Signal transduction pathway activation in RAW 264.7 murine macrophages exposed to *Eurotium amstelodami* purified toxins and β (1, 3) D-glucan

by

Courtney Robbins

A thesis submitted to Saint Mary's University, Halifax, Nova Scotia, in partial fulfillment of the requirements for the degree of Masters of Science in Applied Science

April 2010, Halifax, Nova Scotia

© Courtney Robbins 2010

Examining Committee:

Approved:	Dr. Jean Marshall, External Examiner Department of Microbiology & Immunology Dalhousie University
Approved:	Dr. Thomas Rand, Senior Supervisor Department of Biology
Approved:	Dr. Ron Russell, Supervisory Committee Member Department of Biology
Approved:	Dr. Adam Piorko, Supervisory Committee Member Department of Chemistry
Approved:	Dr. Genlou Sun, Program Representative
Approved:	Dr. Zhongmin Dong, Graduate Studies Representative

Library and Archives Canada

Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque et Archives Canada

Direction du Patrimoine de l'édition

395, rue Wellington Ottawa ON K1A 0N4 Canada

> Your file Votre référence ISBN: 978-0-494-64858-2 Our file Notre référence ISBN: 978-0-494-64858-2

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Canada

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manguant.

Certification

Name:Courtney RobbinsDegree:Master of Science in Applied ScienceTitle of Thesis:Signal transduction pathway activation in RAW 264.7 murine
macrophages exposed to *Eurotium amstelodami* purified toxins
and β (1, 3) D-glucan

Examining Committee:

Dr. Zhongmin Dong, Graduate Studies Representative

Dr. Genlou Sun, Program Representative

Dr. Jean Marshall, External Examiner Dalhousie University

Dr. Thomas Rand, Supervisor

Dr. Adam Piorko, Supervisory Committee

Dr. Ron Russell, Supervisory Committee

Signal transduction pathway activation in RAW 264.7 murine macrophages exposed to *Eurotium amstelodami* purified toxins and β (1, 3) D-glucan

Courtney Robbins

Submitted 2010

Abstract

Mold growth in buildings is known to be associated with both allergenic and nonallergenic effects on population health. The mechanisms by which this process occurs, however, are not well understood. The objectives of this study are as follows: 1) Identify which transduction pathways are activated in RAW 264.7 cells following mycotoxin and glucan exposure, 2) Determine if there is time- and/or dose- dependency, and 3) Identify any interactions between mycotoxin and glucan. Molecular techniques will be implemented to accomplish these objectives. Results have identified which transduction pathways are activated following mycotoxin and glucan exposure. Generally, these pathways are up-regulated at 1h post exposure (PE) to Neoechinulin A and B. However, for glucan exposed AMs, the trend seems to be down-regulation after 30m and 1h PE and up-regulation after 2h PE. Additionally, this study provides support for both synergistic and antagonistic interactions between Neoechinulin A and glucan.

Acknowledgements

Several people have been instrumental in allowing this project to be completed. I would like to acknowledge the advice and guidance of my supervisor, Dr. Thomas Rand. I also thank the members of my graduate committee for their guidance and suggestions, Dr. Ron Russell and Dr. Adam Piorko. I would also like to acknowledge my external examiner, Dr. Jean Marshall. I would also like to acknowledge the input of Dr. David Miller. I would like to take the time to thank the following people for all of their help throughout this project; Dr. Susan Meek, Jillian DiPenta, Michael Sun, Stanley King and Dr. Desmond Pink. This work was supported by an NSERC grant administered to T. G. Rand.

TABLE OF CONTENTS

CERTIFICATION	ii	
ABSTRACT	iii	
ACKNOWLEDGEMENTS	iv	
TABLE OF CONTENTS	v	
LIST OF TABLES	viii	
LIST OF FIGURES	ix	
CHAPTER 1	1	
1.1 GENERAL INTRODUCTION		
1.2 Introduction to fungi	1	
1.3 Eurotium amstelodami and neoechinulins	3	
1.4 Immune responses to fungi	3	
1.5 ß-glucans and Dectin-1	6	
1.6 Model System	9	
1.7 Overall Purpose	9	
CHAPTER 2		
2.1 INTRODUCTION		
2.2 MATERIALS AND METHODS		
2.2.1 Toxins	12	
2.2.2 Cell Culture	12	

v

2.2.3 Experimental Design	13	
2.2.4 Cell Viability	13	
2.2.5 RNA Extraction	14	
2.2.6 Reverse Transcrption PCR	14	
2.2.7 Real-time PCR	15	
2.2.8 Statistical Analysis	. 17	
2.3 RESULTS		
2.3.1 Transduction pathway screening experiment	17	
2.3.2 Dose dependant experiments	18	
2.3.4 Time dependant experiments	22	
2.3.5 Cytotoxicity experiment	. 23	
2.4 DISCUSSION		
CHAPTER 3		
3.1 INTRODUCTION		
3.2 MATERIALS AND METHODS		
3.2.1 Toxins	33	
3.2.2 Cell Culture	33	
3.2.3 Experimental Design	34	
3.2.4 RNA Extraction	34	
3.2.5 Reverse Transcription PCR	35	
3.2.6 Real-time PCR	35	
3.2.7 Statistical Analysis	36	

3.3 RESULTS

3.3.1 Neoechinulin A + β (1,3) D-glucan vs. Neoechinulin A or β (1,3) D-glucan 36 **3.4 DISCUSSION** 38 **CHAPTER 4** 40 **4.1 GENERAL CONCLUSIONS** 39 **5.0 REFERENCES** 42 APPENDIX I -- ANOVA Tables Neo A APPENDIX II - ANOVA Tables Neo B APPENDIX III - ANOVA Tables Glucan APPENDIX IV - ANOVA Tables Neo A + Glucan APPENDIX V - ANOVA Tables Neo A Dose Dependence APPENDIX VI - ANOVA Tables Neo B Dose Dependence

36

APPENDIX VII – ANOVA Tables Glucan Dose Dependence

LIST OF TABLES

Table 1. Description of transduction pathway focused genes and housekeeping genes

Table 2. Genes of interest with their corresponding forward and reverse primer sequences

Table 3. Significantly regulated genes in AMs after exposure to Neoechinulin A & B at 10⁻⁸M for 2h: Transduction Pathway Screening Results

Table 4. qPCR Reaction Parameters

Table 5. Summary table for gene regulation changes

LIST OF FIGURES

Figure 1. Structure of Neoechinulin A

Figure 2. Structure of Neoechinulin B

Figure 3. Summary of results from Transduction Pathway Screening Experiment. Heat map showing levels of gene expression in RAW 264.7 cells exposed to 10^{-8} M neoechinulin A and B at 2h PE.

Figure 4 a-i. Dose response of Bmp2 after exposure to Neoechinulin A & B and β (1, 3) D glucan

Figure 5 a-i. Dose response of Hsbp1 after exposure to Neoechinulin A & B and β (1, 3) D glucan

Figure 6 a-i. Dose response of Icam1 after exposure to Neoechinulin A & B and β (1, 3) D glucan

Figure 7 a-i. Dose response of Vegfa after exposure to Neoechinulin A & B and β (1, 3) D glucan

Figure 8 a-i. Dose response of Cdknlb after exposure to Neoechinulin A & B and β (1, 3) D glucan

Figure 9 a-i. Dose response of Cd5 after exposure to Neoechinulin A & B and β (1, 3) D glucan

Figure 10 a-i. Dose response of Dectin-1 after exposure to Neoechinulin A & B and β (1, 3) D glucan

Figure 11 a-b. Temporal patterns of gene expression in RAW 264.7 murine macrophages

Figure 12. Temporal patterns of gene expression in RAW 264.7 murine macrophages exposed to β (1, 3) D glucan

Figure 13. Assessment of Neoechinulin A & B and β (1, 3) D glucan cytotoxicity by MTT

ix

Figure 14. Gene expression changes in AMs after simultaneous exposure to Neoechinulin A and β (1, 3) D-glucan simultaneously at concentrations of 10⁻⁹M for 30m, 1h and 2h exposures compared to Neoechinulin A and β (1, 3) D-glucan alone.

Figure 15. Gene expression changes in AMs after simultaneous exposure to Neoechinulin A and β (1, 3) D-glucan simultaneously at concentrations of 10⁻¹⁰M for 30m, 1h and 2h exposures compared to Neoechinulin A and β (1, 3) D-glucan alone.

Chapter 1

1.1 General Introduction

1.2 Introduction to Fungi

Fungi are common in both outdoor and indoor environments. In outdoor air, mold exposure has been linked to respiratory health problems as far back as 400 BC and continues to be recognized to date (Dales *et al.*, 1991; Brunekreef *et al.*, 1992; Spengler *et al.*, 1994; Garrett *et al.*, 1998; Lander *et al.*, 2001; Pinto *et al.*, 2002). Exposure to fungi in outdoor environments has been linked to asthma and allergy. In North America alone, about 10% of the population is allergic to *Cladosporium*, the most commonly encountered fungal genus in outdoor air, and dominated by *C. cladosporioides* and *C. herbarum*. Asthma onset caused by fungal exposures also represents 8% of all hospital emergency admissions (NAS, 2000).

Fungi are also found in indoor air. In healthy, dry buildings, the species composition of fungi found indoors is similar to that encountered outdoors. However, in damp buildings the composition of fungal species is distinctly different from that encountered outdoors. In 15-20% of buildings surveyed in Atlantic Canada some degree of water damage, which contributes to fungal growth has been reported (Rand, 1999). Additional research has shown that 20-25% of homes in Atlantic Canada have dampness problems, which contributes to mold growth. Other areas of Canada and Northern temperate areas have also shown comparable results (Murtoniemi, 2003). This is an important finding as Canadians have been shown to spend almost 90% of their time indoors (Leech *et al.*, 1997).

In damp buildings, many of the same fungi species that are found outdoors are recovered indoors as well, for example, *Cladosporium* spp. (Rand, 1999). However, the most commonly encountered fungi inside damp buildings are anamorphic, soil-dwelling Ascomycetes such as Aspergillus spp., Penicillium spp. such as P. aurantiogriseum, P. brevicompactum, P. chrysogenum, P. crustosum, P. viridicatum, and a variety of other species such as Eurotium herbarorium, Eurotium amstelodami Paecilomyces variotii, and Stachybotrys chartarum (Rand, 2005; Slack et al., 2009), which are mostly toxigenic. Indoor inhalation exposure to these types of fungi is recognized as a contributing factor to many health problems, including childhood asthma and allergy. However, effects associated with indoor fungi differ from those associated with allergy and asthma (NAS, 2004). These effects have been related to lower respiratory symptoms such as hemoptosis and pulmonary hemosiderosis (Dearborn et al., 1999) in environments where individuals are exposed to high spore loads. However, other symptoms have been reported; wheeze, cough and headaches (Dales et al., 1991). It is thought that the variety of symptoms are linked to exposure to not only fungi that are allergenic but also toxigenic.

The majority of fungal spores are found in settled dust (Ferro *et al.*, 2004). Microscopy has revealed that dust contains a mixture of organic particles such as pollen, plant material, fungal spores, textile fibers, skin cells, arthropod pieces, insulation fibers, and carpet backing and inorganic material such as silica (Rand, 2007). Fungal composition in dust can comprise up to 10^6 to 10^7 spores/g wt of dust in damp buildings (Rand, 2007). Surprisingly, over 60 % of this fungal material in dust is respirable. Ultra fine fungal fragments are within the range of 2.5 um and less than 1.0um. In humans,

respirable particles are defined as anything equal to or smaller than 5.0 μ m in diameter. There are few quantitative data on the amount of toxins in spores. However, it has been reported that the concentrations of mycotoxins in spores and spore fragments are in the range of $10^{-4} - 10^{-5}$ M (Wicklow and Shotwell, 1983; Sorenson et al., 1987; Miller, 1992).

1.3 Eurotium amstelodami and neoechinulins

Eurotium amstelodami is a soil dwelling, xerophilic (dry loving) species that is most frequently recovered from tropical and subtropical regions worldwide. In these regions, the species is most frequently reported from cultivated soil and a high number of isolates have been reported from stored and/or decaying grains, nuts and dried fruit samples. Is is not known to be pathogenic, although isolates have been recovered from the digestive tract of the honey bee (*Apis mellifica*). Physiological, developmental and cultural characteristics of this species have been the subject of a review by Domsch *et al.* (1993) and for additional information; the reader is referred to this reference. In North America, *Eurotium amstelodami* is commonly found on mold damaged, gypsum wallboard, manufactured wood, ceiling tiles, insulation, and textiles that have been damp or subject to periodic condensation (Flannigan and Miller, 2001; Miller *et al.*, 2008). *Eurotium amstelodami* is also known to produce mycotoxins. Neoechinulin A & B and epiheveadride have been identified as major secondary metabolites of this filamentous fungus (Slack *et al.*, 2009).

1.4 Immune responses to fungi

Animal studies have clearly shown that exposure to these toxic spores stimulate inflammatory lung responses, exhibited as molecular, biochemical, micro-anatomical, anatomical and pathophysiological changes (Nikulin *et al.*, 1997; Rao *et al.*, 2000, 2004;

Flemming, 2003; Miller et al., 2003; Rand et al., 2005; Rand et al., 2006). Present in the fungal spore wall are compounds called mycotoxins. Additional experiments have been conducted with purified toxins to determine its effects on the inflammation process. In a study conducted by Vanderbilt et al. (2003), freshly isolated alveolar type II cells (ATIIs) were found to express certain chemokines, especially the CXC family of proinflammatory chemokines following lung injury. Additionally, it was found that ATIIs as well as interstitial fibroblasts were highly sensitive to pure mycotoxins isolated from Penicillium chrysogenum and Stachybotrys chartarum showing differential up-regulated surfactant protein and inflammatory gene expression at toxin concentrations in the low nM range (Robbins, 2007). Robbins (2007) also showed distinct gene expression differences in ATIIs exposed to both atranones A and C. This was a very interesting finding as these two mycotoxins differ only by the presence/absence of a double bond at C12. This type of differential response was also reported by Rand et al. (2006) who exposed mice to both atranones A and C resulting in significant differential protein expression patterns in the bronchioalveolar lavage fluid (BALF). A similar study that exposed primary alveolar macrophages (AMs) to pure toxins isolated from *Eurotium* herbariorum amstelodami, Eurotium Aspergillus versicolor and Penicillium brevicompactum also showed differential up- and down- regulation of inflammatory genes, which was both toxin and time- dependent (DiPenta, 2008). Another interesting finding of the DiPenta (2008) study was differential gene expression patterns in AMs following exposure to neoechinulin A and B. These two mycotoxins also differ only by the presence/absence of a double bond at C14. Both in vitro and in vivo studies have shown that exposure to either pure or spore sequestered mycotoxins leads to depressed

alveolar macrophage (AM) activity and an increased inflammatory response (Sorenson *et al.*, 1987; Plascencia and Rosenstein, 1990; Routsalainen *et al.*, 1998).

With respect to signal transduction pathway activation after immune responses, some researchers have predicted that the cell responses to mycotoxins will follow the cell-stress activated p38 and/or Jun N-terminal Kinase (JNK) pathways (Raingeaud *et al.*, 1995; Yang *et al.*, 2000). When AMs were exposed to *Stachybotrys chartarum* purified toxins (trichothecenes) the mitogen-activated protein kinase (MAPK) pathway was activated via the mechanism known as the ribotoxic stress response (Pestka *et al.*, 2004). Wang and Yadav (2007) hypothesized that the *Stachybotrys chartarum* toxins induce multiple signaling pathways in AMs, including MAPK pathways and death receptor mediated pathways, and other cross-talk pathways. From these studies, it is clear that mycotoxins induce multiple signaling pathways.

Interactions between mycotoxins, fungal and bacterial spores on cell immune responses have been studied. Studies show synergistic, antagonistic and additive toxicity effects after simultaneous exposures. One study has shown that combinations of *Stachybotrys chartarum* spores with the spores of *Streptomyces californicus* had a clear synergistic effect on the production of an inflammatory mediator (cytokine) in mouse macrophages (Huttunen et al., 2004). Another study showed that after exposure to the spores of co-cultivated *S. californicus* and *S. chartarum* there was a significant influence on the regulation of cell cycle arrest compared to either spore alone (Pettinen et al., 2005). Other studies examining mixtures of mycotoxins also found combination effects that were stronger than one mycotoxin alone (Thuvander et al., 1999; Tammer et al.,

2007). Tammer et al. (2007) applied an established model for immunotoxic studies using stimulated human peripheral blood mononuclear cells (PBMC) and showed that the effects on cytokine production of mixtures of mycotoxins was stronger than the effects caused by the toxins applied singly. A different study, however, showed no synergistic effects, but rather, additive toxicity and antagonistic effects (Thuvander et al., 1999). Human lymphocytes were exposed to a combination of nivalenol and T-2 toxin which resulted in additive toxicity. Interestingly, when T-2 toxin was combined with deoxynivalenol the result was an inhibition of the proliferative response that was significantly lower than the individual toxins which showed an antagonistic action.

<u>1.5 β -glucans and Dectin-1</u>

Fungal spore walls, in addition to containing allergens and toxins, are also composed of sugars such as beta (β)-glucans. β -Glucans are found in higher plants, some bacteria, algae, and fungi (Reid *et al.*, 2004; Dalmo & Bøgwalg, 2008; Harada & Ohno, 2008). β -glucans are a major constituent of the fungal spore cell wall to which they provide mechanical strength (Stone and Clarke 1992) via their glucose polymer backbone of β (1, 3) linked β -D-glucopyranosyl units with β (1, 6) linked side chains of various arrangements (Shematek *et al.*, 1980; Duffus *et al.*, 1982; Williams *et al.*, 1997; Ormstad *et al.*, 2000; Harada & Ohno, 2008). β (1, 3) glucans are considered to be potent inflammatory mediators due to their linear structure (Young *et al.*, 1998).

Levels of β (1, 3) D-glucan have been reported in building environments in Sweden and can range from 0.1 ng/m³ in office buildings to 106 ng/m³ in houses in which mold was evident (Rylander *et al.*, 1992; Rylander *et al.*, 1994). In a separate study, an average level of 15.3 ng/m³ of β (1, 3) glucan was recorded in schools that had

reports of mold damage, compared to only 2.9 ng/m³ of β (1, 3) glucan recorded in control schools (Rylander *et al.*, 1998). It is important to note that these ranges could apply to other regions that have a similar climate as Sweden (Ormstad *et al.*, 2000). In urban homes in Ottawa, Miller *et al.* (2007) reported levels of 1.30 to 1.46 ng/m³ throughout various parts of the home. The concentrations of β (1, 3) glucan were found to vary from area to area. It is highly dependent on environmental factors in the area as well as which fungal species are present.

Most research performed on the pulmonary effects of β (1, 3) glucans has been conducted using zymosan and curdlan as models. Zymosan is a glucan derived from yeast and is a mixture composed of linear β (1, 3) glucan and a more complex β (1, 6) glucan (both present in a 1:1 ratio), mannan, proteins, chitin, and glycolipids (Brown *et al.*, 2002; Kataoka *et al.*, 2002; Dalmo & Bøgwalg, 2008). Curdlan is a pure linear type of β (1, 3) glucan produced by bacterial species belonging to the genera *Alcaligenes* and *Agrobacterium* (Lee, 2005). In a study by Kataoka *et al.* (2002), various β glucans were screened for their potential to activate the NF-kB pathway in RAW 264.7 cells. The glucans screened by this study included both linear and branched forms of β (1, 3) glucan. The results obtained from this study indicate that the linear β (1, 3) glucan curdlan exhibits significant cell-stimulating activities, and that the activities of β (1, 3) glucans are dependent on their lengths and conformations.

In vitro studies, using AMs have shown that cells exposed to β glucan produce various inflammatory cytokines, in particular TNF (Adachi *et al.*, 1997). Young *et al.* (2001) showed that intratracheal instillation of β (1, 3) glucan (zymosan A) induced pulmonary inflammation in rats. They observed a variety of pulmonary changes such as

increases in respiration, and infiltration of polymorphonucleocytes into the airspace, both of which were dose-dependent. An *in vivo* study by Fogelmark *et al.* (1997) showed that guinea pigs exposed to β (1, 3) glucan had increased numbers of eosinophils in their airways. Interestingly, the eosinophil numbers found after β (1, 3) glucan exposure were decreased by simultaneous exposure to endotoxin (LPS). This finding suggests that endotoxin and β (1, 3) glucan activate different inflammatory mechanisms when inhaled.

Dectin-1 has been identified as the major β (1, 3) glucan receptor and is a small, type II transmembrane receptor (Brown and Gordon, 2001) and is classed as a type-C lectin, with a carbohydrate recognition domain, a short stalk, and a cytoplasmic tail possessing an immunoreceptor tyrosine-base motif (Weis *et al.*, 1998; Ariizumi *et al.*, 2000; Brown and Gordon, 2001). In humans, dectin-1 is approximately 70% identical to the mouse receptor at the amino acid level and both have similar structures and responses (Willment *et al.*, 2001). This receptor has been shown to recognize the β -glucans in zymosan, *Saccharomyces cerevisiae*, and heat-killed *Candida albicans* (Brown and Gordon, 2001). Dectin-1 expression on macrophages, neutrophils, monocytes and dendritic cells has been demonstrated (Brown *et al.*, 2002; Brown *et al.*, 2003; Willment *et al.*, 2003). Dectin-1 has an association with toll-like receptor 2 (TRL2) for initiating the immune response in alveolar type II cells exposed to zymosan. Dectin-1 is responsible for the reception of β -glucan while the TLR2 binds to an indistinct component of the yeast cell wall (Gantner *et al.*, 2003; Willment *et al.*, 2003).

1.6 Model System

Alveolar macrophages (AMs) are vital to lung immune responses against both infectious agents such as bacteria and certain fungi and also to non-infectious substances such as mycotoxins (Liu et al., 2002). AMs have been found to play a crucial role in phagocytosis of foreign particles, production of mediators of cellular immunity, and regulation of T-lymphocyte activity (Gerberick et al., 1984; Rossi et al., 1986). Gregory et al. (2004) showed that alveolar macrophages respond to mycotoxins. Using immunochemistry techniques, localization of satratoxin H was shown in walls of S. chartarum spores, its diffusion into inflamed mouse lung tissue surrounding spores, and incorporation of the mycotoxin into AM lysosomes. Later studies revealed AM recruitment in lungs of animals exposed to S. chartarum spores (Yike et al., 2007). Both in vitro and in vivo studies have shown that exposure to either pure or spore sequestered mycotoxins leads to depressed AM activity and an increased inflammatory response (Sorenson et al., 1987; Plasencia and Rosenstein, 1990). Other studies showed that fungal metabolites or toxins may also affect the function of AMs (Sakurai et al., 1997; Ortiz et al., 1998). Therefore, changes of any of the molecular features leading to biochemical changes of AMs due to toxin exposure could lead to pulmonary and/or systemic damage (Jakab et al., 1994).

<u>1.7 Overall Purpose</u>

The overall purpose of this study is to provide insight into the molecular mechanisms inducing inflammatory responses in AMs. The objectives of this study are as follows: 1) Identify which transduction pathways are activated in RAW 264.7 murine macrophages (AMs) following mycotoxin and glucan exposure, 2) determine if there is

time- and/or dose- dependency, and 3) identify any interactions between mycotoxin and glucan. Chapter 2 deals with which transduction pathways are activated in AMs upon mycotoxin and glucan exposure, any dose- and/or time-dependent patterns with this activation, and cytotoxicity of the compounds tested. Chapter 3 focuses on the outcome of any interactions between mycotoxins and glucans.

It is hypothesized that neoechinulin A, B and β (1, 3) D-glucan will activate signal transduction pathways in AMs; that this activation will show differential patterns of expression; that it will show time and dose-dependency; and that simultaneous exposure to both neoechinulin A and β (1, 3) D-glucan will elicit a synergistic response.

<u>Chapter 2</u>– Dose and time dependent responses in AM signal transduction pathways after exposure to neoechinulins A & B and β (1, 3) D-glucan.

2.1 Introduction

Mold growth in building environments is associated with both allergenic and nonallergenic effects on population health (NAS, 2004; Health Canada, 2004; WHO, 2004). Species found growing indoors comprise a small but dominant proportion of fungi that produce mycotoxins (Nielsen *et al.*, 1998; Jarvis, 2002; Nieminen *et al.*, 2002). Most species of fungi that are found indoors produce spores that contain relatively high concentrations of mycotoxins, but also contain species-specific allergens and proteases bound by a cell wall made of β (1, 3) D-glucan (Rand, 2007).

Eurotium amstelodami is commonly found in indoor environments that suffer from water damage (Flannigan and Miller, 2001; Miller *et al.*, 2008). Neoechinulin A &

B have been identified as major secondary metabolites of this filamentous fungus (Slack *et al.*, 2009).

The major route of human exposure in indoor environments is by the inhalation of toxin-containing spores or free, toxin-contaminated, dust particles (Brasel *et al.*, 2005). These inhaled particulates are subjected to phagocytosis and clearance by the host alveolar macrophages (AMs) These AMs act as a crucial first line of innate defense in the host lung against inhaled particulates (Dorger and Krombach, 2002). For this reason, it is important to understand the mechanisms underlying the toxicity of mycotoxins towards AMs.

Eukaryotic cells respond to both intracellular and extracellular stimuli via signal transduction pathways. These comprise molecular and biochemical cascades, which in turn produce unique responses in the cells. These pathways should not be considered mutually exclusive, cross-talk is likely to occur in order to fine tune a cell response to a given stimulus. Signal transduction pathways for the immune response have been studied and some researchers have predicted that the immune response to mycotoxins will follow the cell-stress activated p38 and/or Jun N-terminal Kinase (JNK) pathways (Raingeaud *et al.*, 1995). Other researchers have found that AMs exposed to *Stachybotrys chartarum* purified toxins (trichothecenes) activate the mitogen-activated protein kinase (MAPK) pathway via the mechanism known as the ribotoxic stress response (Pestka *et al.*, 2004). Wang and Yadav (2007) hypothesized that the *Stachybotrys chartarum* toxins induce multiple signaling pathways in AMs, including MAPK pathways, death receptor mediated pathways, and related cross-talk. Pathway studies agree that mycotoxins induce

multiple signaling pathways, and that there is evidence of cross-talk between the pathways.

The purpose of this study is to determine which transduction pathways are stimulated in RAW 264.7 cells following exposure to neoechinulin A & B and β (1, 3) D-glucan. To determine if there are any dose- and/or time-dependent patterns of expression, to determine any cytotoxic properties of these compounds, and also, to determine the no observed adverse effect level (NOAEL) for exposure. Based on previous studies involving cytokine expression in AMs exposed to neoechinulins and β (1, 3) D-glucan (Dipenta, 2008), it is hypothesized that activation of signal transduction pathways will be a time- and dose-dependent reaction.

2.2 Materials and Methods

2.2.1 Toxins

Neoechinulin A & B (Fig 1-2) from *Eurotium amstelodami* were isolated, purified and identified, by Dr. David Miller, Department of Chemistry, Carleton University, Ottawa.

Each toxin was dissolved in 1 mL of 100% EtOH and then diluted in 100 mL of 10% EtOH, endotoxin free saline (PBS) to a concentration of 10^{-5} M. The solutions were diluted into a working solution of 10^{-7} M. β (1, 3) D-glucan (curdlan from *Alcaligenes faecalis* (Sigma Aldrich C7821, lot # 89H4032 \geq 99% purity (from J.D. Miller), which was chemically characterized by Foto et al. (2005)) was used as a positive control. β (1, 3) D-glucan was dissolved in 1 mL of 0.3 M sodium hydroxide and then diluted in 100 mL PBS to a concentration of 10^{-5} M. Both toxins and β (1, 3) D-glucan were

administered to the cell culture in single doses at concentrations of 10^{-8} , 10^{-9} , 10^{-10} , 10^{-11} and 10^{-12} M.

2.2.2 Cell Culture

The RAW 264.7 murine macrophage cell line was obtained from the American Type Culture Collection (Rockwille, MD, USA). Cells were maintained at 37°C in a 5% CO_2 humidified incubator in RPMI 1640 (Invitrogen) medium supplemented with 10% (v/v) heat inactivated fetal bovine serum (FBS, Invitrogen) and 100 U/ml penicillin and 100 µg/ml streptomycin (Sigma). Macrophage cell numbers were assessed using a hemacytometer.

2.2.3 Experimental Design

RAW 264.7 murine macrophages were exposed to neoechinulin A & B for 30m, 1h and 2h at 10^{-8} , 10^{-9} , 10^{-10} , 10^{-11} and 10^{-12} M concentrations. Both positive and diluent controls were used. $\beta(1,3)$ D glucan was used as a positive control while the diluents for each toxin was used as a diluent control. All experiments were performed in triplicate.

At the end of the desired exposure time, the reactions were stopped by draining the medium and rinsing the flasks with 2ml sterile PBS. Following rinsing, 1.25ml RNAlater® was added to each flask, cells were scraped into 2ml eppendorf tubes and stored at -80°C.

2.2.4 Cell Viability

AMs were seeded at 30,000 cells/well of a 96-well plate and allowed to adhere and grow for 48h. The cells were exposed to neoechinulin A & B, $\beta(1,3)$ D glucan at concentrations ranging from 10^{-8} to 10^{-12} M and diluent controls for 2h. Following this, 10 ul MTT reagent was added to the culture medium in the wells of the 96-well plate, and incubated for 3h at 37°C. Media was then removed and replaced with 100 ul acidified detergent reagent (4 mM HCl, 10% Triton-X in isopropanol). The plate was shaken in the dark at room temperature for 15 mins and the absorbance was measured at 570 nm. The MTT assay measures the ability of the cells to transform MTT to formazan that can be spectrophotometrically detected at a wavelength of 570 nm with a microplate reader. Cell viability was calculated as percentage by comparing absorbance values from cells exposed to toxins compared with those from corresponding control cells.

2.2.5 RNA Extraction

Total RNA isolation was performed using RNeasy[®] mini kit (Qiagen), according to the manufacturer's specifications. Briefly, treatment and control cells were disrupted using Buffer RLT (Qiagen) and homogenized using a sterile syringe and needle. Lysate was precipitated using 70% EtOH followed by centrifugation (10,000 rpm for 15 sec) in an RNeasy column to collect RNA. The column containing RNA was washed in RWI buffer (Qiagen), treated with RNase-free DNase to eliminate DNA contamination according to manufacturer's instructions (Qiagen), and then washed again with RWI followed by two washes with RPE buffer (Qiagen). After washing, RNA was resuspended in RNAse/ DNase free water (Sigma Aldrich). The concentration of RNA in

samples was determined using a NanoDrop® ND-1000. RNA integrity and purity was assessed 260/280 nm and 260/230 nm ratios. Samples with a 260/280 nm ratio of \geq 2.0 and a 260/230 nm ratio \geq 1.90 were used for qPCR analysis.

2.2.6 Reverse Transcription PCR

Reverse transcription (RT) Polymerase Chain Reaction (PCR) reactions were carried out using a reaction ready first strand cDNA synthesis kit (C-03 SA Biosciences \circledast) according to manufacturer's instructions. An annealing mix was prepared first by combining 1 µg of RNA with 2 µL of GE Buffer (5x genomic DNA elimination buffer), the final volume was adjusted to 10 µL with RNase-free water. This annealing mix was preheated at 42°C for 5 minutes then combined with a RT cocktail (4 µL 5x RT buffer (BC3), 1 µL primer and external control mix (P2), 2 µL RT enzyme (RE3), and 3 µL of RNase-free water). The RT reaction was performed as follows; 42°C for 5 minutes, followed by heating at 95°C for 5 minutes to degrade the RNA and inactivate the RE3. All cDNA was stored at -20°C.

2.2.7 Real-time PCR

Two types of real-time (q) PCR were used in this study. For the transduction pathway screening experiments mouse signal transduction pathwayfinderTM PCR arrays were used (SA Biosciences # PAMM-014) Following the RT reaction, cDNA samples were diluted with 91 μ L of RNase-free water. Next, each cDNA sample was combined with 200 μ L of the PCR SYBR green master mix (SA Biosciences) and 110 μ L RNase-free water. This solution was added in 25 μ L aliquots to each well of a 96-well PCR plate

for mouse signal transduction pathway finder (SA Biosciences ®). The 96-well plates contain primers for specific genes of interest (including housekeeping genes for reference). The array contains specific genes representing 18 signal transduction pathways, 2 housekeeping genes, a mouse genomic DNA contamination control, 3 reverse transcription controls, and 3 positive PCR controls (Table 1). The no reverse transcription control (NRT) was made through a combination of a 1 in 100 dilution of the original RNA in RNase-free water with PCR master mix and RNase-free water. The q PCR reactions were carried out using an ABI Prism 7000 Sequence Detection System® (Applied Biosystems). A two-step cycling program q PCR reaction was performed (Figure 3). The first step was 10 minutes at 95°C to activate the hotstart DNA polymerase, next there were 40 cycles for amplification starting at 95°C for 15 seconds, and then the temperature was lowered to 60°C for 60 seconds in order to detect SYBR green fluorescence.

For the dose and time dependent experiments, customized primers and q PCR protocols were used. From results of the transduction pathway screening, forward and reverse PCR primers for the genes of interest (Table 2) were designed using Primer 3 and custom synthesized by Integrated DNA Technologies. The q PCR protocol (Figure 4) was carried out on an ABI Prism 7000 Sequence Detection System® (Applied Biosystems). A two-step cycling program q PCR reaction was performed. The first step was 10 minutes at 95°C to activate the hotstart DNA polymerase, next there were 40 cycles for amplification starting at 95°C for 15 seconds, and then the temperature was lowered to 55°C for 60 seconds in order to detect SYBR green fluorescence.

For both protocols, relative gene expression was determined according to the comparative C_t method, with the Actb housekeeping gene and diluent control references set as the calibrators. Fold change equals $2^{\Delta\Delta Ct}$, where the C_t is the threshold cycle, ΔC_t is the difference between the C_t values of the target gene and the internal control gene, $\Delta\Delta C_t$ represents the difference between the ΔC_t value for the control cells and treated cells.

2.2.8 Statistical Analysis

A Shapiro-Wilk test for normality was performed to verify if the samples were normally distributed. Data (n=3) were then tested for statistical significance using twoway analysis of variance (ANOVA). Bonferroni post test was also used to examine differences between control and treatment gene expression data. Statistical analysis was carried out using Graph Pad Prism version 4.0 and results were considered significant at $\alpha \leq 0.05$ (Gotelli and Ellison, 2004). For graphical representation, data were log transformed. For detailed ANOVA tables the reader is referred to appendices I-III, V-VII.

2.3 Results

2.3.1 Transduction pathway screening experiment

In order to determine which transduction pathways are activated, RAW 264.7 cells were exposed to neoechinulin A & B at 10^{-8} M concentration for 2h. For the rest of the experiments, only genes that were significantly regulated are assayed. A heat map was generated to assess the degree of gene regulation (Fig 3).

1) Neoechinulin A

After 2h exposure to 10^{-8} M neoechinulin A, AMs showed significant (p ≤ 0.05) downregulation of 5 genes representing 7 out of 18 transduction pathways assayed (Table 3). These significantly down-regulated genes were Bmp2, Hspb1, Icam1, Vegfa and Cdknlb. These genes are indicators for the hedgehog pathway, stress pathway, phospholipase c/NFkB pathways, Wnt pathway, and TGF-B pathway, respectively.

2) Neoechinulin B

After 2h exposure to 10^{-8} M neoechinlulin B AMs showed significant (p ≤ 0.05) downregulation of 2 genes representing 2 out of 18 transduction pathways assayed (Table 3). These genes were Bmp2 and Cd5. These genes represent the hedgehog pathway and the NFAT pathway, respectively.

2.3.2 Dose dependant experiments

For dose-dependent experiments, AMs were exposed to either neoechinulin A, neoechinulin B or β (1,3) D glucan at concentrations of 10⁻⁸M, 10⁻⁹M, 10⁻¹⁰M, 10⁻¹¹M, 10⁻¹²M. To evaluate time-dependent trends, these experiments were conducted at 30m, 1h, and 2h time periods.

1) Bmp2

Neoechinulin A – Bmp2 was significantly up-regulated at 1h PE for 10^{-8} M, 10^{-9} M, 10^{-10} M and 10^{-11} M, but not 10^{-12} M. At 2h PE, it was significantly up-regulated at 10^{-10} M, 10^{-11} M and 10^{-12} M but not at 10^{-8} M and 10^{-9} M. It was not significantly changed at 30m PE for any doses tested (Fig 4 a-c).

Neoechinulin B – Bmp2 was only found to be significantly up-regulated at 1h PE for 10^{-8} M. It was not significantly changed at 30m or 2h PE for any doses tested (Fig 4 d-f).

 β (1,3) D glucan – At 30m PE, Bmp2 was significantly down-regulated at 10⁻⁹M. While at 1h PE, it was significantly down-regulated for 10⁻⁸M and 10⁻⁹M exposures. Bmp2 was not significantly changed at 2h PE for any doses tested (Fig 4 g-i).

2) Hspb1

Neoechinulin A – Hspb1 was significantly up-regulated at 1h PE for 10⁻⁸M, 10⁻⁹M, 10⁻¹⁰M and 10⁻¹¹M, but not at 10⁻¹²M. At 2h PE, it was found to be significantly up-regulated at 10⁻¹⁰M and 10⁻¹¹M but not at 10⁻⁸M, 10⁻⁹M and 10⁻¹²M. It was not found to be significantly changed at 30m PE for any doses tested (Fig 5 a-c).

Neoechinulin B – At 30m PE, Hspb1 was significantly up-regulated for 10^{-10} M, 10^{-11} M and 10^{-12} M. At 1h PE, it was significantly up-regulated for 10^{-8} M, 10^{-11} M and 10^{-12} M. At 2h PE, Hspb1 was significantly up-regulated for 10^{-9} M and 10^{-10} M and 10^{-11} M only (Fig 5 d-f).

 β (1,3) D glucan – Hspb1 was found to be significantly changed at 30m PE at 10⁻⁸M only. No changes occurred at other doses tested at 30m, or all doses tested at 1h or 2h PE compared to controls (Fig 5 g-i).

3) Icam1

Neoechinulin A – At both 30m, 1h and 2h PE, Icam1 was significantly up-regulated at all concentrations tested (Fig 6 a-c).

Neoechinulin B – At 30m and 2h PE, Icam1 was significantly up-regulated at each concentration tested. At 1h PE, it was significantly up-regulated at 10^{-8} M, 10^{-9} M, 10^{-11} M and 10^{-12} M, but not at 10^{-10} M (Fig 6 d-f).

 β (1,3) D glucan – Icam1 was significantly down-regulated at 10⁻⁸M for 1h PE and significantly up-regulated at 10⁻¹⁰M for 2h PE. It was not significantly changed at 30m PE for any doses tested (Fig 6 g-i).

4) Vegfa

Neoechinulin A – Vegfa was significantly up-regulated for every dose tested for 30m, 1h and 2h PE (Fig 7 a-c).

Neoechinulin B – At 30m PE, Vegfa was significantly up-regulated for all doses tested. At 1h PE, it was significantly up-regulated at 10^{-8} M, 10^{-9} M, 10^{-11} M and 10^{-12} M, but not for 10^{-10} M. While at 2h PE, it was found to be significantly up-regulated for every dose tested (Fig 7 d-f).

 β (1,3) D glucan – At 30m PE, Vegfa was significantly down-regulated at 10⁻⁸M. It was found to be significantly down-regulated at both 10⁻⁸M and 10⁻¹¹M. Vegfa was significantly up-regulated at 2h PE for 10⁻⁸M, 10⁻⁹M and 10⁻¹⁰M (Fig 7 g-i).

5) Cdknlb

Neoechinulin A – At both 30m and 1h PE, Cdknlb was significantly up-regulated for every dose tested. At 2h PE, it was significantly up-regulated at 10^{-8} M, 10^{-10} M, 10^{-11} M and 10^{-12} M, but not at 10^{-9} M (Fig 8 a-c).

Neoechinulin B – Cdknlkb was found to be significantly up-regulated at 30m PE for 10^{-8} M, 10^{-10} M, 10^{-11} M and 10^{-12} M, but not at 10^{-9} M. At 1h and 2h PE, Cdknlb was found to be significantly up-regulated for every dose tested (Fig 8 d-f).

 β (1,3) D glucan – Cdknlb was significantly down-regulated at 10⁻⁸M and 10⁻¹⁰M after 30m PE. At 1h PE, Cdknlb was significantly down-regulated at 10⁻⁸M. At 2h PE, it was significantly up-regulated at 10⁻⁹M, 10⁻¹⁰M and 10⁻¹²M (Fig 8 g-i).

6) Cd5

Neoechinulin A – At 1h and 2h PE, Cd5 was found to be significantly re-regulated at 10^{-8} M, 10^{-9} M, 10^{-10} M and 10^{-11} M, but not for 10^{-12} M. Cd5 was not significantly changed at 30m PE for any dose tested (Fig 9 a-c).

Neoechinulin B – At 30m PE, Cd5 was significantly up-regulated at 10^{-10} M and 10^{-11} M. At 1h PE, it was significantly up-regulated at each concentration tested. At 2h PE, Cd5 was significantly up-regulated at 10^{-9} M, 10^{-10} M and 10^{-11} M (Fig 9 d-f).

 β (1,3) D glucan – Cd5 was significantly up-regulated at 30m PE for 10⁻¹⁰M. At 1h PE, Cd5 was significantly up-regulated at 10⁻¹¹M and 10⁻¹²M. At 2h PE, Cd5 was significantly up-regulated at 10⁻⁹M and 10⁻¹²M (Fig 9 g-i).

7) Dectin-1

Neoechinulin A – At 30m PE, Dectin-1 was found to be significantly up-regulated for 10^{-10} M and 10^{-12} M. It was found to be significantly up-regulated at 1h PE for 10^{-10} M, 10^{-11} M and 10^{-12} M. Dectin-1 was significantly up-regulated at 2h PE for all doses tested (Fig 10 a-c).

Neoechinulin B - Dectin-1 was found to be significantly up-regulated at 1h PE for 10^{-9} M and 10^{-11} M. It was significantly up-regulated at 2h PE for 10^{-9} M, 10^{-10} M, 10^{-11} M and 10^{-12} M but not 10^{-8} M. It was not found to be significantly changed at 30m PE for any dose tested (Fig 10 d-f).

 β (1,3) D glucan – At 1h PE, Dectin-1 was significantly up-regulated for 10⁻⁹M, 10⁻¹⁰M, 10⁻¹¹M and 10⁻¹²M but not 10⁻⁸M. At 2h PE, it was significantly down-regulated at 10⁻⁸M and up-regulated at 10⁻⁹M, 10⁻¹⁰M and 10⁻¹¹M. Dectin-1 was not significantly changed at 30m PE for any dose tested (Fig 10 g-i).

2.3.4 Time dependant experiments

For time-dependent experiments, AMs were exposed to neoechinulin A & B and β (1,3) D glucan at a constant concentration of 10⁻⁸M. Experiments were conducted at 30m, 1h, and 2h exposures.

1) Neoechinulin A

AMs exposed to 10^{-8} M neoechinulin A for the three time points showed significant (p≤0.05) up-regulation for all genes studied. Significantly (p≤0.05) up-regulated genes at 30m post exposure (PE) were Icam1, Vegfa and Cdknlb. At 1h PE, significantly (p≤0.05) up-regulated genes were Bmp2, Hspb1, Icam1, Vegfa, Cdknlb, and Cd5. At 2h PE, Icam1, Vegfa, Cdknlb, Cd5 and Dectin-1 were significantly (p≤0.05) up-regulated. The time-dependent pattern of expression for most genes assayed was up-regulation at each time tested with the greatest increase of gene expression at 1 h PE. For Cd5, the pattern is different with the same level of increased expression after 1h and 2h exposure. For

Dectin-1 the time-dependent pattern is also different showing the greatest increase in gene expression at 2h PE (Fig 11a).

2) Neoechinulin B

AMs exposed to 10^{-8} M neoechinulin B for the three time points showed significant (p ≤ 0.05) up-regulation for 6 of the 7 genes studied. At 30 m PE Icam1, Vegfa, and Cdknlb were significantly (p ≤ 0.05) up-regulated. Significantly up-regulated genes at 1 h PE were Bmp2, Hspb1, Icam1, Vegfa, Cdknlb, and Cd5. At 2h PE, Icam1, Vegfa, and Cdknlb were significantly up-regulated. The time-dependent pattern of expression for most genes assayed was up-regulation at each time tested with the greatest increase of gene expression at 1 h PE. The only significant difference between the patterns of expression for both neoechinulin A and B is Cd5 (Fig 11b).

3) β (1,3) D glucan

AMs exposed to 10^{-8} M β (1,3) D glucan for revealed that 6 of the 7 genes studied exhibited significant (p≤0.05) regulation. At 30m PE, significantly down-regulated genes were Hspb1, Vegfa and Cdknlb. At 1h PE, Bmp2, Icam1, Vegfa and Cdknlb showed significant (p≤0.05) down-regulation while significant (p≤0.05) up-regulation was exhibited by Vegfa at 2h PE. Dectin-1 was significantly (p≤0.05) down-regulated at 2h PE. The time-dependent pattern of expression for most genes assayed was downregulation at 30 m and 1 h PE, followed by up-regulation after 2 h PE (Fig 12).

2.3.5 Cytotoxicity Experiment

AMs were exposed to neoechinulin A, neoechinulin B, β (1,3) D glucan, and diluent controls for 2h. Thereafter, an MTT assay was performed to assess toxicity of these compounds. Results show that neoechinulin B is cytotoxic to RAW 264.7 cells in culture at all doses tested (p < 0.001) compared to diluent control. Neoechinulin A and β (1,3) D glucan were not found to be cytotoxic to RAW 264.7 cells in culture at any doses tested (Fig 13).

2.4 Discussion

The role of alveolar macrophages (AMs) at the molecular level in modulating inflammation in toxin treated lungs using an *in vitro* model of lung disease was examined in this study. In this study, transduction pathways involved in the acute modulation of acute inflammation were identified. Results indicate that AMs are sensitive to both neoechinulin A & B as well as β (1,3) D glucan. These results support previous studies by DiPenta (2008) who showed that primary AMs are activated by both neoechinulin A and B as well as β (1,3) D glucan and by Kataoka *et al.* (2002) who showed that β (1,3) D glucan activates RAW 264.7 cells. These results are also supported by recent *in vivo* studies by Miller *et al.* (2009) and Rand *et al.* (2009) investigated the effect of mycotoxins and curdlan on mouse lungs. Mice were intratracheally instilled with a dose of 10⁻⁵M of either atranone C, brevianamide, cladosporin, mycophenolic acid, neoechinulin A & B, sterigmatocystin or TMC-120A or a 10⁻⁶M dose of curdlan. Immunohistological and PCR based analyses were performed and it was revealed that mouse lungs exposed to either mycotoxin or curdlan showed evidence of inflammation

such as up-regulation of inflammatory genes as well as expression of dectin-1, MIP-2 and TNF on the in bronchiolar epithelium, alveolar macrophages (AMs), and alveolar type II cells (ATIIs).

Although the neoechinulins have been associated with building-related health problems, to date no information exists regarding the specific mechanisms for their activity in the system. Furthermore, very little information exists regarding the molecular basis of their activity. Therefore, the findings of this study will aid greatly in identifying the mechanisms by which mycotoxins effect gene expression in AMs.

This study has shown that compared to controls, 7 of 18 transduction pathway genes were significantly modulated after RAW cells were exposed to the three low molecular weight compounds tested in this study, and in at least 1 time-point. These were bone morphogenic protein 2 (Bmp2), heat shock protein (Hspb1), intercellular adhesion molecule 1 (Icam1), vascular endothelial growth factor A (Vegfa), cyclin dependent kinase inhibitor (p27) (Cdkn1b), lymphocyte antigen (Cd5) and dectin-1. These genes correspond to the following pathways, respectively; Hedgehog, stress, phospholipase c, NFkB, Wnt, TGF- β , and NFAT. Of these 7, only 4 are directly involved in the inflammatory response. The remaining 3 were still examined in order to broaden our knowledge of the mechanisms behind mycotoxin exposure.

Bone morphogenetic proteins (BMPs) have an essential role in organogenesis and tissue repair. This suggests that BMPs may play an important role in airway remodeling. They are known to be involved in basal airway homeostasis and that there is an accessible reservoir of ligand that can be activated on demand. There are few studies that

look at the role of BMP ligands and their signaling pathways in airway inflammatory processes. Fukui *et al.* (2003) showed that Bmp2 expression is activated by the proinflammatory cytokines IL-1 and TNF- α . Other BMPs (specifically Bmp7) has been shown to modulate the inflammatory response in such ways as inhibiting macrophage trafficking and IL-6 expression, and modulating TNF- α -induced proinflammatory gene expression (Gould *et al.*, 2002). The hedgehog signaling pathway participates in the development of numerous tissues and organs (McMahon *et al.*, 2003). A well known effect of reduced hedgehog signaling in human embryos is cyclopia (the formation of only one eye). In adults, hedgehog signaling directs the formation of certain stem- and precursor-cell populations (Machold *et al.*, 2003). It has been found that increased hedgehog signaling in some organs can lead to cancers- of the skin, cerebellum, muscle, digestive tract, pancreas or prostate (Pasca di Magliano and Hebrok, 2003).

Vegfa is in the Vegf family of proteins and is implicated in vascular remodeling during embryogenesis, tissue regeneration and carcinogenesis (Shibuya, 2001; Tammela *et al.*, 2005; Coultas *et al.*, 2005). Research has shown that hedgehog, Wnt and TGF- β network together during embryogenesis, tissue regeneration and carcinogenesis (Katoh, 2002; Hooper and Scott, 2005). Hedgehog and Wnt signaling have distinct features, but are also sufficiently similar and share enough components to indicate that some aspects of the two pathways might have common evolutionary origins. Both pathways are activated by seven transmembrane receptors. Both pathways use accessory transmembrane protein to regulate the receptor (Nusse, 2003).

Heat shock proteins (HSPs) function as molecular chaperones. They ensure correct folding of proteins into their three-dimensional forms which is crucial for

biological activity in the cell or promote degradation of the misfolded proteins and regulate cell growth and cell signaling pathways that initiate repair, allow adaptation and ensure survival (Lindquist and Craig, 1988; Benjamin and McMillan, 1998; Feder and Hofmann, 1999; Agashe and Hartl, 2000). Although the principle function of the HSPs is chaperone activity, it has been proposed that they have functions in supporting cellular survival under stress conditions by inhibiting apoptosis, stabilization of the cytoskeleton and regulation of cell mobility, migration and muscle contraction. Hspb1, specifically, has a critical role in mediating protection against stress through maintaining normal cell function by stabilizing the cytoskeleton, facilitating repair or removal of damaged proteins, and inhibiting components of both stress and death-receptor induced apoptotic pathways (Bruey *et al.*, 2000; ; Gerthoffer and Gunst, 2001; Sreedhar and Csermely, 2004; Didelot *et al.*, 2006).

Adhesion molecules play integral roles in tumor growth, invasion and metastasis and have also been shown to influence the immune responses to malignant cells (Simmons, 1995). Human intercellular adhesion molecule (Icam1) belongs to the immunoglobulin gene superfamily. Its role has been established as providing signals to immune effector cells (Nishio *et al.*, 1996; Uzendoski *et al.*, 1997) and is known to be extensively upregulated in inflammatory disorders (Montefort and Holgate, 1991). Inflammatory cytokines have been shown to induce the shredding of cell associated Icam1 (Becker *et al.*, 1991) and detection of a soluble form of Icam1 in circulation has been proposed to be a useful marker of inflammation (Seth *et al.*, 1991). The NFkB signaling pathway coordinates the activation of numerous genes in response to pathogens and proinflammatory cytokines (Cohen *et al.*, 1998). NFkB has been demonstrated to

respond to a variety of metabolic stress signals, and protects the cell from undergoing cell death (Royds *et al.*, 1998). Anahid *et al* (2003) have shown that NFkB serves as both positive and negative regulator of Icam1 expression, depending on the stimuli used. Phospholipase C signaling has been shown to be involved in the regulated secretion of neurotrophins (Canossa *et al.*, 2001).

Cyclin dependent kinase inhibitor (p27) (Cdkn1b) is an endogenous cyclin dependent kinase inhibitor (Sherr and Roberts, 1999). The TGF- β signaling pathway inhibits cell proliferation by upregulation of Cdkn2b, Cdknla and Cdkn1b (Massague *et al.*, 2000). Transforming growth factor β (TGF- β) is a potent growth inhibitor for a wide variety of cells including immune lymphocytes. Perturbations of the TGF- β signaling pathway can result in loss of cell growth regulation (Roberts and Sporn, 1990; Miyazono *et al.*, 1994).

Cd5 (lymphocyte antigen) is a 67 kDa membrane protein that requires activation by NFAT signaling (Teutsch *et al.*, 1995). Berland and Wortis (1998) have shown that Cd5 expression in B cells requires activation by NFAT. Nuclear factor of activated T cell (NFAT) signaling is stimulated by an increase in intracellular Ca²⁺. This pathway controls the transcription of lymphokine genes (eg., IL-2, IL-3, IL-4, IL-5, IFN and TNF- α), ligand genes (eg., Cd45 and Cd5) and other genes controlling T cell activation, apoptosis and cell cycle regulation (Serfling *et al.*, 2000).

