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Parameter-free calculation of charge-changing cross sections at high energy
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Charge-changing cross sections at high energies are expected to provide useful information on nuclear charge
radii. No reliable theory to calculate the cross section has yet been available. We develop a formula using Glauber
and eikonal approximations and test its validity with recent new data on carbon isotopes measured at around
900A MeV. We first confirm that our theory reproduces the cross sections of 12,13,14C +12C consistently with the
known charge radii. Next we show that the cross sections of 12−19C on a proton target are all well reproduced
provided the role of neutrons is accounted for. We also discuss the energy dependence of the charge-changing
cross sections.
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A study of unstable nuclei is one of the fields that have
been promoted most intensively. Charge distribution or charge
radius, among others, is one of the fundamental quantities
to characterize the ground-state properties of nuclei. Electron
scattering measurement is ideal for probing the distribution
but so far not applicable to short-lived unstable nuclei. We
note, however, that the electron-ion scattering experiment will
be available in the near future, as planned in Refs. [1,2].
Isotope shift measurement allows us to precisely deduce the
charge (proton) radius for some limited unstable nuclei. The
measurement of the charge-changing cross section (CCCS)
newly appears as a potential means to extract the proton radius
since it has the great advantage that the cross section can be
measured for almost all nuclei by the same setup as the total
reaction or interaction cross section that plays a decisive role
in determining the nuclear matter radius [3]. In fact the CCCS
has recently been measured to get information on the proton
radii of light unstable nuclei [4–8].

A theoretical tool for extracting the matter radius from the
high-energy total reaction cross sections is well established
with the help of Glauber theory [9]. See Refs. [10,11]
for a useful application to determining both proton and
neutron radii. The reaction mechanism for the charge-changing
reaction (CCR) is, however, not well understood and energy-
dependent adjustments are introduced to analyze the CCCS
data [4–6,12], which makes it difficult to obtain proton radii
from the measurement. The purpose of this paper is to show
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that recent new CCCS data of carbon isotopes on both 12C
[13] and proton targets are all satisfactorily reproduced in
the framework of the Glauber and eikonal models. The role
of neutrons becomes evident for the proton target. This is
an important step toward constructing a method of analyzing
CCCSs with the use of no adjustable parameters.

The total reaction cross section can be calculated by

σR =
∫

db
(
1 − ∣∣〈0|ei(χp+χn)|0〉∣∣2)

, (1)

where b is a two-dimensional (2D) impact parameter vector
perpendicular to the beam (z) direction, |0〉 = |0P 0T 〉 is
a product of the projectile and target ground-state wave
functions, and, e.g., χp is a sum of the phase-shift functions
χpN between the projectile’s proton (p) and the target’s
nucleon (N ):

χp =
∑
i∈p

∑
j∈N

χpN (b + si − tj ). (2)

Here si (tj ) is the 2D coordinate, perpendicular to the z
direction, of the ith (j th) nucleon of the projectile (target)
from its center of mass.

We first derive a formula to calculate the CCCS (σcc)
following the derivation of Eq. (1) [14,15]. After the projectile-
target collision at b, the initial state changes to ei(χp+χn)|0〉.
We assume that the state of the projectile nucleus can be
represented by a product of the proton and neutron parts,
|�(p,a)

P �
(n,a′)
P 〉, where a and a′ specify the proton and neutron

states, respectively. The projectile ground state is |0P 〉 =
|�(p,0)

P �
(n,0)
P 〉. Any states with a �= 0 are assumed to emit at
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least one proton, leading to the CCR. The probability of the
CCR reads

Pcc(b) = 1 −
∑
a′,β

∣∣〈�(p,0)
P �

(n,a′)
P �

(β)
T

∣∣ei(χn+χp)|0〉∣∣2
, (3)

where β specifies the state of the target nucleus. With the use
of the closure relation∑

a′,β

∣∣�(n,a′)
P �

(β)
T

〉〈
�

(n,a′)
P �

(β)
T

∣∣ = 1 (4)

and the unitarity condition of the phase-shift function

(eiχnN )†eiχnN = 1, (5)

we obtain Pcc(b) as follows:

