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Abstract

Testing the Ergodicity of Star Formation within Galaxies

by

Fraser M. Smith

Part of our understanding of how galaxies evolve is based on individual evolutions inferred
from population trends. In its strictest form, this approach implicitly assumes that the star forma-
tion properties of galaxies exhibit ergodic behaviours, such that the time averages of individual
galaxies are equivalent to the average of the population at any given time. In this thesis, we ana-
lyze the validity of this assumption on simulated galaxies modelled after observed ones. We find
that galaxies without stellar wind feedback are able to match observations and do not, in general,
follow strictly ergodic star formation histories. Partial ergodicity is presented in an astronomical
sense for the first time, in which subsets of galaxies exhibit time evolution broadly similar to en-
semble averages when averaged over, and is observed in the modelled galaxies. Future studies
are needed to include the impact of mergers, alternative feedback and stellar evolution models,
and ideally a larger sample.

August 11, 2023
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Chapter 1

Introduction

1.1 Background

Ever since Hubble’s ground-breaking research during the early parts of the 20th century deter-

mining the distances to galaxies past our own (Hubble 1929), the question of how galaxies came

to be what we observe today has been the driver of countless research papers (e.g. Conselice

2014). Since the 1970s, numerical simulations have been crucial to advancing our understanding

of galaxy evolution, as the characteristic evolutionary timescales are far beyond human lifetimes

(Hockney & Eastwood 1981). However, care must be taken in order to connect theory to obser-

vation, in part due to these long timescales since direct cause and effect analysis is only possible

by inference from observations. This thesis undertakes an in-depth look into such connections

to assess the validity of implicit assumptions that are often made in modelling approaches. In

order to provide a more complete introduction of the subject matter, we first outline the basic

properties of galaxies and how galaxies form.

1
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1.1.1 Galaxy Structure and Evolution

Galaxies underpin how cosmological distances are determined, so studying the formation and

evolution of galaxies is fundamental to our understanding of the size and geometry of the Uni-

verse. Crucial to the formation and evolution of galaxies is the presence of dark matter. The

first, and likely the most canonical example of, observational evidence for the existence of dark

matter was presented in the 1970s in Rubin’s pioneering work studying the rotation of galaxies

(e.g. Rubin & Ford 1970); the rotation curves did not decrease in the manner expected based

on the distribution of observed matter. After much research on dark matter models, perhaps the

most widely used and accepted model to date is the Lambda Cold Dark Matter (LCDM) hypoth-

esis (Peebles 2012). A significant portion of our current understanding of how galaxies evolve

comes from work that uses this model (e.g. Zavala & Frenk 2019).

Currently, under the LCDM hypothesis, galaxies are thought to grow hierarchically via the

gravitational collapse of small density fluctuations (e.g. Springel et al. 2005b; Ryden 2016).

Specifically, dark matter overdensities grow to a critical "turn-around" radius and collapse into

halos of half that radius (Lahav et al. 1991). Larger structures are formed via the merging of

these smaller structures (e.g. Dodelson et al. 1996) in a complex, multiscale process.

The widely accepted theory of a typical (disk) galaxy’s evolution is that gas cools and forms

a gaseous disk at the center of the dark matter halo (e.g. Mo et al. 1998). Within this cool and

dense disk, stars begin to form as molecular gas clouds undergo gravitational collapse when the

clouds lose pressure support. Star formation heats the gas via so-called feedback processes and

can distribute the gas throughout the halo (Oppenheimer et al. 2010). As the galaxy experiences

this feedback and undergoes merger interactions, the disk can be disrupted, although early mod-

elling of mergers supports the notion that mergers reproduce observed extended spiral structures

(Toomre & Toomre 1972). Further mergers can result in an elliptical, lenticular, or irregular
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morphology (e.g. Steinmetz & Mueller 1993; Querejeta et al. 2015).

In this LCDM paradigm, dark matter is treated as collisionless particles and is considered to

be nonrelativistic in the early universe (Ryden 2016). Since these elementary particles only in-

teract gravitationally, dark matter is typically represented as a system of discrete point particles,

within N-body simulations (e.g. Springel et al. 2005b).

Galaxy models are inherently complex and consist of several components; the dark matter

halo, the stellar halo, the stellar bulge, and the stellar and gaseous disks. While these structures

are not mutually exclusive to each other, occupying commensurate spatial scales, decompos-

ing galaxies into separate components is beneficial for discussing and understanding galactic

dynamics and properties. The theoretical motivation behind each component is summarized

below.

Through the use of N-body simulations, a nearly universal density profile for dark matter

halos has been proposed by Navarro et al. (1996). The Navarro-Frenk-White (NFW) profile,

ρ(r) =
ρs

( r
rs
)(1 + r

rs
)2
, (1.1)

where ρs is the scale density and rs is the scale radius that signifies the transition between the

interior and exterior slopes.

Other profiles have been proposed, including the Hernquist (Hernquist 1990) and Einasto

(Einasto & Haud 1989; Navarro et al. 2004; Vogelsberger et al. 2020) profiles, respectively:

ρ(r) =
M

2π

a

r

1

(r + a)3
, (1.2)

ln

(
ρ(r)

ρ−2

)
=

−2

α

[(
r

r−2

)α

− 1

]
. (1.3)
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Here, M is the total mass of the halo, a is the scale length, r−2 is the transition radius (where

d ln(ρ)

d ln(r)
= −2) (Navarro et al. 2004) and α is the slope. The Einasto profile is considered to be

the most accurate model to describe the core regions of dark matter halos (Navarro et al. 2010).

However, its divergence from the NFW profile is modest and in most cases reserved to the inner

parts of the halo, where baryon contributions are likely more important.

To describe the size of dark matter halos, authors often use virial quantities, r200, M200,

and V200, which are the virial radius, mass contained within the virial radius, and the circular

velocity at the virial radius, respectively. The virial radius is defined as the radius at which the

total density contained within this radius of the halo is 200 times the (universal) critical density,

ρcrit.

Galaxies also contain a stellar halo distinct from the bulge and disk components. Observa-

tionally, these halos are difficult to detect due to their low surface brightness, but are thought

to be a common feature of galaxies from studies of the Milky Way and Andromeda galaxies

(Schneider 2015). Nearby galaxies, such as the Andromeda and Triangulum galaxies, have been

used to study the substructure of these halos (McConnachie et al. 2018). Stellar halos can extend

far past the star-forming disk, with radial profiles similar to bulges at low radii and more diffuse

(ρ(r) ∝ r−3) at higher radii (Schneider 2015).

Bulges in galaxies contain mainly older stars that were formed rapidly, in a cosmological

context (e.g. Dekel et al. 2009). The surface brightness (and hence usually the density distri-

bution) of bulges is typically approximated using a de Vaucouleurs profile (r1/4) to reflect the

higher concentration of stars at the center of the bulge (e.g. Aguerri et al. 2001).

A significant portion of sustained star formation within a galaxy occurs in the star-forming

disk. Here, gas and dust collect and cool, allowing molecular clouds to form and collapse. The

stellar and gaseous disks in galaxy models are sometimes modelled using a thin disk model (e.g.

Mo et al. 1998) due to their lower aspect ratios closer to the Galactic ratio, about 0.2 in thick
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disks and about 0.1 in thin disks (Klypin et al. 2009). In practice, computational models can

simulate the full structure of galactic disks (e.g. Quinn et al. 1993).

1.1.2 Star Formation in Galaxies

The common theoretical framework of star formation within galaxies begins from the premise

that gas contained in dark matter halos compresses and is heated by its infall into the potential

well of the halo (Schneider 2015). Pressure from the heated gas prevents the gas from com-

pressing further, assuming the infall is not turbulent. There is a competition between heating

and cooling processes in the gas, but as the gas cools radiatively it loses its pressure support

and allows the gas cloud to gravitationally collapse. From the gravitational collapse of the gas,

protostars are formed (usually in groups). The specifics of the creation of protostars, such as

how giant molecular clouds form and what determines the properties of the star, are still not

well-understood (McKee & Ostriker 2007). In practice, the details of infall are more complex

due to the multiscale nature of hierarchical galaxy formation. Feedback is known to be a key

moderator of star formation as much as cooling processes (Somerville & Davé 2015).

Star formation within galaxies has been extensively studied using various observational

proxies (e.g. Kennicutt 1998a). The total star formation rate (SFR) of galaxies increased from

a small initial amount at high redshifts to a peak at z ∼ 2, where after the total SFR decreases

(e.g. Conselice 2014; Madau & Dickinson 2014). Typically, late-type/standard spiral galaxies

have approximately constant SFRs (on the order of 5 - 20 M⊙ yr−1) whereas more early-type

spirals have decreasing SFRs (Kennicutt 1998a). Elliptical galaxies commonly have little-to-no

star formation (< 1 M⊙ yr−1).

Star-forming galaxies demonstrate a tight relation (scatter of 0.2 - 0.3 dex) between SFR and

stellar mass (Brinchmann & Ellis 2000; Scholz-Díaz et al. 2023). This relation has been found

to evolve over cosmic time (Noeske et al. 2007; Speagle et al. 2014), and is commonly referred
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to as the star-forming main sequence (SFMS) of galaxies. In lower-mass systems, starbursts

become more important in describing the star formation history (SFH) of galaxies (Kennicutt

1998a). Starburst due to mergers may also play a significant role (e.g. Kaviraj 2014) for higher-

mass systems as well, although the precise contribution is a matter of current investigation.

Many physical processes impact the SFR in galaxies. For example, starbursts can occur

when a galaxy merger occurs (e.g. Mihos & Hernquist 1996), resulting in a sharp increase in star

formation. However, the main driving influence on the overall SFR of a galaxy is the gas density

(Kennicutt 1998a). In fact, the overall galactic SFR is most strongly correlated with molecular

gas mass/surface density, although it is still unclear if large gas reservoirs are necessary for the

initialization of star formation (Tacconi et al. 2020). In addition, in regions outside the star-

forming disk, the flow/transport of the gas is important in determining the SFR. Thus, bars and

other features that impact the gravitational potential in a galaxy are important to consider in

order to fully understand the full picture, and present theoretical problems in and of themselves.

The morphology and structure of galaxies can be affected by the corresponding SFR and other

processes, such as AGN activity (e.g. Springel et al. 2005a). For instance, bluer (star-forming)

galaxies are more likely non-uniform, contain asymmetries, and have physical distributions that

are more clumpy than more red (quiescent) galaxies (e.g. Dickinson et al. 2022).

In terms of describing SFRs, probably one of the most famous/important observationally

derived relations of star-forming galaxies is the power-law relation between surface gas mass

density and SFR per unit area (Schmidt 1959). This was extended by Kennicutt which produced

the highly cited Schmidt-Kennicutt law (Kennicutt 1998b),

ΣSFR

M⊙ yr−1 kpc2
= (2.5± 0.7)× 10−4

(
Σgas

M⊙ pc−2

)(1.4±0.15)

. (1.4)

Observationally, SFHs are inferred from the total energy emitted from stellar populations
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(e.g. Madau & Dickinson 2014). Since massive stars dominate the total integrated energy from

stars, estimates of star formation derived from observations are largely focused on massive star

formation. Estimates of SFRs come from tracers, such as young stars, and emission at UV and

IR wavelengths (Kennicutt & Evans 2012).

1.2 Numerical Simulations

Since the 1970s, numerical simulations of galaxies have proved to be a powerful tool in studying

galaxy structure and evolution. For example, early in the development of the field, Toomre &

Toomre (1972) found that galaxies undergoing merger events could explain their observed mor-

phologies. Supported by the work of Peebles & Yu (1970), the formation of large-scale structure

in the Universe by hierarchical clustering of galaxies gained traction. Press & Schechter (1974)

developed an approach for calculating the number of objects in a mass range. The classic de-

scription of hierarchical galaxy formation was presented by White & Rees (1978) following ar-

guments from Rees & Ostriker (1977); dark matter would cluster hierarchically, which allowed

gas to cool and condense to form stars/galaxies in these halos (White & Frenk 1991). Fur-

thermore, the hierarchical simulations by Aarseth et al. (1979) provided the means to compare

hierarchical clustering in simulations to direct observations (White & Frenk 1991). As models

of dark matter were proposed in the 1980s with different kinematic properties, particularly the

cold scenario (Blumenthal et al. 1984), the use of cosmological simulations greatly increased.

As discussed previously, the CDM hypothesis of galaxy/cluster formation is a milestone for

theories of galaxy formation. Key to the success of the LCDM model is its ability to explain ob-

servations, supported by its implementation in cosmological simulations (Zavala & Frenk 2019;

Angulo & Hahn 2022). Comparatively early simulations carried out in the 1980s (e.g. Frenk

et al. 1985) demonstrated its effectiveness at reproducing observations of large-scale structure
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in the Universe.

1.2.1 Governing Principles

The phase-space density of collisionless particles, the density as a function of position, velocity,

and time, is described by the collisionless Boltzmann equation (Binney & Tremaine 2008),

df
dt

=
∂f
∂t

+ v
∂f
∂r

− ∂Φ

∂r
∂f
∂v

, (1.5)

where f(r, v, t) is the phase-space density, r and v are the position and velocity vectors, respec-

tively, t is time, and Φ is the gravitational potential from Poisson’s equation (Vogelsberger et al.

2020):

∇2Φ = 4πG

ˆ
fdv. (1.6)

For a time-independent Hamiltonian system (i.e. the phase-space density is constant along

phase-space trajectories),
df
dt

= 0. In other words, the phase-space density is conserved by

Liouville’s theorem (Thornton & Marion 2004).

Simulations containing only collisionless particles, typically stars or dark matter, are referred

to as N-body simulations. A system of N massive particles is used to coarsely represent the

density (Kiessling et al. 2015). The complexity of these simulations stems from the need to

efficiently determine gravitational forces, thus a number of rapid approximate methods have

been devised to solve Poisson’s equation. Generally, these can be categorized into 3 broad

groups: particle-particle (PP) schemes, particle-mesh (PM) schemes, and particle-mesh plus

short-range connections such as the particle-particle, particle-mesh (P3M) schemes (Villumsen

1989).

In interacting particle methods, the integral form of Poisson’s equation is solved (Vogels-
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berger et al. 2020):

Φ(r) = −G

ˆ
ρ(r’)
|r’ − r|

dr’. (1.7)

Alternatively, the gravitational force is calculated directly.

Although for some algorithms it may be more effective to evaluate the force equation di-

rectly, the simplest solution approach is to evaluate the force for each particle through direct

summation and is referred to as the "brute-force" method. A common method to increase the

efficiency (i.e. decrease the operation count and computational time) of this calculation, from

O(N2) to O(Nlog(N)), is to use the tree approach (Barnes & Hut 1986); distant particles are

located on separate branches of the tree and to approximate their contribution, the corresponding

branches of the tree are used instead of each individual particle (the total mass and position are

averaged over the distant particles).

Analogous to solving the integral form of Poisson’s equation, particle-mesh methods solve

the differential form of Poisson’s equation,

∇2Φ(r) = 4πGρ(r). (1.8)

Gravitational forces can be calculated efficiently using fast Fourier transform methods, where

the potentials within mesh cells are interpolated to the individual particles. The computational

complexity is determined primarily by the number of mesh cells and not the number of particles,

often described as O(Mlog(M)), where M is the number of mesh cells. This scaling law comes

from the use of fast Fourier transforms in the potential calculation.

Finally, hybrid schemes exist where PP tree methods are used for short-range forces and PM

methods are used to calculate long-range forces, or retired mesh approaches. These approaches

are preferred as they allow rapid evaluation of long-range forces while also ensuring the short-
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scale interactions are evaluated accurately.

While the gravity solvers described above can evolve systems of collisionless particles, hy-

drodynamical simulations of galaxies employ collisional particles (gas) in addition to collionless

particles (dark matter) or grids, alternatively gas can be represented on a grid, in the so-called

Eulerian approach. Similar to the variety of N-body methods, hydrodynamical equations can be

solved in generally three forms: Eulerian, Lagrangian, and a hybrid of the two.

Hydrodynamical-Eulerian methods typically involve Riemann problems being solved (Robert-

son et al. 2010) in so-called Godunov-type schemes (Godunov 1959) along the edges of cells and

consider fixed grids in space that fluids would pass through. The flow is then updated in order

for set quantities to be conserved. Various methods exist to solve the partial differential equa-

tions, including finite-volume, finite-difference, and finite-element methods. When using static

meshes, Eulerian approaches are referred to as fixed-mesh methods. Non-moving meshes have

several advantages, including the absence of "grid noise" that is present with moving meshes

(Hopkins 2015); the deformation and reformation of moving meshes causes pressure fluctua-

tions, which in turn can generate sound waves. Thus, Eulerian methods are important when

considering sub-sonic motion, which is useful in galactic contexts where gas resides in regions

of differing mach numbers.

In Lagrangian methods, the movement of the fluid itself is followed (Vogelsberger et al.

2020). A commonly implemented Lagrangian method in astrophysics is smoothed particle hy-

drodynamics (SPH, Gingold & Monaghan 1977). In this method, the properties of fluids are

interpolated by nearby particles as the particles move according to hydrodynamical equations

of motion. In mesh-based approaches, also known as moving-mesh methods, the mesh moves

with the center-of-mass velocity of the fluid (Hopkins 2015). The mass within each cell remains

constant as the mesh moves, and these methods conserve momentum (angular and linear), en-

ergy, and entropy. Lagrangian methods are useful in problems that involve supersonic motion,
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gravitational collapse, and large density differences. In addition, advection errors are minimized

since no preferred direction is forced onto the flow calculations by having no set mesh geometry.

Mesh-based hybrid methods, usually called arbitrary Lagrangian-Eulerian (ALE) methods,

exist where the mesh is allowed to move with the fluid as in Lagrangian methods or stay fixed

as in Eulerian methods or some combination. These methods allow for increased flexibility and

have several advantages over the previous two methods described above, including the lack of

mesh-tangling which can occur in Langragian-based solvers (Vogelsberger et al. 2020).

