
University -Université
Saint Mary's University

Degree for which thesis was presented - Grade pour lequel cette thèse fut présentée
Master of Science in Astronomy

Year this degree conferred - Année d'obtention de ce grade
1979

Name of Supervisor - Nom du directeur de thèse

- Dr. Gary A. Welch

Permission is hereby granted to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or self copies of the film.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

L'autorisation est, par la présente, accordée à la BIBLIOTHĖQUE NATIONALE DU CANADA de microfilmer cette these et de prêter ou de vendre des exemplaires du film.
L'auteur se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent étre imprimés ou autrement reproduits sans l'autorisation écrite dé l'auteur.
Date July 7, 1979 Signature

National Library of Canada
Collections Development Branch
Canadian Theses on
Microfiche Service

Bibliothèque nationale du Canada
Direction du développement des collections
Servise des thèses canadiennes sur microfiche

NOTICE

AVIS

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials 〈journal articles, published tests, etc.) are not filmed. .

Reproduction in full or in part of this film is govenned by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization formis which accompany this thesis.

THIS DISSERTATIÓN has been microfilmed EXACTLY AS RECEIVED

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le gráde.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été. dactylographièes à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publies, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THĖSE A ÉTÉ microfilmée telle que NOUS L'AVONS RECUE

A thesis submitted as partial requirement for the degnee of Master of Sciefice Erom the

Department of Astronomy . at

Saint Mary'g University
1

Saint Mary's University
 1979

My thesis now is all complete,
My obligations I did meet.
A new degree
Awarded me,
'Twas not a trifling feat.

Table of Contents
Acknopwledgements 1
Abstract 11
I. Introduction 1
II. Computer Program Development 6
III. Program Testing
i) Fits to model isothermal gas sphere 17
ii) Comparison with results published by Taff for the Perseus cluster and A2199 21
iii) Comparison with results published by, Bahcall for twelve clusters 31
IV. Observational Material
i) Program input file 36
ii) Photographic enlargements 37
iii) Iimiting magnitudes 39
iv) Cluster centres from strip counts 41
v) Ring counts 43
v. Results
i) Results tabulated 48
1i) Comparison of $\sigma_{b g}$ and $\sigma_{b g}^{*}$ 52.
iii) ${ }^{2}$ Comparison of 10 ring çore radid. and 20 ring core radii 53
iv)-Comparison of R_{C} and $\ddot{\mathrm{R}}_{\mathrm{C}}^{*}$ 54
v) Individual cluster abnormalities 57
(i)
vi) The mass segregation question 61
vii) Comparison with published core radii 64
viii) Combination of present core radii with those of Bahcali. 66
ix) Conclusions 68
References 71
Appendix A - Program listing 72
-Appendix B - Auxiliary listings 90
Appendix c - Detailed program explanations 99
Appendix 0-plate and cluster information 132
Appendix E,-Strip counts 134
Appendix F - Ring counts 143
Appendix G - Background counts 148
Appendix H - Complete results 151
Appendix I - Density profiles 157
Appendix J - Sample output 164
-

2:
$*$

Many many thanks go to Dr. Gary belch for a multitude of reasons some of which are:
-/suggesting this topic
= - giving a seemingly endless/supply of hints. suggestions: and qear-orders

- going over all the many versions of this thesis and supplying even more of the above .
- providing encouragement when, days were dark and computer programs seemed to be proving their complete non-operability.

Thanks also goes to the thesis defense committee consisting of Dis: China, Dupuy Reynolds and Welch for further suggestions, when I thought I was almost finished and to the computer centre staff at. St. Mary's for a lot of help before, after, and especially during the aforementioned dark days.

Abstrac't

Bahcall (1975) has found that the average core radius for a group of 15 clusters of gaiaxies is 0.25 ± 0.05 Mpc. At the suggestion of Dr. G. Welch it was decided to study four nearby clusters of galaxies (A2052, A2593, A2626, and Al54) in order to determine their core radi1. If it turned out that the dispersion of core radis at low redshifts is smail, then these core radil could be said to be effectively constant. Any variation of the core radius at large redshifts would then be due to the geometry of the universe.

Accordingly, a computer. program was written that would find a core radius by fitting ring countsdata from the chosen clusters to an Emden isothermal gas sphere. The ring counts were made to three magnitude limits, one of which approximated that of Bahcall. Also, each magnitude limit was used to find four core radii: one using all the ring * count data and a counted background density; one using half the ring count data (only the core region) and a counted background density; one using all the data but solving for a background density (among other parameters); and one using. half the data and solving for the background density. These four results were compared in various ways in order to determine which method producet the "best" core radius. Then the "best" core radius for each cluster at the magnitude
limit used by Bahcall was added to her results to obtain a new average and standard deviation.

Several conclusions were drawn from the overall results.

1. In the course of testing the program it was
found that different results: were found between this and other programs using the same data. This indicates the need of a unique program to be used exclusively.
2. Better results seem to be found when the background density is counted.
3. Better, results seem to be found when all data (about out to the Abell radius) is used as opposed to only the cote data.
: 4. Two clusters show evidence of mass segregation (A2052 and A2593).
4. The spread, of core radil from the four clusters of this thesis at (or more precisely; "near") Bahcall's magnitude limit is large enough to cast doubt on the idea of using core radii as universal geometry indicators: $\left(R_{c}\right.$ (average $)=0.20 \pm 0.13 \mathrm{Mpc}$ for the four dlusters of this" thesis).

One of the fundamental questions about the universe concerns its geometry; more specifically, whether it is open or closed. An indicator of this property is the deceleration parameter G_{0}, which is the measure of the deceleration rate of the expanding universe.

For values of $q_{0}<\frac{k_{2}}{2}$, the universe is expanding too fast to'ever stop and will continue forever; the universe is open. For: $q_{0}=\frac{1}{2}$, the expansion will stop, but only at an infinite time in the future. If $q_{0}>\frac{1}{2}$, the universe will stop expanding to begin contracting at a definite time in the future, and the greater the value of q_{0} the nearer is this time. With $q_{0}>\frac{1}{2}$ the universe is said to be closed.

If there were a standard metrestick that could be placed in space at different distances (as indicated by recessional speed, or redshift), then the manner in which its apparent size changed with redshift would depend on q_{0}. Therefore a plot of apparent size versus redshift would : ? enable a user to determine the value of q_{0}.

As it happens, a standard metrestick may be available. Studies of clusters of galaxies, principally by Bahcall (Bahcall 1975, and references therein) have shown that rich galaxy clusters of low redshift ($z \leqslant 0.14$, where $z=r a d i a l$ velocity/speed of light) have a linear core radius
R_{C} (to be explained later) which is approximately constant. For fifteen clusters in the redshift, range $0.0181 \leqslant z \leqslant 0.134$. the average of R_{c} is $0.25 \pm 0.05 \mathrm{Mpc}\left(\mathrm{H}_{\mathrm{O}}=50 \mathrm{~km} \mathrm{~s}{ }^{-1} \mathrm{Mpc}^{-1}\right.$, Bahcall, 1975). If this value is characteristic of clusters of galaxies to within sufficiently narrow limits then R_{C} may serve as a standard metrestick.
. For quite some time it has been known that the radial number density distribution of the members of rich clusters could be closely matched to the radifardensity distribution of a bounded Emden isothermal gas sphere projected to two dimensions (Zwicky, 1957). To fit observations, the usual model, which is constructed with dimensionless variables, must be scaled in density and size. The core radius is the radius at which the density is about half the central value (see Figure 1).

Actually, by definition $r_{c}=3 a$, where x_{C} is the observed core radiùs, in arcmin and α is the structural Tength (or scale factor) of the cluster in arcmin, a value found during the computer fitting process. (In Figure 1 $\xi=r / \alpha$, and $a t r=r_{c}$, i.e. $\xi=3$, the actual value of the density is about 0.43.)

Knowing r_{c}, the redshift of the cluster, and a value for'Hubble's constant, the physical core radius R_{C} in Mpc can be determined. Then a plot of R_{c} versus z for a large number of clusters can be used to find qo.

Despite the fact that the physical data are fitted

Figure 1 Emden isothermal gas sphere density profile projected to two dimensions and bounded at 10
to an, isothermal gas sphere, it is not necessarily true that the particles (galaxies) behave as the particles in a perfect isothermal gas sphere. The only justifications for using this model are that it fits well to the observed data and enables definition of a useful parameter, r_{c} (and so R_{C}). Undoubtedly other mathematical relations would do just as well, and could also (or alternatively) be used. (Two other relations that also fit well are given by King 1966 and de Vaucouleurs 1960.) The major criteria in choosing a mathematical relation are its ability to give a good mathematical fit and a structural size parameter. The major purpose of this thesis is to obtain core radii for four rich galaxy clusters at low redshift (A2052, $z=0.0351$; A2593, $z=0.044 ; \mathrm{A} 2626, z=0.055$; and A154, $\mathbf{z}=0.056$). When combined with Bahcall's results these radii wiłl possibly provide an improved average value and standard deviation for R_{c}. If it turns out that the standard deviation in R_{C} is small for low redshift:clusters then the assumption can be made that R_{c} is nearly constant. In that case, deviations in R_{C} at high redshifts from this constant value (assuming the deviations occur in a systematic manner) can be assumed to be due to the value of qo, which may then be determined. Another possibility to explain a•changing R_{C} with z is that clusters evolve dynamically, and that the more distant elusters have a different radial distribution. However, since dynamical cluster evolution is poorly under-
stood it is necessary to neglect it. Since the clusters being studied in this thesís are all nearby and within a narrow range of redshifts, then dynamical evolution is not expected to be of any importance in comparing with the resiults of Bahcail.

Computer Program Development

A major task was the writing of a computer program that uses the data (in the form of the numbers of galaxies in rings centred on the cluster centre and the corresponding ring sizes) to find the parameters leading to a best fit with a projected isothermal gas sphere. The basis for most of what follows is a technique suggested by Taff (1975). $>$

Since the isothermal gas sphere model is expressed in terms of particle number density, it is necessary to change the observed counts to number densities:

$$
\begin{equation*}
\hat{\sigma}_{o b s}(i)=\frac{N_{o b s}(i)}{\pi\left(r_{i+1}^{2}-r_{i}^{2}\right)} \tag{1}
\end{equation*}
$$

where $\sigma_{o b s}(i)$ is the observed number dens-ity of galaxies in
the ith ring; Nobs (i) is the observed number of galaxies in
the ith ring; and r_{i} and ritl are the inner and outer radij
of the ith ring. Note that for the first ring (actually a
circle) the inner radius, rl, is equal to zero. The values
Nobs (i) and ri are the input data.
the distance from the centre at which these densities occur.
These values, rav (i), are taken to be the radii that divide
ring (i) into two rings.of equal area. so

$$
\begin{equation*}
x_{a v}(i)=\left\{\left(x_{i+1}^{2}+x_{i}^{2}\right) / 2\right\}^{\frac{3}{2}} \tag{2}
\end{equation*}
$$

The expression for an isothermal gas sphere in terms of the observable quantities is

$$
\begin{equation*}
\sigma_{c a l c}(i)=\sigma_{c} \sigma_{i s o}\left(r_{a v}(i) / a_{i}\right)+\sigma_{b g} \tag{3}
\end{equation*}
$$

where $\sigma_{\text {calc }}(i)$ is the calculated projected number density corresponding to $x_{a v}(i) ; \sigma_{c}$ is the projected central number density; and $\sigma_{b g}$ is the background number density added to the model cluster. The function $\sigma_{i s o}\left(r_{a v}(i) / \alpha\right)$ gives the projected normalized idensity of the isothermal gas sphere alone at the unitles's distance $r_{a v}(i) / \alpha$.

- If we let
then the expression for $\sigma_{\text {iso }}$ is given by

$$
\begin{equation*}
\sigma_{i s o}\left(x_{i}\right)=\frac{\int_{x_{i}}^{x_{o}} \sqrt{\xi^{2}-x_{i}^{2}} e^{-\psi} \psi^{\prime} d \xi}{\int_{0}^{x_{0}} \xi e^{-\psi} \psi^{\prime} d \xi} \tag{4}
\end{equation*}
$$

(see Chandrasekhar, 1942). Here $\psi^{\prime}=d \psi / d \xi$ and the quantity $e^{-\psi}$ is the solution to the equilibritm equation for the three dimensional isothermal sphere, as in:

$$
\begin{equation*}
e^{-\psi=\xi^{-2}} \mathrm{~d} / \mathrm{d} \xi\left(\xi^{2} \mathrm{~d} \psi / \mathrm{d} \xi\right) \tag{5}
\end{equation*}
$$

The upper boundary limit x_{0} in equation (4) is

convenient cutoff to integration. For globular clusters, the stellar distribution ceases to approximate an isothermal gas sphere at about $\xi=10$, and so for these clusters the limit is set at about $\mathrm{x}_{\mathrm{O}}=10$ (Chandrasekhar, 1942). For galaxy clusters x_{0} will be allowed to vary to see which value best. fits the cluster.

Equation (4) produces a radial density curve of the type shown in Figure 1 , where the projected density becomes zero at x_{0}.

Numerical values for $e^{-\psi}, \psi^{\prime}$, and ξ can be obtained from various sources. The ones for this thesis were generated by a BASIC program (see Appendix B for a listing) which calculated values at increments of ξ by using the Runga-Kutta method on equation (5). Then $\sigma_{i s o}\left(x_{i}\right)$ can be. found by numerical integration.

- The above equations leave four parameters to be determined for a best fit with the isothermal gas sphere, namely: σ_{c}, the central density; $\sigma_{b g}$, the background density; α, the scale faction; and x_{0}, the upper limit of integration.

The method of obtaining these is, to some extent, dependant on the procedure uped to test the goodness of fit of the model. A common procedure, and the one used here, is the x^{2} test. Besides the fact that the minimum of x^{2} is a well defined indicator of the best fit, there is the advantage that the value of x^{2} can be used to estimate the probability of this specific X^{2} occurring randomly.

The usual way of expressing x^{2} is

$$
x^{2}=\sum\left(o_{i}-t_{i}\right)^{2} / t_{i}
$$

where t_{i} is: the $i^{\text {th }}$ theoretical value and o_{i} is the $i^{\text {th }}$ observed válue. In the present case we get.

$$
\begin{equation*}
x^{2}=\left[\left\{N_{\text {obs }}(i)-N_{\text {calc }}(i)\right\}^{2} / N_{\text {calc }}(i)\right. \tag{6}
\end{equation*}
$$

where $N_{\text {calc }}(i)$ is the number of galaxies predicted for the ith ring from the equation

$$
\begin{equation*}
N_{c a l c}(i)=\sigma_{c a l c}(i) \pi\left(r_{i+1}^{2}-\dot{r}_{i}^{2}\right) \tag{7}
\end{equation*}
$$

From equations (I) and (3) the equation for x^{2} becomes

$$
\begin{equation*}
x^{2}=\sum \pi\left(r_{i+1}^{2}-r_{i}^{2}\right) \frac{\left\{\sigma_{o b s}(i)-\sigma_{c} \sigma_{i s o}\left(x_{j}\right)-\sigma_{b g}\right\}^{2}}{\sigma_{c} \sigma_{i s o}\left(x_{i}\right)+\sigma_{b g}} \tag{8}
\end{equation*}
$$

This form possesses only three unknown factors: $\sigma_{i s o}\left(x_{i}\right), \sigma_{c}$, and $\dot{\sigma}_{b g}$. If the assumption is made, for the moment, that the set of values $\sigma_{i s o}$ is known, then the equation becomes one with two unknown constants, whose values can be found through the minimization of x^{2} with respect to each of them. Since equations of the form of (8) cannot be solved analytically, a numerical method must be used. The method chosen is the Newton-Raphson method, which states

$$
\binom{x_{i+1}}{y_{i+1}}=\binom{x_{i}}{y_{i}}-\left(\begin{array}{ll}
f_{x} & f_{y} \tag{9}\\
g_{x} & g_{y}
\end{array}\right)^{-1}\binom{f}{g}
$$

when $f(x, y)=0$ and $g(x, y)=0$. In equation (9) : $f_{x}=\partial f / \partial x$; $f_{Y}=\partial f / \partial y ; g_{x}=\partial g / \partial x ; g_{y}=\partial g / \partial y ; f=f(x, y) ;$ and $g=g(x, y)$. All expressions involving f and g and their partial derivatives are evaluated at x_{i} and y_{i}.

This method is an iterative one which, given sufficiently accurate initial estimates for the quantities to be found, will quickly converge to the correct value. Since the initial equation (8) has sums of squares over a number of rings, the number of solutions is greater then one. Howeqer, if the initial estimates are close to the physically correct solutions, then these solutions will be found.

In this case, to satisfy the conditions for
equation (9), and due to the fact that solutions will be found by minimization of x^{2} as expressed in equation (8), the following relations are used. Defining

$$
\begin{gathered}
\sigma_{c} \equiv x_{i} \text { (successively) } \\
\sigma_{b g} \equiv y_{i}(\text { successively) } \\
\beta_{i} \equiv r_{i+1}^{2}-r_{i}^{2} \\
\varepsilon_{i} \equiv \frac{\sigma_{o b s}(i)-\sigma_{c} \sigma_{i s o}\left(x_{i}\right)-\sigma_{b g}}{\sigma_{c} \sigma_{i s o}\left(x_{i}\right)+\sigma_{b g}}
\end{gathered}
$$

and

$$
\begin{gathered}
\mu_{i}=\frac{1}{\sigma_{c} \sigma_{i s o}\left(x_{i}\right)+\sigma_{b g}}+\frac{2\left\{\sigma_{o b s}(i)-\sigma_{c} \sigma_{i s o}\left(x_{i}\right)-\sigma_{b g}\right\}}{\left\{\sigma_{c} \sigma_{i s o}\left(x_{i}\right)+\sigma_{b g}\right\}^{2}}+ \\
\frac{\left\{\sigma_{o b s}(i)-\sigma_{c} \sigma_{i s o}\left(x_{i}\right)-\sigma_{b g}\right\}^{2}}{\left\{\sigma_{c} \sigma_{i s o}\left(x_{i}\right)+\sigma_{b g}\right\}^{3}}
\end{gathered}
$$

We can further define the terms of equation (9) as:

$$
\begin{gathered}
f \equiv \partial x^{2} / \partial \sigma_{c} \\
g \equiv \partial x^{2} / \partial \sigma_{b g} \\
f_{x} \equiv \partial^{2} x^{2} / \partial \sigma_{c}^{2} \\
f_{y}=g_{x} \equiv \partial^{2} x^{2} / \partial \sigma_{c} \partial \sigma_{b g} \\
g_{y} \equiv \partial^{2} x^{2} / \partial^{2} \sigma_{b g}^{2}
\end{gathered}
$$

The terms of equation (9) can now be written in terms related to the isothermal gas sphere:

$$
\begin{gathered}
f=\sum \beta_{i} \sigma_{i s o}\left(x_{i}\right)\left(2 \varepsilon_{i}+\varepsilon_{i}^{2}\right\rangle=0 \\
g=\sum \beta_{i}\left(2 \varepsilon_{i}+\varepsilon_{i}^{2}\right)=0 \\
f_{X}=2 \sum \beta_{i} \sigma_{i s o}^{2}\left(x_{i}\right) \mu_{i} \\
E_{Y}=g_{X}=2 \sum \beta_{i} \sigma_{i s o}\left(x_{i}\right) \mu_{i} \\
g_{Y}=2 \sum \beta_{i} \mu_{i}
\end{gathered}
$$

Furthermore, solving equation (9) gives
and

$$
x_{i+1}=x_{i}-\frac{g f_{y}-f g_{y}}{f_{x} g_{y}-f_{y}^{2}}
$$

$$
\left(y_{i+1}=y_{i}+\frac{f f_{x}-g f_{x}}{f_{x} g_{y}-f_{y}^{2}}\right.
$$

However, to get this far the assumption was made that in equation (8) the set of values $\sigma_{i s o}$ was known, which means that x_{0} and a must first be chosen.