Classical dose-dependent-like responses in gene expression levels were apparent in cells exposed to neoechinulin B and β (1,3) D glucan. With a classical response, one would expect was the concentration of the compound increases gene expression decreases. Trends for this type of response were seen with Vegfa and Hspb1after 2h

exposure. Evidence for a classical dose-response response was seen in Cd5 and Dectin-1 after 2h exposure to neochinulin B. Non-classical dose-dependent-like responses were apparent in cells exposed to neoechinulin A. This type of response is the opposite of a classical response; when the concentration of the compound decreases gene expression increases. Again, trends were seen especially for Hspb1 after 1h exposure. Evidence for this non-classical dose-response was seen in Dectin-1 after both 1h and 2h exposure to neoechinulin A. However, dose-dependent-like Bmp2 and Hspb1 up-regulated expression was apparent in cells exposed to high concentration (10^{-8} M) neoechinulin B at 1 h PE and at 10^{-9} and 10^{-10} M concentrations at 2 h PE. For β (1,3) D glucan, dose dependency was manifest as down-regulated Bmp2 expression in cells exposed to 10-8 and 10-9 M curdlan at 1 h PE. It was also apparent in dectin 1 expression in curdlan exposed cells at 1 and 2 h PE.

It is evident that signal transduction pathway activation by neoechinulin A & B and β (1,3) D glucan exhibit time dependency. A number of other studies have demonstrated that responses activated by fungal compounds are time dependent. Alveolar Type II cells exposed to *S. chartarum* and *Penicillium chrysogenum* purified toxins showed different patterns of gene expression showing time-dependence for surfactant proteins and inflammatory genes (Robbins, 2007). This same outcome was seen when AMs were also exposed to purified mycotoxins (DiPenta, 2008). DiPenta (2008) showed rapid, and significant changes in a variety of inflammatory and cell stress-associated genes (within 2h PE) in AMs exposed to neoechinulins A and B, sterigmatocystin, brevianimide and cladosporin at concentrations of 10⁻⁷ and 10⁻⁸M. The downstream effect of signal transduction pathways are changes in gene expression, cell survival, apoptosis

and activation of inflammatory mediators. Therefore, results from DiPenta (2008) would indicate that transduction pathway activation would similarly exhibit time dependent responses. Time dependent changes in transduction pathway activation associated with exposure to fungal compounds is poorly understood. It is interesting that modulation of the genes studied here was rapid (within 30m PE). This suggests heightened sensitivity and an acute response of RAW 264.7 cells to neoechinulin A and B and the β (1, 3) glucan, curdlan.

This study has shown that neoechinulin B is cytotoxic at the doses tested in RAW 264.7 cells. It was found that both neoechinulin A and β (1,3) glucan, however, were non cytotoxic at any doses tested to RAW 264.7 cells. There is evidence showing different levels of cytotoxic effects of many other mycotoxins. Trichothecenes were examined for their cytoxotic properties and it was found that type B trichothecenes such as vomitoxin and nivalenol were not cytotoxic at the concentrations examined, whereas satratoxin F, satratoxin H and T-2 were moderately toxic. In contrast, satratoxin G, roridin A, and verrucarin A were highly cytotoxic (Yang et al., 2000). These findings along with the findings of Yang et al (2000), support the idea that one species of fungus can produce various types of mycotoxins with varying degrees of cytotoxicity.

One objective of this study was to determine the "no observed adverse effect" level (NOAEL). Doses ranging from 10^{-8} M to 10^{-12} M were used in this study and effects were still seen in as gene expression changes in AMs after exposure to 10^{-12} M solutions of neoechinulin A, B and β (1, 3) glucan. The amount of neoechinulin A or B in the spore has not yet been quantified; however this has been determined for some mycotoxins. It has been reported that both *Aspergillius fumigatus* and spores of some *Stachybotrys*

chartarum isolates contain in the order of 10⁻⁵M of fumitremorgen A, B and C and satratoxin G, respectively (Fisher et al., 2000; Sorenson et al., 1987). It is apparent from the results of this study is that the NOAEL varied depending on the compound tested, the gene evaluated and the end time point. In general, both neoechinulin A and B showed similar trends, especially at 1h PE. At this time point, the NOAEL for Vegfa, Icam-1 and Cdkn1b was less than 10⁻¹²M in exposed RAW 264.7 cells. However, for Bmp2 it was 10⁻¹²M for neoechinulin A and 10⁻⁹M for neoechinulin B. For Hspb1 it was less than 10⁻ ¹²M for neoechinulin A and 10⁻¹²M for neoechinulin B. For Cd5 the NOAEL was less than 10^{-12} M for neoechinulin A and 10^{-12} M for neoechinulin B exposed cells. For β (1,3) D glucan exposed cells, the NOAEL ranged from less than 10⁻¹²M for Cd5, Dectin-1 and Cdkn1b, 10⁻¹¹M for Vegfa, 10⁻¹⁰M for Icam1 and 10⁻⁹M for Bmp2 to 10⁻⁸M Hspb1. These results are interesting because they point to the importance of using the responses of multiple genes as a means of evaluating the NOAEL. While not explicitly stated in their studies, Miller et al. (2009) and Rand et al. (2009) also showed similar results. For example, in their study of inflammatory gene expression in mouse lungs stimulated by curdlan, only a few of 83 genes were significantly up-regulated at 10⁻¹⁰M concentration and at 4h but not at 12h PE while at higher concentrations many more genes were expressed at both time points.

<u>Chapter 3</u> – The effects of interactions between neoechinulin A and β (1,3) D glucan on AM signal transduction pathway activation.

3.1 Introduction

Eurotium amstelodami is commonly found in indoor environments that suffer from water damage (Flannigan and Miller, 2001; Miller *et al.*, 2008). Neoechinulin A & B have been identified as major secondary metabolites of this filamentous fungus (Slack *et al.*, 2009).

In indoor environments, mold growth is associated with both allergenic and nonallergenic effects on population health (NAS, 2004; Health Canada, 2004; WHO, 2004). Most species of fungi that grow on moist building materials produce spores that contain relatively high concentrations of mycotoxins, species-specific allergens and proteases bound by a cell wall made of β (1, 3) D-glucan (Rand, 2007).

In building environments, humans may be exposed to both mycotoxins and glucans as well as other microbial agents (eg, endotoxin). Fungal spores contain species specific mixtures of mycotoxins, allergens and proteases bound by a cell wall made of β (1, 3) D-glucan (Rand, 2007). Interactions between the different exposures in moisture-damaged buildings are inevitable, since the spores of a single fungal species alone may contain various metabolites, and the moisture-damaged site is a habitat of more than one microbial species (Anderson et al., 1997; Nielsen et al., 1999; Hyvarinen et al., 2002) Given the widespread occurrence of human exposure to mixtures, these combined effects are of major concern.

Interactions between mycotoxins, glucan, endotoxin, fungal and bacterial spores on cell immune responses have been studied. Studies show synergistic, antagonistic and additive toxicity effects after simultaneous exposures. One study has shown that combinations of Stachybotrys chartarum spores with the spores of Streptomyces *californicus* had a clear synergistic effect on the production of an inflammatory mediator (cytokine) in mouse macrophages (Huttunen et al., 2004). Another study showed that after exposure to the spores of co-cultivated S. californicus and S. chartarum there was a significant influence on the regulation of cell cycle arrest compared to either spore alone (Pettinen et al., 2005). Other studies examining mixtures of mycotoxins also found combination effects that were stronger than one mycotoxin alone (Thuvander et al., 1999; Tammer et al., 2007;). Tammer et al. (2007) applied an established model for immunotoxic studies using stimulated human peripheral blood mononuclear cells (PBMC) and showed that the effects on cytokine production of mixtures of mycotoxins was stronger than the effects caused by the toxins applied singly. A different study, however, showed no synergistic effects, but rather, additive toxicity and antagonistic effects (Thuvander et al., 1999). Human lymphocytes were exposed to a combination of nivalenol and T-2 toxin which resulted in additive toxicity. Interestingly, when T-2 toxin was combined with deoxynivalenol (DON) the result was an inhibition of the proliferative response that was significantly lower than the individual toxins which shows an antagonistic action. Folemark *et al.* (1997) studied the effects of the β (1, 3) D-glucan curdlan on the production of eosinophils in the airways of guinea pigs and determined there was an increase in these cell numbers after exposure to glucan. This effect was seen to decrease after a simultaneous exposure to bacterial endotoxin.

The purpose of this study is to examine the response of RAW 264.7 murine macrophages (RAW 264.7) after simultaneous exposure to neoechinulin A and β (1, 3) D-glucan shown as heightened or depressed gene expression. Based on studies that have shown that the effects of mixtures of mycotoxins were stronger than one mycotoxin alone (Thuvander et al., 1999; Tammer et al., 2007) it is hypothesized that after exposure to two compounds simultaneously, RAW 264.7 cells will have a heightened response shown as increased gene expression.

3.2 Materials and Methods

3.2.1 Toxins

Neoechinulin A (Fig 1) from *Eurotium amstelodami* was isolated, purified and identified by Dr. David Miller, Department of Chemistry, Carleton University, Ottawa.

Neoechinulin A was dissolved in 1 mL 100% EtOH and then diluted in 100 mL of 10% EtOH, endotoxin free saline (PBS) to a concentration of 10^{-5} M. β (1, 3) D-glucan (from J.D. Miller) was dissolved in 1 mL of 0.3 M sodium hydroxide and diluted in 100 mL PBS to 10^{-5} M. These were administered to the cell culture simultaneously at doses of 10^{-9} and 10^{-10} M. Neoechinulin A was chosen for this study based on results from chapter two's cytoxicity experiment, in which this mycotoxin is shown to be not cytotoxic to RAW 264.7 murine macrophages in culture.

3.2.2 Cell Culture

The RAW 264.7 murine macrophage cell line was obtained from the American Type Cultre Collection (Rockwille, MD, USA). Cells were maintained at 37°C in a 5%

 CO_2 humidified incubator in RPMI (Invitrogen) medium supplemented with 10% (v/v) heat inactivated fetal bovine serum (FBS, Invitrogen) and 100 U/ml penicillin and 100 μ g/ml streptomycin (Sigma). Macrophage cell numbers were assessed using a hemacytometer.

3.2.3 Experimental Design

AMs were exposed to both neoechinulin A and β (1,3) D-glucan simultaneously for 30m, 1h and 2h at 10⁻⁹ and 10⁻¹⁰M concentrations. All experiments were performed in triplicate.

At the end of the desired exposure time, the reactions were stopped by draining the medium and rinsing the flasks with 2ml sterile PBS. Following rinsing, 1.25ml RNAlater® was added to each flask, cells were scrapped into 2ml eppendorf tubes and stored at -80°C.

3.2.4 RNA Extraction

Total RNA isolation was performed using RNeasy[®] mini kit (Qiagen), according to the manufacturer's specifications. Briefly, treatment and control cells were disrupted using Buffer RLT (Qiagen) and homogenized using syringe and needle, per direction. Lysate was precipitated using 70% ETOH followed by centrifugation (at 10,000 rpm for 15 sec) at 4°C in an RNeasy column to collect RNA. The column containing RNA washed in RWI buffer (Qiagen), treated with RNase-free DNase to eliminate DNA contamination according to manufacturer's instructions (Sigma Aldrich), and then washed with RWI followed by RPE buffer (Qiagen) washes. After washing, RNA was resuspended in RNAse/ DNase free water (Sigma Aldrich. The concentration of RNA in samples was determined using a NanoDrop® ND-1000. Samples with 260/280nm ratio of \geq 2.0 and a 260/230nm ratio \geq 1.90 were used for qPCR analysis.

3.2.5 Reverse Transcription PCR

Reverse transcription (RT) Polymerase Chain Reaction (PCR) reactions were carried out using a reaction ready first strand cDNA synthesis kit (C-03 SuperArray, Bioscience Corp®) according to manufacturer's instructions. An annealing mix was prepared first by combining 1 μ g of RNA with 2 μ L of GE Buffer (5x genomic DNA elimination buffer), the final volume was adjusted to 10 μ L with RNase-free water. This annealing mix was preheated at 42°C for 5 minutes then combined with a RT cocktail (4 μ L 5x RT buffer (BC3), 1 μ L primer and external control mix (P2), 2 μ L RT enzyme (RE3), and 3 μ L of RNase-free water). The RT reaction was performed; 42°C for 5 minutes, followed by heating at 95°C for 5 minutes to degrade the RNA and inactivate the RE3. All cDNA was stored at -20°C.

3.2.6 Real-time PCR

Forward and reverse PCR primers (Table 3) for the genes of interest (Table 2) were designed using Primer 3 and custom synthesized by Integrated DNA Technologies. The q PCR protocol (Figure 4) was carried out on an ABI Prism 7000 Sequence Detection System® (Applied Biosystems). A two-step cycling program q PCR reaction was performed. The first step was 10 minutes at 95°C to activate the hotstart DNA polymerase, next there were 40 cycles for amplification starting at 95°C for 15 seconds,

and then the temperature was lowered to 55°C for 60 seconds in order to detect SYBR green fluorescence.

Relative gene expression was determined according to the comparative C_t method, with the Actb housekeeping gene and diluent control references set as the calibrators. Fold change equals $2^{\Delta\Delta Ct}$, where the C_t is the threshold cycle, ΔC_t is the difference between the C_t values of the target gene and the internal control gene, $\Delta\Delta C_t$ represents the difference between the ΔC_t value for the control cells and treated cells.

3.2.7 Statistical Analysis

A Shapiro-Wilk test for normality was performed to verify if the samples were normally distributed. Data (n=3) were then tested for statistical significance using twoway analysis of variance (ANOVA). Bonferroni post test was also used to examine differences between control and treatment gene expression data. Statistical analysis was carried out using Graph Pad Prism version 4.0 and results were considered significant at $\alpha \leq 0.05$ (Gotelli and Ellison, 2004). For graphical representation data was log transformed. For detailed ANOVA tables the reader is referred to appendix IV.

3.3 Results

3.3.1 Neoechinulin A + β (1,3) D-glucan vs. neoechinulin A or β (1,3) D-glucan

RAW 264.7 murine macrophages were exposed to both neoechinulin A and β (1,3) D-glucan simultaneously at 10⁻⁹ and 10⁻¹⁰M concentrations. These experiments were conducted at 30m, 1h, and 2h time periods. This study was compared to results of gene expression changes by either neoechinulin A or β (1,3) D-glucan alone.

Bmp2

The simultaneous exposure to 10^{-10} M neoechinulin A and β (1,3) D-glucan was significantly (p ≤ 0.05) reduced than that of neoechinulin A alone after 1h post exposure (PE) (Fig 15a).

<u>Hspb1</u>

The simultaneous exposure to 10^{-10} M neoechinulin A and β (1,3) D-glucan was significantly (p ≤ 0.05) reduced than that of neoechinulin A alone after 1h post exposure (PE) (Fig 15b).

Icam1

The simultaneous exposure to 10^{-9} M neoechinulin A and β (1,3) D-glucan was significantly (p ≤ 0.05) increased than that of neoechinulin A or β (1,3) D-glucan alone after 2h post exposure (PE). It was also significantly greater than that of β (1,3) D-glucan alone at 30m, 1h and 2h PE at both 10^{-9} M and 10^{-10} M (Fig 14c and Fig 15c).

<u>Vegfa</u>

AMs exposed to simultaneous doses of neoechinulin A and β (1,3) D-glucan was found to elicit significantly greater responses than that of β (1,3) D-glucan alone at 1h and 2h PE for 10⁻⁹M (Fig 14d) and at 30m, 1h and 2h PE for 10⁻¹⁰M (Fig 15d).

<u>Cdknlb</u>

There is an increased response in AMs after a simultaneous dose of neoechinulin A and β (1,3) D-glucan when compared to just β (1,3) D-glucan alone at 1h PE for 10⁻⁹M (Fig 14e) and at 30m and 1h PE for 10⁻¹⁰M (Fig 15e).

There is no significant change in gene expression for Cd5 when RAW 264.7 murine macrophages are exposed to either a simultaneous dose of 10^{-9} M neoechinulin A and β (1,3) D-glucan or neoechinulin A or β (1,3) D-glucan alone, however at a simultaneous dose of 10^{-10} M, AMs show an increased response at 1h PE (Fig 14f and Fig 15f).

Dectin-1

There is a significant increase in gene expression for Dectin-1 when AMs are exposed to a simultaneous dose of neoechinulin A and β (1,3) D-glucan compared to just β (1,3) Dglucan alone after 2h PE for both doses tested (Fig 14g and Fig 15g).

3.4 Discussion

This study examined the potential interactions between neoechinulin A and β (1,3) D-glucan on signal transduction pathway activation in RAW 264.7 murine macrophages (AMs). This study was conducted at 30m, 1h and 2h PE and at doses of 10⁻⁹ and 10⁻¹⁰M.

Interactions between mycotoxins and spores have been reported in past studies. One study has shown that exposures of combinations of *Stachybotrys chartarum* spores with the spores of *Streptomyces californicus* had a clear synergistic effect on the production of an inflammatory mediator (cytokine) in mouse macrophages (Huttunen et al., 2004). Another study revealed that exposure to the spores of co-cultivated *S. californicus* and *S. chartarum* had a significant influence on the regulation of cell cycle arrest (Penttinen et al., 2005). Other studies examining mixtures of mycotoxins also found combination effects that were stronger than one mycotoxin alone. These effects

Cd5

were synergistic, antagonistic and additive toxicity effects (Thurvander et al., 1999; Tammer et al., 2007).

This study shows that after 1h exposure to a simultaneous dose of 10^{-10} M neoechinulin A and β (1,3) D-glucan, there is an antagonistic response of Bmp2 and Hspb1 (Fig 15). After 2h PE Icam1 shows clear synergistic response when RAW 267.4 cells are exposed to a simultaneous dose of 10^{-9} M neoechinulin A and β (1,3) D-glucan. For the other genes tested, however, there doesn't seem to be any statistically significant evidence of a synergistic interaction between neoechinulin A and β (1,3) D-glucan (Fig 14 & 15). There are trends at 2h PE for Bmp2, Hspb1, Vegfa, Cdknlb, Cd5 and dectin-1 showing a synergistic interaction; however these were not statistically significant. From results of chapter 2, we see that generally when AMs were exposed to neoechinulin A alone (Fig 11a), gene expression was greater than when exposed to β (1,3) D-glucan alone (Fig 12). The results from this study suggest that there may be a masking effect for some genes when RAW 267.4 cells are exposed to both neoechinulin A and β (1,3) D-glucan in the study suggest that there may be a masking effect for some genes when RAW 267.4 cells are exposed to both neoechinulin A and β (1,3) D-glucan in future studies.

This study shows statistical evidence that simultaneous exposure of RAW 264.7 cells to neoechinulin A and β (1,3) D-glucan at 10⁻⁹M resulted in elevated Icam1, Vegfa and Dectin-1 expression after 2h PE (Fig 14) compared to expression in cells exposed to these compounds individually This effect was also seen at 10⁻¹⁰M for Icam1, Cdknlb and Dectin-1 and at as early as 1h PE (Icam1). This result supports the hypothesis that exposure to a mixture of compounds elicits a synergistic interaction. At a concentration of 10⁻¹⁰M significantly increased Bmp2 and Hspb1 expression (Fig 15) was observed in

cells exposed to single compounds compared to mixed ones. This antagonistic result is interesting because it supports the study by Thurvander *et al.* (1999) who also showed antagonistic responses of mixtures on human lymphocytes.

These findings highlight the important modulatory effect that mixtures of compounds at low concentration have on gene expression. Furthermore, that mycotoxin and glucan interactions must be carefully considered when evaluating the possible health effects associated with exposure to moisture and mold damaged buildings.

Chapter 4

4.1 General Conclusions

Little information is known about the molecular mechanisms responsible for immune responses caused by metabolites of *Eurotium amstelodami*, neoechinulin A and B. *Eurotium amstelodami* is a xerophilic species commonly recovered from damp building materials. The majority of published literature to date focuses on the impact of mesophilic and hydrophilic species' metabolites on respiratory health.

The objectives of this study were three fold; 1) Identify which transduction pathways are activated in RAW 264.7 murine macrophages (AMs) following mycotoxin and glucan exposure, 2) determine if there is time- and/or dose- dependency, and 3) identify any interactions between mycotoxin and glucan.

This study has shown that after exposure to neoechinulin A, B or β (1,3) glucan RAW 264.7 cells express genes for the following pathways; Hedgehog, phospholipase c, NFkB, Wnt, TGF- β , and a stress pathway. Although this study focused on the mechanisms of the immune response, it was an interesting find that these mycotoxins and

curdlan also activate signal transduction pathways that are involved in pathways that are not involved in the immune response, such as embryonic development (ie, Hedgehog pathway). Up- and/or down-regulation of these genes may have detrimental effects on a developing embryo in utero, or young individuals who may be exposed to molds growing in damp building environments. The results of this study show that the impact of mycotoxins is broader than inflammation alone; the reactions are associated with embryogenesis, tissue regeneration, apoptosis and carcinogenesis which support the notion that there is a much broader range of effects that require further investigation.

This study has shown that activation of signal transduction pathways is a timedependent phenomenon. Results from this study show that the NOAEL is not only dependent on the gene tested but on the end time point as well.

In addition to determining the effects of neoechinulin A and β (1,3) glucan on AMs alone, the final objective of this study was to determine if there were any interactions between neoechinulin A and β (1,3) glucan seen as heightened or depressed gene expression. A clear synergistic effect was seen at both doses tested for Icam1, Vegfa, Cdknlb and Dectin-1 at 2h PE. For Bmp2 and Hspb1 after 1h PE there is evidence of an antagonistic interaction. When exposed to both compounds simultaneously there is a reduced response compared to the effect of either of the compounds alone. However with the other genes tested, the simultaneous exposure is masked by the expression of neoechinulin A alone.

<u>References</u>

Adachi, Y., Okazaki, M., Ohno, N., and Yadomae, T. (1997). Leukocyte activation by $(1\rightarrow 3)$ - β -D-glucans. *Mediators of Inflammation* 6: 251-256.

Agashe, V. R. and Hart, F. U. (2000). Roles of molecular chaperones in cytoplasmic protein folding. *Seminars in Cell and Developmental Biology*, 11: 15-25.

Anderson, D., Giacon, H. and Gibson, N. (1997). Dectection and thermal destruction of the chalkboard fungus (Ascospheaera apis) in honey. *Journal of Apicultural Research*, 36, 3-4: 163-168.

Ariizumi, K., Shen, G. L., Shikano, S., Xu, S., Ritter III, R., Kumamoto, T., Edelbaum, D., Morita, A., Bergstresser, P. R., and Takashima, A. (2000). Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. *Journal of Biological Chesmitry* 275: 20157-20167.

Becker, J. C., Dummer, R., Hartman, A. A., Burg, G. and Schmidt, R. E. (1991). Shedding of Icam1 from human melanoma cell lines induced by IFN- γ and tumor necrosis factor- α . Functional consequences on cell-mediated cytotoxicity. *Journal of Immunology*, 147: 4398-4010.

Benjamin, I. J. and McMillan, D. R. (1998). Stress (heat shock) proteins: Molecular chaperones in cardiovascular biology and disease. *Circulation Research*, 83: 117-132.

Berland, R. and Wortis, H. H. (1998). An NFAT-dependent enhancer is necessary for anti-IgM mediated induction of murine Cd5 expression in primary splenic B cells. *Journal of Immunology*, 165: 277-285.

Brasel, T. L., Martin, J. M., Carriker, C. G., Wilson, S. C. and Straus, D. C. (2005). Detection of Airborne *Stachybotrys chartarum* Macrocyclic Trichothecene Mycotoxins in the Indoor Environment. *Applied and Environmental Microbiology*, 71, 11: 7376-7388.

Brown, G. D., and Gordon, S. (2001). Immune recognition: A new receptor for betaglucans. *Nature* 413: 36-37.

Brown, G. D., Herre, J., Williams, D. L., Willment, J. A., Marshall, S. J., and Gordon, S. (2003) Dectin-1 Mediates the Biological Effects of β -Glucans. *Journal of Experimental Medicine* 197(9): 1119-1124.

Brown, G. D., Taylor, P. R., Reid, D. M., Willment, J. A., Williams, D. L., Martinez-Pomares, L., Wong, S. Y. C. and Gordon, S. (2002). Dectin-1 is a major beta-glucan receptor on macrophages. *Journal of Experimental Medicine*, 196, 3: 407-412.

Bruey, J. M., Ducasse, C., Bonniaud, P., Ravagnan, L., Susin, S. A., Diaz-Latoud, C., Gurbuxani, S., Arrigo, A. P., Kroemer, G., Solary, E. and Garrido, C. (2000). Hsp27

negatively regulates cell death by interacting with cytochrome c. *Nature Cell Biology*, 2: 645-652.

Brunekreef, B. (1992). Damp housing and adult respiratory symptoms. Allergy 47: 498-502.

Canossa, M., Gartner, A., Campana, G., Inagaki, N. and Thoenen, H. (2001). Regulated secretion of neurotrophins by metabotropic glutamate group I (mGluRI) and Trk receptor activation is mediated via phospholipase C singaling pathways. *The EMBO Journal*, 20(7): 1640-1650.

Cohen, I., Henzel, W. J. and Baeuerle, P. A. (1998). IKAP is a scaffold protein of the IkappaB kinase complex. *Nature*, 395-225.

Coultas, L., Chawengsaksophak, K. and Rossant, J. (2005). Endothelial cells and VEGF in vascular development. *Nature*, 438: 937-945.

Dales, R., Burnett, R., and Zwanenburg, H. (1991). Adverse health effects among adults exposed to home dampness and molds. *American Review of Respiratory Disease* 143: 505-509.

Dalmo, R. A. and Bogwald, J. (2008). Beta-glucans as conductors of immune symphonies. *Fish and Shellfish Immunology*, 25, 4: 384-396.

Dearborn, D. G., Yike, I., Sorenson, W. G., Miller, M. J., and Etzel, R. A. (1999). Overview of investigations into pulmonary hemorrhage among infants in Cleveland, Ohio. *Environmental Health Perspectives* 107: 495-499.

Didelot, C., Schmitt, E. Brunet, M., Maingret, L., Parcellier, A. and Garrido, C. (2006). Heat shock proteins: Endogenous modulators of apoptotic cell death. *Handbook of Experimental Pharmacology*, 171-198.

DiPenta, J. (2008). The effects of indoor mold mycotoxins on primary mouse alveolar macrophage gene expression. Honors Thesis Saint Mary's University, Halifax, NS.

Domsch, K. H., Gams, W. And Anderson, T. H. (1993). Compendium of Soil Fungi. Vol. 1. IHW-Verlag, Eching.

Dorger, M. and Krombach, F. (2002). Response of alveolar macrophages to inhaled particulates. *European Surgical Research*, 34, 1-2: 47-52.

Duffus, J. H., Levi, C., and Manners, D. J. (1982) Yeast cell wall glucans. Advances in Microbial Physiology 23: 151-181.

Feder, M. E. and Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. *Annual Review of Physiology*, 61: 243-282.

Ferro, A.R., Kopperud, R.J., and Hildemann, L.M. (2004). Source Strengths for Indoor Human Activities that Resuspend Particulate Matter. *Environmental Science & Technology* 38: 1759-1764.

Flannigan B. and Miller J.D. (2001) Microbial growth in indoor environments. In: Flannigan B, Samson RA, Miller JD (eds) Microorganisms in home and indoor work environments: Diversity, Health Impacts, Investigation and Control. Taylor & Francis, London, 35-67.

Flemming, J. (2003). Dose and time dependent inflammatory responses in mice after intratracheal exposure to *Stachybotrys chartarum* spores. Honors Thesis. Saint Mary's University, Halifax, NS.

Fischer, G., Muller, T., Schwalbe, R., Ostrowski, R. and Dott, W. (2000). Exposure to airborne fungi MVOC and mycotoxins in biowaste-handling facilities. *International Journal of Hygiene and Environmental Health*, 203: 97-104.

Fogelmark, B., Sjöstrand, M., Williams, D., and Rylander R. (1997). Inhalation toxicity of $(1\rightarrow 3)$ - β -D-glucan: recent advances. *Mediators of Inflammation* 6: 263-265.

Fukui, N., Zhu, Y., Maloney, W. J., Clohisy, J. and Sandell, L. J. (2003). Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes. *The Journal of Bone and Joint Surgery*, 85-A: 59-66.

Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S., and Underhill, D. M. (2003) Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2. *Journal of Experimental Medicine* 197(9): 1107-1117.

Garrett, M., Rayment, P., Hooper, M., Abramson, M., and Hooper, B. (1998). Indoor airborne fungal spores, house dampness and associations with environmental factors and respiratory in children. *Clinical and Experimental Allergy* 28: 459-467.

Gerberick, G. F., Sorenson, W. G., and Lewis, D. M. (1984). The effects of T-2 toxin on alveolar macrophage function in vitro. *Environmental Research* 33: 246–260.

Gerthoffer, W. T. and Gunst, S. J. (2001). Invited review: Focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. *Journal of Applied Physiology*, 91: 963-972.

Gotelli, N. J. and Ellison, A. M. (2004). A primer of Ecological Statistics. USA: Sinauer Associates. 346-348

Gould, S. E., Day, M., Jones, S. S. and Dorai, H. (2002). BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. *Kidney International*, 61: 51-60.

Gregory, L., Pestka, J. J., Dearborn, D. G. and Rand, T. G. (2004) Localization of satratoxin-G in *Stachybotrys chartarum* spores and spore-impacted mouse lung using immunohistochemistry. *Toxicologic Pathology* 32(1): 26-34.

Harada, T., and Ohno, N. (2008) Contribution of dectin-1 and granulocyte macrophagecolony stimulating factor (GM-CSF) to immunomodulating actions of β -Glucan. *International Immunopharmacology* 8: 556-566.

Health Canada. (2004). Fungal contamination in public buildings: health effects and investigation methods. Health Canada, Ottawa, ON. ISBN 0-662-37432-0.

Hooper, J. F. and Scott, M. P. (2005). Communicating with Hedgehogs. *Nature Reviews Molecular and Cell Biology*, 6: 306-317.

Huttunen, K., Pelkonen, J., Nielsen, K. F., Nuutinen, U., Jussila, J. and Hirvonen, M-R. (2004). Synergistic Interaction in Simultaneous Exposure to *Streptomyces californicus* and *Stachybotrys chartarum*. *Environmental Health Perspectives*, 112, 6: 659-665.

Hyvarinen, A., Meklin, T., Vepsalainen, A. and Nevalainen, A. (2002). Fungi and actinobacteria in moisture-damaged building materials – concentrations and diversity. *International Biodeterioration and Biodegradation*, 49, 1: 27-37.

Jakab, G. J., Hmieleski, R. R., Zarba, A., Hemenway, D. R., and Groopman, J. D. (1994). Respiratory aflatoxicosis: Suppression of pulmonary and systemic host defenses in rats and mice. *Toxicology Applied Pharmacology* 125: 198–205.

Jarvis, B. B. (2002). Chemistry and toxicology of molds isolated from water-damaged buildings. *Advances in Experimental Medicine and Biology*, 504, 43-52.

Jewett, A., Wang, M-Y., Teruel, A., Poupak, Z., Bostanian, Z. and Park, N-H. (2003). Cytokine dependent inverse regulation of CD54 (Icam1) and major histocompatibility complex class I antigens by nuclear factor kB in HEp2 tumor cell line: Effect of the function of natural killer cells. *Human Immunology*, 64: 505-520.

Kataoka, K., Tatsushi, M., Yamazaki, S., Takeshige, K. (2002). Activation of Macrophages by Linear $(1\rightarrow 3)$ - β -D-glucans. Journal of Biological Chemistry 277(39): 368254-36831.

Katoh, M. (2002). Wnt and FGF gene clusters (Review). International Journal of Oncology, 21: 1269-1273.

Lander, F., Meyer, H. W., and Norn, S. (2001). Serum IgE specific to indoor moulds, measured by basophil histamine release, is associated with building-related symptoms in damp buildings. *Inflammation Research* 50: 227-231.

Leech, J. A., Wilby, K., McMullen, E., and Laporte, K. (1997). The Canadian Human Activity Pattern Survey: Report of Methods and Population Surveyed. Chronic Diseases in Canada, 17(3).

Lee (2005). In: Young. "Curdlan." *Polysaccharides and Polyamides in the Food Industry*. Wiley-VCH, 135-54.

Lindquist, S. and Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics, 22: 631-677.

Liu, B. H., Yu, F. Y., Chan M. H., and Yang, Y. L. (2002). The Effects of Mycotoxins, Fumonisin B1 and Aflatoxin B1, on Primary Swine Alveolar Macrophages. *Toxicology* and Applied Pharmacology 180(3): 197-204.

Machold, R., Machold, R., Hayashi, S., Rutlin, M., Muzumdar, M. D., Nery, S., Corbin, J. G., Gritli-Linde, A., Dellovade, T., Porter, J.A., Rubin, L.L., Dudek, H., McMahon, A.P. and Fishell, G. (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephallic stem cell niches. *Neuron*, 39: 937-950.

Massague, J., Blain, S. W. and Lo, R. S. (2000). TGF-ß signaling in growth control, cancer, and heritable disorders. *Cell*, 103: 295-309.

McMahon, A. P., Ingham, P. W. and Tabin, C. J. (2003). Developmental roles and clinical significance of hedgehog signaling. *Current Topics in Developmental Biology*, 53: 1-114.

Murtoniemi, T. (2003). Microbial growth on plasterboard and spore-induced cytotoxicity and inflammatory responses in vitro. Publications of the National Public Health Institute.

Miller, J. D., Dugandzic, R., Frescura, A. M. and Salares, V. (2007). Indoor- and outdoor- derived contaminants in urban and rural homes in Ottawa, Ontario, Canada. *Journal of the Air and Waste Management Association*, 57, 3: 297-302.

Miller, J. D. (1992). Fungi as contaminants in indoor air. *Atmospheric Environment*, 26: 2163-2172.

Miller, J.D., Rand, T. G. and Jarvis, B. B. 2003. *Stachybotrys chartarum*: cause of human disease or media darling? Medical Mycology. 41: 271-291.

Miller, J. D., Rand, T. G., McGregor, H., Solomon, J., Yang, C. (2008). Mold ecology: recovery of fungi from certain moldy building materials. In: Prezant, B., Weekes, D. and

Miller, J. D (eds), *Recognition, Evaluation and Control of Indoor Mold*, American Industrial Hygiene Association, Fairfax, 43-51.

Miller, J. D., Sun, M., Gilyan, A., Roy, J. and Rand, T. G. (2009) Inflammationassociated gene transcription and expression in mouse lungs induced by low molecular weight compounds from fungi from the built environment. *Chemico-Biological Interactions* (In Press).

Miyazono, K., ten Dijki, P., Ichijo, H. and Heldin, C. H. (1994). Receptors for transforming growth factor-*B. Advances in Immunology*, 55: 181-220.

Montefort, S. and Holgate, S. T. (1991). Adhesion molecules and their role in inflammation. *Respiratory Medicine Journal*, 85-91.

National Academy of Science. (2000). *Clearing the Air*. National Academy press, Washington, D. C.

National Academy of Science (2004). *Damp Indoor Spaces & Health*. National Academy Press, Washington, DC.

Nielsen, K. F., Gravesen, S., Nielsen, P. A., Anderson, B., Thrane, U. and Frisvad, J. C. (1999). Production of mycotoxins on artificially and naturally infested building materials. *Mycopathologia*, 145, 1: 43-56.

Nielsen, K. F., Hansen, M. O., Larsen, T. O., and Thrane, U. (1998). Production of trichothecene mycotoxins on water damaged gypsum boards in Danish buildings. *International Biodeterioration and Biodegradation*, 42, 1-7.

Nieminen, S. M., Karki, R., Auriola, S., Toivola, M., Laatsch, H., Laatikainen, R., Hyvarinen, A., and won Wright, A. (2002). Isolation and identification of *Aspergillus fumigatus* mycotoxins on growth medium and some building materials. *Applied Environmental Microbiology*, 68, 4871-4875.

Nikulin, M., Reijula, K., Jarvis, B., Veijalainen, P., and Hintikka, E. (1997). Effects of intranasal exposure to spores of *Stachybotrys atra* in mice, *Fundamental and Applied Toxicology*, 35, 182-188.

Nishio, M., Spielman, J., Lee, R. K., Nelson, D. L. and Podack, E. R. (1996). CD80 (B7.1) and CD54 (intercellular adhesion molecule-1) induce target cell susceptibility to promiscuous cytotoxic T cell lysis. *Journal of Immunology*, 157: 4347.

Nusse, R. (2003). Whits and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. *Development*, 130: 5297-5305.

Ormstad, H., Groeng, E. C., Lovik, M. and Hetland, G. (2000). The fungal cell wall component beta-1,3-glucan has an adjuvant effect on the allergic response to ovalbumin in mice. *Journal of Toxicology and Environmental Health: Part A*, 61, 1: 55-67.

Ortiz, L. A., Moroz, K., Liu, J. Y., Hoyle, G. W., Hammond, T., Hamilton, R. F., Holian, A., Banks, W., Brody, A. R., and Friedman, M. (1998). Alveolar macrophage apoptosis and TNF-alpha, but not p53, expression correlate with murine response to bleomycin. *American Journal of Physiology* 275: L1208–L1218.

Pasca di Magliano, M. and Hebrok, M. (2003). Hedgehog signaling in cancer formation and maintenance. *Nature Reviews Cancer*, 3: 903-911.

Penttinen, P., Pelkonen, J., Huttunen, K., Toivola, M. and Hirvonen, M-R. (2005). Interactions between *Streptomyces californicus* and *Stachybotrys chartarum* can induce apoptosis and cell cycle arrest in mouse RAW264.7 macrophages. *Toxicology and Applied Pharmacology*, 202: 278-288.

Pestka, J. J., Zhou, H-R., Moon, Y. and Chung, Y. J. (2004). Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecens: unraveling a paradox. *Toxicology Letters*, 153: 61-73.

Pinto, M.A. and Janke, D. (2002). Mold 101: An Overview for SH&E Professionals: Recognizing and handling mold hazards in the workplace. Professional Safety, 34-38.

Plasencia, F. J., and Rosenstein, Y. (1990). Effect of in vivo Administration of T-2 Toxin on Peritoneal Murine Macrophages. *Toxicon*, 28 (5), 559–67.

Raingeaud, J., Gupta, S., Rogers, J.S., Dickens, M., Han, J., Ulevitch, R.J., and Davis, R.J. (1995). Pro-inflammatory Cytokines and Environmental Stress Cause p38 Mitogenactivated Protein Kinase Activation by Dual Phosphorylation on Tyrosine and Threonine. *The American Society for Biochemistry and Molecular Biology, Inc.* 270(13): 7420-7426.

Rand, T.G. (1999). An assessment of mold contamination problems in Atlantic Canada schools: mold burdens, amplifying sites and benefits of proactive school inspection policies. In Johanning E. (ed.) Bioaerosols, fungi and mycotoxins. Proceedings of the third International Conference on Fungi, Mycotoxins and Bioaerosols. Saratoga Springs, New York: 581-592.

Rand, T. G. (2005). Ecology of molds in building environments. In: American Industrial Hygiene Association, Field guide for determination of biological contamination in environmental samples (eds. Hung, L-L., Miller, J. D. and Dillon, K.) AIHA Press. Washington, DC, 29-38.

Rand, T.G., Flemming, J., Miller, J.D., and Womiloju, T.O. (2006). Inflammatory and cytotoxic responses in mouse lungs toward atranones A and C from *Stachybotrys* chartarum. Journal of Toxicology and Environmental Health A, 69, 1239-1251.

Rand, T. G., Giles, S., Flemming, J., Miller, J. D. and Puniani, E. (2005). Inflammatory and cytotoxic responses in mouse lungs exposed to purified toxins from building isolated *Penicillium brevicompactum* Dierckx and *P. chrysogenum* Thom. *Toxicological Sciences*, 87, 213-222.

Rand, T.G. (2007). Molds, mycotoxins and inflammatory lung disease: inflammatory mediator modulation and cell specific responses: A review. International Symposium on Respiratory Diseases: 2-6.

Rand, T. G., Sun, M., Gilyan, A., Downey, J. and Miller, J. D. (2009) Dectin-1 and inflammation-associated gene transcription and expression in mouse lungs by toxic (1,3)- β -D glucan. *Archives of Toxicology*.

Rand, T.G., White, K., Logan, A., and Gregory, L. (2003). Histological, immunohistochemical and morphometric changes in lung tissue in juvenile mice experimentally exposed to *Stachybotrys chartarum* spores, *Mycopathologia*, 156 (2), 119-131.

Rao, C. Y., Brian, J. D., and Burge, H. A. (2000). Reduction of pulmonary toxicity of *Stachybotrys chartarum* spores by methanol extraction of mycotoxins, *Applied and Environmental Microbiology*, 66, 2817-2821.

Rao, C. Y., Burge, H. A., and Brian, J. D. (2004). The time course of responses to intratracheally instilled toxic *Stachybotrys chartarum* spores in rats, *Mycopathologia*, 149, 27-34.

Reid, D. M., Montoya, M., Taylor, P. R., Borrow, P., Gordon, S., Brown, G. D., and Wong, S. Y.C. (2004) Expression of the β -Glucan Receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. *Journal of Leukocyte Biology* 76: 86-94.

Robbins, C. (2007). Expression of surfactant protein and inflammatory genes in primary fetal rat alveolar type II cells exposed to *penicillium chrysogenum* and *Stachbotrys chatarum* purified toxins. Honors Thesis. Saint Mary's University, Halifax, NS.

Roberts, A. B. and Sporn, M. B. (1990). The transforming growth factor betas In: Sporn, M. B. and Roberts, A. B., editors. Peptide Growth Factors and their Receptors part I. Berlin: Springer-Verlag. 419-472.

Rossi, G. A., Zocchi, E., Sacco, O., Balbi, B., Ravazzoni, C., and Damiani, G. (1986). Alveolar macrophage stimulation of T-cell proliferation in autologous mixed lymphocyte reactions: Role of HLA-DR antigens. *American Review of Respiratory Disease*, 133: 78– 82. Royds, J. A., Dower, S. K., Qwarnstrom, E. E. and Lewis, C. E. (1998). Response of tumor cells to hypoxia: role of p53 and NFkB alpha. *Journal of Clinical and Molecular Pathology*, 51-55.

Ruotsalainen, M., Hirvonen, M.R., Nevalainen, A., Meklin, T., and Savolainen, K. (1998). Cytotoxicity, Production of Reactive Oxygen Species and Cytokines Induced by Different Strains of *Stachybotrys sp.* from Mouldy Buildings in RAW2647 Macrophages. *Environmental Toxicology and Pharmacology*, 6, 193–9.

Rylander, R., Persson, K., and Goto, H. (1992). Airborne β -a,3-glucan may be related to symptoms in sick buildings. *Indoor Environment*, 1: 263-267.

Rylander, R., Hsieh, V., and Courteheuse, C. (1994) The first case of sick building syndrome in Switerland. *Indoor Environment*, 3, 159-162.

Rylander, R., Norrhall, M., Engdhal, U., Tunsater, A., and Holt, P. G. (1998) Airways inflammation atopy, and $(1\rightarrow 3)$ -beta-D-glucan exposures in two schools. *American Journal of Respiratory and Critical Care Medicine* 158: 1685-1687.

Sakurai, T., Kaise, T., Yadomae, T. and Matsurbara, C. (1997). Different role of serum components and cytokines on alveolar macrophage activation by soluble fungal (1->3)-beta-D-glucan. *European Journal of Pharmacology*, 334, 2-3: 255-263.

Serfling, E., Berberich-Siebelt, F., Chuvpilo, S., Jankevics, E., Klein-Hessling, S., Twardzik, T. and Avots, A. (2000). The role of NF-AT transcription factors in T cell activation and differentiation. *Biochimica et Biophysica Acta*. 1498(1).

Seth, R., Raymond, F. D. and Makoba, M. W. (1991). Circulating Icam1isoforms: diagnostic prospects for inflammatory and immune disorders. *Lancet*, 83(4): 338.

Shematek, E. M., Braatz, J. A., and Cabib, E. (1980). Biosynthesis on the yeast cell wall. I. Preparation and properties of beta-(1,3)glucan synthetase. *Journal of Biological Chemistry* 255: 888-894.

Sherr, C. J. and Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators of GI-phase progression. *Genes and Development*, 13: 1501-1512.

Shibuya, M. (2001). Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. *Cell Structure and Function*, 26: 25-35.

Simmons, D. L. (1995). The role of Icam expression in immunity and disease. *Cancer* Surveys, 24: 141.

Slack, G. J., Puniani, E., Frisvad, J. C., Samson, R. A. and Miller, J. D. (2009). Secondary metabolites from *Eurotium* species, *Aspergillus calidoustus* and *A. insuetus* common in Canadian homes with a review of their chemistry and biological activities. *Mycological Research*, 113: 480-490.

Sorenson, W. G., Frazier, D. G., Jarvis, B. B., Simpson, J., and Robinson, V. (1987). Trichothecene mycotoxins in aerosolized conidia of *Stachybotrys atra*. *Applied Environmental Microbiology*, 53 (6), 1370–5.

Spengler, J., Neas, L., Nakai, S., Dockery, D., Speizer, F., Ware, J., and Raizenne, M. (1994). Respiratory symptoms and housing characteristics. *Indoor Air* 4: 72-82.

Sreedhar, A. S. and Csermely, P. (2004). Heat shock proteins in the regulation of apoptosis: New strategies in tumor therapy: A comprehensive review. *Pharmacology and Therapeutics*, 101: 227-257.

Stone, B. A., and Clark, A. E. (1992) Chemistry and Biology of $(1\rightarrow 3)$ - β -glucans, La Trobe University Press, Victoria, Austraila.

Tammela, T., Enholm, B., Alitalo, K. and Paavonen, K. (2005). The biology of vascular endothelial growth factors. *Cardiovascular Research*, 65: 550-563.

Tammer, B., Lehmann, I., Nieber, K. and Altenburger, R. (2007). Combined effects of mycotoxin mixtures of human T cell function. *Toxicology Letters*, 170: 124-133.

Teutsch, M., Higer, M., Wang, D. and Wortis, W. (1995). Induction of Cd5 on B and T cells is suppressed by cyclosporine A, FK-520 and rapamycin. *International Immunology*, 7 (381).

Thuvander, A., Wikman, C. and Gadhasson, I. (1999). In vitro exposure of human lymphocytes to trichothecenes: Individual variation in sensitivity and effects of combined exposure on lymphocyte function. *Food and Chemical Toxicology*, 37, 6: 639-648.

Uzendoski, K., Kantor, J. A., Abrams, S. I., Schlom, J. and Hodge, J. W. (1997). Construction and characterization of a recombinant vaccinia virus expressing murine intercellular adhesion molecule-1: induction and potentiation of antitumor responses. *Human Gene Therapy*, 8: 851.

Vanderbilt, J. N., Mager, E. M., Allen, L., Sawa, T., Wiener-Kronish, J., Gonzalez, R. and Dobbs, L. G. (2003). CXC Chemokines and their receptors are expressed in Type II cells and upregulated following lung injury, *American Journal of Respiratory Cell and Molecular Biology*, 29, 661-668.

Wang, H. and Yadav, J. S. (2007). Global gene expression changes underlying *Stachybotrys chartarum* toxin-induced apoptosis in murine alveolar macrophages: Evidence of multiple signal transduction pathways. *Apoptosis*, 12: 535-548.

Weis, W. I., Taylor, M. E., and Drickamer, K. (1998) The C-type lectin superfamily in the immune system. *Immunology Review*, 163: 19-34.

WHO. Health and environmental briefing #42 for local health officials. World Health Organization European Centre for Environment and Health, Hermann-Ehlers-Strase, Bonn, Germany, 2004.

Wicklow, D. T. and Shotwell, O. L. (1983). Intrafungal distribution of aflatoxins among conidia and sclerotia of *Aspergillus parasiticus*. *Canadian Journal of Microbiology*, 29: 1-5.

Williams, D. L., Mueller, A., Raptis, J., and Rice, P. (1997) Binding of fungal and plant glucans to the human macrophage receptor. In: Cotton and other organic dust, Proc. 218th Cotton and Other Organic Dust Research Conf. Beltwide Cotton Conference, Memphis, TN: National Cotton Council, 169-171.

Willment, J. A., Gordon, S., Brown, G. D. (2001). Chacaterization of the human β -glucan receptor and its alternatively spliced isoforms. *Journal of Biological Chemsitry* 276: 43818-43823.

Willment, J. A., Lin, H-H., Reid, D. M., Taylor, P. R., Williams, D. L., Wong, S. Y.C., Gordon, S., and Brown, G. D. (2003) Dectin-1 Expression and Function are Enchanced on Alternatively Activated and GM-CSF Treated Macrophages and are Negatively Regulated by IL-10, Dexamethasone, and Lipopolysaccharide. *Journal of Immunology* 171: 4569-4573.

Yang, G-H., Jarvis, B. B., Chung, Y-J. and Pestka, J. (2000). Apoptosis Induction by the Satratoxins and Other Trichothecene Mycotoxins: Relationship to ERK, p38 MARK, and SAPK/JNK Activation. *Toxicology and Applied Pharmacology*, 164: 149-160.

Yike, I., Rand, T., and Dearborn, D. (2005). Acute inflammatory responses to *Stachybotrys chartarum* in the lungs of infant rats: time course and possible mechanisms. *Toxicological Sciences* 84: 408 - 417.

Yike, I., Rand, T.G. and Dearborn, D. (2007). The role of fungal proteinases in pathophysiology of *Stachybotrys chartarum*. Mycopathologia 164 (4):171-181.

Young, R. S., Jones, A. M., and Nicholls, P. J. (1998). Something in the air: Endotoxins and glucans as environmental troublemakers. *Journal of Pharmacy and Pharmacology* 50: 11-17.

Young, S. H., Robinson, V. A., Barger, M., Porter, D. W., Frazer, D. G., and Castranova, V. (2001) Acute inflammation and recovery in rats after intractracheal instillation of a $1\rightarrow 3$ - β -glucan (Zymosan A). *Journal of Toxicology and Environmental Health*, 34, 311-325.