In all mesh-based methods, adaptive-mesh refinement (AMR) techniques can be imple-

mented. When the refinement criterion is met, for example the estimated error is above a thresh-

old or the presence of a shock front, subgrids are created and removed as needed (Berger &

Oliger 1984). While theoretically appealing, such approaches can be challenging to implement

efficiently.

Lastly, to simulate systems with collisionless behaviours, simulations also employ gravita-

tional softening lengths, ϵ, for the different particle types. Without this softening, scattering

processes can occur, rendering the system collisional. Softening lengths modify the forces ap-

plied to particles on short scales, which varies depending on the type of softening. For example,

in Plummer softening ϵ is added to the actual distance between particles whereas particles are

treated as spheres of linearly decreasing density with diameter ϵ in spline/S2 softening (Hockney

& Eastwood 1981).

Simulations of galaxy formation must necessarily include a conversion process of gas into

stars. The precise details of this are complex and not yet fully understood. Consequently, a

large number of approaches have evolved in the literature. However, star formation is frequently

modelled using the approach in Springel & Hernquist (2003): Gas particles are modelled as

a two-phase (cold and hot) medium motivated by the McKee & Ostriker (1977) interstellar

medium theory. Once the cold gas phase reaches the critical density and is sufficiently cool,
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stars form on a probabilistic basis. As stars form, cold gas is heated via supernovae feedback

processes and transferred to the hot phase. Although theoretically motivated, the parameters

of this model are usually chosen to match the observed Schmidt-Kennicutt law (Springel &

Hernquist 2003).

1.3 Motivation

A fundamental obstacle in studying galaxy evolution is the fact that we cannot observe individual

galaxies over the time of their characteristic evolution. Using integrated SFHs of populations

of galaxies at multiple redshifts, one can try to approximate/reconstruct the SFHs of similar

individual galaxies. While there are different approaches to modelling, some of them impose

specific statistical assumptions. As a motivating example, Wang & Lilly (2020a) use and assess

the assumption of ergodicity to constrain a temporal power spectrum on specific star formation

rates (sSFRs) for star-forming galaxies. Processes that affect star formation operate on varying

timescales and are observed in SFHs as a cumulative effect (Iyer et al. 2020). A temporal

power spectrum provides information about the contributions to the variation in SFR on different

timescales, and hence can give insight into whether short or long timescale processes dominate

the SFMS scatter at a given stellar mass (Caplar & Tacchella 2019). Thus, constraining how

galaxies deviate from the SFMS over different timescales is key to understanding how galaxies

evolve over time.

Ergodicity is defined as either the property in which generally all trajectories of points in a

phase space will travel across the full phase space, or that time averages of single trajectories are

equivalent to phase space averages (Burra 2014). For example, we can consider the probability

of flipping a fair coin and the result being "heads" to be ergodic; if we average the results of

flipping a single coin any number of times over a period of time, we would expect half of the
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results to be "heads" and, similarly, if we average the number of "heads" results when we flip a

sample of coins we also find that half of the sample is expected to be "heads". In other words, a

sample of galaxies is ergodic if the individual evolution of a given galaxy property in the sample

is representative of the statistics of the property within the whole sample. Mathematically, we

can define a process F to be ergodic if the time average of the process, denoted F̃ , is equivalent

to the ensemble average (< F >) (Sadovskii 2019),

F̃ = lim
T→∞

1

T

ˆ T

0
dtF =< F > . (1.9)

While previous work has utilized the assumption of ergodicity (Wang & Lilly 2020a), the

precise accuracy of this assumption has not been investigated in a simulated approach. Scholz-

Díaz et al. (2023) found that the masses of host dark matter halos influence galactic SFHs,

specifically that lower mass halos have earlier and more rapid star formation, (and hence po-

tential deviations from the SFMS) over time. An assumption of ergodicity would lead to the

conclusion that any given galaxy’s specific star formation history (sSFH) is representative of a

range of different mass sSFHs, contrary to this result. Hence, we do not expect that star forma-

tion in galaxies is an ergodic process.

The precise deviation from ergodicity is an important concept to research. By investigating

the validity of assuming ergodicity, we can connect to the underlying physics that drive the de-

viations of individual evolutions from the average SFMS of a population. For example, given

that the shape of the SFMS is influenced by the masses of the dark matter halos in the sample

(Scholz-Díaz et al. 2023), we can determine what physical process contributes the most to this

relation systematically by successively including more physics in our simulations and by sam-

pling multiple galaxy mass ranges. In other words, although star formation properties in galaxies

are likely not ergodic, there is still much to learn about what processes drive such discrepancies
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and quantifying the amount of discrepancy has yet to be addressed.

The organization of this thesis is as follows: Further definitions and concepts regarding

ergodicity are given in Chapter 2. In Chapter 3, specifics are given about the simulation code

and the initial conditions of the galaxies are described in Chapter 4. In Chapter 5, the results of

these simulations with varied physics modules included are given. The implications and caveats

of these results are discussed, and the thesis is concluded in Chapter 6.



Chapter 2

Ergodicity

Depending on which field of study it is applied to, multiple definitions of ergodicity exist. How-

ever, in general, ergodicity can be summarized as the tendency for the evolution of an individual

process to be representative of its population at any given time. Typically, in the physical sci-

ences, ergodicity is considered in the thermodynamical context in which the "ergodic hypoth-

esis" is usually assumed to hold: The ergodic hypothesis, as defined by Boltzmann, is that a

mechanical system will visit all possible states on a (constant) energy surface, given sufficient

time (Moore 2015). While this definition does lead to the same argument that time averages

are equal to ensemble averages, it is more specific and so the distinction must be made. In fact,

later authors proposed a quasi-ergodic hypothesis, in which the flow visits arbitrarily close to all

points in the phase space, to replace this strict definition, which can only truly hold in the case

of one-dimensional systems (Moore 2015).

Ergodic theory in its more general, mathematical form (the Pointwise/Individual Ergodic

Theorem) would not emerge until the ground-breaking work by Birkhoff and von Neumann

roughly 60 years after the concept was first proposed in statistical physics (Birkhoff 1931; von

Neumann 1932). The Pointwise ergodic theorem, proposed by Birkhoff based on von Neu-

mann’s Mean Ergodic Theorem, proved that time averages are equivalent to ensemble averages

15



CHAPTER 2. ERGODICITY 16

in ergodic processes (Eisner et al. 2015). This property is commonly referred to as "mean er-

godicity" or simply "ergodicity", given that this property is sufficient to determine if a system is

ergodic or not.

A closely related, albeit contrary, concept is Simpson’s Paradox (Simpson 1951): where

trends found in individuals/subsets are inverted or removed when analyzing the total sample

(Minchev et al. 2019; Mangalam & Kelty-Stephen 2020). As an illustrative example, consider a

simplified case where levels of stress are measured at different stages in different people’s lives.

For simplicity, assume that stress, in general, decreases with time (for instance, retirement is

usually considered to be less stressful than working every day at a job). Although stress may

decrease over an individual’s lifetime, when we average over different individuals (for example,

comparing an average office worker’s stress to a medical doctor’s daily stress) at different stages

in their life, we may find that the sample’s levels of stress increase with time. Since the trend in

the sample is the opposite to the individual time evolution, this would be a case where Simpson’s

Paradox is in effect. This concept is commonly considered in social sciences, although some

authors have tested it in astronomical applications (e.g. Minchev et al. 2019). Interestingly,

while ergodicity applies similarly in statistics, it is far less discussed than Simpson’s Paradox

throughout physical and social sciences.

Often in social sciences, time averages of individuals in samples are compared to averages

in the total sample. This approach closely resembles the problem at hand, and so we consider

ergodicity to mean that the time average of any individual galaxy’s SFH property is equivalent

to the total ensemble-averaged SFR property at any given time. As is commonly the case, we

refer to ergodicity to specifically describe mean ergodicity.

In order for a system to be truly ergodic, the ensemble average must be constant over time,

conversely if the ensemble average changes over time then no single time average could be

equivalent to the ensemble average. Thus, the process is required to be stationary, where f (t) =
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f (t + τ ) and σ2
f (t) = σ2

f (t + τ ),1 in order for it to be ergodic. Note, however, that stationarity

does not imply ergodicity - for example, a process that is described by a constant Bernoulli dis-

tribution, i.e. one that has a value of either 0 or 1, is stationary, but since, statistically speaking,

each half of the population occupies one of the two possible states, the ensemble average at any

given time is equal to 0.5, a value which no single trajectory can occupy.

Therefore, in the strict definition of ergodicity, the sSFRs of galaxies in this study are not

ergodic since they are not stationary. While they may be ergodic in the short term, in the long

term we expect gas consumption to lower the sSFR, producing a distinct trend. However, it may

still be possible to have a relatively even distribution of deviations from the main sequence when

considering the sample as a whole. That is, we find that the galaxies are approximately ergodic

with the union of multiple subpopulations. Some authors refer to this "pseudo-ergodicity" as

"partial" or in some cases "broken" ergodicity (for example, see Patwardhan 2004; Spiechowicz

et al. 2016). We elucidate this concept in the following section.

2.1 Partial Ergodicity

"Partial ergodicity", or equivalently "broken ergodicity", has been touched upon by authors in

other fields (e.g., see Patwardhan 2004) but not clearly defined in astrophysical contexts, to the

best of our knowledge.

In systems where ergodicity is "broken" a useful subdivision is between weak and strong

breaking. Weak ergodicity breaking refers to when the parameter space of the system is not

strictly subdivided into disjoint sets in which an individual cannot cross from one group to an-

other. However, the system does not evolve across the whole space. In contrast, strong ergodicity

breaking refers to when the parameter space is separated into disjoint sets, and the initial condi-
1Note that stationarity is not equivalent to the process being constant, although a constant process is clearly

stationary.
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tions of an individual trajectory determine the subgroup the trajectory is restricted to. This form

of breaking is the most intuitive, since a strict division of the space would prevent any single

trajectory from resembling the overall ensemble properties. In this study, the possible SFRs of

galaxies are not strictly divided into subgroups dependent on stellar mass, but in practice density

limitations due to different masses means that there may be implicit limits. When averaging over

the time averages in subsets, we find similarities to the total sample average at any given time.

Mathematically, this can be written as

1

S

S∑
j=1

1

T

ˆ T

0
f j
k(t)dt =

1

N

N∑
i=1

fi(z), (2.1)

where S is the number of subsets of the parameter space, k is an arbitrary member of a given

subset, and 0 < z < T denotes an arbitrary time for the process f(t). In Figure 2.1, the

differences between strict ergodicity and partial ergodicity are visualized.
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Figure 2.1: Visualization of the standard definition of ergodicity (left) compared to partial er-
godicity (right). The crosses denote time averages of trajectories in the phase space,
where the red cross is the ensemble average.

Thus, by averaging over the disjoint groups within the parameter space, we can construct a

pseudo-trajectory that, when averaged over time, resembles the ensemble average at any given

time. Hence, the ergodicity breaking we would expect to observe would fall into the weak

category. We will analyze the SFHs of our galaxies using this working definition for partial

ergodicity, since SFHs of isolated systems simply cannot be truly stationary and hence strict

ergodicity will not hold.



Chapter 3

Simulation Methodology

3.1 Simulation Package: GIZMO

GIZMO is a massively-parallel, multi-physics simulation code created by Dr. Phil F. Hopkins

in 2014 (Hopkins 2015), and is broadly derived from the simulation code GADGET (Springel

2005). The code supports cosmological as well as non-cosmological runs and implements hy-

brid hydrodynamical methods that combine aspects of SPH and AMR Lagrangian methods.

Although multiple methods are available in GIZMO, we focus on Meshless Finite Mass (MFM)

and Meshless Finite Volume (MFV) methods, since MFM was used throughout this thesis.

In this thesis, simulations are carried out using non-cosmological integrations, i.e. these

models are considered in a non-expanding Newtonian-space. In other words, the expansion of

the Universe is not accounted for locally in our models and a value of h = 100.0 km/s/Mpc is

adopted for the Hubble parameter in our calculations, although, in practice, this value adjusts

the unit normalization rather than directly impacting the physics. The motivation for this choice

is that we are simulating individual systems rather than cosmological boxes.

20
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3.1.1 Meshless Finite Mass/Volume

In this method, the volume is partitioned using a kernel function and hydrodynamical equations

are constructed/solved based on the partitions (Hopkins 2015). The difference between the MFM

and MFV methods is that the mass of the particles does not change through hydrodynamical

calculations in MFM, whereas particle masses in MFV can change based on motion (Hopkins

2015). Hence, MFM is a true Lagrangian method in this context, whereas MFV is a hybrid

method. MFM has a conceptual advantage in that cells map directly to elements of the flow, and

can also be visualized using standard tools.

3.1.2 Code Units

It is common in various simulation codes, whether specifically for studying galaxy evolution or

not, to utilize code units in order to maintain precision in calculations involving exceptionally

large (or small) numbers, i.e. to prevent errors due to overflow and underflow. While it is

possible to define code units to meet specific requirements, in this investigation the default code

units are utilized and are presented in Table 3.1. The output files containing the particle data are

known as "snapshots". To convert between values stored in snapshots and physical values, the

conversion is (snapshot value) x (code units) = (physical value).

Quantity CGS Units Standard Units

Length 3.085678× 1021 1 kpc

Mass 1.989× 1043 1.0× 1010 M⊙

Velocity 1.0× 105 1 km s−1

Time 3.085678× 1016 0.977923543 Gyr

Gravitational Constant 6.674× 10−8 43007.1 kpc M⊙
−10 (km s−1)2

Table 3.1: Code units as defined in the parameter file.
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3.1.3 Particle Types

Particles are divided into 6 categories in GIZMO/GADGET: Type 1 particles are collisionless

gas particles, Type 2 are dark matter particles, Type 3 are collisionless stellar disk particles, Type

4 are collisionless stellar bulge particles, Type 5 are collisionless star particles generated during

the simulation runtime, and Type 6 are black hole particles. While there is no specific physical

difference between types 3 to 5, they allow easy labelling of a given population and varying

degrees of resolution between the populations.

3.2 Galaxy Models

3.2.1 Initial Conditions

The initial condition files for galaxies in this thesis were made using an initial condition gen-

erator by Dr. Volker Springel called MakeNewDisk. This program is designed to make initial

conditions for spiral galaxies that are binary compatible with GADGET simulations, meaning

that no unit or ordering changes are necessary to load these files into GIZMO.

MakeNewDisk requires the following parameters,

• halo concentration (c200), as defined by an NFW profile

• halo circular velocity (V200)

• halo spin (λ)

• disk mass fraction (MD)

• bulge mass fraction (MB),

• black hole mass fraction

• disk spin fraction
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• disk gas fraction (fG)

• stellar disk thickness

• bulge scale length (RB)

• hydrogen gas disk mass fraction

• hydrogen gas disk scale length

• hydrogen gas disk thickness

• radial dispersion of the stellar disk

The procedure for generating these parameters is described in the following chapter, since it

relies on converting observed galaxy properties to these input values.

The number of particles of Types 1-4 are specified in MakeNewDisk. For our galaxy models,

we must balance the number of particles used against the computational time required. Given the

need to run multiple simulations, this puts additional constraints on the size of the simulations.

Gas particles are set in the MakeNewDisk file such that the total number of gas particles after

the addition of hot gas halo particles is close to 106, within 5%. This was done by calculating

the total number of initial disk gas particles required to result in a total of 106 gas particles

and rounding that number up to the nearest 1000th particle. A summary of the distribution of

particles in each galaxy is provided in Table 3.2.
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Particle Type Number of Particles

Gas ∽ 106

Dark 2.0 ×105

Stellar Disk 5.0 ×105

Stellar Bulge 2.0 ×105

Table 3.2: Numbers of each particle type used in the galaxy models.

Once the initial conditions files were generated, subhalos and hot gas halos were added

manually; a FORTRAN90 script was written to read in the basic galaxy model initial conditions

generated by MakeNewDisk and update the existing arrays to include hot gas halos and (in some

models) dark matter halo substructure. The FORTRAN90 script uses a Gaussian pseudo-random

number generator by John Burkardt.

3.2.1.1 Subhalos

The subhalo population we create is based on methods outlined in Gao et al. (2004) and Gauthier

et al. (2006). Subhalo masses were randomly sampled from the mass function proposed by Gao

et al. (2004):

dN

dM
= 10−3.2

(
Msat

h−1M⊙

)−1.9( 1

h−1M⊙

)2

. (3.1)

Following Gauthier et al. (2006), we sampled the masses within the range 0.00015 ≤ Msat/M⊙ ≤

0.02 and normalized the total subhalo mass fraction to 0.05, which is about twice that of Gauthier

et al. (2006). We chose a larger, but still plausible, value in the hopes of more easily detecting

changes associated with the presence, or lack of, substructure.

The cumulative number density of the subhalos is found in Gao et al. (2004) as well as
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Gauthier et al. (2006),

N = Ntotalx
2.75 (1 + 0.244xs)

(1 + 0.244xsx2)
, (3.2)

where x = r/r200, xs = rs/r200, Ntotal is the total number of satellites within a radius of r200,

and N is the number of satellites within a radius of x. Subhalos are added between a radius of

0.00015r200 and r200, although are realistically only present past approximately 0.15r200 based

on the number density profile.

Velocities of dark matter particles in subhalos are generated based on the expected anisotropy,

as measured by the commonly used anisotropy parameter,

β = 1− σ2
t

σ2
r

, (3.3)

where σt and σr are the tangential and radial velocity dispersions, respectively. The expected

anisotropy is calculated using the expression provided in Hunter (2014) applied to NFW profiles.

This relation depends on the relative position of the subhalo center of mass and the parameter α.

Here, we use α = 1.875 (such as in Taylor & Navarro 2001).

Similar to Navarro et al. (2010), the velocity dispersion of dark matter particles are applied

in 50 (logarithmically spaced) spherical shells out to the virial radius of the subhalo. The total

velocity dispersion in each shell is set equal to twice the specific kinetic energy of the dark matter

particles within the shell (with velocities evaluated at the midpoint of the shell), again keeping

consistency with Navarro et al. (2010).