Initially x_{0} is set to 10 and a to $0.999 \mathrm{rav}^{(1) / x_{0}}$, which allows the calculation of $\sigma_{i s o}$, and so allows $\sigma_{c}, \sigma_{b g}$, and x^{2} to be found. Then α is incremented by increasing log in steps of 0.08 . This is continued until either $\log \alpha=\log \alpha_{i n i t i a l}+4$ or until the results for σ_{c} and $\sigma_{b g}$ arising from the $\alpha-x_{0}$ combination become physically unreasonable. During the process of incrementing α the x^{2} values drop to a minimum and then rise again. The values for a, σ_{c}, and $\sigma_{b g}$ that produce the minimum x^{2} are the ones producing the best fitting isothermal gas sphere model for the x_{o} used.

A new x_{0} is obtained by adding 10 to the previous value, a new a is calculated and incremented as for $x_{0}=10$, and new ${ }^{\sigma_{c}}, \sigma_{b g}$, and x^{2} values are found for each α; the usual maximum for x_{0} is 200.
lues of x_{0}, for each of which exists a set of "chosen" values of a and the

values of $\sigma_{c}, \sigma_{b g}$, and x^{2} resulting from the Newton-Raphson method. From the set of $x_{m i n}^{2}$ (minimum x^{2} for a specific x_{0}) the x_{0} which produces $x_{\text {absmin }}^{2}$ (the minimum $x_{\text {min }}^{2}$) is found. $x_{\text {absmin, }}^{2}$ therefore, determines the four parameters which produce the best fitting isothermal gas sphere model. Since values of α are chosen in discrete steps it is probable that the minimum x^{2} for a given x_{0} will occur somewhere between two a values. However, since x^{2} decreases monotonically to a minimum and then rises again in a similar fashion, a simple approach to look for a "better" a is adopted. The two consecutive values of a giving the lowest x^{2} values are averaged and this average is used to get new σ_{c}, $\sigma_{b g}$, and x^{2}. The x^{2} found for the new a is always lower than at least one of the two original x^{2} values. The new α is then averaged with the α giving the smallest of the two original x^{2} values to get another α. This new α value is used to get an even smaller x^{2} value. The procedure of averaging the as that produce the two smallest x^{2} values is repeated twenty times, at which point. successive differences in all other parameters occur only in the fifth or higher significant digit.

A general schematic of what the computer program must be designed to do can be drawn up:

From two smallest x^{2} values, iterative averaging of associated α values gives a smaller x^{2} and "better" associated values for a, σ_{c}, and σ_{bg}

The computer program is written in Fortran IV and a listing is provided in Appendix A, with detailed notes in Appendix C.

Another way to approach the problem is to obtain a value for $\sigma_{b g}$ by counting galaxies on an area of the photographic plate removed from the cluster. In this case only x_{0}, a, and σ_{0} are left to be found as free parameters. If the assumption is again made that $\sigma_{i s o}$ is known (bee equation 8) then only σ_{c} is left to be found. The NewtonRaphson method can again be used to find $\dot{\sigma}_{c}$ iteratively, the form for one unknown is

$$
x_{i+1}=x_{i}-f / f_{x}
$$

when $f(x)=0$. In this equation $x_{i}=\sigma_{c}$ (successively); $f=d x^{2} / d \sigma_{c} ; f_{x}=d^{2} x^{2} / d \sigma_{c}^{2} ; f=f(x) ;$ and f and f_{x} are evaluated for x_{i}

The only changes this would make in the schematic is that instead of σ_{c} and $\sigma_{b g}$ being calculated, only σ_{c} is found, and $\sigma_{b g}$ is entered as part of the input. A program was written for each method, total results from both are
presented in Appendix H_{r} partial results (including core radii in Mpc) are presented in Chapter V. 'Modifications to the original program to get one for the second method are listed in Appendix B and explanations of these changes are in Appendix C.

Program Testing

i) Fits to model isothermal gas sphere

For initial testing of the computer program a data set was fabricated which described a projected isothermal gas sphere with known values of x_{0}, a, α_{c}, and obg. It was expected that if the program was working properly the NewtonRaphson method would cause convergence to the correct det and $\sigma_{b g}$ values and that the iterative dividing method for α would provide a minimum x^{2} for the correct α.

The values chosen to produce the data for this test were: $x_{0}=10 ; ~ \alpha=2.40$ arcmin; $\sigma_{C}=0.50$ galaxies/arcmin ${ }^{2}$; and $\sigma_{b g}=0.05$ galaxies/arcmin ${ }^{2}$.

Figure 2 displays part of the results. The three curves are constructed-from the σ_{c} and $\sigma_{b g}$ values to which the, program converges at the stated a values. These are only three representative cases; many more a values were produced than are displayed in Figure 2 but the trend with changing a is as shown.

As can be seen from this ditagramasmall value of a tends to produce a compressed gas sphere model and increasingly larger values give increasingly extended models. At large a values, $\sigma_{b g}$ values are eventually produced which are large and negative and are obviously physically unreasonable.

$r_{\text {av }}$ (arcmin)

Figure 2 Fits to irsothermal gas sphere data

Table 1
Results of fits to isothermal gas sphere data

	($\mathrm{x}_{\mathrm{O}}=10$)		
α	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{bg}$	x^{2}
. 1048	-17.55	. 2241	35.30
. 6610	1.055	. 1887	19.26
1.149	. 7635	. 1463	5.772
1.660	. 5840	. 1067	1.001%
2.400	. 5000	. 05000	3.944 (-8) *
4.171	. 5398	-. 1031	1.356 .
10.48	1.514	-2.139	4.251

* $3.944(-8)=3.944 \times 10^{-8}$ This notation is used elsewhere in this thesis

Units: α-arcmin
σ_{c}-galaxies/arcmin ${ }^{2}$
$\sigma_{b g}$-galaxies/arcmin ${ }^{2}$

Table 2
$x_{\text {min }}^{2}$ results for various x_{0}

x_{0}	α	σ_{c}	.$\sigma_{b g}$.$x_{\min }^{2}$
10	2.400	.5000	$.5000(-1)$	$3.944(-8)$
40	2.358	.5572	$-.5711(-2)$	$2.160(-4)$
70	2.358	.5637	$-.1226(-1)$	$2.218(-4)$
100	2.358	.5664	$-.1493(-1)$	$2.203(-4)$
130	2.357	.5681	$-.1642(-1)$	$2.278(-4)$
160	2.357	.5689	$-.1774(-1)$	$2.202(-4)$
190	2.358	.5696	$-.1814(-1)$	$2.209(-4)$

Units: as in Table 1^{*}

Columns 2 to 4 of Table 1 show the $\sigma_{c}, \sigma_{b g}$ and x^{2} values that result from the α values in column 1. These particular results are all calculated with $x_{0}=10$ and are only a small sample of the total but are typical of the values for other integration cutoff limits. Rows 2, 5, and 7 of this table correspond to the three curves of Figure 2. It must be pointed out that to get $\sigma\left(r_{a v}=0\right)$ the values of σ_{c} and $\sigma_{b g}$ must be added.

One of the first things obvious from Table 1 is that the program did converge to the correct values, producing the extremely"good fit for the $\alpha=2.400$ case. Also as a increases σ_{c} decreaess to a minimuin in the neighbourhood of the correct α. A more comprehensive version of Table 1 shows that the minimum σ_{c} is not reached exactly at $\alpha=2.400$ but at $a=2.886$, the next incremental value of α. For other x_{0} values the σ_{c} also reaches a minimum just after the minimum x^{2}, and rises again as α^{\prime} continues to increase. The background dénsity, however, decmeases monotonically with increasing a and eventually becomes negative, a physically unreasonable possibility. The x^{2} is found to decrease monotonically to a minimum at the correct α, σ_{c}, and abg combination, and then rise again monotonically with the rate of increase being less than that of decrease.

Table 2 , shows the $a_{r} \sigma_{c}$, and $\sigma_{b g}$ values producing the $x_{\text {min }}^{2}$ for the given x_{0} values. It can be seen that α changes to 42.358 and remains roughly constant as soon as
x_{0} exceeds 10 , and σ_{c} slowly increases as $\sigma_{b g}$ slowly decreases at about the same rate. In fact, the sum of σ_{c} and σ_{bg} produces a minimum of 0.5500 for $\mathrm{x}_{\mathrm{O}}=10$ and averages about 0.5515 for the other integration limits, with the sum of 0.5523 for $x_{0}=100$ being an extreme case. Aside from the absolute minimum for $x_{0}=10, x_{\text {min }}^{2}$ maintains a fairly constant value as x_{0} increases. The product $\alpha \sigma_{c}$, which Bahcall (1972) finds to remain fairly constant for various $X_{m i n}^{2}$, has a minimum of 1.200 for $x_{0}=10$ and rises slowly to 1.343 for $x_{0}=190$; a change of only 12%. Table 2 indicates that the $x_{\text {min }}^{2}$ values of α and σ_{c} arrived at by the fitting process are fairly insensitive to the choice of x_{0}, even if the choice is far from the one producing $x_{\text {absmin. }}^{2}$

Initial testing described above showed that the program successfully converged to the correct parameters when given an artificial data set generated from a projected, bounded isothermal gas sphere.
ii) Comparison with results published by Taff for the
Perseus cluster and A2199

Secondary testing involved running the program using published data and comparing the results to those
published for these data. Since the program was written following the technique suggested by Taff (1975) it is presumably similar to the one used by him, and since the program and Taff used the same data his results form the basis for comparison.

Results for the Perseus cluster are found in
Table 3, the data used is from Bahcall (1974). Case (a) uses counts with galaxies brighter than $16 \mathbb{m}_{0}$ and case (b) uses counts with galaxies brighter than 17. 5 ; in both cases the number and size of the rings used for counting were the same. For each case there are three lines of values: the top line gives Taff's results with the value in parentheses to the right of the x^{2} column being the x^{2} found by this program when forced to fit the data to the model made with Taff's values for $x_{0}, \alpha, \sigma_{c}$, and $\sigma_{b g}$, the second lire gives the $x_{\text {absmin }}^{2}$ parameters produced by this program; and the third line consists of the $x_{\text {min }}^{2}$ parameters produced by this program using the minimizing value of x_{0} found by Taff. The large discrepancy between Taff's x^{2} and the one calculated by this program from his parameters may be $\$$ due to differences in the fitting procedures. However, if the value of x_{0} is set equal to the best fit value found by Taff, the values of the three other independant variables (i.e. α, σ_{c}, and $\sigma_{b g}$) are close to those of Taff, as seen in row three of each case.

A plot of x_{0} versus $x_{\text {允in }}$ is shown in Figure 3 to

	x_{0}	\square	```Table 3 rseus cluster results```			
			${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{bg}$	x^{2}	
(a)	10	2.89	7.28(-2)	4.24(-3)	1.28	(22.14)
	160	1.95	$1.03(-1)$	$3.19(-3)$	6.49	
	10	2.98	7.82(-2)	$6.37(-3)$	6.78	
(b)	10	3.47	1.33(-1)	$1.12(-2)$	3.35	(12.55)
	20	2.92	1.65 (-1)	$1.07(-2)$	3.07	
	10	4.28	$1.22(-1)$	1.14(-2)	4.36	
Units: a-arcmin ${ }^{\sigma} c^{-g a l a x i e s} /$${ }^{\text {b }}{ }^{-g}$-galaxies/						

Figure 3
Plot of $x_{\text {min }}^{2}$ to x_{0} for case (a) of the Perseus cluster
illustrate the fact that fits can be rather insensitive to the value of x_{0}. This was also found in the initial testing. Beyond a certain value of x_{0} (about 40 in this case), the - * min $_{2}$ values appear to fluctuate randomly, here about a value of -6.5 . The fact that $x_{\text {absmin }}^{2}$ occurs at $x_{0}=160$ is not considered significant, that is, the minimizing value of x_{0} does not seem to be well determined. This raises the question of how well determined $x_{a b s m i n}^{2}$ and x_{0} are, a question that will be discussed later.

A, graph similar to Figure 3 for case (b) shows the largest $x_{\text {min }}^{2}$ for $x_{0}=10$, the smallest for $x_{0}=20$, and increasingly larger $x_{\text {min }}^{2}$ values up to $x_{0}=80$, beyond which it. fluctuates about $x_{\min }^{2}=3.85$.

Another indication that differences exist between the program described in this thesis and the one used by Taff is that this program did not find, for the Perseus cluster, minimum x^{2} values using Taff's best fit parameters α, σ_{c}, and $\sigma_{b g}$ at the values of x_{0} cited by Taff. In case (a) use of Taff's parameters produced $x_{\text {absmin }}^{2}$ of 7.91 at $x_{0}=40$ (as opposed to $x^{2}=22.14$ at $x_{0}=10$) and case (b) $x_{\text {absmin }}^{2}=6.26$ at $x_{0}=20$ (as opposed to $x^{2}=12.55$ at $x_{0}=10$).

It should be pointed out that although this program produces a $x_{\text {min }}^{2}$ that fluctuates about a certain value for large x_{0} values (as in Figure 3), the variations of x^{2} on x_{0} found when the program uses Taff's α, σ_{C}, and abg shows a pronounced minimum, as illustrated in Figure 4.

Figure $4 \quad x^{2}$ versus x_{O} for fixed values of α, σ_{c}, and $\sigma \mathrm{bg}$.

Table 4
B
Comparison of a values (in arcmin) for the Perseus cluster

	mag.			Ba ff
case	imit	Raf	Bacall	this program
(a)	$16^{\text {Mo }}$	2.89	2.9	1.95
(b)	17.5	3.47	2.7	2.92

1

This difference in behaviour arises from the fact that in the latter case x_{0} is the only remaining variable, whereas normally the parameters $\alpha, \sigma_{\mathrm{c}}$, and σ_{bg} are all varied for each x_{0}.

Table 4 compares the best fit a values found by Taff, Bahcall, and this program. The α values for Taff and this program have been given in Table 3, and Bahcall's results are published with her data (Bahcall, 1974). The case (a) result from this program is significantly different from the other two, but this a value occured when $x_{0}=160$ (see Table 3). For $\mathrm{X}_{\mathrm{O}}=10$, Taff's best fit value, this program finds $a=2.98$. The case (b) result for this program lies between Taff's and Bahcall's values, and so is not significantly different.

Table 5 compares the best fitting models of the cluster A2199. Data for the calculations were obtained from Bahcall (1973). Again, the top line in each case gives Taff's results, the second line those of this program, and the third line this program's results at Taff's best fit x_{0}. A third line is omitted when this program and Taff agree on the best fit x_{0} : Cases (a) and (d) use galaxy counts down to $17 \mathrm{~m}_{5}$; (b) and (e) use galaxy counts down to $18 . \mathrm{m}_{5}$; and (c) and (f) use galaxy counts down to 19 m 0 . Also, cases (a), (b), and (c) use 15 rings out to 30° on a l03a-D plate while cases (d), (e), and (f) use 26 rings out to 58:24 from the cluster centre on a IIIa-J plate.

Table 6
Case (e) extended from Table 5

x_{0}	α	${ }^{{ }_{c}}$		${ }^{\sigma_{b g}}$
500	.1730	5.994	$1.242(-2)$	20.47
700	.1564	6.567	$9.293(-3)$	19.90
1000	.1520	.6 .722	$5.922(-3)$	19.71

Units for Tables 5 and 6: a - arcmin
$\sigma_{c}-$ gałaxies/arcmin ${ }^{2}$
$\sigma_{b g}-$ galaxies/arcmin ${ }^{2}$

For cases (a), (b), and (c) the $x_{m i n}^{2}$ values begin fluctuating at x_{0} equal to about 20,20 , and 80 respectively. When constrained to Taff's results this program produced $X_{a b s m i n}^{2}$ at $x_{0}=70$ for case (a) and at $x_{0}=30$ for case (b). Case (c) has $X_{\text {absmin }}^{2}$ for Taff's parameters at 200, where it was still decreasing. The last three cases show $x_{\text {min }}^{2}$ for Taff's parameters and for this program's results still decreasing at $x_{O}=200$, which implies that $X_{\text {absmin }}^{2}$ actually occurs beyond this limit. In fact, case (e) was extended out to $x_{0}=1000$ and was still decreasing, but very slowly. From $x_{0}=700$ to $x_{0}=1000 \mathrm{x}_{\mathrm{min}}^{2}$ decreased from 19.90 to 19.71, a decline of less than l\%. Table 6 gives the $x_{\text {min }}^{2}$ parameters for the cases $x_{0}=500,700$, and 1000. For these large x_{0} values the parameters are changing very slowly. Although it is possible to extend the program beyond $x_{0}=1000$, for the testing it was not deemed necessary.

Case (c) in Table 5 is anomalous in that Taff's results differ by almost an order of magnitude from his results for the first two cases. However, the parameters for the last three cases found by Taff and this program change in more or less the same manner from case to case, as do this program's results for the first three cases. It appears that Taff's results may be in error for case (c). For the Perseus cluster the a values found by this program appear to be somewhat smaller than those of Taff, but for A2199 Taff's values are consistently smaller. It
was hoped that a study of Taff's computer program could be made to determine the reason for these differences. However it was not possible to obtain a copy of his program.

In general, fairly good agreement is found between results from this program and those published by Taff and Bahcall. However, a possible problem arises because of the fluctuations of $x_{\text {min }}^{2}$ with changing x_{0}. Figure 5 illustrates ways in which $x_{\text {min }}^{2}$ is found to vary with x_{0} in the tests described above.