\sim
ί`
14
O,
4
6
PAM
A
ሲ
#
ŝ
ŏ
g
÷Ĕ
Š
.9
A B
\checkmark
SA
e
R
Ĕ
đĥ
õ
þ
[a]
10
(F
Ś
g
g gen
50
20
Ξ
5
ĕ
ъ.
N.
5
ų
ŭ
s an(
les and
enes and
genes and
d genes and
sed genes and
ğ
ğ
focused genes and
ğ
ğ
ğ
ğ
ğ
ğ
ğ
ğ
ğ
ğ
ğ
ğ
ğ
ğ
ğ
ğ
ption of transduction pathway focuse
iption of transduction pathway focuse
ption of transduction pathway focuse
iption of transduction pathway focuse
Description of transduction pathway focuse
Description of transduction pathway focuse
escription of transduction pathway focuse
Description of transduction pathway focuse
Description of transduction pathway focuse
able 1 - Description of transduction pathway focuse
Description of transduction pathway focuse

Atf2 Bax		Description	I ransouction Pathway (s)
Bax	NM_009715	Activating transcription factor 2	Stress
	NM_007527	Bcl2-associated X protein	p53
:			P13 kinase, AKT, Jak/Src,
Bcl2	NM_009741	B-cell leukemia/lymphoma 2	estrogen
Bcl211		Bcl2-like 1	Jak/Src, phospholipase c
Bircla	NM_008670	Baculoviral IAP repeat containing 1a	NFkB
Birc2	NM_007465	Baculoviral IAP repeat containing 2	NFkB
Birc3	NM_007464	Baculoviral IAP repeat containing 3	NFKB
Birc5	NM_009689	Baculoviral IAP repeat containing 5	Wnt
Bmp2	NM_007553	Bone morphogenetic protein 2	Hedgehog
Bmp4	NM_007554	Bone morphogenetic protein 4	Hedgehog
Brca 1	NM_009764	Breast cancer 1	estrogen
Ccl2	NM_011333	Chemokine (C-C motif) ligand 2	
Ccl20	NM_016960	Chemokine (C-C motif) ligand 20	NFkB
Ccnd1	NM_007631	Cyclin D1	Wnt, P13 kinase, AKT
Cd5	NM_007650	CD5 antigen	NFAT
Cdh1	NM_009864	Cadherin 1	Wnt
Cdk2	NM_016756	Cyclin-dependent kinase 2	androgen
Cdkn1a	NM_007669	Cyclin-dependent kinase inhibitor 1A (P21)	TGF-B, p53, androgen
Cdkn1b	NM_009875	Cyclin-dependent kinase inhibitor 1B	TGF-B
Cdkn2a	NM_009877	Cyclin-dependent kinase inhinitor 2A	TGF-B
		Cyclin-dependent kinase inhibitor 2B (p15,	
Cdkn2b	NM_007670	inhibits CDK4)	TGF-B
Cebpb	NM_009883	CCAAT/enhancer binding protein (C/EBP), beta	Insulin
(, en	00000 MN	Colony stimulating factor 2 (granulocyte-	Calcium and protein kinase c,
	1111 000 17C	Champleing (C V C matter linned 1	
	NM DOREGG	Chemokine (C-X-C motif) ligand 9	lak/stat
		Cytochrome P450. family 19. subfamily a.	
Cyp19a1	NM_007810	polypeptide 1	Creb
Egr1	NM_007913	Early growth response 1	Mitogenic, Creb, phospolipase c

Ei24	NM 007915	Etoposide induced 2.4 mRNA	p53
En1	NM_010133	Engrailedm1	Hedgehog, Retinoic Acid
Fas	1 U	Fas (TNF receptor superfamily member)	p53
Fasl	NM_010177	Fas ligand (TNF superfamily member 6)	NFAT
Fasn	ſ	Fatty acid synthase	Insulin
Fgf4	NM_010202	Fibroblast growth factor 4	Wnt
Fn1	NM_010233	Fibronectin 1	P13 kinase, AKT
			Mitogenic, Stress, creb, calcium
Fos	NM_010234	FBJ osteosarcoma oncogene	protein kinase c, phospholipase c
Foxa2	NM_010446	Forkhead box A2	Hedgehog
		Growth arrest and DNA-damage-inducible 45	
Gadd45a	NM_007836	alpha	p:53
	;	Gene regulated by estrogen in breast cancer	
Greb1	NM 015764	production	estrogen
Gys1	NM_030678	Glycogen synthase 1, muscle	Insulin
Hhip	NM_020259	Hedgehog-interacting protein	Hedgehog
Hk2	NM_013820	Hexokinase 2	Insulin
Hoxa1	NM_010449	Homeo box A1	Retinoic Acid
Hsf1	NM_008296	Heat shock factor 1	Stress
Hspb1	NM_013560	Heat shock protein 1	Stress
Icam1	NM_010493	Intercellular adhesion molecule	NFkB, phospholipase c
Igfbp3	NM_008343	Insulin-like growth factor binding protein 3	p\53
Igfbp4	NM_010517	Insulin-like growth factor binding protein 4	estrogen
Ikbkb	NM_010546	Inhibitor of kappaB kinase beta	NFkB
ll1a	NM_010554	Interleukin 1 alpha	NFkB
			NFkB, NFAT, Calcium and
112	NM 008366	Interleukin 2	protein kinase c
ll2ra	NM 008367	Interleukin 2 receptor, alpha chain	Calcium and protein kinase c
ll4a	NM_001008700	Interleukin 4 receptor, alpha	Jak/stat
Irf1	NM_008390	Interferon regulatory factor 1	Jak/stat
-			Mitogenic, Wnt, P13 kinase, AKT, Calcium protein kinase c,
Jun	NM_010591	Jun oncogene	phospholipase c

Lef1	NM_010703	Lymphoid enhancer binding factor 1	Wnt
Lep	NM_008493	Leptin	Insulin
Lta	NM_010735	Lymphotoxin A	NFkB
Mdm2	NM_010786	Transformed mouse 3T3 cell double minute 2	p53
Mmp10	NM_019471	Matrix metallopeptidase 10	Jak/stat
Mmp7	NM_010810	Matrix metallopeptidase 7	p13 kinase, AKT
			Wnt, P13 kinase, AKT, stress,
Myc	NM_010849	Myelocytomatosis oncogene	calcium and protein kinase c
Nab2	NM_008668	Ngfi-A binding protein 2	Mitogenic
		Nuclear factor of kappa light chain gene enhancer	
Nfkbia	NM_010907	in B-cells inhibitor, alpha	NFkB
			NFkB, Jak/stat, calcium and
			protein kinase c, phospholipase
Nos2	NM_010927	Nitric oxide synthase 2, inducible, macrophage	C
Nrip1	NM_173440	Nuclear receptor interacting protein 1	estrogen
Odc1	NM_013614	Ornithine decarboxylase, structural 1	Calcium and protein kinase c
		Peroxisome proliferator activated receptor	
Pparg	NM 011146	gamma	Wnt
Ptch1	NM 008957	Patched homolog 1	Hedgehog
Ptgs2		Prostoglandin-endoperoxide synthase 2	phospholipase c
Rbp1	NM_011254	Retinol binding protein 1, cellular	Retinoic Acid
Sele	NM_011345	Selectin, endothelial cell	LDL
Selp	NM_011347	Selectin, platelet	LDL
		TRAF family member-associated Nf-kappa B	
Tank	NM_011529	activator	NFkB
Tcf7	NM_009331	Transcription factor 7, T-cell specific	Wnt
Tert	- 11	Telomerase reverse transcriptase	NFkB
Tfrc	NM_011638	Transferrin receptor	Calcium and protein kinase c
Tmepai	NM_022995	Transmembrane, prostate androgen induced RNA	androgen
Tnf	NM_013693	Tumer necrosis factor	NFkB
Trp53	NM_011640	Transformation related protein 53	Stress
Vcam1	NM_011693	Vascular cell adhesion molecule 1	NFkB, phospholipase c, LDL
Vegfa	NM 009505	Vascular endothelial growth factor A	Wnt
Wisp1	NM_018865	WNT1 inducible signaling pathway protein 1	Wnt

Writ1	NM_021279	Wingless-related MMTV integration site 1	Hedgehog
Wnt2	NM_023653	Wingless-related MMTV integration site 2	Hedgehog
Gusb	NM_010368	Glucuronidase, beta	Housekeeping gene
		Hypoxanthine guanine phosphoribosyl transferase	
Hprt1	NM_013556		Housekeeping gene
		Heat shock protein 90 kDa alpha (cytosolic), class	
Hsp90ab1	NM_008302	B member 1	Housekeeping gene
Gapdh	NM_008084	Glyceraldehyde-3-phosphate dehydrogenase	Housekeeping gene
Actb	NM_007393	Actin, beta, cytoplasmic	Housekeeping gene

<u>Table 2</u> – Genes of Interest with their corresponding forward and reverse primer sequences

Gene Name	Ref Sequence	Forward Sequence	Reverse Sequence
Bmp2	NM_007553	GCTCCACAAACGAGAAAAGC	AGCAAGGGGAAAAGGACACT
Hspb1	NM_013560	CCTCTTCCCTATCCCCTGAG	TCAAAAGAGCGCACAGATTG
Icam1	NM_010493	TTCACACTGAATGCCAGCTC	GTCTGCTGAGACCCCTCTTG
Vegfa	NM_009505	CAGGCTGCTGTAACGATGAA	AAATGCTTTCTCCGCTCTGA
Cdknlb	NM_009875	AGCGTTTCTTCATTGCCTGT	CACAAAACATGCCACTTTGG
Cd5	NM_007650	GTGGCTCCAATTCCAAGTGT	AAGGGGTCACCACATCTCAG
Dectin-1 (Clec7a)	NM_020008	GGAATCCTGTGCTTTGTGGT	GTAGTTTGGGATGCCTTGGA
Actb	NM_007393	AGCCATGTACGTAGCCATCC	TCTCAGCTGTGGTGGTGAAG

<u>Table 3</u> – Significantly regulated genes when AMs are exposed to neoechinulin A & B at 10^{8} M for 2h: Transduction Pathway Screening Results

Mycotoxin	GENE	Transduction Pathway
2h Neo A 10-8M	Bmp2	Hedgehog Pathway
	Hspb1	Stress Pathway
	Icam1	Phospholipase c/NFkb Pathways
	Vegfa	Wnt Pathway
	Cdknlb	TGF-B pathway
2h Neo B 10-8M	Bmp2	Hedgehog Pathway
	Cd5	NFaT Pathway

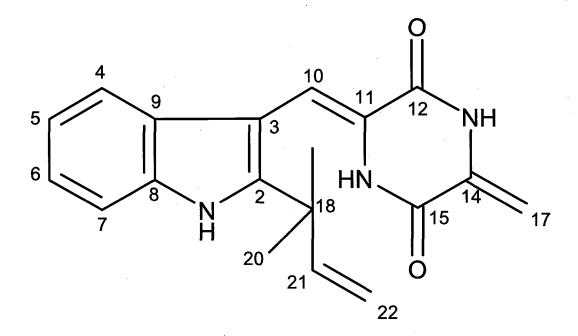
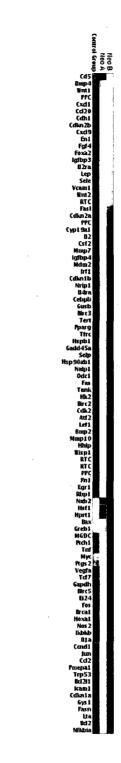
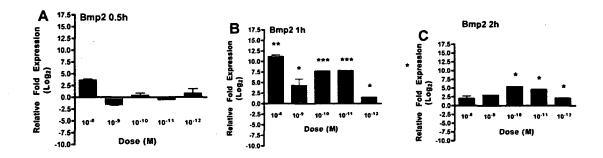
<u>Table 4</u> – qPCR Reaction Parmeters

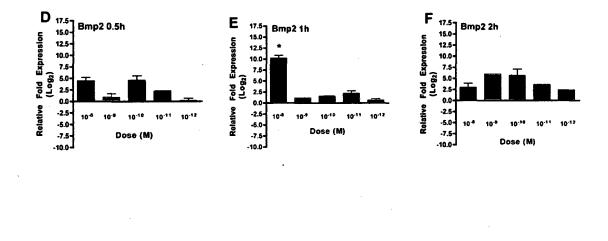
Cycles	Duration	Temperature
1	10 min	95°C
	15 sec	95°C
40	<u>1 min</u>	60°C/55°C

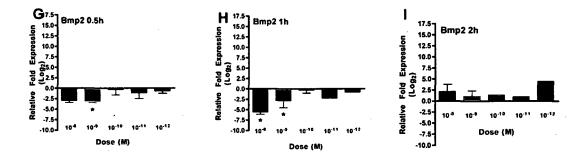
				Fold Re					
	N	eoechinulir	A	Neoechinulin B			β (1,3) Glucan		
Gene	30m	1h	2h	30m	1h	2h	30m	1h	2h
10 ⁻⁸ M									
Bmp2	13.0	2466.5	4.3	22.7	1195.0	7.7	-8.0	-48.3	4.5
Hspb1	2.2	48.0	9.4	4.0	182.8	18.2	-12.8	-1.6	1.3
lcam1	2064.5	34233.8	728.7	905.8	18021.9	1422.6	-11.3	-389.1	2.9
Vegfa	393.2	21964.7	1468.4	143.8	22002.8	3540.2	-14.4	-12.0	36.2
Cdknlb	229.2	5542.7	330.8	507.5	3124.5	558.4	-16.9	-275.2	3.0
Cd5	1.5	33.7	39.1	2.4	368.1	9.2	-3.2	-2.2	-2.6
Dectin-1	5.4	1.1	18.6	2.6	1.7	8.1	1.2	1.1	-438.3
10 ⁻⁹ M									
Bmp2	-2.8	21.4	8.6	1.9	2.3	64.0	-8.6	-7.2	2.1
Hspb1	2.6	57.5 °	8.6	3.5	2.3	64.0	1.4	2.6	1.4
lcam1	1310.7	2521.8	19.8	544.5	2.5 1915.2	1525.0	-2.1	2.0 1.9	2.0
Vegfa	149.2	2523.8	87.1	179.4	1721.5	1951.1	1.2	1.9	11.3
Cdknlb	83.1	184.4	8.6	9.8	1230.7	4402.0	-1.2	1.2	27.4
Cd5	1.4	10.6	8.6	4.1	124.7	142.1	2.7	1.1	4.3
Dectin-1	4.8	6.5	51.4	-3.4	30.2	3817.5	2.4	60.4	5.2
10									
10 ⁻¹⁰ M									
Bmp2	1.4	222.2	45.3	24.2	3.0	49.9	-1.8	-1.2	2.6
Hspb1	4.6	222.9	45.3	1243.8	3.0	33.9	1.3	2.4	2.8
lcam1	7340.7	1592.6	2890.9	37289.1	2.8	3353.9	-1.3	-1.1	3.4
Vegfa	344.3	2457.3	12548.0	14080.4	5.9	591.0	1.1	1.5	6.8
Cdknlb	176.1	817.7	354.8	7469.5	69.3	1640.3	-1.6	1.2	17.2
Cd5	5.6	222.9	101.7	24.3	19.7	33.3	5.4	1.1	8.1
Dectin-1	15.5	14.4	841.6	3.7	2.5	1116.5	3.8	91.4	6.2
10 ⁻¹¹ M									
Bmp2	-1.4	238.2	26.0	4.8	4.6	14.9	-2.2	-4.7	2.0
Hspb1	2.1	238.9	26.0	505.4	9.9	14.9	-1.1	7.1	2.1
lcam1	4081.7	9339.1	833.0	24216.5	1624.7	124.0	-2.1	1.9	-2.1
Vegfa	200.5	8761.1	6288.6	9717.9	2253.9	58.1	-1.2	-9.4	-1.2
Cdknlb	216.3	408.4	1418.3	10822.9	687.2	129.4	1.1	-4.5	1.4
Cd5	2.2	238.9	84.1	22.3	68.3	14.9	3.5	59.7	3.2
Dectin-1	7.5	32.9	2952.5	3.1	35.0	189.7	2.8	45.3	-6.2
10 ⁻¹² M									
Bmp2	1.9	3.0	4.6	1.1	1.6	5.3	-1.7	2.8	22.1
Hspb1	4.7	10.8	4.6	20.8	14.4	5.3	3.5	92.0	24.3
lcam1	1093.3	5185.5	21.8	2395.9	4145.2	26.8	-1.2	2.9	3.6
Vegfa	70.9	5040.8	17644.5	202.2	2006.5	60.8	1.6	-4.7	5.4
Cdknlb	122.4	1094.3	1528.0	115.4	891.1	160.3	1.3	1.0	17.9
Cd5	5.8	3.0	11.6	4.0	69.2	5.6	7.6	138.0	29.0
Dectin-1	16.7	30.6	584.8	3.4	22.6	65.4	6.0	169.3	1.9

<u>Table 5</u> - Summary table for gene regulation changes. Values in red indicate down-regulation. (Significantly ($p \le 0.05$) regulated genes in bold).

Figure 1 – Structure of Neoechinulin A (Slack et al., 2009)

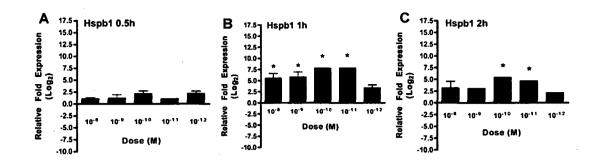




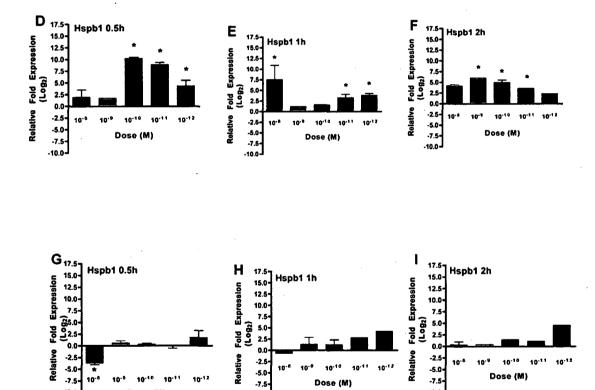

Figure 2 – Structure of Neoechinulin B (Slack et al., 2009)



Bay

<u>Figure 3</u> – Summary of results from Transduction Pathway Screening Experiment. Heat map showing levels of gene expression in RAW 264.7 cells exposed to 10^{-8} M neoechinulin A and B at 2h PE. Green = lowest levels of gene expression; Red = highest levels of gene expression.

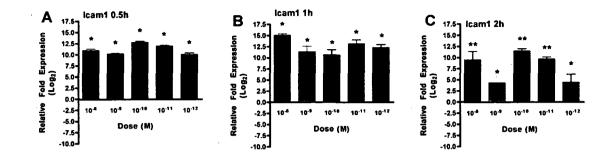


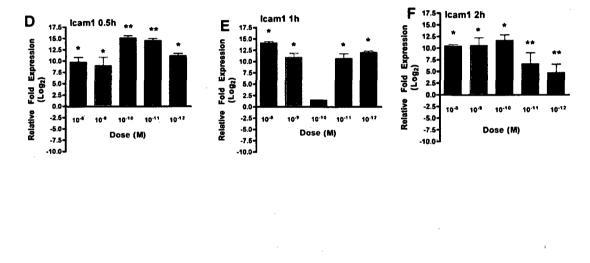


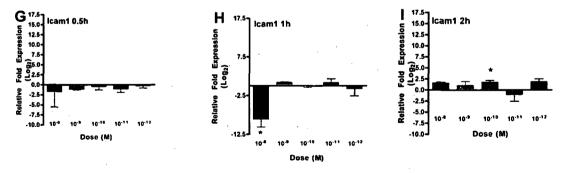
<u>Figure 4</u> – Dose response of Bmp2 after exposure to neoechinulin A & B and β (1, 3) D glucan. The 1st column = 0.5h exposure (a,d,g); 2nd column = 1h (b,e,h); 3rd = 2h(c,f,i). The 1st row = neoechinulin A exposure (a,b,c); 2nd row = neoechinulin B (d,e,f); 3rd row = β (1, 3) D glucan. (n = 3 for each treatment) * indicates significant regulation (P≤0.05) compared to controls

- ** indicates significant difference from *
- *** indicates significant difference from both * and **

<u>Figure 5</u> – Dose response of Hspb1 after exposure to neoechinulin A & B and β (1, 3) D glucan. The 1st column = 0.5h exposure (a,d,g); 2nd column = 1h (b,e,h); 3rd = 2h(c,f,i). The 1st row = neoechinulin A exposure (a,b,c); 2nd row = neoechinulin B (d,e,f); 3rd row = β (1, 3) D glucan. (n = 3 for each treatment)

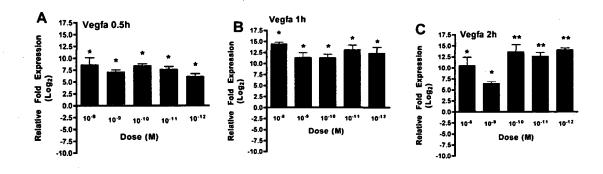

-10.0

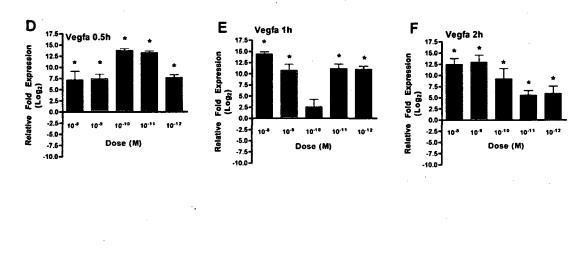

-10.0

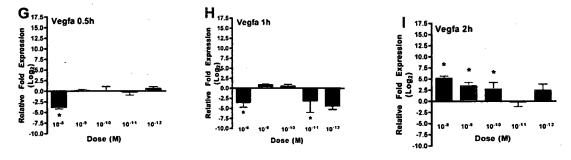

* indicates significant regulation (P<0.05) compared to controls

-10.0-

Dose (M)

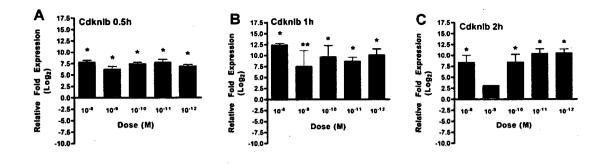


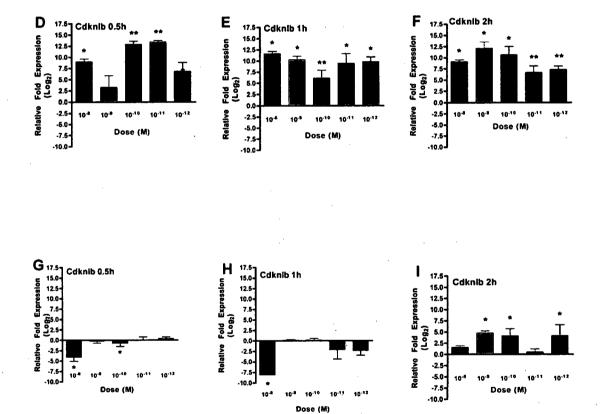




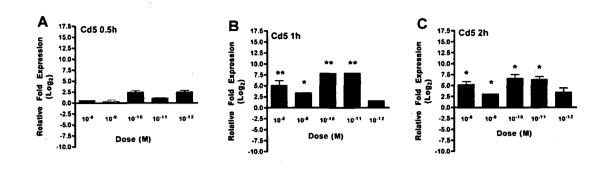
<u>Figure 6</u> – Dose response of Icam1 after exposure to neoechinulin A & B and β (1, 3) D glucan. The 1st column = 0.5h exposure (a,d,g); 2nd column = 1h (b,e,h); 3rd = 2h(c,f,i). The 1st row = neoechinulin A exposure (a,b,c); 2nd row = neoechinulin B (d,e,f); 3rd row = β (1, 3) D glucan. (n = 3 for each treatment)

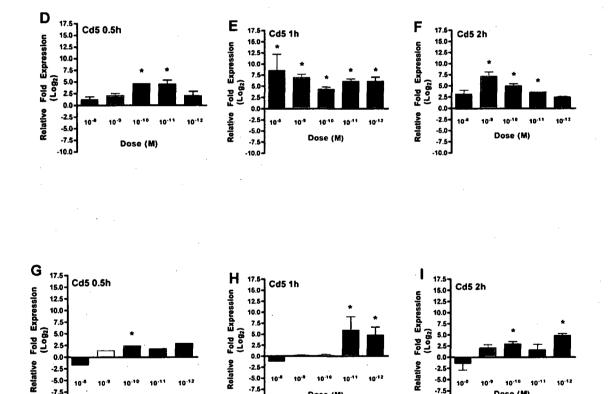
** indicates significant difference from *

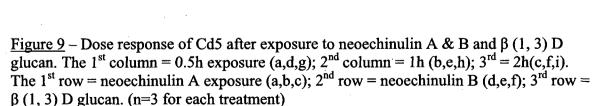




<u>Figure 7</u> – Dose response of Vegfa after exposure to neoechinulin A & B and β (1, 3) D glucan. The 1st column = 0.5h exposure (a,d,g); 2nd column = 1h (b,e,h); 3rd = 2h(c,f,i). The 1st row = neoechinulin A exposure (a,b,c); 2nd row = neoechinulin B (d,e,f); 3rd row = β (1, 3) D glucan. (n = 3 for each treatment)


** indicates significant difference from *





<u>Figure 8</u> – Dose response of Cdknlb after exposure to neoechinulin A & B and β (1, 3) D glucan. The 1st column = 0.5h exposure (a,d,g); 2nd column = 1h (b,e,h); 3rd = 2h(c,f,i). The 1st row = neoechinulin A exposure (a,b,c); 2nd row = neoechinulin B (d,e,f); 3rd row = β (1, 3) D glucan. (n=3 for each treatment)

** indicates significant difference from *

10'11 10-12

Dose (M)

-5.0 -7.5

-10.0-

10.4 101 10-10 -2.5 Т

-5.0

-10.0-

10 •7.5

10-1 10.10 10-11

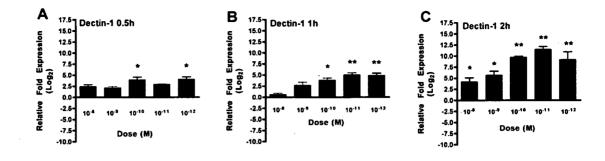
Dose (M)

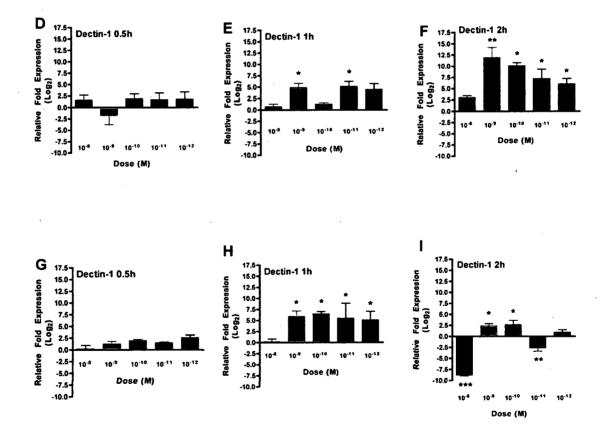
* indicates significant regulation (P<0.05) compared to controls

** indicates significant difference from *

-2.1

-5.0

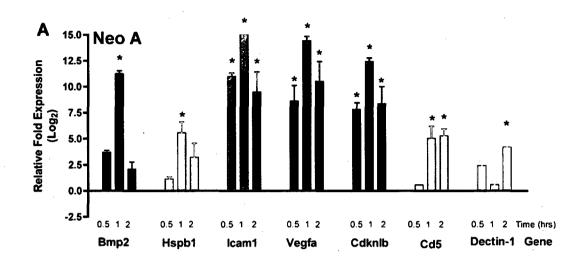

-7.5

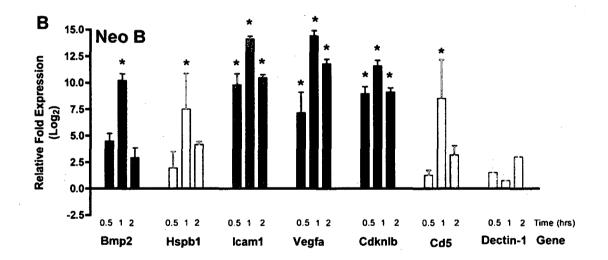

-10.0-

10-

10-10

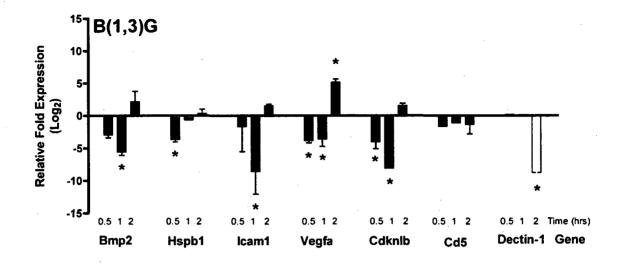
Dose (M)

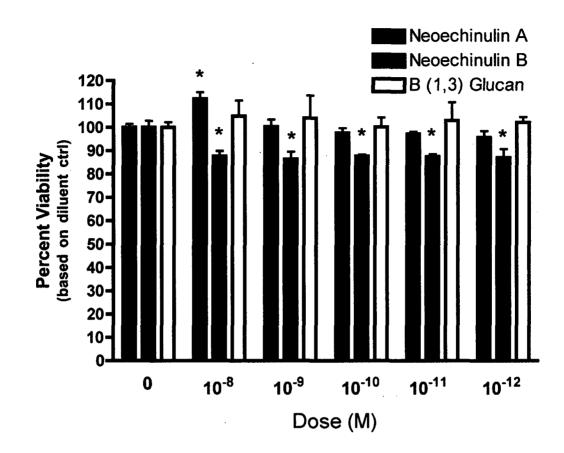




<u>Figure 10</u> – Dose response of Dectin-1after exposure to neoechinulin A & B and β (1, 3) D glucan. The 1st column = 0.5h exposure (a,d,g); 2nd column = 1h (b,e,h); 3rd = 2h(c,f,i). The 1st row = neoechinulin A exposure (a,b,c); 2nd row = neoechinulin B (d,e,f); 3rd row = β (1, 3) D glucan. (n = 3 for each treatment)

** indicates significant difference from *


*** indicates significant difference from both * and **



<u>Figure 11 a-b</u> - Temporal patterns of gene expression in RAW 264.7 murine macrophages. A = neoechinulin A 10^{-8} M exposure; B = neoechinulin B 10^{-8} M exposure (n=3 for each treatment)

* indicates significant regulation (P≤0.05) compared to controls

<u>Figure 12</u> - Temporal patterns of gene expression in RAW 264.7 murine macrophages exposed to $10^{-8}M \beta (1, 3)$ D-glucan (n=3 for each treatment) * indicates significant regulation (P≤0.05) compared to controls

<u>Figure 13</u> – Assessment of neoechinulin A & B and β (1, 3) D-glucan cytotoxicity by MTT (n=4 for each treatment)

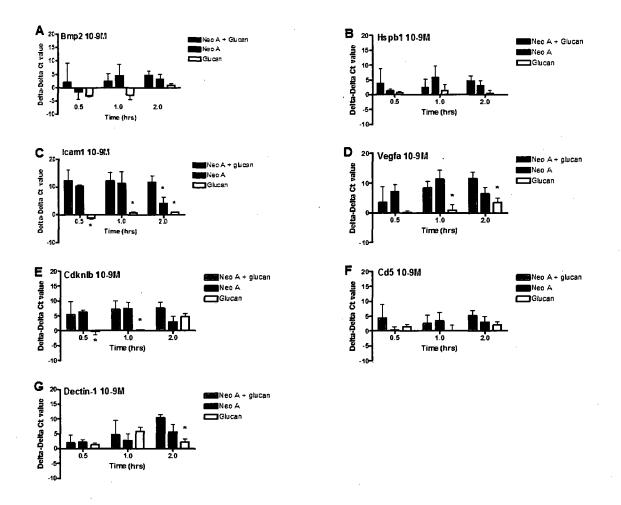
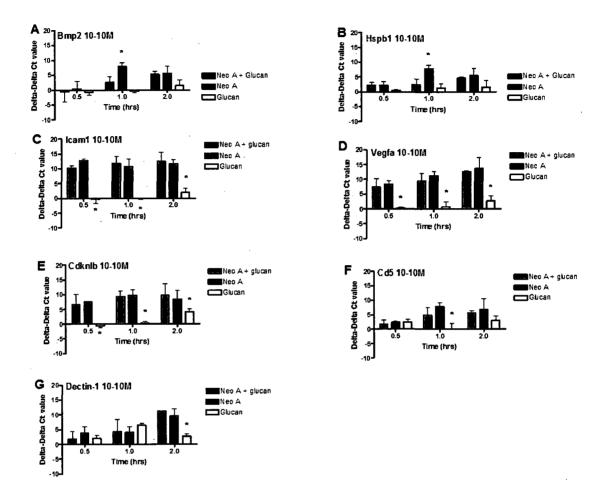
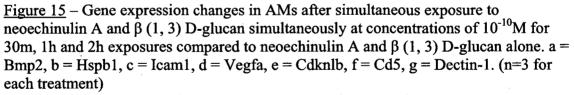




Figure 14 – Gene expression changes in AMs after exposure to neoechinulin A and β (1, 3) D-glucan simultaneously at concentrations of 10⁻⁹M for 30m, 1h and 2h exposures compared to neoechinulin A and β (1, 3) D-glucan alone. a = Bmp2, b = Hspb1, c = Icam1, d = Vegfa, e = Cdknlb, f = Cd5, g = Dectin-1. (n=3 for each treatment) * indicates significant regulation (P≤0.05) compared to controls

APPENDIX I – ANOVA TABLES NEO A

Table Analyzed

10-8M Bmp2

Two-way RM ANOVA Matching by cols

Source of Variation	% of total variation	P value
Interaction	18.39	0.0028
Time	34.83	0.0003
Treatment	36.47	0.0054
Subjects (matching)	4.8499	0.227

Source of Variation	P value summary	Significant?
Interaction	**	Yes
Time	***	Yes
Treatment	**	Yes
Subjects (matching)	ns	No

				Mean	
Source of Variation	Df		Sum-of-squares	square	F
Interaction		2	73.45	36.72	13.46
Time		2	139.1	69.54	25.49
Treatment		1	145.6	145.6	30.08
Subjects (matching)	,	4	19.37	4.842	1.775
Residual		8	21.82	2.728	

0

Number of missing values

Bonferroni posttests

Saline vs. Neo A							
Treatment		Saline		Neo A		Difference	95% CI of diff.
	0.5		15.33		11.7	-3.633	-8.403 to 1.136
	1		17.27		5.933	-11.33	-16.10 to -6.564
	2	1	19.27		17.17	-2.1	-6.869 to 2.669
Treatment		Difference	•	t.		P value	Summary
	0.5		-3.633		2.402	P > 0.05	ns
	1		-11.33		7.492	P<0.001	***
	2		-2.1		1.388	P > 0.05	ns

	Table Analyzed	10-8M Hsp	pb1				
	Two-way RM ANOVA	Matching t	by cols				
	Source of Variation	% of total	variation	P.value			
	Interaction		12.97		0.1034		
	Time		25.93		0.0245		
	Treatment		40.86		0.0021		
	Subjects (matching)		3.2542		0.815		
	Source of Variation	P value su	immary	Significa	ant?		
	Interaction	ns		No			
	Time	*		Yes			
	Treatment	**		Yes			
	Subjects (matching)	ns		No			
						Mean	
	Source of Variation	Df		Sum-of-	squares	square	F
	Interaction		2		15.65	7.827	3.054
	Time		2		31.31	15.65	6.108
	Treatment		1		49.34	49.34	50.23
	Subjects (matching)		4		3.929	0.9822	0.3832
	Residual	-	8		20.5	2.563	
. •	Number of missing values	5	0				
	Bonferroni posttests						
	Saline vs. Neo A						
	Treatment	Saline		Neo A		Difference	95% CI of diff.
	0.1	5	16.97		15.9	-1.067	-4.740 to 2.606
		1	17.27		11.63	-5.633	
		2	19.27		16.03	-3.233	
	Treatment	Difference	:	t		P value	Summary
	ncaunciic				0.9155		ns ,
	0.1	5	-1.067		0.9100	1 2 0.00	
	• 0.	5 1	-1.067 -5.633		4.835	P<0.01	**

. .

Table Analyzed		10-8M Icam	11				
Two-way RM ANOVA		Matching by					
		Platening 57	013				
Source of Variation		% of total v		P value			
Interaction			3.67		0.0058		
Time			2.95		0.0107		
Treatment			90.35		0.0001		
Subjects (matching)			1.6265		0.1444		
Source of Variation		P value sum	nmary	Significa	ant?		
Interaction		**		Yes			
Time		*		Yes			
Treatment		***		Yes			
Subjects (matching)		ns		No			
				•		Mean	
Source of Variation		Df		Sum-of-	-squares	square	F
Interaction			2		25.81	12.9	10.49
Time			2		20.73	10.37	8.425
Treatment			1		634.9	634.9	222.2
Subjects (matching)		•	4		11.43	2.857	2.322
Residual			8		9.844	1.231	
							•
Number of missing valu	Jes		0				• •
Bonferroni posttests							
Saline vs. Neo A							
Treatment		Saline		Neo A		Difference	95% CI of diff.
	0.5		16.97		6.033		-14.36 to -7.506
	1		17.17		2		-18.59 to -11.74
	2	×	16.87		7.333	-9.533	-12.96 to -6.106
Treatment		Difference		t		P value	Summary
	0.5		-10.93		10.06	P<0.001	***
	1		-15.17		13.95	P<0.001	***
	2		-9.533		8.769	P<0.001	***
						,	

	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	4.08	0.031	3 · · · ·		
	Time	7.13	0.007	5		
	Treatment	84.01	0.000	2		
	Subjects (matching)	1.7975	0.379	5		·
•	Source of Variation	P value summary	Significant?			
	Interaction	*	Yes			
	Time	**	Yes			
	Treatment	***	Yes			
	Subjects (matching)	ns	No			
				Mean		
	Source of Variation	Df	Sum-of-squares		F	
	Interaction	2	27.4		5.471	
	Time	. 2	47.94	4 23.97	9.571	
	Treatment	1	564.	5 564.5	186.9	
	Subjects (matching)	4	12.08	3 3.019	1.206	
	Residual	8	20.04	2.504		
	Number of missing values	0				
· .	Bonferroni posttests					
	Saline vs. Neo A					
	Treatment	Saline	Neo A	Difference	95% CI of diff.	
	0.5	16	7.433	-8.567	-12.78 to -4.356	
	1	17.27	2.76	7 -14.5	-18.71 to -10.29	
	2	19.27	8.733	-10.53	-14.74 to -6.322	
	Treatment	Difference	t	P value	Summary	
	0.5	-8.567	6.414		***	
	1	-14.5	10.80	5 P<0.001	***	
	2	-10.53	7.88	5 P<0.001	***	
			,			

Table Analyzed		10-8M Cdkr	lb				
Two-way RM ANOVA		Matching by	y cols				
Source of Variation Interaction Time Treatment Subjects (matching)	• .	% of total v	variation 4.07 10.1 82.08 0.6439	P value P<0.000	0.035 0.0031 01 0.7937		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sum * ** *** ns	ımary	Significa Yes Yes Yes No	ant?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	squares 20.34 50.43 409.9 3.216 15.5	Mean square 10.17 25.22 409.9 0.8039 1.937	F 5.25 13.02 509.9 0.415
Number of missing va	lues		0				
Bonferroni posttests							
Saline vs. Neo A Treatment	0.5 1 2	Saline	16.97 17.27 19.27	Neo A	9.2 4.733 10.93	Difference -7.767 -12.53 -8.333	
Treatment	0.5 1 2	Difference	-7.767 -12 <i>.</i> 53 -8.333	t	7.617 12.29 8.173		Summary *** *** ***

	Table Analyzed	10-8M Cd5			
	Two-way RM ANOVA	Matching by cols			
	Source of Variation	% of total variation	P value		
	Interaction	17.4	0.	05	
	Time	12.36	0.09	69	
	Treatment	47.72	0.00	63	
,	Subjects (matching)	6.906	0.51	43	
	Source of Variation	P value summary	Significant?		
	Interaction	*	Yes		· · · · · ·
	Time	ns	No		i
	Treatment	**	Yes		
	Subjects (matching)	ns	No		
				Mean	
	Source of Variation	Df	Sum-of-square		F
	Interaction	2	21.		
	Time	2	15.4		
	Treatment	1	59.1		
	Subjects (matching)	4	8.6		
	Residual	8	19.	54 2.443	
	Number of missing values	0			,
	Bonferroni posttests				
	Saline vs. Neo A				
·	Treatment	Saline	Neo A	Difference	95% CI of diff.
	0.5	16.97	16.4	43 -0.5333	-4.479 to 3.412
	, 1	17.27	12.	13 -5.133	-9.079 to -1.188
	2	19.27	:	14 -5.267	-9.212 to -1.321
	Treatment	Difference	t	P value	Summary
	0.5	-0.5333	0.420	51 P > 0.05	ns
		-5.133	4.10	D2 P<0.01	**
	1	-2.122	4.10	JZ PN0.01	

.

Table Analyzed	10-8M Dectin-1			
Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 5.43 72.84 10.15 1.7828	P value 0.1716 0.0002 0.0088 0.828		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns *** ** ns	Significant? No Yes Yes No		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 2 2 1 4 8 0	Sum-of-squares 12.25 164.3 22.89 4.022 22.12	Mean square 6.124 82.17 22.89 1.006 2.765	F 2.215 29.72 22.77 0.3637
Bonferroni posttests				
	Saline 5 11.1 12.4 2 19.27	Neo A 8.7 12.23 15.07		95% CI of diff. -6.199 to 1.399 -3.966 to 3.633 -7.999 to -0.4008
	Difference -2.4 -0.1667 2 -4.2	t 1.992 0.1383 3.485	P value P > 0.05 P > 0.05 P < 0.05	Summary ns ns *

.

	Table Analyzed	10-9M Bmp2					
	Two-way RM ANOVA	Matching by cols	;				
	Source of Variation	% of total variati	ion	P value			
	Interaction	25.	.62		0.0567		
	Time	19.	.29		0.0973		
	Treatment	15.	.64		0.1111		
	Subjects (matching)	15.05	542		0.3696		
	Source of Variation	P value summary	y	Significa	nt?		
	Interaction	ns		No			
	Time	ns		No			
	Treatment	ns		No			
	Subjects (matching)	ns		No			
						Mean	
	Source of Variation	Df		Sum-of-	-	square	F
	Interaction		2		29.81	14.9	4.199
	Time		2		22.44	11.22	3.162
	Treatment		1		18.2	18.2	4.156
	Subjects (matching)		4		17.52	4.379	1.234
· .	Residual		8		28.4	3.549	
· .	Number of missing values		0		n,		
	Bonferroni posttests						·
	Saline vs. Neo A						
	Treatment	Saline		Neo A		Difference	95% CI of diff.
	0.5	15.	.33		16.87	1.533	-3.502 to 6.568
	1		.27		12.77	-4.5	-9.535 to 0.5352
	2		.27		16.2	-3.067	
	Treatment	Difference	;	t		P value	Summary
	0.5	1.5	533		0.9601	P > 0.05	ns
	1		4.5		2.818		*
	2					P > 0.05	ns

	Table Analyzed	10-9M Hspb1				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	11.83	0.1214			
	Time	26.54	0.0234			
	Treatment	40.15				
	Subjects (matching)	4.4241	0.7248			
	Source of Variation	P value summary	Significant?			
	Interaction	ns	No			
	Time	*	Yes			
	Treatment	**	Yes			
	Subjects (matching)	ns	No			
•				Mean		
	Source of Variation	Df	Sum-of-squares	square	F	
	Interaction	2	15.73	7.867	2.777	
	Time	2	35.29	17.64	6.228	
	Treatment	1	53.39	53.39	36.31	
	Subjects (matching)	• 4	5.882	1.471	0.5191	
	Residual	8	22.66	2.833		
	Number of missing values	; О				
	Bonferroni posttests					
	Saline vs. Neo A					•
	Treatment	Saline	Neo A	Difference	95% CI of diff.	
	0.	5 16.97	15.6	-1.367	-5.337 to 2.604	
	•	1 17.27	11.37	-5.9	-9.870 to -1.930	
	:	2 19.27	16.2	-3.067	-7.037 to 0.9036	
	Treatment	Difference	t	P value	Summary	
	0.1	5 -1.367	1.085	P > 0.05	ns	
		1 -5.9	4.685		**	
		2 -3.067		P > 0.05	ns	

. . .

· .

Two-way RM ANOVA	Matching b	y cols				
Source of Variation	% of total v	variation	P value			
Interaction		9.65		0.0094		
Time		8.42		0.0135		
Treatment		74.88		0.0005		
Subjects (matching)		2.6999		0.3674		
Source of Variation	P value sur	nmary	Significa	nt?		
Interaction	**		Yes			
Time	*		Yes			
Treatment	***		Yes		•	
Subjects (matching)	ns		Νο			
					Mean	
Source of Variation	Df		Sum-of-	-	square	F
Interaction	-	2		43.43	21.72	8.862
Time		2		37.89	18.94	.7.73
Treatment		1		337.1	337.1	110.9
Subjects (matching)		. 4		12.16	3.039	1.24
Residual		8		19.6	2.451	•
Number of missing values		0				
Bonferroni posttests						
Saline vs. Neo A						
Treatment	Saline		Neo A		Difference	95% CI of diff.
0.5		16.97		6.633		-14.52 to -6.146
1		17.17		5.833		-15.52 to -7.146
2		16.87		12.57	-4.3	-8.488 to -0.1122
Treatment	Difference		t		P value	Summary
0.5	Difference	-10.33	L	7.779		***
1		-11.33		8.532		***
2		-4.3			P < 0.05	*
2		7.5		5.257		

	Table Analyzed		10-9M Vegf	a .					
	Two-way RM ANOVA		Matching by	cols					
	Source of Variation		% of total v	ariation	P value				
	Interaction			4.9		0.0565			
	Time			15.71		0.0027			
	Treatment			71.58		0.0007			
	Subjects (matching)			3.1414		0.3326			
	Source of Variation		P value sum	marv	Significa	int?			
	Interaction		ns		No				
	Time		**		Yes		•		
	Treatment		***		Yes		1		
	Subjects (matching)		ns		No				
	······································								
						•	Mean		
	Source of Variation		Df		Sum-of-	squares	square	F	
	Interaction			2		21.33	10.67	4.203	
	Time	•		2		68.42	34.21	13.48	
	Treatment			1		311.7	311.7	91.15	
	Subjects (matching)			4		13.68	3.419	1.347	
	Residual			8		20.3	2.538		
	Number of missing value	ues		0					
	Bonferroni posttests							· .	
	Saline vs. Neo A								
	Treatment		Saline		Neo A		Difference	95% CI of diff.	
		0.5		16		8.8		-11.53 to -2.868	
		1		17.27		5.9		-15.70 to -7.035	
		2		19.27		12.87		-10.73 to -2.068	
	Treatment		Difference		t		P value	Summary	
		0.5	Difference	-7.2	L	5 34	P value P<0.001	***	

· · · · ·		1		-11.37		8.273			
		2		-6.4		4.658	P<0.01	**	
								·	

Table Analyzed		10-9M Cdkı	nlb					
Two-way RM ANOVA		Matching by	y cols					
Source of Variation		% of total v		P value				
Interaction			5.94		0.1894			
Time			24.65		0.0103			
Treatment			52.74		0.003			
Subjects (matching)			5.136		0.5113			
Source of Variation		P value sun	nmary	Significa	nt?			
Interaction		ns ·		No				
Time		*		Yes				
Treatment				Yes				
Subjects (matching)		ns		No				
						Mean		
Source of Variation		Df		Sum-of-		square	F	
Interaction			2		16.22	8.111	2.063	
Time			2		67.27	33.63	8.555	
Treatment			1		143.9	143.9	41.08	
Subjects (matching)			4		14.02	3.504	0.8913	
Residual			8		31.45	3.931		
Number of missing val	ues		0			· · ·		
Bonferroni posttests								
Saline vs. Neo A								
Treatment		Saline		Neo A		Difference	95% CI of diff.	
	0.5		16.97		10.63	-6.333	-11.34 to -1.323	
	1		17.27		9.7	-7.567	-12.58 to -2.556	•
	2		19.27		16.2	-3.067	-8.077 to 1.944	
Treatment		Difference		t		P value	Summary	
	0.5		-6.333		3.985	P<0.01	**	
	1		-7.567		4.761	P<0.01	**	
	2		-3.067		1.93	P > 0.05	ns	
		·						
								•
· · · · · ·								
· .								

Table Analyzed 10-9M Cd5	
Two-way RM ANOVA Matching by cols	
Source of Variation % of total variation P value	
Interaction 12.02 0.2156	
Time 21.5 0.0879	
Treatment 35.79 0.0059 Subjects (matching) 4.9888 0.8116	
Subjects (matching) 4.9888 0.8116	
Source of Variation P value summary Significant?	
Interaction ns No	
Time ns No	
Treatment ** Yes	
Subjects (matching) ns No	
Mean	a de la constante de
Source of Variation Df Sum-of-squares square F	
Interaction 2 8.148 4.074 1.87	
Time 2 14.57 7.287 3.346	
Treatment124.2724.2728.7Subjects (matching)43.3820.84560.3882	
Residual 8 17.42 2.178	
Number of missing values 0	
Bonferroni posttests	
Saline vs. Neo A	
Treatment Saline Neo A Difference 95% CI of diff.	
0.5 16.97 16.53 -0.4333 -3.823 to 2.956	
1 17.27 13.8 -3.467 -6.856 to -0.077	L O
2 19.27 16.2 -3.067 -6.456 to 0.3229	
Treatment Difference t P value Summary 0.5 -0.4333 0.403 P > 0.05 ns	
0.5 -0.4333 0.403 P > 0.05 ns 1 -3.467 3.224 P < 0.05 *	
2 -3.067 2.852 P < 0.05 *	
	·

	Table Analyzed	10-9M Dectin-1			
	Two-way RM ANOVA	Matching by cols			
. · ·	Source of Variation Interaction Time Treatment Subjects (matching)	%.of total variation 4.19 60.46 23.6 2.5015	P value 0.2243 0.0003 0.0036 0.7105		
	Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns *** ** ns	Significant? No Yes Yes No	· · ·	
	Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 2 2 1 4 8	Sum-of-squares 10.03 144.8 56.53 5.991 22.14	Mean square 5.016 72.41 56.53 1.498 2.767	F 1.813 26.17 37.75 0.5413
	Number of missing values	0			
	Bonferroni posttests				
	Saline vs. Neo A Treatment 0.5 1 2	Saline 11.1 12.4 19.27	Neo A 8.867 9.633 13.63	Difference -2.233 -2.767 -5.633	95% CI of diff. -6.174 to 1.708 -6.708 to 1.174 -9.574 to -1.692
	Treatment 0.5 1 2	Difference -2.233 -2.767 -5.633	2.213	P value P > 0.05 P > 0.05 P<0.01	Summary ns ns **
		t			

	Table Analyzed		10-10M Br	np2					
	Two-way RM ANOVA		Matching b	y cols					
	Source of Variation		% of total	variation	P value				
	Interaction			20.26		0.0104			
	Time			14.3		0.0254			
	Treatment			44.59		0.0166			
	Subjects (matching)			11.3433		0.1373			
	Source of Variation		P value su	mmary	Significa	ant?			
	Interaction		*		Yes				
	Time		*		Yes				
	Treatment		*		Yes				
	Subjects (matching)		ns ·		No				
			56		C		Mean		
	Source of Variation		Df	-	Sum-of-	-squares	square	F	
	Interaction			2		43.26	21.63	8.524	
	Time			2		30.55	15.27	6.019	
	Treatment	·		1		95.22	95.22	15.72	
	Subjects (matching)			4		24.22	6.056	2.386	
	Residual			8		20.3	2.538		
	Number of missing val	lues		0					
	Bonferroni posttests		i.						
	Saline vs. Neo A								
	Treatment		Saline		Neo A		Difference	95% CI of diff.	
		0.5		15.33		14.9	-0.4333	-5.392 to 4.525	
		1		17.27		9.4	-7.867	-12.83 to -2.908	
·		2		19.27		13.77	-5.5	-10.46 to -0.5415	
	Treatment		Difference		t		P value	Summary	
		0.5		-0.4333		0.2755	P > 0.05	ns	
		1		-7.867		5.002	P<0.001	***	
		2		-5.5		3.497	P < 0.05	*	
		•							
	· .								

Table Analyzed	10	0-10M Hs	pb1				
Two-way RM ANOVA	М	atching b	y cols				
Source of Variation	%	of total	variation	P value			
Interaction			19.72		0.013		
Time			14.17		0.0297		
Treatment			44.67		0.0166		
Subjects (matching)			11.379		0.1513		
Source of Variation	Р	value sur	nmary	Significa	ant?		
Interaction	*			Yes			
Time	*			Yes			
Treatment	*			Yes			
Subjects (matching)	ns	5		No			
	_					Mean	_
Source of Variation	D	T	· _	Sum-of-	squares	square	F
Interaction			2		42.43	21.22	7.842
Time			2		30.5	15.25	5.637
Treatment			1		96.14 24.49	96.14 6.122	15.7 2.263
Subjects (matching) Residual			4 8		24.49	2.706	2.205
Residual			0		21.04	2.700	
Number of missing value	es		0				
Bonferroni posttests							
Saline vs. Neo A							
Treatment	Sa	aline		Neo A		Difference	95% CI of diff.
, O).5		15.33		14.83	-0.5	-5.547 to 4.547
	1		17.27		9.4		-12.91 to -2.819
	2		19.27		13.77	-5.5	-10.55 to -0.4528
Treatment	Di	ifference		t		P value	Summary
0).5		-0.5		0.3123	P > 0.05	ns
	1		-7.867	1	4.914	P<0.01	**
			-5.5			P < 0.05	*

.