Pcc(b) = 1 − 〈0T |F (b,ξ )|0T 〉, (6)

with the projectile-proton “transparency function”

F (b,ξ ) = ∣∣〈�(p,0)
P

∣∣eiχp ∣∣�(p,0)
P

〉∣∣2
, (7)

where ξ stands for a set of all the coordinates of the target
nucleons. Note that the χn is present in Eq. (3) but finally
disappears in Eq. (6). Namely, only the interaction of the
projectile’s protons with the target nucleons leads to the CCR
but the projectile’s neutrons play no role. We call this process
“direct” in what follows. The σcc corresponding to the direct
process is given by

σ dir
cc =

∫
db P dir

cc (b). (8)

The matrix elements in Eqs. (1), (6), and (7) are usually
evaluated in the optical-limit approximation (OLA) [9,15,16]
that requires only the nuclear one-body densities. Within the
OLA, we obtain

P dir
cc (b) = 1 − exp

⎛
⎝−2

∑
N=p,n

∫∫
ds d t T

(p)
P (s)T (N)

T (t)

× Re �pN (b + s − t)

⎞
⎠, (9)

where, e.g., T (p)
P (s) is the thickness function of the projectile’s

proton density ρ
(p)
P (r), T

(p)
P (s) = ∫ ∞

−∞ dz ρ
(p)
P (r) with r =

(s,z). The NN profile function, �NN = 1 − eiχNN , is usually
expressed using the NN collision data at the incident energy
E as [17]

�NN (b) = 1 − iαNN

4πβNN

σ tot
NN exp

(
− b2

2βNN

)
. (10)

The values of αNN,βNN , and σ tot
NN are given in Ref. [18] for a

wide range of E. The zero-range approximation simplifies
�NN (b) to 1

2 (1 − iαNN )σ tot
NNδ(b), but note that it does not

reproduce the NN total elastic cross section. The σcc with
Eq. (9) is called σ free

cc in Ref. [12], where the zero-range
approximation is employed.

When the target density is well known, P dir
cc (b) depends

on only the projectile’s proton density. To test the validity
of Eqs. (8) and (9), we choose a 12C target whose density

TABLE I. Charge-changing cross sections, given in units of mb,
of 12,13,14C on a 12C target at E MeV. The projectile’s proton (root-
mean-square) radius rp is obtained from the charge radius of Ref. [21]
by taking into account the finite size effect of the nucleon as well as
the so-called Darwin-Foldy term. See, e.g., Ref. [22].

Projectile rp (fm) σ dir
cc σcc (expt.) E/A

12C 2.326 735 734 ± 6 [8] 943
735 733 ± 7 [13] 937

13C 2.321 732 726 ± 7 [13] 828
14C 2.369 743 731 ± 7 [13] 900

distribution is well known and take up the projectiles of
12,13,14C whose proton radii (rp) are known. Assuming the
harmonic-oscillator (HO) density distributions [19,20], we set
the oscillator parameters to reproduce rp. As compared in
Table I, the σ dir

cc values agree with the measured cross sections
quite well, which confirms the validity of our formulation.

With the increasing number of neutrons, it is likely that the
proton orbits of the projectile isotopes are deeply bound and
few states with a �= 0 may not lead to the CCR. If that is the
case, the σ dir

cc value calculated using Eq. (9) tends to be larger
than experiment.

Figure 1 displays σ dir
cc as well as σR of 12C +12C as a function

of E. Here σR is calculated in the nucleon-target formalism
in the Glauber model (NTG) [23,24], which performs slightly
better than OLA. Both the magnitude and energy dependence
of σR or the interaction cross section (σI ) are reproduced
very well. As for σ dir

cc , the calculation reasonably well
reproduces the measured cross sections [25]. The σcc data
at 300A–400A MeV are, however, very much scattered. More
accurate data are needed to examine the energy dependence of
σcc before introducing the E-dependent factor [4,5].
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FIG. 1. Total reaction (or interaction) and charge-changing cross
sections of 12C on a 12C target as a function of incident energy.
Calculations are performed with the HO densities that give rp =
rn = 2.326 fm. Results with the zero-range profile functions are also
drawn for comparison. References for the experimental data on σR

(open circle) and σI (open rectangle) are quoted in Ref. [24]. The
σcc data are taken from Ref. [8] for diamond, Ref. [25] for inverted
triangle, Ref. [26] for closed triangle, and Ref. [27] for open triangle.
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As Table I shows, the 14C +12C σcc is well reproduced
at 900A MeV. Therefore, the σ dir

cc value around 300A MeV
should be smaller than 743 mb, as expected from the energy
dependence of σ tot

pn and σ tot
pp . Our prediction is 661 mb, whereas

the experimental value at 287A MeV is 731 ± 5 mb [5], much
larger than that expected theoretically.