In Figure 5 the ordinate represents a possible range of $x_{\min }^{2}$ values for the range of x_{0} along the abscissa. In cases $5(a)$ to $5(d)$ the choice of $x_{\text {absmin }}^{2}$ is obvious, but in case $5(e)$ there are several choices since more than one $\chi_{\text {min }}^{2}$ have the same minimum value (within truncation limits). It was decided to take as $x_{a b s m i n}^{2}$ the first value arrived at (i.e. that with the lowest x_{0} value) because i) there may be an indefinite series of $x_{\text {absmin }}^{2}$ as x_{0} increases, and since an arbitrary choice must be made, the first will be chosen; and ii) the α values for similax values of $X_{\text {min }}^{2}$ are nearly identical, as will be seen later.

(b)
(a)
x_{0}

- Figure 5 Possible variations of $x_{m i n}^{2}$ with respect to x_{0}. All arrows point to $x_{\text {absmin }}^{2}$.
iii) Comparison with results published by Bahcall for twelve clusters

A third test of the program was made by comparing results of Bahcall with those of this program using her data. In one of her papers, Bahcall (1975) lists ring counts and ring sizes as well as core radii for twelve clusters. A tabulation of results is shown in Table 7. For this table ałl a values were converted to core radii in Mpc Ehrough the equation

$$
R_{c}(\mathrm{MpC})=5.25 \alpha z(1+z)^{-2}
$$

In Table 7 (B) identifies, Bahcall's resülts and (C) identifies the results of this program.

If the two columns of R_{c} values are compared no systematic differences can be seen. However this program's values are occasionally quite different from those of Bahcall. Two notable examples are, A20.52 and A2319. These clusters also happen to have, probably not coincidentally, $x_{\min }^{2}-x_{0}$ relations different from the others, which tend to resemble one of the relations shown in Figure 5. The two anomalous relations are shown in Figure 6.

For A2052 the first $x_{\text {min }}^{2}$ (for $x_{0}=10$) is much smaller than the rest. The corresponding R_{c} is 0.43 Mpc . For $x_{0}=20$ through $x_{0}=200 R_{C}=0.95$ or 0.36 Mpc , much nearer Bahcall's value. But although the core radius is almost

Table 7
Results of fits to Bahcall's data

Cluster	z	$\mathrm{R}_{\mathrm{C}}(\mathrm{B})$	$\mathrm{R}_{\mathrm{C}}(\mathrm{C})$	$\dot{\chi}_{\text {absmin }}{ }^{\text {(}}$ (${ }^{\text {a }}$	$x_{a b s m i n}^{2}(\hat{k})$
Al9 4	. 0181	. 23	. 13	1.9	0.50
A1367	. 0205	. 34	. 35	1.9	1.84
A 2052	. 03,51	. 28	.43	3.2	1.38
A2319	. 0549	. 22	. 02	2.4	1.43
A2256	2.06	. 20	. 17	7.5	5.8 .4
A401	. 075	. 24	. 19	2.3	1.43
Al775	. 0718	. 26	. 18	1.3	0.15
Al904	. 0719	. 24	. 24	0.3	0.18
A2065	. 0722	.29	.33	11.6	8.63
A2029	. 0.777	. 27	. 28	1.3	1.27
A1795	. 063	. 25	.22	0.5	0.12
Al132	. 134	. 20	. 23	2.3	1.81

Both $R_{C}(B)$ and $R_{C}(C)$ are in Mpc
$<R_{C}(B)>=0.25 \pm 0.05 \mathrm{MpC}$
$<R_{C}(C)=0.23 \pm 0.11 \mathrm{Mpc}$
constant for all x_{0} values greater than 10 , it is this first value that is used siace it produces $X_{a b s m i n}^{2}$. The $x_{\text {min }}^{2}$ values for A2319 decrease out to $x_{0}=60$, are'nearly constant out to $x_{0}=160$, and decreàse again at least as far as $x_{0}=200$, where $x_{\text {absmin }}^{2}$ occurs. For $x_{0}=60$ and $160, \mathrm{R}_{\mathrm{C}}=0.11 \mathrm{Mpc}$, as well as for most cases in between.

- However, for the $x_{\text {absmin }}^{2}$ at $x_{0}=200, R_{c}=0.02 \mathrm{Mpc}$. From Figure 6(b) it is expected that $x_{a b s m i n}^{2}$, and possibly R_{c}, will decrease even further if x_{0} is increased beyond 200, but this expectation has not been tested.

It is also seen in Table 7 that the $x_{a b s m i n}^{2}$ values as found by this program are either lower than or equal to those cited by Bahcall, at least to the accuracy quoted by her. This means that the parameters found by this program produce isothermal gas sphere models that fit the published data better than the parameters found by Bahcall. However it must be remembered that different procedures for fitting were used: where this program fit by changing α, σ_{c}, and $\sigma_{b g}$, the background densities were fixed às part of the input to Bahcall's program. It is possible that the background densities found by this program are vastly different from the actual (counted) values used by Bahcall, but since she did not publish her background counts comparison is not possible.

Figure $6 x_{\text {min }}^{2} x_{0}$ relations for two clusters.

Table 8.
variations with x_{0} for like values of $x_{a b s m i n}^{2}$

Units:
$\alpha-\operatorname{arcmin}$

Two of the clusters of Table 7 showed variations of $x_{\text {min }}^{2}$ with x_{o} which corresponded to the case shown in Figure $5(e)$. For these two clusters more than one x_{0} was found to produce the same value for $x_{\text {absmin }}^{2}$ Table 8 below shows how a varies with x_{o} for the same values of $x_{\text {absmin }}^{2}$.

In each case the R_{c} values were the same to three decimal places for each value of x_{o} shown. This indicates that in cases such as Figure $5(e)$ the decision to use results

ifrom the lowest x_{o} producing $x_{\text {absmin }}^{2}$ will probably not. greatly affect the core radius obtained for the cluster.

In summary, although individual values for the core radius may differ from. Bahcall's values, the average R_{c} values are within a standard deviation of each other. It can also be seen that the results of this program show a standard deviation over twice that of Bahcall, even though the models of this program are found in all but one case to yield lower x^{2}. This result is of interest because it is the standard deviation of the core radius which measures. its usefulness as a cosmological metrestick. 'Further work should be done to determine whether this difference is produced by the different methods of treating the background or whether, it originates within the programs themselves.

Observational Material
i) Program input file

To be used by the program a data file must consist of:

1) a line of 80 characters. This line is reproduced by the program as entered and is placed in the data file to ensure that the computer terminal is set at. the proper line width and is operating correctly;
2) the isothermal gas sphere data. These yalues, entered in E8.5 format, correspond to the values of $e^{-} \psi^{\prime} \psi^{\prime}$ in equation (4) and are obtained for the ξ values $0.0,0.1$, $0.2,0.3, \ldots ., 9.8,9.9,10.0,11,12,13, \ldots, 98,99$, 100, $110,120,130, \ldots .980,990,1000$. These 281 values were produced by a BASIC program reproduced in Appendix B;
3) another line of characters which describes the format of the next three items. This. line is skipped by the program;
4) the number of rings to be used, entered in I2 format;
5) the number of galaxies in each ring, from the centre outwards, in F4.0 format;
6) the outer radius of each ring in arcmin, from the centre outwards, in 54.2 format;
7) the initial estimates of central and background
densities in galaxies/arcmin², entered respectively in E5.2, 2X, E5.2 format; and
8) a line of characters describing the format of item 7). Since this line and anything following it are ignored by the program it may be omitted.
N.B. If the program version tafCHEC is being used a line is inserted between items 7) and 8). This contains Taff's values for α, σ_{C}, and $\sigma_{b g}$ for the cluster under study. These vaiues are entered respectively in the format E5.2, $2(2 \mathrm{X}, \mathrm{E} 5.2)$.

The necessary data for each cluster are the number of rings; number of galaxies per ring, ring sizes, and initial estimates of σ_{c} and $\sigma_{b g}$. Furthermore, each cluster was studied to three magnitude limits, two on a IIIa-J plate and one on a $103 a-D$ plate, all plates were taken by Dr. G. Welch on the Hale Observatory's 48 inch Schmidt telescope.
ii) Photographic enlargements

The galaxies were identified on the original plates and their images marked on an enlarged photographic print of the cluster. All further work was performed using the print.

To obtain the prints, contact copies were made of the IIIa-J plates of each of the four clusters studied. The Abell radius of each cluster on the copy was calculated through the equation given by Abel (1958)

$$
\mathrm{R}_{(\text {Abel) }}=4.6 \times 10^{5} / \mathrm{cz} \mathrm{~mm}=1.53 / \mathrm{mm} .
$$

The contact copies were used to make prints enlarged so that the Abel diameter was just inside the border of the prints, which were 14 by 14 inches. Two identical prints were made for each cluster, one for marking the location of galaxies identified on the IIIa-J plate and another for the l03a-D plate.

The lox stereo microscope to be used for identifying galaxies on the original plates was found to have a comfortable viewing area of about 10° by 10^{\prime}, so the prints were divided into areas of approximately this angular size. These areas were numbered and a BASIC random number generator was used to determine the order in which they would be examined. It was felt that this process would minimize the systematic effect of any time-dependant errors in identifying galaxies. During the course of examining different areas of the print, some of the first areas checked were re-examined to ensure the consistent use of the chosen limiting magnitude.
iii) Limiting magnitudes

For each of the eight plates the objects identified as galaxies were marked on the prints. In all cases identification was made to the plate limit, where the plate limit is defined as the faintest magnitude at which it is possible to distinguish with certainty stellar from galaxian images.

Since this thesis is attempting to augment the work of Bahcall (1975) who counted galaxies within 3^{m} of the brightest galaxy of each cluster, and since photometry is unavailable for the clusters being studied here, an approximation to Bahcall's 3^{m} difference must be made.

From the relation

$$
\Delta M=6.00 \log (x)
$$

(from Holmberg, 1975) where ΔM is the magnitude difference between two galaxies whose absolute major axes differ by a factor of x, it is found that an axial ratio of 3 corresponds to a magnitude difference of almost 3. The use of such a relation to approximate a magnitude difference is possible in the present case because the galaxies are assumed to be at the same distance. It must be remembered that Holmberg bases his results on an examination of normal galaxies, whereas the brightest members of A2052, A2593, A2626, and Al54 have extended halos characteristic of supergiant
galaxies. It is therefore clear that applying the Holmberg relation will allow a derived magnitude difference to be only roughly approximated.

The prints used for IIIa-J counts were examined under a 4 X eyepiece with a graduated reticle and the size of the major axis of the cluster's brightest galaxy was estimated. All galaxies on this print that had major axes greater than or equal to $1 / 3$ this size were identified. Since the galaxies do not have well defined edges, a cutoff was chosen arbitrarily where the image density lessened perceptibly from that of its centre. The use of the print for this identification was necessary because no means were available to measure the image size on the original plates with sufficient accuracy.

Visual examination of the prints showed no evidence of background density variations which could have arisen during the production of the prints and might introduce systematic position-dependent variations in the cutoff density. Also, as will be seen in the next chapter, the background number densities computed by the program for this bright limit agrees well with the background densities counted at the print corners, which suggests that such errors are not significant.

This process identifies three magnitude limits: the faintest being that of the IIIa-J plate; the next being that of the la3a-D plate; and the brightest corresponding, to the
size ratio of $I: 3$ on the 1 IIa-J plate. No bright limit was found for the $103 a-D$ plates because the image resolution was noticibly poorer than on the IIIa-J plates, making the establishment of a uniform density cutoff more difficult.
iv) Cluster centres from strip counts

The location of the cluster centre corresponding to each magnitude limit now had to be obtained. Since previous work has shown that if a cluster possesses a dominant galaxy it is usually at or near the cluster centre, it was assumed that such was the case for the clusters being studied here. Of the four, three have a dominant, probably $c D$, galaxy and the other (A154) has a dominant binary galaxy.

A square grid of strips 1.5 cm by 18 cm was centred over the dominant galaxy (or between the pair of A154) and strip counts were taken of all galaxies to the limit being studied. Counts were made on the print in four orientations: $N-S$; $E-W$; NE-SW; and $S E-N W$. The estimated cluster centre for each orientation was the point having equal numbers of galaxies on either side.. The cluster centre for each magnitude limit was found by averaging the estimates of each orientation.

Table 9 is a partial result of strip counting. In it is presented the maximum difference between the cluster centres determined from the three limits, both in arcmin and as a fraction of the width of the rings used to tabulate the radial density distribution.

Table 9
Separation of magnitude limit centres

cluster	A2052	A2593	A2626	A154
distance (arcmin)	0.79	0.88	2.08	0.84
dist/(ring width)	0.35	0.42	1.28	0.54

Three of the clusters show all three estimates to lie much closer together than the resolution of the ring counts, but the IIIa-J bright limit estimate for A2626 differs significantly from the other two (the IIIa-J faint and the lo3a-D limits for A2626 are 0.31 ring widths apart). The difference is assumed to be real and so the centres for each limit will be taken as those found from the strip counts. The small differences among centre positions is not considered likely to introduce significant differences
in the ring counts and eventually core radii. Complete results of strip counting are presented in Appendix E.
v) Ring counts

After the centre was chosen for each magnitude limit a grid of 20 concentric rings, having radix differing by 7.9 mm , was laid over the centre and ring counts were made. These counts were performed on one quadrant at a time to check for major azimuthal density variations that might suggest a mislocation of the cluster's centre. No such variations were found. The ring count results are presented in Appendix F.

Table 10 gives, in arcmin, strip widths and lengths, the width of each ring, the overall ring radius (i.e. the radius of the $20^{\text {th }}$ ring), and the Abell radius for each cluster stigied.

The ring sizes and number of galaxies per ring for each magnitude limit were converted into densities and average radii ($I_{\text {av }}$ see equation 2), and a plot of density versus $r_{\text {av }}$ was made. A smoothed curve was drawn by eye to obtain an initial estimate for ${ }_{c}$.

The initial estimate for $\sigma_{b g}$ was obtained in a different manner. Since the actual background density is

Strip width and length, ring size, and total and Abell radii

cluster	A2052	A2593	A2626	A154
strip width	4.28	4.04	3.12	2.97
strip length	51.36	48.48	37.44	35.64
ring width	2.24	2.12	1.63	1.55
outer ring radius	44.80	42.40	32.66	31.09
Abell radius	48.96	38.95	31.16	30.60

Units: all values are in arcmin

Table 11γ
Areas involved in background counts
(see Figure 7)

cluster	A2052	A2593	A2626	A154
one corner area	620.0	587.0	350.4	317.6

Units: all values are in armin ${ }^{2}$
needed for the program BGIN, which more closely approximates Bahc̣all's program, it was decided that the estimate should be the background density as obtained from counts.

An-area about 9 cm by 9 cm was marked off at each corner of each print (NE, NW, SE, and SW, the prints being so aligned) and the galaxies in each corner were counted to the limits previously điscussed. This provided the estimate for ${ }^{\circ} \mathrm{bg}$, the counts for these are in Appendix G.

The diagram on the next page (Figure 7) is a scale drawing of the "working features" of the prints used. The concentric circles indicate the 10 and 20 ring sizes and the four corner squares represent the areas used for background counting. It can be seen that the background areas overïap rings out to about fifteen. This is not considered a matter of concern since the density profiles usually reach background levels by the $10^{\text {th }}$ and almost always by the $14^{\text {th }}$ ring.

Of the original list of required data all values are fixed but the number of rings. Sirree the background was usually just reached by the $10^{\text {th }}$ ring and becanse data were. obtained for all 20 rings, it was decided to run the programs twice for each set of data, once with all 20 rings and once with only the inner 10. The 20 ring case gives higher weight to the background and the 10 ring case emphasizes the cluster but loses information regarding background. It is

Figure $\sqrt[7]{\text { Diag am of the major "working features" }}$ of the photographic prints drawn to scale
expected that if the program produces realistic fits and the background is uniform throughout the cluster then results from both runs should be similar. For the purpose of this thesis nothing was done with the rings but use either all 20 or just the inner 10 . At no time were rings combined in any fashion (e.g. as done by Bahcall, 1975).

Results
i) Results tabulated
*

A table containing core radii and background densities is presented on the next page, Appendix H contains the complete.results. The computer programs used to produce the values for the tables in this chapter do not output linear core radii but give structural lengths, α, in arcminutès. Conversion to linear core radii is done through the relation

$$
\mathrm{R}_{\mathrm{C}}=5.25 \alpha z(1+z)^{-2} \mathrm{Mpc} .
$$

In Table 12, for each cluster there are three double rows of numbers. The top pair corresponds to the IIIa-J bright magnitude limit (the brightest limit), the second pair to the 103a-D limit, and the third to the IIIa-J faint limit (the faintest limit). Henceforth these limits are to be referred to as the "b"; "D", and "f" limits respectively. The top line of each pair presents results obtained when the counts from all 20 rings are used and the bottom line gives the results when the counts from the inner 10 rings are used.

The columns show, from Ieft to right: the emulsion; ML - the magnitude limit; ΔM - the adproximate magnitude difference between the b limit and the D and $£$ limits;

Table 12
Final results

$N R$ - the munber of rings used; NG - the number of galaxies included; R_{c} - the core radius in Mpc obtained when $\sigma_{b g}$ is treated as a free parameter: R_{c}^{*} - the core radius in Mpc obtained using the observed background density as a fixed value; $\sigma_{b g}$ - the background density in galaxies/aromin ${ }^{2}$ obtained by treating this density as a free parameter; and $\sigma_{b g}^{*}-$ the observed background density in galaxies/arcmin ${ }^{2}$, a value that is the same for the 20 and 10 iring cases for a given magnitude limit. In addition, the cluster to which each set of figures pertains is listed at the upper left. - The values of ΔM are obtained from the relation

$$
\Delta M=1.6667 \log \left(N_{2} / N_{1}\right)
$$

where N_{2} is either the D or f background count and N_{1} is the b background count. The only major assumption incorporated into this relation is that the galaxies counted are uniformly distributed in space. For a derivation of this relation see Mihalas (1968).

Table 12 shows that in cases where the same
number of rings are used the greatest number of galaxies is included in the f limit and the smallest number in fhe b limit. This reflects the different magnitude limits to which galaxies are counted.

The core radii alone, in Mpc, are presented in
Table 13 in the same format as in Table 12.