On average, dark matter particles contained in subhalos, essentially the subhalos themselves,

orbit around the center of mass of the parent halo with a velocity equal to the center-of-mass

circular velocity at the radius of the center-of-mass of the subhalo. We review the overall distri-

bution and evolution of the subhalos in Sections 3.4.2 and 3.4.3.
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3.2.1.2 Hot Gas Halos

Hot gas halos are constructed following the procedure presented in Kaufmann et al. (2007).

Firstly, the density of the hot gas halos is modelled after the profile proposed in Fang et al.

(2020),

ρG(r) =
ρ0

(r + r1)α1(r + r2)α2
. (3.4)

Following Fang et al. (2020), we use r1 = 0.75rs, r2 = 100 kpc, α1 = 1, and α2 = 2, where rs

is the scale radius that satisfies

c200 =
r200
rs

, (3.5)

where r200 is the virial radius of the dark matter halo. For the lower-mass sample of galaxies, we

set r2 = 50 kpc to account for galaxies being roughly half the size of Milky Way-like galaxies.

Similar to Kaufmann et al. (2007), ρ0 is set such that the total mass of the gas halo within r200

is equal to 10% of the sum of the other components of the galaxy (i.e. the sum of the stellar disk,

stellar bulge, gaseous disk, and dark halo masses), resulting in a baryonic fraction within the

virial radius of approximately 0.1555. This was observed to provide sufficient gas to reasonably

model hot gas coronas in galaxies while not overwhelming the system with unphysical amounts

of gas. As previous authors have noted (e.g. Anderson & Bregman 2010; Stocke et al. 2013),

in Milky Way-like systems, the hot gas halo can not account for the total amount of missing

baryons from the universal baryon fraction in the galaxy. In the case of the smaller galaxies

(9 ≤ log10(M∗/M⊙) ≤ 10) where blow-out is energetically easier, this is adjusted to 2.5%

of the other components (approximately equal to the baryonic mass contained within the disk).

Setting the gas mass to 2.5% of the other components resulted in half of the baryons within

the virial radius to reside in the hot gas halo and a baryon fraction within the virial radius of
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approximately 0.05, both fractions consistent with constraints presented in low-mass galaxies in

Stocke et al. (2013). Due to lower temperatures and shorter cooling times of lower-mass halos,

a large gas halo will produce unrealistically large SFRs (which will be discussed in Chapter 5).

The temperature of gas particles in hot gas halos at a radius r is calculated based on the

cumulative mass of the dark matter and gas contained within r and the density of the hot gas

(Kaufmann et al. 2007),

T (r) =
µmp

kB

1

ρG(r)

ˆ ∞

r
ρG(r)

GM(r)

r2
dr. (3.6)

The constants in the previous equation, µ, mp, and kB , correspond to the mean molecular

weight, the mass of a proton, and the Boltzmann constant, respectively. The corona gas is

assumed to be fully ionized, and so we chose µ = 0.59. Hot gas halos were constructed for both

the parent halos as well as the subhalos. The temperatures of subhalos are approximately two

orders of magnitude (in the case of the smallest subhalos) less than the parent halo temperatures.

Gas particles are placed using 1000 volumetric shells; the gas mass within each shell is

calculated based on the density profile and particles are positioned pseudo-randomly within the

shell. Within each shell, a "packing factor" is calculated, which is proportional to the radial

extent of the shell and is inversely proportional to the total number of particles both currently

occupying the shell and that will be added to the shell. This factor is allowed to change with

radius, since the innermost radii of subhalos require smaller factors due to the higher densities.

If a particle would be placed within one packing factor of an existing or generated particle, the

particle position is resampled. The velocity of the gas particle is calculated based on its position

relative to the center of its parent halo and is adjusted so that the total spin of the gas halo is

equal to that of the parent halo.

A face-on and edge-on view of an example galaxy model are shown in Figures 3.1 and 3.2,



CHAPTER 3. SIMULATION METHODOLOGY 28

respectively.

Figure 3.1: Example of a typical modelled galaxy viewed face-on. Red particles depict gas
particles, and stars are represented by yellow particles. White particles depict dark
matter, although these are difficult to see due to the large quantity of red gas particles.

Figure 3.2: Example of a typical modelled galaxy viewed edge-on. Red particles depict gas
particles, and stars are represented by yellow particles. White particles depict dark
matter, although these are difficult to see due to the large quantity of red gas particles.

3.3 Gravitational Softening

The gravitational softening lengths used in the simulations are given in Table 3.3 (see Section

2 of the Introduction for the purpose of these softening lengths). These values were chosen

to balance spatial resolution and required computational resources. Dark matter particles were

given larger softening lengths to reflect their considerably larger masses per particle. The impact

of halving these softening lengths produced deviations less than 0.25% in the SFRs throughout
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their evolutions, both including and excluding substructure.

Particle Type Description Softening Length [kpc]

1 Gas Particles 0.100

2 Dark Matter Particles 0.500

3 Stellar Disk Particles 0.100

4 Stellar Bulge Particles 0.100

5 Newly Formed Stellar Particles 0.100

Table 3.3: Gravitational softening lengths for particles used in the simulations.

3.4 Calibration

To assess the accuracy of the realizations, we next assess the distribution, stability, and kinemat-

ics of the subhalos in addition to the overall SFR parameters and density profiles used in this

thesis.

3.4.1 Subhalo Cumulative Mass Function

The subhalo cumulative mass function was constructed to analyze the accuracy and consistency

of the mass sampling implemented in the initial conditions code. The default Milky Way-like

galaxy model generated by MakeNewDisk was used to test the generation of subhalos in the

initial conditions code, so no hot gas halo particles were present in these tests. The total mass

of subhalos was normalized to 10% of the mass of its parent dark mass halo, compared to 5% in

our galaxy models, with the total number of subhalos set to 100 for consistency with Gauthier

et al. (2006).

Figure 3.3 presents the cumulative subhalo mass functions for five separate runs. For each

run, the slope of the resulting mass function given by m in the legend is estimated using least-
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squares regression. Also plotted is the theoretical cumulative mass function (Equation 3.1) with

its associated slope. There is very little difference in the value of the slope between that estimated

using least-squares regression and the true predicted slope, the least-squares regression slope is

0.03595 compared to the expected value of 0.03822. While some runs underestimate the slope

of the cumulative mass function, all runs remain consistent with the true predicted slope.

Figure 3.3: Cumulative mass function of subhalos in our Milky Way-like test model. The total
number of subhalos is normalized to 100 and the total mass of the subhalos is set
to be 10% of the host dark matter halo, for consistency with Gauthier et al. (2006).
Estimates of the mass function slopes (m) are calculated by least-squares regression
and are represented with dashed lines for each run. The expected slope of the mass
function is calculated from Equation 2.1.

It should be noted that by fixing the total number of subhalos to 100, the normalization of

the masses is affected. This, in addition to discretization of the mass function, may account for

some of the discrepancies between expected and observed slope values.
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3.4.2 Subhalo Cumulative Number Density

To test the relative equilibrium of the subhalos within the galaxy models, the same Milky Way-

like galaxy model was constructed, except using single point particles to represent the subhalos.

Subhalo particles were set to have twice the softening length of other particles in the simulation

to represent the larger volume the subhalos would occupy. Simulations with this model were

allowed to evolve for 5 Gyr, and the cumulative number density of subhalos is presented in

Figure 3.4. The exact distribution of subhalo masses and positions can vary depending on the

random seed utilized. Thus, the model was generated thrice in order to check the consistency

of the number density over three separate runs (represented by different line styles). Similar

to Gauthier et al. (2006), we find that at intermediate times, fewer subhalos are present at the

innermost radii while there are more subhalos at intermediate to higher radii than at later times.

Figure 3.4 demonstrates the relative consistency between runs and fairly stable behaviour of

subhalos in our models, although it should be noted this is in the absence of stripping which will

occur when point particles are replaced by dark matter and gas particles.
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Figure 3.4: Cumulative number density of subhalos in our Milky Way-like test model at three
different evolutionary points. The total number of subhalos is normalized to 100, for
consistency with Gauthier et al. (2006).

3.4.3 Velocity Anisotropy

The acceleration and initial velocity of each subhalo are dependent on the gravitational potential

of the parent halo at the subhalo position. Since the velocity anisotropy parameter is dependent

on the position of the subhalo within the parent halo, due to the velocity dispersion’s depen-

dence on the subhalo kinetic energy, the velocity anisotropy as a function of the position within

the subhalo was calculated for various positions for the center-of-mass of the subhalo. Specifi-

cally, the anisotropy parameter is calculated in 6 - 7 radial bins, 6 if insufficient subhalo particles

were present at that radius, and each curve corresponds to a unique subhalo at a different radial

position within the parent halo. As shown in Figure 3.5, the velocity anisotropy is highly consis-

tent between subhalos regardless of the subhalo’s relative position within the parent dark matter

halo. In addition, we find the shape of the velocity profile to be consistent with Navarro et al.

(2010).
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Figure 3.5: Velocity anisotropy of subhalo particles as a function of radius within the subhalo
in our Milky Way-like test model. The anisotropy function is shown for different
subhalos at various radial positions within the parent dark matter halo, shown in the
legend.

3.4.4 Star Formation and Density Profile

We use an effective equation of state model developed by Springel & Hernquist (2003) to model

star formation. Parameters for this model include the maximum star formation timescale (t∗0),

temperature of supernovae (TSN ), temperature of the cold medium (TC), the supernovae cou-

pling efficiency (β, which can be thought of as the fraction of stars immediately converted into

supernovae), and the evaporation factor (A0). Following the original work by Springel & Hern-

quist (2003), we use t∗0 = 2.1 Gyr, TSN = 108 K, TC = 1000 K, β = 0.1, and A0 = 1000

K.

As a test of the choice of star formation parameters, a halo similar to the high-mass example

in the original work was constructed. A gas halo with an NFW density profile was embedded in
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an originally 1012 M⊙ dark matter halo with a Hernquist density profile, as opposed to an NFW

profile, with the temperature of the gas calculated such that the gas was initially in hydrostatic

equilibrium. The mass of the gas halo was set to be 10% of the total system mass within the

virial radius.

In Figure 3.6, the SFH for this test model is presented. Compared to Figure 2 of Springel &

Hernquist (2003), we see very similar behaviour. We first note that the gas halo remains mostly

within the virial radius throughout the simulation; the largest amount outside the virial radius at

any given time was 9.6% of the gas, accounting for 0.94% of the total mass contained within the

virial radius. This is comparable to the 0.5% consistency found in Springel & Hernquist (2003).

The slight delay in the peak of star formation and total reduced star formation is expected due

to the reduced gas mass (where approximately 75% of the total halo mass is contained in the

virial radius) as well as the difference in the density profile of the dark matter in our model.

We note there is an observed delay in the star formation peak in the lower mass test cases

presented in the original work, consistent with our results. It should also be noted that Springel

& Hernquist (2003) use a different hydrodynamical simulation than GIZMO, which utilizes an

SPH hydrodynamical solver instead of the MFM solver that GIZMO employs, so we do not

expect an exact match.
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Figure 3.6: SFH of the test model resembling the highest-mass isolated spiral galaxy test case
in Springel & Hernquist (2003). We refer the reader to the bottom panel of figure
2 of the corresponding paper for a visual comparison with our results. Springel &
Hernquist (2003) observe a peak of approximately 25 M⊙ yr−1 and a final SFR of
approximately 9 M⊙ yr−1.



Chapter 4

Galaxy Samples

This thesis constructs observationally motivated simulations, therefore we must first constrain

the parameters needed via observational catalogues. To create representative samples of spiral

galaxies, we base our ensemble of galaxies on the extensive structural catalogues gathered as

part of the Sloan Digital Sky Survey (SDSS, Abazajian et al. 2009). Specifically, we use a

sample of 657,996 spiral galaxies with data from Simard et al. (2011) and Mendel et al. (2014).

The observational data from these catalogues do not directly translate to the structural pa-

rameters required to construct our galaxies. Thus, we must use theoretical relationships to infer

the required parameters (see Section 3.2.1) from what is observed. From Mendel et al. (2014),

we use

• stellar disk mass estimates

• stellar bulge mass estimates

From Simard et al. (2011),

• disk scale lengths

• bulge effective radii

36
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• redshift estimates

From the observational data, we infer probability distributions of parameters using a multivari-

ate Gaussian kernel density estimation (KDE). Drawing from these distributions, we construct

samples of galaxies.

4.1 Kernel Density Estimation

A common obstacle in observational astronomy is inferring the distribution of an observable,

since we do not know the true underlying distribution a priori. Kernel density estimation is

frequently used to approximate an unknown probability density function (Seabold et al. 2017).

The sum of the chosen kernel function, in this case a multivariate Gaussian, over every sample

point acts as the probability density estimate around that point. In essence, we assume a Gaussian

uncertainty centered at each sample point and sum each individual Gaussian, giving an estimate

for the underlying probability distribution. Here, we use the gaussian kde function found in the

SciPy optimize module (Gommers et al. 2022).

To generate the sample, it was necessary to derive 6 parameters for MakeNewDisk to de-

scribe each galaxy based on the observations. The parameters required are halo concentration

(c200), halo circular velocity at the virial radius (Vc(r200) = V200), halo spin (λ), disk mass

fraction (MD), bulge mass fraction (MB), and bulge scale length (RB).

The circular velocity at the virial radius of the halo can be directly related to its virial mass.

In addition, the total halo mass can also be used to infer the concentration of the halo via the

concentration-mass relation (e.g. Dutton & Macciò 2014). Hence, we first estimate the total halo

mass based on the total stellar mass estimate from Mendel et al. (2014) using the theoretically

inferred stellar-to-halo mass relation in Moster et al. (2010),
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Mstar

Mhalo
= 2

(
Mstar

Mhalo

)
0

[(
Mhalo

MA

)−β

+

(
Mhalo

MA

)γ
]−1

, (4.1)

where (
Mstar

Mhalo
)0 is the normalization of the ratio, MA is the mass where the ratio is equal to

the normalization, and β and γ are the parameters controlling the ratio at high and low masses,

respectively. This relation is solved iteratively, using
(
Mstar

Mhalo

)
0

= 0.0282, MA = 1011.884

M⊙, β = 1.06, and γ = 0.556 (see Table 4 of Moster et al. 2010). Conventionally, we use

the virial radius (r200) as the cutoff radius of the galaxies. However, given the r−4 nature of the

Hernquist profile used, some particles, most notably dark matter, exist beyond the virial radius,

with 99% of mass inside 1.1r200. Hence, we use this mass estimate as the approximate mass

contained within the virial radius, denoted M200.

Once an estimate for the halo mass is obtained, the concentration c200 can be inferred using

the concentration-mass relation. Solving the relation found in Dutton & Macciò (2014), we

obtain an estimate for the concentration:

log10(c200) = 0.905− 0.101log10

(
M200

10−12h−1

)
. (4.2)

In the case of galaxies above redshift z = 0.5, we estimate the concentration using the approxi-

mation used in Klypin et al. (2011),

c200(M200, z) = c0(z)

(
M200

1012h−1M⊙

)−0.075
[
1 +

(
M200

M0(z)

)0.26
]
, (4.3)

where c0(z) and M0(z) are provided in Table 3 of the aforementioned paper.

Using this estimate for c200, the virial radius is estimated by computing the halo scale radius.

This is done by assuming the total halo mass can be rearranged to lie within the virial radius.

Since the density within this radius is 200 times the universal critical density, the virial radius
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definition gives a direct relation between the mean halo density, mass, and radius. The circular

velocity V200 is then computed simply as

V200 =

√
GM200

r200
, (4.4)

where G is the universal gravitational constant.

The bulge and disk mass fractions (MB and MD) are estimated as the stellar mass, from

Mendel et al. (2014), of the respective component divided by the calculated M200. The bulge

scale length is approximated using the bulge effective radius and the disk scale length from

Simard et al. (2011) since MakeNewDisk requires the bulge scale length is in units of the disk

scale length.

The halo spin (λ) is estimated using the size-λ relation first proposed in Mo et al. (1998),

Rd =
1√
2

(
jd
md

)
r200f

−0.5
c fRλ, (4.5)

where jd is the fraction of the total angular momentum that the disk contains, md is the disk

mass fraction, Rd is the disk scale length, fc is a factor that depends on the concentration c200,

and fR is a factor to account for gravitational effects of the disk:

fR = 2

[ˆ ∞

0
e−uu2

Vc(Rdu)

V200
du

]−1

. (4.6)

The concentration factor,

fc =
c200
2

1− [1/(1 + c200)
2]− 2[ln (1 + c200)/(1 + c200)]

[c200/(1 + c200)− ln (1 + c200)]2
(4.7)

is present due to energy considerations in the halo. We adopt the common assumption that the

specific angular momentum of the disk is the same as its dark matter halo, which results in jd ∽
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md (Mo et al. 1998).

4.1.1 Derived Distributions

The total generating distributions of all MakeNewDisk parameters, except the concentration,

follow a log-normal distribution. This is consistent with prior work (e.g. Dutton & Macciò

2014). Due to the width of the kernel and the close proximity of some parameters to zero, it is

possible that the KDE enters non-physical areas of the parameter space. We specifically reject

any of these values.

To investigate the ergodicity of the specific star formation of the galaxies in various samples,

two samples of galaxies in the stellar mass ranges of 9 ≤ log10(M∗/M⊙) ≤ 10 and 10 ≤

log10(M∗/M⊙) ≤ 11 were constructed. The generated distributions of parameters for galaxies

in both mass ranges are shown in Figures 4.1, 4.2, and 4.3 for the lower-mass galaxies and

Figures 4.4, 4.5, 4.6 for the higher-mass galaxies. The final samples of 10 galaxies were derived

from these initial 106 realizations, as described in the following section.