Table Analyzed	10-10M Icam1			
Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 0.51 0.71 95.05 2.1759	P value 0.3242 0.2211 0.0002 0.1009		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns ns *** ns	Significant? No No Yes No		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 2 2 1 4 8	Sum-of-squares 3.258 4.591 611.3 14 10.02	Mean square 2.296 611.3 3.499 1.252	F 1.301 1.833 174.7 2.794
Number of missing values	0			1
Bonferroni posttests				
Saline vs. Neo A Treatment 0.1	17.17	Neo A 4.2 6.467 5.367	Difference -12.77 -10.7 -11.5	
Treatment 0.	-10.7	t 11.05 9.264 9.957		Summary *** *** ***

Table Analyzed	10-10M Vegfa				
Two-way RM ANOVA	Matching by cols				
Source of Variation	% of total variation	on P value	2		
Interaction	3.3	35	0.0601		
Time	0	.4	0.6345		
Treatment	89.8	32	0.0004		
Subjects (matching)	3.150	54	0.2001		
Source of Variation	P value summary	Signific	ant?		
Interaction	ns	No			
Time	ns	No			
Treatment	***	Yes			
Subjects (matching)	ns	No			
•				Mean	
Source of Variation	Df		f-squares	square	F
Interaction		2	20.66	10.33	4.078
Time		2	2.441	1.221	0.4817
Treatment		1	554.4	554.4	113.8
Subjects (matching)		4	19.48	4.871	1.923
Residual		8	20.27	2.534	
Number of missing values		0			
Bonferroni posttests					
Saline vs. Neo A					
Treatment	Saline	Neo A		Difference	95% CI of diff.
0.5	1	.6	7.633	-8.367	-13.05 to -3.681
1	17.2	27	5.933	-11.33	-16.02 to -6.648
2	19.2	27	5.667	-13.6	-18.29 to -8.915
Treatment	Difference	t		P value	Summary
0.5	-8.36	57	5.63	P<0.001	***
. 1	-11.3	33	7.626	P<0.001	***
2	-13	.6	9.151	P<0.001	***

	Table Analyzed	10-10M Cdknlb				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	1.06	0.6159			
	Time	5.51	0.1293			
	Treatment	82.91	0.0003			
	Subjects (matching)	2.2534	0.7076			,
	Source of Variation	P value summary	Significant?			
	Interaction	ns	No			
	Time	ns	No			
	Treatment	***	Yes			
	Subjects (matching)	ns	No			
				Mean		
·•	Source of Variation	Df	Sum-of-squares	square	F	
	Interaction	2	4.214	2.107	0.5152	
	Time	ິ 2		10.92	2.671	
	Treatment	1	328.5	328.5	147.2	
	Subjects (matching)	. 4	•	2.232	0.5458	
	Residual	8		4.09		
	Number of missing values	0				
	Bonferroni posttests					
	Saline vs. Neo A					
	Treatment	Saline	Neo A	Difference	95% CI of diff.	
	0.5	16.97			-12.20 to -2.605	
	1	17:27			-14.56 to -4.971	
	2	19.27		-8.467	-13.26 to -3.671	
	Treatment	Difference	t	P value	Summary	
	0.5	-7.4		P<0.01	**	
	1	-9.767			***	
	2				***	
			5.566	P<0.001		

							•	
Table Analyzed		10-10M Cd!	5.					
Two-way RM ANOVA		Matching by	/ cols					
		% of total v		P value				
Time		•						
Treatment								
Subjects (matching)			6.3803		0.2408			
Course of Veriation		D velve eve		Cimpifier				
		* value sun	naidiy	-	111LT			
Subjects (matching)		ns		NO				
				•		Mean		
Source of Variation		Df		Sum-of-	squares	square	F	
Interaction			2		24.44	12.22	5.818	
Time					25.27	12.63	6.015	
Treatment					143.9	143.9		
Residual			8		16.8	2.101		
							,	
Number of missing val	ues		0					
Bonferroni posttests								
Saline vs. Neo A								
	•	Saline		Neo A		Difference	95% CI of diff.	
	0.5		16.97		14.53			
	2							
							,	
Treatment		Difference		t		P value	Summary	
	0.5		-2.433		1.85	P > 0.05	ns	
	1		-7.867		5.98	P<0.001	***	
	2		-6.667				***	
	Two-way RM ANOVA Source of Variation Interaction Time Treatment Subjects (matching) Source of Variation Interaction Time Treatment Subjects (matching) Source of Variation Interaction Time Treatment Subjects (matching) Residual Number of missing val Bonferroni posttests Saline vs. Neo A Treatment	Two-way RM ANOVA Source of Variation Time Treatment Subjects (matching) Source of Variation Interaction Time Treatment Subjects (matching) Source of Variation Interaction Time Treatment Subjects (matching) Residual Number of missing values Bonferroni posttests Saline vs. Neo A Treatment 0.5 1 2 Treatment 0.5 1	Two-way RM ANOVAMatching bySource of Variation Time Treatment Subjects (matching)% of total wSource of Variation Interaction Time Treatment Subjects (matching)P value sum * * * *Source of Variation Time Treatment Subjects (matching)P value sum * * *Source of Variation Interaction Time Treatment Subjects (matching)DfMatching by *DfSource of Variation Interaction Time Treatment Subjects (matching) ResidualDfNumber of missing valuesSaline \$ \$ 1 2Bonferroni posttests 1 2Saline \$ 1 2Treatment \$ 0.5 1Difference 0.5 1	Two-way RM ANOVAMatching by colsSource of Variation% of total variationInteraction10.87Time11.24Treatment64.03Subjects (matching)6.3803Source of VariationP value summaryInteraction*Time*Treatment**Subjects (matching)nsSource of VariationDfInteraction2Time1Subjects (matching)nsSource of VariationDfInteraction2Time1Subjects (matching)4Residual8Number of missing values0Bonferroni posttestsSalineSaline vs. Neo A1TreatmentSaline0.516.97117.27219.27TreatmentDifference0.5-2.4331-7.867	Two-way RM ANOVAMatching by colsSource of Variation Interaction% of total variation 10.87 11.24 64.03P value valueTreatment Subjects (matching)P value summary * * * * * * 	Two-way RM ANOVAMatching by colsSource of Variation Interaction% of total variation 10.87P value 0.0276Time Time11.240.0255Treatment Subjects (matching)6.38030.2408Source of Variation Interaction Time Treatment Subjects (matching)P value summary * * YesSignificant? Yes YesTime Treatment Interaction Treatment Subjects (matching)P value summary * YesSignificant? Yes YesSource of Variation Interaction <b< td=""><td>Two-way RM ANOVAMatching by colsSource of Variation Interaction% of total variation 10.87P value 0.0276Time Treatment11.240.0255Source of Variation InteractionP value summary * YesSignificant? YesTime Time Time TreatmentP value summary * YesSignificant? YesSource of Variation Time TreatmentP value summary * YesSignificant? YesSource of Variation Interaction Int</td><td>Two-way RM ANOVA Matching by cols Source of Variation Interaction % of total variation 10.87 P value 0.0276 Time 11.24 0.0032 Subjects (matching) 6.3803 0.2408 Source of Variation Subjects (matching) P value summary 6.3803 Significant? Yes Time * Yes Time * Yes Time * Yes Treatment ** Yes Treatment ** Yes Treatment ** Yes Source of Variation Interaction Df Sum-of-squares square F Subjects (matching) Df Sum-of-squares square F Time 1 143.9 143.9 Subjects (matching) 4 14.34 3.586 Residual 0 1 143.9 40.14 Number of missing values 0 1 1.707 Bonferroni posttests 5 16.97 14.53 -2.433 -6.580 to 1.714 1</td></b<>	Two-way RM ANOVAMatching by colsSource of Variation Interaction% of total variation 10.87P value 0.0276Time Treatment11.240.0255Source of Variation InteractionP value summary * YesSignificant? YesTime Time Time TreatmentP value summary * YesSignificant? YesSource of Variation Time TreatmentP value summary * YesSignificant? YesSource of Variation Interaction Int	Two-way RM ANOVA Matching by cols Source of Variation Interaction % of total variation 10.87 P value 0.0276 Time 11.24 0.0032 Subjects (matching) 6.3803 0.2408 Source of Variation Subjects (matching) P value summary 6.3803 Significant? Yes Time * Yes Time * Yes Time * Yes Treatment ** Yes Treatment ** Yes Treatment ** Yes Source of Variation Interaction Df Sum-of-squares square F Subjects (matching) Df Sum-of-squares square F Time 1 143.9 143.9 Subjects (matching) 4 14.34 3.586 Residual 0 1 143.9 40.14 Number of missing values 0 1 1.707 Bonferroni posttests 5 16.97 14.53 -2.433 -6.580 to 1.714 1

	Table Analyzed		10-10M De	ctin-1				
	Two-way RM ANOVA		Matching by	y cols				
	Source of Variation Interaction		% of total v	ariation 10.85	P value	0.0289		
	Time			28.82		0.0019		
	Treatment			49.47		0.0015		
	Subjects (matching)			3.2601		0.5283	. · · · ·	
	Source of Variation		P value sun	nmary	Significar	nt?		
	Interaction		*		Yes			
	Time		**		Yes			
	Treatment		**		Yes			
	Subjects (matching)		ns		Νο			
							Mean	_
	Source of Variation		Df		Sum-of-s	-	square	F
	Interaction			2		33.83	1 6.92	5.703
	Time			2		89.89	44.94	15.15
	Treatment			1		154.3	154.3	60.69
	Subjects (matching)			4		10.17	2.542	0.857
	Residual			8		23.73	2.966	
	Number of missing val	ues		0				
	Bonferroni posttests							
	Saline vs. Neo A							
	Treatment		Saline		Neo A		Difference	95% CI of diff.
		0.5		11.1		7.2	-3.9	-8.227 to 0.4266
		1		12.4		8.467	-3.933	-8.260 to 0.3932
		2		19.27		9.533	-9.733	-14.06 to -5.407
	Treatment		Difference	•	t		P value	Summary
		0.5		-3.9		2.842	P < 0.05	*
i .		1		-3.933		2.866	P < 0.05	*
	·.	2		-9.733		7.092	P<0.001	***
								,

Table Analyzed		10-11M Bmp2							
Two-way RM ANOVA		Matching by	/ cols						
Source of Variation		% of total variation		P value					
Interaction			25.64		0.0076				
Time			19		0.0171				
Treatment			34.13		0.0225				
Subjects (matching)			10.4584		0.1967				
Source of Variation		P value sum	nmary	Significa	nt?				
Interaction		**		Yes					
Time		*		Yes		,			
Treatment		*		Yes					
Subjects (matching)		ns		No					
						Mean			
Source of Variation		Df	•	Sum-of-	squares	square	F		
Interaction			2		54.7	27.35	9.527		
Time			2		40.54	20.27	7.061		
Treatment			1		72.8	72.8	13.05		
Subjects (matching)			4		22.31	5.577	1.943		
Residual			8		22.96	2.871			
Number of missing value	es		0						
Bonferroni posttests									
Saline vs. Neo A									
Treatment		Saline		Neo A		Difference	95% CI of diff.		
C).5		15.33		15.87	0.5333	-4.467 to 5.533		
	1		17.27		9.333	-7.933	-12.93 to -2.933		
	2		19.27		14.6	-4.667			
Treatment		Difference		t		P value	Summary		
C).5		0.5333		0.3363	P > 0.05	ns		
	1		-7.933		5.002	P<0.001	***		
	2						*		
		·							
		· · ·							
		1. 1.							

	Table Analyzed	10-11M H	spb1					
	Two-way RM ANOVA	Matching I	oy cols					
	Source of Variation	% of total	variation	P value				
	Interaction		25.64		0.0076			
	Time		19		0.0171			
	Treatment		34.13		0.0225			
	Subjects (matching)		10.4584		0.1967			
	Source of Variation	P value su	mmarv	Significa	ant?			
	Interaction	**	, , , , , , , , , , , , , , , , , , ,	Yes				
	Time	*		Yes				
	Treatment	*		Yes				
	Subjects (matching)			No		ъ.		
	Subjects (matching)	ns		NU				
						Mean		
· ·	Source of Variation	Df		Sum-of-	-squares	square	F	
	Interaction		2	1 ¹	. 54.7	27.35	9.527	
	Time		2		40.54	20.27	7.061	
	Treatment		1		72.8	72.8	13.05	
	Subjects (matching)		4		22.31	5.577	1.943	,
	Residual		8		22.96	2.871		
	Number of missing values		0					
	Bonferroni posttests							
	Saline vs. Neo A							
	Treatment	Saline		Neo A		Difference	95% CI of diff.	
	0.5		15.33	NEU A	15.87	0.5333	-4.467 to 5.533	
						-7.933		
	1		17.27		9.333			
	2	-	19.27		14.6	-4.667	-9.667 to 0.3333	
	Treatment	Difference		t		P value	Summary	
	0.5	5	0.5333		0.3363	P > 0.05	ns	
	1		-7.933			P<0.001	***	
	2	2			2.943	P < 0.05	*	
				i				
_								
·								
	· .							
					•			

	Table Analyzed	10-11M Icam1					
	Two-way RM ANOVA	Matching by cols					
	Source of Variation	% of total variation	on Pivalue	<u>.</u>			
	Interaction	1.4	47	0.1016			
•.	Time	1.	04	0.1742			
	Treatment	92.	84	0.0003			
	Subjects (matching)	2.74	9 2	0.0942			
	Source of Variation	P value summary	Signific	ant?			
	Interaction	ns	No				
	Time	ns	No				
	Treatment	***	Yes				
	Subjects (matching)	ns	No				
					Mean		
	Source of Variation	Df	Sum-of	-squares	square	F	
	Interaction		2	9.648	4.824	3.085	
	Time		2	6.854	3.427	2.191	
	Treatment		1	610.2	610.2	135.1	
	Subjects (matching)		4	18.07	4.517	2.888	
	Residual		8	12.51	1.564		
	Number of missing values		0				
	Bonferroni posttests						
	Saline vs. Neo A						
	Treatment	Saline	Neo A		Difference	95% CI of diff.	
	0.5			4.967		-16.11 to -7.891	
	1			3.933	-13.23	-17.34 to -9.124	
	2			7.167	-9.7	-13.81 to -5.591	
	Treatment	Difference	t		P value	Summary	
	0.5		12	9.207		***	
	1			10.15		***	
		·			. ~U.UUI		

	,					
	Table Analyzed	10-11M Vegfa				-
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	2.67	0.0481			
	Time	2.16	0.0738			
	Treatment	88.87	0.0007			
	Subjects (matching)	3.9584	0.0674			
	Subjects (matching)	5.7507	0.007			
	Source of Variation	P value summary	Significant?			
	Interaction	*	Yes		,	
	Time	ns	No			
	Treatment	***	Yes			
	Subjects (matching)	ns	No			
				Mean		
	Source of Variation	Df	Sum-of-squares	square	F	
	Interaction	2	15.16	7.582	4.542	
	Time	2	12.26	6.132	3.673	
	Treatment	1	505.6	505.6	89.81	
	Subjects (matching)	4	22.52	5.63	3.373	
	Residual	8	13.35	1.669		
	Number of missing values	0				
	Bonferroni posttests	· · · · ·				
	Saline vs. Neo A	·				
	Treatment	Saline	Neo A	Difference	95% CI of diff.	
	0.5	16.97	8.367	-8.6	-13.05 to -4.149	
	1	17.17	4.133		-17.48 to -8.583	
	2	16.87	6.7		-14.62 to -5.716	
• •						
	Treatment	Difference	t	P value	Summary	
		Difference -8.6		P value P<0.001	Summary ***	
	Treatment		6.092			

.

							· .	
Table Analyzed	10-11M Co	Jknlb						
Two-way RM ANOVA	Matching t	oy cols						
Source of Variation	% of total	variation	P value					
Interaction		1.41		0.41				
Time		1.11		0.4863				
Treatment		90.44	P<0.000)1				
Subjects (matching)		1.4022		0.7388				
Source of Variation	P value su	mmary	Significa	int?				
Interaction	ns		No					
Time	ns		No					
Treatment	***		Yes					
Subjects (matching)	ns		No					
•					Mean			
Source of Variation	Df		Sum-of-	squares	square	F		
Interaction		2		5.614	2.807	0.9988		
Time		2		4.441	2.221	0.7901		
Treatment		1		360.9	360.9	258		
Subjects (matching)		4		5.596	1.399	0.4977	·	
Residual		8		22.48	2.811	0.1211		
Number of missing values		0						
Bonferroni posttests								
Saline vs. Neo A								
Treatment	Saline		Neo A		Difference	95% CI of (diff.	
0.5		16.97		9.233	-7.733	-11.67 to -	3.796	
1		17.27		8.567	-8.7	-12.64 to -4	4.762	
2		19.27		8.833		-14.37 to -		
Treatment	Difference		t		P value	Summary		
0.5		-7.733		6.192	P<0.001	***		
1		-8.7			P<0.001	***		
2		-10.43			P<0.001	***		

Table Analyzed	10-11M Cd5			
Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 17.4 16.1 54.4 2.49	20.015520.018970.0007	•	
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary * * *** ns	Significant? Yes Yes Yes No		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Sum-of-squares 2 37.92 2 35.08 1 118.6 4 5.427 3 20.67	Mean square 18.96 17.54 118.6 1.357 2.584	F 7.337 6.787 87.41 0.525
Number of missing value	S)		
Bonferroni posttests			· .	
Saline vs. Neo A Treatment 0.	Saline 5 16.9 1 17.2 2 19.2	9.333	Difference -1.133 -7.933 -6.333	
Treatment 0.	Difference 5 -1.13 1 -7.93 2 -6.33	6.588	P value P > 0.05 P<0.001 P<0.001	Summary ns *** ***

					•	
	Table Analyzed	10-11M Dectir	n-1			
	,					
	Two-way RM ANOVA	Matching by c	ols			
	Course of Veriation			Dualua		
	Source of Variation	% of total vari	17.5	P value 0.00	775	
	Interaction Time		16.41		009	
	Treatment		55.49	0.00		
	Subjects (matching)		.2863	0.50		
	Subjects (matching)	5	.2005	. 0.50	<u>, , , , , , , , , , , , , , , , , , , </u>	
	Source of Variation	P value summ	ary	Significant?		
	Interaction	**	-	Yes		
	Time	**		Yes		
	Treatment	**		Yes		
	Subjects (matching)	ns		No		
					Mean	
	Source of Variation	Df		Sum-of-squar		F
	Interaction		2		.16 .30.08	
	Time		2	56	.41 28.21	
	Treatment		1	19	0.8 190.8	67.54
	Subjects (matching)		4	1	1.3 2.824	0.8992
	Residual		8	25	.13 3.141	
· ·	Number of missing values		0			
	Bonferroni posttests				·	
	Saline vs. Neo A					
	Treatment	Saline		Neo A	Diffèrence	95% CI of diff.
	0.5		11.1			-7.418 to 1.552
	1		12.4			-9.552 to -0.5818
	. 2		19.27	7.7	-11.53	-16.02 to -7.048
	Treatment	Difference		t	P value	Summary
	0.5		2.933)62 P > 0.05	ns
	1		5.067		562 P < 0.05	*
	2		11.53		LO7 P<0.001	***
				0.1		

Table Analyzed	10-12M Bm	p2					
Two-way RM ANOVA	Matching by	/ cols	`				
Source of Variation	% of total v		P value				
Interaction		1.26		0.8483			
Time		35.22		0.0452			
Treatment		12.09		0.2062			
Subjects (matching)		21.2949		0.313			
Source of Variation	P value sum	nmary	Significa	ant?			
Interaction	ns		No				
Time	*		Yes				
Treatment	ns		No				
			No				
Subjects (matching)	ns		NO				
Source of Variation	Df		Sumof	-squares	Mean square	F	
		2	Sum-or	-			
Interaction		2		1.188	0.5939	0.1679	
Time		2		33.08	16.54	4.676	
Treatment		1		11.36	11.36	2.272	
Subjects (matching)		4		20	5.001	1.414	
Residual		. 8		28.3	3.537		
Number of missing values		0					
Bonferroni posttests							
Caller and New A							
Saline vs. Neo A	Calina				Difference		
Treatment	Saline	15.00	Neo A	1 4 4 7	Difference	95% CI of diff.	
0.5		15.33		14.43	-0.9	-6.064 to 4.264	
1		17.27		15.53		-6.898 to 3.431	
2		19.27		17.13	-2.133	-7.298 to 3.031	
Treatment	Difference		t		P value	Summary	
0.5		-0.9		0.5494	P > 0.05	ns	
. 1		-1.733		1.058	P > 0.05	ns	
2		-2.133			P > 0.05	ns	
		• •					
•							

Table Analyzed	10-12M Hspb1			
Two-way RM ANOVA	Matching by cols			
Source of Variation	% of total variation	P value		
Interaction	5.86	0.4274		
Time	31.81	0.0366		
Treatment	17.81	0.1305		
Subjects (matching)	19.7762	0.265		
Source of Variation	P value summary	Significant?		
Interaction	ns	No		
Time	* .	Yes		
Treatment	ńs	No		
Subjects (matching)	ns	No		
				•
		_	Mean	
Source of Variation	Df	Sum-of-squares	square	F
Interaction	2	6.458	3.229	0.947
Time	2	35.07	17.54	5.143
Treatment	· 1	19.64	19.64	3.602
Subjects (matching)	4	21.8	5.451	1.599
Residual	8	27.28	3.41	
Number of missing values	0			
Bonferroni posttests				
Saline vs. Neo A				
Treatment	Saline	Neo A	Difference	95% CI of diff.
0.5	15.33	14.73	-0.6	-5.806 to 4.606
. 1	17.27	13.73	-3.533	-8.739 to 1.673
2	19.27	17.13	-2.133	-7.339 to 3.073
Treatment	Difference	t	P value	Summary
0.5	-0.6	0.3634	P > 0.05	ns
1	-3.533	2.14		ns
2	-2.133		P > 0.05	ns

Table Analyzed		10-12M Ica	m1			· -	
Two-way RM ANOVA		Matching by	y cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	ariation 10.39 9.05 73.25 2.3079	P value	0.0111 0.016 0.0004 0.4956		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sun * * *** ns	nmary	Significa Yes Yes Yes No	int?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		D f	2 2 1 4 8	Sum-of-	squares 51.58 44.93 363.6 11.46 24.8	Mean square 25.79 22.47 363.6 2.864 3.1	F 8.32 7.248 127 0.9239
Number of missing va	lues		0				
Bonferroni posttests							
Saline vs. Neo A Treatment	0.5 1 2	Saline	16.97 17.17 16.87	Neo A	6.867 4.7 12.47	Difference -10.1 -12.47 -4.4	95% CI of diff. -14.57 to -5.626 -16.94 to -7.992 -8.874 to 0.07422
Treatment	0.5 1 2	Difference	-10.1 -12.47 -4.4	t .	7.117 8.784 3.1	P value P<0.001 P<0.001 P < 0.05	Summary *** *** *

	Table Analyzed	10-12M Vegfa				
	Two-way RM ANOVA	Matching by cols		, · ·		
	Source of Variation	% of total variat	ion P value	e		
	Interaction	. 8	.22	0.0134		
*	Time	1	.69	0.2621		
	Treatment	84	.09	0.0002		
,	Subjects (matching)	1.7	544	0.5436		
	Source of Variation	P value summar	y Signific	ant?		
	Interaction	*	Yes			
	Time	ns	No			
	Treatment	***	Yes			
	Subjects (matching)	ns	No			
					Mean	
	Source of Variation	Df	Sum-o	f-squares	square	F
	Interaction		2	52.17	26.09	7.754
	Time		2	10.7	5.352	1.591
	Treatment		1	533.6	533.6	191.7
•	Subjects (matching)		4	11.13	2.783	
	Residual		8	26.92	3.364	
• • •	Number of missing values		0			
	Bonferroni posttests					
	Saline vs. Neo A					
	Treatment	Saline	Neo A		Difference	95% CI of diff.
	0.5		16	9.833	-6.167	-10.75 to -1.583
	1	17	.27	4.833	-12.43	
	2		.27	5.2	-14.07	-18.65 to -9.483
	Treatment	Difference	t		P value	Summary
	0.5	-6.1	.67	4.242		**
	1	-12		8.552		***
	2	-14			P<0.001	***

	Table Analyzed		10-12M Cd	knlb					
	Two-way RM ANOVA		Matching b	y cols			,		
	Source of Variation		% of total v		P value				
	Interaction			2.73		0.2193			
	Time			2.51		0.2435			
4. (A)	Treatment			87.54	P<0.000				
	Subjects (matching)			1.2991		0.7778			
	Source of Variation		P value sur	nmary	Significa	nt?			
	Interaction		ns		Νο				
	Time		ns		No				
	Treatment		***		Yes				
	Subjects (matching)		ns		No				
			~.		- •		Mean		
	Source of Variation		Df	_	Sum-of-s		square	F	
	Interaction			2.	•	11.97	5.985	1.845	
	Time			2		10.99	5.495	1.694	
	Treatment			1		383.6	383.6	269.5	
	Subjects (matching)			4		5.693	1.423	0.4388	
	Residual			8		25.95	3.243		
	Number of missing val	ues		0					
	Bonferroni posttests								
	Saline vs. Neo A								
	Treatment		Saline		Neo A		Difference	95% CI of diff.	
		0.5		16.97		10.03	-6.933	-11.11 to -2.753	
		1		17.27		7.033	-10.23	-14.41 to -6.053	
		2		19.27		8.733	-10.53	-14.71 to -6.353	
	Treatment		Difference		t		P value	Summary	
		0.5		-6.933			P<0.001	***	
		1		-10.23		7.719	P<0.001	***	
		2		-10.53		7.945	P<0.001	***	
								•	

Table Analyzed	10-12M Cd5				
Two-way RM ANOVA	Matching by cols				
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 3.05 13.9 40.46 5.686	P value 0.7275 0.2784 0.0059 0.8647			
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns ns ** ns	Significant? No No Yes No			
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 2 2 1 4 8	Sum-of-squares 2.258 10.27 29.9 4.202 27.27	Mean square 5.136 29.9 1.051 3.409	F 0.3312 1.507 28.46 0.3082	
Number of missing value	s 0				
Bonferroni posttests					
Saline vs. Neo A Treatment 0	Saline 5 16.97 1 17.27 2 19.27	Neo A 14.43 15.53 15.8	Difference -2.533 -1.733 -3.467	-5.902 to 2.436	,
Treatment 0	Difference 5 -2.533 1 -1.733 2 -3.467	t 1.916 1.311 2.622	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns	

x							
Table Analyzed	10-12M	Dectin-1					
Two-way RM ANOVA	Matchin	ig by cols					
Source of Variation	% of to	tal variation	P value				
Interaction		6.44		0.1262			
Time		33.22		0.0024			
Treatment		49.72		0.0002			
Subjects (matching)		1.1232		0.91			
Source of Variation	D valuo	summary	Signific	ant?			
Interaction	ns	Summary	No	ant:			
Time	**		Yes				
Treatment	***		Yes				
Subjects (matching)	ns		No				
				÷			
					Mean	_	
Source of Variation	Df	_	Sum-of	-squares	square	F	
Interaction		. 2		21.6	10.8	2.711	
Time		, 2		111.5	55.74	13.99	
Treatment		1		166.8	166.8	177.1	
Subjects (matching)		4		3.769	0.9422	0.2365	
Residual		8		31.88	3.985		
Number of missing value	S	0					
Humber of missing funce		Ū					
Bonferroni posttests							
							-
Saline vs. Neo A							
Treatment	Saline		Neo A		Difference	95% CI of diff.	
0.	.5	11.1		7.033	-4.067	-8.503 to 0.3700	
	1	12.4				-9.503 to -0.6300	
	2	19.27		10.13	-9.133	-13.57 to -4.697	
Treatment	Differer	ice	t		P value	Summary	
	.5	-4.067		2 89	P < 0.05	*	
	1	-5.067			P < 0.05	*	÷
	2	-9.133	,		P<0.001	***	•

APPENDIX II – ANOVA TABLES NEO B

Table Analyzed	10-8M Bmp2			
Two-way RM ANOVA	Matching by cols			
Source of Variation	% of total variation	P value		
Interaction	21.35	0.0006		
Time	23.36	0.0004		
Treatment	39.41	0.0222		
Subjects (matching)	11.9708	0.0148		
Source of Variation	P value summary	Significant?		
Interaction	***	Yes		
Time	***	Yes		
Treatment	*	Yes		
Subjects (matching)	*	Yes	a.	
			Mean	
Source of Variation	Df	Sum-of-squares	square	F
Interaction	2	67.05	33.52	21.8
Time	2	73.36	36.68	23.85
Treatment	1	123.8	123.8	13.17
Subjects (matching)	4	37.6	9.399	6.112
Residual	8	12.3	1.538	
Number of missing values	. 0			
Bonferroni posttests				
Saline vs. Neo B				
Treatment	Saline	Neo B	Difference	95% CI of diff.
0.5	15.33	10.83	-4.5	-9.128 to 0.1278
. 1	17.27	6.967	-10.3	-14.93 to -5.672
2	17.27	16.33	-0.9333	-5.561 to 3.694
Treatment	Difference	t	P value	Summary
0.5		2.703		ns
· 1	-10.3	6.186		***
2	-0.9333	0.5606	P > 0.05	ns
-	0.0000	0.2000		

Two-way RM ANOVA Source of Variation Interaction Time Treatment Subjects (matching) Source of Variation Interaction Time Treatment Subjects (matching)	Matching by cols % of total variation 11.39 20.4 44.76 3.2754 P value summary ns ns ** ns	P value 0.1669 0.0611 0.0018 0.8539 Significant? No No Yes No		
Interaction Time Treatment Subjects (matching) Source of Variation Interaction Time Treatment Subjects (matching)	11.39 20.4 44.76 3.2754 P value summary ns ns ** ns	0.1669 0.0611 0.0018 0.8539 Significant? No No Yes		
Interaction Time Treatment Subjects (matching) Source of Variation Interaction Time Treatment Subjects (matching)	20.4 44.76 3.2754 P value summary ns ns ** ns	0.0611 0.0018 0.8539 Significant? No No Yes		
Time Treatment Subjects (matching) Source of Variation Interaction Time Treatment Subjects (matching)	44.76 3.2754 P value summary ns ns ** ns	0.0018 0.8539 Significant? No No Yes		
Subjects (matching) Source of Variation Interaction Time Treatment Subjects (matching)	3.2754 P value summary ns ns ** ns	0.0018 0.8539 Significant? No No Yes	•	
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns ns ** ns	Significant? No No Yes	•	
Interaction Time Treatment Subjects (matching)	ns ns ** ns	No No Yes		
Time Treatment Subjects (matching)	ns ** ns	No Yes		
Treatment Subjects (matching)	** ns	Yes		
Subjects (matching)	ns			
		No		
Source of Variation				
Source of Variation			Mean	
	Df	Sum-of-squares	square	F
Interaction	2	23.88	11.94	2.259
Time	2	42.76	21.38	4.044
Treatment	1	93.85	93.85	54.67
Subjects (matching)	4	6.867		0.3247
Residual	8	42.29	5.287	
Number of missing values	0			
Bonferroni posttests				
Saline vs. Neo B				
Treatment	Saline	Neo B	Difference	95% CI of diff.
0.5	16.97	15	-1.967	-7.177 to 3.243
1	17.27	9.7	-7.567	-12.78 to -2.357
2		15.1	-4.167	-9.377 to 1.043
Treatment	Difference	t	P value	Summary
0.5	-1.967	1.19	P > 0.05	ns
1	-7.567	4.579	P<0.01	**

Tab	le Ana	lyzed
-----	--------	-------

10-8M Icam1

Two-way RM ANOVA		Matching by	, cois				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	ariation 2.53 1.99 91.52 2.1152	P value	0.0318 0.0542 0.0002 0.1487		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sum * ns *** ns	nmary	Significa Yes No Yes No	ant?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	squares 16.43 12.89 594 13.73 12.02	Mean square 8.217 6.444 594 3.432 1.502	F 5.47 4.29 173.1 2.285
Number of missing va	iues		0				
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	16.97 17.17 16.87	Neo B	7.133 3 6.4	Difference -9.833 -14.17 -10.47	-17.94 to -10.40
Treatment	0.5 1 2	Difference	-9.833 -14.17 -10.47	t	8.222 11.85 8.752	P value P<0.001 P<0.001 P<0.001	Summary *** *** ***

Table Analyzed	•	10-8M Vegf	а				
Two-way RM ANOVA		Matching by	cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	ariation 6.2 5.42 84.04 1.474	P value	0.01 0.0143 0.0001 0.4482		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sum ** * * ***	imary	Significa Yes Yes Yes No	nt?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	·	Df	2 2 1 4 8	Sum-of-	squares 41.2 36.06 558.9 9.802 19.04	Mean square 20.6 18.03 558.9 2.451 2.381	F 8.654 7.573 228.1 1.029
Number of missing va	lues		0				
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	16 17.27 19.27	Neo B	8.833 2.767 7.5	Difference -7.167 -14.5 -11.77	-18.49 to -10.51
Treatment	0.5 1 2	Difference	-7.167 -14.5 -11.77	t	5.661 11.45 9.295	P value P<0.001 P<0.001 P<0.001	Summary *** *** ***

Table Analyzed		10-8M Cdknlb							
Two-way RM ANOVA		Matching by	/ cols						
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	ariation 1.35 6.64 86.96 1.4948	P value	0.2774 0.0148 0.0001 0.5371				
Source of Variation Interaction Time Treatment Subjects (matching)		P value sun ns * *** ns	ımary	Significa No Yes Yes No	nt?	· .			
Source of Variation Interaction Time Treatment Subjects (matching) Residual Number of missing value	ues	Df	2 2 1 4 8	Sum-of-	squares 6.854 33.82 443 7.616 18.14	Mean square 3.427 16.91 443 1.904 2.267	F 1.512 7.459 232.7 0.8397		
Bonferroni posttests Saline vs. Neo B Treatment	0.5	Saline	16.97 17.27 19.27	Neo B	7.967 5.6 10.17	Difference -9 11.67 -9.1			
Treatment	2 0.5 1 2	Difference	-9 -11.67 -9.1	t	7.524 9.754	P value P<0.001	Summary *** ***		

Two-way RM ANOVA		Matching by	/ cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	variation 16.47 26.81 32.59 10.22	P value	0.044 0.0136 0.0233 0.2977		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sun * * * ns	nmary	Significa Yes Yes Yes No	ant?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	esquares 42.91 69.87 84.93 26.64 36.27	Mean square 21.46 34.93 84.93 6.659 4.534	F 4.733 7.705 12.75 1.469
Number of missing value	es		0				
Bonferroni posttests							
Saline vs. Neo B Treatment).5 1 2	Saline	16.97 17.27 19.27	Neo B	15.7 8.7 16.07	Difference -1.267 -8.567 -3.2	
Treatment).5 1 2	Difference	-1.267 -8.567 -3.2	t	0.6776 4.582 1.712	P value P > 0.05 P<0.01 P > 0.05	Summary ns ** ns

10-8M Cd5

Table Analyzed	10-8M Dectin-1						
Two-way RM ANOVA	Matching by cols						
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 1.64 75.46 5.61 3.4047	P value 0.639 0.0006 0.0622 0.7435					
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns *** ns ns	Significant? No Yes No No					
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 2 1 4 8	Sum-of-squares 3.914 179.6 13.35 8.102 33.04	Mean square 1.957 89.78 13.35 2.026 4.13	F 0.4739 21.74 6.589 0.4905			
Number of missing values	0						
Bonferroni posttests	· · ·						
Saline vs. Neo B Treatment 0.	. 12.4	Neo B 9.733 11.6 16.27	Difference -1.367 -0.8 -3				
Treatment 0.	-0.8	t 0.904 0.5292 1.984	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns			

Table Analyzed		10-9M Bmp2					
Two-way RM ANOVA		Matching by c	ols				
Source of Variation Interaction Time Treatment Subjects (matching)			iation 9.99 11.79 22.08 .8898	P value	0.1607 0.1245 0.2063 0.0336		
Source of Variation Interaction Time Treatment Subjects (matching)		P value summ ns ns ns *	iary	Significa No No No Yes	int?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	squares 8.608 10.15 19.01 33.5 14.86	Mean square 4.304 5.077 19.01 8.374 1.857	F 2.317 2.734 2.271 4.509
Number of missing va	lues		0				
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2		15.33 17.27 17.27	Neo B	14.43 16 13.27		95% CI of diff. -6.067 to 4.267 -6.434 to 3.901 -9.167 to 1.167
Treatment	0.5 1 2	Difference	-0.9 1.267 -4	t	0.5491 0.7728 2.441		Summary ns ns ns

Table Analyzed	10-9M Hsp	b1				
Two-way RM ANOVA	Two-way RM ANOVA Matching by cols					
Source of Variation Interaction Time Treatment Subjects (matching)	% of total	variation 23.6 1.09 47.46 3.7633	P value	0.0651 0.8372 0.0021 0.862		
Source of Variation Interaction Time Treatment Subjects (matching)	P value su ns ns ** ns	mmary.	Significa No No Yes No	ant?	•	
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df	2. 2 1 4 8	Sum-of	squares 20.29 0.9411 40.8 3.236 20.71	Mean square 10.14 0.4706 40.8 0.8089 2.589	F 3.918 0.1818 50.44 0.3124
Number of missing value	es	0				
Bonferroni posttests						
Saline vs. Neo B Treatment	Saline).5 1 2	16.97 17.27 19.27	Neo B	15.2 16 13.27	Difference -1.767 -1.267 -6	-4.903 to 2.370
Treatment	Difference 1.5 2	-1.767 -1.267 -6	t	1.532 1.098 5.202	P value P > 0.05 P > 0.05 P<0.001	Summary ns ns ***

,

Table Analyzed		10-9M Icam1					
Two-way RM ANOVA		Matching by	y cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	variation 0.6 0.52 93.43 2.295	P value	0.4982 0.5453 0.0002 0.3017		
Source of Variation Interaction Time Treatment Subjects (matching)	I	P value sun ns ns *** ns	ımary	Significa No No Yes No	ant?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	ł	Df	2 2 1 4 8	Sum-of	-squares 3.01 2.59 468.2 11.5 15.82	Mean square 1.505 1.295 468.2 2.875 1.978	F 0.7611 0.6549 162.8 1.454
Number of missing va	lues		0		•		
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	16.97 17.17 16.87	Neo B	7.9 6.2 6.3	Difference -9.067 -10.97 -10.57	
Treatment	0.5 1 2	Difference	-9.067 -10.97 -10.57	t _.	7.359 8.902 8.577	P<0.001	Summary *** *** ***

Table Analyzed	•	10-9M Vegf	а				
Two-way RM ANOVA		Matching by	cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	variation 2.19 2.38 80.25 4.4051	P value	0.4765 0.4506 0.001 0.5485		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sum ns ns ** ns	imary	Significa No No Yes No	int?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	squares 11.68 12.65 427.3 23.46 57.38	Mean square 5.841 6.327 427.3 5.864 7.172	F 0.8143 0.8822 72.87 0.8176
Number of missing va	lues		0				
Bonferroni posttests		u u					
Saline vs. Neo B Treatment	0.5 1 2	Saline	16 17.27 19.27	Neo B	8.533 6.433 8.333	Difference -7.467 -10.83 -10.93	
Treatment	0.5 1 2	Difference	-7.467 -10.83 -10.93	t	3.523 5.112 5.159		Summary * *** ***

Table Analyzed

10-9M Cdknlb

.

Two-way RM ANOVA		Matching by	cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	ariation 13.88 6.85 69.93 2.8262	P value	0.0104 0.0563 0.0006 0.5227		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sum * ns *** ns	ітагу	Significa Yes No Yes No	int?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	squares 65.54 32.36 330.2 13.35 30.75	Mean square 32.77 16.18 330.2 3.337 3.843	F 8.527 4.21 98.97 0.8682
Number of missing va	lues		0				
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	16.97 17.27 19.27	Néo B	13.7 6.933 7.167	Difference -3.267 -10.33 -12.1	95% CI of diff. -8.201 to 1.668 -15.27 to -5.399 -17.03 to -7.166
Treatment	0.5 1 2	Difference	-3.267 -10.33 -12.1	t	2.087 6.602 7.731		Summary ns *** ***

		•		
Table Analyzed	10-9M Cd5			
Two-way RM ANOVA	Matching by cols			
Source of Variation	% of total variation	P value		
Interaction	12.9	0.0392		
Time	8.77	0.0857		
Treatment	65.22	0.0006		
Subjects (matching)	2.7725	0.7138		
Source of Variation	P value summary	Significant?		
Interaction	*	Yes		
Time	ns -	No		
Treatment	***	Yes		
Subjects (matching)	ńs	No		
			Mean	
Source of Variation	Df	Sum-of-squares	square	F
Interaction	2	25.85	12.92	4.989
Time	2	17.57	8.787	3.392
Treatment	1	130.7	130.7	94.09
Subjects (matching)	4	5.556	1.389	0.5361
Residual	8 .	20.72	2.591	
Number of missing values	0			
Number of missing values	0			
Bonferroni posttests		-		
Saline vs. Neo B				
Treatment	Saline	Neo B	Difference	95% CI of diff.
0.5	16.97	14.97	-2	-5.809 to 1.809
1	17.27	10.23	-7.033	-10.84 to -3.224
2	19.27	12.13	-7.133	-10.94 to -3.324
Treatment	Difference	t	P value	Summary
0.5	-2	1.655	P > 0.05	ns
1	-7.033	5.821	P<0.001	***
2	-7.133	5.904	P<0.001	***

Table Analyzed		10-9M Dect	in-1				
Two-way RM ANOVA		Matching by	y cols				
Source of Variation		% of total v		P value	0.0015		
Interaction			40.88		0.0015		
Time			10.39		0.0583		
Treatment			33.42		0.0073		
Subjects (matching)			5.2741		0.4391		
Source of Variation		P value sun	nmary	Significa	int?		
Interaction		**		Yes			
Time		ns		No			
Treatment		**		Yes			
Subjects (matching)		ns		No			
						Mean	
Source of Variation		Df		Sum-of-	squares	square	F
Interaction			2		140.1	70.04	16.29
Time			2		35.58	17.79	4.139
Treatment			1		114.5	114.5	25.35
Subjects (matching)			4		18.07	4.518	1.051
Residual			8		34.39	4.299	
Number of missing val	ues		0				
-							
Bonferroni posttests							
Saline vs. Neo B							
Treatment		Saline		Neo B		Difference	95% CI of diff.
	0.5		11.1		12.87	1.767	-3.616 to 7.149
	1		12.4		7.4	-5	-10.38 to 0.3822
	2		19.27		7.367	-11.9	-17.28 to -6.518
Treatment		Difference		t		P value	Summary
	0.5		1.767	-	1.035		ns
	1		-5		2.929	P < 0.05	*
	2		-11.9		6.971	P<0.001	***
	-						

Table Analyzed	10-10M Bmp2			
Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 4.77 25.92 34.2 27.941	0.1306 0.0022		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns ** ns **	Significant? No Yes No Yes		
Source of Variation Interaction Time Treatment Subjects (matching) Residual Number of missing values	Df 2 2 1 4 8	36.64 48.35 39.5 10.16	Mean square 3.369 18.32 48.35 9.876 1.269	F 2.654 14.43 4.895 7.78
Bonferroni posttests				· .
	Saline 5 15.33 1 17.27 2 17.27	15.63	Difference -4.567 -1.633 -3.633	-6.870 to 3.603
	Difference 5 -4.567 1 -1.633 2 -3.633	0.9833	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns

Two-way RM ANOVA		Matching by	/ cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	ariation 18.03 28.92 45.98 1.7947	P value	0.0026 0.0006 0.0005 0.624		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sun ** *** *** ns	ımary	Significa Yes Yes Yes No	nt?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	-	Df	2 2 1 4 8	Sum-of-	squares 56.22 90.17 143.4 5.596 16.42	Mean square 28.11 45.09 143.4 1.399 2.052	F 13.7 21.97 102.5 0.6816
Number of missing va	lues		0				
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	16.97 17.27 19.27	Neo B	6.733 15.63 14.2	Difference -10.23 -1.633 -5.067	
Treatment	0.5 1 2	Difference	-10.23 -1.633 -5.067	t	1.477	P value P<0.001 P > 0.05 P<0.01	Summary *** ns **

10-10M Hspb1

10-10M Icam1

Two-way RM ANOVA	Matching by	cols				
Source of Variation Interaction Time Treatment Subjects (matching)	% of total va	riation 20.4 21.9 54.61 1.6791) 0003 1383		. ·
Source of Variation Interaction Time Treatment Subjects (matching)	P value sumr *** *** *** ns	nary	Significant? Yes Yes Yes No			
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df	2 2 1 4 8	10 40	ares 50.6 61.8 03.3 12.4 0.43	Mean square 75.31 80.88 403.3 3.1 1.304	F 57.75 62.02 130.1 2.377
Number of missing values		, O				
Bonferroni posttests						·
Saline vs. Neo B Treatment 0.5 1 2		16.97 17.17 16.87		1.8 5.63 .167	Difference -15.17 -1.533 -11.7	-5.084 to 2.017
Treatment 0.5 1 2		-15.17 -1.533 -11.7	1.	3.47 .361 0.39	P value P<0.001 P > 0.05 P<0.001	Summary *** ns ***

Two-way RM ANOVA		Matching by	' cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	ariation 14.97 25.09 51.98 3.7978	P value	0.0022 0.0004 0.0018 0.2178		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sum ** *** ** ns	imary	Significa Yes Yes Yes No	nt?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df ·	2 2 1 4 8	Sum-of-	squares 94.1 157.7 326.8 23.88 26.2	Mean square 47.05 78.86 326.8 5.969 3.274	F 14.37 24.08 54.75 1.823
Number of missing va	lues		0				
Bonferroni posttests						,	
Saline vs. Neo B Treatment	0.5 1 2	Saline	16 17.27 19.27	Neo B	2.267 14.67 10.03	Difference -13.73 -2.6 -9.233	
Treatment	0.5 1 2	Difference	-13.73 -2.6 -9.233	t	8.234 1.559 5.536	P value P<0.001 P > 0.05 P<0.001	Summary *** ns ***

10-10M Vegfa

Table Analyzed		10-10M Cd	knlb				
Two-way RM ANOVA		Matching b	y cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total	variation 6.12 8.72 78.17 3.6643	P value	0.0153 0.0058 0.0008 0.1588		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sur * ** *** ns	nmary	Significa Yes Yes Yes No	int?	•	
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	squares 34.4 48.95 439.1 20.58 18.68	Mean square 24.48 439.1 5.146 2.336	F 7.365 10.48 85.33 2.203
Number of missing va	lues		0				
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	16.97 17.27 19.27	Neo B	4.167 11.1 8.6	Difference -12.8 -6.167 -10.67	
Treatment	0.5 1 2	Difference	-12.8 -6.167 -10.67	t	8.666 4.175 7.222	P value P<0.001 P<0.01 P<0.001	Summary *** ** **

•						
	Table Analyzed	10-10M Cd5				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	0.34	0.8961			
	Time	10.51	0.0841			
	Treatment	72.83	0.0011			
	Subjects (matching)	4.0534	0.6362			
	Source of Variation	P value summary	Significant?			
	Interaction	ns	No			
	Time	ns	No			
	Treatment	** .	Yes			
•	Subjects (matching)	ns	No			
				Maaa		
	Source of Variation	Df	Sum-of-squares	Mean square	F	
	Interaction	2	0.4544	0.2272	0.1112	
	Time	2	14.01	7.004	3.428	
	Treatment	1	97.07	97.07	71.87	
	Subjects (matching)	4	5.402	1.351	0.661	
	Residual	4 8	16.34	2.043	0.001	
	Residual	0	10.54	2.045		
	Number of missing values	0				
	Bonferroni posttests					
	Saline vs. Neo B					
	Treatment	Saline	Neo B	Difference	95% CI of diff.	
	0.5	16.97	12.4	-4.567	-8.032 to -1.101	
	1	17.27	12.97	-4.3	-7.765 to -0.8347	
	2	19.27	14.2	-5.067	-8.532 to -1.601	
	Treatment	Difference	t	P value	Summary	
	0.5	-4.567	4,155		**	
	1	-4.3	3.912		**	
	2	-5.067		P<0.01	**	
	L	5.507				
	· ·					

Two-way RM ANOVA		Matching by	/ cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	variation 29.41 19.87 35.82 3.5425	P value	0.006 0.0175 0.0031 0.6588		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sun ** * ** ns	nmary	Significa Yes Yes Yes No	ant?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	squares 72.98 49.3 88.89 8.791 28.2	Mean square 24.65 88.89 2.198 3.524	F 10.35 6.994 40.44 0.6236
Number of missing va	lues		0				
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	11.1 12.4 19.27	Neo B	9.267 11.03 9.133	Difference -1.833 -1.367 -10.13	
Treatment	0.5 1 2	Difference	-1.833 -1.367 -10.13	t	1.279 0.9534 7.069		Summary ns ns ***

10-10M Dectin-1

Table Analyzed	10-11M Bmp2	·		
Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 0.57 21.92 21.84 41.8595	P value 0.8497 0.0223 0.2221 0.0152		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns * ns *	Significant? No Yes No Yes		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 2 2 1 4 8	Sum-of-squares 0.4678 17.87 17.8 34.12 11.26	Mean square 0.2339 8.934 17.8 8.531 1.407	F 0.1662 6.349 2.087 6.062
Number of missing values	0			
Bonferroni posttests				
Saline vs. Neo B Treatment 0.5 1 2	17.27	Neo B 13.13 15.03 15.73	Difference -2.2 -2.233 -1.533	
Treatment 0.5 1 2	-2.233	t 1.386 1.407 0.9657		Summary ns ns ns

Table Analyzed		10-11M Hsp	b1				
Two-way RM ANOVA		Matching by	, cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	ariation 11.76 29.84 48.86 1.948	P value	0.0237 0.0017 0.0006 0.7289	·	
Source of Variation Interaction Time Treatment Subjects (matching)		P value∘sum * ** *** ns	imary	Significa Yes Yes Yes No	nt?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	·	Df	2 2 1 4 8	Sum-of-	squares 29.91 75.9 124.3 4.956 19.32	Mean square 14.96 37.95 124.3 1.239 2.416	F 6.192 15.71 100.3 0.5129
Number of missing val	ues		0				
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	16.97 17.27 19.27	Neo B	8.067 13.93 15.73	Difference -8.9 -3.333 -3.533	
Treatment.	0.5 1 2	Difference	-8.9 -3.333 -3.533	t	7.663 2.87 3.042	P value P<0.001 P < 0.05 P < 0.05	Summary *** * *

Table Analyzed		10-11M Icam1							
Two-way RM ANOVA		Matching by	cols						
Source of Variation		% of total variation		P value					
Interaction		7.45			0.0025				
Time		7.1		0.0029					
Treatment			80.49		0.0004				
Subjects (matching)		2.8208			0.113				
Source of Variation		P value summary		Significant?					
Interaction		**		Yes					
Time		**		Yes					
Treatment		***		Yes					
Subjects (matching))	ns		No					
						Mean			
Source of Variation		Df		Sum-of-	squares	square	F		
Interaction			2		46.83	23.42	13.96		
Time			2		44.59	22.3	13.29		
Treatment			1		505.6	505.6	114.1		
Subjects (matching))		4		17.72	4.43	2.641		
Residual			8		13.42	1.678			
Number of missing values			0						
Bonferroni posttests									
Saline vs. Neo B									
Treatment		Saline		Neo B		Difference	95% CI of diff.		
	0.5		16.97		2.467	-14.5			
	1		17.17		6.467	-10.7			
	2		16.87		10.27	-6.6	-10.75 to -2.453		
Treatment		Difference		t		P value	Summary		
	0.5		-14.5		11.02	P<0.001	***		
	1		-10.7		8.135	P<0.001	***		
	2		-6.6		5.018	P<0.001	***		

Table

Table Analyzed		10-11M Vegfa							
Two-way RM ANOVA		Matching by cols							
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	variation 6.97 23.08 65.04 1.9997	P value	0.0076 0.0002 0.0003 0.3257				
Source of Variation Interaction Time Treatment Subjects (matching)		P value sun ** *** *** ns	nmary	Significa Yes Yes Yes No	int?				
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	squares 47.89 158.6 447 13.74 20.06	Mean square 23.95 79.31 447 3.436 2.508	F 9.548 31.62 130.1 1.37		
Number of missing values			0						
Bonferroni posttests									
Saline vs. Neo B Treatment	0.5 1 2	Saline	16 17.27 19.27	Neo B	2.8 6.067 13.77	Difference -13.2 -11.2 -5.5			
Treatment	0.5 1 2	Difference	-13.2 -11.2 -5.5	t	9.632 8.172 4.013	P value P<0.001 P<0.001 P<0.01	Summary *** *** **		

Table Analyzed		10-11M Cdl	knlb				
Two-way RM ANOVA		Matching by	y cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	variation 5.76 16.42 72.98 0.8869	P<0.000	0.0272 0.0014 1 0.7704	·	
Source of Variation Interaction Time Treatment Subjects (matching)		P value sun * ** *** ns	ımary	Significar Yes Yes Yes No	nt?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual Number of missing val	ues	Df	2 2 1 4 8	Sum-of-s	34.29 97.69 434.1 5.276 23.45	Mean square 17.14 48.85 434.1 1.319 2.931	F 5.848 16.66 329.2 0.4499
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	16.97 17.27 19.27	Neo B	3.6 7.8 12.63	Difference -13.37 -9.467 -6.633	
Treatment	0.5 1 2	Difference	-13.37 -9.467 -6.633	t .	10.58 7.494 5.251		Summary *** *** ***

Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 3.1 22.23 58.92 3.3747	P value 0.4088 0.0163 0.0011 0.7076		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns * ** ns	Significant? No Yes Yes No		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 2 2 1 4 8	Sum-of-squares 5.23 37.51 99.41 5.693 20.87	Mean square 2.615 18.75 99.41 1.423 2.608	F 1.003 7.19 69.84 0.5457
Number of missing values	0			
Bonferroni posttests				
Saline vs. Neo B Treatment 0.5 1 2	Saline 16.97 17.27 19.27	Neo B 12.53 11.13 15.73	Difference -4.433 -6.133 -3.533	
Treatment 0.5 1 2	Difference -4.433 -6.133 -3.533	t 3.65 5.049 2.909	P value P<0.01 P<0.001 P < 0.05	Summary ** *** *

10-11M Cd5

Table Analyzed

Table Analyzed	ć	10-11M De	ctin-1				
Two-way RM ANOVA		Matching b	y cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	variation 8.58 42.97 33.34 4.6908	P value	0.0904 0.0014 0.006 0.5067		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sur ns ** ** ns	nmary	Significa No Yes Yes No	ant?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	squares 24.98 125.1 97.07 13.66 30.33	Meań square 12.49 62.56 97.07 3.414 3.791	F 3.295 16.5 28.43 0.9006
Number of missing va	lues		. 0				
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	11.1 12.4 19.27	Neo B	9.567 7.233 12.03	Difference -1.533 -5.167 -7.233	
Treatment	0.5 1 2	Difference	-1.533 -5.167 -7.233	t .	0.9809 3.305 4.627	P value P > 0.05 P < 0.05 P<0.01	Summary ns * **

Table Analyzed		10-12M Bmp2			
Two-way RM ANOVA		Matching by cols	x		
Source of Variation Interaction Time Treatment Subjects (matching)		% of total variation 0.35 19.35 1.12 58.6328	P value 0.9353 0.0704 0.7961 0.018		
Source of Variation Interaction Time Treatment Subjects (matching)		P value summary ns ns ns *	Significant? No No No Yes		
Source of Variation Interaction Time Treatment Subjects (matching) Residual Number of missing val	ues	Df 2.2211448	Sum-of-squares 0.2233 12.47 0.72 37.78 13.24	Mean square 0.1117 6.234 0.72 9.444 1.655	F 0.06746 3.766 0.07624 5.706
Bonferroni posttests					
Saline vs. Neo B Treatment	0.5 1 2	Saline 15.33 17.27 17.27	Neo B 15.17 16.57 16.93	Difference -0.1667 -0.7 -0.3333	
Treatment	0.5 1 2	Difference -0.1667 -0.7 -0.3333	t 0.09899 0.4158 0.198		Summary ns ns ns

Table Analyzed		10-12M Hs	pb1				
Two-way RM ANOVA		Matching b	y cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total	variation 2.76 30.37 44.81 7.4947	P value	0.4988 0.011 0.0081 0.448		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sur ns * ** ns	nmary	Significa No Yes Yes No	int?		. · · ·
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	squares 3.488 38.32 56.53 9.456 18.36	Mean square 1.744 19.16 56.53 2.364 2.296	F 0.7597 8.347 23.92 1.03
Number of missing va	lues		0				
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	16.97 17.27 19.27	Neo B	12.57 13.37 16.93	Difference -4.4 -3.9 -2.333	
Treatment	0.5 1 2	Difference	-4.4 -3.9 -2.333	t	3.539 3.137 1.877	P value P < 0.05 P < 0.05 P > 0.05	Summary * * ns

Table Analyzed		10-12M Ica	m1				
Two-way RM ANOVA		Matching by	y cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	variation 9.43 8.31 74.78 4.057	P value	0.005 0.0072 0.001 0.1389		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sun ** ** ** ns	nmary	Significa Yes Yes Yes No	int?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8		esquares 49.29 43.48 391.1 21.22 17.89	Mean square 24.64 21.74 391.1 5.304 2.236	F 11.02 9.721 73.73 2.372
Number of missing va	lues		0				
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	16.97 17.17 16.87	Neo B	5.733 5.1 12.2	Difference -11.23 -12.07 -4.667	95% CI of diff. -15.88 to -6.586 -16.71 to -7.420 -9.314 to -0.01971
Treatment	0.5 1 2	Difference	-11.23 -12.07 -4.667	t .	7.621 8.186 3.166	P value P<0.001 P<0.001 P < 0.05	Summary *** *** *