Next we examine the σcc by a proton target. The direct
process in this case turns out to underestimate the observed σcc.
We expect the projectile’s neutrons to contribute to the cross
sections. A most probable possibility is the following: the flux
of the target proton attenuates due to the interaction with the
projectile nucleus, a part of the lost proton flux is converted
to the neutron flux, and that neutron leads to the CCR. A
microscopic description of this ‘p-n exchange’ mechanism is
beyond the scope of this paper because we do not explicitly
include neutron channels to describe the CCR. We attempt
formulating this process called “indirect” within the eikonal
approximation. To make the argument conventional, we use the
inverse kinematics in which the (target) proton is impinging
on the (projectile) nucleus.

The proton wave function modified from the plane wave is
given by

�(r) = exp

(
ikz + 1

i�v

∫ z

−∞
dz′[V (p)

p (b,z′) + V (n)
p (b,z′)

])
,

(11)

where r = (b,z), v is the proton velocity, and V (N)
p is the proton

optical potential due to the protons (N = p) or the neutrons
(N = n) in the nucleus. Note that the eikonal approximation
enables us to obtain V (N)

p from 〈0P |eiχ
(N)
p |0P 〉 with χ (N)

p =∑
i∈N χNp(b + si) [9,14,15]. The σ dir

cc for the proton-nucleus
case is rewritten to a form of the so-called absorption cross
section [15]

σ dir
cc =

∫
db

∫ ∞

−∞
dzA(p)

p (b,z)D(p)
p (b, − ∞,z), (12)

where

A
(N)
p/n(b,z) = − 2

�v
ImV

(N)
p/n(b,z), (13)

and D stands for the attenuation of the flux

D
(N)
p/n(b,z1,z2) = exp

(
−

∫ z2

z1

dz′ A(N)
p/n(b,z′)

)
. (14)

In the first step of the indirect process, the proton impinging
from z = −∞ reaches z = z1, where the exchange occurs.
In the second step, the neutron proceeds to z = z2, keeping
both the trajectory and velocity of the incident proton and is
absorbed by the proton optical potential. Let Pn(b,z1) denote
the probability of the p-n exchange per unit length. This
exchange is considered the loss or disappearance of the proton

due to the optical potential:

Pn(b,z1) = Pabs(b,z1)
ρ

(n)
P (b,z1)

ρ
(p)
P (b,z1) + ρ

(n)
P (b,z1)

, (15)

where Pabs(b,z1) is the rate of the disappearance of the proton
at (b,z1) and the ratio of the densities stands for the probability
of finding the neutron. With the use of Eq. (11), Pabs(b,z1)
is obtained as Pabs(b,z1)δz1 ≈ |�(b,z1)|2 − |�(b,z1 + δz1)|2,
leading to

Pabs(b,z1) = [
A(n)

p (b,z1) + A(p)
p (b,z1)

]
×D(n)

p (b, − ∞,z1)D(p)
p (b, − ∞,z1), (16)

While the neutron proceeds to z2, the neutron probability is
reduced by the absorption of V (N)

n , resulting in

ρn(b,z1,z2) = Pn(b,z1)D(n)
n (b,z1,z2)D(p)

n (b,z1,z2). (17)

The σ indir
cc is obtained, similar to Eq. (12), as

σ indir
cc =

∫
db P indir

cc (b), (18)

with

P indir
cc (b) =

∫ ∞

−∞
dz1

∫ ∞

z1

dz2 ρn(b,z1,z2)A(p)
n (b,z2). (19)

The range b in which P indir
cc (b) is appreciable is confined by that

of P dir
cc (b) because of the trajectory assumption of the indirect

process.
The σcc values of carbon isotopes (A = 12–19) for a proton

target have been measured at the GSI fragment separator (FRS)
facility with secondary beams of about 900A MeV. The method
of the experiment is the same as the previously published
one [7,8,13]. A polyethylene target of 4.0 g/cm2 in thickness
was used and the σcc of a 12C target were subtracted. The cross
sections of the 12C target were measured at the same time
with the same experimental system using a graphite target of
4.0 g/cm2 in thickness [13]. The obtained σcc are listed in
Table II.

