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A b s t r a c t 1

A b s t r a c t

E f f e c t s  o f  S t e l l a r  R o t a t i o n  o n  Y o u n g  C l u s t e r  H R  
D i a g r a m s

by Christopher Geroux

This thesis investigates the effects of stellar rotation on the HR diagram location of mem­
bers within young clusters. The rotational effects on luminosity and temperature of a star 
depend on the viewing angle and the rotation rate of the star and must be included in 
determining the HR diagram locations. The position of members is used as an indicator of 
the rotational characteristics of the individual stars. The fraction of clusters with a selected 
member within restricted ranges of rotation rate and viewing angle has been calculated 
for each selected member. These selected members are: brightest cluster member, bluest 
cluster member, and reddest cluster member above a luminosity cutoff. The brightest and 
bluest members were found to be rapidly rotating and viewed pole-on in 74% and 88% of 
the clusters respectively. The reddest member above a luminosity cutoff was found to be 
rapidly rotating and viewed equator on in 94% of the clusters.

November 20, 2007
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1. I n t r o d u c t i o n 2

1 I n t r o d u c t i o n

Stellar rotation is difficult to study directly for stars other than the Sun. Observationally 

the surface rotation velocity can be measured by spectroscopy using Doppler broadening 

of spectral lines. This allows one to measure the line of sight velocity, usin i, causing 

the measured velocity to be dependent on the inclination, i, of the rotation axis to the 

observer’s line of sight. The intertwining of inclination and rotation velocity causes difficulty 

in studying rotating stars. For stars rotating sufficiently rapidly, their position in the HR 

diagram can be greatly affected not only by their rotation rate but also by their inclination, 

as shown by Collins (1966), Hardorp & Strittmatter (1968a), Maeder & Peytremann (1970), 

and Gillich (2007). One aim of this thesis is to explore how the dependence of a star’s 

location in the HR diagram, due to rotation and viewing angle, can be used to constrain 

a star’s rotation rate and inclination under certain conditions. One of these conditions is 

that the star be a member of a cluster.

Star clusters are of great use to astronomers because the members of a cluster form out 

of the same material at essentially the same time. The age of clusters can be estimated from 

isochrone fitting. Due to these properties, clusters are very useful for testing theoretical 

stellar models. In the present work synthetic clusters are constructed to examine how a 

cluster member’s position on the HR diagram can constrain its rotation and inclination 

under specific conditions. Through examination of the properties of cluster members in 

specific HR diagram locations, in particular the members near the extrema (e.g., brightest, 

bluest) of the cluster HR diagram, the fraction of clusters can be calculated with these 

selected members having certain rotation velocities and inclinations.
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1. I n t r o d u c t i o n 3

Recent studies by Strom, Wolff, k, Dror (2005) and Wolff et al. (2007) suggest that 

the distribution of rotation velocities among stars may vary based on their environment. 

They find that field B stars on average are slower rotators than B stars in clusters. Turner 

(1996a,b) finds a correlation between reddening and usini saying that this is suggestive 

of circumstellar reddening and circumstellar disks and suggests that the origin of rapidly 

rotating stars could be explained by mergers. This led Turner to the conclusion that if 

rapidly rotating stars are generated via mergers then 40% to 50% of the stars prior to 

mergers must have been binaries to account for the number of stars exhibiting rapid rotation 

and circumstellar reddening. Turner also notes that a high number of binaries is far more 

likely in dense cores of clusters. These environmental effects lead to the issue of how 

the fraction of clusters having selected members with specific rotational characteristics is 

affected by the distribution of rotation among cluster members. We shall address this 

by examining several distribution functions for allocating rotation rates among stars in a 

cluster.

Understanding how rotation affects the luminosity and effective temperature of stars 

is necessary in studying early type stars to deduce the star’s true physical characteristics. 