	_			
Two-way RM ANOVA	Matching by cols			
Source of Variation	% of total variation	P value		
Interaction	4.61	0.1228	•	
Time	17.37	0.006		
Treatment	68.12	0.0008		
Subjects (matching)	3.2192	0.4773		
Source of Variation	P value summary	Significant?		
Interaction	ns	No		
Time	**	Yes		
Treatment	***	Yes		
Subjects (matching)	ns	No		
			Mean	
Source of Variation	Df	Sum-of-squares	square	F
Interaction	2	20.35	10.18	2.757
Time	2	76.75	38.38	10.4
Treatment	1	300.9	300.9	84.64
Subjects (matching)	4	14.22	3.556	0.9634
Residual	8	29.52	3.691	
Number of missing values	0			
Bonferroni posttests				
Saline vs. Neo B				
Treatment	Saline	Neo B	Difference	95% CI of diff.
0.5	16	8.333	-7.667	-12.58 to -2.752
1	17.27	6.267	-11	-15.91 to -6.085
2	19.27	13.4	-5.867	-10.78 to -0.9518
Treatment	Difference	t	P value	Summary
0.5	-7.667	4.918	P<0.01	**
1	-11	7.056	P<0.001	***
2	-5.867	3.763	P<0.01	**

10-12M Vegfa

Table Analyzed

Table Analyzed		10-12M Cd	knib				
Two-way RM ANOVA		Matching by	/ cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	variation 2.2 9.09 78.1 3.0844	P value	0.3593 0.0421 0.0005 0.5476		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sun ns * *** ns	nmary	Significa No Yes Yes No	int?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual Number of missing value	es	Df	2 2 1 4 8	Sum-of-	squares 8.074 33.42 287.2 11.34 27.68	Mean square 4.037 16.71 287.2 2.836 3.461	F 1.167 4.829 101.3 0.8194
Bonferroni posttests							
Saline vs. Neo B Treatment	0.5 1 2	Saline	16.97 17.27 19.27	Neo B	10.13 7.4 12	Difference -6.833 -9.867 -7.267	-14.51 to -5.224
Treatment (0.5 1 2	Difference	-6.833 -9.867 -7.267	t	4.641 6.701 4.935	P value P<0.01 P<0.001 P<0.01	Summary ** *** **

Table Analyzed	10-12M Cd5			
Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 10.81 30.86 38.58 5.9424	P value 0.0989 0.0091 0.007 0.5263		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns ** ** ns	Significant? No Yes Yes No		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 2 2 1 4 8	Sum-of-squares 15.74 44.94 56.18 8.653 20.1	Mean square 7.872 22.47 56.18 2.163 2.513	F 3.133 8.944 25.97 0.861
Number of missing values	0			
Bonferroni posttests				
Saline vs. Neo B Treatment 0.5 1 2	Saline 16.97 17.27 19.27	Neo B 14.97 11.1 16.83	Difference -2 -6.167 -2.433	
Treatment 0.5 1 2	Difference -2 -6.167 -2.433	t 1.582 4.879 1.925	P value P > 0.05 P<0.01 P > 0.05	Summary ns ** ns

	Table Analyzed	10-12M Dectin-1				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
•	Interaction	5.04	0.224			
	Time	55.03	0.0008			
	Treatment	27.74	0.0005			
	Subjects (matching)	1.0724	0.9353			
	Source of Variation	P value summary	Significant?			
	Interaction	ns	No			
	Time	***	Yes			
	Treatment	***	Yes			
	Subjects (matching)	ns	No			
		•		Mean		
	Source of Variation	Df	Sum-of-squares	square	F	
	Interaction	2	13.67	6.837	1.814	
	Time	2	149.3	74.63	19.8	
	Treatment	1	75.24	75.24	103.5	
	Subjects (matching)	4	2.909	0.7272	0.193	
	Residual	8	30.15	3.769		
	Number of missing values	0				
	-			•		
	Bonferroni posttests					
	Saline vs. Neo B					
	Treatment	Saline	Neo B	Difference	95% CI of diff.	
	0.5	11.1	9.333	-1.767	-6.039 to 2.506	
	1	12.4		-4.533	-8.806 to -0.2607	
	. 2	19.27	13.3	-5.967	-10.24 to -1.694	
	Treatment	Difference	t	P value	Summary	
	0.5	-1.767		P > 0.05	ns	
	1	-4.533	3.345	P < 0.05	*	
					**	
	. 2	-5.967	4.403	P<0.01	**	

APPENDIX III – ANOVA TABLES ß (1,3) GLUCAN

Table Analyzed 10-8M Bmp2

Two-way RM ANOVA Matching by cols

Source of Variation	% of total variation	P value	
Interaction	39.73		0.0052
Time	25.01		0.0185
Treatment	17.15		0.0113
Subjects (matching)	3.4779		0.7532

Source of Variation	P value summary	Significant?
Interaction	**	Yes
Time	*	Yes
Treatment	*	Yes
Subjects (matching)	ns	No

	*			Mean	
Source of Variation	Df		Sum-of-squares	square	F
Interaction		2	47.93	23.97	10.87
Time		2	30.17	15.09	6.843
Treatment		1	20.69	20.69	19.73
Subjects (matching)		4	4.196	1.049	0.4757
Residual		8	17.64	2.205	
Number of missing values		0			

Bonferroni posttests

Saline vs. glucan Treatment Saline glucan Difference 95% CI of diff. 0.5 10.83 13.8 2.967 -0.5055 to 6.439 1 11.97 17.63 5.667 2.194 to 9.139 2 16.37 14.17 -2.2 -5.672 to 1.272 Treatment P value Difference t Summary 0.5 2.967 2.694 P > 0.05 ns 1 5.667 5.145 P<0.001 *** 2 -2.2 1.998 P > 0.05 ns

Table Analyzed	10-8M Hspb1				
Two-way RM ANOVA	Matching by cols				
Source of Variation	% of total variation				
Interaction	27.07	0.0683			
Time	7.17	0.4056			
Treatment	16.53	0.1501			
Subjects (matching)	20.9192	0.2953			
Source of Variation	P value summary	Significant?			
Interaction	ns .	No			
Time	ns	No		,	
Treatment	ns	No			
Subjects (matching)	ns	Νο			
			Mean		
Source of Variation	Df	Sum-of-squares	square	F	
Interaction	2	13.1	6.552	3.825	
Time	2	3.468	1.734	1.012	
Treatment	1	8	8	3.161	
Subjects (matching)	4	10.12	2.531	1.478	
Residual	. 8	13.7	1.713		
Number of missing values	0				
Bonferroni posttests					
Saline vs. glucan					
Treatment	Saline	glucan	Difference	95% CI of diff.	
0.5	15.13	18.8	3.667	0.03944 to 7.294	
1	17.03	17.73	0.7	-2.927 to 4.327	
2	16.5	16.13	-0.3667		
Treatment	Difference	t	P value	Summary	
0.5	3.667	3.187		*	
· 1	0.7	0.6084	P > 0.05	ns	
2	-0.3667	0.3187	P > 0.05	ns	

Table Analyzed	10-8M Icam1				
Two-way RM ANOVA	Matching by cols				
Source of Variation	% of total variation	P value			
Interaction	31.22	0.0029			
Time	28.71	0.0038			
Treatment	21.49	0.0373			
Subjects (matching)	9.1299	0.1983			
Source of Variation	P value summary	Significant?			
Interaction	**	Yes			
Time	**	Yes			
Treatment	*	Yes			
Subjects (matching)	ns	No			
			Mean		· ·
Source of Variation	Df	Sum-of-squares	square	F	
Interaction	2	78.54	39.27	13.22	
Time	2	72.25	36.12	12.16	
Treatment	. 1	54.08	54.08	9.417	
Subjects (matching)	4	22.97	5.743	1.933	
Residual	8	23.76	2.97		
Number of missing values	0				· .
Bonferroni posttests	· .		· ·		
Saline vs. glucan					
Treatment	Saline	glucan	Difference	95% CI of diff.	
0.5	6.033	9.467	3.433	-1.647 to 8.513	
1	7.133	15.73	8.6	3.520 to 13.68	
2	7.6	5.967	-1.633	-6.713 to 3.447	
Treatment	Difference	t	P value	Summary	
0.5	3.433	2.131	P > 0.05	ns	
1	8.6	5.337	P<0.001	***	
2	-1.633	1.014	P > 0.05	ns	

	Two-way RM ANOVA	Matching by cols			
		······································			
	Source of Variation	% of total variation	P value		
	Interaction	72.47	0.0009		
	Time	4.61			
	Treatment	2.39	0.2517		
	Subjects (matching)	5.3404	0.6113		
	Source of Variation	P value summary	Significant?		•
	Interaction	***	Yes		
	Time	ns	No		
	Treatment	ns	No		
	Subjects (matching)	ns	Νο		
				Mean	
	Source of Variation	Df	Sum-of-squares	square	F
	Interaction	2	80.12	40.06	19.09
	Time	2	5.101	2.551	1.215
•	Treatment	1	2.645	2.645	1.792
	Subjects (matching)	4	5.904	1.476	0.7034
	Residual	8	16.79	2.099	
	Number of missing values	. 0			
	Bonferroni posttests				
	Saline vs. glucan				
	Treatment	Saline	glucan	Difference	95% CI of diff.
	0.5	7.467	11.3	3.833	0.2934 to 7.373
	· 1	7.8	11.47	3.667	0.1268 to 7.207
	. 2	11	5.8	-5.2	-8.740 to -1.660
	Treatment	Difference	t	P value	Summary
	0.5	3.833	3.414	P < 0.05	*
	1	3.667	3.266	P < 0.05	*
	2	-5.2	4.631	P<0.01	**

; ;

	Table Analyzed	10-8M Cdknlb			·	
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	40.94		0.0009		
	Time	11.28		0.0336		
	Treatment	31.65		0.0154		
	Subjects (matching)	7.6897		0.2179		
	Source of Variation	P value summary	Significa	nt?		
	Interaction	***	Yes			
	Time	*	Yes			
	Treatment	*	Yes			
	Subjects (matching)	ns	No			
		24			Mean	_
	Source of Variation	Df.	Sum-of-		square	F ·
	Interaction	2		72.21	36.1	19.4
	Time	2		19.89	9.944	5.345
	Treatment	1		55.83	55.83	16.47
	Subjects (matching)	4		13.56	3.391	1.822
	Residual	8		14.88	1.861	
	Number of missing values	0				
	Bonferroni posttests					
	Saline vs. glucan					
	Treatment	Saline	glucan		Difference	95% CI of diff.
	0.5	9.133		13.2	4.067	0.1033 to 8.030
	. 1	9.6		17.73	8.133	4.170 to 12.10
-	2	13.77		12.13	-1.633	-5.597 to 2.330
	Treatment	Difference	t		P value	Summary
	0.5	4.067		3.235	P < 0.05	*
	1	8.133			P<0.001	***
	—	-1.633			P > 0.05	

	Table Analyzed	10-8M Cd5					
	Two-way RM ANOVA	Matching by	y cols				
	Source of Variation Interaction Time Treatment Subjects (matching)	% of total v	variation 0.42 12.51 21.46 38.209	P value 0.9408 0.222 0.2083 0.1012			
	Source of Variation Interaction Time Treatment Subjects (matching)	P value sum ns ns ns ns	nmary	Significant? No No No No			
	Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df	2 2 1 4 8	Sum-of-squares 0.1678 4.981 8.542 15.21 10.9	Mean square 0.08389 2.491 8.542 3.802 1.363	F 0.06154 1.827 2.247 2.789	
	Number of missing values	5	0				
	Bonferroni posttests						
• •		Saline 5 1 2	17.37 16.57 16.33	glucan 19 17.73 17.67	Difference 1.633 1.167 1.333		
		Difference 5 1 2	1.633 1.167 1.333	t 1.356 0.9686 1.107		Summary ns ns ns	

Table Analyzed		10-8M Dect	in-1					
Two-way RM ANOVA	4	Matching by	cols					
Source of Variation Interaction		% of total v	ariation 41.01	P value P<0.000	11			
Time			34.54	P<0.000				
Treatment			18.27		0.0091			
Subjects (matching	g)		3.2619		0.1552		-	
Source of Variation		P value sum	nmary	Significa	ant?			
Interaction		***		Yes				
Time		***		Yes				
Treatment		**		Yes				
Subjects (matching	g)	ns		No				
			-			Mean		
Source of Variation		Df		Sum-of-	-squares	square	F	
Interaction			2		79.82	39.91	56.1	
Time			2		67.22	33.61	47.24	
Treatment			1		35.56	35.56	22.4	
Subjects (matchine	g)		4		6.349	1.587	2.231	
Residual			8		5.691	0.7114		
Number of missing	values		0					
Bonferroni posttests	5				e.			
Saline vs. glucan								
Treatment		Saline		glucan		Difference	95% CI of diff.	
	0.5		11.13		10.9	-0.2333		
	1		15.8		15.7	-0.1	-2.678 to 2.478	
<i>,</i>	2		8.967		17.73	8.767	6.188 to 11.35	
Treatment		Difference		t		P value	Summary	
	0.5		-0.2333		0.2853	P > 0.05	ns	
	1		-0.1		0.1223	P > 0.05	ns	
	2		8.767		10.72	P<0.001	***	

Table Analyzed		10-9M Bmp2						
Two-way RM ANOVA		Matching by cols						
Source of Variation Interaction Time Treatment Subjects (matching)		% of total variation 20.97 49.4 15.78 1.005	7 1 8	value	0.0208 0.0018 0.0014 0.9545			
Source of Variation Interaction Time Treatment Subjects (matching)		P value summary * ** ** ns	Y Y Y	Significa 'es 'es 'es Io	nt?		÷.	
Source of Variation Interaction Time Treatment Subjects (matching) Residual			2 2 1 4 8	Sum-of-	squares 16.17 38.11 12.17 0.7756 9.904	Mean square 8.087 19.05 12.17 0.1939 1.238	F 6.532 15.39 62.76 0.1566	
Number of missing value	es	. (0					
Bonferroni posttests								
Saline vs. glucan Treatment (0.5 1 2	Saline 10.83 11.97 16.33	3 7	lucan	13.93 14.83 15.33	Difference 3.1 2.867 -1.033		
Treatment (0.5 1 2	Difference 3.1 2.867 -1.033	7 3			P value P<0.01 P<0.01 P > 0.05	Summary ** ** ns	
							. *	

	۵						
·				·			
			•				
Table Analyzed		10-9M Hspb1					
Two-way RM ANOVA		Matching by cols			•		
Source of Variation		% of total variation					
Interaction		3.69 37.29		0.7171 0.0805		•	
Time Treatment		13.05		0.0805			•
Subjects (matching)		3.4635		0.9513			
Source of Variation		P value summary	Signific	ant?			
Interaction		ns	No				
Time		ns	No				
Treatment Subjects (matching)		*	Yes No				
Subjects (matching)		ns	NO				
			C	•	Mean	-	
Source of Variation Interaction		Df 2		-squares 0.8133	square 0.4067	F 0.3468	
Time		2		8.231	4.116	3.509	
Treatment		1		2.88	2.88	15.07	
Subjects (matching)		4		0.7644	0.1911	0.163	
Residual		8		9.382	1.173		
Number of missing valu	ies	0					
Bonferroni posttests							
Saline vs. glucan							
Treatment		Saline	glucan		Difference	95% CI of diff.	
(0.5	15.13		14.6		-2.900 to 1.834	
	1	17.03		15.63		-3.767 to 0.9670	
	2	16.5		16.03	-U.400/	-2.834 to 1.900	
Treatment		Difference			P value	Summary	
	0.5	-0.5333			P > 0.05	ns	
	1	-1.4			P > 0.05	ns	
	2	-0.4667		0.6216	P > 0.05	ns	
							с. Х
				÷.,			
н. Н							

						•
	Table Analyzed	10-9M Icam1				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 50.26 10.76 4.84 10.6387	P value 0.0103 0.2215 0.2488 0.5045		• • •	
	Source of Variation Interaction Time Treatment Subjects (matching)	P value summary * ns ns ns	Significant? Yes No No No			
• • •	Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 2 1 4 8	Sum-of-squares 4.21 0.9011 0.405 0.8911 1.969	Mean square 2.105 0.4506 0.405 0.2228 0.2461	F 8.553 1.831 1.818 0.9052	
	Number of missing values	0				
	Bonferroni posttests Saline vs. glucan Treatment 0.5 1 2	Saline 6.033 7.133 7.6	glucan 7.1 6.2 6.567		95% CI of diff. -0.1900 to 2.323 -2.190 to 0.3234 -2.290 to 0.2234	
	Treatment 0.5 1 2	Difference 1.067 -0.9333 -1.033	2.341	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns	
				•		
		·				

Table Analyzed	10-9M Vegfa			
Two-way RM ANOVA	Matching by cols			
Source of Variation	% of total variation	P value		
Interaction	18.21	0.0753		
Time	31.85	0.0222		
Treatment	22.21	0.0274		
Subjects (matching)	7.701	0.5746		
Source of Variation	P value summary	Significant?		
Interaction	ns	No		
Time	*	Yes		
Treatment	*	Yes		
Subjects (matching)	ns	No		
Source of Variation	Df	Sum-of-squares	Mean square	F
Interaction	2	8.551	4.276	3.637
Time	2	14.95	7.476	6.359
Treatment	1	10.43	10.43	11.54
Subjects (matching)	4	3.616	0.9039	0.7689
Residual	8	9.404	1.176	0.7005
	Υ.	5.10.	1147 -	
Number of missing values	0			
Bonferroni posttests				
Saline vs. glucan				
Treatment	Saline	glucan	Difference	95% CI of diff.
0.5	7.467	7.233	-0.2333	-2.915 to 2.448
1	7.8	6.9		-3.581 to 1.781
2'	11	7.567	-3.433	-6.115 to -0.7520
Treatment	Difference		P value	Summary
0.5	-0.2333		P > 0.05	ns
1	-0.9		P > 0.05	ns
2	-3.433	4.037	P<0.01	**

Table Analyzed		10-9M Cdknlb			
Two-way RM ANOV	A	Matching by cols			
Source of Variation		% of total variation	P value		
Interaction		41.04	0.0005		
Time		29.09	0.0016		
Treatment		20.82	0.0024	-4	
Subjects (matchin	g)	1.7985	0.7396		
Source of Variation		P value summary	Significant?	· ·	•
Interaction		***	Yes		
Time		**	Yes		
Treatment		**	Yes		
Subjects (matchin	ig)	ns	No		
				Mean	
Source of Variation		Df	Sum-of-squares	square	F
Interaction		2	23.02		22.66
Time		2	16.32		16.06
Treatment		1	11.68		46.31
Subjects (matchin	ig)	4	1.009		0.4964
Residual		8	4.064	0.5081	•
Number of missing	values	0			
Bonferroni posttest	5				
Saline vs. glucan					
Treatment		Saline	glucan	Difference	95% CI of diff.
	0.5	9.133	9.333	0.2	
	1	9.6	9.367	-0.2333	
	2	13.77	8.967	-4.8	-6.474 to -3.126
Treatment		Difference	t	P value	Summary
	0.5	0.2	0.3767	P > 0.05	ns
	1	-0.2333	0.4395	P > 0.05	ns

•

Table Analyzed	10-9M Cd5				
Two-way RM ANOVA	Matching by cols				
Source of Variation	% of total variation	P value			
Interaction	11.34	0.2413			
Time	25.56	0.0675			
Treatment	27.12	0.0274			
Subjects (matching)	9.4077	0.6086			
Source of Variation	P value summary	Significant?			
Interaction	ns	No			
Time	ns	No			
Treatment	*	Yes			
Subjects (matching)	ns	No .			
			Mean		
Source of Variation	Df	Sum-of-squares	square	F	
Interaction	. 2	2.914	1.457	1.707	
Time	2	6.57	3.285	3.848	
Treatment	1	6.969	6.969	11.53	
Subjects (matching)	4	2.418	0.6044	0.7081	
Residual	8	6.829	0.8536		
Number of missing values	0				
Bonferroni posttests				,	
Saline vs. glucan			:		
Treatment	Saline	glucan	Difference	95% CI of diff.	
0.5	17.37	15.9	-1.467	-3.726 to 0.7930	
1	16.57	16.4	-0.1667	-2.426 to 2.093	
2	16.33	14.23	-2.1	-4.360 to 0.1596	
Treatment	Difference	t	P value	Summary	
0.5	-1.467	2.046	P > 0.05	ns	
. 1	-0.1667	0.2325		ns	
2	-2.1		P < 0.05	*	

Table Analyzed		10-9M Dect	in-1				•
Two-way RM ANOVA		Matching by	cols				
Source of Variation		% of total v	ariation	P value			· · ·
Interaction			12.24		0.0025		
Time			51.95	P<0.000	1		
Treatment			31		0.0006		,
Subjects (matching)			1.2978		0.5913		
Source of Variation		P value sum	mary	Significa	nt?		
Interaction		**		Yes			
Time		***		Yes			
Treatment		***		Yes			
Subjects (matching)		ns		No			
						Mean	
Source of Variation		Df		Sum-of-	squares	square	F
Interaction			2		17.94	8.969	13.93
Time			2		76.14	38.07	59.12
Treatment		•	1		45.44	45.44	95.56
Subjects (matching)			4		1.902	0.4756	0.7386
Residual			8		5.151	0.6439	
Number of missing val	ues		0				
Bonferroni posttests							
Saline vs. glucan							
Treatment		Saline		glucan		Difference	95% CI of diff.
	0.5		11.13	-	9.867	-1.267	-3.240 to 0.7069
	1		15.8		9.867	-5.933	-7.907 to -3.960
	2		8.967		6.633	-2.333	-4.307 to -0.3598
Treatment		Difference		t		P value	Summary
•	0.5		-1.267		2.023	P > 0.05	ns
	1		-5.933		9.478	P<0.001	***
	2		-2.333		3.727	P<0.01	**
	-						

·								
	Table Analyzed	10-10M Bmp2						
	Two-way RM ANOVA	Matching by co	ols					
	Source of Variation	% of total vari		P value	0.0756			
	Interaction Time	8	5.06 32.68	P<0.000				
	Treatment Subjects (matching)	6.	0.04 6362		0.8777 0.138			
	Source of Variation	P value summ	əry	Significa	int?			
•	Interaction Time	ns ***		No Yes		•	•	
	Treatment	ns		No				
	Subjects (matching)	ns		No				
	Source of Variation	Df		Sum-of-		Mean square	F	
	Interaction Time		2 2		4.031 65.9	2.016 32.95	3.628 59.31	
	Treatment		1		0.03556	0.03556	0.02689	
	Subjects (matching) Residual		4 8		5.289 4.444	1.322 0.5556	2.38	
	Number of missing values		0			0.0000		
			U					
	Bonferroni posttests							
	Saline vs. glucan Treatment	Saline		glucan		Difference	95% CI of diff.	
	0.!		10.83	-	11.63	0.8	-1.518 to 3.118	
	:		L1.97 L6.37		12.3 14.97		-1.985 to 2.652 -3.718 to 0.9183	
	Treatment	Difference		t		P value	Summary	
	0.		0.8 3333			P > 0.05 P > 0.05	ns ns	
	·		-1.4			P > 0.05	ns	
		· .						

	Table Analyzed	10-10M Hspb1			
	Two-way RM ANOVA	Matching by cols			
	Source of Variation	% of total variation	P value		
	Interaction	4.6	0.6798		
	Time	26.98	0.1546		
	Treatment	20.49	0.0049	`	
	Subjects (matching)	2.5784	0.9741		
	Source of Variation	P value summary	Significant?		
	Interaction	ns	No		
	Time	ns	No		
	Treatment	**	Yes		
	Subjects (matching)	ns	No		
	Source of Variation	Df	Sum-of-squares	Mean square	F
	Interaction	2	1.101	0.5506	г 0.4052
	Time	2	6.463	3.232	2.379
	Treatment	1	4.909		31.78
	Subjects (matching)	4	0.6178		0.1137
	Residual	8	10.87	1.359	
	Number of missing values	0			
•	Bonferroni posttests				
	Saline vs. glucan				
	Treatment	Saline	glucan	Difference	95% CI of diff.
	0.5	15.13	14.77		
	1	17.03	15.8		-3.752 to 1.285
	2	16.5	14.97		
	Treatment	Difference	+	P value	Summary
	0.5	-0.3667		P > 0.05	ns
				P > 0.05 P > 0.05	
	1	-1.233			ns
	2	-1.533		P > 0.05	ns

Table Analyzed	:	10-10M Icam	11				
Two-way RM ANOVA	ı	Matching by	cols				
Source of Variation	c	% of total va	riation	P value			
Interaction			31.41		0.0869		
Time			21.47		0.1624		
Treatment			6.25		0.0564		
Subjects (matching)			3.5366		0.9372		
Source of Variation	ł	P value sumr	mary	Significa	ant?		
Interaction		ns		No			
Time	r	ns		No			
Treatment	r	ns		No			
Subjects (matching)	г	ns		No			
						Mean	
Source of Variation	[Df		Sum-of-	squares	square	F
Interaction			2		4.243	2.122	3.366
Time			2		2.901	1.451	2.301
Treatment			1		0.845	0.845	7.074
Subjects (matching)			4		0.4778	0.1194	0.1895
Residual			8		5.042	0.6303	
Number of missing value	es		0				
Bonferroni posttests							
Saline vs. glucan							
Treatment	. 9	Saline		glucan		Difference	95% CI of diff.
0	0.5		6.033		6.4	0.3667	-1.379 to 2.113
	1		7.133		7.267	0.1333	-1.613 to 1.879
	2,		7.6		5.8	-1.8	-3.546 to -0.05413
Treatment	[Difference		t		P value	Summary
	0.5		0.3667		0.6621	P > 0.05	ns
	1		0.1333		0.2408		ns
	2		-1.8			P < 0.05	*

Table Analyzed		10-10M Ve	gfa				
Two-way RM ANOVA		Matching b	y cols				
Source of Variation Interaction Time Treatment Subjects (matching)		% of total v	variation 13.87 42.57 14.33 8.0451	P value	0.1334 0.0122 0.0558 0.5797		
Source of Variation Interaction Time Treatment Subjects (matching)		P value sun ns * ns ns	nmary	Significa No Yes No No	nt?		
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	squares 6.041 18.54 6.242 3.504 9.229	Mean square 3.021 9.272 6.242 0.8761 1.154	F 2.618 8.037 7.125 0.7595
Number of missing valu	ies		0				
Bonferroni posttests							
Saline vs. glucan Treatment	0.5 1 2	Saline	7.467 7.8 11	glucan	7.3 7.233 8.2	Difference -0.1667 -0.5667 -2.8	
Treatment	0.5 1 2	Difference	-0.1667 -0.5667 -2.8	t	0.1982 0.6737 3.329	P value P > 0.05 P > 0.05 P < 0.05	Summary ns ns *

						. ·	
						,	
Table Analyzed	10-10M Cdl	knib					
Two-way RM ANOVA	Matching by	y cols					
Source of Variation	% of total v	variation	P value				
Interaction		36.32		0.0038			
Time		36.2		0.0038			
Treatment		12.38		0.0163			
Subjects (matching)	,	3.1108		0.7247		е	
Source of Variation	P value sun	nmary	Significa	int?			
Interaction	**		Yes				
Time	**		Yes				
Treatment	*		Yes				
Subjects (matching)	ns		No				
Source of Variation	Df		Curro of		Mean	-	
Interaction	DI	2	Sum-or-	squares 19.72	square 9.861	F 12.13	
Time		2		19.65	9.827	12.09	
Treatment		1		6.722	6.722	15.92	
Subjects (matching)		4		1.689	0.4222	0.5193	
Residual		. 8		6.504	0.8131	010190	
Number of missing values		· 0					
Bonferroni posttests							
Saline vs. glucan							
Treatment	Saline		glucan		Difference	95% CI of diff.	· · · ·
0.5		9.133		9.833	0.7		
1		9.6		9.367	-0.2333		
2		13.77		9.633	-4.133	-6.260 to -2.006	
Treatment	Difference		t		P value	Summary	
0.5		0.7		1.038		ns	
1		-0.2333			P > 0.05	ns	
. 2		-4.133		6.126	P<0.001	***	

	Table Analyzed		10-10M Cd5					
	Two-way RM ANOVA		Matching by	cols				
	Source of Variation Interaction Time Treatment		% of total v	ariation 15.43 20.68 35.82	P value 0.11 0.06 0.00	699		
	Subjects (matching)			6.1781	0.69			
	Source of Variation Interaction Time Treatment Subjects (matching)		P value sum ns ns ** ns	mary	Significant? No No Yes No			
	Source of Variation Interaction		Df	2	Sum-of-squa	ires 914	Mean square 3.457	F 2.819
	Time			2		268	4.634	3.778
	Treatment			1	16	5.06	16.06	23.19
	Subjects (matching) Residual			4 8		769 811	0.6922 1.226	0.5644
	Number of missing valu	Jes		0				
	Bonferroni posttests							
	Saline vs. glucan Treatment		Saline		glucan		Difference	95% CI of diff.
		0.5	Same	17.37	-	4.9	-2.467	-5.102 to 0.1690
		1		16.57		6.4	-0.1667	-2.802 to 2.469
		2		16.33		3.3	-3.033	-5.669 to -0.3977
. *	Treatment		Difference		t		P value	Summary
		0.5		-2.467		951	P < 0.05	*
		1 2		-0.1667 -3.033		994 628	P > 0.05 P < 0.05	ns *
·								

.

•

							• <u>.</u>
	Table Analyzed	10-10M Dec	ctin-1				
	Two-way RM ANOVA	Matching by	∉ cols				
	Source of Variation	% of total v		P value			
	Interaction		11.28		0.0019		
	Time		45.8	P<0.0001			
	Treatment		39.13		0.0002		
	Subjects (matching)		0.797	ł	0.7159		
	Source of Variation	P value sum	nmary	Significan	t?		
	Interaction	**		Yes			
	Time	***		Yes			
	Treatment	***		Yes			
	Subjects (matching)	ns		No			
						Mean	
	Source of Variation	Df		Sum-of-se	ouares	square	F
	Interaction	2.	2	Ga nt 2 , 2	17.87	8.934	15.09
	Time		2		72.53	36.27	61.24
					61.98		
	Treatment		1			61.98	196.4
	Subjects (matching)		4		1.262	0.3156	0.5328
	Residual		8		4.738	0.5922	
	Number of missing values		0				
,	Bonferroni posttests						
	Saline vs. glucan Treatment	Saline		ducan		Difference	95% CI of diff.
	0.5	Saine	11.13	glucan	9.167	-1.967	-3.787 to -0.1465
			15.8		9.167		
	1						-8.320 to -4.680
	۷.		8.967		6.3	-2.00/	-4.487 to -0.8465
	Treatment	Difference		t		P value	Summary
	0.5		-1.967			P < 0.05	*
	1		-6.5			P<0.001	***
	2		-2.667		4.619	P<0.01	**
							· .

Table Analyzed		10-11M Bmp	52				
Two way DM ANOVA		Matabian by	aala				
Two-way RM ANOVA		Matching by	COIS				
Source of Variation		% of total v	ariation	P value			
Interaction			7.22		0.3435		
Time			54.34		0.0084		
Treatment			2.49		0.4204		
Subjects (matching)		1	2.3862		0.4389		
		D		Cinnifian			
Source of Variation Interaction		P value sum	тагу	Significa No	INC		
Tíme		กร **		Yes			
Treatment		ns		No			
Subjects (matching)		ns		No			
Subjects (matching)		115					
						Mean	
Source of Variation		Df		Sum-of-	squares	square	F .
Interaction			2		8.108	4.054	1.225
Time			2		61.06	30.53	9.226
Treatment			1		2.801	2.801	0.8049
Subjects (matching)			4		13.92	3.479	1.051
Residual			8		26.48	3.309	
Number of missing ve	luce		0				
Number of missing va	nues		U				
Bonferroni posttests							
					•		
Saline vs. glucan							
Treatment		Saline		glucan		Difference	95% CI of diff.
	0.5		10.83		11.97		-3.589 to 5.856
	1		11.97		14.2	2.233	-2.489 to 6.956
	2		16.37		15.37	-1	-5.723 to 3.723
Treatment		Difference		t		P value	Summary
	0.5		1.133	-	0.7566	P > 0.05	ns
	1		2.233			P > 0.05	ns
	2		-1			P > 0.05	ns
				:			

Table Analyzed		10-11M Hspb1					
Two-way RM ANOVA		Matching by cols					
Source of Variation		% of total variation	P value				
Interaction		10.75	0.43	328			
Time		3.01	0.7	77			
Treatment		12.83	0.24	19			
Subjects (matching)		27.2565	0.38				
Source of Variation		P value summary	Significant?				
Interaction		ns	No				
Time		ns	No				
Treatment		ns	No				
Subjects (matching)		ns	No				
				Me			
Source of Variation		Df	Sum-of-squar		lare	F	
Interaction		2		.37	3,185		
Time		2	1.7		0.8906	0.2605	
Treatment		1	7.6	505	7.605	1.883	
Subjects (matching)		. 4	16.	.15	4.038	1.181	
Residual		8	27.	.35	3.419		
Number of missing valu	Jes	0					
Bonferroni posttests							
Saline vs. glucan							
Treatment		Saline	glucan	Dif	ference	95% CI of diff.	
	0.5	15.13		5.2	0.06667	-4.834 to 4.968	
	1	17.03		4.2	-2.833	-7.734 to 2.068	
	2	16.5	15.		-1.133	-6.034 to 3.768	
Treatment		Difference	t	Pv	alue	Summary	
	0.5	0.06667	0.042		0.05	ns	
	1	-2.833			0.05	ns	
	2	-1.133	0.7	729 P>	0.05	ns	

•

	Table Analyzed		10-11M Icam1					
	Two-way RM ANOVA		Matching by cols					
	Source of Variation		% of total variation	P value				
	Interaction		10.37		0.5201			
	Time		25.97		0.2295			
	Treatment		1.58		0.2611			
	Subjects (matching)		3.6893		0.9687			
	Source of Variation		P value summary	Significa	int?			
	Interaction		ns	No				
	Time		ns	No				
	Treatment		ns	No				
	Subjects (matching)		ns	No			-	
						Mean		
	Source of Variation		Df	Sum-of-	•	square	F	
	Interaction		2		3.741		0.7103	
	Time		2		9.37	4.685	1.779	
	Treatment		. 1		0.5689	0.5689	1.71	
	Subjects (matching)		4		1.331	0.3328	0.1264	
	Residual		8		21.07	2.634		
	Number of missing value	es	0					
	Bonferroni posttests							
,	Saline vs. glucan							
	Treatment		Saline	glucan		Difference	95% CI of diff.	
	0	.5	6.033		7	0.9667	-2.550 to 4.484	
		1	7.133		6.2	-0.9333	-4.450 to 2.584	
		2	7.6		8.633		-2.484 to 4.550	
	Treatment		Difference	t		P value	Summary	
	0	.5	0.9667		0.8665	P > 0.05	ns	
		1	-0.9333		0.8367	P > 0.05	ns	
	· ·	2	1.033			P > 0.05	ns	
							·	

· ·

Table Analyzed 10-11M Vegfa Two-way RM ANOVA Matching by cols Source of Variation Interaction % of total variation 12.06 P value 0.1439 Treatment So.13 0.006 Source of Variation Treatment P value summary 8.91 Significant? No Source of Variation Time P value summary ns Significant? No Kes Source of Variation Time P value summary ns Significant? No Kes F Source of Variation Time Df Sum-of-squares 9.101 Mean square 4.551 F Source of Variation Interaction Df Sum-of-squares 9.101 Mean square 4.7211 F Source of Variation Interaction Df Sum-of-squares 9.101 Mean square 4.7211 F Source of Variation Interaction Df Sum-of-squares 9.101 Mean square 4.7211 Support P Source of Variation Interaction Df Sum-of-squares 9.101 Mean square 4.7211 Support P Number of missing value 0 D Support Difference 1.824 P P Support Summary Subjects (matching) Saline 1.1123 Support Diff				•						
Source of Variation Interaction % of total variation 12.06 P value 0.1439 Time 50.13 0.006 Treatment 8.91 0.1257 Subjects (matching) 9.5562 0.4661 Source of Variation Treatment P value summary ns Significant? No No Source of Variation Time P value summary ns Significant? No No Source of Variation Time P value summary ns No Significant? No Source of Variation Subjects (matching) Df Sum-of-squares No Mean square F Source of Variation Interaction Df Sum-of-squares No Mean square F Source of Variation Interaction Df Sum-of-squares No No 14.551 2.494 Time 1 6.722 6.722 3.729 30.9881 Residual 8 14.6 1.824 10.37 Bonferroni posttests 0 0	Table Analyzed		10-11M Vegfa							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Two-way RM ANOVA		Matching by cols							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Interaction Time Treatment		% of total v	12.06 50.13 8.91	P value	0.006 0.1257			
Source of Variation Df Sum-of-squares square F Interaction 2 9.101 4.551 2.494 Time 2 37.83 18.92 10.37 Treatment 1 6.722 6.722 3.729 Subjects (matching) 4 7.211 1.803 0.9881 Residual 8 14.6 1.824 1.824 Number of missing values 0 - - - Bonferroni posttests - - - - Saline vs. glucan Saline glucan Difference 95% CI of diff. 0.5 7.467 7.667 0.2 -3.270 to 3.670 1 7.8 11.03 3.233 -0.2367 to 6.703 2 11 11.23 0.2333 -3.237 to 3.703 Treatment Difference t P value Summary 0.5 0.2 0.1817 P > 0.05 ns 1 3.233 2.938 P < 0.05		Interaction Time Treatment		ns ** ns	imary	No Yes No	nt?			
Bonferroni posttests Saline glucan Difference 95% CI of diff. Treatment Saline glucan Difference 95% CI of diff. 0.5 7.467 7.667 0.2 -3.270 to 3.670 1 7.8 11.03 3.233 -0.2367 to 6.703 2 11 11.23 0.2333 -3.237 to 3.703 Treatment Difference t P value Summary 0.5 0.2 0.1817 P > 0.05 ns 1 3.233 2.938 P < 0.05		Interaction Time Treatment Subjects (matching)		Df	2 1 4	Sum-of-	9.101 37.83 6.722 7.211	square 4.551 18.92 6.722 1.803	2.494 10.37 3.729	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of missing values			0						
TreatmentSalineglucanDifference95% CI of diff. 0.5 7.467 7.667 0.2 -3.270 to 3.670 1 7.8 11.03 3.233 -0.2367 to 6.703 2 11 11.23 0.2333 -3.237 to 3.703 TreatmentDifferencetP valueSummary 0.5 0.2 0.1817 P > 0.05 ns 1 3.233 2.938 P < 0.05 *		Bonferroni posttests	a.							
0.50.20.1817P > 0.05ns13.2332.938P < 0.05			1	Saline	7.8	glucan	11.03	0.2 3.233	-3.270 to 3.670 -0.2367 to 6.703	
		Treatment	1	Difference	3.233	t	2.938	P > 0.05 P < 0.05	ns *	

Та	Table Analyzed		10-11M Cdknlb							
Tv	Two-way RM ANOVA		Matching by cols							
	Source of Variation		% of total variation							
I	nteraction	7.61			0.1384					
	Time	72.4		0.0004						
1	Freatment		1.24		0.4428					
S	Subjects (matching)		6.8482		0.3996					
Sc	Source of Variation		P value summary		int?					
I	Interaction	ns		No						
٦	Time	***		Yes						
1	Treatment	ns		No						
5	Subjects (matching)	ns		No						
						Mean				
Sc	ource of Variation	Df		Sum-of-	squares	square	F			
. I	nteraction		2		6.308	3.154	2.558			
٦	Time		2		60	30	24.33			
	Freatment		1		1.027	1.027	0.724			
9	Subjects (matching)		4		5.676	1.419	1.151			
F	Residual		8		9.864	1.233				
Nu	Number of missing values		0							
Вс	onferroni posttests									
Sa	aline vs. glucan									
Tr	eatment	Saline		glucan		Difference	95% CI of diff.			
	0.5		9.133		9	-0.1333	-3.063 to 2.796			
	1		9.6		11.73	2.133	-0.7960 to 5.063			
	2		13.77		13.2	-0.5667	-3.496 to 2.363			
Tr	eatment	Difference		t		P value	Summary			
	0.5		-0.1333		0.1435	P > 0.05	ns			
	1		2.133		2.296	P > 0.05	ns			
	2		-0.5667		0.6099	P > 0.05	ns			

.

Table Analyzed		10-11M Cd5	F					
Two-way RM ANOVA		Matching by	cols					
Source of Variation		% of total va		P value			•	
Interaction			15.91		0.0569			
Time			22.91		0.0253			
Treatment			41.98		0.0029			
Subjects (matching)			4.0177		0.7183			
Source of Variation		P value sum	mary	Significa	ant?		е С	
Interaction		ns		No				
Time		*		Yes				
Treatment		**		Yes No				
Subjects (matching)		ns		NO				
				_		Mean		
Source of Variation		Df	2	Sum-of-	-squares	square	F	
Interaction			2		16.99	8.494	4.192	
Time			2		24.45	12.23	6.034	
Treatment			1		44.81	44.81	41.79	
Subjects (matching)			4		4.289		0.5291	
Residual			8		16.21	2.026		
Number of missing val	lues		0					
Bonferroni posttests								
Saline vs. glucan								
Treatment		Saline		glucan		Difference	95% CI of diff.	
	0.5		17.37	-	15.47		-5.265 to 1.465	
	· 1		16.57		10.67		-9.265 to -2.536	
	2		16.33		14.67		-5.031 to 1.698	
Treatment		Difference		t		P value	Summary	
	0.5		-1.9		1.78	P > 0.05	ns	
	1		-5.9			P<0.001	***	
	2		-1.667			P > 0.05	ns	
						•		•

	Table Analyzed	10-11M Dectin-1			
	Two-way RM ANOVA	Matching by cols			
	Source of Variation	% of total variation	P value		
	Interaction	50.28	0.0002		
	Time	30.39	0.0013		
	Treatment	9.89	0.0145		
	Subjects (matching)	2.3226	0.6416		
	Source of Variation	P value summary	Significant?		
	Interaction	***	Yes		
ч.	Time	**	Yes		
	Treatment	*	Yes		
	Subjects (matching)	ns	No		
				Mean	
	Source of Variation	Df	Sum-of-squares	square	F
	Interaction	2	49.21	24.61	28.23
	Time	2	29.74	14.87	17.06
	Treatment	. 1	9.68	9.68	17.03
	Subjects (matching)	4	2.273	0.5683	0.652
	Residual	8	6.973	0.8717	
	Number of missing values	. 0			
	Bonferroni posttests				
	Saline vs. glucan				
	Treatment	Saline	glucan	Difference	95% CI of diff.
	0.5	11.13	9.633	-1.5	-3.760 to 0.7596
	1	15.8	10.3	-5.5	-7.760 to -3.240
	2	8.967	11.57	2.6	0.3404 to 4.860
	Treatment	Difference	t	P value	Summary
	0.5	-1.5	2.093	P > 0.05	ns
	1	-5.5	7.674	P<0.001	***
	2	2.6	3.628	P < 0.05	*

Table Analyzed		10-12M Bm	p2	• •				
Two-way RM ANOVA		Matching by						
				P value				
Source of Variation Interaction		% of total v	27.78	PValue	0.03			
Time			26.78		0.0326			
Treatment			4.66		0.399			
Subjects (matching)		:	20.9796		0.1699			
Source of Variation		P value sum	ımary	Significa	ant?			
Interaction		*		Yes		•		
Time		*		Yes				
Treatment		ns		No				
Subjects (matching)		ns		No				
						Mean		
Source of Variation		Df		Sum-of-	-squares	square	F	
Interaction			2		27.4	13.7	5.614	
Time			2		26.41	13.21	5.411	
Treatment			1		4.601	4.601	0.8894	
Subjects (matching)			4		20.69	5.173	2.12	
Residual			8		19.52	2.44		
Number of missing valu	Jes		0				·	
Bonferroni posttests								
Saline vs. glucan								
Treatment		Saline		glucan		Difference	95% CI of diff.	
	0.5		10.83		11.5	0.6667	-4.046 to 5.379	
	1		11.97		12.77	0.8	-3.912 to 5.512	
	2		16.37		11.87	-4.5	-9.212 to 0.2123	
Treatment		Difference				P value	Summary	
	0.5		0.6667			P > 0.05	ns	
	1		0.8			P > 0.05	ns	
	2		-4.5		3.011	P < 0.05	*	
·								
							· .	

							·		
• •									
							,		
						·			
	Table Analyzed		10-12M Hsp	ob1					
	Two-way RM ANOVA		Matching by	y cols					
	Source of Variation		% of total v	variation	P value			. · · ·	
	Interaction			5.72		0.3225			
	Time			1.62		0.7022			
	Treatment			47.43		0.0591			
	Subjects (matching)			27.732		0.0773			
· •	Source of Variation		P value sum	omary	Significa	int?			
	Interaction		ns		No	•			
	Time		ns		No				
	Treatment		ns		No				
	Subjects (matching)		ns		No				
							Mean		
	Source of Variation		Df		Sum-of-	squares	square	F	
	Interaction			2		6.948	3.474	1.308	
	Time			2		1.963	0.9817	0.3696	
	Treatment			1		57.6	57.6	6.842	
	Subjects (matching)			4		33.68	8.419	3.17	
	Residual			8		21.25	2.656		
	Number of missing value	145		0					
	Number of trassing van	162		v					
	Bonferroni posttests								
	Saline vs. glucan								
	Treatment		Saline		glucan		Difference	95% CI of diff.	
		0.5		15.13		13.3	-1.833		
		1		17.03		12.77		-9.774 to 1.241	
		- 2		16.5		11.87	-4.633	-10.14 to 0.8739	
	Treatment	,	Difference		t		P value	Summary	
		0.5		-1.833	-	1.05	P > 0.05	ns	
		1		-4.267			P > 0.05	ns	
		2		-4.633			P > 0.05	ns	
							4		
		•							
			1	•					
				x					

Table Analyzed	10-12M Ica	am1				
Two-way RM ANOVA	Matching b	y cols				
Source of Variation	% of total	variation	P value			
Interaction		6.36	0.586	57		
Time		13.03	0.358	36		
Treatment		4.99	0.467	79		
Subjects (matching)		31.0654	0.318			
Source of Variation	P value sur	mmary	Significant?			
Interaction	ns		No			
Time	ns		No			
Treatment	ns		No			
Subjects (matching)	ns		No			
	Df		Sum of course	Mean	-	
Source of Variation	Df	~	Sum-of-square		F	
Interaction		2	30.0			
Time		2	61.5			
Treatment		1	23.5			
Subjects (matching)		4	146			
Residual		8	210	.7 26.34		
Number of missing values	;	0				
Bonferroni posttests						
Saline vs. glucan				·	· •	
Treatment	Saline		glucan	Difference	95% CI of diff.	
0.1	5	6.033	6.26			
:	1	7.133	7.83	33 0.7	-13.35 to 14.75	
:	2	7.6	13.5	53 5.933	-8.118 to 19.98	
Treatment	Difference		t	P value	Summary	
0.1		0.2333	0.0523		ns	
	1	0.7	0.157		ns	
	2	5.933	1.33	B1 P > 0.05	ns	
·						
Ň						

			•				
	Table Analyzed	10-12M Vegfa					
	Two-way RM ANOVA	Matching by cols				· · ·	
	Source of Variation	% of total variation	P value				
	Interaction	5.41		0.5362			
	Time	21.62		0.1275			
	Treatment	6.77		0.4234			
	Subjects (matching)	34.1127	-	0.169			
	Source of Variation	P value summary	Significan	it?			
,	Interaction	ns	No				
	Time	ns	No				
	Treatment	ns	No		•		
	Subjects (matching)	ns	No	•			
					Mean		
	Source of Variation	Df	Sum-of-se		square	F	
	Interaction	2		32.14	16.07		
	Time	2		128.4	64.21	2.694	
	Treatment	1		40.2	40.2		
	Subjects (matching)	4		202.6	50.66	2.126	
	Residual	8		190.6	23.83		
,	Number of missing values	0					
	Bonferroni posttests						
	Saline vs. glucan						
	Treatment	Saline	glucan		Difference	95% CI of diff.	
	0.5	7.467		6.7	-0.7667	-15.50 to 13.97	
	1	7.8	·	12.3	4.5	-10.24 to 19.24	
	2	11		16.23	5.233	-9.503 to 19.97	
	Treatment	Difference	t		P value	Summary	
	0.5	-0.7667		0.164	P > 0.05	ns	
	1	4.5		0.9627	P > 0.05	ns	
	2	5.233			P > 0.05	ns	

Table Analyzed	10-12M Cdkn	lb				
Two-way RM ANOVA	Matching by o	cols				
Source of Variation	% of total va	riation	P value			
Interaction		36.26		0.0393		
Time		26.14		0.077		
Treatment		3.14		0.2009		
Subjects (matching)	ţ	5.3758		0.8241		
Source of Variation	P vaiue sumn	nary	Significa	int?	,	
Interaction	*		Yes			
Time	ns		No			
Treatment	ns		No		÷	
Subjects (matching)	ns		No	-		
					Mean	
Source of Variation	Df		Sum-of-		square	F [¬]
Interaction		2		32.3	16.15	4.986
Time		2		23.28	11.64	3.595
Treatment		1		2.801	2.801	2.339
Subjects (matching)		4		4.789	1.197	0.3696
Residual		8		25.91	3.239	
Number of missing values		0				
Bonferroni posttests						
Saline vs. glucan						
Treatment	Saline		glucan		Difference	95% CI of diff.
0.5		9.133		8.7	-0.4333	-4.551 to 3.684
· 1		9.6		11.9	2.3	
2		13.77		9.533	-4.233	-8.351 to -0.1160
 Treatment	Difference		t		P value	Summary
0.5	-().4333		0.3318	P > 0.05	ns
. 1		2.3		1.761	P > 0.05	ns
2		-4.233			P < 0.05	* .

× .

, . .