We display in Fig. 2 σcc for p + 12−19C. The proton and
neutron densities of carbon isotopes are given by the HO
distributions, and their oscillator parameters are determined
to reproduce both σcc [13] and σI [28] data on the 12C
target. Here σI is approximated by σR calculated in the
NTG approximation. The obtained proton, neutron, and matter
radii are listed in Table III. The rp values of 12,13,14C are in
reasonable agreement with the empirical values of Table I. The
difference is less than 3% for 14C. Though the rp values of the
heavier isotopes do not change much as the neutron number
increases, the rn values increase by about 0.3 fm at 15,16,19C.
This may indicate the effect of the 1s neutron orbit. The isotope
dependence of rn shows a pattern considerably different from

TABLE II. Charge-changing cross sections, given in units of mb, of carbon isotopes on a proton target at E MeV.

Projectile 12C 13C 14C 15C 16C 17C 18C 19C

σcc(expt.) 214 ± 7 227 ± 7 222 ± 9 224 ± 5 224 ± 4 222 ± 11 228 ± 5 229 ± 11
E/A 926 815 889 896 897 970 886 886
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FIG. 2. Charge-changing cross sections of carbon isotopes on a
proton target at about 900A MeV.

that of Refs. [24,29]. As seen in Fig. 2, our theory satisfactorily
reproduces the measured σcc. The magnitude of σ indir

cc increases
with the neutron number, ranging from 30 to 50 mb, which is
on the order of the cross section missed by the direct process.
The rp and rn values of Table III, albeit extracted based on
the HO density distributions, are considered reasonable in
that they simultaneously reproduce all the σI and σcc data
on both 12C and proton targets. Higher-order processes such
as p → n → p are expected to make a negligible contribution
at high incident energy.

The energy dependence of σcc for a proton target is
of considerable importance to understanding the interstellar
production of secondary fragments during cosmic-ray propa-
gation [30]. Figure 3(a) exhibits the p + 12C σcc as a function
of energy. The energy dependence of σ dir

cc on a proton target
is basically determined by that of σ tot

pp . The indirect process is,
however, influenced by σ tot

pn as well and its energy dependence
becomes important. For example, σ tot

pn is slightly smaller than
σ tot

pp at E > 600 MeV but becomes larger than σ tot
pp below that

energy, e.g., 2.5 times larger at E = 100 MeV. The sum of σ dir
cc

and σ indir
cc reasonably well reproduces the energy dependence

of the σcc, especially the present high-energy data and the
low-energy data of Ref. [26].

The magnitude of σ dir
cc on a proton target reflects the proton

distribution of the projectile nucleus. However, the magnitude
of σ indir

cc depends on the neutron distribution as well. The ratio
of both contributions alters with increasing neutron numbers
of isotopes. Figure 3(b) exhibits the energy dependence of both
contributions to p + 19C σcc. A comparison between p + 12C
and p + 19C cases indicates that the σ dir

cc values change little

TABLE III. Proton, neutron, and matter radii, rp , rn, and rm, of
carbon isotopes determined from σcc [13] and σI [28] data on a 12C
target.

Isotope 12C 13C 14C 15C 16C 17C 18C 19C

rp (fm) 2.32 2.30 2.31 2.37 2.40 2.42 2.39 2.40
rn (fm) 2.32 2.34 2.34 2.64 2.93 2.93 3.07 3.46
rm (fm) 2.32 2.32 2.33 2.54 2.74 2.76 2.86 3.16
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FIG. 3. Energy dependence of charge-changing cross sections of
(a) 12C and (b) 19C on a proton target. The data are taken from
Ref. [25] for open inverted triangles and from Ref. [26] for closed
triangles.

but the indirect process gives considerably larger contribution
in the p + 19C CCR. A measurement of σcc as a function of
energy will be important for both assessing the validity of our
CCR model and extracting information on the neutron density
of 19C.