Table 13
Core radii only

Emulsion	ML N	A2052		A259 3		A2626		Al54	
		R_{C}	$\mathrm{R}_{\mathrm{C}}^{*}$	R_{C}	$\mathrm{R}_{\mathrm{C}}^{*}$	R_{c}	$\mathrm{R}_{\mathrm{C}}^{*}$	$\mathrm{R}_{\mathrm{C}}{ }^{\prime}$	$\mathrm{R}_{\mathrm{C}}^{*}$
ITIa-J	b 20	. 037	. 031	. 303	. 253	. 336	. 330	. 167	. 178
	10	. 023	. 030	. 311	. 318	. 365	. 334	. 014	. 178
103a-D	D 20	. 495	. 508	. 884	. 481	. 408	. 299	. 133	. 144
	10	. 499	. 458	. 656	. 672	. 268	. 251	. 016	. 146
IIIa-J			. 477	. 829	. 847	. 378	. 313	. 051	. 070
	10	. 413	. 467	. 794	. 780	. 280	. 250	. 027	:038

Ünits for R_{C} and R_{C}^{*} are Mpc
ii) Comparison of $\sigma_{b g}$ and $\sigma_{b g}^{*}$

When the computer generated ${ }^{\text {ofg }}$ values are compared to the corresponding observed $\sigma_{b g}^{*}$ values, it is found that the computer program generally produces a realistic background density. Only a few computed values are significantly different from the observed ones. However, whenever the relative difference is greatest for each cluster (A2052-D, A2593-D, A2626-b, and A154-b) the computed value is obtained for the 10 ring case. This is probably because the counts reach background by about the loth ring, allowing a more accurate background fit to the 20 ring counts. The 10 ring counts, therefore, refer'mainly to cluster galaxies and the background is given little weight. As Table 10 shows, the diameter of the $20^{\text {th }}$ ring is almost coincident with the Abell diameter.

These facts suggest that if a computer program similar to the one used here is to consistently obtain a realistic background density as part of the fitting process, galaxy counts should be made out to the Abell radius. This further suggests that core radii obtained from 10 ring counts with $\sigma_{b g}$ treated as a free parameter may also be unrealistic, a possibility that will be checked in the next section.
iii) Comparison of 10 ring core radii and 20 ring core radii

If core radii obtained from 10 ring counts when the background density is calculated ($\mathrm{R}_{\mathrm{C}}(10)$) are occasionally unrealistic because of poorly determined background densities, then these radii should be significantly different from those obtained using io ring counts with the . observed, fixed, background densities ($\mathrm{R}_{\mathrm{C}}^{*}(10)$).... These differences would be expected to be larger than the differences between $R_{C}(20)$ and $R_{C}^{*}(20)$, because using 20 rings presumably allows a more realistic background density to be determined. The results of Table 13 were used to compute the percent difference between the 10 ring and 20 ring core radii using the expressions

$$
\frac{\left|R_{C}(10)-R_{C}^{\star}(10)\right| \times 100}{0.5 \times\left\{R_{C}(10)+R_{C}^{\star}(10)\right\}} \text { and } \frac{\left|R_{C}(20)-R_{C}^{*}(20)\right| \times 100}{0.5 \times\left\{R_{C}(20)+R_{C}^{*}(20)\right\}}
$$

These values were calculated for each magnitude limit and each cluster. Then the $b(10), D(10)$, and $f(10)$ differences and the $b(20), D(20)$, and $f(20)$ differences were averaged for each cluster to see if there was a significant 'discrepancy between the 10 and 20 ring cases.

For, two clusters the 20 ring cases produced . smaller differences than the 10 ring cases by factors of 2 and 10. However, for the other two clusters the 10 ring casts produced differences smaller by factors of 5 and 2.

The 20 ring and 10 ring average differences for all four clusters were respectively 128 ± 118 and 378 ± 618. The large standard deviation in the 10 ring difference is due mainly to the Al54 results, which have large internal inconsistencies. If Al54 is omitted the 20 and 10 ring averages become $12 \% \pm 10 \%$ and $9 \% \pm 8 \%$ respectively.

For individual clusters the percentage differences show that one or the other of the 10 or 20 ring core radii are probably better representatives for the cluster. The overall averages, however, do not suggest that either 10 or 20 ring counts consistently give better results. If Al54 is omitted, these results indicate that the oceasional inability of the program to produce realistic background densities using 10 ring counts does not significantly affect the value of the core radii.
iv) Comparison of R_{C} and R_{C}^{*}

Since core radii depend to some extent on background densities it is appropriate to consider the effects of differences in background densities on these radii. Specifically, consider for each magnimade limit the $R_{C}(10)$ and $R_{C}(20)$ percentage differences (where each value has a characteristic background density) to the $R_{C}^{*}(10)$ and
$R_{C}^{*}(20)$ percentage differences (where each value has the same background density). If the observed background provides a better base for calculating core radii then the percentage differences between $R_{c}^{*}(10)$ and $R_{C}^{*}(20)$ should be smaller on the average than those between $R_{C}(10)$ and $R_{c}(20)$.

For each magnitude limit and each cluster the percentage differences were found through

$$
\frac{\left|R_{c}(10\rangle-R_{c}(20)\right| \times 100}{0.5 \times\left\{R_{C}(10)+R_{C}(20)\right\}} \text { and } \frac{\left|R_{c}^{*}(10)-R_{c}^{*}(20)\right| \times 100}{0.5 \times\left\{R_{C}^{*}(10)+R_{C}^{*}(20)\right\}}
$$

The $b\left(R_{c}\right), D\left(R_{c}\right)$, and $E\left(R_{c}\right)$ differences and the $b\left(R_{c}^{*}\right)$, $D\left(R_{C}^{\star}\right)$, and $f\left(R_{C}^{*}\right)$ differences were averaged for each clustex and compared.

For three clusters the differences between the $\mathrm{R}_{\mathrm{C}}^{*}$ values were less than the R_{c} differences by factors of 2 , 4, and 6. In the other case the differences between R_{c} values were smaller by a factor of 3 .

The overall average of all four clusters including the three magnitude limits showed that R_{C}^{*} differences were 15\% $\pm 17 \%$ while the R_{C} differences were $46 \% \pm 58 \%$. Most of the spread in the R_{C} difference is again due to $A 154$, wḥich has a wide range of core radii. Without A154, the R_{c}^{*} percentage difference is still smaller ${ }^{\circ}(13 \% \pm 11 \%$ compared to $18 \% \pm 17 \%$ for R_{C}), but the discrepancy between the two has shrunk considerably. These percentage differences, suggest that R_{c}^{\star} values may be slightly more consistent than R_{C} values (in
that there is closer agreement, generally, between $\mathrm{R}_{\mathrm{C}}^{*}(10)$ and $R_{C}^{*}(20)$ than between $R_{C}(10)$ and $\left.R_{C}(20)\right)$. It appears that, again neglecting Al54, only marginal differences in core radii result when the background density is either left. constant or calculated with the other parameters, a result consistent with the findings of the previous section. There are seven cases where the differences are greater than 308 of the average: the $R_{C}-b$ case of A2052 (47\%); the $R_{C}^{*}-D$ case of A2593 (338); the $R_{C}-D$ case of A2626 (418); the three R_{C} cases of Al54 (b-169\%, D-159\%, and $\mathrm{f}-62 \%$); and the $\mathrm{R}_{\mathrm{C}}^{*}-\mathrm{f}$ case of Al54 (59\%). Five of these seven have density profiies with a first ring density significantly higher than the rest of the ring densities, the A2593 and A2626 cases are the exceptions. If the high first ring densities are the cause of the discrepancies, it.: is probably because of the higher weight these points have in the 10 ring case. The effect on the model is to produce a higher central density and a correspondingly smaller core radius, particularly in the cases where the background density is found as part of the fitting procedure. Table 13 supports this conclusion, showing that for the cases where the discrepancy is in the R_{c} columns, it is indeed the 10 ring core radius that is smaller.

To see how significant the central data point is, the data for A2052-b were run with the inner ring omitted. The core radius obtained for the outer 19 rings was $\mathrm{R}_{\mathrm{C}}^{\boldsymbol{*}} \mathbf{} \mathbf{0} 0.602$

Mpc, as opposed to 0.031 Mpc with all 20 rings. (For comparison, this core radius occurs at $10: 5$ on the first graph of Appendix I.)

1
v) Individual cluster abnormalities

The Rood-Sastry (1971) classification for each cluster is listed below.

Table 14
Rood-Sastry classifications

cluster	R-S class
A2052	CD
A2593	$-\cdots$
A2626	CDp
A154	Bb

The R-S type for A2626 indicates that the supergiant galaxy is a multiple or has some other sort of peculiarity. What this may be is not discussed by Rood and Sastry, but visual inspection through a loX stereo
microscope shows that the densest part of the image is not located at the centre of symmetry. It is not known if this is the peculiarity referred to, or even if this observed oddity is inherent in the galaxy or due to a superimposed stellar or galaxian image.

The type assigned Al54 indicates a cluster with a central binary galaxy whose components are connected by a luminous bridge. It is not known whether binary clusters are basically different in structure, which might explain the anomalous (i.e. very small) f radii of this cluster. A2593 is not classified by Rood and Sastry since they feel it to be either an I cluster superimposed on a $C D$ cluster or a single peculiar I cluster. The possibility that we view two superimposed clusters is supported both by inspecting the prints with galaxies identified to D and f limits and by strip count histograms. These suggest the presence of a small group of relatively faint galaxies about 15° south of the dominant elliptical. If this is the case, then the strip count centre would possibly be chosen further south than otherwise, resulting in a larger core radius.

To test this possibility ring counts were made of only the north half of this cluster, with rings centred on the brightest galaxy. These numbers were doubled to simulate a cluster with north-south symmetry and treated as a cluster by the program. The resulting core radii are presented in Table 15 with a format and notations identical
to those of Table 13.
These results show that the smallest changes in core radius are those of the b limit. This is consistent with the existance of a background cluster which would not have been included in these counts.

The D limit core radii have changed drastically. This is mainly because 10 of the 13 galaxies in the first ring are located in the northern half of the cluster. The assumption of north-south symmetry about the brightest galaxy thus leads to a central ring containing 20 galasies, an increase of 54%.

The fimit values also decreased, as would be expected if a background cluster were present to the south. However, an inspection of ring counts indicates that this may be due more to an 'increase of galaxies in the first ring than to a decrease in numbers in the outer rings, a supposition supported by the new f core radii.

The evidence is that the background cluster, if it exists, becomes apparent between the b and D magnitude limits, and affects the corresponding core radii. But it is also apparent that asymmetries in the distribution of fainter galaxies within the foreground cluster itself can significantly change the core radius, depending upon the choice of centre for the ring counts. Fortunately, neither this asymmetry nor the possible background cluster affect the b limit core radii.

Table 15

Core radii for A2593

Emulsion	ML	NR	From Table 13		N only	
			R_{C}	R_{C}^{*}	R_{C}	$\mathrm{R}_{\mathrm{C}}^{*}$
IIIA-J	b	20 10	. 303	$\begin{array}{r} .253 \\ .318 \end{array}$	$\begin{aligned} & .212 \\ & .318 \end{aligned}$	$\begin{array}{r} .250 \\ .349 \end{array}$
103a-D	D	$\begin{aligned} & 20 \\ & 10 \end{aligned}$.554 .656	$\begin{aligned} & .481 \\ & .672 \end{aligned}$	$\begin{aligned} & .044 \\ & .032 \end{aligned}$	$\begin{array}{r} .043 \\ .044 \end{array}$
IIIa-J	f	20 10	.829 .794	.847 .780	$\begin{array}{r} .659 \\ .381 \end{array}$	$\begin{array}{r} .459 \\ .381 \end{array}$

Units for R_{c} and R_{c}^{*} are Mpc
vi) The mass segregation question

It has been decided to use the $R_{C}^{*}(20)$ values hereafter as the values representing the core radii for the magnitude limits. These were chosen because the R_{C}^{*} values have been found to be possibly more consistent than the R_{C} values and because 10 ring counts generally do not extend appreciably into the background and so possibly give unrealistic radii at times the results of section iii notwithstanding). These core radii are displayed in Table 16.

Table 16
Adopted core radii in Mpc

As clusters of galaxies evolve the tendency towards equipartition of energy results in the more massive galaxies losing kinetic energy to the less massive ones. As a resure the less massive galaxies will move farther out
in the cluster and the more massive ones will fall to the centre.... Equipartition of energy will therefore result in a radial segregation of mass. The more massive galaxies, as a group, would thus define a smaller core radius than a group of less massive galaxies, with a mixed group having an intermediate core radius.

Oemler (1974) has found evidence of mass segregation in all six CD clusters he studied (of a total of 15). Quintana (1979) has recently found evidence for mass segregation by fitting isothermal. "gas sphere models to galaxy counts of the Coma and CA0340-538 clusters. Dressler (1978), on the other hand, has studied 15 rich clusters, including five $C D$ clusters, and has found evidence: of mass segregation in only three cases, only one of which is a cD cluster. The othex four cD cluster's display somewhat larger core radii for the brighter: (more massive) galaxies than for fainter ones. whis phenonenon is attributed to a further stage of cluster evolution in which bright galaxies near the cluster centre are accreted by the central cD galaxy... The ... resulting lower central number density is reflected in a larger core radius.

From the values in Table 16, only A2052 and A2593 give evidence of mass segregation. Both of these clusters have possible anomalies, however. The extremely low core radius for A'2052-b seems unlikely (as do other core radii near this size) despite the goodness of fit, especially when
the core radius obtained.through omission of the inner ring is considered (see section iv of this chapter). Also the A2593-D and f core radii may be too large because of the presence of a superimposed cluster.

A2626 shows no evidence for mass segregation and the A154 values suggest that the fainter galaxies are more centrally concentrated than the brighter ones, a situation which is consistent with the accretion process described by Dressler. The Al54-f result is probably due mainly to a grouping of faint galaxies observed around the central binary, a phenomenon not believed to be associated with accretion but merely a chance positioning on galaxies.c If the four values for each magnitude limit are averaged, the ratio $R_{C}^{*}(b): R_{C}^{*}(D): R_{C}^{*}(f)$ is .20:. 36:.43, which taken at face value implies an overall tendency towards mass segregation. However the scatter is so large that these averages are probably not significant. Although a general trend can not be cited, two of the clusters studied do show signs of mass.segregation.
vii) Comparison with published core radii

Core radii have been published by Bahcall (1975) for A 2052 and by Dressler (1978) for Al.54, allowing comparisons with the values found here.

Bahcall's data for A2052 indicate that her counts oovered 12 of the 20 rings used here. Furthermore, instead of using rings of uniform width, Bahcall used four central rings 2.24 wide and four outer rings 4.48 wide while this investigation used rings. 2.24 wide. Therefore, the data

- found here were combined to simulate wider rings in order . to determine if results similar to those of Bahcall would be obtained.

Table 17 shows in column 1 the data source of the ring counts. Column 2 indicates the magnitude limit of the present data, the b limit was chosen because it is closest to. Bahcall's magnitude limit. Column 3 gives the number of rings used, either the inner 10 , the inner $12^{\circ}(\mathrm{B})$, or all 20. The last two columns give, respectively, the number of galaxies used in the calculations and the core radii obtained in Mpc.

The top three rows present results using the data from this thesis. The bottom rows give results produced by Bahsall and by this program using Bahcall's data.

The results show that analysing the preaent data みsing rings having the same width as those used by Bahcall

Tabie 17
Core radii for A2052

	ML	NR	NG	R_{C}
Thesis data:	b	10	40	.023
		B	46	.025
		20	58	.037
Bahcall's data:				
her results	-	B	73	.28
this program	-	B	73	.430

produces no appreciable difference in the core radius compared to others found with this study's data. The bottom lines show that using Bahcall's data this program produces a much larger core radius than that found by Bahcall, a result which has been discussed in Chapter III. Comparison with Table 13 shows that this core radius is similar to the value found with the f limit data for this cluster. This result is probably at least partly due to mass segregation. This possibility presents itself because Bahcall counts 60% more galaxies and so presumably reaches a fainter magnitude limit than the b limit used here. Mass segregation in this cluster is strongly suggested by the values in Table 16. The possibility exists that the disparate results are due to the two sets of data (Bahcall's and those of this study) being centred differently. This
seems funlikely to give the large differences, however, as the centres are the same to within 0.1 and 1 .

Dressler used a method similar to that of Bahcall to obtain the core radius of Al54. He found a core radius of 0.19 Mpc with counts out to about the eighth ring used here. This area was apparently divided into ll rings of the same width. Unfortunately, neither ring counts nor limiting magnitudes are given by Dressler so a detailed comparison is precluded. However, his result is close to the: Al54 core radius obtained from the b counts (see Table 16).
viii) Combination of present core radii with those of Bahcall

Bahcall (1975) has published core radii of 15 Abell clusters and has obtained an average value of $0.25 \pm 0.05 \mathrm{Mpc}$ (the 0.05 .value is the standard deviation of scatter, and has no bearing on errors inherent in the individual core radii). The b Ifmit core radii of Table 16 will be combined' with Bahcall's results to obtain a new average and standard deviation. Bahcall's results may have been influenced by the fact that she only. once counted out to near the Abell radius; on the average the distance to which she counted from the cluster centre is only 53% of the Abell radius, as opposed to an average of 102% for this
thesis.
Using the core" radii specified above from Table 16 and Bahcall's results, the combined average is

$$
<R_{C}>=0.24 \pm 0.07 \mathrm{Mpc} \quad\left(\mathrm{H}_{\mathrm{O}}=50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}\right)
$$

Bahcall's value is not changed much, mainly because of her larger sample. For comparison, the average of the four core radii from this thesis is $0.20 \pm 0.13 \mathrm{Mp} \mathrm{c}$. (If the core radius of A2052 is neglected the average core radius for the remaining three clusters is $0.25 \pm 0.08 \mathrm{MPC}$.

To see if the number of core radii averaged is a significant factor, four random groups of four core radii were taken from Bahcall's results and averaged. The averages found were $0.28 \pm 0.07 \mathrm{Mpc}, 0.23 \pm 0.02 \mathrm{Mpc}, 0.24 \pm 0.07 \mathrm{Mpc}$, and $0.24 \pm 0.06 \mathrm{Mpc} . \quad$ This implies that the large standard deviation for the average of the four core radii of this thesis has little to do with the number of values averaged.

The fact that the clusters studied here tend to be cD clusters as opposed to spiral rich or spiral poor clusters is not an influential factor. An inspection of the elusters used in Bahcall's paper show six cD, four B, two E, one F, one C, and an unclassified cluster. No type shows a significantly larger or smaller mean core radius.

If the spread of core radii is as large as Table 16 (or worse yet, Table 13) implies then the validity of using this radius as a cosmological metrestick may be
questioned. Calculations can be made to determine how far away in z clusters would have to be before the spread of standard deviation is overcome by the changes in radius caused by the value of q_{0}. For example, in universes with deceleration parameters 0 and +1 , a 0.25 Mpc object would differ in size by 0.05 Mpc (Bahcall's standard deviation) at $z=0.43$, and the same object would differ in size by 0.13 Mp c (the standard deviation for all four clusters from this thesis) at $z \simeq 1.17$. It is obvious that if the value of the standard deviation is near the value found for the four clusters of this thesis the probability of determining q_{0} from core radii is low.