Table Analyzed		10-12M Cd	10-12M Cd5							
Two-way RM ANOVA		Matching b	y cols			a.				
Source of Variation Interaction Time Treatment Subjects (matching)	ĸ	% of total v	variation 2.82 11.23 65.48 9.4597	P value	0.4019 0.06 0.0062 0.2384		• •			
Source of Variation Interaction Time Treatment Subjects (matching)	×	P value sur ns ns ** ns	nmary	Significa No No Yes No	int?					
Source of Variation Interaction Time Treatment Subjects (matching) Residual		Df	2 2 1 4 8	Sum-of-	squares 3.488 13.9 81.07 11.71 13.63	Mean square 1.744 6.952 81.07 2.928 1.704	F 1.024 4.081 27.69 1.719			
Number of missing va	lues		0							
Bonferroni posttests										
Saline vs. glucan Treatment	0.5 1 2	Saline	17.37 16.57 16.33	glucan	14.37 11.73 11.43	-4.833	95% CI of diff. -6.741 to 0.7406 -8.574 to -1.093 -8.641 to -1.159			
Treatment	0.5 1 2	Difference	-3 -4.833 4.9	t	2.528 4.074 4.13	P value P > 0.05 P<0.01 P<0.01	Summary ns ** **			

Table Analyzed	10-12M Dectin-1			
Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 9.24 48.62 25.78 8.3206	P value 0.0468 0.0004 0.0244 0.1769		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary * *** * ns	Significant? Yes Yes Yes No		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 2 2 1 4 8	Sum-of-squares 13.56 71.36 37.85 12.21 11.8	Mean square 6.782 35.68 37.85 3.053 1.475	F 4.598 24.19 12.39 2.07
Number of missing values	0			
Bonferroni posttests				
Saline vs. glucan Treatment 0.5 1 2	15.8	glucan 8.467 10.67 8.067	Difference -2.667 -5.133 -0.9	-8.775 to -1.492
Treatment 0.5 1 2	-5.133	t 2.309 4.444 0.7792	P value P > 0.05 P<0.01 P > 0.05	Summary ns ** ns

APPENDIX IV – ANOVA TABLES NEO A + GLUCAN

Table Analyzed

Two-way RM ANOVA

Bmp2 10-9 Matching by cols

% of total variation	P value	
9.8		0.4539
16.09		0.0758
28.23		0.0468
15.9071		0.4356
	9.8 16.09 28.23	9.8 16.09 28.23

Source of Variation	P value summary	Significant?
Interaction	ns	No
Time	ns	No
Treatment	* '	Yes
Subjects (matching)	ns	No

•				Mean	
Source of Variation	Df		Sum-of-squares	square	F
Interaction		4	39.03	9.756	0.981
Time		2	64.09	32.05	3.222
Treatment		2	112.4	56.2	5.324
Subjects (matching)		6	63.34	10.56	1.062
Residual		12	119.3	9.945	

0

Number of missing values

Bonferroni posttests

Neo A + Glucan vs. Neo A	· ·			
Treatment	Neo A + Glucan	Neo A	Difference	95% CI of diff.
0.	5 2.2	-1.533	-3.733	-11.44 to 3.973
	1 2.533	4.5	1.967	-5.740 to 9.673
	2 4.767	3.067	-1.7	-9.407 to 6.007
Treatment	Difference	t	P value	Summary
0.	5 -3.733	1.435	P > 0.05	ns
	1 1.967	0.7561	P > 0.05	ns
•	2 -1.7	0.6535	P > 0.05	ns

Neo A + Glucan vs. Glucan

Treatment		Neo A + Glucan	Glucan		Difference	95% CI of diff.
	0.5	2.2		-3.067	-5.267	-12.97 to 2.440
	1	2.533		-2.833	-5.367	-13.07 to 2.340
	2	4.767		1.033	-3.733	-11.44 to 3.973
Treatment		Difference	t		P value	Summary
	0.5	-5.267		2.025	P > 0.05	ns
	1	-5.367		2.063	P > 0.05	ns
	2	-3.733		1.435	P > 0.05	ns

	Table Analyzed	Hspb1 10-9				
			• •		,	
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	15.62	0.4242			
	Time	. 4.1	0.5916			
	Treatment	22.46	0.0493		·	
	Subjects (matching)	13.0039	0.7398			
	Source of Variation	P value summary	Significant?			
i i	Interaction	ns	No			
	Time	ns	No		•	
<u>د</u>	Treatment	*	Yes			
	Subjects (matching)	ns	No		,	
	· · ·			Mean		
	Source of Variation	Df	Sum-of-squares	square	F	
	Interaction	4	32.16	8.039	1.046	
	Time	2	8.436	4.218	0.5485	
	Treatment	2	46.25	23.12	5.182	
	Subjects (matching)	6	26.77	4.462	0.5803	
	Residual	12	92.27	7.689		
	Number of missing values	0				
	Bonferroni posttests					
۰ ۰	Neo A + Giucan vs. Neo A					
	Treatment	Neo A + Glucan	Neo A	Difference	95% CI of diff.	
	0.5	[,] 3.833	1.367	-2.467	-9.078 to 4.145	
	· 1	2.533	5.9	3.367	-3.245 to 9.978	
	2	4.767	3.067	-1.7	-8.311 to 4.911	
	Treatment	Difference	t	P value	Summary	
	0.5			P > 0.05	ns	
	1		1.603		ns	
	2			P > 0.05	ns	
	Neo A + Glucan vs. Glucan					
	Treatment	Neo A + Glucan	Glucan	Difference	95% CI of diff.	
	0.5		0.5667		-9.878 to 3.345	
	1				-7.745 to 5.478	
	2				-10.91 to 2.311	
	Treatment	Difference	t	P value	Summary	
	0.5			P > 0.05	ns	
				P > 0.05	ns	
	1	-1.133	0.5557			
	1 2			P > 0.05	ns	
					ns	
					ns	
					ns	
					ns	

Table Analyzed	Icam1 10-9				
Two-way RM ANOVA	Matching by cols				
Source of Variation	% of total variation	P value			
Interaction	7.94	0.0977			
Tìme	3.11	0.1827			
Treatment		P<0.0001			
Subjects (matching)	2.4612	0.7844			
Source of Variation	P value summary	Significant?			
Interaction	ns ,	No			
Time	ns	No			
Treatment	***	Yes			
Subjects (matching)	ns	No			
Subjects (matering)	113				
			Mean		
Source of Variation	Df	Sum-of-squares	square	F	
Interaction	4	69.66	17.41	2.505	
Time	2	27.32	13.66	1.965	
Treatment	2	675.4	337.7	93.83	
Subjects (matching)	. 6	21.59	3.599		
Residual	12	83.41	6.951		
Number of missing values	0				
Bonferroni posttests					
Neo A + glucan vs. Neo A					
Treatment	Neo A + glucan	Neo A	Difference	95% CI of diff.	
0.5	12.37	10.33	-2.033	-7.876 to 3.809	
1	12.3	11.33	-0.9667	-6.809 to 4.876	
2	11.93	4.233	-7.7	-13.54 to -1.857	
Treatment	Difference	t	P value	Summary	
0.5	-2.033		P > 0.05	ns	
1	-0.9667		P > 0.05	ns	
2	-7.7		P<0.01	**	
Neo A + glucan vs. Glucan					
Treatment	Neo A + glucan	Glucan	Difference	95% CI of diff.	•
0.5					
	12.37	-1.067			
1	12.3	0.8667 1		-17.28 to -5.591 -16.78 to -5.091	
. 2	11.93	1	-10.93	-10'\0 10 -2'0AT	
Treatment	Difference		P value	Summary	
0.5	-13.43	6.812	P<0.001	***	
1	-11.43		P<0.001	***	
2	-10.93		P<0.001	***	

			,		
Table Analyzed	Vegfa 10-9				
Two-way RM ANOVA	Matching by cols				
Source of Variation	% of total variation	P value			
Interaction	16.7		0.0377		
Time	12.5		0.0214		
Treatment	47.8		0.0041		
Subjects (matching)	9.0841		0.3261		
Source of Variation	P value summary	Significa	int?		
Interaction	*	Yes			
Time	* .	Yes			
Treatment	**	Yes			
Subjects (matching)	ns	No			
· · · · · · · · · · · · · · · · · · ·		-			
				Mean	
Source of Variation	Df	Sum-of-	squares	square	F
Interaction	4		90.3	22.57	3.599
Time	2		67.58	33.79	5.388
Treatment	2		258.4	129.2	15.79
Subjects (matching)	6		49.12	8.186	1.305
Residual	12		75.26	6.272	
Number of missing values	0				
Number of missing values	0				
Bonferroni posttests					
Neo A + glucan vs. Neo A					
Treatment	Neo A + glucan	Neo A		Difference	95% CI of diff.
0.5	3.533		7.2	3.667	-2.692 to 10.03
1	8.433		11.37	2.933	-3.426 to 9.292
	11.57				
2	11.57		6.4	-5.167	-11.53 to 1.192
Treatment	Difference	t		P value	Summary
0.5			1.708	P > 0.05	ns
1	2.933			P > 0.05	ns
2	-5.167			P > 0.05	ns
Neo A + glucan vs. Glucan					
Treatment	Neo A + glucan	Glucan		Difference	95% CI of diff.
		Giucan	0 2667		-9.626 to 3.092
0.5	3.533		0.2667		
1 2	8.433		0.9		-13.89 to -1.174
2	11.57		3.433	-8.133	-14.49 to -1.774
Treatment	Difference	t		P value	Summary
0.5	-3.267			P > 0.05	ns
1	-7.533			P<0.01	**
2	-8.133			P<0.01	**

	Table Analyzed	Cdknlb 10-9			
	Two-way RM ANOVA	Matching by cols			
	Source of Variation	% of total variation	P value		
	Interaction	25.44	0.0339		
	Time	2.98	0.4424		
	Treatment	44.19	0.0025		
	Subjects (matching)	6.9252	0.6715		
	Source of Variation	P value summary	Significant?		
	Interaction	*	Yes		
	Time	ns	No		
	Treatment	**	Yes		
	Subjects (matching)	ns	No		
		56	6	Mean	-
	Source of Variation	Df	Sum-of-squares	square	F
	Interaction	4	76.9	19.23	3.73
	Time	2	9.007	4.503	
	Treatment	2	133.5	66.77	19.14
	Subjects (matching)	6	20.93	3.489	0.6768
	Residual	12	61.86	5.155	
	Number of missing values	. 0			
	Bonferroni posttests				
	Neo A + glucan vs. Neo A				
	Treatment	Neo A + glucan	Neo A	Difference	95% CI of diff.
	0.5	5.467	6.333	0.8667	-4.321 to 6.055
	1	7.2	7.567	0.3667	-4.821 to 5.555
	2	7.667	3.067	-4.6	-9.788 to 0.5879
	Treatment	Difference	t	P value	Summary
	0.5	0.8667	0.4949	P > 0.05	ns
	· 1	0.3667	0.2094	P > 0.05	ns
	2	-4.6	2.627	P > 0.05	ns
	Neo A + glucan vs. Glucan				
	Treatment	Neo A + glucan	Glucan	Difference	95% CI of diff.
	0.5	5.467	-0.2		-10.85 to -0.4788
	1	7.2	0.2333		-12.15 to -1.779
	2	7.667	4.767		-8.088 to 2.288
			+	P value	Summary
• •	Treatment	Difference			
	Treatment 0.5	Difference -5.667			*
• •	Treatment 0.5 1	Difference -5.667 -6.967	3.236	P < 0.05	•

						•	
· ·							
	Table Analyzed	Cd5 10-9					
	Two-way RM ANOVA	Matching by cols					
	Source of Variation	% of total variation	P value				
	Interaction	13.08	1 10	0.5407			
	Time	6.57		0.4649			
	Treatment	21.24		0.0384			
	Subjects (matching)	10.8128		0.8332			
	Course of Maniatian	Designed as a second part of the	Cinnific	13			
	Source of Variation Interaction	P value summary	Significa No	int?			
	Time	ns					
		ns *	No				
	Treatment		Yes No				
	Subjects (matching)	ns	NO				
					Mean		
	Source of Variation	Df	Sum-of-	-squares	square	F	
	Interaction	4		21.96	5.49	0.8129	
	Tìme	2		11.03	5.517	0.8169	
	Treatment	2		35,65	17.82	5.893	
	Subjects (matching)	6		18.15	3.024	0.4478	
	Residual	12		81.04	6.753		
	The second s						
	Number of missing values	. 0					
	Bonferroni posttests						
	Neo A + glucan vs. Neo A						
	Treatment	Neo A + glucan	Neo A		Difference	95% CI of diff.	
	0.5	4.433		0.4333	-4	-9.679 to 1.679	
	1	. 2.533		3.467	0.9333	-4,745 to 6.612	
	2	5.167		3.067	-2.1	-7.779 to 3.579	
			_ ·		_ .	-	
	Treatment	Difference	t		P value	Summary	
	0.5	-4		2.087		ns	
	1	0.9333			P > 0.05	ns	
	- 2	~2.1		1.096	P > 0.05	ns	
	Neo A + glucan vs. Glucan						
	Neo A + giucan vs. Glucan Treatment	Neo A + glucan	Glucan		Difference	95% CI of diff.	
	_		Glucan	1.467	Difference -2.967	95% CI of diff. -8.645 to 2.712	
r	Treatment	Neo A + glucan	Glucan	1.467 0.2	Difference -2.967	95% CI of diff.	
÷	Treatment 0.5	Neo A + glucan 4.433	Glucan		Difference -2.967 -2.333	95% CI of diff. -8.645 to 2.712	
:	Treatment 0.5 1	Neo A + glucan 4.433 2.533 5.167		0.2	Difference -2.967 -2.333 -3.067	95% CI of diff. -8.645 to 2.712 -8.012 to 3.345 -8.745 to 2.612	
t	Treatment 0.5 1 2 Treatment	Neo A + glucan 4.433 2.533 5.167 Difference	Glucan t	0.2 2.1	Difference -2.967 -2.333 -3.067 P value	95% CI of diff. -8.645 to 2.712 -8.012 to 3.345 -8.745 to 2.612 Summary	
e	Treatment 0.5 1 2 Treatment 0.5	Neo A + glucan 4.433 2.533 5.167 Difference -2.967		0.2 2.1 1.548	Difference -2.967 -2.333 -3.067 P value P > 0.05	95% CI of diff. -8.645 to 2.712 -8.012 to 3.345 -8.745 to 2.612 Summary ns	
e - -	Treatment 0.5 1 2 Treatment	Neo A + glucan 4.433 2.533 5.167 Difference		0.2 2.1 1.548 1.217	Difference -2.967 -2.333 -3.067 P value	95% CI of diff. -8.645 to 2.712 -8.012 to 3.345 -8.745 to 2.612 Summary	

	Table Analyzed	Dectin-1 10-9				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	27.89	0.053			
	Time	28.98	0.011			
	Treatment	11.8	0.025			
	Subjects (matching)	4.9451	0.881	2		
	Source of Variation	P value summary	Significant?			
	Interaction	ns	No			
	Time	*	Yes		·	
	Treatment	*	Yes			
	Subjects (matching)	ns	No			
			C	Mean	-	
	Source of Variation	Df	Sum-of-squares	•	F	
	Interaction	4	81.4		3.171	
	Time	2	84.6		6.591	
	Treatment	2	34.4		7.161	
	Subjects (matching) Residual	12	14.4 77.0		0.3749	
	Number of missing values	. 0				
	Bonferroni posttests					
	Neo A + glucan vs. Neo A					
	Treatment	Neo A + glucan	Neo A	Difference	95% CI of diff.	
	0.5	2	2.	2 0.2	-5.255 to 5.655	,
	1	4.767	2.76	7 -2	-7.455 to 3.455	
	2	10.43	5.63	3 -4.8	-10.26 to 0.6551	
r	Treatment	Difference	t ·	P value	Summary	
	0.5	0.2	0.108	6 P > 0.05	ns	
	1	-2	1.08	6 P > 0.05	ns	
	2	-4.8	2.60	7 P > 0.05	ns	
	Neo A + glucan vs. Glucan					
	Treatment	Neo A + glucan	Glucan	Difference	95% CI of diff.	
	0.5	2	1.	3 -0.7	-6.155 to 4.755	
	1	4.767	5.		-4.322 to 6.588	
	2	10.43	2.33		-13.56 to -2.645	
	Treatment	Difference	t	P value	Summary	
	0.5	-0.7		2 P > 0.05	ns	
	1	1.133		5 P > 0.05	ns	
	2			9 P<0.01	**	

	Table Analyzed	Bmp2 10-10					•
	Two-way RM ANOVA	Matching by cols					
	Source of Variation	% of total variation	P value				
	Interaction	15.39		0.0464			
	Time	32.54		0.0007			
	Treatment	29.89		0.0105			
	Subjects (matching)	8.3806		0.3632			
	Source of Variation	P value summary	Significa	int?			
	Interaction	*	Yes				
	Time	***	Yes				
	Treatment	*	Yes				
	Subjects (matching)	ns	No				
					Mean		
	Source of Variation	Df	Sum-of-	squares	square	F	
	Interaction	4		47.16	11.79	3.348	
	Time	2		99.69	49.84	14.15	
	Treatment	· · 2		91.58	45.79	10.7	
	Subjects (matching)	6		25.68	4.279	1.215	
	Residual	12		42.26	3.522		
	Number of missing values	0					
	5						
	Bonferroni posttests						
	Neo A + Glucan vs. Neo A						
	Treatment	Neo A + Glucan	Neo A		Difference	95% CI of diff.	
	0.5	-0.6333		0.4333	1.067	-3.633 to 5.766	
· · ·	1	2.467		7.867	5.4	0.7003 to 10.10	
	2	5.267		5.5	0.2333	-4.466 to 4.933	
	Treatment	Difference	t		P value	Summary	
	0.5	1.067		0.6724		ns	
	. 1	5.4		3.404	P<0.01	**	
	2	0.2333			P > 0.05	ns	
	Neo A + Glucan vs. Glucan		Cha		Diff	0.50/ 01 -6 1155	
	Treatment	Neo A + Glucan	Glucan		Difference	95% CI of diff.	
	0.5	-0.6333		-0.8		-4.866 to 4.533	
	. 1	2.467		-0.3333		-7.500 to 1.900	
	2	5.267		1.4	-3.867	-8.566 to 0.8331	
	Treatment	Difference	t		P value	Summary	
	0.5	-0.1667		0.1051	P > 0.05	ns	
	1	-2.8		1.765	P > 0.05	ns	
	2	-3.867			P > 0.05	ns	

1							
					-		
	Table Analyzed	Hspb1 10-10					
	Two-way RM ANOVA	Matching by cols					
	Source of Variation		D volue				·
	Interaction	% of total variation 17.25	P value	0.0795			
	Time Treatment	17.37 42.46		0.0202 0.0006			
	Subjects (matching)	3.9672		0.8529			
	Source of Variation	P value summary	Significa	int?			
	Interaction Tìme	ns *	No Yes				
	Treatment	***	Yes				
	Subjects (matching)	ns	No				
	Source of Variation	Df	Sum-of-	squares	Mean square	F	
	Interaction	. 4		31.06	7.764	2.73	
	Time Treatment	2		31.29 76.47	15.64 38.23	5.5 32.11	
	Subjects (matching)	6		7.144	1.191	0.4187	
	Residual	12		34.13	2.844		
	Number of missing values	0					
	Bonferroni posttests						
	Neo A + Glucan vs. Neo A						
	Treatment 0.5	Neo A + Glucan 2.267	Neo A	2.133	Difference -0 1333	95% CI of diff. -4.026 to 3.760	
	1	2.467		7.867		1.507 to 9.293	
	2	4.633		5.5		-3.026 to 4.760	
	Treatment	Difference	t		P value	Summary	
	0.5	-0.1333 5.4			P > 0.05 P<0.01	ns **	
	2	5.4 0.8667			P<0.01 P > 0.05	ns	
	Neo A + Glucan vs. Glucan		Ċ.		Diff	0.50/ 07 6 //7	
	Treatment 0.5	Neo A + Glucan 2.267	Glucan	0.3667	Difference -1.9	95% CI of diff. -5.793 to 1.993	
	1	2.467		1.233		-5.126 to 2.660	
	2	4.633		1.533		-6.993 to 0.7929	
	Treatment	Difference	t	1 507	P value	Summary	
	0.5 1	-1.9 -1.233			P > 0.05 P > 0.05	ns ns	
	2	-3.1			P > 0.05	ns	
			·				
					·		
		•					

	Table Analyzed	Icam1 10-10				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	1.92	0.3172		,	
	Time	0.86	0.3384			
	Treatment	90.6	P<0.0001	,		
	Subjects (matching)	2.2509	0.4515			
	Source of Variation	P value summary	Significant?			
	Interaction	ns	No			
	Time	ns	No	a.		
•	Treatment	***	Yes			
	Subjects (matching)	ns	No			
				_		
	Course of Maxiahian	D (Come of anyong	Mean	-	
	Source of Variation	Df	Sum-of-squares	square	F	
	Interaction	4	15.92	3.979	1.322	
	Time	2	7.15	3.575	1.187	
	Treatment	2	749.7	374.9	120.7	:
· .	Subjects (matching)	6	18.63	3.104	1.031	
	Residual	12	36.13	3.011		
	Number of missing values	0				
	Bonferroni posttests					
	Neo A + glucan vs. Neo A					
	Neo A + glucan vs. Neo A Treatment	Neo A + glucan	Neo A	Difference	95% CI of diff.	
		Neo A + glucan 10.3	Neo A 12.77	Difference 2.467	95% CI of diff. -1.752 to 6.686	
	Treatment 0.5				-1.752 to 6.686	
	Treatment	10.3	12.77	2.467 -1.167		
	Treatment 0.5 1 2	10.3 11.87 12.47	12.77 10.7 11.5	2.467 -1.167 -0.9667	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252	
	Treatment 0.5 1 2 Treatment	10.3 11.87 12.47 Difference	12.77 10.7 11.5	2.467 -1.167 -0.9667 P value	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252 Summary	
	Treatment 0.5 1 2 Treatment 0.5	10.3 11.87 12.47 Difference 2.467	12.77 10.7 11.5 t 1.732	2.467 -1.167 -0.9667 P value P > 0.05	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252 Summary ns	
	Treatment 0.5 1 2 Treatment	10.3 11.87 12.47 Difference	12.77 10.7 11.5	2.467 -1.167 -0.9667 P value P > 0.05 P > 0.05	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252 Summary	
	Treatment 0.5 1 2 Treatment 0.5 1 2	10.3 11.87 12.47 Difference 2.467 -1.167 -0.9667	12.77 10.7 11.5 t 1.732 0.8193	2.467 -1.167 -0.9667 P value P > 0.05 P > 0.05	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252 Summary ns ns	·
	Treatment 0.5 1 2 Treatment 0.5 1 2 Neo A + glucan vs. Glucan	10.3 11.87 12.47 Difference 2.467 -1.167 -0.9667	12.77 10.7 11.5 t 1.732 0.8193 0.6788	2.467 -1.167 -0.9667 P value P > 0.05 P > 0.05 P > 0.05 P > 0.05	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252 Summary ns ns ns	
	Treatment 0.5 1 2 Treatment 0.5 1 2 Neo A + glucan vs. Glucan Treatment	10.3 11.87 12.47 Difference 2.467 -1.167 -0.9667 Neo A + glucan	12.77 10.7 11.5 t 1.732 0.8193 0.6788 Glucan	2.467 -1.167 -0.9667 P value P > 0.05 P > 0.05 P > 0.05 D ifference	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252 Summary ns ns ns 95% CI of diff.	·
	Treatment 0.5 1 2 Treatment 0.5 1 2 Neo A + glucan vs. Glucan Treatment 0.5	10.3 11.87 12.47 Difference 2.467 -1.167 -0.9667 Neo A + glucan 10.3	12.77 10.7 11.5 t 1.732 0.8193 0.6788 Glucan -0.4	2.467 -1.167 -0.9667 P value P > 0.05 P > 0.05 P > 0.05 Difference -10.7	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252 Summary ns ns ns 95% CI of diff. -14,92 to -6.481	·
	Treatment 0.5 1 2 Treatment 0.5 1 2 Neo A + glucan vs. Glucan Treatment 0.5 1	10.3 11.87 12.47 Difference 2.467 -1.167 -0.9667 Neo A + glucan 10.3 11.87	12.77 10.7 11.5 t 1.732 0.8193 0.6788 Glucan -0.4 -0.1667	2.467 -1.167 -0.9667 P value P > 0.05 P > 0.05 P > 0.05 Difference -10.7 -12.03	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252 Summary ns ns ns 95% CI of diff. -14.92 to -6.481 -16.25 to -7.814	
	Treatment 0.5 1 2 Treatment 0.5 1 2 Neo A + glucan vs. Glucan Treatment 0.5	10.3 11.87 12.47 Difference 2.467 -1.167 -0.9667 Neo A + glucan 10.3	12.77 10.7 11.5 t 1.732 0.8193 0.6788 Glucan -0.4 -0.1667	2.467 -1.167 -0.9667 P value P > 0.05 P > 0.05 P > 0.05 Difference -10.7 -12.03	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252 Summary ns ns ns 95% CI of diff. -14,92 to -6.481	
	Treatment 0.5 1 2 Treatment 0.5 1 2 Neo A + glucan vs. Glucan Treatment 0.5 1 2 Treatment	10.3 11.87 12.47 Difference 2.467 -1.167 -0.9667 Neo A + glucan 10.3 11.87 12.47 Difference	12.77 10.7 11.5 t 1.732 0.8193 0.6788 Glucan -0.4 -0.1667 1.833 t	2.467 -1.167 -0.9667 P value P > 0.05 P > 0.05 P > 0.05 Difference -10.7 -12.03 -10.63 P value	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252 Summary ns ns ns 95% CI of diff. -14.92 to -6.481 -16.25 to -7.814	
	Treatment 0.5 1 2 Treatment 0.5 1 2 Neo A + glucan vs. Glucan Treatment 0.5 1 2	10.3 11.87 12.47 Difference 2.467 -1.167 -0.9667 Neo A + glucan 10.3 11.87 12.47	12.77 10.7 11.5 t 1.732 0.8193 0.6788 Glucan -0.4 -0.1667 1.833 t	2.467 -1.167 -0.9667 P value P > 0.05 P > 0.05 P > 0.05 Difference -10.7 -12.03 -10.63	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252 Summary ns ns 95% CI of diff. -14.92 to -6.481 -16.25 to -7.814 -14.85 to -6.414	
	Treatment 0.5 1 2 Treatment 0.5 1 2 Neo A + glucan vs. Glucan Treatment 0.5 1 2 Treatment	10.3 11.87 12.47 Difference 2.467 -1.167 -0.9667 Neo A + glucan 10.3 11.87 12.47 Difference	12.77 10.7 11.5 t 1.732 0.8193 0.6788 Glucan -0.4 -0.1667 1.833 t 7.514	2.467 -1.167 -0.9667 P value P > 0.05 P > 0.05 P > 0.05 Difference -10.7 -12.03 -10.63 P value	-1.752 to 6.686 -5.386 to 3.052 -5.186 to 3.252 Summary ns ns 95% CI of diff. -14.92 to -6.481 -16.25 to -7.814 -14.85 to -6.414 Summary	

	Table Analyzed	Vegfa 10-10				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	1.2		0.7356		
	Time	12.23		0.0025		
	Treatment	75.64		0.0001		
	Subjects (matching)	3.7668		0.4404		
	Source of Variation	P value summary	Significa	nt?		
	Interaction	ns	No			
· · ·	Time	**	Yes			
	Treatment	***	Yes			
	Subjects (matching)	ns	No			
,						
	Course of Mariatian	D 4	Cum of		Mean	-
	Source of Variation	Df	Sum-of-		square	F
	Interaction	4		8.333	2.083	0.5013
	Time	2		85.21	42.61	10.25
	Treatment	2		526.9	263.5	60.25
	Subjects (matching)	6		26.24	4.373	1.052
	Residual	12		49.87	4.156	
	Number of missing values	0				•
	Bonferroni posttests					
	Neo A + glucan vs. Neo A					
	Treatment	Neo A + glucan	Neo A		Difference	95% CI of diff.
	0.5	7.467		8.367	0.9	-4.074 to 5.874
	、 1	9.533		11.33	1.8	-3.174 to 6.774
	2	12.63		13.6	0.9667	-4.008 to 5.941
	Treatment	Difference	t		P value	Summary
	0.5	0.9		0.5361	P > 0.05	ns
	1	1.8			P > 0.05	ns
	2	0.9667			P > 0.05	ns
	Neo A + glucan vs. Glucan					•
	Treatment	Neo A + glucan	Glucan		Difference	95% CI of diff.
	0.5	7.467		0.1667		-12.27 to -2.326
	1	9.533		0.6		-13.91 to -3.959
	2	12.63		2.767		-14.84 to -4.892
	Treatment	Difference	+		P value	Cummon.
	0.5	-7.3	t	1 349		Summary **
					P<0.01	***
	1 2	-8.933 -9.867			P<0.001 P<0.001	
	,	-4 867		5 9 / /		***

•	Table Analyzed	Cdknlb 10-10					
	Two-way RM ANOVA	Matching by cols					
	Source of Variation	% of total variation	P value				
	Interaction	4.79).4399			
	Time	8.56		0.0593			
	Treatment	67.36		0.0003			
	Subjects (matching)	5.0644	U).6471			
	Source of Variation	P value summary	Significant	.?			
	Interaction	ns	No				
	Time	ns	No			• •	
	Treatment	***	Yes				
	Subjects (matching)	ns	No				
			1. A.		Mean		
	Source of Variation	Df	Sum-of-squ		square	F	
	Interaction	4		22.82	5.706	1.011	
	Time	2	4	40.74	20.37	3.609	
	Treatment	2		320.7	160.4	39.9	
	Subjects (matching)	6	1	24.11	4.019	0.712	
	Residual	12	1	67.73	5.644		
	Number of missing values	0					
	Bonferroni posttests						
	Neo A + glucan vs. Neo A						
	Treatment	Neo A + glucan	Neo A		Difference	95% CI of diff.	
	0.5	6.667	Neu A	7.4	0.7333	-4.731 to 6.198	
	1	9.267		9.767		-4.964 to 5.964	
	2	9.633		8.467		-6.631 to 4.298	
	-						
	Treatment	Difference			P value	Summary	
	0.5	0.7333				ns	
	1	0.5			P > 0.05	ns	
	2	-1.167	U	.6326	P > 0.05	ns	
	Neo A + glucan vs. Glucan	·					
	Treatment	Neo A + glucan			Difference	95% CI of diff.	
	0.5	6.667		-0.7		-12.83 to -1.902	
	1	9.267).2333		-14.50 to -3.569	
	. 2	9.633	2	4.133	-5.5	-10.96 to -0.03559	
	Treatment	Difference	t		P value	Summary	
	0.5	-7.367		3.994	P<0.01	**	
	1	-9.033			P<0.001	***	
	2	-5.5			P < 0.05	*	

,						
	Table Analyzed	Cd5 10-10				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	22.03	0.0636			
	Time	18.23	0.0274			
	Treatment	29.52	0.0098			
	Subjects (matching)	8.0284	0.639			
	Source of Variation	P value summary	Significant?			
	Interaction	ns	No			
	Time Treatment	* .	Yes			
	Treatment Subjects (matching)	ns	Yes No			
			No			
	Source of Variation	Df	Sum-of-squares	Mean	-	
	Interaction	Df 4	Sum-of-squares 47.71	square 11.93	F 2.98	
	Time	4	39.47		4.93	
	Treatment	2	63.93		11.03	
	Subjects (matching)	6	17.38	2.897		
	Residual	12	48.04	4.003	•	
	Number of missing values	0				
· •	Bonferroni posttests					
	Neo A + glucan vs. Neo A					
	Treatment	Neo A + glucan	Neo A	Difference	95% CI of diff.	
<i>i</i>	0.5	1.767	2.433	0.6667	-3.945 to 5.278	
	. 1	4.867	7.867	3	-1.612 to 7.612	
	2	5.533	6.667	1.133	-3.478 to 5.745	
	Treatment	Difference	t	P value	Summary	
	0.5	0.6667	0.4283	P > 0.05	ns	
	1	3	1.927	P > 0.05	ns	
	2	1.133	0.7281	P > 0.05	ns	
	Neo A + giucan vs. Glucan					
	Treatment	Neo A + glucan	Glucan	Difference	95% CI of diff.	
	0.5	1.767	2.467	0.7	-3.912 to 5.312	
	1	4.867	0.1667	-4.7	-9.312 to -0.08824	
	2	5.533	3.067	-2.467	-7.078 to 2.145	
	Treatment	Difference	t	P value	Summary	
	0.5	0.7	0.4497	P > 0.05	ns	
	1	-4.7	3.019	P < 0.05	*	
	2	-2.467	1.585	P > 0.05	ns	

	Table Analyzed	Dectin-1 10-10				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	33.4	0.00	57		
	Time	36.71	0.00			
	Treatment	7.45	0.08			
	Subjects (matching)	5.8341	0.65			
	Source of Variation	P value summary	Significant?			
	Interaction	**	Yes			
	Time	***	Yes			
	Treatment	ns	No			
	Subjects (matching)	ns	No			
				Mean		
	Source of Variation	Df	Sum-of-square	-	F	
	Interaction	4	118			
	Time	2	130	.7 65.34	13.26	
	Treatment	2	26.	52 13.26	3.83	
	Subjects (matching)	6	20.	77 3.462	0.7024	
	Residual	12	59.	14 4.929		
	Number of missing values	. 0				
	Bonferroni posttests					
	Neo A + glucan vs. Neo A					
	Treatment	Neo A + glucan	Neo A	Difference	95% CI of diff.	
	0.5	1.7	3.8	57 2.167	-2.930 to 7.264	
	1	4.267	3.93		-5.430 to 4.764	
	2	11.23	9.7		-6.597 to 3.597	
	Treatment	Difference	t .	P value	Summary	
	0.5	2.167		59 P > 0.05	ns	
	1	-0.3333		38 P > 0.05	ns	
	2	-1.5		19 P > 0.05	ns	
	Neo A + glucan vs. Glucan				-	
•	Treatment	Neo A + glucan	Glucan	Difference	95% CI of diff.	
	0.5	1.7			-4.864 to 5.330	
	1	4.267			-2.897 to 7.297	
	2				-13.66 to -3.470	
	Treatment	Difference	t	P value	Summary	٨
				56 P > 0.05	ns	
	0.5	0.2333	0,13:	JO F / 0.0J	113	
	0.5	0.2333 2.2				
	0.5 1 2	0.2333 2.2 -8.567	1.27	79 P > 0.05 79 P > 0.05 79 P<0.001	ns ***	

1 **n**

r 1

APPENDIX V – ANOVA TABLES Neo A Dose Dependence Table Analyzed Bmp2

Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 17.16 37.9 14.82 12.5238	P<0.0001		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns *** ns ns	Significant? No Yes No No		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 8 2 4 10 20	278.6 109 92.08	Mean square 15.77 139.3 27.25 9.208 6.467	F 2.439 21.54 2.959 1.424
Bonferroni posttests				
Neo A 10-8 vs. Neo A Treatment 0.5 1	Neo A 10-8 5 3.633 11.33	4.5	Difference -5.167 -6.833 0.9667	
Treatment 0.5	-6.833	3.081	P value P > 0.05 P < 0.05 P > 0.05	Summary ns * ns
Neo A 10-8 vs. Neo A Treatment 0.5 1	Neo A 10-8 3.633 11.33	7.867	-3.467	95% CI of diff. -10.86 to 4.462 -11.13 to 4.196 -4.262 to 11.06
Treatment 0.5	3.467	1.563	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns

Neo A 10-8 vs. N Treatment	eu A I	Neo A 10-8		Neo A 10-11	Difference	95% CI of diff.
ricacinene	0.5	NC0 A 10 0	3.633			-11.83 to 3.496
	1		11.33	7.933		-11.06 to 4.262
	2		2.1	4.667		-5.096 to 10.23
Treatment		Difference		t	P value	Summary
	0.5		-4.167		P > 0.05	ns
	· 1		-3.4		P > 0.05	ns
	2		2.567	1.157	P > 0.05	ns
Neo A 10-8 vs. N	eo A 1	0-12				
Treatment		Neo A 10-8		Neo A 10-12	Difference	95% CI of diff.
	0.5		3.633	0.9		-10.40 to 4.929
	1		11.33	1.733		-17.26 to -1.938
	2		2.1	2.133	0.03333	-7.629 to 7.696
Treatment		Difference			P value	Summary
	0.5		-2.733		P > 0.05	ns
	1		-9.6		P<0.001	***
	2		0.03333	0.01503	P > 0.05	ns
Neo A 10-9 vs. N	eo A 1	0-10				
Treatment		Neo A 10-9		Neo A 10-10		95% CI of diff.
	0.5		-1.533			-5.696 to 9.629
	1		4.5	7.867		-4.296 to 11.03
	2		3.067	5.5	2.433	-5.229 to 10.10
Treatment		Difference			P value	Summary
	0.5		1.967		P > 0.05	ns
	1		3.367		P > 0.05	ns
	2		2.433	1.097	P > 0.05	ns
Neo A 10-9 vs. N	eo A 1	0-11				
Treatment		Neo A 10-9		Neo A 10-11	Difference	
	0.5		-1.533			-6.662 to 8.662
	1		4.5	7.933		-4.229 to 11.10
	2		3.067	4.667	1.6	-6.062 to 9.262
Treatment		Difference		t	P value	Summary
	0.5		1		P > 0.05	ns .
	1		3.433		P > 0.05	ns
	2		1.6	0.7213	P > 0.05	ns
Neo A 10-9 vs. N	eo A 1	0-12				
Treatment		Neo A 10-9		Neo A 10-12	Difference	95% CI of diff.
	0.5		-1.533	0.9		-5.229 to 10.10
	1		4.5	1.733		-10.43 to 4.896
	2		3.067	2.133	-0.9333	-8.596 to 6.729

•								
	Treatment		Difference	t		P value	Summary	
		0.5	2.433		1.097	P > 0.05	ns	
		1	-2.767		1.247	P > 0.05	ns	
		2	-0.9333		0.4208	P > 0.05	ns	
	Neo A 10-10 vs. Ne	eo A 1	10-11					
	Treatment		Neo A 10-10	Neo A	10-11	Difference	95% CI of diff.	
		0.5	0.4333		-0.5333	-0.9667	-8.629 to 6.696	
		1	7.867		7.933	0.06667	-7.596 to 7.729	
		2	5.5		4.667	-0.8333	-8.496 to 6.829	
	Treatment		Difference	t		P value	Summary	
		0.5	-0.9667			P > 0.05	ns	
		1	0.06667			P > 0.05	ns	
		2	-0.8333		0.3757	P > 0.05	ns	
	Neo A 10-10 vs. Ne							
	Treatment		Neo A 10-10	Neo A	10-12	Difference	95% CI of diff.	
		0.5	0.4333		0.9		-7.196 to 8.129	
		1	7.867		1.733		-13.80 to 1.529	
		2	5.5		2.133	-3.367	-11.03 to 4.296	
	Treatment		Difference	t		P value	Summary	
		0.5	0.4667			P > 0.05	ns	
	•	1	-6.133			P < 0.05	*	
		2	-3.367		1.518	P > 0.05	ns	
	Neo A 10-11 vs. Ne	eo A 1						
	Treatment		Neo A 10-11	Neo A	10-12	Difference	95% CI of diff.	
+		0.5	-0.5333		0.9		-6.229 to 9.096	
		1	7.933		1.733		-13.86 to 1.462	
		2	4.667		2.133	-2.533	-10.20 to 5.129	
	Treatment		Difference	t		P value	Summary	
		0.5	1.433			P > 0.05	ns	
		1	-6.2			P < 0.05	*	
		2	-2.533		1.142	P > 0.05	ns	

Table Amalined	llamb d				
Table Analyzed	Hspb1				
Two-way RM ANOVA	Matching by cols				
Source of Variation	% of total variation	P value			
Interaction	7.74	0.7098			
Time	44.06	5 P<0.0001			
Treatment	10.46	5 0.0775			
Subjects (matching)	8.9725				
Source of Variation	P value summary	Significant?			
Interaction	ns				
Time	***	* Yes			
Treatment	ns	s No			
Subjects (matching)	ns				
			Mean		
Source of Variation	. Df	Sum-of-squares	square	F	
Interaction			3.481	0.6724	
Time	2		79.24	15.31	
Treatment	4		9.403	2.913	
Subjects (matching)	10		3.228	0.6236	
Residual	20		5.176	0.0200	
Bonferroni posttests	25				
Neo A 10-8 vs. Neo A 1	.0-9				
Treatment	Neo A 10-8	Neo A 10-9	Difference	95% CI of diff.	
0.5	1.067	7 1.367	0.3	-5.701 to 6.301	
1	• 5.633			-5.734 to 6.268	
2				-6.168 to 5.834	
Treatment	Difference	´ t	P value	Summary	
0.5	0.3	3 0.1727	P > 0.05	ns	
1			P > 0.05	ns	
2			P > 0.05	ns	
Neo A 10-8 vs. Neo A 1	.0-10	•			
Treatment	Neo A 10-8	Neo A 10-10	Difference	95% CI of diff.	4
0.5	1.067			-4.934 to 7.068	
1	5.633			-3.768 to 8.234	
2	3.233			-3.734 to 8.268	
Treatment	Difference	t	P value	Summary	
0.5	1.067		P > 0.05	ns	
1	2.233		P > 0.05	ns	
2			P > 0.05	ns	
Neo A 10-8 vs. Neo A 1	0-11			· · · ·	

		2		3.067	2.133	-0.9333	-6.934 to 5.068	
		1 2		5.9		-2.367	-8.368 to 3.634	
	Treatment	0.5	Neo A 10-9	1.367			95% CI of diff. -5.134 to 6.868	
	Neo A 10-9 vs.	Neo A 1				Diffe	050/ 07 6 100	
		2		1.6	0.921	P > 0.05	ns	
		1		2.033		P > 0.05	ns	
• .		0.5		-0.2667		P > 0.05	ns	
	Treatment		Difference		t	P value	Summary	
		2		3.067	4.667	1.6	-4.401 to 7.601	
		1		5.9	7.933	2.033	-3.968 to 8.034	
	Treatment	0.5	Neo A 10-9	1.367	Neo A 10-11 1.1	Difference -0.2667	-6.268 to 5.734	
	Neo A 10-9 vs.	Neo A 1			Neo A 10-11	Difference	95% CI of diff.	
						,		
		2		2.433		P > 0.05	ns	
		0.5		1.967		P > 0.05 P > 0.05	ns ns	
	Treatment	0.5	Difference	0.7667	t 0.4412	P value P > 0.05	Summary	
	T		Difference		•	Durahur	C	
		2		3.067	5.5		-3.568 to 8.434	
		1		5.9	7.867	1.967	-4.034 to 7.968	
	ncathent	0.5	NC0 A 10-9	1.367	2.133	0.7667	-5.234 to 6.768	
	Neo A 10-9 vs. Treatment	Neo A 1	0-10 Neo A 10-9		Neo A 10-10	Difference	95% CI of diff.	
			0.10					
		2		-1.1	0.6332	P > 0.05	ns	
		1		-2.1		P > 0.05	ns	
		0.5		1.167	0.6716	P > 0.05	ns	
	Treatment		Difference		t	P value	Summary	
``		2		5.233	2.133	-1.1	-7.101 (0 4.901	
		1 2		5.633 3.233	3.533 2.133		-8.101 to 3.901 -7.101 to 4.901	
		0.5		1.067	2.233	1.167		
	Treatment	<u> </u>	Neo A 10-8		Neo A 10-12	Difference	95% CI of diff.	
	Neo A 10-8 vs.	Neo A 1	0-12					
		2		1.400	0.0231	0.00		
		2		2.3 1.433		P > 0.05 P > 0.05	ns ns	
		0.5 1		0.03333 2.3		P > 0.05 P > 0.05	ns	
	Treatment	~ ~	Difference	0.00000	t	P value	Summary	
							,	
		2		3.233	4.667		-4.568 to 7.434	
		1		5.633	7.933		-3.701 to 8.301	
		0.5		1.067	1.1	0.03333	-5.968 to 6.034	

0.5 1 2	0.8667 -2.367 -0.9333		P > 0.05 P > 0.05 P > 0.05	ns ns ns
Neo A 10-10 vs. Neo A Treatment 0.5 1 2	Neo A 10-10	Neo A 10-11 1.1 7.933 4.667	Difference -1.033 0.06667 -0.8333	
Treatment 0.5 1 2	Difference -1.033 0.06667 -0.8333	t 0.5948 0.03838 0.4797		Summary ns ns ns
Neo A 10-10 vs. Neo A Treatment 0.5 1 2	Neo A 10-10 2.133 7.867	Neo A 10-12 2.233 3.533 2.133	Difference 0.1 -4.333 -3.367	-5.901 to 6.101
Treatment 0.5 1 2	Difference 0.1 -4.333 -3.367	2.494	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns
Neo A 10-11 vs. Neo A Treatment 0.5 1 2	Neo A 10-11	Neo A 10-12 2.233 3.533 2.133	Difference 1.133 -4.4 -2.533	
Treatment 0.5 1 2	Difference 1.133 -4.4 -2.533	t 0.6524 2.533 1.458	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns

	Two-way RM ANOVA	Matching by c	ols				
		•		Dualua			
	Source of Variation	% of total var		P-value			
	Interaction		18.4	0.0636			
	Time		34.97	P<0.0001			
	Treatment		18.19	0.0136			
	Subjects (matching)		8.3496	0.6052			
	Source of Variation	P value summ	•	Significant?			
	Interaction		ns ***	No			
	Time		***	Yes			
	Treatment			Yes			
• •	Subjects (matching)		ns	No			
		Df			Mean	-	
	Source of Variation	Df	•	Sum-of-squares	square	F 2.20	
	Interaction		8	93.32	11.66	2.29	
	Time		2	177.4	88.68	17.41	
	Treatment		4	92.26	23.06	5.447	
	Subjects (matching)		10	42.35	4.235	0.8312	
	Residual		20	101.9	5.095		
	Bonferroni posttests						
	Neo A 10-8 vs. Neo A 1						
	Treatment	Neo A 10-8	•	Neo A 10-9	Difference	95% CI of diff.	
	0.5		10.93	10.33		-6.785 to 5.585	
	1		15.17	11.33		-10.02 to 2.351	
	2		9.5	4.233	-5.267	-11.45 to 0.9179	
	Treatment	Difference		t	P value	Summary	
	0.5		-0.6	0.3351	P > 0.05	ns	
	1		-3.833	2.141	P > 0.05	ns	
	2		-5.267	2.942	P < 0.05	*	
	Neo A 10-8 vs. Neo A 1	.0-10					
	Treatment	Neo A 10-8		Neo A 10-10	Difference	95% CI of diff.	
	0.5		10.93	12.77	1.833	-4.351 to 8.018	
	1		15.17	10.7		-10.65 to 1.718	
	2		9.5	11.5	2	-4.185 to 8.185	
	Treatment	Difference		t	P value	Summary	
	0.5		1.833		P > 0.05	ns	
	. 1		-4.467	2.495	P > 0.05	ns	
	. 2		2	1.117	P > 0.05	ns	
	Neo A 10-8 vs. Neo A 1	.0-11					
	Treatment	Neo A 10-8		Neo A 10-11	Difference	95% CI of diff.	
	, 0						

	0.5	10.93	12	1.067	-5.118 to 7.251		
	1		13.2	-1.967	-8.151 to 4.218 -6.018 to 6.351		
	2	9.5	9.667	0.1667	-6.018 to 6.351		
	Treatment	Difference	t .	P value	Summary		
х		1.067	0.5958	P > 0.05	ns		
	. 1			P > 0.05	ns		
	2	0.1667	0.09309	P > 0.05	ns		
	Neo A 10-8 vs. Neo A 1	10-12					
-	Treatment	Neo A 10-8	Neo A 10-12	Difference	95% CI of diff.		
	0.5	10.93	10.1	-0.8333	-7.018 to 5.351		
		15.17	12.47		-8.885 to 3.485 -11.32 to 1.051		
	2	9.5	4.367	-5.133	-11.32 to 1.051		
	Treatment	Difference	t	P value	Summary		
	0.5			P > 0.05	ns		
	1			P > 0.05	ns		
	2			P < 0.05	*		
			-	• • •••=			
	Neo A 10-9 vs. Neo A 1		N A 10 10	D:60			
	Treatment		Neo A 10-10	Difference	95% CI of diff.		
	0.5	10.33 11.33		2.433	-3.751 to 8.618 -6.818 to 5.551		
	1			-555 T	-6.818 to 5.551 1.082 to 13.45		
	۲			1.201	1,002 (0 13,75		
	Treatment	Difference	t	P value	Summary		
,	0.5		1.359	P > 0.05	ns		
		-0.6333	0.3537	P > 0.05	ns		
	2	7.267	4.059	P<0.001	***		
	Neo A 10-9 vs. Neo A 1						
	Treatment	Neo A 10-9					
		10.33	12	1.667	-4.518 to 7.851		
	1				-4.318 to 8.051		
	2	4.233	9.667	5.433	-0.7512 to 11.62		
	Treatment	Difference	t	P value	Summary		
	0.5			P > 0.05	ns		
	1			P > 0.05	ns		
	2			P < 0.05	*	·	
	Neo A 10-9 vs. Neo A 1	10_17					
		Neo A 10-9	Neo A 10-12	Difference	95% CI of diff.		
	0.5				-6.418 to 5.951		
	0.5				-5.051 to 7.318		
	2				-6.051 to 6.318		
		·					
	Treatment	Difference	t	P value	Summary		

0.5	-0.2333	0.1303	P > 0.05	ns
1	1.133		P > 0.05	ns
- 2	0.1333	0.07447		ns
-	012000		1 - 0100	
Neo A 10-10 vs. Neo A	10-11			
Treatment	Neo A 10-10	Neo A 10-11	Difference	95% CI of diff.
0.5	12.77	12		-6.951 to 5.418
1	10.7	13.2		-3.685 to 8.685
2	10.7	9.667	-1.833	
2	11.5	9.007	-1.035	-0.010 (0 4.351
Treatment	Difference	t	P value	Summary
0.5	-0.7667	-	P > 0.05	•
				ns
1	2.5		P > 0.05	ns
2	-1.833	1.024	P > 0.05	ns
Neo A 10-10 vs. Neo A				
Treatment	Neo A 10-10	Neo A 10-12	Difference	95% CI of diff.
0.5	12.77	10.1	-2.667	
1	10.7	12.47	1.767	
-				-13.32 to -
2	11.5	4.367	-7.133	0.9488
				-
Treatment	Difference	t	P value	Summary
0.5	-2.667	1.489		ns
1	1.767	0.9868		ns
2	-7.133	3.984	P<0.01	**
Neo A 10-11 vs. Neo A				
Treatment	Neo A 10-11	Neo A 10-12	Difference	95% CI of diff.
0.5	12	10.1	-1.9	-8.085 to 4.285
1	13.2	12.47	-0.7333	-6.918 to 5.451
2	9.667	4.367	-5.3	-11.48 to 0.8845
Treatment	Difference	t	P value	Summary
0.5	-1.9	1.061	P > 0.05	ns
1	-0.7333	0.4096	P > 0.05	ns
2	-5.3	2.96	P < 0.05	*
•				

		Vegfa				
Two-way RM ANOVA		Matching by	cols			
Source of Variation		% of total va		P value		
Interaction			17.19	0.0949		
Time			37.02	P<0.0001		
Treatment Subjects (matchin	ıg)	:	9.96 14.6698	· 0.2263 0.2552		
Source of Variation		P value sumr	marv	Significant?		
Interaction		1 Value Sulli	ns	No		
Time			***	Yes		
Treatment			ns	No		
Subjects (matchin	iq)		ns	No		
	57					
					Mean	_
Source of Variation		Df		Sum-of-squares	square	F
Interaction			. 8	94.82	11.85	2.0
Time			2	204.2	102.1	17
Treatment			4	54.96	13.74	1.6
Subjects (matchin Residual	ig)		10 20	80.91 116.6	8.091 5.832	1.3
Residual			20	110.0	5.652	
Bonferroni posttest	S					
Neo A 10-8 vs. Neo	A 1			No. 4 10 0	Difference	95% CI of diff.
Treatment	0.5	Neo A 10-8	8,567	Neo A 10-9 7.2	-1.367	
	0.5		14.5	11.37	-3.133	
	2		14.5	6.4	-4.133	-11.37 to 3.10
	. ~		10.55	0.4	4.155	11.57 (0 5.10
Treatment		Difference	4 967	t	P value	Summary
	0.5	Difference	-1.367	0.6523	P > 0.05	ns
	1	Difference	-3.133	0.6523 1.495	P > 0.05 P > 0.05	ns ns
		Difference		0.6523	P > 0.05	ns
Neo A 10-8 vs. Nec	1 2	0-10	-3.133	0.6523 1.495 1.973	P > 0.05 P > 0.05 P > 0.05 P > 0.05	ns ns ns
Neo A 10-8 vs. Nec Treatment	1 2 0 A 1	•	-3.133 -4.133	0.6523 1.495 1.973 Neo A 10-10	P > 0.05 P > 0.05 P > 0.05 Difference	ns ns ns 95% CI of diff.
Neo A 10-8 vs. Nec Treatment	1 2 0 A 1 0.5	0-10	-3.133 -4.133 8.567	0.6523 1.495 1.973 Neo A 10-10 8.367	P > 0.05 P > 0.05 P > 0.05 Difference -0.2	ns ns 95% CI of diff. -7.438 to 7.03
Neo A 10-8 vs. Nec Treatment	1 2 0 A 1 0.5 1	0-10	-3.133 -4.133 8.567 14.5	0.6523 1.495 1.973 Neo A 10-10 8.367 11.33	P > 0.05 P > 0.05 P > 0.05 Difference -0.2 -3.167	ns ns 95% CI of diff. -7.438 to 7.03 -10.40 to 4.07
Neo A 10-8 vs. Nec Treatment	1 2 0 A 1 0.5	0-10	-3.133 -4.133 8.567	0.6523 1.495 1.973 Neo A 10-10 8.367	P > 0.05 P > 0.05 P > 0.05 Difference -0.2	ns ns 95% CI of diff. -7.438 to 7.03 -10.40 to 4.07
Neo A 10-8 vs. Nec Treatment	1 2 0 A 1 0.5 1	0-10	-3.133 -4.133 8.567 14.5	0.6523 1.495 1.973 Neo A 10-10 8.367 11.33	P > 0.05 P > 0.05 P > 0.05 Difference -0.2 -3.167	ns ns 95% CI of diff. -7.438 to 7.03
Neo A 10-8 vs. Neo Treatment	1 2 0 A 1 0.5 1	0-10 Neo A 10-8	-3.133 -4.133 8.567 14.5	0.6523 1.495 1.973 Neo A 10-10 8.367 11.33 13.6	P > 0.05 P > 0.05 P > 0.05 Difference -0.2 -3.167 3.067 P value	ns ns 95% CI of diff. -7.438 to 7.03 -10.40 to 4.07 -4.171 to 10.3
Neo A 10-8 vs. Neo Treatment	1 2 0 A 1 0.5 1 2 0.5 1	0-10 Neo A 10-8	-3.133 -4.133 8.567 14.5 10.53 -0.2 -3.167	0.6523 1.495 1.973 Neo A 10-10 8.367 11.33 13.6 t 0.09545 1.511	$\begin{array}{l} {\sf P} > 0.05 \\ {\sf P} > 0.05 \\ {\sf P} > 0.05 \\ \end{array}$ $\begin{array}{l} {\sf Difference} \\ & -0.2 \\ & -3.167 \\ & 3.067 \\ \end{array}$ $\begin{array}{l} {\sf P} \ {\sf value} \\ {\sf P} > 0.05 \\ {\sf P} > 0.05 \\ \end{array}$	ns ns ns 95% CI of diff. -7.438 to 7.03 -10.40 to 4.07 -4.171 to 10.3 Summary ns ns
Neo A 10-8 vs. Neo Treatment	1 2 0 A 1 0.5 1 2 0.5	0-10 Neo A 10-8	-3.133 -4.133 8.567 14.5 10.53 -0.2	0.6523 1.495 1.973 Neo A 10-10 8.367 11.33 13.6 t 0.09545	P > 0.05P > 0.05P > 0.05Difference-0.2-3.1673.067P valueP > 0.05	ns ns 95% CI of diff. -7.438 to 7.03 -10.40 to 4.07 -4.171 to 10.3 Summary ns
Neo A 10-8 vs. Neo Treatment	1 2 0 A 1 0.5 1 2 0.5 1 2	Neo A 10-8 Difference	-3.133 -4.133 8.567 14.5 10.53 -0.2 -3.167	0.6523 1.495 1.973 Neo A 10-10 8.367 11.33 13.6 t 0.09545 1.511	$\begin{array}{l} {\sf P} > 0.05 \\ {\sf P} > 0.05 \\ {\sf P} > 0.05 \\ \end{array}$ $\begin{array}{l} {\sf Difference} \\ & -0.2 \\ & -3.167 \\ & 3.067 \\ \end{array}$ $\begin{array}{l} {\sf P} \ {\sf value} \\ {\sf P} > 0.05 \\ {\sf P} > 0.05 \\ \end{array}$	ns ns ns 95% CI of diff. -7.438 to 7.03 -10.40 to 4.07 -4.171 to 10.3 Summary ns ns

•

		0.5		0 567	76		8 171 to 6 204		
		0.5		8.567			-8.171 to 6.304		
		1		14.5			-8.604 to 5.871		
		2		10.53	12.	5/ 2.033	-5.204 to 9.271		
	Treatment	D				P value	Summary		
		0.5		-0.9333		55 P > 0.05	ns		
		1		-1.367	0.653	23 P > 0.05	ns		
		2		2.033	0.970	04 P > 0.05	ns		
	Neo A 10-8 vs.	Neo A 10-1	12						
	Treatment	N	eo A 10-8		Neo A 10-12		95% CI of diff.		
		0.5		8.567	6.13	33 -2.433	-9.671 to 4.804		
		1		14.5	12.4	43 -2.067	-9.304 to 5.171		
		2		10.53	14.0)7 3.533	-3.704 to 10.77		
	Treatment	D	ifference		t	P value	Summary		
	i sourient	0.5		-2.433		51 P > 0.05	ns		
		1		-2.067		54 P > 0.05	ns		
		2		3.533		36 P > 0.05	ns	•	
		£		2.223	1.00				
	Neo A 10-9 vs.			· .	Neo A 10-10	Difference			
	Treatment		eo A 10-9				95% CI of diff.		
		0.5		7.2			-6.071 to 8.404		
		1		11.37	11.3	-0.03333	-7.271 to 7.204		
		2		6.4	13	.6 7.2	-0.03778 to		
		2		0.4	15	.0 7.2	TANA		
	Treatment		ifference			P value	Summary		
		0.5		1.167		58 P > 0.05	ns		
		1		0.03333	0.015	91 P > 0.05	ns		
		2		7.2	3.4	36 P<0.01	**		
	Neo A 10-9 vs.	Neo A 10-1	11						
	Treatment	Ν			Neo A 10-11	Difference	[•] 95% CI of diff.		
		0.5		7.2			-6.804 to 7.671		
		1		11.37			-5.471 to 9.004		
		2		6.4			-1.071 to 13.40		
	Treatment	П	ifference		+	P value	Summary	/	
	reatment	0.5	merence	0.4333		58 P > 0.05	ns		
×		0.5		1.767		P > 0.05 32 P > 0.05	ns		
		2		6.167		43 P < 0.05	*		
				0.10/	2.9				
	Neo A 10-9 vs. Treatment		L2 eo A 10-9		Neo A 10-12	Difference	95% CI of diff.		
	riedtment		CO A 10-9			Difference			
		0.5		7.2	6.13		-8.304 to 6.171		
		1 2		11. <u>3</u> 7 6.4	12.4		-6.171 to 8.304 0.4289 to 14.90		
		2		0.4	14.0		0.4209 (0 14.90		
								•	

					·
	Trootmont	Difference	t	P value	Summary
	Treatment 0.5	-1.067		P > 0.05	ns
	1	1.067		P > 0.05	ns
	2	7.667	3.659	P<0.01	**
	Neo A 10-10 vs. Neo A	10-11			
	Treatment	Neo A 10-10	Neo A 10-11	Difference	95% CI of diff.
	0.5 1	8.367 11.33	7.633 13.13		-7.971 to 6.504 -5.438 to 9.038
	2		12.57		-8.271 to 6.204
	Trestment	Difference	•	P value	Summani
	Treatment 0.5	Difference -0.7333	t 0.35	P > 0.05	Summary ns
	1	1.8		P > 0.05	ns
	2	-1.033	0.4932	P > 0.05	ns
	Neo A 10-10 vs. Neo A	10-12			
•	Treatment	Neo A 10-10	Neo A 10-12	Difference	95% CI of diff.
	0.5		6.133		-9.471 to 5.004
	1		12.43		-6.138 to 8.338 -6.771 to 7.704
	2	13.6	14.07	0.4007	-6.771 to 7.704
	Treatment	Difference	t	P value	Summary
	0.5	-2.233		P > 0.05	ns
	1	1.1 0.4667		P > 0.05 P > 0.05	ns ns
	Neo A 10-11 vs. Neo A Treatment	10-12 Neo A 10-11	Neo A 10-12	Difference	95% CI of diff.
	0.5				-8.738 to 5.738
	1		12.43		-7.938 to 6.538
	2	12.57	14.07	1.5	-5.738 to 8.738
	Treatment	Difference	t	P value	Summary
	0.5			P > 0.05	ns
	• 1	-0.7 1.5		P > 0.05 P > 0.05	ns ns
	-	1,5	017 205		
					•
		· .			
	•				

					•				
,									
				,					
	Table Analyzed	Cdknlb							
	Two-way RM ANOVA	Matching by co	ols						
	Source of Variation	% of total vari		P value					
	Interaction		20.56		0.1225				
	Time Treatment		14.89 27.09		0.0132 0.0066				
	Subjects (matching)		9.9811		0.692	· .			
				Cianific	7	-			
	Source of Variation Interaction	P value summa	iary ns	Significa	ant? No				
	Time		*		Yes				
	Treatment		**		Yes				
	Subjects (matching)		ns		No				
						Mean			
	Source of Variation	Df	0	Sum-of-s		square	F 1.860		
	Interaction Time		8 2		67.56 48.93	8.445 24.46	1.869 5.415		
	Treatment		4		89.02	22.25	6.784		
	Subjects (matching)		10		32.8	3.28	0.7262		
	Residual		20		90.34	4.517			
	Bonferroni posttests							-	
	Neo A 10-8 vs. Neo A 10								
	Treatment 0.5	Neo A 10-8	7.767	Neo A 10	.0-9 6.333	Difference -1.433	95% CI of diff. -7.148 to 4.281		
	0.5		12.53		6.333 7.567		-7.148 to 4.281 -10.68 to 0.7478		
	2		8.367		3.067		-11.01 to 0.4145		
	Treatment			•		P value	Summary		
	0.5		-1.433			P value P > 0.05	Summary ns		
	1	-	-4.967		3.002	P < 0.05	*		
	2		-5.3		3.204	P<0.01	**		
	Neo A 10-8 vs. Neo A 10				-				
	Treatment	Neo A 10-8	7 767				95% CI of diff. -6.081 to 5.348		
	0.5 1		7.767 12.53		7.4 9.767		-6.081 to 5.348 -8.481 to 2.948		
	2		8.367		8.467		-5.614 to 5.814		
	Treatment	Difference		+ ·		P value	Summary		
	0.5	-0	0.3667		0.2216	P > 0.05	ns		
	1	-	-2.767		1.672	P > 0.05	ns		
	2		0.1	· · · · · · · · · · · · · · · · · · ·	0.06045	P > 0.05	ns		
	Neo A 10-8 vs. Neo A 10	0-11							
	Treatment	Neo A 10-8		Neo A 10	0-11	Difference	95% CI of diff.		