Figure 4.1: Distribution of c200 (left) and V200 (right) values in set A for galaxies in the stellar
mass range 9 ≤ log10(M∗/M⊙) ≤ 10.
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Figure 4.2: Distribution of λ (left) and MD (right) values in set A for galaxies in the stellar mass
range 9 ≤ log10(M∗/M⊙) ≤ 10.

Figure 4.3: Distribution of MB (left) and RB (right) values in set A for galaxies in the stellar
mass range 9 ≤ log10(M∗/M⊙) ≤ 10.

Figure 4.4: Distribution of c200 (left) and V200 (right) values in set A for galaxies in the stellar
mass range 10 ≤ log10(M∗/M⊙) ≤ 11.
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Figure 4.5: Distribution of λ (left) and MD (right) values in set A for galaxies in the stellar mass
range 10 ≤ log10(M∗/M⊙) ≤ 11.

Figure 4.6: Distribution of MB (left) and RB (right) values in set A for galaxies in the stellar
mass range 10 ≤ log10(M∗/M⊙) ≤ 11.

4.2 Simulation Suites

We generated the catalogues following a three-step procedure:

• First, 1, 000, 000 realizations were generated from the KDE, in order to safely obtain

sufficient numbers of galaxies that satisfied all criteria. We refer to this total sample as

set A. We note that the samples for different mass ranges were generated separately, and

so set A is distinct for both samples. However, given the large sample size, we normally

expect statistical variation from the sampling process to be minimal.
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• Then we removed any galaxies that had non-positive halo spin, disk mass fraction, and/or

bulge fractions as well as any with disk mass fractions below 0.01. The last criterion is

due to errors encountered with MakeNewDisk with disk mass fractions below 0.01. These

restrictions result in approximately 330, 000 realizations for the higher-mass sample and

40, 000 in the low-mass sample, which are each referred to as set B. Lower halo masses

have lower probabilities to the left of the peak in the mass/velocity probability density

distributions, resulting in fewer available realizations. Figures 4.7, 4.8, and 4.9 show the

differences in the distributions in sets A and B for the lower-mass galaxy sample, and the

higher-mass distributions are shown in Figures 4.10, 4.11, and 4.12.

• Lastly, ten galaxies were randomly selected from set B such that the average disk fraction

and average bulge fractions in this final sample were within 10 % of the averages in set B.

The parameters for both samples of galaxies are provided in Tables 4.1 and 4.2.

Figure 4.7: Difference in distributions of c200 (left) and V200 (right) values between sets A (blue)
and B (orange) for galaxies in the stellar mass range 9 ≤ log10(M∗/M⊙) ≤ 10.
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Figure 4.8: Difference in distributions of λ (left) and MD (right) values between sets A (blue)
and B (orange) for galaxies in the stellar mass range 9 ≤ log10(M∗/M⊙) ≤ 10.

Figure 4.9: Distribution of MB (left) and RB (right) values between sets A (blue) and B (orange)
for galaxies in the stellar mass range 9 ≤ log10(M∗/M⊙) ≤ 10.

Figure 4.10: Difference in distributions of c200 (left) and V200 (right) values between sets A
(blue) and B (orange) for galaxies in the stellar mass range 10 ≤ log10(M∗/M⊙) ≤
11.
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Figure 4.11: Difference in distributions of λ (left) and MD (right) values between sets A (blue)
and B (orange) for galaxies in the stellar mass range 10 ≤ log10(M∗/M⊙) ≤ 11.

Figure 4.12: Difference in distributions of MB (left) and RB (right) values between sets A (blue)
and B (orange) for galaxies in the stellar mass range 10 ≤ log10(M∗/M⊙) ≤ 11.
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Galaxy c200 V200 [km s−1] λ MD MB RB Total Mass [1010 M⊙]

1 9.56 104.04 0.045 0.01355 0.00753 0.50 26.18

2 10.06 116.78 0.066 0.01167 0.00255 0.94 37.03

3 10.07 68.71 0.068 0.01690 0.00472 1.65 7.54

4 9.51 128.40 0.036 0.01285 0.00142 0.26 49.22

5 9.97 122.88 0.045 0.01721 0.00329 0.67 43.14

6 10.24 66.75 0.043 0.01814 0.00252 0.81 6.92

7 9.73 127.97 0.065 0.01106 0.00803 1.42 48.73

8 9.42 119.91 0.044 0.01014 0.01480 1.05 40.09

9 9.72 129.16 0.027 0.01202 0.00316 2.45 50.10

10 9.59 142.75 0.091 0.01328 0.00096 0.55 67.64

Table 4.1: MakeNewDisk parameters of sample galaxies in the stellar mass range 9 ≤
log10(M∗/M⊙) ≤ 10. The total masses are from the outputs of the MakeNewDisk
files.

Galaxy c200 V200 [km s−1] λ MD MB RB Total Mass [1010 M⊙]

1 8.32 225.82 0.037 0.01103 0.01624 0.90 267.76

2 8.58 191.28 0.022 0.01723 0.00540 0.69 162.73

3 7.99 235.71 0.038 0.01228 0.01646 10.90 304.50

4 9.04 165.36 0.019 0.01118 0.01774 1.01 105.14

5 8.75 202.66 0.024 0.02354 0.00007 1.02 193.54

6 8.07 252.75 0.021 0.02220 0.00254 2.29 375.43

7 8.21 218.34 0.040 0.01674 0.01533 0.02 242.02

8 8.53 205.37 0.052 0.01248 0.02051 0.48 201.40

9 8.42 208.53 0.039 0.01679 0.01002 1.25 210.85

10 8.30 216.76 0.031 0.01915 0.01642 0.82 236.81

Table 4.2: MakeNewDisk parameters of sample galaxies in the stellar mass range 10 ≤
log10(M∗/M⊙) ≤ 11. The total masses are from the outputs of the MakeNewDisk
files.
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4.3 Physical Scenarios

To gain an understanding of the degree to which different physical processes affect ergodicity,

we subjected the same galaxies to evolution under various physics models. In simulated galaxies,

testing the effects of a physical process is a conceptually straightforward procedure; we simulate

the galaxies with and without the investigated physics enabled. As a control sample, we simulate

the galaxies with only star formation and feedback via an effective equation of state enabled. We

also wanted to test the impact of subhalos on the SFHs of the galaxies, and so we constructed

galaxy samples both including and excluding modelled substructure. Finally, as a test of the

impact of further regulation of star formation, we also consider scenarios in which stellar winds

are enabled. Galaxies are further divided into the two studied mass ranges. This results in a set

of 8 physical scenarios, for each combination of physical process and mass range, summarized

in Table 4.3. The overall simulation suite thus contains 80 distinct simulations.

Set Stellar Mass [log10(M⊙)] Substructure Stellar Winds

1 9− 10 N N

2 9− 10 Y N

3 9− 10 Y Y

4 9− 10 N Y

5 10− 11 N N

6 10− 11 Y N

7 10− 11 Y Y

8 10− 11 N Y

Table 4.3: Physical scenarios analyzed in this thesis.
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Results

In this chapter, we analyze the general behaviour of the simulated galaxies. Analysis of the

variations between galaxies and within galaxies over time are presented in the following section,

although we reserve the detailed discussion of these results for the following chapter.

Results are summarized for three subsets of galaxies: we define galaxies with stellar masses

9 ≤ log10(M∗/M⊙) ≤ 10 as low-mass (i), galaxies with stellar masses 10 ≤ log10(M∗/M⊙) ≤

11 as high-mass (ii), and the total sample (iii) as all galaxies analyzed in a given physical sce-

nario. We relate simulated SFRs to observational ones using the SFR7 parameter defined in

Wang & Lilly (2020a); SFR7 is defined as the SFR integrated over the past 5 Myr, and can be

essentially considered as the SFR integrated over the past log(107 years). The simulation outputs

include the full data contained in snapshots, which are generated every 25 Myr in the simulation,

in addition to diagnostic files which are updated every 5 Myr. Instantaneous SFRs can be cal-

culated from either snapshots (i.e. 25 Myr timesteps) or diagnostic files (i.e. 5 Myr timesteps).

However, we use an integrated definition, whereby the instantaneous SFRs at a given time are the

amounts of stellar material formed within the past 5 Myr. This provides a more finely sampled

SFR compared to snapshots and matches the Wang & Lilly (2020a) definition.

In order to limit the effects of initial transients (Scoccimarro 1998) and the hot gas corona

48
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relaxation at the beginning of the simulations, we cut out SFRs prior to 700 Myr in low-mass

galaxies and rates before 1 Gyr in higher-mass galaxies (hereafter referred to as the "cutoff"

timescales). These timescales were chosen to be comparable to the dynamical times of these

halos, providing sufficient time for halos to stabilize and remove similar initial SFHs that could

influence our results.

5.1 General Evolution

Until the gas supply from the hot gas corona cools and falls onto the star-forming disk, the

evolution of all galaxies in the sample is most strongly influenced by the amount of gas ini-

tially present in the disk. However, once this infall becomes significant the gas from the corona

becomes important in determining the remaining evolution. Naively, given the comparative sim-

ilarities of the modelled galaxies, one may expect both high-mass and low-mass galaxies to show

broadly similar SFHs, albeit with quantities adjusted accordingly for the different masses. We

next compare the ensemble-averaged evolution of both mass ranges of galaxies in all physical

scenarios.

5.1.1 Low-Mass

We observe a relatively constant evolution in SFR, for example the largest ensemble average

range is from 0.13 M⊙ yr−1 to 0.17 M⊙ yr−1 in simulations with subhalos and no winds, in

low-mass galaxies until about 1 Gyr, at which point the infall of halo gas begins to reach the

disk systems, except in the case of simulations with stellar winds. After the initial impact of

the halo infall, the SFR remains mostly constant, again in the cases where star formation is not

suppressed by stellar winds. Fig 5.1 shows the sample average of the instantaneous SFRs of

low-mass galaxies over the simulation time in each of the physical cases.
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Figure 5.1: Ensemble average and standard deviation of SFR7 between low-mass galaxies across
the four physical scenarios as functions of time. The legend in the top panel follows
the same format as the lower panel.

With stellar winds enabled, the time evolution between runs with and without substructure

are nearly identical, within 17% on average. There is slightly more star formation, typically

0.02 M⊙ yr−1, in the simulations with substructure, which is expected due to the small increase

in available star-forming material. In addition, the simulations with and without substructure

behave broadly similarly with stellar winds disabled, within 19% and about 0.03 M⊙ yr−1 more

star formation in runs with subhalos, on average. That is, stellar winds have a significantly

greater impact on the overall SFHs of low-mass galaxies than the addition of substructure.

In the two smallest galaxies in runs without winds, we see a considerable sudden burst of

star formation at approximately 1 - 1.5 Gyr, after which the SFR remains essentially constant

for the remainder of the simulation time. This behaviour was found to be caused by the smaller

virial mass/radius of the halo, since the infalling corona gas has less distance to travel to the star-



CHAPTER 5. RESULTS 51

forming disk and is inherently cooler due to the lower virial temperature of the galaxies. The

sudden burst of star formation is accompanied by a rapid injection of energy due to feedback

(note this applies in runs without winds), which heats the gas considerably and allows the corona

to regain its pressure support, and even ejects large quantities of gas near the star-forming disk.

With only the edges of the star-forming disk containing sufficiently cool gas to form stars, star

formation then continues at a near constant rate until the end of the simulation.

The individual SFHs for each galaxy in the sample are presented in Figures 5.2 - 5.6. The

same galaxy behaves broadly similarly across all 4 scenarios, albeit with adjusted SFR7 values

as expected. The only exceptions are the two lowest-mass galaxies, models 3 and 6, which show

consistent behaviour between each other over time and have similar peak SFRs in runs with no

additional physics enabled (0.048 M⊙ yr−1 and 0.046 M⊙ yr−1, respectively). About half of

the galaxies (models 1, 2, 7, 8, and 10) have slowly increasing SFRs until 1.5 Gyr, after which

the SFR remains constant, on average. Three galaxy models, 4, 5, and 9, have almost constant

(model 4) or slowly declining (models 5 and 9) SFR values throughout the analyzed time. It

is interesting to note that the only significant differences in parameter values (see Table 4.1)

between model 4 and either model 5 or model 9 are the lower bulge mass fractions (0.0014

compared to 0.0033 and 0.0032, respectively) and the lower bulge scale radii (0.26 compared to

0.67 and 2.45, respectively).
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Figure 5.2: SFHs across all 4 physical scenarios for galaxy models 1 and 2 in the stellar mass
range 9 ≤ log10(M∗/M⊙) ≤ 10.

Figure 5.3: SFHs across all 4 physical scenarios for galaxy models 3 and 4 in the stellar mass
range 9 ≤ log10(M∗/M⊙) ≤ 10.

Figure 5.4: SFHs across all 4 physical scenarios for galaxy models 5 and 6 in the stellar mass
range 9 ≤ log10(M∗/M⊙) ≤ 10.
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Figure 5.5: SFHs across all 4 physical scenarios for galaxy models 7 and 8 in the stellar mass
range 9 ≤ log10(M∗/M⊙) ≤ 10.

Figure 5.6: SFHs across all 4 physical scenarios for galaxy models 9 and 10 in the stellar mass
range 9 ≤ log10(M∗/M⊙) ≤ 10.

5.1.2 High-Mass

In higher-mass systems, halo gas infall is delayed until approximately 2 - 3 Gyr, after which

there is an increase in SFR, although the relative increase is not as significant compared to the

low-mass sample. Past 3.0 Gyr, the ensemble average is dominated by a single SFH, which

we do not have data for past 4.5 Gyr. The ensemble quantities of the instantaneous SFRs of

high-mass galaxies over the simulation time is presented in Fig 5.7.



CHAPTER 5. RESULTS 54

Figure 5.7: Ensemble average and standard deviation of SFR7 between high-mass galaxies
across the four physical scenarios as functions of time. The legend in the top panel
follows the same format as the lower panel.

The noticeable increase in the average SFRs in simulations without winds towards the end

of the simulation time (from about 3.5 to 4.5 Gyr) is due to the SFH of the smallest high-

mass galaxy; Galaxy 4 of the scenario with stellar winds disabled, both including and excluding

substructure, experiences an event akin to a starburst in which the SFR exceeds 25 M⊙ yr−1.

This galaxy model is responsible for the increase in average and variance values past 3.5 Gyr.

The drop in average and variance values from 4.5 - 5 Gyr for the runs without stellar winds

or substructure is a result of excluding the outlying galaxy, since we do not have data past ∽

4.5 Gyr (4.5 time code units) for that particular galaxy model as the integration time became

extremely short due to the intense feedback. Consequently, most of our detailed analysis ignores

the period beyond 4.5 Gyr.

Similar to the low-mass sample, the SFHs of galaxies with and without substructure are very
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similar when stellar winds are enabled. Specifically, the variations in the SFR due to infall is

significantly reduced. However, unlike the low-mass sample, the simulations with substructure

have SFRs more similar to each other (until 3.5 Gyr) than the simulations with no substructure.

In addition, both models with substructure have larger initial SFRs than the runs without sub-

structure, unlike the lower-mass galaxies where both runs with winds lie below runs without.

We understand this in the context of winds taking longer to have an impact than in the lower-

mass galaxies. If we compare the ordering, in SFR, of the higher-mass galaxies at 4.5 Gyr,

the last full output, it follows the same ordering in terms of highest to lowest SFR as the low-

mass sample. The ordering only differs in the very early stages of evolution. This is expected

since the relative impact of feedback and winds will be lower at higher masses; feedback, and

hence an approximately fixed temperature, is generally less impactful compared to the higher

speeds present in higher-mass systems. The relative impact of winds in more massive systems

is similarly expected to be lower.

The individual SFHs for each galaxy in the sample are presented in Figures 5.8 - 5.12. In

general, the behaviours of all galaxies (except model 4) are broadly similar. Most galaxies expe-

rience a significant increase in SFR around 2.5 Gyr, the time at which the halo gas infall reaches

the star-forming disk, then have slower increases to SFR as feedback limits star formation, and

finally peaks at values around 10 M⊙ yr−1 towards the end of the sampling epoch. Models 2

and 5 have two peaks in star formation, since they experience the first peak around 3.5 - 4.0

Gyr, before other galaxy models. As a result, the gas has sufficient time to cool after the star

formation is shut down from feedback processes and thus the SFR increases again. In model 10,

the SFR peaks at a larger value (> 15 M⊙ yr−1), which results in a stronger reduction in SFR

due to feedback.
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Figure 5.8: SFHs across all 4 physical scenarios for galaxy models 1 and 2 in the stellar mass
range 10 ≤ log10(M∗/M⊙) ≤ 11.

Figure 5.9: SFHs across all 4 physical scenarios for galaxy models 3 and 4 in the stellar mass
range 10 ≤ log10(M∗/M⊙) ≤ 11.

Figure 5.10: SFHs across all 4 physical scenarios for galaxy models 5 and 6 in the stellar mass
range 10 ≤ log10(M∗/M⊙) ≤ 11.
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Figure 5.11: SFHs across all 4 physical scenarios for galaxy models 7 and 8 in the stellar mass
range 10 ≤ log10(M∗/M⊙) ≤ 11.

Figure 5.12: SFHs across all 4 physical scenarios for galaxy models 9 and 10 in the stellar mass
range 10 ≤ log10(M∗/M⊙) ≤ 11.

5.1.3 Ensemble Variances in Low-Mass and High-Mass Galaxies

The overall ensemble variances in low- and high-mass galaxies appear to have similarities when

averaged over the sampling epoch. To normalize between low-mass and high-mass systems,

we calculate the variances of sSFRs instead of SFRs for comparison. The time averages of the

ensemble variances in each mass range and each scenario are presented in Table 5.1. We indeed

find that low- and high-mass galaxies show broadly similar variances, particularly in the runs

with no substructure and stellar winds enabled, where the standard deviations are within a factor

of 1.5.
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Physical Scenario Average σsSFR Gyr−1 Stellar Mass Range

No Subhalos, No Winds 0.057 9 ≤ log10(M∗/M⊙) ≤ 10

No Subhalos, No Winds 0.010 10 ≤ log10(M∗/M⊙) ≤ 11

Subhalos, No Winds 0.049 9 ≤ log10(M∗/M⊙) ≤ 10

Subhalos, No Winds 0.022 10 ≤ log10(M∗/M⊙) ≤ 11

No Subhalos, Winds 0.006 9 ≤ log10(M∗/M⊙) ≤ 10

No Subhalos, Winds 0.009 10 ≤ log10(M∗/M⊙) ≤ 11

Subhalos, Winds 0.007 9 ≤ log10(M∗/M⊙) ≤ 10

Subhalos, Winds 0.018 10 ≤ log10(M∗/M⊙) ≤ 11

Table 5.1: Time averages of ensemble sSFR7 standard deviations in both low- and high-mass
galaxies in all analyzed physical scenarios.