Also, if there is mass segregation present in some clusters of galaxies further problems arise, namely that the core radius will be a function of the limiting magnitude.
ix) Conclusions
1.) Results in the bottom two rows of Table 17, as well. as those in Chapter III, indicate that the same data can produce widely differing results depending on their treatment. Even when the general method of analysing the data is supposedly the same (see Chapter III, section iii)
different results are obtained by different programs for individual clusters.

This suggests that a study should be made of all programs used by researchers to determine which is best, however that may turn out to be defined, for a given method of finding core radii. This.program should then be used by everyone in this line of study to ensure consistent results. Or, if it happens that no one program is any better than another, to maintain consistency one program should be chosen to be used exclusively. Then the comparison of results would acquire a greater significance. (This obviously does not exclude further work at attempts to devise an improved program for core radius determination.)
2.) More consistent results seem to be found in the present investigation when the background density is counted, rather than calculated as a free parameter in the fitting process.
3.) Care should be taken to include a large background sample in the data by counting out sufficiently far from the cluster centre. The Abell radius seems to contain a large enough area for this purpose. This procedure seems to be of greater importance when the background density is to be calculated rather than counted directly.
4.) Two clusters show evidence of mass
segregation but' a general trend is not evident in the small sample studied here. In at least one of these clusters,

A2593, this effect may be caused by the presence of a second cluster in the field.
5.) The spread of core radii appears to be larger than that in the sample studied by Bahcall. This raises new questions concerning the use of these radii as standard metresticks in attempts to determine the value of the deceleration parameter.

If the spread of core radii is as great as is suggested by this thesis, then only very large z (greater than about l) clusters will be usable in determinations of q_{0}. The lack of rich clusters at these distances could prevent the determination of the deceleration paraméter. \int Part of this spread may be due to mass segregation: Uo If this is so, then establishment of a sufficiently accurate magnitude limit would be required before a large sample of such clusters could be used for this purpose.

References

Abell, G. 1958, Ap.J.Suppl., 3, 211.
Bahcall, N.A. 1972, A.J., 77, 550. 1973, Ap.J., 186, 1179.
————1974, Ap.J., 187, 439. 1975, Ap.J., 198, 249.

Chandrasekhar, S. 1942, Principles of Stellar Dynamics, (Chicago: University of Chicago Press). Dressler, A. 1978, Ap.J., 226, 55.

Holmberg, E. 1975, Galaxies and the Universe, ed. A. Sandage, M. Sandage, and J. Kristian, (Chicago: University of Chicago Press), Chap. 4.

Mihalas, D. 1968, Galactic Astronomy, (W.H. Freeman and Company).

Oemler, A. 1974, Ap.J., 194, 1.
Quintana, H. 1979, A.J., 84, 15.
Rood, H.J. and Sastry, G.N. 1971, P.A.S.P., 83, 313.
Taff, L.G. 1975, Ast.\& Ap., 77, 550.
Zwicky, F. 1957, Morphological Astronomy, (Berlin: SpringerVerlag) :

Appendix A
Program listing

A listing is provided of the program version (named YAHOO) that finds the best fit values for $\mathrm{x}_{\mathrm{O}}, \alpha, \sigma_{\mathrm{C}}$, and $\sigma_{b g}$. The listing should contain enough comment cards to enable a user to follow procedings; if these are insufficient an extensive explanation is presented in Appendix C. These, combined with the description of the type and format of required input data provided at the beginning of Chapter IV, fully explain the workings of this program. .The first page of a typical output run of YAHOO is presented in Appendix J with sample outputs of two other programs.