Sufficiently rapid rotation can greatly alter a star’s deduced effective temperature and lu­

minosity (Collins, 1963). For example, a 12 M© ZAMS model rotating uniformly with a 

surface equatorial velocity of 575 km s_1 can have its apparent position on the HR diagram 

moved so much that it may have the same luminosity and effective temperature as a non­

rotating 8 M0 model near the ZAMS. To derive information from clusters which contain 

stars that rotate appreciably, it is necessary to understand the effects that rotation has on 

a star’s location in the HR diagram. We shall refer to this relationship between inclination
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1. I n t r o d u c t i o n 4

and location in the HR diagram as an inclination curve.

The present work strives to determine the fraction of clusters with members at selected 

locations in the HR diagram having inclinations and rotation rates within a specified range. 

The robustness of these fractions is tested by considering different numbers of cluster mem­

bers, different limitations on the inclination and rotation rates of the selected members, and 

a different number of rapidly rotating stars in the cluster. We will use different numbers of 

clusters and stars in a cluster to determine how sample size affects the calculated fractions.

Once the mass, rotation rate, and surface properties of a star are specified an inclination 

curve can be computed. Then once an inclination is specified, a point on the inclination 

curve can be determined, thus placing the star in the HR diagram. The inclination curves 

used in this work are computed with analytic approximations we designed to match actual 

inclination curves computed by Gillich (2007). The analytic approximation of inclination 

curves requires stellar structure information, which is derived from evolutionary tracks of 

rotating stars. The next section will describe how rotating stars have been modeled in the 

past, as well as how inclination curves are determined for these stellar models.

1 .1  M o d e l i n g  R o t a t i n g  S t a r s

Several steps are required to simulate the observed luminosity and effective temperature 

of rotating stars. First we construct a stellar model to determine the surface effective 

temperature and gravity as functions of colatitude. Then model atmospheres are used to 

produce angle dependent intensities. The model atmospheres depend on the local values of 

the effective temperature and gravity from the structure calculations. A grid of atmospheres 

is needed to cover the range of effective temperature and gravity over the surface of the
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1. I n t r o d u c t i o n 5

stellar model. The intensities in the direction of the observer are then integrated over the 

surface of the stellar model to produce the observed flux as a function of wavelength, which 

is referred to as the spectral energy distribution (SED). Thus, the observed SED depends 

on the inclination. From the SED, effective temperatures and luminosities can be derived: 

temperature by the shape of the SED and luminosity by the integration of the SED over all 

wavelengths. Inclination curves are constructed for a given model by calculating the effective 

temperature and luminosity from the different SEDs of models at varying inclinations.

1 .1 .1  S t e l l a r  I n t e r i o r s

One of the earliest methods for describing the surface properties of rotating stars was 

provided by von Zeipel (1924). He showed that if a rotating star is in hydrostatic and 

radiative equilibrium, then the pressure and density are constant on equipotential sur­

faces. Assuming an ideal gas law it can be shown that temperature is also constant on 

an equipotential surface if the composition is uniform. For purely radiative stars, the flux 

can be expressed as the product of the temperature gradient and a radiative conductivity. 

The flux is constant on an equipotential surface because the temperature is constant on 

an equipotential surface. Thus the flux is parallel to the gradient of the total potential. 

The surface flux is proportional to as well as to the gradient of the total potential, 

V 4 =  9eff, producing the proportionality, Teff oc g ^ 4, known as von Zeipel’s theorem. geg is 

the effective gravitational acceleration, which is the sum of the gravitational and centrifugal 

accelerations normal to the surface. This relation can be used to determine the effective 

temperature as a function of colatitude, Teg(9), from geg, which is dependent on the interior 

mass distribution, the radius as a function of colatitude, R(9), and the angular velocity of
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1. I n t r o d u c t i o n 6

the rotating star.