5.2 Determining Disk Star Formation in Runs with Subhalos

To test the amount of star formation present in subhalos compared to the star formation present

in the gaseous disk, the ratio of total star formation to star formation in the disk was analyzed.

Disk star formation is estimated by calculating the sum of instantaneous SFRs of all gas parti-

cles contained within a cylinder located at the centre of the galaxy. The "pill box" cylindrical

structure is defined to have a height of 10 scale heights (which we estimate as 0.2 disk scale

lengths, the default disk height in MakeNewDisk) and a radius of 10 scale lengths. Estimations

of the star formation in the disk were calculated at each snapshot. Tests with smaller vertical

dimensions for the disk missed sizeable fractions of gaseous disk particles at later times in some

runs, and so the comparatively large heights and radii were chosen to better constrain the central

SFR consistently across all simulations.
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Figure 5.13: Comparison of total SFR to estimated SFR in the star-forming disk in an exam-
ple galaxy (Galaxy 6 of the higher-mass sample). Top: Total (instantaneous) SFR
calculated at each snapshot. Middle: Instantaneous SFR of gas particles within a
cylindrical volume (see text for full description). Bottom: Ratio of total SFR to
instantaneous disk SFR at each snapshot. The legends in the top and middle panels
follow the same format as the bottom panel.

In Fig 5.13, an example ratio between total and disk SFR is given in the bottom panel along-

side the raw SFRs. In the case of lower-mass galaxies, the maximum amount of star formation

outside of the pill box at any given time is 15%, although the sample average of these maximum

deviations in low-mass galaxies is only 7%. In higher-mass galaxies we observe larger maxi-

mum deviations (in some cases > 30%), however by inspection of the snapshots and generated

cylinders, these deviations occur only in the presence of large quantities of gas between the disk

and subhalos at approximately 1.0 Gyr. This additional material is not considered to be part of

the disk (until it reaches the disk) and appears to be stripped material from subhalos, and so the

discrepancy between the total SFR and the disk SFR cannot be appropriately attributed solely to
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subhalos. To quantify the amount of star formation occurring in the disk compared to subhalos,

we focus on simulations that do not experience these difficult-to-parse cases. In runs where we

do not observe significant quantities of gas outside the pill box between the box and subhalos, we

observe at most 17% of the total SFR outside of the pill box. This demonstrates that the amount

of star formation present in subhalos is at most 17% when compared to that which is present in

the disk. For the majority of the time (from 2.0 Gyr to 5.0 Gyr) the values are approximately

within 1.2%, on average. Thus, we use the total SFR in our analyses.

5.3 Comparison to Observations

The overall goal of this thesis is to examine the ergodicity of specific star formation in galax-

ies so that we may better understand the underlying assumptions inherent with deriving galaxy

evolution models from observations. With this in mind, we must compare the properties of the

simulated galaxies in this study to observational samples. This is not a simple task, since it is

possible that the sample does not match the SFMS on statistical grounds, which we have at-

tempted to minimize and would result in biased deviations from the SFMS. In addition, different

physical scenarios would reasonably result in different behaviours. Hence, for the purposes of

quantifying the departures from the SFMS, we may need to consider alternative SFMS slopes to

those observed.

5.3.1 Star-Forming Main Sequences

We next present the evolution of the SFR7 as a function of stellar mass, which we compare to

the SFMS of Wang et al. (2019). In Figures 5.14, 5.15, 5.16, 5.17, the evolution of the SFR7

parameter, over 1.8 Gyrs for lower-mass galaxies and over 4.0 Gyrs for higher-mass galaxies, for

each galaxy across the four physical scenarios are shown. For simulations without stellar winds,

we plot the SFMS with 0.33 dex bounds, the median scatter and accepted bounds in Wang et al.
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(2019). In simulations with stellar winds enabled (Figures 5.16 and 5.17), we find that lower-

mass galaxies fall significantly below the observed SFMS, while the higher-mass galaxies tightly

lie on the observed SFMS. For these simulations, we fit a SFMS using median SFRs of lower-

mass stellar bins similar to Wang et al. (2019); the range of possible stellar masses is divided

into 10 equal width (in 10 ≤ log10(M∗/M⊙) ≤ 11) bins and the median values from the four

lowest-mass, non-empty bins are used to construct a best-fit line for the SFMS.

5.3.1.1 Scenario A: No Substructure, Winds Disabled

At the beginning of the sampling epoch, almost all galaxies lie below the SFMS bounds, as seen

in Figure 5.14. For the majority of the simulation time, high-mass galaxies remain within the

bounds of the observed SFMS and lie systematically above the SFMS bounds by the end of the

simulations. With the exception of the two lowest-mass galaxies, the lower-mass systems lie

systematically below the SFMS for their entire evolution, by 0.59 dex on average. In the two

higher SFR cases where significant infall and star formation is observed, the two lowest-mass

galaxies quickly approach the observed SFMS and remain within the 0.33 dex bounds for the

majority of the simulation time.
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Figure 5.14: SFR7 as a function of stellar mass across the simulation times for runs without
substructure (and stellar winds disabled). The blue points show the median SFRs
in stellar mass bins from Wang et al. (2019). The black line is the best-fitting
SFMS as derived in Wang et al. (2019), with the accompanying 0.33 dex bounds
as dashed-lines. The colorbars distinguish between the range of simulation times
analyzed for the two mass ranges.

5.3.1.2 Scenario B: Substructure, Winds Disabled

Similar to the simulations with no substructure (and no stellar winds), we find that high-mass

galaxies lie within the SFMS for the majority of the simulation time, and tend to SFRs above

the SFMS at later times (see Figure 5.15). In addition, lower-mass galaxies are found to lie

systematically below the SFMS, by 0.46 dex on average, with the exception of the two smallest

galaxies. However, with the addition of substructure, high-mass galaxies are more tightly packed

on the diagram than in the previous scenario and low-mass galaxies having similar, although

slightly elevated by approximately 0.13 dex, SFRs compared to the no subhalo case. Thus, the

addition of substructure reduces the variability of SFHs in higher-mass galaxies.
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Figure 5.15: SFR7 as a function of stellar mass across the simulation times for runs with sub-
structure (and stellar winds disabled). The blue points show the median SFRs in
stellar mass bins from Wang et al. (2019). The black line is the best-fitting SFMS as
derived in Wang et al. (2019), with the accompanying 0.33 dex bounds as dashed-
lines. The colorbars distinguish between the range of simulation times analyzed for
the two mass ranges.

5.3.1.3 Scenario C: No Substructure, Winds Enabled

With stellar winds enabled, high- and low-mass galaxies lie on a tight linear relation, albeit with

a significantly steeper slope than the observed SFMS (a slope of 1.50 log10(yr−1) compared

to approximately 0.71 log10(yr−1) in Wang et al. (2019), more than a factor of 2 difference).

Galaxies appear to remain within the revised 0.33 dex bounds of the SFMS for close to the entire

simulation time, with the exception of the second lowest-mass galaxy, as seen in Figure 5.16. At

later times, galaxies lie systematically below the SFMS line.
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Figure 5.16: SFR7 as a function of stellar mass across the simulation times for runs without
substructure (and stellar winds enabled). The blue crosses show the median SFRs
in stellar mass bins, and the blue points show the median SFRs in stellar mass
bins from Wang et al. (2019). The black line is the best-fitting SFMS, with the
accompanying 0.33 dex bounds as dashed-lines. The colorbars distinguish between
the range of simulation times analyzed for the two mass ranges.

5.3.1.4 Scenario D: Substructure, Winds Enabled

Figure 5.17 demonstrates that the addition of substructure further reduces the variability of SFRs

between galaxies, although the highest-mass galaxies do not follow the calculated SFMS as

closely as the runs without substructure. Instead, the higher-mass simulations with substructure

follow the observed SFMS more closely than the calculated SFMS and are thus more similar

to the trend calculated in Wang et al. (2019). However, the slope is larger than in simulations

without substructure, 1.72 log10(yr−1) compared to 1.50 log10(yr−1).

The deviation of lower-mass galaxies from observed SFMS values in both scenarios with

winds indicates that with the suppression of star formation by enabling stellar winds, the sim-
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ulation sample fails to reproduce observed trends. This will be discussed further in the next

chapter.

Figure 5.17: SFR7 as a function of stellar mass across the simulation times for runs with sub-
structure (and stellar winds enabled). The blue crosses show the median SFRs in
stellar mass bins, and the blue points show the median SFRs in stellar mass bins
from Wang et al. (2019). The black line is the best-fitting SFMS, with the accom-
panying 0.33 dex bounds as dashed-lines. The colorbars distinguish between the
range of simulation times analyzed for the two mass ranges.

5.3.2 Variability of Star Formation between Timescales

Following the approach in Wang & Lilly (2020a), we investigate the variability of the SFMS of

our simulated galaxies by comparing the parameters SFR79, SFR7, and SFR9, where

• SFR7 is the star formation integrated over the past 5 Myr at any given timestep,

• SFR9 is defined as the star formation integrated over the past 800 Myr at any given

timestep (similar to Wang & Lilly 2020a),

• SFR79 is the ratio of SFR7 and SFR9.
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The SFR79 parameter is referred to as a "change" parameter and is a measure of the burstiness

or lack thereof of star formation in galaxies (Wang & Lilly 2020a).

Investigating the relation between SFR9 and SFR7, more specifically their deviations from

their respective SFMSs, gives insight into the scatter of the SFMS. By definition of SFR9 and

SFR7, the correlation between their deviations from the SFMS shows how star formation varies

on both long and short timescales. Thus, we can determine how systems of varying mass deviate

from the SFMS and see how our samples explore the parameter space. For an ergodic process,

we would expect all galaxies to explore the same parameter space, regardless of mass. In Fig-

ures 5.18, 5.19, 5.20, and 5.21, the deviations of each galaxy (in terms of specific SFR from

the SFMS) are shown. It is emphasized that these deviations are in terms of sSFRs, not SFRs,

since we are measuring the vertical deviations of galaxies from the SFMS, the slope of which

is defined as sSFR. To better compare the SFRs of galaxies at similar stages in their evolutions,

SFR9 values are calculated over 3 separate 800 Myr intervals; 800 Myr after the initial cutoff pe-

riod, the last 800 Myr of the simulation, and an 800 Myr interval in between. The corresponding

SFR7 value is then taken as the SFR averaged over the last 5 Myr of these intervals, for observa-

tional consistency despite the likelihood of increased variation throughout the 800 Myr period.

Table 5.2 defines the exact intervals for both mass ranges. In the top panels, the deviations are

calculated relative to the median sSFR of the entire sample of galaxies within the corresponding

time interval. The bottom panels show the deviations relative to the SFMS presented in Wang &

Lilly (2020b).
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Stellar Mass [log10(M⊙)] Parameter Interval 1 [Gyr] Interval 2 [Gyr] Interval 3 [Gyr]

9− 10 SFR9 0.700 - 1.500 1.200 - 2.000 1.700 - 2.500

9− 10 SFR7 1.495 - 1.500 1.995 - 2.000 2.495 - 2.500

10− 11 SFR9 1.000 - 1.800 2.600 - 3.400 4.200 - 5.000

10− 11 SFR7 1.795 - 1.800 3.395 - 3.400 4.995 - 5.000

Table 5.2: Intervals integrated to obtain SFR7 and SFR9 values for each galaxy.

Figure 5.18: Deviation of SFR9 and SFR7 parameters from their respective SFMSs in simula-
tions without substructure (and no stellar winds). The top panel shows the deviation
from the median sSFR values, and the bottom panel shows the deviation from the
SFMSs in Wang & Lilly (2020b). In both plots, the circles denote low-mass (9 ≤
log10(M∗/M⊙) ≤ 10) and the crosses denote high-mass (10 ≤ log10(M∗/M⊙) ≤
11) galaxies. Red lines connect points corresponding to the same galaxy over time.
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Figure 5.19: Deviation of SFR9 and SFR7 parameters from their respective SFMSs in simula-
tions with substructure (and no stellar winds). The top panel shows the deviation
from the median sSFR values, and the bottom panel shows the deviation from the
SFMSs in Wang & Lilly (2020b). In both plots, the circles denote low-mass (9 ≤
log10(M∗/M⊙) ≤ 10) and the crosses denote high-mass (10 ≤ log10(M∗/M⊙) ≤
11) galaxies. Red lines connect points corresponding to the same galaxy over time.
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Figure 5.20: Deviation of SFR9 and SFR7 parameters from their respective SFMSs in simula-
tions with stellar winds and without substructure. The top panel shows the deviation
from the median sSFR values, and the bottom panel shows the deviation from the
SFMSs in Wang & Lilly (2020b). In both plots, the circles denote low-mass (9 ≤
log10(M∗/M⊙) ≤ 10) and the crosses denote high-mass (10 ≤ log10(M∗/M⊙) ≤
11) galaxies. Red lines connect points corresponding to the same galaxy over time.
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Figure 5.21: Deviation of SFR9 and SFR7 parameters from their respective SFMSs in simu-
lations with substructure and stellar winds. The top panel shows the deviation
from the median sSFR values, and the bottom panel shows the deviation from the
SFMSs in Wang & Lilly (2020b). In both plots, the circles denote low-mass (9 ≤
log10(M∗/M⊙) ≤ 10) and the crosses denote high-mass (10 ≤ log10(M∗/M⊙) ≤
11) galaxies. Red lines connect points corresponding to the same galaxy over time.

The deviations from Wang & Lilly (2020b) are systematically negative in the runs with

stellar winds, since the suppression of star formation drives the sSFRs significantly below the

SFMS, especially for the lower-mass systems. It is evident from these plots that higher-mass

galaxies tend to occupy different areas of the parameter space than lower-mass ones. Across

all scenarios, higher-mass galaxies tend toward higher dex regions of the parameter space com-

pared to lower-mass galaxies. The trend is most distinct in runs with winds. In general, simu-

lations without substructure have wider ranges of deviations in higher-mass galaxies, whereas

the majority of lower-mass galaxies tend to occupy similar size intervals in all scenarios. The

addition of substructure reduces the variations from 0 in both high-mass and low-mass galaxies,
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by approximately 0.17 - 0.25 dex in high-mass galaxies and by approximately 0.25 - 0.4 dex in

lower-mass galaxies across runs, both including and excluding stellar winds. However, the ad-

dition of substructure in simulations with stellar winds enabled increases the range of deviations

from median sSFRs in higher-mass galaxies (by approximately 0.1 - 0.25 dex) while there is no

notable difference in intervals in lower-mass galaxies. Between the best-fit sample deviations

from the median and the deviations from Wang & Lilly (2020b), deviations are generally shifted

to lower values, particularly in runs with winds. The shift appears to be greater in lower-mass

galaxies (about 0.5 dex) than in higher-mass ones (< 0.25 dex) in simulations with substructure

and winds, but almost equal in simulations with just winds.

5.3.3 Randomized Ages

In the previous plots, we have analyzed how the galaxies differ at each time step through their

individual evolutions. However, this essentially puts all of the galaxies at similar ages or at

least simulation epoch. Observationally, this scenario is highly unlikely, and so we analyzed the

variance between sSFRs if the galaxies are sampled at different stages in their evolution. To

create this, the output values of sSFR7s of each galaxy were randomly ordered, the variance

between galaxies was calculated (as shown in Figures 5.22, 5.23, 5.24, 5.25). We limit this

analysis to SFRs between 1 Gyr and 2.5 Gyr, where we have data for both high- and low-mass

galaxies past their respective cutoff times.
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Figure 5.22: Standard deviation of sSFR7 values when the output sSFR7 values at each timestep
are randomly ordered for each galaxy without substructure and winds disabled.

Figure 5.23: Standard deviation of sSFR7 values when the output sSFR7 values at each timestep
are randomly ordered for each galaxy with substructure and winds disabled.

The combined variance in runs without substructure, Figs 5.22 and 5.24, is reduced with the

addition of high-mass galaxies. This indicates that, on average, all galaxies are within reasonable

proximity to a linear SFMS relation. In fact, the average variation is approximately 0.275 - 0.33
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dex, well within the typical observed scatter of the SFMS (such as the definition in Wang et al.

2019).

Figure 5.24: Standard deviation of sSFR7 values when the output sSFR7 values at each timestep
are randomly ordered for each galaxy without substructure and winds enabled.

Figure 5.25: Standard deviation of sSFR7 values when the output sSFR7 values at each timestep
are randomly ordered for each galaxy with substructure and winds enabled.

The variance in sSFRs across all galaxies is increased in simulations with stellar winds and
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is more similar to the variance in low-mass galaxies, rather than the average of the two mass

ranges. This may reflect how low-mass galaxies underpredict the observed SFMS relation and

thus increase the variation in the sample.

In all scenarios, the variance in the low-mass galaxies is noticeably and systematically

greater than the variation in high-mass galaxies. One caveat to these variance plots to con-

sider is that these are typical standard deviations that measure the deviation from the average

of the sample at each timestep. The SFMS definition used thus far is based on median values.

Although these values should be similar, median values are much less affected by the presence

of outliers, and thus this must be taken into account when interpreting these results.

We can also present these variance plots as histograms (Figures 5.26, 5.27, 5.28, and 5.29).