					· · · · ·		
·	0	.5	7.767	7.7	33 -0.03333	-5.748 to 5.681	
		1	12.53	8	3.7 -3.833	-9.548 to 1.881	
		2	8.367	10,	43 2.067	-3.648 to 7.781	
	Treatment	Difference		t -	P value	Summary	
	0	.5	-0.03333		15 P > 0.05	ns	
		1	-3.833		17 P > 0.05	ns	
		2	2.067	1.2	49 P > 0.05	ns	
	Neo A 10-8 vs. Neo						
	Treatment	Neo A 10-8		Neo A 10-12	Difference	95% CI of diff.	
	0	.5	7.767	6.9		-6.548 to 4.881	
		1	12.53	10.		-8.014 to 3.414	
		2	8.367	10.	53 2.167	-3.548 to 7.881	
					. .		
	Treatment	Difference		t	P value	Summary	
	0	0.5	-0.8333		37 P > 0.05	ns	
		1	-2.3		39 P > 0.05	ns	
		2	2.167	1.	31 P > 0.05	ns	
	Neo A 10-9 vs. Neo		_			0-00 - 0 U.C.	
	Treatment	Neo A 10-9		Neo A 10-10		95% CI of diff.	
	Ŭ	1.5	6.333	7		-4.648 to 6.781	
		1	7.567	9.7		-3.514 to 7.914	
		2	3.067	8.4	6/ 5.4	-0.3145 to 11.11	
	-	D:0			D	c	
	Treatment	Difference			P value	Summary	
•	ŭ).5	1.067		48 P > 0.05	ns	
		1	2.2		33 P > 0.05	กร **	
		2	5.4	3.2	64 P<0.01	**	
		A 10 11					
	Néo A 10-9 vs. Neo		^	Noo A 10 11			
	Treatment	Neo A 10-9		Neo A 10-11		95% CI of diff.	
	l l).5	6.333	7.7		-4.314 to 7.114	
		1	7.567			-4.581 to 6.848	
		2	3.067	10.	43 /.36/	1.652 to 13.08	
	Trantesat	D:#		•	Dusha	Cummer	
	Treatment	Difference			P value	Summary	
	L L).5	1.4		63 P > 0.05	ns	
		1	1.133		51 P > 0.05	ns . ***	
		2	7.367	4.4	53 P<0.001	-y- -t - -t -	
		A 10 10					
	Neo A 10-9 vs. Neo		9	Noo A 10 12	Difference		
	Treatment						
	Ū.).5	6.333			-5.114 to 6.314	
		1	7.567			-3.048 to 8.381	
		2	3.067	10.	55 /.46/	1.752 to 13.18	
	Trootmont	Difference	<i>.</i>	.	D volue	Summer	
	Treatment	Difference		ι	P value	Summary	
						·	
					•		

			1000 and 100				
			۸.				
		0.5	0.6	0 2627	P > 0.05	-	
			0.6 2.667			ns	
		1	7.467		P > 0.05 P<0.001	ns ***	
		Z	7.407	4.514	F<0.001	*	
		Neo A 10-10 vs. Neo A	10-11	-			
		Treatment	Neo A 10-10	Neo A 10-11	Difference	95% CI of diff.	
		0.5	7.4	7.733	0.3333	-5.381 to 6.048	
		1	9.767	8.7	-1.067	-6.781 to 4.648	
		2	8.467	10.43	1.967	-3.748 to 7.681	
		Treatment	Difference	+	P value	Summany	
		0.5	0.3333	t 0.2015	P > 0.05	Summary	
		0.5	-1.067		P > 0.05	ns ns	
		2	1.967		P > 0.05	ns	
		2	1.907	1.105	r > 0.05	115	
		Neo A 10-10 vs. Neo A	10-12				
		Treatment	Neo A 10-10	Neo A 10-12	Difference	95% CI of diff.	
•		0.5	7.4	6.933	-0.4667	-6.181 to 5.248	
		1	9.767	10.23	0.4667	-5.248 to 6.181	
		2	8.467	10.53	2.067	-3.648 to 7.781	
		Treatment	Difference	t	P value	Summary	
		0.5	-0.4667		P > 0.05	ns	
		1	0.4667		P > 0.05	ns	
		2	2.067		P > 0.05	ns	
		Neo A 10-11 vs. Neo A Treatment	10-12 Neo A 10-11	Neo A 10-12	Difference	95% CI of diff.	
		0.5	7.733	6.933		-6.514 to 4.914	
			8.7	10.23		-4.181 to 7.248	
		1	10.43	10.53		-5.614 to 5.814	
		2	10.45	10.55	0.1	-5.014 (0 5.014	
		Treatment	Difference	t	P value	Summary	
		0.5	-0.8	0.4836	P > 0.05	ns	-
		1	1.533	0.9269	P > 0.05	ns	
	•	2	0.1	0.06045	P > 0.05	ns	
				,			

Table Analyzed	Cd5					
Two-way RM ANOVA	Matching by cols					
Source of Variation	% of total variation	P value				
Interaction	13.68	0.237				
Time Treatment	34.97 20.56	0.0001 0.0055				
Subjects (matching)	7.1933	0.7878				
Source of Variation	P value summary	Significant?				
Interaction	ns	No				
Time Treatment	***	Yes Yes				
Subjects (matching)	ns	No				
			Mean			
Source of Variation	Df	Sum-of-squares	square	F	·	
Interaction	8	53.27	6.658	1.45		
Time	2	136.2 80.06	68.09 20.02	14.82 7.146		
Treatment Subjects (matching)	4 10	28.01	20.02	0.6098		
Residual	. 20	91.86	4.593	0.0050	•	
Bonferroni posttests						
Neo A 10-8 vs. Neo A 1	.0-9					
Treatment	Neo A 10-8	Neo A 10-9	Difference	95% CI of diff.		
0.5	0.5333	0.4333		-5.738 to 5.538 -7.305 to 3.971		
1	5.133 5.3	3.467 3.067		-7.871 to 3.405		
Treatment 0.5	Difference -0.1	t 0.06127	P value P > 0.05	Summary ns		
0.5	-1.667	1.021		ns		
2	-2.233		P > 0.05	ns		
Neo A 10-8 vs. Neo A 1	0-10					
Treatment	Neo A 10-8	Neo A 10-10	Difference	95% CI of diff.		
0.5	0.5333	2.433		-3.738 to 7.538		
1	5.133 5.3	7.867 6.667		-2.905 to 8.371 -4.271 to 7.005		
Treatment		t	P value	Summary		
0.5			P > 0.05	ns		
1	2.733		P > 0.05	ns		
2			P > 0.05	ns		
Neo A 10-8 vs. Neo A 1			D://			
Treatment	Neo A 10-8	Neo A 10-11	Difference	95% CI of diff.		

1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns	2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns
1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns
1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns
1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns Neo A 10-12 Treatment Neo A 10-8 Neo A 10-12 Difference 95% CI of diff. 0.5 0.5333 2.533 2 -3.638 to 7.638 1 5.133 1.733 -3.4 -9.038 to 2.238	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns 1 0.5 0.5333 2.533 2 -3.638 to 7.638 1 5.133 1.733 -3.4 -9.038 to 2.238
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns Neo A 10-8 vs. Neo A 10-12 Difference 95% CI of diff. 0.5 0.533 1.733 -3.4 90.38 to 2.238 1 5.133 1.733 -3.4 90.38 to 2.238 2 5.3 3.467 -1.833 -7.471 to 3.805 Treatment Difference t P value Summary 0.5 2 -1.833 1.123 P > 0.05 ns 2 -1.833 1.123 P > 0.05 ns -4.011 Treatment Difference t P value Summary 0.5 0.4333 1.225 P > 0.05 ns <td>1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns Neo A 10-8 Neo A 10-12 Difference 95% CI of diff. 0.5 0.533 1.733 -3.4 9.038 to 2.238 1 5.133 1.733 -3.4 9.038 to 2.238 2 5.3 3.467 -1.833 -7.471 to 3.805 Treatment Difference t P value Summary 0.5 2 -1.833 1.123 P > 0.05 ns 2 -1.833 1.123 P > 0.05 ns - 1 -3.4 2.083 P > 0.05 ns - 2 -1.833 1.123 P > 0.05 <t< td=""><td>1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns Neo A 10-8 vs. Neo A 10-12 Neo A 10-8 Neo A 10-8 -3.638 to 7.638 1 5.133 1.733 -3.4 -9.038 to 2.238 2 5.3 3.467 -1.833 -7.471 to 3.805 Treatment Difference t P value Summary 0.5 2 -1.833 1.733 -3.4 -9.038 to 2.238 1 -3.4 2.083 P > 0.05 ns ns 0.5 2 1.225 P > 0.05 ns 1 -3.44 2.083 P > 0.05 ns 2 -1.833 1.123 P > 0.05 ns 1 3.467 7.867 4.4 -1.238 t</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<></td>	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns Neo A 10-8 Neo A 10-12 Difference 95% CI of diff. 0.5 0.533 1.733 -3.4 9.038 to 2.238 1 5.133 1.733 -3.4 9.038 to 2.238 2 5.3 3.467 -1.833 -7.471 to 3.805 Treatment Difference t P value Summary 0.5 2 -1.833 1.123 P > 0.05 ns 2 -1.833 1.123 P > 0.05 ns - 1 -3.4 2.083 P > 0.05 ns - 2 -1.833 1.123 P > 0.05 <t< td=""><td>1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns Neo A 10-8 vs. Neo A 10-12 Neo A 10-8 Neo A 10-8 -3.638 to 7.638 1 5.133 1.733 -3.4 -9.038 to 2.238 2 5.3 3.467 -1.833 -7.471 to 3.805 Treatment Difference t P value Summary 0.5 2 -1.833 1.733 -3.4 -9.038 to 2.238 1 -3.4 2.083 P > 0.05 ns ns 0.5 2 1.225 P > 0.05 ns 1 -3.44 2.083 P > 0.05 ns 2 -1.833 1.123 P > 0.05 ns 1 3.467 7.867 4.4 -1.238 t</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<>	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns Neo A 10-8 vs. Neo A 10-12 Neo A 10-8 Neo A 10-8 -3.638 to 7.638 1 5.133 1.733 -3.4 -9.038 to 2.238 2 5.3 3.467 -1.833 -7.471 to 3.805 Treatment Difference t P value Summary 0.5 2 -1.833 1.733 -3.4 -9.038 to 2.238 1 -3.4 2.083 P > 0.05 ns ns 0.5 2 1.225 P > 0.05 ns 1 -3.44 2.083 P > 0.05 ns 2 -1.833 1.123 P > 0.05 ns 1 3.467 7.867 4.4 -1.238 t	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns Neo A 10-8 vs. Neo A 10-12 Difference 95% CI of diff. 1 5.133 1.733 -3.4 9.038 to 2.238 1 5.133 1.733 -3.4 9.038 to 2.238 2 5.3 3.467 -1.833 -7.471 to 3.805 Treatment Difference t P value Summary 0.5 2 1.225 P > 0.05 ns 1 -3.4 2.083 P > 0.05 ns 1 3.467 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></t<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.6376 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns Neo A 10-8 vs. Neo A 10-12 Difference 95% CI of diff. 1 5.133 1.733 -3.4 -9.038 to 2.238 1 5.133 1.733 -3.4 -9.038 to 2.238 2 5.3 3.467 -11.833 -7.471 to 3.8005 Treatment Difference t P value Summary 0.5 2 1.225 P > 0.05 ns 1 -3.4 2.083 P > 0.05 ns 1 -3.4 2.083 P > 0.05 ns 1 -3.43 2.083 P > 0.05 ns 1 -3.45 2.083 P > 0.05 ns 1 3.467	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.6376 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns Neo A 10-8 vs. Neo A 10-12 Difference 95% CI of diff. 1 5.133 1.733 -3.4 -9.038 to 2.238 1 5.133 1.733 -3.4 -9.038 to 2.238 2 5.3 3.467 -1.833 -7.471 to 3.805 Treatment Difference t P value Summary 0.5 2 1.225 P > 0.05 ns 1 -3.4 2.083 P > 0.05 ns 1 -3.4 2.083 P > 0.05 ns 1 -3.4 2.083 P > 0.05 ns 1 -3.43 2.083 P > 0.05 ns 1 3.467	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns Neo A 10-8 vs. Neo A 10-12 Neo A 10-12 Difference 95% CI of diff. 7.933 2.533 2.533 2 -3.638 to 7.638 1 5.133 1.733 -3.4 -9.038 to 2.238 2 5.3 3.467 -1.833 -7.471 to 3.805 Treatment Difference t P value Summary 0.5 2 1.225 P > 0.05 ns 1 -3.4 2.083 P > 0.5 ns 1 -3.4 2.083 P > 0.5 ns 1 -3.467 7.867 4.4 -1.238 to 10.04 2 3.067 6.667 3.6 2.363 to 7.638	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns Neo A 10-8 vs. Neo A 10-12 Neo A 10-12 Difference 95% CI of diff. 0.5 0.5333 2.533 2 -3.638 to 7.638 1 5.133 1.733 -3.4 -9.038 to 2.238
1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns
1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns 1 2.8 1.716 P > 0.05 ns 2 1.033 0.6331 P > 0.05 ns
1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns	1 5.133 7.933 2.8 -2.838 to 8.438 2 5.3 6.333 1.033 -4.605 to 6.671 Treatment Difference t P value Summary 0.5 0.6 0.3676 P > 0.05 ns
1 5.133 7.933 2.8 -2.838 to 8.438	1 5.133 7.933 2.8 -2.838 to 8.438	1 5.133 7.933 2.8 -2.838 to 8.438	1 5.133 7.933 2.8 -2.838 to 8.438

	0.5	2.1	1.287	P > 0.05	ns ·
	1			P > 0.05	ns
	2		0.2451	P > 0.05	ns
	Neo A 10-10 vs. Neo A			D.100	0.504 07 . 6 . 1155
	Treatment 0.5	Neo A 10-10	Neo A 10-11 1.133	Difference	95% CI of diff. -6.938 to 4.338
			7.933		-5.571 to 5.705
	2		6.333		-5.971 to 5.305
	_				
	Treatment	Difference	t	P value	Summary
	0.5			P > 0.05	ns
	1		0.04085	P > 0.05	ns
	2	-0.3333	0.2042	P > 0.05	ns
	Neo A 10-10 vs. Neo A	10-17			
- -	Treatment	Neo A 10-10	Neo A 10-12	Difference	95% CI of diff.
	0.5		2.533		-5.538 to 5.738
					-11.77 to -
	. 1		1.733		0.4953
	2	6.667	3.467	-3.2	-8.838 to 2.438
	Treatment	Difference	t ·	P value	Summary
	0.5		0.06127		ns
	1			P<0.01	**
	2			P > 0.05	ns
	Neo A 10-11 vs. Neo A				-
	Treatment	Neo A 10-11	Neo A 10-12	Difference	95% CI of diff.
	0.5	1.133	2.533	1.4	-4.238 to 7.038 -11.84 to -
	1	7.933	1.733	-6.2	0.5620
	. 2		3.467		-8.505 to 2.771
	• -	,			
	Treatment	Difference	t	P value	Summary
	0.5			P > 0.05	ns
	1			P<0.01	**
	2	~2.867	1.756	P > 0.05	ns

				. *		
	Table Analyzed	Dectin-1				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
•	Interaction	8.5	0.4338	÷		
	Time	43.68	P<0.0001			
	Treatment	23.27	0.0005		•	
	Subjects (matching)	4.3076	0.9171			
	Source of Variation	P value summary	Significant?			
	Interaction	ns	No		,	
	Time	***	Yes			
	Treatment	***	Yes			• • •
	Subjects (matching)	ns	No			
	Source of Variation	Df	Sum-of-squares	Mean square	F	
	Interaction	8	45.2	5.65	1.05	
	Time	2	232.2	116.1	21.58	
	Treatment	4	123.7	30.93	13.51	
	Subjects (matching)	10	22.9	2.29	0.4256	
	Residual	20	107.6	5.381	0.7250	
	Bonferroni posttests			·		
	Neo A 10-8 vs. Neo A 1	10-9				
	Treatment	Neo A 10-8	Neo A 10-9	Difference	95% CI of diff.	
	0.5	2.367	2.2	-0.1667	-6.050 to 5.716	
	1	0.1667	2.767	2.6	-3.283 to 8.483	
	2	4.233	5.633	1.4	-4.483 to 7.283	
	Treatment	Difference	t	P value	Summary	
	0.5	-0.1667	0.09786	P > 0.05	ns	
	1	2.6	1.527	P > 0.05	ns	
	2	1.4	0.8221	P > 0.05	ns	
	Neo A 10-8 vs. Neo A 1					
	Treatment	Neo A 10-8	Neo A 10-10	Difference	95% CI of diff.	
	0.5	2.367	3.867		-4.383 to 7.383	
	1	0.1667	3.933	3.767	-2.116 to 9.650	
	2	4.233	9.733	5.5	-0.3829 to 11.38	
	Treatment	Difference	t 0 9909	P value	Summary	
	0.5			P > 0.05	ns	
	1 2	3.767 5.5		P > 0.05 P<0.01	NS **	
	Neo A 10-8 vs. Neo A 1	10-11				
	Treatment	Neo A 10-8	Neo A 10-11	Difference	95% CI of diff.	
						i

		0.5		2.367	2.9	0.5333	-5.350 to 6.416	
		1		0.1667	5.1	4.933	-0.9496 to 10.82	
	,	2		4.233	11.53		1.417 to 13.18	
	Treatment	ſ	Difference		t	P value	Summary	
		0.5		0.5333		P > 0.05	ns	
		1		4.933	2.897	P < 0.05	*	
		2		7.3	4.286	P<0.001	***	
	Neo A 10-8 vs. Neo							
	Treatment	I	Neo A 10-8		Neo A 10-12	Difference	95% CI of diff.	
		0.5		2.367			-4.216 to 7.550	
		1		0.1667			-0.9496 to 10.82	
		2		4.233	9.133	4.9	-0.9829 to 10.78	
	Treatment		Difference			P value	Summary	
,		0.5		1.667		P > 0.05	ns	
·		1		4.933		P < 0.05	*	
		2		4.9	2.877	P < 0.05	*	
	Neo A 10-9 vs. Neo							
			Neo A 10-9		Neo A 10-10		95% CI of diff.	
		0.5		2.2			-4.216 to 7.550	
. *		1		2.767		1.167	-4.716 to 7.050	
		2		5.633	9.733	4.1	-1.783 to 9.983	
	Treatment		Difference			P value	Summary	
		0.5		1.667		P > 0.05	ns	
		1		1.167		P > 0.05	ns	
		2		4.1	2.407	P > 0.05	ns .	
	Neo A 10-9 vs. Neo							
			Neo A 10-9		Neo A 10-11		95% CI of diff.	
		0.5		2.2	2.9	0.7	-5.183 to 6.583	
		1		2.767	5.1	2.333	-3.550 to 8.216	
		~		F 600			0.01711 to	
		2		5.633	11.53	5.9	11.78	
	Treatment		Difference			P value	Summary	
		0.5		0.7	0.411	P > 0.05	ns	
		1 2		2.333 5.9	1.37 3.464	P > 0.05 P<0.01	ns **	
			17					
	Neo A 10-9 vs. Neo				Noo A 10 13	Difference	95% CL of diff	
	Treatment		Neo A 10-9	2.2	Neo A 10-12		95% CI of diff.	
		0.5					-4.050 to 7.716	
		1.		2.767	5.1		-3.550 to 8.216	
		2		5.633	9.133	3.5	-2.383 to 9.383	
							•	
•							•	

	Treatment	Difference	t	P value	Summary
	0.5	1.833	1.077	P > 0.05	ns
	1	2.333		P > 0.05	ns
	2	3.5		P > 0.05	ns
	Neo A 10-10 vs. Neo A	10-11		•	
	Treatment	Neo A 10-10	Neo A 10-11	Difference	95% CI of diff.
	0.5	3.867	2.9	-0.9667	-6.850 to 4.916
	1	3.933	5.1	1.167	-4.716 to 7.050
	2	9.733	11.53	1.8	-4.083 to 7.683
·	Treatment	Difference		P value	Summary
	0.5	-0.9667			ns
	1	1.167		P > 0.05	ns
	2	. 1.8	1.057	P > 0.05	ns
**************************************	Neo A 10-10 vs. Neo A				
	Treatment		Neo A 10-12		95% CI of diff.
	0.5				-5.716 to 6.050
	· 1	3.933	5.1		-4.716 to 7.050
	2	9,733	9.133	-0.6	-6.483 to 5.283
	Treatment	Difference			Summary
	0.5				ns
	1				ns
	2	-0.6	0.3523	P > 0.05	ns
	Neo A 10-11 vs. Neo A				
•			Neo A 10-12		95% CI of diff.
	0.5				-4.750 to 7.016
	1				-5.883 to 5.883
	2	11.53	9.133	2.4	-8.283 to 3.483
	Treatment	Difference			Summary
	0.5			P > 0.05	ns
	1				ns
	2	-2.4	1.409	P > 0.05	ns

APPENDIX VI – ANOVA TABLES Neo B Dose Dependence Table Analyzed Bmp2

Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 28.19 3.56 21.07 23.9183	P value 0.0211 0.2407 0.1419 0.0815		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary * ns ns ns	Significant? Yes No No No	. *	
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 8 2 4 10 20	Sum-of-squares 156.1 19.71 116.7 132.4 128.8	Mean square 19.51 9.854 29.16 13.24 6.438	F 3.03 1.531 2.203 2.057
Bonferroni posttests				,
Neo B 10-8 vs. Neo B 1 Treatment 0.5 1 2	0-9 Neo B 10-8 4.5 10.3 2.933	Neo B 10-9 0.9 1.267 6	Difference -3.6 -9.033 3.067	-17.36 to - 0.7115
Treatment 0.5 1 2	Difference -3.6 -9.033 3.067	t 1.494 3.75 1.273	P value P > 0.05 P<0.01 P > 0.05	Summary ns ** ns
Neo B 10-8 vs. Neo B 1 Treatment 0.5 1 2	0-10 Neo B 10-8 4.5 10.3 2.933	Neo B 10-10 4.567 1.633 5.633	Difference 0.06667 -8.667 2.7	95% CI of diff. -8.255 to 8.388 -16.99 to - 0.3449 -5.622 to 11.02
Treatment 0.5 1 2	Difference 0.06667 -8.667 2.7	t 0.02767 3.598 1.121	P value P > 0.05 P<0.01 P > 0.05	Summary ns ** ns

	Neo B 10-8 vs.		0-11					
		Neo D I			Noo B 10 11	Difforces	05% CT of diff	
	Treatment	0 F	Neo B 10-8		Neo B 10-11 2.2	Difference		
		0.5		4.5	2.2	-2.3	-16.39 to 0.2551	
		1		10.3				
		2		2.933	3.533	0.6	-7.722 to 8.922	
	Treatment		Difference		t	P value	Summary	
		0.5		-2.3	0.9547	P > 0.05	ns	
		1		-8.067	3.348	P<0.01	**	
		2		0.6	0.2491	P > 0.05	ns	
	Neo B 10-8 vs.	Neo B 1	0-12					
, e	Treatment	NEO D I			Neo B 10-12	Difference	95% CI of diff.	
	reachent	0.5						
				4.5			-12.66 to 3.988	
		1	,	10.3			-17.92 to -1.278	
		2		2.933	2.333	-0.6	-8.922 to 7.722	
	Treatment		Difference				Summary	
		0.5		-4.333		P > 0.05	ns	
				-9.6	3.985	P<0.01	**	
		2		-0.6	0.2491	P > 0.05	ns	
	Neo B 10-9 vs.	Neo B 1	0-10					
	Treatment		Neo B 10-9		Neo B 10-10	Difference	95% CI of diff.	
		0.5		0.9	4.567		-4.655 to 11.99	
		1		1.267				
		2		1.207	Z 233	-0 3667	-7.955 to 8.688 -8.688 to 7.955	
		2		0	5.033	-0.5007	0.000 10 7.933	
	Treatment		Difference		t	P value	Summary	
		0.5		3.667		P > 0.05	ns	
		1		0.3667	0.1522	P > 0.05	ns	
		2		-0.3667		P > 0.05	ns	
	Neo B 10-9 vs.	Neo B 1	0-11					
	Treatment		Neo B 10-9		Neo B 10-11	Difference	95% CI of diff.	
	i cathone		NCO D TO 9		2.2			
		0.5		1.267			-7.355 to 9.288	
		2		1.207				
		2		D	3.533	-2.407	-10.79 to 5.855	
	Treatment		Difference			P value	Summary	
				1.3		P > 0.05	ns	
		0.5						
		0.5		0.9667	0.4013	P > 0.05	ns	
				0.9667 -2.467		P > 0.05 P > 0.05	ns	
		1 2	0-12					
	Neo B 10-9 vs.	1 2		-2.467	1.024	P > 0.05	ns	
		1 2 Neo B 1	0-12 Neo B 10-9	-2.467	1.024 Neo B 10-12	P > 0.05 Difference	ns 95% CI of diff.	
	Neo B 10-9 vs.	1 2		-2.467	1.024	P > 0.05 Difference -0.7333	ns	

		2 6	2.333	-3.667	-11.99 to 4.655
	Treatment	Difference	t.	P value	Summary
	0	.5 -0.7333	0.3044	P > 0.05	ns
		1 -0.5667	0.2352	P > 0.05	ns
		2 -3.667		P > 0.05	ns
		5 4 6 4 4			
	Neo B 10-10 vs. Neo		N== D 10 11	Difference	
	Treatment	Neo B 10-10			95% CI of diff.
	0	.5 4.567			-10.69 to 5.955
		1 1.633			-7.722 to 8.922
		2 5.633	3.533	-2.1	-10.42 to 6.222
		Difference			Summary
	0	.5 -2.367		P > 0.05	ns
		1 0.6	0.2491	P > 0.05	ns
		2 -2.1	0.8717	P > 0.05	ns
	Neo B 10-10 vs. Neo	B 10-12			
	Treatment	Neo B 10-10	Neo B 10-12	Difference	95% CI of diff.
		.5 4.567			-12.72 to 3.922
	U	1 1.633			-9.255 to 7.388
		2 5.633			-11.62 to 5.022
		Difference		P value	Summary
	0	.5 -4.4		P > 0.05	ns
		1 -0.9333		P > 0.05	ns
		2 -3.3	1.37	P > 0.05	ns
	Neo B 10-11 vs. Neo	B 10-12			
	Treatment	Neo B 10-11	Neo B 10-12	Difference	95% CI of diff.
		.5 2.2	0.1667	-2.033	-10.36 to 6.288
	-	1 2.233			-9.855 to 6.788
		2 3.533			-9.522 to 7.122
	Treatment	Difference	t	P value	Summary
		.5 -2.033		P > 0.05	ns
	0	1 -1.533		P > 0.05	ns
•		2 -1.2		P > 0.05	ns
		- 1.2	0.4901	0.05	
,					
			1		
					·

•

Table Analyzed	Hspb1			
Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 48.77 5.75 9.11 8.3535	P value 0.0036 0.1545 0.0903 0.7984	•	
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ** ns ns ns	Significant? Yes No No No		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 8 4 10 20	Sum-of-squares 239.4 28.22 44.72 41 137.5	Mean square 29.92 14.11 11.18 4.1 6.873	F 4.353 2.053 2.727 0.5965
Bonferroni posttests Neo B 10-8 vs. Neo B 1 Treatment 0.5 1 2	0-9 Neo B 10-8 1.967 7.567 4.167	Neo B 10-9 1.767 1.267 6		95% CI of diff. -7.079 to 6.679 -13.18 to 0.5790 -5.046 to 8.712
Treatment 0.5 1 2	Difference -0.2 -6.3 1.833	t 0.1004 3.164 0.9206	P value P > 0.05 P < 0.05 P > 0.05	Summary ns * ns
Neo B 10-8 vs. Neo B 1 Treatment 0.5 1 2	0-10 Neo B 10-8 1.967 7.567 4.167	Neo B 10-10 10.23 1.633 5.067	Difference 8.267 -5.933 0.9	-12.81 to 0.9457
Treatment 0.5 1 2	Difference 8.267 -5.933 0.9	t 4.151 2.979 0.4519	P value P<0.001 P < 0.05 P > 0.05	Summary *** * ns
Neo B 10-8 vs. Neo B 1 Treatment	0-11 Neo B 10-8	Neo B 10-11	Difference	95% CI of diff.

0.5 1 2	1.967 7.567 4.167	8.9 3.333 3.533	6.933 -4.233 -0.6333	0.05433 to 13.81 -11.11 to 2.646 -7.512 to 6.246
Treatment 0.5 1 2	Difference 6.933 -4.233 -0.6333	t 3.482 2.126 0.318	P value P<0.01 P > 0.05 P > 0.05	Summary ** ns ns
Neo B 10-8 vs. Neo B 1 Treatment 0.5 1 2	Neo B 10-8 1.967	Neo B 10-12 4.4 3.9 2.333	Difference 2.433 -3.667 -1.833	
Treatment 0.5 1 2	Difference 2.433 -3.667 -1.833	t 1.222 1.841 0.9206	· · · uiuu	Summary ns ns ns
Neo B 10-9 vs. Neo B 1 Treatment 0.5 1 2	0-10 Neo B 10-9 1.767 1.267 6	Neo B 10-10 10.23 1.633 5.067	Difference 8.467 0.3667 -0.9333	95% CI of diff. 1.588 to 15.35 -6.512 to 7.246 -7.812 to 5.946
Treatment 0.5 1 2	Difference 8.467 0.3667 -0.9333	t 4.252 0.1841 0.4687	P value P<0.001 P > 0.05 P > 0.05	Summary *** ns ns
Neo B 10-9 vs. Neo B 1 Treatment 0.5 1 2	0-11 Neo B 10-9 1.767 1.267 6	Neo B 10-11 8.9 3.333 3.533	Difference 7.133 2.067 -2.467	
Treatment 0.5 1 2	Difference 7.133 2.067 -2.467	t 3.582 1.038 1.239	P value P<0.01 P > 0.05 P > 0.05	Summary ** ns ns
Neo B 10-9 vs. Neo B 1 Treatment 0.5 1 2	0-12 Neo B 10-9 1.767 1.267 6	Neo B 10-12 4.4 3.9 2.333	Difference 2.633 2.633 -3.667	

Treatment	Difference	+	P value	Summary
0.5			P > 0.05	ns
1			P > 0.05	ns
2			P > 0.05	ns
Neo B 10-10 vs. Neo B	10-11		,	
Treatment	Neo B 10-10	Neo B 10-11	Difference	95% CI of diff.
0.5	10.23	8.9	-1.333	-8.212 to 5.546
1	1.633	3.333	1.7	-5.179 to 8.579
2	5.067	3.533	-1.533	-8.412 to 5.346
Treatment	Difference		P value	Summary
0.5	-1.333		P > 0.05	ns
1	1.7		P > 0.05	ns
2	-1.533	0.77	P > 0.05	ns
Neo B 10-10 vs. Neo B				·
	Neo B 10-10			95% CI of diff.
0.5				-12.71 to 1.046
• 1				-4.612 to 9.146
2	5.067	2.333	-2.733	-9.612 to 4.146
Treatment	Difference		P value	Summary
0.5			P < 0.05	*
1	2.267		P > 0.05	ns
2	-2.733	1.373	P > 0.05	ns
Neo B 10-11 vs. Neo B				· · · · · · · · · · · · · · · · · · ·
Treatment	Neo B 10-11	Neo B 10-12		95% CI of diff.
0.5				-11.38 to 2.379
1				-6.312 to 7.446
2	3.533	2.333	-1.2	-8.079 to 5.679
Treatment	Difference		P value	Summary
0.5			P > 0.05	ns
1			P > 0.05	ns
2	-1.2	0.6026	P > 0.05	ns

•

Table Analyzed	Icam1			
Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 62.3 10.63 3.82 11.9502	P value P<0.0001 0.0013 0.5524 0.0739		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary *** ns ns	Significant? Yes Yes No No	• • •	
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 8 2 4 10 20	Sum-of-squares 455 77.61 27.9 87.27 82.54	Mean square 56.87 38.8 6.975 8.727 4.127	F 13.78 9.402 0.7993 2.115
Bonferroni posttests				
Neo B 10-8 vs. Neo B 10 Treatment 0.5 1 2	0-9 Neo B 10-8 9.833 14.17 10.43	Neo B 10-9 9.067 10.97 10.57		95% CI of diff. -7.477 to 5.944 -9.910 to 3.510 -6.577 to 6.844
Treatment 0.5 1 2	Difference -0.7667 -3.2 0.1333	t 0.3947 1.647 0.06864		Summary ns ns ns
Neo B 10-8 vs. Neo B 10 Treatment 0.5 1 2	0-10 Neo B 10-8 9.833 14.17 10.43	Neo B 10-10 15.17 1.533 11.7	Difference 5.333 -12.63 1.267	
Treatment 0.5 1 2	Difference 5.333 -12.63 1.267	t 2.745 6.503 0.6521	P value P < 0.05 P<0.001 P > 0.05	Summary * *** ns
Neo B 10-8 vs. Neo B 10 Treatment	0-11 Neo B 10-8	Neo B 10-11	Difference	95% CI of diff.

`

· .	0	.5	9.833	14.5	4.667	-2.044 to 11.38	
		1	14.17			-10.18 to 3.244	
		2	10.43			-10.54 to 2.877	
	Treatment	Difference		.t	P value	Summary	
		0.5	4.667		P > 0.05	ns	*
		1	-3.467		P > 0.05	ns	
		2	-3.833		P > 0.05	ns	
	Neo B 10-8 vs. Neo E	B 10-12					
		Neo B 10-8		Neo B 10-12	Difference	95% CI of diff.	
	Treatment	Neo B 10-8	9.833	Neo B 10-12			
						-5.310 to 8.110	
		1	14.17			-8.810 to 4.610	
		2	10.43	4.667	-2./0/	-12.48 to 0.9437	
	Treatment	Difference		t	P value	Summary	
		1.5	1.4		P > 0.05	ns	
		. 1	-2.1		P > 0.05	ns	
		2	-5.767	2.969	P < 0.05	*	
	Neo B 10-9 vs. Neo E	B 10-10					
	Treatment	Neo B 10-9		Neo B 10-10	Difference	95% CI of diff.	
	0	0.5	9.067			-0.6104 to 12.81	
		1	10.97			-16.14 to -2.723	
		2	10.57			-5.577 to 7.844	
	Treatment	Difference		t	P value	Summary	
		0.5	6.1		P < 0.05	*	
		1	-9.433		P<0.001	***	
		2	1.133		P > 0.05	ns	
	Nee D 10 O via Nee i	F 40 44				,	
	Neo B 10-9 vs. Neo B			No. 0 10 11	D:66		
	Treatment	Neo B 10-9		Neo B 10-11	Difference	95% CI of diff.	
	U).5	9.067			-1.277 to 12.14	
		1	10.97			-6.977 to 6.444	
		2	10.57	6.6	-3.967	-10.68 to 2.744	
	Treatment	Difference		t	P value	Summary	
	0	.5	5.433		P < 0.05	*	
		1	-0.2667		P > 0.05	ns	
		2	-3.967	2.042	P > 0.05	ns	6
	Neo B 10-9 vs. Neo E	B 10-12					
	Treatment	Neo B 10-9		Neo B 10-12	Difference	95% CI of diff.	
).5	9.067			-4.544 to 8.877	
		1	10.97			-5.610 to 7.810	
		2	10.57			-12.61 to 0.8104	
	Treatment	Difference		t	P value	Summary	
• •	Treatment	Difference		l l	r value	Summary	
•							
				1. J.			
						•	

	0.5 1 2	2.167 1.1 -5.9	1.115 0.5663 3.037	P > 0.05	ns ns *
Neo B 10-10 vs. Treatment	Neo B 10-11 Neo B 10- 0.5 1 2	10 15.17 1.533 11.7	Neo B 10-11 14.5 10.7 6.6	Difference -0.6667 9.167 -5.1	-7.377 to 6.044
Treatment	Difference 0.5 1 2	-0.6667 9.167 -5.1		P value P > 0.05 P<0.001 P < 0.05	Summary ns *** *
Neo B 10-10 vs. Treatment	Neo B 10-12 Neo B 10- 0.5 1 2	10 15.17 1.533 11.7	Neo B 10-12 11.23 12.07 4.667	Difference -3.933 10.53 -7.033	95% CI of diff. -10.64 to 2.777 3.823 to 17.24 -13.74 to - 0.3229
Treatment	Difference 0.5 1 2	-3.933 10.53 -7.033	t 2.025 5.422 3.621		Summary ns *** **
Neo B 10-11 vs. Treatment	Neo B 10-12 Neo B 10- 0.5 1 2	11 14.5 10.7 6.6	Neo B 10-12 11.23 12.07 4.667	Difference -3.267 1.367 -1.933	
Treatment	Difference 0.5 1 2	-3.267 1.367 -1.933	t 1.682 0.7035 0.9952	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns

	Table Analyzed	Vegfa			
	Two-way RM ANOVA	Matching by cols			
	Source of Variation	% of total variation	P value		
	Interaction	50.21	0.0014		
	Time	2.65	0.3582		
х	Treatment	8.77	0.2547		
	Subjects (matching)	13.9066	0.3849		
	Source of Variation	P value summary	Significant?		
	Interaction	**	Yes		
	Time	ns	No		
	Treatment	ns	No		
	Subjects (matching)	ns	No	,	
	Source of Variation	Df	Sum-of-squares	Mean	F
	Interaction	8	380.3	square 47.53	5.129
	Time	2	20.04	10.02	1.081
	Treatment	4	66.39	16.6	1.576
	Subjects (matching)	10	105.3	10.53	1.137
	Residual	20	185.3	9.267	1.15/
	Bonferroni posttests				,
	Neo B 10-8 vs. Neo B 1	0-9			
	Treatment	Neo B 10-8	Neo B 10-9	Difference	95% CI of diff.
	0.5	8.567	7.467	-1.1	-9.879 to 7.679
	1	14.5	10.83		-12.45 to 5.113
	2	11.77	10.93	-0.8333	-9.613 to 7.946
	Treatment	Difference	t	P value	Summary
	0.5	-1.1		P > 0.05	ns
	1	-3.667	1.443	P > 0.05	ns
	2	-0.8333	0.3279	P > 0.05	ns
	Neo B 10-8 vs. Neo B 1				Υ.
	Treatment	Neo B 10-8	Neo B 10-10	Difference	95% CI of diff.
	0.5	8.567	13.73	5.167	
	1	14.5	2.6		-20.68 to -3.121
	2	11.77	9.233	-2.533	-11.31 to 6.246
	Treatment	Difference	t	P value	Summary
	0.5	5.167			ns
	1	-11.9		P<0.001	***
	2	-2.533	0.9968	P > 0.05	, ns
	Neo B 10-8 vs. Neo B 1				
	Treatment	Neo B 10-8	Neo B 10-11	Difference	95% CI of diff.

							,
•							
	0.5		8.567	13.17	/ 4.6	-4.179 to 13.38	
	1		14.5	11.2	2 -3.3	-12.08 to 5.479	
	2		11.77	5.5	-6.267	-15.05 to 2.513	
Treatment		Difference		t	P value	Summary	
	0.5		4.6		1 P>0.05	ns	
	1		-3.3		B P > 0.05	ns	
	2		-6.267	2.466	5 P > 0.05	ns	
Neo B 10-8 vs. Ne	eo B 1	.0-12					
Treatment		Neo B 10-8		Neo B 10-12	Difference	95% CI of diff.	
	0.5		8.567				
	1		14.5			-12.28 to 5.279	
	2		11.77			-14.68 to 2.879	
Treatment		Difference		t .		Summary	
	0.5		-0.9		1 P > 0.05	ns	
	1 2		-3.5	1.377	7 P > 0.05	ns	
	2		-5.9		1 P > 0.05	ns	
Neo B 10-9 vs. Ne	eo B 1	.0-10					
Treatment		Neo B 10-9		Neo B 10-10	Difference	95% CI of diff.	
	0.5		7.467		3 6.267	-2.513 to 15.05	
	1		10.83	2.6		-17.01 to 0.5460	
	2		10.93			-10.48 to 7.079	
Treatment		Difference		t	P value	Summary	·
	0.5		6.267		5 P > 0.05	ns .	
	1		-8.233		4 P<0.01	**	
· · ·	2		-1.7		9 P > 0.05	ns	
Neo B 10-9 vs. Ne	eo B 1	0-11					
Treatment		Neo B 10-9		Neo B 10-11	Difference	95% CI of diff.	
	0.5		7.467			-3.079 to 14.48	
	1		10.83	11.2	2 0.3667	-8.413 to 9.146	
	2		10.93			-14.21 to 3.346	
Treatment		Difference		t	P value	Summary	
	0.5		5.7		3 P > 0.05	ns .	
	1		0.3667		3 P > 0.05	ns	
	2				B P > 0.05	ns	
Nee B 10 O ve M							
Neo B 10-9 vs. Ne Treatment	30 B 10	l0-12 Neo B 10-9		Neo B 10-12	Difference	95% CI of diff.	
reachenc	0.5		7.467			-8.579 to 8.979	
	1		10.83			-8.613 to 8.946	
	2		10.83			-13.85 to 3.713	
Treatment		Difference		t.	P value	Summary	
reaument		Difference		L .	rvuluc	Summary	

0.5	0.2	0.07869	P > 0.05	ns
1	0.1667		P > 0.05	ns
2	-5.067		P > 0.05	ns
-	5.007	1.55.1	1 2 0.05	115
Neo B 10-10 vs. Neo B	10-11			
Treatment	Neo B 10-10	Neo B 10-11	Difference	95% CI of diff.
0.5	13.73	13.17	-0.5667	-9.346 to 8.213
1	2.6	11.2	8.6	-0.1793 to 17.38
2	9.233			-12.51 to 5.046
-				
Treatment	Difference	t	P value	Summary
0.5	-0.5667	0.223	P > 0.05	ns
1	8.6	3.384	P<0.01	**
2	-3.733	1.469	P > 0.05	ns
Neo B 10-10 vs. Neo B	10-12			
Treatment	Neo B 10-10	Neo B 10-12	Difference	95% CI of diff.
0.5	13.73	7.667	-6.067	-14.85 to 2.713
1	2.6	11	8.4	-0.3793 to 17.18
2	9.233	5.867	-3.367	-12.15 to 5.413
Treatment	Difference	t	P value	Summary
0.5	-6.067	2.387	P > 0.05	ns
· 1	8.4	3.305	P<0.01	**
2	-3.367	1.325	P > 0.05	ns
	·			
Neo B 10-11 vs. Neo B	10-12			
Treatment	Neo B 10-11	Neo B 10-12		95% CI of diff.
0.5	13.17	7.667	-5.5	-14.28 to 3.279
1	11.2	11	-0.2	-8.979 to 8.579
2	5.5	5.867	0.3667	-8.413 to 9.146
Treatment	Difference	t	P value	Summary
0.5	-5.5	2.164	P > 0.05	ns
1	-0.2	0.07869	P > 0.05	ns
2	0.3667	0.1443	P > 0.05	ns

Table Analyzed	Cdknlb			
Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 62.42 1.21 4.99 12.2328	P value P<0.0001 0.5421 0.4424 0.3063		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary *** ns ns ns	Significant? Yes No No No		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 8 2 4 10 20	Sum-of-squares 318.9 6.178 25.5 62.5 97.83	Mean square 39.86 3.089 6.376 6.25 4.892	F 8.149 0.6315 1.02 1.278
Bonferroni posttests				
Neo B 10-8 vs. Neo B 1 Treatment 0.5 1 2	0-9 Neo B 10-8 7.767 12.53 8.367	Neo B 10-9 3.267 10.33 12.1		95% CI of diff. -11.02 to 2.020 -8.720 to 4.320 -2.787 to 10.25
Treatment 0.5 1 2	Difference -4.5 -2.2 3.733	t 2.384 1.166 1.978	P > 0.05	Summary ns ns ns
Neo B 10-8 vs. Neo B 1 Treatment 0.5 1 2	0-10 Neo B 10-8 7.767 12.53 8.367	Neo B 10-10 12.8 6.167 10.67	Difference 5.033 -6.367 2.3	
Treatment 0.5 1 2	Difference 5.033 -6.367 2.3	t 2.667 3.373 1.219	P value P < 0.05 P<0.01 P > 0.05	Summary * ** ns
Neo B 10-8 vs. Neo B 1 Treatment	0-11 Neo B 10-8	Neo B 10-11	Difference	95% CI of diff.

· · · ·	0.5	7.767			-0.9203 to 12.12	
	1	12.53			-9.587 to 3.454	
	2	8.367	6.633	-1./33	-8.254 to 4.787	
	Treatment	Difference	t	P value	Summary	
	0.5	5.6		P < 0.05	*	
	1	-3.067		P > 0.05	ns	
	. 2	-1.733	3 0.9183	P > 0.05	ns	
	Neo B 10-8 vs. Neo B 1	0-12				
	Treatment	Neo B 10-8	Neo B 10-12	Difference	95% CI of diff.	
	0.5	7.762	7 6.833	-0.9333	-7.454 to 5.587	
	1	12.53	3 9.867	-2.667	-9.187 to 3.854	
	· 2	8.367	7 7.267	-1.1	-7.620 to 5.420	
	Treatment	Difference	t	P value	Summary	
	0.5	-0.9333		P > 0.05	ns	
	1	-2.667		P > 0.05	ns	
	2	-1.:		P > 0.05	ns	
	Noo R 10, 0 vo. Noc R 1	0.10				
	Neo B 10-9 vs. Neo B 1 Treatment	Neo B 10-9	Neo B 10-10	Difference	95% CI of diff.	
	0.5	3.267			3.013 to 16.05	
	1	10.33			-10.69 to 2.354	
	2	12.3		-1.433	-7.954 to 5.087	
	Treatment	Difference	t	P value	Summary	
	0.5	9.53		P<0.001	***	
	1	-4.16		P > 0.05	ns -	
	2	-1.43		P > 0.05	ns	
		0.11				
	Neo B 10-9 vs. Neo B 1 Treatment	LO-11 Neo B 10-9	Neo B 10-11	Difference	95% CI of diff.	
	0.5	3.26			3.580 to 16.62	
	1	10.3			-7.387 to 5.654	
	2				-11.99 to 1.054	
	Tresherent	Difference		D volv-	Cummer :	
	Treatment 0.5	Difference 10.1	t . 1 5351	P value P<0.001	Summary ***	
	0.5		7 0.4592	P > 0.05	ns	
	2			P < 0.05	*	
		•				
	Neo B 10-9 vs. Neo B 1			Difforence	OF04 CI of diff	
	Treatment 0.5	Neo B 10-9 3.263			95% CI of diff. -2.954 to 10.09	
	0.5			-0.4667	-6.987 to 6.054	
	2			-4.833	-11.35 to 1.687	
		Differen		Devel	C	
	Treatment	Difference	t	P value	Summary	

	0.5 1 2		3.567 -0.4667 -4.833	1.89 0.2472 2.561	P > 0.05 P > 0.05 P < 0.05	ns ns *
Neo B 10-10 vs. , Treatment	Neo B 0.5 1 2	10-11 Neo B 10-10	12.8 6.167 10.67	Neo B 10-11 13.37 9.467 6.633	Difference 0.5667 3.3 -4.033	95% CI of diff. -5.954 to 7.087 -3.220 to 9.820 -10.55 to 2.487
Treatment	0.5 1 2	Difference	0.5667 3.3 -4.033	t 0.3002 1.748 2.137	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns
Neo B 10-10 vs. Treatment	Neo B 0.5 1 2	10-12 Neo B 10-10	12.8 6.167 10.67	Neo B 10-12 6.833 9.867 7.267	Difference -5.967 3.7 -3.4	95% CI of diff. -12.49 to 0.5536 -2.820 to 10.22 -9.920 to 3.120
Treatment	0.5 1 2	Difference	-5.967 3.7 -3.4	t 3.161 1.96 1.801	P value P < 0.05 P > 0.05 P > 0.05	Summary * ns ns
Neo B 10-11 vs. Treatment	Neo B 0.5 1 2	10-12 Neo B 10-11	13.37 9.467 6.633	Neo B 10-12 6.833 9.867 7.267	Difference -6.533 0.4 0.6333	95% CI of diff. -13.05 to - 0.01305 -6.120 to 6.920 -5.887 to 7.154
Treatment	0.5 1 2	Difference	-6.533 0.4 0.6333	t 3.461 0.2119 0.3355	P value P<0.01 P > 0.05 P > 0.05	Summary ** ns ns

Table Analyzed

Cd5

Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 21.47 23.1 7.05 11.6627	P value 0.2324 0.0076 0.2714 0.7673		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns ** ns ns	Significant? No Yes No No		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 8 2 4 10 20	Sum-of-squares 66.7 71.76 21.89 36.23 114	Mean square 8.337 35.88 5.471 3.623 5.702	F 1.462 6.292 1.51 0.6353
Bonferroni posttests				
Neo B 10-8 vs. Neo B 1 Treatment 0.5 1 2	.0-9 Neo B 10-8 0.5333 5.133 5.3	Neo B 10-9 2 7.033 7.133	1.9	95% CI of diff. -4.846 to 7.779 -4.413 to 8.213 -4.479 to 8.146
Treatment 0.5 1 2	Difference 1.467 1.9 1.833	1.04	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns
Neo B 10-8 vs. Neo B 1 Treatment 0.5 1 2	0-10 Neo B 10-8 0.5333 5.133 5.3	Neo B 10-10 4.567 4.3 5.067	Difference 4.033 -0.8333 -0.2333	-2.279 to 10.35 -7.146 to 5.479
Treatment 0.5 1 2	Difference 4.033 -0.8333 -0.2333	t 2.207 0.456 0.1277		Summary ns ns ns
Neo B 10-8 vs. Neo B 1	0-11			

 Neo B 10-8 vs. Neo B 10-11
 Neo B 10-8
 Neo B 10-11
 Difference
 95% CI of diff.

