters solvers.

RK4 with HB6

Problem 1 results Figures 6.11, 6.12 and 6.13 shows the results of using
RK4 with HB6 and some of the recommendations on Problem 1. We note that
an absolute tolerance of 2.5 × 10−12 is applied on the maximum defect within
the step and this can be shown to occur at 0.2h and 0.8h along a step of size, h.
See Figure 6.13, to see the scaled defect reaching a maximum near these points.
We note that we are able to successfully control the defect of the continuous
numerical solution using this approach, see Figure 6.11.

Figure 6.11: Defect across entire domain for RK4 with HB6 using α = 1 and
optimal h as the starting h value on problem 1 at an absolute tolerance of
2.5× 10−12.
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Figure 6.12: Global Error for RK4 with HB6 using α = 1 and optimal h as the
starting h value on problem 1 at an absolute tolerance of 2.5× 10−12.

Figure 6.13: Scaled Defects for RK4 with HB6 using α = 1 and optimal h as the
starting h value on problem 1 at an absolute tolerance of 2.5 × 10−12 mapped
onto [0, 1].

Problem 2 results Figures 6.14, 6.15 and 6.16 shows the results of using
RK4 with HB6 and some of the recommendations on Problem 2. We note that
an absolute tolerance of 2.5 × 10−12 is applied on the maximum defect within
the step and this can be shown to occur at 0.8h along a step of size, h. See
Figure 6.16, to see the scaled defect reaching a maximum near these points.
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We note that we are able to successfully control the defect of the continuous
numerical solution using this approach, see Figure 6.14.

Figure 6.14: Defect across entire domain for RK4 with HB6 using α = 1 and
optimal h as the starting h value on problem 2 at an absolute tolerance of
2.5× 10−12.

Figure 6.15: Global Error of RK4 with HB6 using α = 1 and optimal h as the
starting h value on problem 2 at an absolute tolerance of 2.5× 10−12.
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Figure 6.16: Scaled Defects of RK4 with HB6 using α = 1 and optimal h as the
starting h value on problem 2 at an absolute tolerance of 2.5 × 10−12 mapped
onto [0, 1].

Problem 3 results Figures 6.17, 6.18 and 6.19 shows the results of using
RK4 with HB6 and some of the recommendations on Problem 3. We note that
an absolute tolerance of 2.5 × 10−12 is applied on the maximum defect within
the step and this can be shown to occur at 0.2h or 0.8h along a step of size, h.
See Figure 6.19, to see the scaled defect reaching a maximum near these points.
We note that we are able to successfully control the defect of the continuous
numerical solution using this approach, see Figure 6.17.
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Figure 6.17: Defect across entire domain for RK4 with HB6 using α = 1 and
optimal h as the starting h value on problem 3 at an absolute tolerance of
2.5× 10−12.

Figure 6.18: Global Error for RK4 with HB6 using α = 1 and optimal h as the
starting h value on problem 3 at an absolute tolerance of 2.5× 10−12.
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Figure 6.19: Scaled Defects for RK4 with HB6 using alpha = 1 and optimal
h as the starting h value on problem 3 at an absolute tolerance of 2.5 × 10−12

mapped onto [0, 1].

Table 6.1: RK4 with HB6 using α = 1 and optimal h as the starting h value at
sharp tolerance.

Problem n successful steps nsteps
1 443 523
2 534 568
3 1378 1731

RK6 with HB8

Problem 1 results Figures 6.20, 6.21 and 6.22 shows the results of using
RK6 with HB8 and some of the recommendations on Problem 1. We note that
an absolute tolerance of 2.5 × 10−12 is applied on the maximum defect within
the step and this can be shown to occur at 0.2h or 0.8h along a step of size, h.
See Figure 6.22, to see the scaled defect reaching a maximum near these points.
We note that we are able to successfully control the defect of the continuous
numerical solution using this approach, see Figure 6.20.
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Figure 6.20: Defect across entire domain for RK6 with HB8 using α and β = 1
and optimal h as the starting h value on problem 1 at an absolute tolerance of
2.5× 10−12.

Figure 6.21: Global Error for RK6 with HB8 using α and β = 1 and optimal h
as the starting h value on problem 1 at an absolute tolerance of 2.5× 10−12.
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Figure 6.22: Scaled Defects for RK6 with HB8 using α and β = 1 and optimal
h as the starting h value on problem 1 at an absolute tolerance of 2.5 × 10−12

mapped onto [0, 1].

Problem 2 results Figures 6.23, 6.24 and 6.25 shows the results of using
RK6 with HB8 and some of the recommendations on Problem 2. We note that
an absolute tolerance of 2.5 × 10−12 is applied on the maximum defect within
the step and this can be shown to occur at 0.8h along a step of size, h. See
Figure 6.25, to see the scaled defect reaching a maximum near these points.
We note that we are able to successfully control the defect of the continuous
numerical solution using this approach, see Figure 6.23.
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Figure 6.23: Defect across entire domain for RK6 with HB8 using α and β = 1
and optimal h as the starting h value on problem 2 at an absolute tolerance of
2.5× 10−12.

Figure 6.24: Global Error for RK6 with HB8 using α and β = 1 and optimal h
as the starting h value on problem 2 at an absolute tolerance of 2.5× 10−12.
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Figure 6.25: Scaled Defects for RK6 with HB8 using α and β = 1 and optimal
h as the starting h value on problem 2 at an absolute tolerance of 2.5 × 10−12

mapped onto [0, 1].

Problem 3 results Figures 6.26, 6.27 and 6.28 shows the results of using
RK6 with HB8 and some of the recommendations on Problem 3. We note that
an absolute tolerance of 2.5 × 10−12 is applied on the maximum defect within
the step and this can be shown to occur at 0.3h or 0.8h along a step of size, h.
See Figure 6.28, to see the scaled defect reaching a maximum near these points.
We note that we are able to successfully control the defect of the continuous
numerical solution using this approach, see Figure 6.26.
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Figure 6.26: Defect across entire domain for RK6 with HB8 using α and β = 1
and optimal h as the starting h value on problem 3 at an absolute tolerance of
2.5× 10−12.

Figure 6.27: Global Error for RK6 with HB8 using α and β = 1 and optimal h
as the starting h value on problem 3 at an absolute tolerance of 2.5× 10−12.
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Figure 6.28: Scaled Defects for RK6 with HB8 using α and β = 1 and optimal
h as the starting h value on problem 3 at an absolute tolerance of 2.5 × 10−12

mapped onto [0, 1].

Table 6.2: rk6 with hb8 using static alpha and beta and optimal h as the starting
h value at sharp tolerance.

Problem n successful steps nsteps
1 261 290
2 134 196
3 297 466
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