It is clear from Figures 5.28 and 5.29 that enabling stellar winds increases the sample variances

(to values similar or greater than the variances when only considering low-mass galaxies). We

also compare these variances to the ensemble variances of the full temporally ordered evolution

of the galaxies in each scenario, and find that the averages and ranges of the ordered data to be

broadly consistent with the randomized output variances.
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Figure 5.26: Histograms of the standard deviations of sSFR7 values when the sSFR output val-
ues at each timestep are randomly ordered for each galaxy (without substructure
and winds disabled). The counts correspond to the number of timesteps. Solid
vertical lines show the time averages of the sSFR7 standard deviations calculated
at each timestep observed in the temporally ordered simulated data (i.e. when the
sSFR7 values are ordered correctly). The dashed lines denote the range of sSFR7
standard deviations in the temporally ordered simulated data.
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Figure 5.27: Histograms of the standard deviations of sSFR7 values when the sSFR output val-
ues at each timestep are randomly ordered for each galaxy (with substructure and
winds disabled). The counts correspond to the number of timesteps. Solid vertical
lines show the time averages of the sSFR7 standard deviations calculated at each
timestep observed in the temporally ordered simulated data (i.e. when the sSFR7
values are ordered correctly). The dashed lines denote the range of sSFR7 standard
deviations in the temporally ordered simulated data.
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Figure 5.28: Histograms of the standard deviations of sSFR7 values when the sSFR output val-
ues at each timestep are randomly ordered for each galaxy (without substructure
and winds enabled). The counts correspond to the number of timesteps. Solid ver-
tical lines show the time averages of the sSFR7 standard deviations calculated at
each timestep observed in the temporally ordered simulated data (i.e. when the
sSFR7 values are ordered correctly). The dashed lines denote the range of sSFR7
standard deviations in the temporally ordered simulated data.



CHAPTER 5. RESULTS 78

Figure 5.29: Histograms of the standard deviations of sSFR7 values when the sSFR output val-
ues at each timestep are randomly ordered for each galaxy (with substructure and
winds enabled). The counts correspond to the number of timesteps. Solid vertical
lines show the time averages of the sSFR7 standard deviations calculated at each
timestep observed in the temporally ordered simulated data (i.e. when the sSFR7
values are ordered correctly). The dashed lines denote the range of sSFR7 standard
deviations in the temporally ordered simulated data.

5.4 Ergodicity

The deviation of galaxies from the SFMS is the primary parameter we are examining in the

context of ergodicity. Following Wang & Lilly (2020a), we calculated the vertical deviations of

individual galaxies from SFMSs based on SFRs integrated over both short-term and long-term

intervals. From Figures 5.18, 5.19, 5.20, and 5.21, we observe that higher-mass systems are

systematically more tightly clustered above the SFMS whereas lower-mass systems are system-

atically below the SFMS and have more variability. We note that this separation in parameter

space may be a consequence of the initial conditions. The differences between the sSFRs of
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high- and low-mass galaxies are more evident in runs with subhalos than without, but are partic-

ularly pronounced in simulations with stellar winds.

5.4.1 Partial Ergodicity

In Chapter 2, we introduced the concept of partial ergodicity, or equivalently the modes of er-

godicity breaking, and how we define it in this thesis. As a simple test of this working definition,

we average between the two apparent subsets of our parameter space, occupied by high-mass

and low-mass galaxies, and compare these time averages to the total ensemble average. For each

low-mass galaxy, we randomly assign a high-mass galaxy to calculate the average sSFRs at each

timestep. The ensemble average over all galaxies is calculated at each timestep, which is clearly

not stationary due to the nature of the sSFHs. We then take the time average of these ensemble

averages to compare to the time average of each pair of galaxies. This test is shown in Fig 5.30.
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Figure 5.30: A simple test of our working definition of partial ergodicity applied to each physical
scenario analyzed in this thesis. The left panel shows the total ensemble averages
calculated at each timestep. Dashed lines show the time average of the ensemble
average for each scenario. The right panel displays the time averages of sSFHs
formed by averaging two random galaxies (one high-mass and the other low-mass)
at each timestep. The x-axis in this panel corresponds to the associated ensemble-
averaged time-average of the physical scenario. Black arrows and alternate markers
denote the time averages of the ensemble averages in each scenario, where squares
are used for scenarios with subhalos and large crosses are used for simulations
without subhalos. The arrows are extensions of the dotted lines in the left panel.

5.4.2 Thirumalai-Mountain Metric Test for Ergodicity

Investigations of ergodicity in thermodynamical contexts commonly use an "ergodicity break-

ing" parameter as a measure of a system’s (lack of) ergodicity. This parameter is defined in

terms of the mean squared displacement over time, which is averaged over the ensemble (He

et al. 2008),

EB = lim
t→∞

< (δ2)2 > − < δ2 >2

< δ2 >2
, (5.1)
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where δ2 is the time-averaged mean squared displacement and < > denotes averaging over the

ensemble. While this approach is well motivated in the contexts it is applied outside of as-

trophysics, calculating the deviations between SFRs at consecutive timesteps is not an ideal

indicator of non-ergodicity in our analysis; all galaxies evolve at different rates and experience

enhanced SFRs at different stages in their evolution, and thus the mean squared displacement

is expected to be large at any given time. In addition, this definition of the ergodicity breaking

parameter assigns a single value to the entire ensemble for the entire simulation time, and so

does not give an indication of whether the system is approaching ergodicity over time.

As a more direct measure of how ergodic the SFHs of galaxies are in our sample, we turn to

the Thirumalai-Mountain (TM) metric (Thirumalai et al. 1989). The standard ergodicity break-

ing parameter is based upon this metric (Mangalam & Kelty-Stephen 2020) and is defined as the

ensemble mean-squared deviation of each individual’s time-average from the ensemble-averaged

time-average,

Ωe(t) =
1

N

N∑
i=1

[ϵi(t)− ϵ(t)]2, (5.2)

where ϵ(t) is the time average of a process over the interval t, ϵ(t) is the ensemble average of

these time averages, and N is the size of the ensemble.

This definition is defined for each time t and as trajectories approach the mean over long

timescales in ergodic systems it is expected to approach zero for large t. In non-ergodic systems,

the TM metric converges to a nonzero constant. In addition, for some ergodic systems, a scaling

relation between the TM metric and time is observed (Thirumalai et al. 1989),

Ωe(t = 0)

Ωe(t)
=

t

De
, (5.3)

where De is a constant (in units of time) and is an indicator of the timescale required for the
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system to achieve ergodicity.

Hence, the TM metric gives a straightforward method to quantify a system’s (non-)ergodicity

by investigating the deviations between time averages and ensemble averages at any given time.

We calculate the TM metric for each of the four physical scenarios in terms of sSFRs and the

evolution of the TM metric is plotted in Figure 5.31.

Figure 5.31: The TM metric for the simulated galaxies in all studied scenarios, in terms of sSFRs
as functions of time.

Intriguingly, we observe that simulations without substructure but stellar winds enabled are

the most ergodic, likely due to being the most stationary physical scenario in this analysis. Note

that in the two runs without stellar winds, particularly with no substructure, the TM metric

experiences a sharp increase starting around 1.25 - 1.5 Gyr. This is due to the sudden increase

in the ensemble-average sSFR around this time from the infall experienced in the two lowest-

mass galaxies (e.g. see Figures 5.1 and 5.30), which results in the increased deviation for the

majority of sSFR values from the increased ensemble average. Given the significant influence of
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the two lowest-mass galaxies on the TM metric, we also calculate the TM metric for the higher-

mass galaxies between 0.7 and 2.5 Gyr, shown in Figure 5.32. This provides insight into the

ergodicity of sSFRs for this population in the absence of significant outliers.

Figure 5.32: The TM metric for the simulated galaxies with 10 ≤ log10(M∗/M⊙) ≤ 11 in all
studied scenarios, in terms of sSFRs as functions of time until 2.5 Gyr.

When considering only higher-mass galaxies, a clear decrease in the TM metric over time until

2.5 Gyr is observed. In the simulations without substructure and the simulations without sub-

structure but winds enabled, the TM metric follows a near linear decrease with TM metric values

of 5.0 ×10−5 Gyr−1 and 6.4 ×10−5 Gyr−1 at 2.5 Gyr and 1.5 ×10−3 Gyr−1 and 2.6 ×10−5

Gyr−1 by 4.5 Gyr, respectively. Past 3.0 Gyr, the ensemble SFR variance significantly increases

(see Figure 5.7) in simulations with no subhalos and stellar winds disabled, resulting in a sharp

increase in the TM metric similar to Figure 5.31. We note that these increases coincide with

the approximate times at which the halo gas reaches the star-forming disk for lower-mass and

higher-mass galaxies, respectively, in simulations with no substructure and no winds. For the



CHAPTER 5. RESULTS 84

simulations with subhalos and no stellar winds, the increase in the TM metric from approxi-

mately 3.5 - 4.5 Gyr is due to one outlying galaxy with enhanced SFRs compared to the rest of

the sample. This is suggestive of a larger sample of galaxies being needed to better represent the

true sSFR ensemble averages observed in galaxy samples, since our calculations are sensitive to

the presence of outliers due to small sample statistics. We show in Figure 5.33 the TM metric for

the higher mass galaxies until 4.5 Gyr, to compare with the TM metric calculated for the total

sample.

Figure 5.33: The TM metric for the simulated galaxies with 10 ≤ log10(M∗/M⊙) ≤ 11 in all
studied scenarios, in terms of sSFRs as functions of time until 4.5 Gyr.

Of course, given that our simulations are isolated, these galaxies cannot be truly ergodic

due to the nature of sSFHs not being stationary processes. Nevertheless, the TM metric and

scaling relation provides an approximate measure of each scenario’s ergodicity, and suggest that

suppression of star formation is important when considering the ergodicity of sSFRs, although

the presence of substructure more significantly reduces ergodicity.
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5.4.3 TM Metric for SFMS Deviations

Although investigating the ergodicity of sSFRs is useful to compare the effects of different phys-

ical scenarios, the diagonal trend of the SFMS which represents a sSFR for the population, can

be trended out of the data by considering deviations from this trend (in other words, the ∆sSFR

values discussed previously). Hence, to subtract out the SFMS trend, we also calculate the TM

metric over the sampling epoch in terms of sSFR7 deviations from the SFMS. As discussed

in Section 5.3.1, simulations with stellar winds enabled show clear deviations from the SFMS

observed in Wang & Lilly (2020b). Thus, as we did in Section 5.3.1, we calculate the sSFR7

deviations from the sample median in simulations with winds. The results of this analysis are

shown in Figure 5.34, and, in contrast to the sSFR results, we do not observe an increase in

the TM metric over the sampling epoch. However, the shapes of the TM metric distributions

are strongly influenced by the presence of stellar winds, where runs with stellar winds enabled

have approximately constant metric values whereas runs without winds show a linear decrease

until 1.5 Gyr, after which the metric plateaus. Consistent with the TM metric calculated using

strictly sSFRs, the magnitude of the TM metric is more strongly influenced by the addition of

substructure.
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Figure 5.34: The TM metric for the simulated galaxies in all studied scenarios, in terms of
sSFR7 deviations from the SFMS as functions of time. In simulations without
stellar winds, the deviations are calculated based on the SFMS in Wang & Lilly
(2020b). In simulations without stellar winds, the deviations are calculated with
respect to the sample median sSFR7.

When considering high-mass galaxies alone, shown in Figure 5.35, we observe an approx-

imately linear decrease across the simulation time, except in simulations without substructure

and no winds. In those runs, we see a sharp decrease in the TM metric at 2.0 Gyr before it in-

creases from 3.0 Gyr to the end of the sampling epoch. The sharp decrease appears to align with

halo infall time of high-mass galaxies, and the increase in the TM metric is expected due to the

increasing ensemble SFR7 variance from 3.0 Gyr to 4.5 Gyr (see Figure 5.7). Once again, runs

with winds tend towards higher TM metric values than those without, however the shapes of the

TM distributions are more similar across all runs when only high-mass galaxies are considered.



CHAPTER 5. RESULTS 87

Figure 5.35: The TM metric for the simulated galaxies with 10 ≤ log10(M∗/M⊙) ≤ 11 in all
studied scenarios, in terms of sSFR7 deviations from the SFMS as functions of time
until 4.5 Gyr. In simulations without stellar winds, the deviations are calculated
based on the SFMS in Wang & Lilly (2020b). In simulations without stellar winds,
the deviations are calculated with respect to the sample median sSFR7.

The TM metric is considerably larger when calculated in terms of deviations from the SFMS

than in terms of sSFRs, but we note that this is due to the units used (dex instead of Gyr−1),

and similar to the metric in terms of sSFRs in that no physical scenario approaches zero in the

simulation time analyzed. However, the TM metric shows a clear decreasing trend in all physical

scenarios when we consider deviations from the SFMS, both when considering the full sample

and the high-mass galaxies alone.



Chapter 6

Discussion and Conclusions

This study was motivated by the question of whether it is reasonable to derive the evolution of

individual galaxies from averages in galaxy populations, or the degree to which this implicit

assumption of ergodicity holds. In addition to examining the ergodicity of star formation within

galaxies, we have found additional and more general results about the properties of star forma-

tion and galaxy evolution as secondary findings to the original motivation behind this work.

6.1 Ergodicity

The overall goal of this thesis was to investigate the amount of ergodicity present in the SFHs of

simulated galaxies given observational analyses based on this assumption.

It is worth emphasizing that by the definition of ergodicity, our simulated isolated galaxies

cannot be ergodic since no single galaxy explores the entire ∆sSFR9-∆sSFR7 parameter space

and we observe an approximate division of the parameter space into two distinct subgroups.

Hence, the initial conditions of galaxies determine the positions and allowed values within the

parameter space. We also note that, due to the non-stationary nature of the SFRs, we observe

a form of Simpson’s Paradox1 in the SFMS. Specifically, isolated galaxies in general evolve
1Recall from Chapter 2 that Simpson’s Paradox refers to the diminishment or absence of an individual’s or subset’s

88
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vertically along the SFMS instead of following the main sequence trend with time. Even over

several Gyr of evolution, the most massive galaxies do not change their stellar mass by more

than a factor of 2, while the SFR can increase by as much as a factor of 51. If we consider

galaxies at higher redshifts (z > 2), we would expect significantly higher sSFRs and thus notably

increased stellar masses, and so at higher redshifts, the evolution is likely to deviate from the

near verticality observed in this work.

One possibility is that the simulated galaxies are not evolved for a sufficient amount of

time; if galaxies were allowed to evolve for longer periods of time, we would observe gradually

decreasing SFRs in all galaxies as the available gas supply is consumed. Thus, although not

entirely in the spirit of our current analysis, the SFHs of isolated galaxies may indeed approach

a form of ergodicity in the thermodynamical sense, as all galaxies would reach an equilibrium

state on very long timescales. However, given that galaxies are allowed to evolve for more

than their dynamical timescales, the simulation times used in this study should be adequate for

investigating ergodicity on timescales relevant to galactic evolution.

Another issue to consider is that all galaxies in this study are isolated, where the only infall

of cool gas comes from the halo. In practice, rarely are observed galaxies allowed to evolve

for these time periods without experiencing some environmental effects and/or mergers with

other galaxies. This would obviously further complicate analyses, since galaxies would poten-

tially have access to more gas for star formation, in turn producing changes in stellar mass and

sSFR. In addition, although galaxies are eventually expected to become isolated given sufficient

expansion of the Universe, the ability to construct large observational samples would become in-

creasingly difficult at these epochs. We thus, again, emphasize that formally ergodicity requires

the process in question to be stationary. Therefore, since the rate of gas consumption changes

with time and stellar mass grows, the sSFR cannot be expected to maintain stationary behaviour,

trend when evaluated over a sample/population.
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and thus galaxies cannot be ergodic in the strictest sense. It is interesting to note that were we

to divide by the remaining gas mass of a galaxy, there is a higher likelihood of more stationary

behaviour since such a number is akin to a normalized formation efficiency. As a preliminary

investigation, this study is a first step. However, future work needs to include the effects of

mergers and the local environment of galaxies to better match observations.

6.1.1 Partial Ergodicity

Although true ergodicity is not observed in the sSFRs of our simulated galaxies, star formation

shows hints of partial ergodicity, as described in Chapter 2.

The largest deviations of the pairwise time averages from the ensemble averages are found

in the simulations without stellar winds enabled (see Figure 5.30), as we would expect given

the larger variations in SFRs found in these models. However, even the largest deviations, 0.41

dex, 0.23 dex, 0.20 dex, and 0.20 dex for the runs without substructure, runs with substructure,

runs without substructure but winds enabled, and runs with substructure and winds, respectively,

are at least within the bounds of observed SFMS galaxies (e.g. Muñoz & Peeples 2015). If we

compare to the deviations observed in the SFMS (approximately 0.3 dex), then Figure 5.30 is

suggestive of the runs with stellar winds enabled to be partially ergodic by our definition; the

time average of any given pair of galaxies from separate groups closely resembles the ensemble

average at any given time. This is a result of the simulations with stellar winds having the en-

semble averages that are approximately constant with time. In addition to this partial ergodicity,

the sSFR variances over time within both stellar mass ranges are similar, shown in Table 5.1.

While this is not a necessary condition for partial ergodicity, it is suggestive of it.

Although the time interval between 700 Myr and 2.5 Gyr does not include the later evolution

of higher-mass galaxies, it still provides useful insight into the ergodicity of the sSFRs of the

entire sample. All high-mass galaxies, except simulations with winds, experience enhanced star
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formation beyond 2.5 Gyr and experience similar SFHs to other galaxies in the same scenario

for approximately 2 Gyr thereafter. Consequently, although the average SFR will increase, the

variance about the mean should be similar. Thus, the overall behaviour relative to the average

should remain approximately the same over the course of the evolution, with the variance be-

coming more prominent in the last 0.5 - 1 Gyr of evolution. A better measure of the central

tendency may be to use the median of the ensemble as opposed to the mean since median values

are less affected by outliers, which is why the ensemble average and hence ensemble variance

noticeably increases in the later stages of the simulation time (for example, see 5.7). However,

to be consistent with the majority of the literature, mean values are utilized instead of median

values.