ORHAT(ES,2,2X,E5.2)
HRITE(6,803)
WRITE(6,803)

```
促










FORTRAN IV YO2.1:1_TUE 05-JUN-79_13126120_ PACE 001





\author{
Appendix B \\ Auxiliary listings
}

A listing is provided of the BASIC program that produces values of \(\xi\), \(e^{-\psi}, \psi^{\prime}\), and \(e^{-\psi^{\prime}} \psi^{\prime}\) (see equation 4, page 7). The last set of values are those entered as isothermal gas sphere data for the appropriate \(\xi\) values as specified on page 36.

To obtain values used in this thesis for the first range of \(\xi\) (0.0.to 9.9 in increments of 0.1 ), the step size to enter is 0.001 and the number of steps is 100 ; for the second range of \(\xi\) ( 10 to, 99 in increments of l) the step size is 0.01 and the mumber of steps is 100 ; and for the third \(\xi\) range ( 100 to 1000 .in increments of 10) the step 'size is 0.1 and the number of steps is 100.

As can be seen for the, portion of an output run included in Appendix \(J\), the values of \(\xi\) are ñot exact, but the small difference is not considered significant and so is ignored. Also, when the program is run for the second \(\xi\) range, values for \(e^{-\psi}, \psi^{\prime}\), and \(e^{-\psi} \psi^{\prime}\) are calculated for \(\xi=1,2,3, \ldots, 9\). These \(e^{-\psi} \psi^{\prime}\) values were not used since values corresponding to the first nine \(\xi\) values were provided by calculations for the first \(\xi\) range. Similarly, the first nine sets of numbers produced in third range calculations were ignored since second range calculations had included them.

The BASIC program does not give a value of \(\mathrm{e}^{-\psi} \psi^{\prime}\) for \(\xi=0^{\prime}\); a necessary value, but since for this \(\xi\) the product \(e^{-\psi} \psi^{\prime}=0\) this is not a problem.
r Also included in this Appendix are the modifications performed on YAHOO to get the programs BGIN and TAFCHEC. BGIN is the variant that reads the counted background density as a constant and only makes best fit determinations for \(x_{0}\), \(\alpha\), and \(\sigma_{c}\). The fixst page of a typical output of BGIN is also provided \(4 n\) Appendix J.

TAFCHEC was used for the program testing in. Chapter III, section (ii). The only difference between TAFCHEC and YAHOO is that the former. also calculates the \(x^{2}\) found for each \(x_{0}\) when comparing the data to the model made using the current \(x_{o}\) and Taff's values of \(\alpha, \sigma_{c}\), and \(\sigma_{b g}\). This provides the bracketed numbers of Tables 3 and 5 (pages 23 and 27 respeçtively).

Detailed explanations of the modifications.done to YAHOO to obtain BGIN and TAFCHEC are given in, Appendix C.

10 DIM \(Y(2), Z(2), F(2), A(2) P B(2) r C(2), D(2)\)

\section*{\(20-x=0\)}
\(30 Y(1)=0\)
50 PRINT, ENTER GTEXP gIZE, MUMBER OF GTEPG
60 INPUT H.N
70 PRINT H,N
71 PRINT
72 PRINT 'XI','EXP(-PSI)', 'PSI'..' 'EXP(-PSI) *PGI ".
c 73 PRINT
75 FOR K=1 TO 100
C. 80 GOSUR 110
C. \(85 \times 3=E X P(-Y(1))\)

86 \(X_{4}=X 3 * Y(2)\)
90 PRINT \(X, X 3, Y(2), X A\)
95 NEXT K
100 STOP
110 FOR Jal TO N
\(120 Z(1)=Y(1)\)
\(130 \cdot Z(2)=Y(2)\)
140 GOSUB 360
150 A(1) \(=F(1)\)
\(160 \mathrm{~A}(2)=\mathrm{F}(2)\)
\(170 Z(1)=Y(1)+H * A(1) / 2\)
\(180 Z(2)=Y(2)+H * A(2) / 2\)
190 \(x=x+H / 2\)
200 GOSUB 360
\(210 \mathrm{~B}(1)=\mathrm{F}(1)\)
\(220 \mathrm{~B}(2)=\mathrm{F}(2)\)
\(230 \mathrm{Z}(1)=\mathrm{Y}(1)+\mathrm{H} * \mathrm{~B}(1) / 2\)
\(240 Z(2)=Y(2)+H\) \#B(2)/2
250-005UB 360
\(30 \mathrm{C}(1)=\mathrm{F}(1)\)
\(280 \mathrm{Z}(1)=\mathrm{Y}(1)+\mathrm{H}\) 本 \(\mathrm{C}(1)\)
\(290 Z(2)=Y(2)+H(C(2)\)
\(300 \quad X=X+H / 2\)
310 00SUR 360
\(312 \mathrm{D}(1)=\mathrm{F}(1)\)
15
\(j\)
\(15(2)=F(2)\)
\(320 Y(1)=Y(1)+(A(1)+2 * B(1)+2 * C(1)+D(1)) * H / 6\)
\(330 Y(2)=Y(2)+(A(2)+2 * B(2)+2 * C(2)+D(2)) * H / 6\)
340 NEXT J
340 NEXT J
\(-\quad 350\) RETURN
360 F (1) \(=212\)
\(360 \mathrm{~F}(1)=2(2)\)
370 IF X>0 THEN 400
390 RETURN
390 RETURN
\(400 \mathrm{~F}(2)=E X P(-Z(1))-2 \star Z(2) / X\)
410 RETURN
420 END
. .......
Ready

Modifications to YAHOO to get BGIN

The line numbers referred to are those of YAHOO as it is found in Appendix A. All changes are in the MAIN program; the subroutines SIGI, DIVIN, and IQSF are left unchanged.

Change line 4 to:
DOUBLE PRECTSION INTDI (281), XİEPS̉(281), CHISQ, DIVN, , SIGC, SC (20), XX1, XX2, SUMi, SUM2, 21, 22, EI, UI

Change line 19 to:
\(\operatorname{READ}(1,230) \mathrm{SCl}, \mathrm{SBG}{ }^{-}\)

Delete line 21.

Change line 22 to:
WRITE \((6,880)\) SC1, SBG

6
Change line 23 to:
880 FORMAT (/,5X,'INITIAL CEENT DENS \(=1\), IPEII. \(2, / .14 \mathrm{X}\); 'BG DENS=',1PEII.2)

Delete line 61.

Change line 69 to:
25 FORMAT(4 (4X,'ALPHA CENT DENS CHI-SQ '))

Replace lines 111 through 115 inclusive by: SUMI \(=0.0\)

SUM \(2=0.0\)

Change line 117 to:
\[
\mathrm{Zl}=\mathrm{SC}(\mathrm{IP}) * S I G I S O(\mathrm{~L})+S B G
\]

Replace lines 123 through 132 inclusive by: \(E I=Z 2 / Z 1\) \(i^{U}=(1 . / Z 1)+((2 . * z / 2 / Z i) / Z 1)+(((Z 2 / Z 1) * Z 2 / Z i) / Z 1)\) SUM1 \(=\) SUM1 \(+B I(L) *\) ( 1 IGISO (L) * (2.*EI+EI*EI)
203 SUM \(2=\) SUM \(2+B I(L) *\) EIGISO (L) *SIGISO (L) *UI IF (ABS (SUM2) ~GT 1.0E-12) GO TO 204

Delete line 135 .

Change line 142 to:
\[
\mathrm{SC}(I P+1)=\mathrm{SC}(I P)+\operatorname{SUMI} /(2 . \star \operatorname{SUM} 2)
\]

Delete line 143.

Change line 148 to:


Delete lines 152 through 157 inclusive.

Delete line 160.

Change line 161 to:
IF (XXI.IE. O.0001) GO TH 209

Delete line 169. 1

Delete line 172.

Change line 176 to: GO TO 703

Delete lines 178 through 182 .inclusive.

Change line 184 to:
\(310 \mathrm{SC}(\mathrm{IR})=0.0\)

Delete line 185.

Change line 188 to:
\(\operatorname{NCALC}(I)=3.141593 * B I(I) *(S I G C * S I G I S O(I)+S B G)\)

Delete line, 207.

Replace lines 211 through 214 inclusive by: AXXA \((I Z+2)=\) CHISQ \(I Z=I Z+3\) IF (IZ.LE.11)GO TO 29

Replace lines 227 through 232 inclusive by:
IF (IAM.EQ.1) WR'ITE (6,805)SC (IP) , SIGISO(L), IP, L 805 FORMAT (10X,'SC (IP) \(=^{\prime}, 1 P E 11.3,4 X, ' \operatorname{SIGISO}(L)=1,1 P E 11.3, \quad\), \(\stackrel{\square}{\prime} \quad \mathrm{IP}=1, I 3,1 \quad \mathrm{~L}=1, I 3, /, 10 \mathrm{X}, \mathrm{IPROBLEMS}\) IN THE 203 LOOP \(^{\prime}\) )

IF (IAM.EQ. 2) WRITE (6, 806) DNOM, SC (IP)
806 FORMAT (10X, 'DNOM=', IPEIl. 3 , ' AND NON-ITERATION OCCURRED TOO OFTEN \(\quad S C=2, I P E I I .3\) )

Delete lines 236 and 238 .

Change lines 250 and 251 to:
318 WRITE \((6,322) A 2, S 2, C 2\)
322 FORMAT (13X, 'MIN \({ }^{4}\) FRROM PROGRAM: \(\quad\), 3(1PE11.3))

Delete line 258.

Delete line 269.

Insert between lines 277 and 278:
\(X I=A L P H A\)
\(\mathrm{X} 2=S I G C\)
\(\mathrm{X} 3=\mathrm{CHISQ}\)

Change lines 280 and 281 to:
342 WRITE \((6,343) \mathrm{A} 2, \mathrm{~S} 2, \mathrm{C} 2\)
343 FORMAT (14X,'MINIMUM METHOD: \(\quad\), 3(1PE11.3))

Modifications to YAHOO to get TAFCHEC Again line numbers refer to those of YAHOO as It
appears in Appendix \(A\) and all subroutines are unchanged.

Insert between lines 24 and 25:
READ (1, 235) TAL, TSC, TSBG
235 FORMAT (E5.2,2(2X,E5.2))
WRITE \((6,236)\) TAL, TSC, TSBG
236 FORMAT (/,' TAFF!'S VALUES: ALPHA=',1PE11.2,/,18X, 'SIGC=',1PE11.2,/,17X,'SIGEG=',1PE11.2)

Insert between lines 56 and 57:
ITAFF \(=5\)

Insert between 1 ines 102 and 103:
IF (ITAFF.GT.100)GO TO 820

Insert between lines 107 and 108: IF (ITAFF.GT.100) GO TO 820

Insert between lines 281 and 282:
\(I T A F F=500\)
ALPHA=TAL
GO TO 10
\(820 \mathrm{CHISQ}=0.0\)
DO 821 ILl, \(J\)
\(\operatorname{NCALC}(I)=3.141593 * B I(I){ }^{*}(T S C * S I G I S O(I)+T S B G)\)
\(821 \mathrm{CHISQ}=\mathrm{CHISQ}+((\operatorname{NOBS}(\dot{I})-\mathrm{NCALC}(\mathrm{I})) * * 2) / \mathrm{NCALC}(\mathrm{I}) \quad \therefore\) WRITE \((6,882) A L P H A, ~ C H I S Q\)
- 882 format (/,26X,'taff''s values : ',1PEll.3,22X, 1PE11.3)


Appendix C Detailed progeam explanations

A detailed explanation of the program YAHOO is provided. Also given are explanations of the modifications of YAHOO needed to obtain BGIN and TAFCHEC.

In all cases in this Appendix, line numbers refer to the line, numbers of YAHOO as they occur in Appendix A. The insertions, deletions, changes, and replacements referred to in explanations of the modifications for BGIN and TAFCHEC are those listed in Appendix B.
*YAHOO

MAIN Program

Lines
Function and/or relation to theory
1-5 Declaration statements
6-9 Read in and rewrite a message at the beginning of the data deck. This checks to make sure that the proper type of data is being used and to make sure the printer is on the , 132 line width mode (item, on page 36).
-10-11 Isothermal gas sphere density data is entered (data is from the BASIC program; item 2 on page 36).

12-19 J, NOBS, ROUT, and initial estimates for \(\sigma_{c}\) (SCl) and \(\sigma_{\mathrm{bg}}\) (SBGI) are read in (items 4 to 7 on page 36). The command to skip a line in line 13 allows the program to jump over the line describing the format of items 4 to 6 (item 3 on page 36).

20-21 Values two times those of the initial estimates for \(\sigma_{c}\) and \(\sigma_{b g}\) are put aside for future use (lines 173 and 178).

22-23 The initial estimates for \(\sigma_{c}\) and \(\sigma_{b g}\) are printed out.

24 Format for line 20.
25-29 If there are more rings than the necessary array sizes permit, a proper notice is printed and the program stops.

30 IJK, an error marker needed later on, is set to zero.

31-31 The number of rings being used is printed out.
33-44 The series XI ( \(\xi\) in equation 4 , page 7 ), the unitless radius of the isothermal gas sphere, is' : calculated for the corresponding densitied entered in line 10.

45-46 Table titles are printed.
47 ROUT (1) \(\equiv r_{1}=0\), see explanation of equation (I), page 6.

48-55 A series of values-is calculated and printed. \(B I(I) \equiv B_{i}=\left(r_{i}^{2}+l_{1}-r_{i}^{2}\right)\), see equation (1), page 6 ,
and series of equations defining the NewtonRaphson terms, pages 10 and 11. NOBSand ROUT are reprinted to ensure proper entry; SIGOB and RAV are printed to enable the drawing of a radial density diagram for the cluster.

58-59 C2 and A2 are set abnormally high so as to allow <the first value for \(x^{2}\) obtained to become the current minimum. It is necessary to set them high because finding minimum values works by comparison.
(An alternate method would be to assign \(C l\) and \(C 2\) (and Al and A2) the first two \(x^{2}\) (and \(\alpha\) ) values calculated in the loop starting at line 79, but counters, etc. would have to be added making this method more cumbersome.)

60-61 Since \(\sigma_{c}\) and \(\sigma_{b g}\) are solved iteratively, the iterated solutions are stored in arrays for later testing, These arrays, \(S C(I)\) and \(S B G(I)\) respectively, start with the estimated values that were entered as data. An initial \(\alpha\) is calculated. \(\log (\alpha)\) is stored. Since \(\alpha\) is incremented in steps of \(\log (\alpha)+0.08\) this value is necessary.
\(64 \quad\) LOGAl三log \(\left(\alpha_{\text {initial }}\right)+4\). When (or if) a reaches this value, the program moves to case (II). IZ is a counter needed for storing a triple row of results before printing; see lines 209-219.

66-6f The current value of \(x 0\) is printed. Headings for the results are printed.

70-71 The values \(\xi e^{-\psi^{\prime}} \psi^{\prime}\) are calculated (see equation 4, page 7) as XIEPS (I).

The integral
\[
\int_{0}^{x_{0}} \xi e^{-\psi} \psi^{\prime} \cdot d \xi
\]
is calculated in subroutine DIVIN.
73-77 If there is an error somewhere in the subroutine,

IJK=111: This causes the printing of the message and the choosing of the next \(X O\). The integral is returned to the MAIN program as INTDI(1). Since the array INTDI is needed later, the integral is stored as DIVN.

An important loop is started. This one calculates the density of an isothermal gas sphere at the distances at which observed densities are found. \(X \equiv x_{i}\) in equation (4). It is the unitless distance of the observed density. If X is greater than the upper limit of integration this loop is exited. Go to line 104; calculation is impossible under these conditions. \(\mathrm{X}^{2}\) is calculated for later usage. The array \(X I\) is searched to find the position of the value \(\geqslant x\). If no value of \(X I\) suits, a message is printed and the program stops. The values \(e^{-\psi} \psi^{\prime} \sqrt{\xi^{2}-x^{2}}\) are calculated as XIEPS (see equation. 4, page 7). The position of the first XI 2 X is decreased by one and
all XIEpS values up to the first XI? \(X\) are set to zero.

The integral
\[
\int_{x}^{x_{0}} \sqrt{\xi^{2}-x^{2}} e^{-\psi_{\psi}} d \xi
\]
is calculated in the subroutine SIGI; the result is stored in INTDI (1).

97-101 Check for errors in the subroutine, if there is one the message is printed and the next \(x 0\) is chosen. If there are no errors continue. End of the isothermal density loop. The isothermal gas sphere density value for this value of RAV is calculated: The operations return to line 80 to calculate the \(\sigma_{\text {iso }}\) for the next RAV. -
After \(\sigma_{i s o}\) is calculated for each RAV the program goes to line 108.
104 - Operations go here if conditions \(\overline{\mathrm{j}} \mathrm{n}\) line 81 are met. If \(I=1\) (i.e. the initial \(X>X O\) ) then the operations are sent to line 220 to increase \(\alpha\) and so decrease X.

106-107 If \(I>1\), then the values for \(\sigma_{i s o}\) not yet calculațed, and so unable to be calculated, are set to zero.

108-109 After \(\sigma_{\text {iso }}\) is calculated two counters are set. The loop to follow runs 20 times, but can go to 40 , 60,80 , or 100. The counter II indicates how many groups of 20 times the loop has run. The counter IXY will be explained later.

110 Start of the iteration loop for the Newton-Raphison
method. The iteration runs 20 times, which has been found through tests to be sufficient to get :convergence to within \(10^{-3}\). Tests are done later to check for \(10^{-4}\) interior convergence and the 20 step iterative procedure can be repeated up to four times if necessary.

111-ll5 Summation terms to be used in the iteration are set to zero initially.

116 An interior loop which is used to perform the necessary summations is started. \(\mathrm{Zl} \equiv \sigma_{C} \sigma_{i B 0} \dot{\left(x_{i}\right)}+\sigma_{b g}\). This is the density of an isothermal gas sphere model at the distance \(\mathrm{x}_{\mathrm{i}}\) using the current densiti vałues of \(\sigma_{C}\) and \(\sigma_{\mathrm{bg}}\).
ll8-12l Zl is tested to see if it equals zero. If so, IAM, a printing command, is set accordingly and the operations move to line 225.

122-125 If \(21 \neq 0\), continue setting up sub-components of the summations. Referring to the equations of pages 10 and 11 ,
\[
\begin{gathered}
E l=2 \varepsilon_{i}-\varepsilon_{i}^{2} \\
E 2=\mu_{i}
\end{gathered}
\]
\(F C \equiv f_{x} ;\)
FBG \(\equiv f_{y} g_{x} ;\)

GBG \(\equiv g_{Y}\);
see pages 10 and 11
Line 130 is the end of the summation loop.
The denominator term from the equations of page 12 (i.e. \(f_{x} g_{y}-f_{y}^{2}\) ) is calculated.

The size of DNOM is checked. If it is too small,
the size of the calculated value using DNOM would probably exceed the computer's capacity, and so no iteration is performed. If DNOM is not too small operations proceed to line 141.

134-135 \({ }^{2}\). Instead of iterating, the next values of \(\sigma_{c}\) and \(\sigma_{b g}\) are set to the previous values. Also, counter IXY is increased by 1. If this has happened less than 6 times in a row ... (i.e. \(I X Y \leqslant 5\) ) and the loop is at less than the \(19^{\text {th }}\) iterative step (i.e. IP<19), then operations return to the beginning of the iteration loop, line 1l0, for the next iterative step.

139-140 If.this has happened 6 or more times and IP=19, then an error message counter is set and the operations go to line 225.

141
If the value of DNOM is sufficiently large iteration can be performed and the value of IXY is reset to zero.
142-143 The iterative steps are performed (see the equations on page 125.

144
After the steps are performad, return to the start of the Newton-Raphson loop, line 110.

145-147 After 20 iterations a loop is started to check the last \(6 \sigma_{c}\) and \(\sigma_{b g}\) values, in groups of 3 consecutive values, for convergence, with some. leeway for slight nonconvergence. This is done by
comparing the size differences between the \(L\) and L-1 terms and the \(L\) and \(L+1\) terms. If the difference between \(L\) and \(L-1\) is greater than the difference between \(L\) and \(L+1\), then the series is converging. Leeway is built in by adding 0.005 of the \(L\) term to the \(L-(L-1)\) difference. \(X X I\) is the L-(L-1) difference with the leeway term, and XX2 is the ( \(L+1\) )-L aifference.

If convergence occurs for \(\sigma_{C}\), the same test is used for \(\sigma_{b g}\).
150-151 If \(\sigma_{c}\) convergence does not occur, the error message counter is set and operations go to line 225.

152-158 Convergence for \(\sigma_{b g}\) is tested. If it is found, operations return to the loop's start, line 145 , and if convergence is not found the error message counter is set and operations move to lịne 225. After convergence for the last 6 iterations of \(\sigma_{C}\) and \(\sigma_{b g}\) has been confirmed, the degree of convergence is tested. If the difference between the last and second last iterated values for both. \(\sigma_{c}\) and \(\sigma_{b g}\) is less than or equal to \(10^{-i}\) of the last iterated value, the values are satisfactory and operations proceed to line 171. In this check XXI refers to \(\sigma_{\mathrm{c}}\) and \(\mathrm{XX2}\) to \(\sigma_{\mathrm{bg}}\). If the degree of convergence is not sufficient and
the iterative loop has been run less than 5 times, operations proceed to line 167.

173-182

If the degree of convergence is insufficient and the loop has run 5 timés an error message counter is set and operations move to line 225.

From line 163. The counter which keeps track of the number of times the iteration loop is run is incremented by 1.

The last iterated value for \(\sigma_{c}\) and \(\sigma_{b g}\) from the last run through the iteration loop is moved to a lower place in the SC and SBG arrays and will be the initial value for the next run through of the iteration loop.

The program is sent to the start of the NewtonRaphson iteration loop, line 110. From line 161. If convergence standards are met, the final values obtained from the iteration loop are accepted as the best \(\sigma_{C}\) and \(\sigma_{b g}\) for the \(x_{0}-\alpha\) combination used.

This section checks to see if the accepted values are greater than twice the initial estimates which were fed in. If they are, the initial estimates are used as the first values in the Newton-Raphson iteration loop for the next a value. If the accepted values are less than twice the initial estimates then the accepted values will be used.

This is done because tests have found that if initial values in the iteration loop are too large by several times, the loop usually converges to the wrong root of the set of equations. However, if the initial estimates are too small, but still positive, this will not occur. After the initial values for the next run of the iteration loop have been set, the rest of the \(\sigma_{c}\) and \(\sigma_{b g}\) arrays are set to zero as a safety measure. Since the \(x^{2}\) test involves a summation, the space used to store the \(x^{2}\) value is initially set to 0 . The loop to calculate \(x^{2}\) is started and runs once for each ring.

The theoretical number of galaxies for the specific ring is calculated from the ring area and the density in galaxies/arcmin \({ }^{2}\). This density is calculated from the \(\sigma_{c}\) and \(\sigma_{b g}\) values (obtained from the iteration loop) and from the isothermal gas sphere densities previously obtained for these rings.

The \(\mathrm{X}^{2}\) is calculated.
If \(1 N D=5\) (see line 57) the program is still operating in method (I). If IND=70 the program is operating by method (II). If the program is in method (II) operations procedd to line 262. The value of \(x^{2}\) is checked. If \(x^{2}<0\), then at
least one of the values found for \(\sigma_{c}\) and \(\sigma_{b g}\) is large ànd negative and so physically unreasonable. In this case the present \(x^{2}\) is not to be compared to the current minimum \(x^{2}\) and operations go to line 209.

194-208 This section preserves the minimum \(x^{2}\) and - associated \(\alpha, \sigma_{c}\), and \(\sigma_{b g}\) as C2 \(A 2, S 2\), and SB2. The \(x^{2}\) and \(\alpha\) values preceding and following the minimum \(X^{2}\) are saved, respectively as \(C l, A l\) and C3, A3. This is done so the minimum \(x^{2}\) and associated values are isolated from the rest of the results found for a given \(X O\) and may be printed separately and also so that the three smallest \(\chi^{2}\) and associated \(\alpha\) values are available for method (II).