One of the earliest structural model of a rotating star was done by Sweet & Roy (1953), 

who used a first-order perturbation technique to calculate the structure of a rotating model 

based on a numerical Cowling model computed by Gardiner (1951). The Cowling model is a 

solution to the equations of stellar structure with a convective core and a radiative envelope 

(Cowling, 1935). Sweet & Roy found that when the ratio of equatorial centrifugal force to 

surface gravity was greater than 0.29, the first order model breaks down and higher order 

corrections need to be accounted for. They also discussed that, using their first-order model, 

the mean effective temperature and luminosity of a rotating star are reduced. Another result 

was that rotation produces a spread in luminosity, when viewed from different inclinations, 

on the order of half a magnitude for the most rapidly rotating B stars. When the rotating 

star is viewed pole-on, it will appear brighter and hotter than if viewed equator on.

Roxburgh, Griffith, & Sweet (1965) modeled more rapidly rotating stars using a two 

part model, with the inner part of the model containing the majority of the mass and 

the outer envelope containing a negligible amount of the mass. In the inner region, the 

ratio of centrifugal force to gravity was small and could be modeled with the first order 

perturbation method used by Sweet & Roy (1953). In the outer region the potential was 

determined by an approximate solution to Laplace’s equation allowing the structure equa­

tions to be integrated in the same manner as for spherical stars. The opacity used in the 

model was electron scattering, which applies to very early-type stars, while neglecting radi­

ation pressure, which applies to late-type stars. Faulkner, Roxburgh, & Strittmatter (1968) 

improved upon the models by including better opacities and nuclear energy generation rates 

along with more realistic boundary conditions. Sackmann & Anand (1969) then included
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1. I n t r o d u c t i o n 7

radiation pressure in the model calculations. Sackmann k  Anand (1970) present the first 

quantitative computations of the evolution of uniformly rotating stars, finding that rotation 

moves the evolution track down in luminosity and to lower effective temperatures.

The methods previously described are only useful for relatively slowly rotating stars 

where the distortions to internal structure are small, and cannot handle the large changes 

in internal structure that are possible in white dwarfs and rapidly rotating massive stars 

(Ostriker k  Mark, 1968). Ostriker k  Mark (1968) developed the self-consistent-field (SCF) 

method to determine the equilibrium structure of a rapidly rotating star. This method 

separates the problem of solving for the potential and the density profile by adopting an 

initial density distribution and using Poisson’s equation to solve the potential from the 

density profile. One then solves the equations for hydrostatic equilibrium and the bound­

ary conditions for the density profile that corresponds to the potential. The process is 

repeated, improving the density profile and potential. The SCF method was extended by 

Jackson (1970), who used the Henyey method (Henyey, Forbes, k  Gould, 1964) to permit 

the inclusion of nuclear-energy generation and energy transport by allowing the solution 

of differential equations to relate the density to the potential rather than the simplified 

algebraic equations used previously. The SCF failed to converge if the mass is less than 

about 9 M0 (Clement, 1978), even for non-rotating main-sequence models. However, that 

is disputed in a recent paper by Jackson, MacGregor, k  Skumanich (2005). In this method 

the type of differential rotation is restricted to a conservative rotation law having constant 

angular velocity on cylindrical surfaces co-axial to the rotation axis (Mark, 1968).

There are two main types of differential rotation laws, conservative and non-conservative. 

A conservative rotation law is one in which the centrifugal force can be derived from a
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1. I n t r o d u c t i o n 8

potential. Bodenheimer (1971) considered different conservative rotation laws to explore 

the effects of differential rotation on a stellar model’s luminosity and effective temperature. 

He found using the SCF method that the luminosity is nearly independent of the rotation 

law, and dependent on the mass and total angular momentum.

Clement (1974, 1978, 1979) developed a two-dimensional finite-difference technique for 

solving Poisson’s equation. This method can only accommodate conservative rotation laws 

and becomes numerically unstable otherwise. While the method provides faster conver­

gence for some rotation laws than the SCF method, other rotation laws produce similar 

convergence rates. Another method for modeling rotating stars is used by Collins & Smith 

(1985), who use ID stellar models and apply three correction factors to account for all of the 

rotational distortion. Collins & Smith used their models to study the effects of differential 

rotation, with a cylindrical rotation law applied to A stars. A revised form of the SCF 

method was presented by Jackson, MacGregor, & Skumanich (2005), which now converges 

for masses less than 9 M0 .