Figure 4 compares the reaction probabilities of 12,19C at
1000A and 100A MeV. Because the rp values of both nuclei
are almost the same, their direct probabilities change only
little. The difference in the magnitude of P dir

cc at 1000A and
100A MeV is due to the energy dependence of σ tot

pp . On the
other hand, P indir

cc shows interesting behavior. Since the rn value
of 19C is by about 1 fm larger than that of 12C, its probability
P indir

cc extends to larger b values. The magnitude of P indir
cc is

controlled by the p-n interaction. The σ tot
pn value at 100 MeV

is two times larger than that at 1000 MeV, which makes the
indirect process contribute appreciably to the σcc. As already
noted, however, P indir

cc of 19C even at 100A MeV does not
exceed the range of its P dir

cc .
To conclude, we have developed a method of calculating

charge-changing cross sections in order to probe charge
distributions. We have compared our calculations with recent
new high-energy data measured at the FRS facility of GSI.
With the input of the known proton radii for 12,13,14C, we
have confirmed that the direct process based on the Glauber
theory fairly well reproduces the cross sections on a 12C
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FIG. 4. Impact-parameter dependence of the direct and indirect
charge-changing probabilities for 12C and 19C on a proton target at
(a) 1000A and (b) 100A MeV.
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target. We find that the charge-changing cross sections of
12−19C on a proton target are all underestimated by the direct
process alone. The indirect process in which the neutrons
participate in the charge-changing reaction is formulated in
the eikonal approximation. This parameter-free model has
succeeded in reproducing the new data. As a future study, it

will be interesting to apply the theory to charge-changing cross
sections for other projectiles with different incident energies.
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riuchi, F. Ameil, J. Atkinson, Y. Ayyad, D. Cortina-Gil, I.
Dillmann, A. Evdokimov, F. Farinon, H. Geissel, G. Guastalla,
R. Janik, M. Kimura, R. Knoebel, J. Kurcewicz, Yu. A.
Litvinov, M. Marta, M. Mostazo, I. Mukha, T. Neff, C.
Nociforo, H. J. Ong, S. Pietri, A. Prochazka, C. Scheiden-
berger, B. Sitar, Y. Suzuki, M. Takechi, J. Tanaka, J. Var-
gas, J. S. Winfield, and H. Weick, Prog. Theor. Exp. Phys.
2014, 101D02 (2014).

[9] R. J. Glauber, Lectures in Theoretical Physics, edited by W. E.
Brittin and L. G. Dunham (Interscience, New York, 1959), Vol.
1, p. 315.

[10] W. Horiuchi, Y. Suzuki, and T. Inakura, Phys. Rev. C 89,
011601(R) (2014).

[11] W. Horiuchi, S. Hatakeyama, S. Ebata, and Y. Suzuki, Phys.
Rev. C 93, 044611 (2016).

[12] A. Bhagwat and Y. K. Gambhir, Phys. Rev. C 69, 014315
(2004).

[13] R. Kanungo et al. (unpublished).
[14] K. Yabana, Y. Ogawa, and Y. Suzuki, Nucl. Phys. A 539, 295

(1992).
[15] Y. Suzuki, R. G. Lovas, K. Yabana, and K. Varga, Structure and

Reactions of Exotic Nuclei (Taylor & Francis, London, 2003).
[16] P. J. Karol, Phys. Rev. C 11, 1203 (1975).
[17] L. Ray, Phys. Rev. C 20, 1857 (1979).
[18] B. Abu-Ibrahim, W. Horiuchi, A. Kohama, and Y. Suzuki, Phys.

Rev. C 77, 034607 (2008).
[19] H. De Vries, C. W. De Jager, and C. De Vries, At. Data Nucl.

Data Tables 36, 495 (1987).
[20] B. Abu-Ibrahim, S. Iwasaki, W. Horiuchi, A. Kohama, and

Y. Suzuki, J. Phys. Soc. Jpn. 78, 044201 (2009).
[21] I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69

(2013).
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