209-212 The current \(x^{2}\) and associated values are stored in part of an array, AXXA, in groups of 4. The array index, IZ, is incremented by 4 to allow the next group of 4 values to be stored the next time operations reach line 209. This means that consecutive groups of results, with 4 numbers per group, are stored linearly in larger collections of 3 groups. This is due to the results being printed in the same manner in which they are stored and paper width only allows the printing of 12 numbers. The output, to be read sequentially,
must be read as 3 groups of 4 numbers from left to right across the page before proceeding to the next line.

Since AXXA has only 12 spaces, when they are filled a line of results must be printed before more can be stored. If it is filled by now \(I Z=13\), so this line checks to see if AXXA is filled. If it is not, proceed to line 220.

216-219 . Because AXXA is filled, its contents are printed and IZ is reset to allow values to be stored in the array again.

220-221 From lines 214 or 104. a is increased by incrementing log (a). \(\log (\alpha)\) is checked to see if it is too large (see lines 62-64). If it is not too large a best \(\sigma_{C}\) and \(\sigma_{b g}\) will be found for the new \(x_{0}-a\) combination starting at line 79.

227-243 Since the program is in method (IF) the proper message is printed to explain why the program cannot operate properly as indicated by the error message counter IAM.

The program goes to line 282 to choose a new Ko, and reverts to method (I).

From line 225. Since the program cannot operate any further in method (I), the last of the results stored in AXXA are printed and \(I Z\) is reset for the next run of method (I).

The minimum \(\chi^{2}\) and associated values as found from method (I) for the current \(X O\) are printed. The program is about to commence operating in method (II). In this method the smallest \(x^{2}\) is stijl called \(C 2\), but the second smallest \(\chi^{2}\) is called C3. These lines check the \(x^{2}\) preceding and following \(C 2\) as found in method (I) tb see which is smaller. If \(C 3\) is already smaller than \(C l\) the program proceads to line 256. If.Cl is smaller, C3 is assigned fts value and A3 is assigned the value of \(A l\). IND is reset to indicate the usage of method (II). The initial. \(\sigma_{c}\) and \(\sigma_{b g}\) to be used in the Newton-* Raphson iteration loop are set to be the values producing the minimum \(x^{2}\). A new a is found by averaging the a values producing the two smallest \(x^{2}\) values.

A counter to indicate how often method (II) has run for this XO is set.

With the new \(a\), new values of \(\sigma_{c}, \sigma_{b g}\), and \(x^{2}\) are to be found. Proceed to line 79.

From line 190. The \(x^{2}\) found from the new \(\alpha\) as
obtained by method (II) is compared to the previous minimum \(x^{2}\). If it is not smaller, go to line 271.

264-270 Since the new \(x^{2}\) is smaller than \(C 2\), values are reassigned accordingly, with the new \(x^{2}\) becoming C 2 and the old C 2 becoming C 3 , the a values being reassigned similarly, and the \(\sigma_{c}\) and \(\sigma_{b g}\) producing - this new minimum \(x^{2}\) being stored.

271 From line 262. Even, though the new \(x^{2}\) is greater Than C2, it is checked to dee if it smaller than the second smallest \(x^{2}\). If not, operations go to line 275.

273-274 Since the new \(x^{2}\) is smaller than the previous second smallest \(x^{2}, C 3\) and A3 are reassigned accordingly.

From lines 270,:271, or 274. IDD is checked to see if method (II) has averaged a values the required number of times. If it has, go to line 280.

280-282 From line 275. Since method (II) had been run the appropriate number of times the results obtained are printed. Then the program chooses a new XO and returns to begin method (I) again.

283-286 From lines 29, 89, or 282. Either a fatal error has occurrdd or the program has operated over the required range of \(X O\) values. Several lines are skipped on the output and the program ends.

\section*{Subroutine SIGI}

This subroutine is called from line 96 in the MAIN. program and is used to calculate the integral
\[
\int_{x}^{x_{0}} \sqrt{\xi^{2}-x^{2}} e^{-\psi} \psi^{\prime} d \xi
\]

The factors transferred to this subroutine from the MAIN program are the values \(x\) and \(x_{o}\), the series of values of \(\xi\) from 0 to 1000 , and the series of values for \(\sqrt{\xi^{2}-x^{2}} e^{-\psi} \psi^{\prime} \quad\) corresponding to the \(\xi\) values. These factors are represented da this subroutine as \(X, I X O, X I\), and EPSI respectively, with fhe last two being arrays. The values of EPSI from \(X I=0\) (i.e. \(X I(1)\) ) to the value of \(X I\) nearest but still smaller than \(X\) are all equal to zero (see MAIN, lines 84-95).

The major facet complicating this subroutine is that while XI increases in three ranges with different incremental step sizes in each range (i.e. in the first
range \(X I\) increases in steps of 0.1 from 0 to 9.9 ; in the second XI range the increment size is 1 from 10 to 99; and in the third range. XI increases in steps of 10 from 100 to 1000) and \(X\) and IXO can be in any of these ranges, the integration subroutine IQSF can only integrate over an interval using identical incremental steps. Therefore, unless x and IXO occur in the same range, the different ranges must be integrated separately and the results summed.

Lines Function andfor relation to theory I Subroutine declaration statement and transfer of necessary data. INTDI is an array needed by the secondary integration subroutine IQSF to store results as the integration procedes and IJK is the error marker mentioned in the MAIN program \(\because \quad\) (see MAIN lines 73-77, and 97-101) and is also used to indicate whether or not \(x\) equals a specific value of XI.

2-3 Declaration of arrays and double precision. SUM is the space in which results of separate integrations are added.

4
5

6 The error marker is set to zero.

Z marker used to indicate whether or not IXO is equal to a specific value of \(X I\) is set to zero. \(X\) is checked again to see if it has a negative - value. • If so operations proceane to line 17. X is compared to IXO , if \(\mathrm{X}<\mathrm{IXO}\) the integration can be performed and so operations proceed to line 13. Since \(X>I X \sigma_{\text {, }}\), an error message is printed and the program is sent to line 176. Initial value of SUM is set.

A loop is used to determine the posịtion (I) of the value of \(X I\) equal to or immediately great \({ }^{\prime}\left(\begin{array}{rl} \\ \end{array}\right.\) than \(X\). If a value of \(X I\) equals \(X\) the program is sent to line 21 , and if a value is not equal but larger than \(X\), operations go to line 20 . From line 6 or if X is larger than all values of XI. In this case an error message is printed and the program is sent to line 176.

From the loop in lines 14-16. The marker is set to 25 to indicate that no value of \(X I\) equals \(X\). From line 20 or the loop in lines 14-16. A loop is used to determine the position ( \(K\) ) of the value of XI equal to or greater than IXO. If a value of XI equals IXe the program is sent to line 43, and if a value is not equal but larger than IXO the program is sent to line 27.
If all values of XI are smaller than IXO the error message is printed and operations are sent to line 176.

From the loop in lines 21-23. The marker is set to 30 to indicate that no value of XI equals IXO.

Proceed to line 43.
From line 55. If operations reach this line then IXO is between two adjacent values of XI, namely \(X I(K-I)\) and \(X I(K)\). Since IQSF can only integrate up to \(X I(K-1)\) or \(X I(K)\) and not between them, the area under the EPSI curve between \(X I(K-1)\) and IXO must be calculated another way. Accordingly, the average position between \(\mathrm{XI}(\mathrm{K}-\mathrm{l})\) and \(\mathrm{XI}(\mathrm{K})\) is found: if IXO is greater or equal to this average, the area between IXO and \(X I(K)\) is found and subtracted from the \(S U M\) and the curve is integrated out to \(X I(K)\); if IXO is less than the average, the area between \(X I(K-1)\) and IXO is found and added to the SUM and the curve is integrated put to XI (K-1). To obtain the area between IXO and the required XI value (to be called XI (R)), the values of EPSI at \(X I(K-1)\) and \(X I(K)\) were first interpolated linearly to obtain an EPSI value at IXO. Then with EPSI for IXO and XI (R) and with the difference between IXO and XI (R) the area was calculated as a trapezoid. In line 29 the average position between \(X I(K-1)\) and \(X I(K)\) is found. If XAV<IXO the program is sent to line 38. The area under the EPSI curve between \(X I(K-1)\) and IXO is calculated and added to the SUM. Since the integration is to proceed to the \((\mathrm{K}-1)^{\text {th }}\)
position, but is told to integrate to position "K", the value of K is decreased by 1 .

37 Go to line 43.
38-41 From line 30. The area under the curve of EPSI between \(I X O\) and \(X I(K)\) is calculated and subtracted from the SUM.

42 Go to line 57. If the value of NDIM<l go to line 45 , if NDIM=1 go to line 48 , and if NDIM>1 go to line 53. To get NDIM \(=0\) both \(X\) and \(I \mathbb{X O}\) must be between \(X I(I-1)\) and the midpoint between \(\mathrm{XI}(\mathrm{I}-1)\) and \(\mathrm{XI}(\mathrm{I})\); initially. \(I=K\). For NDIM=1 either: \(X\) and IXO are between \(X I(I-1)\) and \(X I(I)\) with IXO greater then the average of \(X I(I-I)\) and \(X I(I)\) - producing a SUM<0 (see lines, 38-41) ; or \(X\) is between XI(I-1) and XI(I) and IXO is between \(\mathrm{XI}(\mathrm{I})\) and the midpoint between \(\mathrm{XI}(\mathrm{I})\) and \(X I(I+1)\) - producing a SUM \(>0\) (see lines 32-35). From 44. Since EPSI \(=0\) at X , linear extrapolation with the EPSI value at \(X I(I)\) will give an EPSI at IXO. With this and the values for X and IXO the area, and so the total area, has been found. Go to line 170.

48-50 From line 44. If the first case for NDIM=1 occurs the total area (i.e. integral) is found in line 48 in the same manner as for NDIM=0. For the second case the area found for the interval from XI(I) to IXO (see lines \(32-35\) ) is added to the area bounded by the right triangle with corners \(X, X I(I)\), and EPSI(I), with the right angle at \(\mathrm{XI}(\mathrm{I})\). In both cases the total integral has been found, so the program procends to line 170. From line 44. IJK=0 means X is between XI(I-l) and \(X I(I)\), and because the integration only starts at \(X I(I)\) the area between \(X\) and \(X I(I)\) is calculated and becomes the total integral until further integration can be carried out. If IXo is not equal to lany value of XI go back to line 29, if it is equal to one, continue. From lines 42 or 55 . Under the conditions specified, both \(X\) and IXO occur in the first range of \(X I\) values. If this is the case proceed to line 70.

If only \(X\) is in the first range of \(X I\) values go to line 81.

If \(X\) and IXO are in the second range of \(X I\) values go to line 125.

If only \(X\) is in the second range of \(X I\) values go to line 136.

If \(X\) (and so IXO) is in the third range of \(X I\) values go to line 160.

From line 57.. If NDIM> 2 IQSF can be used, and so proceed to line 74.

NDIM \(=2\), so the rest of the integration can be performed in this line.

Integration is complete so proceed to line 170. Because IQSF works from an array, starting at the first space and proceeding as far as \(1 s\) specified, the values of the array EPSI must be shifted so that EPSI(I) becomes EPSI(1), EPSI(I+1) becomes EPSI (2), etc.

The subroutine to perform the integration is called. The parameters sent to this subroutine are, respectively, the integration step size, the values of the function being integrated, a storage space for integration results, and the effective dimension of the array to be integrated (i.e. the number of values from \(I\) to \(K\) inclusive for \(I\) and \(K\) in the same XI'range). The result from IQSF is returned in INTDI (NDIM).

The result of this integration is added to results found previously, if any. Integration is complete; proceed to line 170. From line 59. The 0.1 incremental steps go from (originally) EPSI(1) to EPSI(101). If \(I=100\) IQSF cannot be used. If \(I<100\) IQSF can be used so. operations proceed to line 86. Since IQSF cannot be used, the integrations to the end of the first \(X I\) range are completed in this line.

When EPSI is shifted for further integration the original EPSI (101) must become EPSI(I), etc. NDIM is set to 101 so the term EPSI (NDIM) can be used initially. Go to line 93. From line 8l. NDIM is set to the proper value and EPSI is shifted accordingly. IQSF is used and the results are added to the previous SUM.

From lines 85 or 92. If IXO is in the third XI rahge go to line 107. If K > 102 IQSF can be used so proceed, to line 99. If \(K=102\) the integration between the spaces initially called EPSI (101) and EPSI(102) must be done in this manner. NDIM is used instead of 101 because the array may have been shifted. This
step completes integration.
Go to line 170.
From line 95. The array EPSI is shifted the proper number of spaces, NDIM is reset, the integration is performed with the results added to previous answers, and with all integration completed operations procead to line 170.

115-116 From line 114. These complete the integration and sends operations to line 170.

117-124 From line 1l4. In a fashion similar to lines 99-106 these lines complete the integration and send operations to line 170.

125-128 From line 61. If NDIM is of insufficient size for use of IQSF the integratiońs are completed here and operations are sent to line 170. If NDIM is large enough to use IQSF go to line 129. EPSI is shifted, integrations are completed, and operations are sent to line 170. From line 63. If \(I<190\) IQSF can be used, and so
proceed to line 141.

162-163 Since NDIM=2, final integration is performed in this manner and operations go to line 170. From line 160. Integration procedures are performed for the third XI range. This completes integrations for this range.

Frfig lines \(52,73,80,98,106,116,124,128,135\), 151, 159, 163, or 169. Whenever the integration has been completed the program has been sent here. The final result of the integration, \(S U M\), is placed in INTDI(1) where it can be retrieved by
the MAIN program.
The error marker IJK is set to 0 to indicate subroutine SIGI has operated correctly.

A further safety check is made, if \(S U M \geqslant 0\) the program proceéds to line 177.

From lines 69 and 172. Something drastically wrong has happened. An error message is printed with much relevant data.

From Lines 12, 19, 26, and 175. Because some sort of error has occurred the error marker is set to 111.

The program returns to the MAIN section and subroutine SIGI ends.

Subroutine DIVIN

This subroutine is called from line 72 in the MAIN program and is used to calculate the integral
\[
\because \int_{0}^{x_{0}} \xi \mathrm{e}^{-\psi} \psi^{\prime} \mathrm{d} \xi
\]

The factors transferred to this subroutine are the series of values \(\xi e^{-\psi^{\prime}} \psi^{\prime}\) (called XIEPS) corresponding to the \(\xi\) values, the integration cutoff \(x_{0}(c a l l e d\) IXO), and the
series of \(\xi\) values (called XI). XI characteristics have been described elsewhere, see for example the introduction to the explanation of the subroutine SIGI in this Appendix.

\section*{Lines \\ Function and/or relation to theory}

1 Subroutine declaration statement and transfer of necessary data. INTDI and IJK are as described for \(S I G I\), line 1.

2-3 Declaration of arrays and double precision.
4 The storage mpace for integration results is set to 0 .

5-7 A loop is set up that searches for a value of XI greater than or equal to IXO. If the \(X I\) value is less than \(I X O\) the search continues; if an \(X I\) value equals IXO the program goes to line 25; and if no XI value equals IXO, the first XI value greater than IXO sends operations to line 12.

8-11 If IXO is larger than all values of \(X I\) an error message is printed, the error marker is set to lll, and operations are sent to line 65

12-24 From line 6. Since IXO occurs between 2 values of XI (i.e. XI (I-I)<IXO<XI (I)) vintegration cannot be exact and so these lines perform the same sort of computations, and for the same reasons, as lines 29-41 in subroutine SIGI.
first range of \(X I\) values is to be integrated over. In this case procedd to line 32 .

Since less than the entire first range is to be integrated over, NDIM is assigned the proper value. If NDIM > 2 IQSF can be used; operations go to line 33.

If IQSF: can be used go to line 45.
42-43 The integration for the second XI range is completed and added to previous results and the operations are sent to line 64.

From line 37. NDIM is set to the appropriate value.

45-48 From lines 40 or 44. The array XIEPS is shifted the proper number of places.

56-57 Final integration and summation are completed and operations proceed to line 64..

58-61 From line 54. XIEPS is shifted the proper number of places.

62 Final use of IQSF, on the set of values corresponding to the third \(X I\) range.

63 Final summation of results.
64 From lines \(31,35,43,51,57\), or 63. The final result is assigned to INTDI(1) for access by the MAIN program upon leaving this subroutine. .

65-66 From lines 11 or 64. Operations return to the MAIN program and subroutine DIVIN ends.

This subroutine is called from lines 78, 91, 104, 112, 122, 133, 146, 157, and 168 in the subroutine SIGI and from lines 33, 49, and 62 in the subroutine DIVIN. It is part of IBM's Scientific Spbroutine Package where it is called "QSF". This subroutine performs integrations numerically following the method of Simpson's rule. Further details and explanations may be found in the SSP manual on page 87.
*Modifications to YAHOO to get BGIN -

The changes in lines 4 to 69 are due to \(\sigma_{b g}\) being used as a constant. Wording changes in the format statements reflect this difference in usage of the value read in for SBG in line 19.

The changes in lines 111 through 132 are performed because of the change in the Newton-Raphson method. With respect to the terms of page 15 (and so pages 10 and 11) the variables in the program are:
\[
\begin{array}{r}
\text { SUM1 } \equiv £ \\
\because \quad \text { SUM2 } \equiv £_{x} \\
\text { EI } \equiv \varepsilon_{ \pm}
\end{array}
\]

UI \(\begin{aligned} & \text { BI }(I) \equiv \mu_{i} \\ & \text { SIGISO }(I) \equiv \sigma_{i s o}\left(x_{i}\right)\end{aligned}\) In the last line of the group replacing lines 123
through 132 the size of SUM2 is tested. If it is too small
the value of
SUM1/ (2. *'SUM2)
(in the new version of line 142) would probably exceed the size limit of the computer.

The new version of line 142 produces a new iterative value of \(\sigma_{c}\) in the manner described on page 15 .

All. changes and deletions in the rest of the program are obvious consequences of the use of \(\sigma_{b g}\) as a constant.

The lines inserted between lines 277 and 278 keep track of the latest values of \(\alpha, \sigma_{c}\), and \(x^{2}\).
*Modifications to YAHOO to get TAḞCHEC

The lines inserted between lines 24 and 25 read in and reprint Taff's values for \(a ; \sigma_{C}\), and \(\sigma_{b g}\).

The variable insetted between lines 56 and 57 is a marker used to determine whether or not TAFCHEC has completed alpthe functions YAHOO performs for a given \(x_{0}\). If it has, then ITAFF's value is changed from 5 to 500 , \({ }^{\text {Iso }}\) is calculated for Taff's \(\alpha\) and the current \(x_{o}\), a model isothermal gas sphere is created from this \({ }_{1 s o}\) and Taff's values of \(\sigma_{c}\) and \(\sigma_{b g}\), and the \(x^{2}\) is found from comparison of the data to this model.

The lines inserted between Iines 102 and 103 and again between lines 107 and 108 check to see if TAFCHEC has completed the YAHOO functions. If so, the values for \(\sigma_{\text {iso }}\) using Taff's value of \(\alpha\) have been calculated (Iines 79 to 107 inclusive) and theiprogram can calculate the \(x^{2}\).

Since line 281 completes the YAHOO functions, ITAFF's value is reassigned, \(\alpha\) is set to Taff's value, and operations return to line 79 to calculate oiso.

After this has been done operations go to the line flagged 820. Here \(x^{2}\) is set to 0 and a loop calculates the theoretical number of galaxies in each ring fror the model prodaced with Taffis values. \(x^{2}\). is then calculated from . these theoretical values of Taff and the actual number of galaxies (the data set NOBS).