6.2 Simulated vs Observed SFRs

6.2.1 Hot Corona Gas

As mentioned previously, the infalling gas supply from the hot gas corona produces notably

enhanced star formation. While the rapid increase in star formation may appear to be contrived,

we find that in our sample of simulated galaxies with stellar winds enabled we do not have

sufficient variation in their SFRs to match observed SFMS relations. In order for our galaxies

to be truly ergodic, each galaxy in the sample should be able to match the variations observed

in the sample. Otherwise, the galaxies would not be representative of the sample. Thus, in

order to match observed SFR trends in addition to resembling an ergodic process, our sample of

simulated galaxies clearly require supplies of gas to increase the SFR at times and the absence

of star formation suppression.

This insightful conclusion may be a result of underestimating the gas fraction within the

stellar disk or the estimated disk masses obtained from observations, as more gas in the disk
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would potentially allow for a wider variation in SFR. However, let us consider the two smallest

and lowest-mass galaxies in this study; due to the smaller virial radius and lower mass which

results in a lower virial temperature, the coronal gas quickly infalls to the star-forming disk.

These two galaxies only lie within the bounds of the observed SFMS after the infall has initiated

(e.g. see Figures 5.14 and 5.15) whereas the other low-mass galaxies tend to remain below the

bounds of the SFMS in runs both with and without substructure. Considering that the coronas

are equivalent to 2.5% of the mass of the other components of the system (about the total mass

of the disk) in the lower-mass models, a significant increase in the disk masses and the gas

fractions would be required to match observations (barring any contributions from the corona

gas). In addition, we find that higher-mass systems tend to stay more-or-less within the bounds

of the SFMS despite having considerably more mass in the hot corona. We thus arrive at an

unsurprising conclusion that investigating the contribution of hot corona gas to the total star

formation of galaxies is important to better understanding galaxy SFR variations. As estimates

of the total mass contained in these hot gas halos are better constrained, so will our understanding

of galaxy SFRs.

In addition to the contributions to the overall evolution of the modelled galaxies from the hot

gas corona, we can also consider the contributions from subhalos. We find that while substruc-

tures in galaxies do increase the overall SFRs, as expected solely due to the presence of more

star-forming gas, their contribution is not significant, and we did not see significant increases in

SFRs due to resonant processes in our small sample. This is consistent with only 5% of the over-

all halo mass contained within the subhalos, with the cooler gas within the subhalos providing

additional fuel for star formation.
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6.2.2 Deviations from SFMS

As previously discussed in Section 5.4, we observe a separation in the parameter space between

low-mass and high-mass galaxies, particularly when considering deviations (∆sSFR) from the

SFMS. In addition, the enabling of stellar winds suppresses star formation in higher-mass galax-

ies below the SFMS and drives the already below-average SFRs in lower-mass systems further

below observed values.

It is interesting and slightly surprising given our small sample that in all physical scenarios,

the (ensemble) standard deviations of the sSFR values, including when the timesteps for each

galaxy are randomized, lie at or around the accepted SFMS scatter of about 0.3 dex (see Fig-

ures 5.26, 5.27, 5.28, and 5.29). In runs with substructure, we observe higher variances which

is indicative of more deviations from the SFMS than runs without substructure, which is to be

expected if more star-forming gas is available. Given that the placement of subhalos and subhalo

masses within the galaxies are randomized and the varying subhalo infall times depending on

relative position within the parent halo, higher variances are expected. Particularly, subhalos

can heat the star-forming disk as well as providing thickening to the disk, and in the case of

larger subhalos, stellar bars can be formed as a result of close encounters with the galactic center

(e.g. Dubinski et al. 2008). Agreement between the variances of these datasets, including those

generated via random walks, and the observed bounds on the SFMS support the notion of our

models being reasonable representations of typical observed galaxies.

6.3 Conclusions

In this thesis, a preliminary study into the degree of ergodicity of the sSFRs of galaxies was in-

vestigated. To conduct this research, galaxy models were constructed with the intent of sampling

representative galaxies based on observed characteristics. Different physical scenarios were ap-
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plied to test how varying processes affect the observed ergodicity. The main findings of this

thesis are as follows:

• The ∆sSFR values in this sample of galaxies are not ergodic, due to an apparent separation

of high- and low-mass galaxies in the parameter space. In addition, no individual piece

of additional physics increases the ergodicity in ∆sSFR values. Stellar winds result in a

potential decrease in the ergodicity in ∆sSFR values.

• Although isolated galaxies cannot be ergodic due to the lack of stationarity in SFRs, we

find evidence of partial ergodicity in our samples. Specifically, particularly when stellar

winds are enabled, we find that averaging the sSFRs between any pair of galaxies in

separate groups in the parameter space (separated by the two stellar mass bins) over time

is representative of the total ensemble average at any given time. That is, the time average

of the sSFRs for pairs of high- and low-mass galaxies are within 55%, 30%, 19%, and

26% on average and are at most within 87%, 51%, 44%, and 46% for simulations with no

substructure, substructure, no substructure and winds enabled, and substructure and winds

enabled, respectively.

• Based on the TM metric, simulations without substructure but with stellar winds enabled

are the closest to ergodicity in terms of sSFRs over time. However, the overall behaviour

of the TM metric does not consistently approach zero, giving clear evidence of a lack of

true global ergodicity. Significant increases by approximately 0.0014 Gyr−1 result from

variations in sSFRs around the time of halo gas infall in simulations without substructure

or winds, providing perhaps the strongest evidence for larger sample sizes in this study to

minimize the effects of small sample statistics.

• The SFHs of galaxies show broadly consistent behaviour, each showing a sharp increase

in star formation approximately halfway through the simulations due to significant halo
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gas infall, except in wind models where star formation is suppressed. The hot coronal gas

mass appears to be more important in lower-mass systems, where any contributions to the

small SFRs are more noticeable.

• Substructures in halos do not significantly alter the SFHs of galaxies, particularly in low-

mass galaxies, since the differences between runs with and without substructure are within

between 52% and 65%, on average, in high-mass galaxies and between 17% and 19%, on

average, in the case of low-mass galaxies. Stellar winds strongly suppress star formation

by preventing infall, and result in approximately constant SFHs, on average.

• The infall of hot coronal gas is required for modelled galaxies to match observed star

formation trends. With the Springel & Hernquist (2003) stellar winds model enabled,

there is insufficient variation in SFRs to match the observed star forming main sequence,

as infall is strongly suppressed.

6.3.1 Future Work

The statistical and physical aspects of the modelling presented here can be improved. Future

work can incorporate more complicated models, for instance, including the effect of black holes

on SFRs, and investigating a larger range of masses. However, as a better representation of a typ-

ical galaxy sample, future studies should incorporate environmental effects, such as the merging

of galaxies. This is a key restriction on this first study. Furthermore, testing the ergodicity over

a larger sample within each stellar mass range will be useful in better understanding the results

found in this study. While introducing additional physical modelling may well cause further

deviations from ergodicity, the degree to which each impacts how ergodic star formation is will

be crucial to fully understanding the limitations of inferring SFHs from galaxies from general

statistics.
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6.3.1.1 Adding Mergers

Mergers are perhaps the most important process in galaxy evolution, providing additional mate-

rial and altering the morphology of galaxies. The addition of mergers would improve the validity

of the simulations and provide insight into the SFH variance brought on by mergers. Different

types of mergers exist, ranging from dry mergers, in which no gas is added to the system, to pure

gas mergers, and variations between. In dry mergers, additional stellar mass is provided to the

system, and we would expect modest changes to the sSFRs. In pure gas mergers, however, we

would expect purely an increase in sSFRs, possibly significant if driven by inflows. Figure 6.1

visualizes the effect of different mergers on galactic positions in the SFMS. Future studies will

include a range of mergers to investigate not only the varying effects of mergers, but their effect

on the ergodicity of SFRs in galaxies.

Figure 6.1: Visualization of the expected effects of different mergers, varying from pure gas
mergers, in which only the (s)SFR will increase, to dry mergers in which stellar
mass is added, but no additional fuel for star formation is provided. The dotted
lines represent possible trajectories galaxies can experience depending on the type
of merger it experiences.



CHAPTER 6. DISCUSSION AND CONCLUSIONS 97

6.3.1.2 Cosmological Simulations

Ideally, a fully cosmological simulation would be helpful in future analyses to investigate the

effects of environment and interactions between galaxies. However, given the specific require-

ments of sample galaxies in cosmological simulations, such as mass ranges and structural pa-

rameters, a large galaxy sample would be necessary which presents several challenges. For

example, a handful of high resolution cosmological simulations, such as the Evolution and As-

sembly of GaLaxies and their Environments (EAGLE, Schaye et al. 2015), can easily contain

more than 105 individual galaxies (McAlpine et al. 2016). However, given the slope of galaxy

mass functions, it is unlikely that we will find a sufficiently large sample of higher-mass galax-

ies to construct a statistically viable sample. In addition, each cosmological simulation can only

have a single physical scenario implemented at a time, and so even investigating the simple case

of adding subhalos would require two full cosmological simulations. Thus, a cosmological sim-

ulation is not optimal for an initial study into the effects of various physical processes on the

ergodicity of sSFRs, but can be used in future analyses to expand upon our findings. Ultimately,

a "zoom" approach (e.g. McMaster Unbiased Galaxy Simulations (MUGS), Stinson et al. 2010)

may still be the most effective way to improve the validity of the simulation approach.



Appendix A

Appendix: Additional Galaxy Images

A.1 Low-Mass Galaxies

Figure A.1: Edge-on view of the stellar distributions in galaxy models 1 (left) and 2 (right) in
the stellar mass range 9 ≤ log10(M∗/M⊙) ≤ 10.
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Figure A.2: Edge-on view of the stellar distributions in galaxy models 3 (left) and 4 (right) in
the stellar mass range 9 ≤ log10(M∗/M⊙) ≤ 10.

Figure A.3: Edge-on view of the stellar distributions in galaxy models 5 (left) and 6 (right) in
the stellar mass range 9 ≤ log10(M∗/M⊙) ≤ 10.
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Figure A.4: Edge-on view of the stellar distributions in galaxy models 7 (left) and 8 (right) in
the stellar mass range 9 ≤ log10(M∗/M⊙) ≤ 10.

Figure A.5: Edge-on view of the stellar distributions in galaxy models 9 (left) and 10 (right) in
the stellar mass range 9 ≤ log10(M∗/M⊙) ≤ 10.
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A.2 High-Mass Galaxies

Figure A.6: Edge-on view of the stellar distributions in galaxy models 1 (left) and 2 (right) in
the stellar mass range 10 ≤ log10(M∗/M⊙) ≤ 11.

Figure A.7: Edge-on view of the stellar distributions in galaxy models 3 (left) and 4 (right) in
the stellar mass range 10 ≤ log10(M∗/M⊙) ≤ 11.
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Figure A.8: Edge-on view of the stellar distributions in galaxy models 5 (left) and 6 (right) in
the stellar mass range 10 ≤ log10(M∗/M⊙) ≤ 11.

Figure A.9: Edge-on view of the stellar distributions in galaxy models 7 (left) and 8 (right) in
the stellar mass range 10 ≤ log10(M∗/M⊙) ≤ 11.
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Figure A.10: Edge-on view of the stellar distributions in galaxy models 9 (left) and 10 (right) in
the stellar mass range 10 ≤ log10(M∗/M⊙) ≤ 11.



Bibliography

Aarseth, S. J., Gott, J. R., I., & Turner, E. L. 1979, ApJ, 228, 664, doi: 10.1086/156892

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543,

doi: 10.1088/0067-0049/182/2/543

Aguerri, J. A. L., Balcells, M., & Peletier, R. F. 2001, A&A, 367, 428, doi: 10.1051/

0004-6361:20000441

Anderson, M. E., & Bregman, J. N. 2010, ApJ, 714, 320, doi: 10.1088/0004-637X/714/

1/320

Angulo, R. E., & Hahn, O. 2022, Living Reviews in Computational Astrophysics, 8, 1, doi: 10.

1007/s41115-021-00013-z

Barnes, J., & Hut, P. 1986, Nature, 324, 446, doi: 10.1038/324446a0

Berger, M. J., & Oliger, J. 1984, Journal of Computational Physics, 53, 484, doi: 10.1016/

0021-9991(84)90073-1

Binney, J., & Tremaine, S. 2008, Galactic Dynamics: Second Edition

Birkhoff, G. D. 1931, Proceedings of the National Academy of Science, 17, 656, doi: 10.

1073/pnas.17.12.656

104

http://doi.org/10.1086/156892
http://doi.org/10.1088/0067-0049/182/2/543
http://doi.org/10.1051/0004-6361:20000441
http://doi.org/10.1051/0004-6361:20000441
http://doi.org/10.1088/0004-637X/714/1/320
http://doi.org/10.1088/0004-637X/714/1/320
http://doi.org/10.1007/s41115-021-00013-z
http://doi.org/10.1007/s41115-021-00013-z
http://doi.org/10.1038/324446a0
http://doi.org/10.1016/0021-9991(84)90073-1
http://doi.org/10.1016/0021-9991(84)90073-1
http://doi.org/10.1073/pnas.17.12.656
http://doi.org/10.1073/pnas.17.12.656


BIBLIOGRAPHY 105

Blumenthal, G. R., Faber, S. M., Primack, J. R., & Rees, M. J. 1984, Nature, 311, 517, doi: 10.

1038/311517a0

Brinchmann, J., & Ellis, R. S. 2000, ApJL, 536, L77, doi: 10.1086/312738

Burra, L. 2014, Chaotic Dynamics in Nonlinear Theory (Springer New Delhi)

Caplar, N., & Tacchella, S. 2019, MNRAS, 487, 3845, doi: 10.1093/mnras/stz1449

Conselice, C. J. 2014, Ann. Rev. Astron. Astrophys., 52, 291, doi: 10.1146/

annurev-astro-081913-040037

Dekel, A., Sari, R., & Ceverino, D. 2009, ApJ, 703, 785, doi: 10.1088/0004-637X/703/

1/785

Dickinson, H., Adams, D., Mehta, V., et al. 2022, MNRAS, 517, 5882, doi: 10.1093/mnras/

stac2919

Dodelson, S., Gates, E. I., & Turner, M. S. 1996, Science, 274, 69, doi: 10.1126/science.

274.5284.69

Dubinski, J., Gauthier, J. R., Widrow, L., & Nickerson, S. 2008, in Astronomical Society of

the Pacific Conference Series, Vol. 396, Formation and Evolution of Galaxy Disks, ed. J. G.

Funes & E. M. Corsini, 321, doi: 10.48550/arXiv.0802.3997

Dutton, A. A., & Macciò, A. V. 2014, MNRAS, 441, 3359, doi: 10.1093/mnras/stu742

Einasto, J., & Haud, U. 1989, A&A, 223, 89

Eisner, T., Farkas, B., Haase, M., & Nagel, R. 2015, Operator Theoretic Aspects of Ergodic

Theory (Cham, Switzerland: Springer Cham)

Fang, X.-E., Guo, F., & Yuan, Y.-F. 2020, ApJ, 894, 1, doi: 10.3847/1538-4357/ab846c

http://doi.org/10.1038/311517a0
http://doi.org/10.1038/311517a0
http://doi.org/10.1086/312738
http://doi.org/10.1093/mnras/stz1449
http://doi.org/10.1146/annurev-astro-081913-040037
http://doi.org/10.1146/annurev-astro-081913-040037
http://doi.org/10.1088/0004-637X/703/1/785
http://doi.org/10.1088/0004-637X/703/1/785
http://doi.org/10.1093/mnras/stac2919
http://doi.org/10.1093/mnras/stac2919
http://doi.org/10.1126/science.274.5284.69
http://doi.org/10.1126/science.274.5284.69
http://doi.org/10.48550/arXiv.0802.3997
http://doi.org/10.1093/mnras/stu742
http://doi.org/10.3847/1538-4357/ab846c


BIBLIOGRAPHY 106

Frenk, C. S., White, S. D. M., Efstathiou, G., & Davis, M. 1985, Nature, 317, 595, doi: 10.

1038/317595a0

Gao, L., White, S. D. M., Jenkins, A., Stoehr, F., & Springel, V. 2004, MNRAS, 355, 819,

doi: 10.1111/j.1365-2966.2004.08360.x

Gauthier, J.-R., Dubinski, J., & Widrow, L. M. 2006, ApJ, 653, 1180, doi: 10.1086/508860

Gingold, R. A., & Monaghan, J. J. 1977, MNRAS, 181, 375, doi: 10.1093/mnras/181.3.

375

Godunov, S. 1959, Math. Sbornik, 47, 271

Gommers, R., Virtanen, P., Burovski, E., et al. 2022, scipy/scipy: SciPy 1.9.0, v1.9.0, Zenodo,

Zenodo, doi: 10.5281/zenodo.6940349

He, Y., Burov, S., Metzler, R., & Barkai, E. 2008, Phys. Rev. Lett., 101, 058101, doi: 10.

1103/PhysRevLett.101.058101

Hernquist, L. 1990, ApJ, 356, 359, doi: 10.1086/168845

Hockney, R. W., & Eastwood, J. W. 1981, Computer Simulation Using Particles

Hopkins, P. F. 2015, MNRAS, 450, 53, doi: 10.1093/mnras/stv195

Hubble, E. 1929, Proceedings of the National Academy of Science, 15, 168, doi: 10.1073/

pnas.15.3.168

Hunter, D. R. 2014, J. Cosmol. Astropart. Phys., 2014, 023, doi: 10.1088/1475-7516/

2014/02/023

Iyer, K. G., Tacchella, S., Genel, S., et al. 2020, MNRAS, 498, 430, doi: 10.1093/mnras/

staa2150

http://doi.org/10.1038/317595a0
http://doi.org/10.1038/317595a0
http://doi.org/10.1111/j.1365-2966.2004.08360.x
http://doi.org/10.1086/508860
http://doi.org/10.1093/mnras/181.3.375
http://doi.org/10.1093/mnras/181.3.375
http://doi.org/10.5281/zenodo.6940349
http://doi.org/10.1103/PhysRevLett.101.058101
http://doi.org/10.1103/PhysRevLett.101.058101
http://doi.org/10.1086/168845
http://doi.org/10.1093/mnras/stv195
http://doi.org/10.1073/pnas.15.3.168
http://doi.org/10.1073/pnas.15.3.168
http://doi.org/10.1088/1475-7516/2014/02/023
http://doi.org/10.1088/1475-7516/2014/02/023
http://doi.org/10.1093/mnras/staa2150
http://doi.org/10.1093/mnras/staa2150


BIBLIOGRAPHY 107

Kaufmann, T., Mayer, L., Wadsley, J., Stadel, J., & Moore, B. 2007, MNRAS, 375, 53, doi: 10.