		0.5		0.5333	4,4	33 3.9	-2.413 to 10.21	
		1		5.133	6.13	33 1	-5.313 to 7.313	
		2		5.3	3.53		-8.079 to 4.546	
		2		5.5	5.5.	-1./0/	-0.079 (0.4.340	
								1. A.
	Treatment		Difference		t	P value	Summary	
		0.5		3.9	2.1	34 P > 0.05	ns	
				1				
		1				72 P > 0.05	ns	
		2		-1.767	0.96	58 P > 0.05	ns	
	Neo B 10-8 vs. N	eo R 1	0-12					
					No. B 10 12	Difference		
	Treatment	. -	Neo B 10-8		Neo B 10-12	Difference	95% CI of diff.	
		0.5		0.5333			-4.846 to 7.779	
		1		5.133	6.10	57 1.033	-5.279 to 7.346	
		2		5.3	2.4		-9.179 to 3.446	
		2		5.5	2.4.	-2.007	J.17 J (J J.440	
							_	
	Treatment		Difference		t	P value	Summary	
		0.5		1.467		26 P > 0.05	ns	
				1.033		55 P > 0.05	ns	
		1						
		2		-2.867 [.]	1.50	59 P > 0.05	ns	
	Neo B 10-9 vs. N	leo B 1	0-10					
					Noo B 10 10	Difference		
	Treatment		Neo B 10-9		Neo B 10-10	Difference	95% CI of diff.	1
		0.5		2	4.5	57 2.567	-3.746 to 8.879	
		1		7.033			-9.046 to 3.579	
	•	2					-8.379 to 4.246	
		2		7.133	5.00	-2.06/	-0.3/9 (0 4.246	
,								
	Treatment		Difference		t	P value	Summary	
		0.5		2.567		05 P > 0.05	ns	
		1		-2.733		96 P > 0.05	ns	
		2		-2.067	1.1	31 P > 0.05	ns	
	Noo B 10 Over M		0_11					
	Neo B 10-9 vs. N	IEO D I						
	Treatment		Neo B 10-9		Neo B 10-11	Difference	95% CI of diff.	
		0.5		2	4.43	33 2.433	-3.879 to 8.746	
		1		7.033	6.1			
	•	2		7.133	3.5	، 3.6	-9.913 to 2.713	
	Treatment		Difference		t	P value	Summary	
				2 422			•	
		0.5		2.433		32 P > 0.05	ns	
		1		-0.9	0.493	25 P > 0.05	ns	
		2		-3.6	1.9	97 P > 0.05	ns	
		-		0.9				
				-				
	Neo B 10-9 vs. N	leo B 1	0-12					
	1100 0 10 0 101 11		No. P 10.0		Neo B 10-12	Difference	95% CI of diff.	
			Neo B 10-9					
	Treatment	05	N60 P 10-9	2		2 ^	-6 313 to 6 313	
		0.5	NG0 D 10-9	2			-6.313 to 6.313	
		1	NGO D 10-9	7.033	6.10	-0.8667	-7.179 to 5.446	
			NEO B 10-9		6.1(2.4)	-0.8667		
		1	. NGO B 10-3	7.033		-0.8667	-7.179 to 5.446	
	Treatment	1		7.033 7.133	2.43	57 -0.8667 33 -4.7	-7.179 to 5.446 -11.01 to 1.613	
		1	Difference	7.033 7.133		-0.8667	-7.179 to 5.446	

0.5 1 2	0 -0.8667 -4.7	0 0.4743 2.572	P > 0.05 P > 0.05 P < 0.05	ns ns *
Neo B 10-10 vs. Neo B Treatment 0.5 1 2	10-11 Neo B 10-10 4.567 4.3 5.067	Neo B 10-11 4.433 6.133 3.533	Difference -0.1333 1.833 -1.533	-6.446 to 6.179 -4.479 to 8.146
Treatment 0.5 1 2	Difference -0.1333 1.833 -1.533	t 0.07296 1.003 0.8391	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns
Neo B 10-10 vs. Neo B Treatment 0.5 1 2	10-12 Neo B 10-10 4.567 4.3 5.067	Neo B 10-12 2 6.167 2.433	Difference -2.567 1.867 -2.633	-8.879 to 3.746 -4.446 to 8.179
Treatment 0.5 1 2	Difference -2.567 1.867 -2.633		P value P > 0.05 P > 0.05 P > 0.05	Summarý ns ns ns
Neo B 10-11 vs. Neo B Treatment 0.5 1 2	10-12 Neo B 10-11 4.433 6.133 3.533	Neo B 10-12 2 6.167 2.433	Difference -2.433 0.03333 -1.1	-8.746 to 3.879 -6.279 to 6.346
Treatment 0.5 1 2	Difference -2.433 0.03333 -1.1	t 1.332 0.01824 0.6019	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns

•

	Table Analyzed	Dectin-1				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	31.48	0.0063			
	Time	37.26	P<0.0001			
	Treatment	5.49	0.115			
	Subjects (matching)	5.6211	0.8282			
	Source of Variation	P value summary	Significant?			
	Interaction	**	Yes	÷.		
	Time	***	Yes			
	Treatment	ns	No		-	
	Subjects (matching)	ns	No			
				Mean		
	Source of Variation	Df	Sum-of-squares	square	F	,
	Interaction	8	241.9	30.24	3.906	
	Time	2	286.4	143.2	18.49	
	Treatment Subjects (matching)	4	42.19 43.2	10.55 4.32	2.442 0.558	
	Subjects (matching) Residual	10 20	43.2 154.9	4.32 7.743	0.550	
		20		, , , , , , , , , , , , , , , , , , , ,		
	Bonferroni posttests					· .
-	Neo B 10-8 vs. Neo B 1	.0-9				
	Treatment	Neo B 10-8	Neo B 10-9	Difference	95% CI of diff.	
	0.5	4.233	-1.767	-6	-13.25 to 1.247	
	1	0.1667	4.967	4.8	-2.447 to 12.05	
	2	2.367	11.9	9.533	2.286 to 16.78	
	Treatment	Difference	t s	P value	Summary	
	0.5	-6		P < 0.05	*	
	1	4.8	2.288	P > 0.05	ns	
	2	9.533	. 4.544	P<0.001	***	
	Neo B 10-8 vs. Neo B 1	.0-10	•			
	Treatment	Neo B 10-8	Neo B 10-10		95% CI of diff.	
	0.5	4.233	1.833	-2.4	-9.647 to 4.847	
	1	0.1667			-6.047 to 8.447	
	2	2.367	10.13	7.767	0.5197 to 15.01	
	Treatment	Difference	t	P value	Summary	
	0.5	-2.4	1.144	P > 0.05	ns	
	1	1.2	0.572	P > 0.05	ns	
	2	7.767	3.702	P<0.01	**	
	Neo B 10-8 vs. Neo B 1	0-11				
	Treatment		Neo B 10-11	Difference	95% CI of diff.	
					*	

• •

					-	
		0.5	4.233	1.533	-2.7	-9.947 to 4.547
		1	0.1667	5.167	5	-2.247 to 12.25
		. 2	2.367	7.233	4.867	-2.380 to 12.11
		•				
	Treatment	Difference	æ	t	P value	Summary
		0.5	-2.7		P > 0.05	ns
		1	5		P > 0.05	ns
		2	4.867	2.32	P > 0.05	ns
					1.	
	Neo B 10-8 vs					
	Treatment	Neo B 10		Neo B 10-12	Difference	95% CI of diff.
		0.5	4.233	1.767	-2.467	-9.714 to 4.780
*		1	0.1667	4.533		-2.880 to 11.61
		• 2	2.367	5.967	3.6	-3.647 to 10.85
	Tuestasst	Differen		L ·	Buslue	Summan
	Treatment	Difference		t 1.176	P value P > 0.05	Summary
		0.5	-2.467 4.367		P > 0.05	ns
		1 2	4.307		P > 0.05	ns ns
		2	5.0	1.710	F > 0.03	115
	Neo B 10-9 vs	. Neo B 10-10				
	Treatment	Neo B 10)-9	Neo B 10-10	Difference	95% CI of diff.
		0.5	-1.767	1.833		-3.647 to 10.85
		1	4.967	1.367		-10.85 to 3.647
		2	11.9	10.13		-9.014 to 5.480
	Treatment	Difference	æ	t -	P value	Summary
		0.5	3.6	1.716	P > 0.05	ns
		1	-3.6	1.716	P > 0.05	ns
		2	-1.767	0.8421	P > 0.05	ns `
•						
	Neo B 10-9 vs				5.00	0.504 07 6
	Treatment	Neo B 10		Neo B 10-11	Difference	95% CI of diff.
		0.5	-1.767	1.533		-3.947 to 10.55
		1	4.967	5.167		-7.047 to 7.447
		2	11.9	7.233	-4.667	-11.91 to 2.580
	Trootmont	Difference		+	P value	Summany
	Treatment			t 1 573		Summary
		0.5	3.3 0.2		P > 0.05 P > 0.05	ns
		1				ns
		2	-4.667	2.224	P > 0.05	ns
	Neo B 10-9 ve	. Neo B 10-12				
	Treatment	Neo B 10-12 Neo B 10)-9	Neo B 10-12	Difference	95% CI of diff.
	reachenc	0.5	-1.767			-3.714 to 10.78
		1	4.967			-7.680 to 6.814
		2	4.967	4.535		-13.18 to 1.314
		2	11.9	5.907	-5.955	-13.10 (0 1.314
	Treatment	Difference	-e	t	P value	Summary
		Direren		-		<i>j</i>

0.5 1 2	3.533 -0.4333 -5.933		P > 0.05 P > 0.05 P < 0.05	ns ns *
Neo B 10-10 vs. Neo B Treatment 0.5 1 2	10-11 Neo B 10-10 1.833 1.367 10.13	Neo B 10-11 1.533 5.167 7.233	Difference -0.3 3.8 -2.9	-7.547 to 6.947
Treatment 0.5 1 2	Difference -0.3 3.8 -2.9	t 0.143 1.811 1.382	P > 0.05	Summary ns ns ns
Neo B 10-10 vs. Neo B Treatment 0.5 1 2	10-12 Neo B 10-10 1.833 1.367 10.13	Neo B 10-12 1.767 4.533 5.967	Difference -0.06667 3.167 -4.167	
Treatment 0.5 1 2	Difference -0.06667 3.167 -4.167	t 0.03178 1.509 1.986	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns
Neo B 10-11 vs. Neo B Treatment 0.5 1 2	10-12 Neo B 10-11 1.533 5.167 7.233	Neo B 10-12 1.767 4.533 5.967	Difference 0.2333 -0.6333 -1.267	
Treatment 0.5 1 2	Difference 0.2333 -0.6333 -1.267	t 0.1112 0.3019 0.6038	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns

APPENDIX VII – ANOVA TABLES Glucan Dose Dependence Table Analyzed Bmp2

Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 9.92 45 15.5 13.0776	P value 0.2182 P<0.0001 0.0745 0.1827		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary ns *** ns ns	Significant? No Yes No No		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 8 2 4 10 20	Sum-of-squares 37.21 168.8 58.14 49.06 61.92	Mean square 4.651 84.39 14.54 4.906 3.096	F 1.502 27.26 2.963 1.585
Bonferroni posttests				
glucan 10-8 vs. glucan Treatment 0.5 1 2	10-9 glucan 10-8 -2.967 -5.633 2.2	glucan 10-9 -3.067 -2.833 1.033	2.8	95% CI of diff. -5.525 to 5.325 -2.625 to 8.225 -6.591 to 4.258
Treatment 0.5 1 2	Difference -0.1 2.8 -1.167	-	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns
glucan 10-8 vs. glucan Treatment 0.5 1 2	10-10 glucan 10-8 -2.967 -5.633 2.2	glucan 10-10 -0.8 -0.3333 1.4	Difference 2.167 5.3 -0.8	-0.1247 to 10.72
Treatment 0.5 1 2	Difference 2.167 5.3 -0.8	t 1.38 3.375 0.5094	P value P > 0.05 P<0.01 P > 0.05	Summary ns ** ns

	glucan 10-8 vs.	glucan1				•	
	Treatment		glucan 10-8	-	Difference	95% CI of diff.	
		0.5	-2.96			-3.558 to 7.291	
		1	-5.63			-2.025 to 8.825	
		2	2.	2 1	-1.2	-6.625 to 4.225	
	Treatment		Difference	t	P value	Summary	
		0.5	1.86		P > 0.05	ns	
		1	3.		P > 0.05	ns	
		2	· -1.	2 0.7641	P > 0.05	ns	
	glucan 10-8 vs.	glucan	10-12				
	Treatment		glucan 10-8	glucan 10-12	Difference	95% CI of diff.	
		0.5	-2.96			-3.125 to 7.725	
		1	-5.63			-0.5913 to 10.26	
		2	2.	2 4.5	2.3	-3.125 to 7.725	
	Treatment		Difference	t .	P value	Summary	
		0.5	2.		P > 0.05	ns	
•		1	4.83		P < 0.05	*	
		2	2.	3 1.465	P > 0.05	ns	
	glucan 10-9 vs.	glucan	10-10				
	Treatment		glucan 10-9	glucan 10-10	Difference	95% CI of diff.	
		0.5	-3.06				
		1	-2.83			-2.925 to 7.925	
		2	1.03	3 1.4	0.3667	-5.058 to 5.791	
	Treatment		Difference	t	P value	Summary	
		0.5	2.26		P > 0.05	ns	
		1	2.		P > 0.05	ns	
		2	0.366	7 0.2335	P > 0.05	ns	2
	glucan 10-9 vs.	glucan1	0-11				
	Treatment		glucan 10-9	glucan10-11	Difference	95% CI of diff.	
		0.5	-3.06			-3.458 to 7.391	
		1	-2.83			-4.825 to 6.025	
	·	2	1.03	3 1	-0.03333	-5.458 to 5.391	
	Treatment		Difference	t	P value	Summary	
		0.5	1.96		P > 0.05	ns	
		1	0.		P > 0.05	ns	
		2	-0.0333	3 0.02123	P > 0.05	ns	
		2	0.0555	•	• * *		
	glucan 10-9 vs.				. '		
	glucan 10-9 vs. Treatment			glucan 10-12	Difference	95% CI of diff.	
			10-12	glucan 10-12	Difference	95% CI of diff. -3.025 to 7.825	
		glucan	10-12 glucan 10-9	glucan 10-12 7 -0.6667	Difference 2.4		

,

	Treatment		t	P value	Summary
	0.5	2.4		P > 0.05	ns
	· 1			P > 0.05	ns
	2	3.467		P > 0.05	ns
	glucan 10-10 vs. glucan				
	Treatment	glucan 10-10	glucan10-11	Difference	95% CI of diff.
	0.5	-0.8	-1.1		-5.725 to 5.125
	1				-7.325 to 3.525
	2	1.4			-5.825 to 5.025
	Treatment	Difference	t	P value	Summary
	0.5	-0.3	0.191	P > 0.05	ns
	1			P > 0.05	ns
	2	-0.4		P > 0.05	ns
	glucan 10-10 vs. glucan	1 10-1 2			
	Treatment	glucan 10-10	glucan 10-12	Difference	95% CI of diff.
	0.5	-0.8	-		-5.291 to 5.558
	1	-0.3333			-5.891 to 4.958
	2	-0.5555	4 5		-2.325 to 8.525
	Treatment		t	P value	Summary
	0.5			P > 0.05	ns
	1			P > 0.05	ns
	2	3.1		P > 0.05	ns
	glucan10-11 vs. glucan	10-12			
•	Treatment	glucan10-11	glucan 10-12	Difference	95% CI of diff.
	0.5	-1.1	-0.6667	0.4333	-4.991 to 5.858
	1				-3.991 to 6.858
	2				-1.925 to 8.925
	Treatment	Difference	t	P value	Summary
	0.5			P > 0.05	ns
	1			P > 0.05	ns
	2	3.5		P > 0.05	ns

с .

	Table Analyzed	Hspb1				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	6.79	0.5873		· · · · ·	
	Time	12.47	0.0086			
1	Treatment	38.06	0.0282			
	Subjects (matching)	22.2082	0.0673			
	Source of Variation Interaction	P value summary ns	Significant? No			
		**				
	Time		Yes			
	Treatment	*	Yes			
	Subjects (matching)	ns	No			
				Mean	. ,	
	Source of Variation	Df	Sum-of-squares	square	F	
	Interaction	8	19.57	2.447	0.8294	
	Time	2	35.96	17.98	6.095	
		4	109.7			
	Treatment			27.43	4.285	
	Subjects (matching)	10	64.02	6.402	2.17	
	Residual	. 20	59	2.95		
	Bonferroni posttests					
	glucan 10-8 vs. glucan	10-9				
	Treatment	glucan 10-8	glucan 10-9	Difference	95% CI of diff.	
	0.5	-3.633	0.5667		-1.512 to 9.912	
	1	-0.7	1.4		-3.612 to 7.812	
	2	0.3667	0.4667		-5.612 to 5.812	
	Treatment	Difference	t	P value	Summary	
	0.5	4.2		P < 0.05	*	
	1	2.1	1.27	P > 0.05	ns	
	2	0.1	0.06048	P > 0.05	ns	
	glucan 10-8 vs. glucan	10-10				
	Treatment	glucan 10-8	glucan 10-10	Difference	95% CI of diff.	
	0.5	-3.633	0.3667		-1.712 to 9.712	
	1	-0.7	1.233	1.933	-3.778 to 7.645	
· · ·	2	0.3667	1.533	1.167	-4.545 to 6.878	
•	Treatment	Difference	t	P value	Summary	
	0.5	4	2.419	P > 0.05	ns	
	1	1.933		P > 0.05	ns	
	2	1.167		P > 0.05	ns	
	alwaan 10 0 maashi sa s	10.11				
	glucan 10-8 vs. glucan Treatment	glucan 10-8	glucan10-11	Difference	95% CI of diff.	
						· · · · ·

						•
	0.5	-3.633			-2.112 to 9.312 -2.178 to 9.245	
	1 2	-0.7 0.366				
Treatment	0.5	Difference 3.6	t 6 2177	P value P > 0.05	Summary ns	
	0.5	3.533		P > 0.05	ns	-
	, 2	0.7662		P > 0.05	ns	
glucan 10-8 vs.	ducan	10-17				
 Treatment	giucan	glucan 10-8	glucan 10-12	Difference	95% CI of diff.	
	0.5	-3.633	3 1.867		-0.2117 to 11.21	
	1 2	-0.7 0.3667			-0.7450 to 10.68 -1.445 to 9.978	
	2	0.000		7.207		
Treatment	0 F		t noor	P value	Summary	
	0.5 1	5.5		P<0.01 P < 0.05	**	
	2	4.267		P < 0.05	*	
alucan 10-0 va	alucan	10.10				
glucan 10-9 vs. Treatment	giucan	glucan 10-9	glucan 10-10	Difference	95% CI of diff.	
	0.5	0.566	7 0.3667	-0.2	-5.912 to 5.512	
	1 2	1.4 0.466			-5.878 to 5.545 -4.645 to 6.778	
	2	0.400	7 1.533	1.007	-4.043 10 0.770	
Treatment		Difference	t	P value	Summary	
	0.5 1	-0.2		P > 0.05 P > 0.05	ns	
	2	-0.166 1.067		P > 0.05 P > 0.05	ns ns	
10.0	- 1					
glucan 10-9 vs. Treatment	glucani	10-11 glucan 10-9	glucan10-11	Difference	95% CI of diff.	
	0.5		7 -0.03333	-0.6	-6.312 to 5.112	
	1	1.4	4 2.833	1.433	-4.278 to 7.145	
	2	0.466	7 1.133	0.6667	-5.045 to 6.378	
Treatment		Difference	t	P value	Summary	
	0.5	-0.6		P > 0.05	ns	
	1 2	1.43		P > 0.05 P > 0.05	ns	
	2	0.6663	/ 0.4032	P > 0.05	ns	
glucan 10-9 vs.	glucan					
Treatment	0.5	glucan 10-9 0.5662	glucan 10-12 7 1.867	Difference	95% CI of diff. -4.412 to 7.012	
	1	1.4			-2.845 to 8.578	
	2				-1.545 to 9.878	
Treatment		Difference	t	P value	Summary	
		Directice	c	1 1000	Summary	

1 2	2.867	1.734	P > 0.05	ns
2	4.167	2.52	P > 0.05	ns
glucan 10-10 vs. glucar	10-11			
Treatment	glucan 10-10	glucan10-11	Difference	95% CI of diff.
° 0.5	0.3667	-0.03333	-0.4	-6.112 to 5.312
1	1.233	2.833	1.6	-4.112 to 7.312
2	1.533	1.133	-0.4	-6.112 to 5.312
Treatment	Difference	t	P value	Summary
0.5	-0.4	0.2419	P > 0.05	ns
· 1	-0.4	0.9677	P > 0.05	ns
2	-0.4	0.2419	P > 0.05	ns
2	-0.4	0.2413	r - 0.05	115
glucan 10-10 vs. glucar				
Treatment	glucan 10-10	glucan 10-12	Difference	95% CI of diff.
0.5	0.3667	1.867	1.5	-4.212 to 7.212
1	1.233	4.267	3.033	
2	1.533	4.633	3.1	-2.612 to 8.812
Treatment	Difference	t	P value	Summary
0.5	1.5	0.9072	P > 0.05	ns
1	3.033	1.835	P > 0.05	ns
2	3.1	1.875	P > 0.05	ns
glucan10-11 vs. glucan				
Treatment	glucan10-11	glucan 10-12	Difference	95% CI of diff.
0.5	-0.03333	• 1.867		-3.812 to 7.612
1	2.833	4.267	1.433	
. 2	1.133	4.633	3.5	-2.212 to 9.212
Treatment	Difference	t	P value	Summary
0.5	1.9	1.149	P > 0.05	ns
1	1.433	0.8669	P > 0.05	ns
2	3.5	2.117	P > 0.05	ns

0.7862 P > 0.05

ns

Table Analyzed	Icam1			
Two-way RM ANOVA	Matching by cols			
Source of Variation Interaction Time Treatment Subjects (matching)	% of total variation 34.73 16.21 26.38 7.4059	P value 0.0008 0.0007 0.0025 0.4973		
Source of Variation Interaction Time Treatment Subjects (matching)	P value summary *** *** ns	Significant? Yes Yes Yes No		
Source of Variation Interaction Time Treatment Subjects (matching) Residual	Df 8 2 4 10 20	Sum-of-squares 130.9 61.09 99.43 27.91 57.56	Mean square 16.36 30.54 24.86 2.791 2.878	F 5.685 10.61 8.906 0.9699
Bonferroni posttests	-			
glucan 10-8 vs. glucan Treatment 0.5 1 2	glucan 10-8 -3.5 -8.6	glucan 10-9 -1.067 0.8667 1	9.467	95% CI of diff. -2.327 to 7.194 4.706 to 14.23 -5.361 to 4.161
Treatment 0.5 1 2	9.467	6.869	P value P > 0.05 P<0.001 P > 0.05	Summary ns *** ns
glucan 10-8 vs. glucan Treatment 0.5 1 2	glucan 10-8 -3.5 -8.6	glucan 10-10 -0.4 -0.1667 1.833	Difference 3.1 8.433 0.2333	95% CI of diff. -1.661 to 7.861 3.673 to 13.19 -4.527 to 4.994
Treatment 0.5 1 2	8.433	6.119	P value P > 0.05 P<0.001 P > 0.05	Summary ns *** ns
glucan 10-8 vs. glucan Treatment	10-11 glucan 10-8	glucan10-11	Difference	95% CI of diff.

•

	0.5	-3.5	-1	25	-2.261 to 7.261
	1	-8.6	0.9	9.5	
	2	1.6	-1		-7.361 to 2.161
	Treatment	Difference	t	P value	Summary
•	0.5	2.5 9.5		P > 0.05 P<0.001	NS ***
	1	-2.6		P > 0.05	ns
	-	2.0	1.007	1 2 0.05	115
	glucan 10-8 vs. glucan	10-12			•
	Treatment	glucan 10-8	glucan 10-12	Difference	95% CI of diff.
	0.5	-3.5	-0.2333		-1.494 to 8.027
	1	-8.6	-0.7667	7.833	
	2	1.6	1.867	0.2667	-4.494 to 5.027
	Treatment	Difference	t	P value	Summary
	0.5	3.267		P > 0.05	ns
	1	7.833		P<0.001	***
	2	0.2667		P > 0.05	ns
	glucan 10-9 vs. glucan		-1	Difference	
	Treatment 0.5	glucan 10-9 -1.067	glucan 10-10 -0.4	Difference	95% CI of diff. -4.094 to 5.427
	0.5	•	-0.4		-4.094 to 5.427
	2	1	- 1.833		-3.927 to 5.594
	Treatment	Difference	t	P value	Summary
	0.5	0.6667		P > 0.05	ns
	1			P > 0.05	ns
	2	0.8333	0.6047	P > 0.05	ns
	glucan 10-9 vs. glucan	10-11			
	Treatment	glucan 10-9	glucan10-11	Difference	95% CI of diff.
	0.5	-1.067	-1		-4.694 to 4.827
	1		0.9		-4.727 to 4.794
	2	1	-1	-2	-6.761 to 2.761
	Treatment	Difference		Duralua	Currence and
`	Treatment 0.5	Difference 0.06667	t 0.04837	P value P > 0.05	Summary
	1	0.03333		P > 0.05	ns ns
	2			P > 0.05	ns
					-
	glucan 10-9 vs. glucan				
	Treatment	glucan 10-9	glucan 10-12	Difference	95% CI of diff.
	0.5		-0.2333		-3.927 to 5.594
	1		-0.7667		-6.394 to 3.127
	2	1	1.867	0.8667	-3.894 to 5.627
	Treatment	Difference	t	P value	Summary
			-		

•

0.5	0.8333	0.6047	P > 0.05	ns
1	-1.633	1.185		ns
2	0.8667	0.6289		ns
glucan 10-10 vs. glucar Treatment 0.5 1 2	n10-11 glucan 10-10 -0.4 -0.1667 1.833	glucan10-11 -1 0.9 -1	Difference -0.6 1.067 -2.833	-3.694 to 5.827
Treatment	Difference	0.774	P value	Summary
0.5	-0.6		P > 0.05	ns
1	1.067		P > 0.05	ns
2	-2.833		P > 0.05	ns
glucan 10-10 vs. glucan Treatment 0.5 1 2	n 10-12 glucan 10-10 -0.4 -0.1667 1.833	glucan 10-12 -0.2333 -0.7667 1.867	Difference 0.1667 -0.6 0.03333	
Treatment	Difference	0.4354	P value	Summary
0.5	0.1667		P > 0.05	ns
1	-0.6		P > 0.05	ns
2	0.03333		P > 0.05	ns
glucan10-11 vs. glucan Treatment 0.5 1 2	10-12 glucan10-11 -1 0.9 -1	glucan 10-12 -0.2333 -0.7667 1.867	Difference 0.7667 -1.667 2.867	
Treatment	Difference	t	P value	Summary
0.5	0.7667	0.5563	P > 0.05	ns
1	-1.667	1.209	P > 0.05	ns
2	2.867	2.08	P > 0.05	ns

	Table Analyzed	Vegfa				•	
	Two-way RM ANOVA	Matching by cols					
	Source of Variation	% of total variation	P value				
	Interaction	23.92	0.016				
	Time	37.67	P<0.0001				
	Treatment	11.56	0.0498				
•	Subjects (matching)	8.2923	0.5552				
	Source of Variation	P value summary	Significant?				L
	Interaction	*	Yes				
	Time	***	Yes				
	Treatment	*	Yes No				
	Subjects (matching)	ns	NO				
	Source of Variation	Df	Sum-of-squares	Mean square	F		
	Interaction	8	110.5	13.81	3.223		
	Time	2	174	87.02	20.3		
	Treatment	4	53.4	13.35	3.485		
	Subjects (matching)	10	38.31	3.831	0.8938		
	Residual	20	85.72	4.286			
	Bonferroni posttests						
	glucan 10-8 vs. glucan	10-9					
	Treatment	glucan 10-8	glucan 10-9	Difference	95% CI of diff.		
	0.5	-3.8	0.2667		-1.668 to 9.802		
	1	-3.633	0.9		-1.202 to 10.27		
	2	5.2	3.433	-1.767	-7.502 to 3.968		
	Treatment	Difference	t	P value	Summary		
	0.5	4.067	2.449	P > 0.05	ns		
	· 1	4.533	2.731	P < 0.05	*		
	2	-1.767	1.064	P > 0.05	ns	•	
	glucan 10-8 vs. glucan	10-10					
	Treatment	glucan 10-8	glucan 10-10	Difference	95% CI of diff.		
	0.5	-3.8	0.1667		-1.768 to 9.702		
	1	-3.633	0.6		-1.502 to 9.968		
	2	5.2	2.767	-2.433	-8.168 to 3.302		
	Treatment	Difference	t	P value	Summary		
	0.5	3.967	2.389	P > 0.05	ns		
	1	4.233	2.55	P < 0.05	*		
	2	-2.433	1.466	P > 0.05	ns		
	glucan 10-8 vs. glucan	10-11					
	Treatment	glucan 10-8	glucan10-11	Difference	95% CI of diff.		

	0.5 1 2	-3.8 -3.633 5.2	-0.2333 -3.2 -0.2333	0.4333	-2.168 to 9.302 -5.302 to 6.168 -11.17 to 0.3017	
	Treatment 0.5 1 2	Difference 3.567 0.4333 -5.433	2.148 0.261	P value P > 0.05 P > 0.05 P<0.01	Summary ns ns **	
	glucan 10-8 vs. glucan Treatment 0.5 1 2	10-12 glucan 10-8 -3.8 -3.633 5.2	glucan 10-12 0.8 -4.5 2.467	4.6 -0.8667	95% CI of diff. -1.135 to 10.33 -6.602 to 4.868 -8.468 to 3.002	
	Treatment 0.5 1 2	Difference 4.6 -0.8667 -2.733	2.771 0.522	P value P < 0.05 P > 0.05 P > 0.05	Summary * ns ns	
	glucan 10-9 vs. glucan Treatment 0.5 1 2		glucan 10-10 0.1667 0.6 2.767	-0.1 -0.3	95% CI of diff. -5.835 to 5.635 -6.035 to 5.435 -6.402 to 5.068	
	Treatment 0.5 1 2	Difference -0.1 -0.3 -0.6667	0.06023 0.1807	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns	
	glucan 10-9 vs. glucan1 Treatment 0.5 1 2	0-11 glucan 10-9 0.2667 0.9 3.433	glucan10-11 -0.2333 -3.2 -0.2333	-4.1	95% CI of diff. -6.235 to 5.235 -9.835 to 1.635 -9.402 to 2.068	
ана А	Treatment 0.5 1 2	Difference -0.5 -4.1 -3.667	0.3012 2.47	P value P > 0.05 P > 0.05 P > 0.05	Summary ns ns ns	
	glucan 10-9 vs. glucan Treatment 0.5 1 2	10-12 glucan 10-9 0.2667 0.9 3.433	glucan 10-12 0.8 -4.5 2.467	0.5333 -5.4	95% CI of diff. -5.202 to 6.268 -11.13 to 0.3350 -6.702 to 4.768	
	Treatment	Difference	t	P value	Summary	

	0.5	0.5333	0.3212	P > 0.05	ns
	1	-5.4		P<0.01	**
	2	-0.9667	0.5823	P > 0.05	ns
glucan 10-10 vs.	glucar			Difference	
Treatment	0.5	glucan 10-10 0.1667	glucan10-11 -0.2333		95% CI of diff. -6.135 to 5.335
	1	0.6	-3.2		-9.535 to 1.935
	2	2.767	-0.2333		-8.735 to 2.735
Treatment		Difference	t	P value	Summary
	0.5	-0.4		P > 0.05	ns
. · · · ·	1 2	-3.8 -3	2.289	P > 0.05 P > 0.05	ns ns
	2	-5	1.607	F > 0.05	115
glucan 10-10 vs.	glucar	n 10-12			
Treatment		glucan 10-10			
	0.5	0.1667	0.8		-5.102 to 6.368
	1	0.6	-4.5		-10.83 to 0.6350
	2	2.767	2.467	-0.3	-6.035 to 5.435
Treatment		Difference	t	P value	Summary
,	0.5	0.6333	0.3815	P > 0.05	ns
	1	-5.1		P < 0.05	*
	2	-0.3	0.1807	P > 0.05	ns
		10.10			
glucan10-11 vs. Treatment	giucan	glucan10-11	glucan 10-12	Difference	95% CI of diff.
nedement	0.5	-0.2333	0.8		-4.702 to 6.768
	1	-3.2	-4.5		-7.035 to 4.435
	2	-0.2333	2.467	2.7	-3.035 to 8.435
Treatment	o -	Difference	t	P value	Summary
	0.5	1.033 -1.3	0.6224 0.783	P > 0.05 P > 0.05	ns ns
	1 2	-1.5 2.7	1.626	P > 0.05 P > 0.05	ns
	2		1.020	0.00	

.

	Table Analyzed	Cdknlb				
	Two-way RM ANOVA	Matching by cols				
1	Source of Variation	% of total variation	P value			
	Interaction	12.15	0.0289			
	Time	43.77	P<0.0001	1		
	Treatment	28.34	0.0004			
	Subjects (matching)	4.9385	0.539			
	Source of Variation	P value summary	Significant?			
	Interaction	*	Yes			
	Time	***	Yes			
	Treatment	***	Yes			
	Subjects (matching)	ns	No			
				Mean		
	Source of Variation	Df	Sum-of-squares	square	F	
	Interaction	8	66.75	8.343	2.813	
·	Time	2	240.4	120.2	40.53	
	Treatment	4	155.7	38.92	14.35	
	Subjects (matching)	10	27.13	2.713	0.9146	
	Residual	20	59.32	2.966		
	Bonferroni posttests					
	glucan 10-8 vs. glucan					
,	Treatment	glucan 10-8	glucan 10-9	Difference	95% CI of diff.	-
	0.5	-4.067	-0.2	3.867	-0.9211 to 8.654	
	1	-8.133	0.2333		3.579 to 13.15	
	2	1.633	4.767	3.133	-1.654 to 7.921	
	Treatment	Difference	t	P value	Summary	
	0.5	3.867		P < 0.05	*	•
	1	8.367		P<0.001	***	
	2	3.133	2.261	P > 0.05	ns	
	glucan 10-8 vs. glucan					
	Treatment	glucan 10-8	glucan 10-10	Difference	95% CI of diff.	
	0.5	-4.067	~0.7		-1.421 to 8.154	
	1	-8.133	0.2333	8.367	3.579 to 13.15	
	2	1.633	4.133	2.5	-2.288 to 7.288	
	Treatment	Difference	t	P value	Summary	
	0.5	3.367	2.429	P > 0.05	ns	
	1	8.367	6.036	P<0.001	***	
	2	2.5		P > 0.05	ns	

. . . .

*						
	glucan 10-8 vs. glucan	10-11				·
	Treatment	glucan 10-8	glucan10-11	Difference	95% CI of diff.	
	0.5	-4.067	0.1333		-0.5878 to 8.988	
	1	-8.133	-2.167		1.179 to 10.75	
	. 2	1.633	0.5333	-1.1	-5.888 to 3.688	
	Treatment	Difference	t	P value	Summary	
	0.5	4.2		P < 0.05	*	
	1	5.967		P<0.001	***	
	2	-1.1	0.7936	P > 0.05	ns	
	-luses 10.0 l	10.10				
	glucan 10-8 vs. glucan		aluana 10,12	Difference		
	Treatment 0.5	glucan 10-8 -4.067	glucan 10-12 0.4667	Difference	95% CI of diff. -0.2545 to 9.321	*
	0.5	-4.087	-2.333		1.012 to 10.59	
	2	1.633	4.233		-2.188 to 7.388	
	2	1.055	4.255	2.0	2.100 (0 7.500	
	Treatment	Difference	t	P value	Summary	
	0.5	4.533		P<0.01	**	
	1	5.8		P<0.001	***	
	2			P > 0.05	ns	
	glucan 10-9 vs. glucan	10-10				
	Treatment	glucan 10-9	glucan 10-10	Difference	95% CI of diff.	
	0.5	-0.2	-0.7		-5.288 to 4.288	
	1	0.2333	0.2333		-4.788 to 4.788	
	2	4.767	4.133	-0.6333	-5.421 to 4.154	
	Treatment	Difference	۴	B voluo	Summan	
	0.5	Difference -0.5	t 0.3607	P value P > 0.05	Summary ns	
	1	-0.5		P > 0.05	ns	
	2			P > 0.05	ns	
	-	0.0555	0.1505	1 2 0.05	110	
	glucan 10-9 vs. glucan	10-11				
	Treatment	glucan 10-9	glucan10-11	Difference	95% CI of diff.	
	0.5	-0.2	0.1333	0.3333		
	1	0.2333	-2.167	-2.4	-7.188 to 2.388	
	2	4.767	0.5333	-4.233	-9.021 to 0.5545	
			4			
	Treatment	Difference	t	P value	Summary	
	0.5	0.3333		P > 0.05	ns	
	1			P > 0.05	ns	
	2	-4.233	3.054	P < 0.05	*	
	aluan 10 O alu	10.10				
1	glucan 10-9 vs. glucan Treatment		alucan 10,12	Difforence	05% CI of diff	
	0.5	glucan 10-9 -0.2	glucan 10-12	Difference	95% CI of diff. -4.121 to 5.454	
	0.5	0.2333	0.4667 -2.333		-4.121 to 5.454 -7.354 to 2.221	
	2		4.233		-5.321 to 4.254	
	2	4.707	7.2.55	-0.0000	J.JZI 10 7.2J4	

_						-
Treatment	0.5	Difference	.6667	t 0.481	P value P > 0.05	Summary ns
	0.5		2.567		P > 0.05	ns
	2		5333		P > 0.05	ns
	~	0.		0.5040	1 = 0.05	15
glucan 10-10 vs.	glucan					
Treatment		glucan 10-10		glucan10-11	Difference	95% CI of diff.
	0.5		-0.7	0.1333		-3.954 to 5.621
	1		.2333	-2.167		-7.188 to 2.388
	2	2	4.133	0.5333	-3.6	-8.388 to 1.188
Treatment		Difference		t	P value	Summary
	0.5		8333		P > 0.05	ns
	1		-2.4	1.732	P > 0.05	ns
	2		-3.6	2.597	P < 0.05	*
glucan 10-10 vs.	alucar	10-12				
Treatment	giacai	glucan 10-10		glucan 10-12	Difference	95% CI of diff.
	0.5		-0.7	0.4667		-3.621 to 5.954
	1	0.	2333	-2.333		-7.354 to 2.221
	2	2	4.133	4.233	0.1	-4.688 to 4.888
Treatment		Difference		+	P value	Summary
ricatinent	0.5		1.167			ns
	1		2.567		P > 0.05	ns
,	2		0.1		P > 0.05	ns
		10.10				•
glucan10-11 vs. (Treatment	giucan	glucan10-11		glucan 10-12	Difference	95% CI of diff.
nedunent	0.5		1333	0.4667		-4.454 to 5.121
	1		2.167	-2.333		-4.954 to 4.621
	2		5333	4.233		-1.088 to 8.488
Treation		Difference		. .	Duralura	Current
Treatment	0.5		.3333		P value P > 0.05	Summary ns
	0.5		.1667		P > 0.05	ns
	2	-0.	3.7		P < 0.05	*
	2		5.7	2.07	1 < 0.05	

		· .				
	Table Analyzed	Cd5				
	Two-way RM ANOVA	Matching by cols				
	Source of Variation	% of total variation	P value			
	Interaction	18.97	0.0079			
	Time Treatment	1.19 54.2	0.4088 0.0013		٩	
	Subjects (matching)	12.9644	0.083			
	Source of Variation	P value summary	Significant?			
	Interaction	**	Yes			
	Time	ns	No		e de la companya de l	
	Treatment	**	Yes			
	Subjects (matching)	ns	No			
	Course of Mentants N	54	C	Mean	F	
	Source of Variation	Df 8	Sum-of-squares 57.38	square 7 172	F 3.743	
	Interaction Time	8	3.586	7.172 1.793	0.9358	
	Treatment	2 4	163.9	40.98	10.45	
	Subjects (matching)	10	39.2	3.92	2.046	
	Residual	20	38.32	1.916		
	Bonferroni posttests					
	glucan 10-8 vs. glucan					
	Treatment	glucan 10-8	glucan 10-9	Difference	95% CI of diff.	
	0.5 1	-1.633 -1.167	1.467 0.2		-1.434 to 7.634 -3.167 to 5.901	
	2	-1.333	2.1		-1.101 to 7.967	
	Treatment	Difference	t	P value	Summary	
	0.5	3.1		P > 0.05	ns	
	1	1.367		P > 0.05	ns	
	2	3.433	2.616	P < 0.05	*	
	glucan 10-8 vs. glucan		glucan 10-10	Difference	95% CI of diff.	
	Treatment 0.5	glucan 10-8 -1.633	2.467		-0.4339 to 8.634	
	1	-1.167	0.1667		-3.201 to 5.867	
	2	-1.333	3.067	4.4	-0.1339 to 8.934	
	Treatment	Difference		P value	Summary	
	0.5	4.1		P < 0.05	*	
	. 1			P > 0.05	ns **	
	2		3.352	P<0.01	*	
	glucan 10-8 vs. glucan: Treatment	10-11 glucan 10-8	glucan10-11	Difference	95% CI of diff.	
			g			
•						
•						•

	•			
				•
0.5	-1.633 -1.167	1.9 5.9		-1.001 to 8.067 2.533 to 11.60
1 2	-1.333	1.667	7.007	-1.534 to 7.534
	1.000	1.007	-	
Treatment	Difference	t	P value	Summary
0.5	3.533		P < 0.05	* ***
1	7.067		P<0.001 P > 0.05	ns
2	J	2.200	F > 0.05	115
glucan 10-8 vs. glucan	10-12			
Treatment	glucan 10-8	glucan 10-12	Difference	95% CI of diff.
0.5	1 622	3	4 622	0.09945 to 9.167
0.5	-1.633 -1.167	4.833		1.466 to 10.53
2	-1.333	4.9		1.699 to 10.77
Treatment	Difference	t	P value	Summary
0.5	4.633 6		P<0.01 P<0.001	**
1	6.233		P<0.001 P<0.001	***
-	0.200			
glucan 10-9 vs. glucan				
Treatment	glucan 10-9	glucan 10-10	Difference	95% CI of diff.
0.5 1	1.467 0.2	2.467 0.1667		-3.534 to 5.534 -4.567 to 4.501
2	2.1	3.067		-3.567 to 5.501
Treatment	Difference	t	P value	Summary
0.5	1		P > 0.05	ns ,
1 2	-0.03333 0.9667		P > 0.05 P > 0.05	ns ns
۲		0., 505	0.00	
glucan 10-9 vs. glucan1				
Treatment	glucan 10-9	glucan10-11	Difference	95% CI of diff.
0.5	1.467	1.9 5.9		-4.101 to 4.967 1.166 to 10.23
1	0.2 2.1	1.667		-4.967 to 4.101
2	2.1	1.00/	5	
Treatment	Difference	t a	P value	Summary
0.5	0.4333		P > 0.05	ns
1	5.7		P<0.001	***
2	-0.4333	0.3302	P > 0.05	ns
glucan 10-9 vs. glucan	10-12			
Treatment	glucan 10-9	glucan 10-12	Difference	95% CI of diff.
0.5	1.467	3	1.533	-3.001 to 6.067
1	0.2	4.833	1 677	0.09945 to 9.167
2	2.1	4.833		-1.734 to 7.334
2	2.1	7.5	2.0	1.70,007.004

	Treatment 0.5 1 2	Difference 1.533 4.633 2.8	3.53	P value P > 0.05 P<0.01 P > 0.05	Summary ns ** ns
· ·	glucan 10-10 vs. glucar	10-11			
х.	Treatment	glucan 10-10	glucan10-11	Difference	95% CI of diff.
	0.5	2.467	1.9		-5.101 to 3.967
	1	0.1667	5.9		1.199 to 10.27
	2	3.067	1.667	-1.4	-5.934 to 3.134
	Treatment	Difference	t	P value	Summary
	0.5	-0.5667	0.4317	P > 0.05	ns
	1	5.733	4.368	P<0.001	***
	2	-1.4	1.067	P > 0.05	ns
	glucan 10-10 vs. glucar	10-12			
	Treatment	glucan 10-10	glucan 10-12	Difference	95% CI of diff.
	0.5	2.467	3		-4.001 to 5.067
	1	0.1667			0.1328 to 9.201
	2	3.067	4.9		-2.701 to 6.367
	Treatment	Difference	t	P value	Summary
	0.5	0.5333		P > 0.05	ns
	1	4.667		P<0.01	**
	2	1.833		P > 0.05	ns
	glucan10-11 vs. glucan	10-12			
	Treatment	glucan10-11	glucan 10-12	Difference	95% CI of diff.
	0.5	1.9	3		-3.434 to 5.634
	1	5.9	4.833		-5.601 to 3.467
	2	1.667	- 4.9		-1.301 to 7.767
	Treatment	Difference	t	P value	Summary
	0.5	1.1		P > 0.05	ns
	1	-1.067		P > 0.05	ns
	2	3.233		P > 0.05	ns

Table Analyzed	Ì	Dectin-1					
Two-way RM A	NOVA	Matching by cols	5				
Source of Varia	ation	% of total variat		P value			
Interaction			6.77	P<0.0001	•		
Time		-	7.15	P<0.0001			
Treatment	• - I- Y \		37.8	P<0.0001			
Subjects (mai	tching)	3.6	5199	0.1925			
Source of Varia	ation	P value summar	γ ***	Significant?			
Interaction			***	Yes			
Time Treatment			***	Yes		• •	
Subjects (mai	tching)		ns	No			
Subjects (ma	(ching)		115	NO			
					Mean		
Source of Varia	ation	Df	_	Sum-of-squares	square	F	
Interaction			8	111	13.88	8.995	
Time			2	246	123	79.73	
Treatment	tching)		4 10	250.3 23.96	62.56 2.396	26.11 1.554	
Subjects (ma Residual	(ching)		20	30.85	1.542	1.554	
Residual			20	50.05	1.542		
Bonferroni pos	ttests						
glucan 10-8 vs	. glucan	10-9					
Treatment		glucan 10-8		glucan 10-9	Difference	95% CI of diff.	
	0.5		2667	1.3		-2.779 to 4.846	
	1		1333	5.9		1.954 to 9.579	
	2	-8	.767	2.333	11.1	7.288 to 14.91	,
Treatment		Difference		t	P value	Summary	
	0.5	1	.033	0.9363	P > 0.05	ns	
	1	5	.767	5.225	P<0.001	***	
	2		11.1	10.06	P<0.001	***	
glucan 10-8 vs	. glucan	10-10					
Treatment	-	glucan 10-8		giucan 10-10	Difference	95% CI of diff.	
	0.5	0.2	2667	1.933	1.667	-2.146 to 5.479	
	1		1333	6.467	6.333		
	2	-8	.767	2.667	11.43	7.621 to 15.25	•
Treatment		Difference		t	P value	Summary	
	0.5	1	.667	1.51	P > 0.05	ns	
	1	6	.333	5.738	P<0.001	***	
	2	1	1.43	10.36	P<0.001	***.	
glucan 10-8 vs	. alucan'	10-11					
Treatment	, giacun.	glucan 10-8		glucan10-11	Difference	95% CI of diff.	
		-		•			

	•	2		-8.767	-2.6	6.167	2.354 to 9.979	
	Treatment		Difference			P value	Summary	
		0.5		1.267		P > 0.05	NS ***	
		1		5.367		P<0.001	***	
		2		6.167	2.20/	P<0.001	***	
	glucan 10-8 vs.	. glucan :	10-12					
	Treatment		glucan 10-8		glucan 10-12	Difference	95% CI of diff.	
		0.5	5	0.2667		2.367	-1.446 to 6.179	
		1		0.1333	5.167	5.033	1.221 to 8.846	
		2		-8.767	0.9333	9.7	5.888 to 13.51	
*	Treatment		Difference		t	P value	Summary	
	i cucinent .	0.5	Direction	2.367		P > 0.05	ns	
		1		5.033		P<0.001	***	
		2		9.7		P<0.001	***	
	glucan 10-9 vs. Treatment	. glucan .	10-10 glucan 10-9		glucan 10-10	Difference	95% CI of diff.	
	nçaunanç	0.5	giucan 10 5	1.3			-3.179 to 4.446	
		1		5.9			-3.246 to 4.379	
		2		2.333			-3.479 to 4.146	
	Trootment		Difforence		t	D volue	Summon,	
-	Treatment	0.5	Difference	0.6333		P value P > 0.05	Summary ns.	
		0.5				P > 0.05 P > 0.05	ns	
		2		0.3333		P > 0.05	ns	·
	10.0							
	glucan 10-9 vs. Treatment	. glucanı	.0-11 glucan 10-9			Difference	95% CI of diff.	
	freatment	0.5	giucan 10-9	1.3	glucan10-11 1.533		-3.579 to 4.046	
		0.5	· · · · · · ·	5.9			-3.579 to 4.046	
		. 2		2.333			-4.212 to 5.412	
							-	
	Treatment	0.5	Difference	0 2222		P value	Summary	
		0.5		0.2333		P > 0.05	ns	•
		1 2		-0.4 -4.933		P > 0.05 P<0.001	NS ***	•
		. 6-		-7.555	T. 17	F \$0.001		
	glucan 10-9 vs.	. glucan :						
	Treatment	0.5	glucan 10-9		glucan 10-12		95% CI of diff.	
		0.5		1.3			-2.479 to 5.146	
		1 2		5.9 2.333			-4.546 to 3.079 -5.212 to 2.412	
		2		رور.۲	0.2005	-1.4	-5.212 (0 2.412	
	Treatment		Difference		t	P value	Summary	

	1	-0.7333	0.6645	P > 0.05	ns							
	2	-1.4	1.269	P > 0.05	ns							
glucan 10-10 vs. glucan10-11												
	Treatment	glucan 10-10	giucan10-11	Difference	95% CI of diff.							
	0.5	1.933	1.533		-4.212 to 3.412							
	1	6.467	5.5		-4.779 to 2.846							
	2	2.667	-2.6	-5.267								
	E	2.007	2.0	5.207	5.075 60 1.451							
	Treatment	Difference	t	P value	Summary							
	0.5	-0.4		P > 0.05	ns							
	1	-0.9667	0.8759	P > 0.05	ns							
	2	-5.267	4.772	P<0.001	***							
glucan 10-10 vs. glucan 10-12												
	Treatment	glucan 10-10	glucan 10-12	Difference	95% CI of diff.							
	0.5	1.933	2.633		-3.112 to 4.512							
	1	6.467	5.167		-5.112 to 2.512							
	2	2.667	0.9333		-5.546 to 2.079							
	2	2.007	0.0000	1.755	5.540 to 2.075							
	Treatment	Difference	t	P value	Summary							
	0.5	0.7	0.6343	P > 0.05	ns							
	1	-1.3	1.178	P > 0.05	ns							
	2	-1.733	1.571	P > 0.05	ns							
	glucan10-11 vs. glucan			D. 155	0.504 05 C 1155							
	Treatment	glucan10-11	glucan 10-12	Difference	95% CI of diff.							
	0.5	1.533	2.633	1.1								
	1	5.5	5.167		-4.146 to 3.479							
	. 2	-2.6	0.9333	3.533	-0.2791 to 7.346							
	Treatment	Difference	t	P value	Summary							
	0.5	1.1	0.9967	P > 0.05	ns							
	1	-0.3333	0.302	P > 0.05	ns							
	2	3.533	3.201	P<0.01	**							

1.208 P > 0.05

กร

0.5