Once the ' \(x^{2}\) has been found both it and the Taff value of \(\alpha\) are printed. The \(\alpha\) value is printed as a safety check since its variable nama in the program, ALPHA, is changed continuously during the program's execution. Taff's values of \(\sigma_{c}\) and \(\sigma_{b g}\) are not reprinted because the spaces they are assigned to (TSC and TSBG respectively) remain unchanged once they are read in.

After printing Taff's \(\alpha\) and the calculated \(x^{2}\), the program increments \(x_{0}\) and continues with the YAHOO functions for it.

\author{
Appendix D \\ Plate and cluster information
}

The table on the next page lists information relating to the plates used in this thesis. Also listed are the redshift of each cluster as well as the distance and richness classifications and the 1950 positions; the last three items are from Abel (2958).

All plates used were taken by Dr. G.A. Welch.



\author{
Appendix E \\ Strip counts
}

Tabulated in this appendix are the results of the strip counts. Since the strips were centred on the major galaxy in three of the clusters, this central galaxy was counted twice for each orientation, once for each strip which contained half of it (strips 6 and 7). For the fourth cluster the centre held a binary galaxy. This cluster had the strips centred between the members' of the binary and each member of the binary was treated like all other galaxies in the cluster; each was only counted once for each orientation.

After the three sets of strip counts. for each cluster (one set of counts for each magnitude limit) are two 1tems: a list of four cluster centres, the three from the different magnitude limits and the Abell (1958) centre; and a diagram of the centre area of the cluster, at twice the print scale, locating the four centres. The diagrams are centred on the locations of the centres of strip counting and the boxes for the Abell centres come from the one digit difference in accuracy stated in the tables of cluster centres. The squares of the diagram correspond to the 1.5 cm width of the grid used to make the strip counts.

A2052


A2052
Cluster centre (1950)
\begin{tabular}{clc} 
Source & R.A. & Dec. \\
\hline \begin{tabular}{c} 
Abel1 \\
b
\end{tabular} & \(15^{\mathrm{h}} 14^{\mathrm{m}_{0}} .0\) & \(+07^{\circ} 12^{\prime}\) \\
D & \(15^{\prime} 14.33\) & +0712.3 \\
f & 1514.36 & +0712.7 \\
& 1514.31 & +0712.0
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
Mag. \\
limit
\end{tabular}} & \multirow[b]{3}{*}{Strip No.} & \multicolumn{3}{|c|}{A2593} & \multirow[b]{2}{*}{137} \\
\hline & & & \multicolumn{2}{|r|}{Orientation} & \\
\hline & & E + W & \(\mathrm{N}+5\) & \(\mathrm{NE}+\mathrm{SW}\) & SE - NW \\
\hline \multirow{13}{*}{b} & 1 & 0 & 2 & 2 & 2 \\
\hline & 2 & 1 & 3 & 2 & 2 \\
\hline & 3 & 4 & 3 & 3 & 0 \\
\hline & 4 & 1 & 5 & 1 & 1 \\
\hline & 5 & 7 & 3 & 5 & 9 \\
\hline & 6 & 7 & 5 & 9 & 9 \\
\hline & 7 & 6 & 8 & 8 & 7 \\
\hline & 8 & 5 & 6 & 3 & 6 \\
\hline & 9 & 6 & 4 & 7 & 4 \\
\hline & 10 & 5 & 3 & 2 & 1 \\
\hline & 11 & 3 & 4 & 0 & 2 \\
\hline & 12 & 1 & 2 & 4 & 2 \\
\hline & total & 46 & 48 & 46 & 45 \\
\hline \multirow[t]{6}{*}{. \({ }^{\circ}\)} & 1 & 8 & 20 & 12 & 16 \\
\hline & 2 & 15 & 19 & 20 & 23 \\
\hline & 3 & 22 & 26 & 23 & 25 \\
\hline & & 31 & 39 & 21 & 50 \\
\hline & 5 & 41 & 30 & 37 & 54 \\
\hline & & & & & \\
\hline \multirow[t]{7}{*}{D} & & & & & \\
\hline & 8 & 44 & 32 & 31 & 42 \\
\hline & 9 & 36 & 32 & 47 & 35 \\
\hline & 10 & 29 & 37 & 34 & 32 \\
\hline & 11 & 23. & 39 & 28 & 17 \\
\hline & 12 & 16 & 18 & 22 & 23 \\
\hline & total & 400 & 398 & 405 & 405 \\
\hline \multirow{13}{*}{*} & 1 & 11 & 26 & 22 & 29 \\
\hline & 2 & 38 & 33 & 22 & 32 \\
\hline & 3 & 31. & 36 & 33 & 33 \\
\hline & 4 & 38 & 46 & 35 & 63 \\
\hline & 5 & 52 & 41 & 47 & 58 \\
\hline & 6 & 73 & 56 & 79 & 54 \\
\hline & 7 & 71 & 45 & 56 & 50 \\
\hline & 8 & 54 & 45 & 39 & 43 \\
\hline & 9 & 38 & 41 & 58 & 39 \\
\hline & 10 & 32 & 46 & 45 & 38 \\
\hline & 11 & 30 & 50 & 35 & 23 \\
\hline & 12 & 25 & 31 & 23 & 27 \\
\hline & total & 493 & 496 & 494 & 489 \\
\hline
\end{tabular}
\begin{tabular}{clc} 
Source & R.A. & Dec. \\
\hline Abell & \(23^{\mathrm{h}} 22^{\mathrm{m}_{0}}\) & \(+14^{\circ} 22^{\mathrm{A}}\) \\
B & 2321.76 & +1421.7 \\
D & 2321.80 & +1421.1 \\
f & 2321.82 & +1421.4
\end{tabular}


\begin{tabular}{clc} 
Source & R.A. & Dec. \\
\hline Abell & \(23^{\mathrm{h}} 34^{\mathrm{m} .0}\) & \(+20^{\circ} 53^{\prime}\) \\
b & 2333.86 & +2051.1 \\
D & 2333.99 & +2051.2 \\
f & 2334.01 & +2051.1
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Mag. \\
limit
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Strip } \\
& \text { No. }
\end{aligned}
\]} & \multicolumn{3}{|r|}{Al54 Orientation} & 141 \\
\hline & & E + W & \(\mathrm{N}+5\) & NE \(\rightarrow\) SW & SE + NW \\
\hline \multirow[t]{6}{*}{-} & 1 & 1 & 5 & 6 & 1 \\
\hline & 2 & 1 & 4 & 5 & 4 \\
\hline & 3 & 7 & 6 & 5 & 2 \\
\hline & 4 & 4 & 3 & 2 & 3 \\
\hline & 5 & 3 & 0 & 3 & 5 \\
\hline & 6 & 13 & 10 & 6 & 8 \\
\hline \multirow[t]{7}{*}{b} & 7 & 3 & 7 & 14 & 6 \\
\hline & 8 & 10 & 4 & 5 & 6 \\
\hline & 9 & 3 & 4 & 3 & 5 \\
\hline & 10 & 3 & 2 & 1 & 5 \\
\hline & 11 & 3 & 4 & 4. & 4 \\
\hline & 12 & 2 & 3 & 1 & 3 \\
\hline & total & 52 & 52 & 55 & 52 \\
\hline \multirow[t]{3}{*}{.} & 1 & 15 & 13 & 24 & 17 \\
\hline & , 2 & 15 & 14 & 18 & 23 \\
\hline & * 3 & 25 & 14 & 18 & 14 \\
\hline \multirow[t]{3}{*}{} & 4 & 26 & 24 & 20 & 28 \\
\hline & 5 & 18 & 21 & 23 & 17 \\
\hline & 6 & 40 & 38 & 40 & 32 \\
\hline \multirow[t]{2}{*}{D} & 7 & 34 & 33 & 46 & 41 \\
\hline & 8 & 34 & 24 & 20 & 23 \\
\hline \multirow[t]{11}{*}{\(\checkmark\)} & 9 & 14 & 23 & 22 & 19 \\
\hline & 10 & 18 & 16 & 10 & 20 \\
\hline & 11 & 8 & 20 & 18 & 14 \\
\hline & 12 & 12 & 17 & 7 & 17 \\
\hline & eotal & 259 & 257 & 266 & 265 \\
\hline & 1 & -15\% & 20 & 29 & 26 \\
\hline & 2 & \({ }^{+28}\) & 27 & 20 & 21 \\
\hline & 3 & 27 & 23 & 23 & 22 \\
\hline & 4 & 32 & 30 & 25 & 28 \\
\hline & 5 & 38 & 23 & 29 & 26 \\
\hline & 6 & 49 & 42 & 47 & 48 \\
\hline \multirow[t]{7}{*}{f} & 7 & 42 & 35 & 59 & 50 \\
\hline & 8 & 35 & 31 & ' 25 - & 30 \\
\hline & 9. & 18 & 37 & 32 & 26 \\
\hline & 10 & 24 & 24 & 8 & 26 \\
\hline & 11 & 23 & 32 & 23 & 13 \\
\hline & 12 & 17 & 24 & 11 & 17 \\
\hline & total & .348 & 348 & 331 & 333 \\
\hline
\end{tabular}

Al54
Cluster centre (1950)
\begin{tabular}{ccc} 
Source & R.A. \({ }^{\circ}\) & Dec. \\
\hline Abell & \(01^{\mathrm{h}} 08^{\mathrm{m}} .3\) & \(+17^{\circ} 24^{\circ}\) \\
b & 0108.38 & +1724.0 \\
D & 0108.41 & +1723.8 \\
f & 0108.42 & +1723.5
\end{tabular}


\section*{Appendix \(F\) \\ Ring counts}

The ring count.results are tabulated by quadrant and ring in this appendix for all three magnitude limits of each cluster. The tables contain the ring number, the outer radius in arcminutes of that ring, the number of galaxies in each quadrant, and the number of galaxies for the ring. At the bottom of the tables are the total numbers of galaxies both per quadrant and in the total area counted.





\section*{Appendix G}

Background counts

Below are tabulated the background' counts for each cluster's three magnitude limits. These counts were taken in 9 cm by 9 cm squares in each corner of each print (8.75 cm squares for A2052). Besides the number counts ( N ) and the background densities in galaxies/arcmin \({ }^{2}(\sigma)\), the total counting area in arcmin \({ }^{2}\) are presented for each cluster. The densities of the \(\Sigma\) column are those used as the initial estimates for the program YAHOO and also as the fixed values of \(\sigma_{\mathrm{bg}}\) in the program BGIN.

The background counts were also used to calculate \(\Delta M\) in Table 12.
\(\downarrow\)
A2 052
Total area counted over \(=2480.0\) arcmin \(^{2}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Mag. \\
1imit
\end{tabular}} & \multirow{2}{*}{1} & \multicolumn{4}{|c|}{Corner} & \multirow[b]{2}{*}{\(\Sigma\)} \\
\hline & & NE & NW & SE & SW & \\
\hline b & N
\(\mathrm{\sigma}\) & \[
9.68{ }^{6}(-3)
\] & \[
\begin{gathered}
2 \\
3.23(-3)
\end{gathered}
\] & \[
\begin{gathered}
.2 \\
3.23(-3)
\end{gathered}
\] & \[
\frac{1}{1.61(-3)}
\] & \[
4.11
\] \\
\hline D & \begin{tabular}{l} 
N \\
\hline
\end{tabular} & \[
\begin{gathered}
33 \\
5.32(-2)
\end{gathered}
\] & \[
\begin{gathered}
12 \\
1.94(-2)
\end{gathered}
\] & \[
\begin{gathered}
50 \\
8.06(-2)
\end{gathered}
\] & \[
\begin{gathered}
8 \\
1.29(-2)
\end{gathered}
\] & \[
\begin{aligned}
& 103 \\
& 4.15(-2)
\end{aligned}
\] \\
\hline f & N
\(\mathrm{\sigma}\) & \[
\begin{gathered}
87 \\
1.40(-1)
\end{gathered}
\] & \[
\begin{gathered}
48 \\
7.74(-2)
\end{gathered}
\] & \[
\begin{gathered}
105 \\
1.69(-1)
\end{gathered}
\] & \[
\begin{gathered}
38 \\
6.13(-2)
\end{gathered}
\] & \[
\begin{aligned}
& 278 \\
& 1.12(-1)
\end{aligned}
\] \\
\hline
\end{tabular}

Total area counted over \(=2348.0\) arcmin \({ }^{2}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Mag. IImit} & & \multicolumn{4}{|c|}{Corner} & \multirow[b]{2}{*}{\(\Sigma\)} \\
\hline & & NE & NW & SE & SW & \\
\hline b & \[
\begin{aligned}
& \mathrm{N}^{\bullet} \\
& \sigma
\end{aligned}
\] & \[
\begin{gathered}
4 \\
6.81(-3)
\end{gathered}
\] & \[
6.81(-3)
\] & \[
5.111_{(-3)}^{3}
\] & \[
6.81(-3)
\] & \[
\begin{gathered}
15 \\
6.39(-3)
\end{gathered}
\] \\
\hline D & \[
\begin{aligned}
& \mathrm{N} \\
& \sigma
\end{aligned}
\] & \[
\begin{gathered}
27 \\
4.60(-2)
\end{gathered}
\] & \[
\begin{gathered}
60 \\
1.02(-1)
\end{gathered}
\] & \[
\begin{gathered}
53 \\
9.03(-2)
\end{gathered}
\] & \[
\begin{gathered}
42 \\
7.16(-2)
\end{gathered}
\] & \[
\begin{gathered}
182 \\
7.75(-2)
\end{gathered}
\] \\
\hline f & \[
\begin{aligned}
& \mathrm{N} \\
& \sigma
\end{aligned}
\] & \[
\begin{gathered}
39 \\
6.64(-2)
\end{gathered}
\] & \[
\begin{gathered}
95 \\
1.62(-1)
\end{gathered}
\] & \[
\begin{gathered}
71 \\
1.21(-1)
\end{gathered}
\] & \[
\begin{gathered}
60 \\
1.02(-1)
\end{gathered}
\] & \[
\begin{gathered}
265 \\
1.13(-1)
\end{gathered}
\] \\
\hline
\end{tabular}
- )
©

\section*{A2626}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Mag. \\
limit
\end{tabular}} & \multicolumn{5}{|l|}{Total area counted over \(=\underset{r}{1401.8}\) arcmin \(^{2}\) Corner} & \multirow[b]{2}{*}{\(\Sigma\)} \\
\hline & & NE & NW & SE & SW & \\
\hline b & N
\(\mathrm{\sigma}\) & \[
\frac{11}{3.14(-2)}
\] & \[
1.43^{5}(-2)
\] & \[
2.00^{7}(-2)
\] & \[
8.566_{(-3)}
\] & \[
1.85(-2)
\] \\
\hline D & N
O & \[
\begin{gathered}
92 \\
2.63(-1)
\end{gathered}
\] & \[
\begin{gathered}
66 \\
1.88(-1)
\end{gathered}
\] & \[
\begin{gathered}
68 \\
1.94(-1)
\end{gathered}
\] & \[
\begin{gathered}
74 \\
2.11(-1)
\end{gathered}
\] & \[
\begin{gathered}
300 \\
2.14(-1)
\end{gathered}
\] \\
\hline f & N
O & \[
\begin{gathered}
202 \\
5.76(-I)
\end{gathered}
\] & \[
\begin{gathered}
146 \\
4.17(-1)
\end{gathered}
\] & \[
\begin{gathered}
123 \\
3.51(-1)
\end{gathered}
\] & \[
\frac{151}{4.31(-1)}
\] & \[
\begin{gathered}
622 \\
4.44(-1)
\end{gathered}
\] \\
\hline
\end{tabular}

A154
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Mag. \\
limit
\end{tabular}} & & \multicolumn{4}{|l|}{Total area counted over \(=1270.2 \mathrm{arcmin}^{2}\)} & \multirow[b]{2}{*}{\(\Sigma\)} \\
\hline & & NE & NW, & SE & SW & \\
\hline b & \[
\begin{gathered}
N \\
0
\end{gathered}
\] & \[
1.57(-2)
\] & \[
0.00 \stackrel{0}{(-0)}
\] & \[
2.52_{(-2)}
\] & \[
2.58^{8}(-2)
\] & \[
\begin{gathered}
21 \\
1.65(-2)
\end{gathered}
\] \\
\hline D & N
0 & \[
\begin{gathered}
32 \\
1.01(-1)
\end{gathered}
\] & \[
\begin{gathered}
26 \\
8.19(-2)
\end{gathered}
\] & \[
\begin{gathered}
40 \\
1.26(-1)
\end{gathered}
\] & \[
\begin{gathered}
37 \\
1.17(-1)
\end{gathered}
\] & \[
\begin{gathered}
135 \\
1.06(-1)
\end{gathered}
\] \\
\hline £ & N
O & \[
\begin{gathered}
36 \\
1.13(-1)
\end{gathered}
\] & \[
\begin{gathered}
29 \\
9.13(-2)
\end{gathered}
\] & \[
\begin{gathered}
62 \\
1.95(-1)
\end{gathered}
\] & \[
\begin{gathered}
47 \\
1.48(-1)
\end{gathered}
\] & \[
\begin{gathered}
174 \\
1.37(-1)
\end{gathered}
\] \\
\hline
\end{tabular}

\author{
Appendix H \\ Complete results
}

The data for each magnitude limit of a given cluster were used in the programs YAHOO and BGIN for two cases each; using data for all 20 rings and just using data for the inner 10 rings. Each cluster has therefore 12 sets of results. Table 12 displays parts of these results but this appendix lists the complete results.

The tables display, in columns from left to right: M - the magnitude limit for this set of rows; \(\Delta M\) - the difference in magnitude between the \(b\) limit and the \(D\) and \(f\) magnitude limits; Prog - the program used; NR - the number of rings used; NG - the number of galaxies used; \(\alpha\) - the best fit scale factor; \(\sigma_{C}\) - the best fit central density; \(\sigma_{b g}\) - for YAHOO the best fit background density, for BGIN the counted background as obtained from the counts in Appendix \(G\) (in BGIN this value is necessarily the same for both 10 and 20 ring cases for a given cluster and magnitude limit); \(x_{0}\) - the best fit integration cutoff to the * isothermal gasrsphere model; \(x^{2}\) - the calculated \(x^{2}\) obtained from comparing the best fit model to the data; and Probthe probability that any \(\chi^{2}\) would be smalder than the one actually found: For the last column the number of degrees of freedom used is ( \(N R-K\) ), where \(k=5\) for \(Y A H O O\) and \(k=4\) for BGIN.

In these tables the units used are:
\[
\begin{aligned}
\Delta M & \text { - magnitudes } \\
\alpha & -\operatorname{arcmin} \\
\sigma_{c} & - \text { galaxies/arcmin }
\end{aligned}
\]
A. 2052


A2593


A2626
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ML & \(\Delta \mathrm{M}\) & Prog & NR & NG & a & \({ }^{\circ} \mathrm{C}\) & \({ }^{\circ} \mathrm{bg}\) & \(\mathrm{x}_{0}\) & \(x^{2}\) & Prob \\
\hline \multirow[t]{4}{*}{b} & \multirow[t]{4}{*}{-} & \multirow[t]{2}{*}{YAHOO} & 10 & 40 & 1.407(-0). & \(2.095(-1)\) & 9.671 (-3) & 160 & 4.298 & . 4926 \\
\hline & & & 20 & 91 & \(1.294(-0)\) & 2.215 (-1) & 1.185 (-2) & 140 & 6.662 & . 0336 \\
\hline & & \multirow[t]{2}{*}{BGIN} & 10 & 40 & 1. 287 (-0) & 2.137(-1) & 1.85 (-2) & 30 & 4.322 & . 3668 \\
\hline & & & 20 & 91 & \(1.271(-0)\) & \(2.162(-1)\) & 1.85 (-2) & 30 & 6.787 & . 0228 \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{D} & \multirow[t]{4}{*}{1.8} & \multirow[t]{2}{*}{YAHOO} & 10 & 228 & \(1.035(-0)\) & 5.499(-1) & \(2.022(-1)\) & 160 & 5.511 & . 6433 \\
\hline & & & 20 & 697 & \(1.574(-0)\) & 4.659(-1) & \(1.668(-1)\) & 140 & -19.01 & . 7867 \\
\hline & & \multirow[t]{2}{*}{BGIN} & 10 & 228. & \(9.660(-1)\) & \(5.696(-1)\) & 2.14 (-1) & 50 & 5.520 & . 5210 \\
\hline & & & 20 & 697 & 1.152 (-0) & 5.186(-1) & 2.14 (-1) & 20 & 26.14 & . 9479 \\
\hline & & & & , & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{£} & \multirow[t]{4}{*}{2.3} & \multirow[t]{2}{*}{YAHOO} & 10 & 498 & \(1.080(-0)\) & 1.128(-0) & \(5.364(-1)\) & 10 & 8.811 & . 8832 \\
\hline & & & 20 & 1528. & 1.454(-0) & 1. \(204(-0)\) & 3.786(-1) & 80 & 29.80 & . 9873 \\
\hline & & \multirow[t]{2}{*}{BGIN} & 10 & 498 & '9.637(-1) & 1.238(-0) & 4.44 ( -1 ) & 200 & 9.861 & . 8694 \\
\hline & & & 20 & 1528 & 1. \(208(-0)\) & 1.118(-0) & 4.44 (-1) & 20 & 34.50 & . 9954 \\
\hline
\end{tabular}

Al54
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ML & \(\Delta \mathrm{M}\) & Prog & NR & NG & \(\alpha\) & \({ }^{\circ} \mathrm{c}\) & \({ }^{b_{b g}}{ }^{-}\) & \(\mathrm{x}_{0}\) & \(x^{2}\) & Prob \\
\hline \multirow[t]{4}{*}{b} & \multirow[t]{4}{*}{\(\because\)} & \multirow[t]{2}{*}{YAHOO} & 10 & 40 & \(5.214(-2)\) & \(1.083(+1)\) & 3.769 (-2) & 200 & 1.947 & . 1436 \\
\hline & & & 20 & 95 & \(6.333(-1)\) & \(4.577(-1)\) & \(1.790(-2)\) & 180 & 9.057 & . 1255 \\
\hline & & \multirow[t]{2}{*}{BGIN} & 10 & 40 & \(6.74 .8(-1)\) & \(4.455(-1)\) & 1.65 (-2) & 200 & 2.981 & . 1888 \\
\hline & & & 20 & 95 & \(6.748(-1)\) & 4.450(-1) & 1.65 (-2) & 200. & 9.120 & . 0916 \\
\hline \multirow[t]{4}{*}{D} & \multirow[t]{4}{*}{1.3} & \multirow[t]{2}{*}{YАНОо} & 10 & 187 & 6.174(-2) & \(3.638(+1)\) & \(1.704(-1)\) & 200 & 4.745 & . 5522 \\
\hline & & & 20 & 498 & \(5.064(-1)\) & \(2.549(-0)\) & \(1.049(-1)\) & 180 & 17.00 & . 6811 \\
\hline & & \multirow[t]{2}{*}{BGIN} & 10 & 187 & \(5.549(-1)\) & \(2.313(-0)\) & 1.06 (-1) & 120 & 5.323 & . 4969 \\
\hline & & & 20 & 498 & 5.453(-1) & \(2.342(-0)\) & 1.06 (-1) & 160 & 17.02 & . 6157 \\
\hline \multirow[t]{5}{*}{f} & \multirow[t]{5}{*}{1.5} & \multirow[t]{2}{*}{YaHOO} & 10 & 232 & \(1.006(-1)\) & 2.421(+1) & 1.709(-1) & 190 & 3.819 & . 4242 \\
\hline & & & 20 & 634 & \(1.917(-1)\) & \(1.058(+1)\) & \(1.505(-1)\) & 200 & 17.63 & . 7174 \\
\hline & & \multirow[t]{3}{*}{BGIN} & 10 & 232 & 1. \(444(-1)\) & \(1.569(+1)\) & 1.37 (-1) & 200 & 3.939 & . 3151 \\
\hline & & & 20 & 634 & \(2.639(-1)\) & \(7.364(-0)\) & 1.37 (-1) & 200 & 18.13 & . 6779 \\
\hline & & & & & & & & & & \(\stackrel{H}{6}\) \\
\hline
\end{tabular}

\section*{Appendix I}

Density profiles

In Table 16 the accepted core radii are presented, having been calculated from the parameters produced by the program version BGIN when all 20 rings are used.'. In this appendix the counted density profiles are presented for all three magnitude limits for each cluster. These were produced from the ring count data of Appendix \(F\).

Superimposed on these profiles are the best fitting models created from the BGIN(20) parameters specififed on the individual graphs (these parameters are included in Appendix \(H\) ). The model profiles also indicate the core radil \(r_{c}\) (in arcmin) which are transformed to the radii of Table 16.

The error bars on these graphs are set to be equal to the square root of the number of galaxies occurring in a particular ring. Despite the fact that the outer rings have more galaxies than the inner rings, the densities. enclosed by the error bars decrease as \(r_{\text {av }}\) dncreases because ' of the increased area, and so smaller densities, covered by these outer rings.

The units on all profiles are: \(r_{\text {av }}\) and \(\alpha\) - arcmin; v, \(\sigma_{c}\), and \(\sigma_{b g}-g a l a x i e s / a r c m i n{ }^{2}\).













Appendix J
Sample output

This appendix contains sample output from the programs YAHOO, BGIN, and the BASIC program used to produce the series of values \(e^{-\psi^{*}}\).

Both YAHOO and BGIN begin by reprinting the line used to check terminal speed and width, followed by the initial estimate for \(\sigma_{c}\). The next number is either called the estimate for \(\sigma_{b g}\) (if YAHOO is being used) or the actual value of \(\sigma_{b g}\) (if BGIN is being, used). The number of rings used is then printed. If this is less than the total available in the data file (i.e. less than 20) the remainder of the ring data will be ignored for all computations.

The table that follows reprints the number of galaxies in each ring and that ring's inner and outex radil as a safety check. (Obviously the outer radius of one ring is the inner radius of the next ring outwards.) Also tabulated are the calculated observed densities of these rings and their average radif. These last two columns are used to draw observed density profiles of the type in Appendix I.

Then the main part of the output begins with the printing of the \(x_{0}\) value for the subsequent series of \(a\)
values. The table of numbers following \(x_{0}\) lists the \(\alpha\) values found by incrementing \(\log (\alpha)\), and, for YАНОО, the \(\sigma_{C}\) and \(\sigma_{b g}\) values arising from this particular \(x_{0}-\alpha\) combination and the resultant \(x^{2}\). There are three sets of these four values in each row; groups are to be read across, and not down, the page. For BGIN's output \(\sigma_{b g}\) has already been set, so printed across the page are four sets of three values: \(\alpha_{\text {, }}\) the \(\sigma_{c}\) found by the Newton-Raphson method, and the resulting \(x^{2}\).

After the possible range of a values has been printed, the minimum \(x^{2}\) in the table and its causative parameters are printed. Then the \(X^{2}\) and associated parameters obtained from the a averaging technique are listed.

The program then proceeds to the next \(x_{0}\) value and continues.

A sample output from the BASIC program is included to show that the \(\xi\) values are not as exact for the \(e^{-\psi} \psi^{\prime}\) values, as YAHOO and BGIN make them. Remarks on how this program was used for this thesis are included in Appendix B.

RUN YAHOD
THIS' DATA IS THESIS MATERIAL. DO NOT EDIT OR DELETE.(COLIN MIGHT CRY IF YOU DO.,


RUN BGIN
THIS DATA IS THESIS MAYERIAL. DO NOT EDIT DR DELETE. (COLIN MIGHT CRY IF YOU DO.)


RUNNH
ENTER STEP SIZE, NUMBER OF STEPS
? 1+ 100
100
```

