The role of feedback in shaping the structure of the interstellar medium

Show simple item record

dc.creator Walker, A. P.
dc.creator Gibson, Brad K.
dc.creator Pilkington, K.
dc.creator Brook, C. B.
dc.creator Dutta, P.
dc.creator Stanimirovic, S.
dc.creator Stinson, G. S.
dc.creator Bailin, J.
dc.date.accessioned 2018-04-10T19:54:39Z
dc.date.available 2018-04-10T19:54:39Z
dc.date.issued 2014-06
dc.identifier.issn 0035-8711
dc.identifier.uri http://library2.smu.ca/handle/01/27408
dc.description Publisher's Version/PDF
dc.description.abstract We present an analysis of the role of feedback in shaping the neutral hydrogen (H I) content of simulated disc galaxies. For our analysis, we have used two realizations of two separate Milky Way-like (&sim;L★) discs &ndash; one employing a conservative feedback scheme (McMaster Unbiased Galaxy Survey), the other significantly more energetic [Making Galaxies In a Cosmological Context (MaGICC)]. To quantify the impact of these schemes, we generate zeroth moment (surface density) maps of the inferred H I distribution; construct power spectra associated with the underlying structure of the simulated cold interstellar medium, in addition to their radial surface density and velocity dispersion profiles. Our results are compared with a parallel, self-consistent, analysis of empirical data from The H I Nearby Galaxy Survey (THINGS). Single power-law fits (P &prop; k<sup>&gamma;</sup> ) to the power spectra of the stronger feedback (MaGICC) runs (over spatial scales corresponding to &sim;0.5 to &sim;20 kpc) result in slopes consistent with those seen in the THINGS sample (&gamma; &sim; &minus;2.5). The weaker feedback (MUGS) runs exhibit shallower power-law slopes (&gamma; &sim; &minus;1.2). The power spectra of the MaGICC simulations are more consistent though with a two-component fit, with a flatter distribution of power on larger scales (i.e. &gamma; &sim; &minus;1.4 for scales in excess of &sim;2 kpc) and a steeper slope on scales below &sim;1 kpc (&gamma; &sim; &minus;5), qualitatively consistent with empirical claims, as well as our earlier work on dwarf discs. The radial H I surface density profiles of the MaGICC discs show a clear exponential behaviour, while those of the MUGS suite are essentially flat; both behaviours are encountered in nature, although the THINGS sample is more consistent with our stronger (MaGICC) feedback runs. en_CA
dc.description.provenance Submitted by Betty McEachern (betty.mceachern@smu.ca) on 2018-04-10T19:54:39Z No. of bitstreams: 1 Gibson_Brad_K_article_2014_d.pdf: 988304 bytes, checksum: b105e543de0e5e9c779bed4bf2d6ee05 (MD5) en
dc.description.provenance Made available in DSpace on 2018-04-10T19:54:39Z (GMT). No. of bitstreams: 1 Gibson_Brad_K_article_2014_d.pdf: 988304 bytes, checksum: b105e543de0e5e9c779bed4bf2d6ee05 (MD5) Previous issue date: 2014-03-03 en
dc.language.iso en en_CA
dc.publisher Oxford University Press en_CA
dc.relation.uri https://dx.doi.org/10.1093/mnras/stu419
dc.rights This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
dc.subject.lcsh Galaxies -- Evolution
dc.subject.lcsh Galaxies -- Formation
dc.subject.lcsh Spiral galaxies
dc.subject.lcsh Interstellar matter
dc.title The role of feedback in shaping the structure of the interstellar medium en_CA
dc.type Text en_CA
dcterms.bibliographicCitation Monthly Notices of the Royal Astronomical Society 441(1), 525-531. (2014) en_CA
 Find Full text

Files in this item


 

Copyright statement:

 
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
 
Published Version: https://dx.doi.org/10.1093/mnras/stu419
 
 

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account