1111/j.1365-2966.2006.11314.x

Kaviraj, S. 2014, MNRAS, 437, L41, doi: 10.1093/mnrasl/slt136

Kennicutt, R. C. 1998a, Ann. Rev. Astron. Astrophys., 36, 189, doi: 10.1146/annurev.

astro.36.1.189

—. 1998b, ApJ, 498, 541, doi: 10.1086/305588

Kennicutt, R. C., & Evans, N. J. 2012, Ann. Rev. Astron. Astrophys., 50, 531, doi: 10.1146/

annurev-astro-081811-125610

Kiessling, A., Cacciato, M., Joachimi, B., et al. 2015, Space SCi. Rev., 193, 67, doi: 10.1007/

s11214-015-0203-6

Klypin, A., Valenzuela, O., Colín, P., & Quinn, T. 2009, MNRAS, 398, 1027, doi: 10.1111/

j.1365-2966.2009.15187.x

Klypin, A. A., Trujillo-Gomez, S., & Primack, J. 2011, ApJ, 740, 102, doi: 10.1088/

0004-637X/740/2/102

Lahav, O., Lilje, P. B., Primack, J. R., & Rees, M. J. 1991, MNRAS, 251, 128, doi: 10.1093/

mnras/251.1.128

Madau, P., & Dickinson, M. 2014, Ann. Rev. Astron. Astrophys., 52, 415, doi: 10.1146/

annurev-astro-081811-125615

Mangalam, M., & Kelty-Stephen, D. G. 2020, arXiv e-prints, arXiv:2009.00756, doi: 10.

48550/arXiv.2009.00756

McAlpine, S., Helly, J. C., Schaller, M., et al. 2016, Astronomy and Computing, 15, 72,

doi: 10.1016/j.ascom.2016.02.004

http://doi.org/10.1111/j.1365-2966.2006.11314.x
http://doi.org/10.1111/j.1365-2966.2006.11314.x
http://doi.org/10.1093/mnrasl/slt136
http://doi.org/10.1146/annurev.astro.36.1.189
http://doi.org/10.1146/annurev.astro.36.1.189
http://doi.org/10.1086/305588
http://doi.org/10.1146/annurev-astro-081811-125610
http://doi.org/10.1146/annurev-astro-081811-125610
http://doi.org/10.1007/s11214-015-0203-6
http://doi.org/10.1007/s11214-015-0203-6
http://doi.org/10.1111/j.1365-2966.2009.15187.x
http://doi.org/10.1111/j.1365-2966.2009.15187.x
http://doi.org/10.1088/0004-637X/740/2/102
http://doi.org/10.1088/0004-637X/740/2/102
http://doi.org/10.1093/mnras/251.1.128
http://doi.org/10.1093/mnras/251.1.128
http://doi.org/10.1146/annurev-astro-081811-125615
http://doi.org/10.1146/annurev-astro-081811-125615
http://doi.org/10.48550/arXiv.2009.00756
http://doi.org/10.48550/arXiv.2009.00756
http://doi.org/10.1016/j.ascom.2016.02.004


BIBLIOGRAPHY 108

McConnachie, A. W., Ibata, R., Martin, N., et al. 2018, ApJ, 868, 55, doi: 10.3847/

1538-4357/aae8e7

McKee, C. F., & Ostriker, E. C. 2007, Ann. Rev. Astron. Astrophys., 45, 565, doi: 10.1146/

annurev.astro.45.051806.110602

McKee, C. F., & Ostriker, J. P. 1977, ApJ, 218, 148, doi: 10.1086/155667

Mendel, J. T., Simard, L., Palmer, M., Ellison, S. L., & Patton, D. R. 2014, ApJS, 210, 3,

doi: 10.1088/0067-0049/210/1/3

Mihos, J. C., & Hernquist, L. 1996, ApJ, 464, 641, doi: 10.1086/177353

Minchev, I., Matijevic, G., Hogg, D. W., et al. 2019, MNRAS, 487, 3946, doi: 10.1093/

mnras/stz1239

Mo, H. J., Mao, S., & White, S. D. M. 1998, MNRAS, 295, 319, doi: 10.1046/j.

1365-8711.1998.01227.x

Moore, C. C. 2015, Proceedings of the National Academy of Science, 112, 1907, doi: 10.

1073/pnas.1421798112

Moster, B. P., Somerville, R. S., Maulbetsch, C., et al. 2010, ApJ, 710, 903, doi: 10.1088/

0004-637X/710/2/903

Muñoz, J. A., & Peeples, M. S. 2015, MNRAS, 448, 1430, doi: 10.1093/mnras/stv048

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563, doi: 10.1086/177173

Navarro, J. F., Hayashi, E., Power, C., et al. 2004, MNRAS, 349, 1039, doi: 10.1111/j.

1365-2966.2004.07586.x

Navarro, J. F., Ludlow, A., Springel, V., et al. 2010, MNRAS, 402, 21, doi: 10.1111/j.

1365-2966.2009.15878.x

http://doi.org/10.3847/1538-4357/aae8e7
http://doi.org/10.3847/1538-4357/aae8e7
http://doi.org/10.1146/annurev.astro.45.051806.110602
http://doi.org/10.1146/annurev.astro.45.051806.110602
http://doi.org/10.1086/155667
http://doi.org/10.1088/0067-0049/210/1/3
http://doi.org/10.1086/177353
http://doi.org/10.1093/mnras/stz1239
http://doi.org/10.1093/mnras/stz1239
http://doi.org/10.1046/j.1365-8711.1998.01227.x
http://doi.org/10.1046/j.1365-8711.1998.01227.x
http://doi.org/10.1073/pnas.1421798112
http://doi.org/10.1073/pnas.1421798112
http://doi.org/10.1088/0004-637X/710/2/903
http://doi.org/10.1088/0004-637X/710/2/903
http://doi.org/10.1093/mnras/stv048
http://doi.org/10.1086/177173
http://doi.org/10.1111/j.1365-2966.2004.07586.x
http://doi.org/10.1111/j.1365-2966.2004.07586.x
http://doi.org/10.1111/j.1365-2966.2009.15878.x
http://doi.org/10.1111/j.1365-2966.2009.15878.x


BIBLIOGRAPHY 109

Noeske, K. G., Weiner, B. J., Faber, S. M., et al. 2007, ApJL, 660, L43, doi: 10.1086/517926

Oppenheimer, B. D., Davé, R., Kereš, D., et al. 2010, MNRAS, 406, 2325, doi: 10.1111/j.

1365-2966.2010.16872.x

Patwardhan, A. 2004, arXiv e-prints, cond, doi: 10.48550/arXiv.cond-mat/0411176

Peebles, P. J. E. 2012, Ann. Rev. Astron. Astrophys., 50, 1, doi: 10.1146/

annurev-astro-081811-125526

Peebles, P. J. E., & Yu, J. T. 1970, ApJ, 162, 815, doi: 10.1086/150713

Press, W. H., & Schechter, P. 1974, ApJ, 187, 425, doi: 10.1086/152650

Querejeta, M., Eliche-Moral, M., Tapia, T., et al. 2015, Galaxies, 3, 202, doi: 10.3390/

galaxies3040202

Quinn, P. J., Hernquist, L., & Fullagar, D. P. 1993, ApJ, 403, 74, doi: 10.1086/172184

Rees, M. J., & Ostriker, J. P. 1977, MNRAS, 179, 541, doi: 10.1093/mnras/179.4.541

Robertson, B. E., Kravtsov, A. V., Gnedin, N. Y., Abel, T., & Rudd, D. H. 2010, MNRAS, 401,

2463, doi: 10.1111/j.1365-2966.2009.15823.x

Rubin, V. C., & Ford, W. Kent, J. 1970, ApJ, 159, 379, doi: 10.1086/150317

Ryden, B. 2016, Introduction to Cosmology (Cambridge, UK: Cambridge University Press)

Sadovskii, M. V. 2019, Statistical Physics, doi: 10.1515/9783110648485

Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 521, doi: 10.1093/mnras/

stu2058

Schmidt, M. 1959, ApJ, 129, 243, doi: 10.1086/146614

http://doi.org/10.1086/517926
http://doi.org/10.1111/j.1365-2966.2010.16872.x
http://doi.org/10.1111/j.1365-2966.2010.16872.x
http://doi.org/10.48550/arXiv.cond-mat/0411176
http://doi.org/10.1146/annurev-astro-081811-125526
http://doi.org/10.1146/annurev-astro-081811-125526
http://doi.org/10.1086/150713
http://doi.org/10.1086/152650
http://doi.org/10.3390/galaxies3040202
http://doi.org/10.3390/galaxies3040202
http://doi.org/10.1086/172184
http://doi.org/10.1093/mnras/179.4.541
http://doi.org/10.1111/j.1365-2966.2009.15823.x
http://doi.org/10.1086/150317
http://doi.org/10.1515/9783110648485
http://doi.org/10.1093/mnras/stu2058
http://doi.org/10.1093/mnras/stu2058
http://doi.org/10.1086/146614


BIBLIOGRAPHY 110

Schneider, P. 2015, Extragalactic Astronomy and Cosmology: An Introduction (Berlin, Ger-

many: Springer), doi: 10.1007/978-3-642-54083-7

Scholz-Díaz, L., Martín-Navarro, I., & Falcón-Barroso, J. 2023, MNRAS, 518, 6325, doi: 10.

1093/mnras/stac3422

Scoccimarro, R. 1998, MNRAS, 299, 1097, doi: 10.1046/j.1365-8711.1998.01845.

x

Seabold, S., Perktold, J., ChadFulton, et al. 2017, Statsmodels/Statsmodels: Version 0.8.0 Re-

lease, v0.8.0, Zenodo, Zenodo, doi: 10.5281/zenodo.275519

Simard, L., Mendel, J. T., Patton, D. R., Ellison, S. L., & McConnachie, A. W. 2011, ApJS, 196,

11, doi: 10.1088/0067-0049/196/1/11

Simpson, E. H. 1951, J. R. Stat. Soc. Ser. B, 13, 238

Somerville, R. S., & Davé, R. 2015, Ann. Rev. Astron. Astrophys., 53, 51, doi: 10.1146/

annurev-astro-082812-140951

Speagle, J. S., Steinhardt, C. L., Capak, P. L., & Silverman, J. D. 2014, ApJS, 214, 15, doi: 10.

1088/0067-0049/214/2/15

Spiechowicz, J., Łuczka, J., & Hänggi, P. 2016, Scientific Reports, 6, 30948, doi: 10.1038/

srep30948

Springel, V. 2005, MNRAS, 364, 1105, doi: 10.1111/j.1365-2966.2005.09655.x

Springel, V., & Hernquist, L. 2003, MNRAS, 339, 289, doi: 10.1046/j.1365-8711.

2003.06206.x

Springel, V., Di Matteo, T., & Hernquist, L. 2005a, ApJL, 620, L79, doi: 10.1086/428772

http://doi.org/10.1007/978-3-642-54083-7
http://doi.org/10.1093/mnras/stac3422
http://doi.org/10.1093/mnras/stac3422
http://doi.org/10.1046/j.1365-8711.1998.01845.x
http://doi.org/10.1046/j.1365-8711.1998.01845.x
http://doi.org/10.5281/zenodo.275519
http://doi.org/10.1088/0067-0049/196/1/11
http://doi.org/10.1146/annurev-astro-082812-140951
http://doi.org/10.1146/annurev-astro-082812-140951
http://doi.org/10.1088/0067-0049/214/2/15
http://doi.org/10.1088/0067-0049/214/2/15
http://doi.org/10.1038/srep30948
http://doi.org/10.1038/srep30948
http://doi.org/10.1111/j.1365-2966.2005.09655.x
http://doi.org/10.1046/j.1365-8711.2003.06206.x
http://doi.org/10.1046/j.1365-8711.2003.06206.x
http://doi.org/10.1086/428772


BIBLIOGRAPHY 111

Springel, V., White, S. D. M., Jenkins, A., et al. 2005b, Nature, 435, 629, doi: 10.1038/

nature03597

Steinmetz, M., & Mueller, E. 1993, arXiv e-prints, astro, doi: 10.48550/arXiv.

astro-ph/9309004

Stinson, G. S., Bailin, J., Couchman, H., et al. 2010, MNRAS, 408, 812, doi: 10.1111/j.

1365-2966.2010.17187.x

Stocke, J. T., Keeney, B. A., Danforth, C. W., et al. 2013, ApJ, 763, 148, doi: 10.1088/

0004-637X/763/2/148

Tacconi, L. J., Genzel, R., & Sternberg, A. 2020, Ann. Rev. Astron. Astrophys., 58, 157,

doi: 10.1146/annurev-astro-082812-141034

Taylor, J. E., & Navarro, J. F. 2001, ApJ, 563, 483, doi: 10.1086/324031

Thirumalai, D., Mountain, R. D., & Kirkpatrick, T. R. 1989, Phys. Rev. A., 39, 3563, doi: 10.

1103/PhysRevA.39.3563

Thornton, S. T., & Marion, J. B. 2004, Classical Dynamics of Particles and Systems (California,

USA: Brooks/Cole - Thomson Learning)

Toomre, A., & Toomre, J. 1972, ApJ, 178, 623, doi: 10.1086/151823

Villumsen, J. V. 1989, ApJS, 71, 407, doi: 10.1086/191380

Vogelsberger, M., Marinacci, F., Torrey, P., & Puchwein, E. 2020, Nature Reviews Physics, 2,

42, doi: 10.1038/s42254-019-0127-2

von Neumann, J. 1932, Proc. Nat. Acad. Sci. USA, 18, 70

Wang, E., & Lilly, S. J. 2020a, ApJ, 895, 25, doi: 10.3847/1538-4357/ab8b5e

http://doi.org/10.1038/nature03597
http://doi.org/10.1038/nature03597
http://doi.org/10.48550/arXiv.astro-ph/9309004
http://doi.org/10.48550/arXiv.astro-ph/9309004
http://doi.org/10.1111/j.1365-2966.2010.17187.x
http://doi.org/10.1111/j.1365-2966.2010.17187.x
http://doi.org/10.1088/0004-637X/763/2/148
http://doi.org/10.1088/0004-637X/763/2/148
http://doi.org/10.1146/annurev-astro-082812-141034
http://doi.org/10.1086/324031
http://doi.org/10.1103/PhysRevA.39.3563
http://doi.org/10.1103/PhysRevA.39.3563
http://doi.org/10.1086/151823
http://doi.org/10.1086/191380
http://doi.org/10.1038/s42254-019-0127-2
http://doi.org/10.3847/1538-4357/ab8b5e


BIBLIOGRAPHY 112

—. 2020b, ApJ, 892, 87, doi: 10.3847/1538-4357/ab7b7d

Wang, E., Lilly, S. J., Pezzulli, G., & Matthee, J. 2019, ApJ, 877, 132, doi: 10.3847/

1538-4357/ab1c5b

White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52, doi: 10.1086/170483

White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341, doi: 10.1093/mnras/183.3.341

Zavala, J., & Frenk, C. S. 2019, Galaxies, 7, 81, doi: 10.3390/galaxies7040081

http://doi.org/10.3847/1538-4357/ab7b7d
http://doi.org/10.3847/1538-4357/ab1c5b
http://doi.org/10.3847/1538-4357/ab1c5b
http://doi.org/10.1086/170483
http://doi.org/10.1093/mnras/183.3.341
http://doi.org/10.3390/galaxies7040081

	Introduction 
	Background
	Galaxy Structure and Evolution
	Star Formation in Galaxies

	Numerical Simulations
	Governing Principles

	Motivation

	Ergodicity 
	Partial Ergodicity

	Simulation Methodology 
	Simulation Package: GIZMO
	Meshless Finite Mass/Volume
	Code Units
	Particle Types

	Galaxy Models
	Initial Conditions
	Subhalos
	Hot Gas Halos


	Gravitational Softening
	Calibration
	Subhalo Cumulative Mass Function
	Subhalo Cumulative Number Density
	Velocity Anisotropy
	Star Formation and Density Profile


	Galaxy Samples 
	Kernel Density Estimation
	Derived Distributions

	Simulation Suites
	Physical Scenarios

	Results
	General Evolution
	Low-Mass
	High-Mass
	Ensemble Variances in Low-Mass and High-Mass Galaxies

	Determining Disk Star Formation in Runs with Subhalos
	Comparison to Observations
	Star-Forming Main Sequences
	Scenario A: No Substructure, Winds Disabled
	Scenario B: Substructure, Winds Disabled
	Scenario C: No Substructure, Winds Enabled
	Scenario D: Substructure, Winds Enabled

	Variability of Star Formation between Timescales
	Randomized Ages

	Ergodicity
	Partial Ergodicity
	Thirumalai-Mountain Metric Test for Ergodicity
	TM Metric for SFMS Deviations


	Discussion and Conclusions
	Ergodicity
	Partial Ergodicity

	Simulated vs Observed SFRs
	Hot Corona Gas
	Deviations from SFMS

	Conclusions
	Future Work
	Adding Mergers
	Cosmological Simulations



	Appendix: Additional Galaxy Images 
	Low-Mass Galaxies
	High-Mass Galaxies