1 . 1 .2  I n c l i n a t i o n  C u r v e s

Studies by Hardorp & Strittmatter (1968b) show that energy transported in the atmo­

sphere by meridional circulation of material is very small compared to the energy trans­

ported by radiation, and can be om itted from atmosphere calculations. Hardorp & Strittmat­

ter state that, in general, constant-flux, plane-parallel atmospheres fitted at each point on 

the surface of the star, which does not consider energy transport due to circulation of 

material, are legitimate to model the atmosphere of a rotating star.
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1. I n t r o d u c t i o n 9

Collins (1963) was among the first to examine the effects of rotation on the deduced 

effective temperature and luminosity. In his examination he used the assumptions that the 

mass distribution follows that of a Roche model (the outer envelope has a potential derived 

from a centrally located mass), that rotation is solid body, and that energy-production is 

unaffected by rotation, and hence neither is luminosity. That allowed him to define the 

effective gravity as a function of colatitude, and then to use von Zeipel’s theorem to obtain 

the effective temperature as a function of colatitude. He then used a gray atmosphere 

model, and found that the observed monochromatic magnitude changed up to a magnitude 

from inclination i =  0 to 90°. Roxburgh & Strittmatter (1965) find similar results as Collins 

(1963), but use the more detailed interior model of Roxburgh, Griffith, & Sweet (1965) with 

gray model atmospheres. Collins (1965) improved on his previous work by using a series of 

non-gray model atmospheres, finding even larger variations in luminosity with inclination 

than previously.

Maeder & Peytremann (1970) improved the realism of atmospheres modeled with local 

thermodynamic equilibrium (LTE), which had thus far only included continuum opacities, 

by incorporating hydrogen line opacities for the Balmer and Lyman series. Further im­

provements came when Slettebak, Kuzma, & Collins (1980) and Fremat, Zorec, Hubert, 

&; Floquet (2005) created spectra of rotating stars using a series of non-LTE atmospheres. 

In most of the cases “gravity darkening” , in one form or another, is used to describe the 

surface properties of a star. “Gravity darkening” is essentially the use of von Zeipel’s theo­

rem relating the effective gravity to the effective temperature. The approach requires some 

structure information, specifically the effective gravity as a function of colatitude. The sim­

plest models postulate a point source gravitational potential with an assumed centrifugal
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1. I n t r o d u c t i o n 10

potential. While atmospheres of rotating stars are clearly important in the observed quan­

tities, Collins, Truax, & Cranmer (1991) state that the effects of rotation on the structure 

of the interior would likely play as large a role in determining the emergent spectrum as the 

rotational affects on the atmosphere.

Earlier work by Carroll (1928, 1933) and Shajn & Struve (1929) used limb darkening 

only and did not consider “gravity darkening” . The work by Carroll and by Shajn & Struve 

was primarily focused on determining line widths as a function of u sin i. Elvey (1930) 

used their results to calculate v sin i from observed line widths for the first time. Hardorp 

& Strittmatter (1968a) suggested that not including the effects of gravity darkening could 

lead to underestimating wsini by as much as 40%. Collins & Truax (1995) later examined 

the classical treatment of rotational broadening and found that inappropriate values for 

limb darkening coefficients can lead to significant errors, even in moderately rotating stars.

Many of the above works have created inclination curves or rotation displacement fans 

while modeling rotating interiors and atmospheres. Rotation displacement fans are curves 

on the HR or color magnitude diagrams in luminosity versus effective temperature or color. 

They are curves that connect points of constant inclination and varying rotational velocity, 

while inclination curves connect points of constant rotational velocity and varying inclina­

tion. See figure 1.1 for an example of inclination curves and rotation displacement fans. 

Collins (1966) computed rotation displacement fans on a color magnitude diagram of M„ 

versus B-V. From figure 1.1 one can see that a rotating 12 M0 model can easily have the same 

HR diagram location as a lower or higher mass non rotating star that is slightly evolved. 

This is the case for appreciable mass differences of up to 4 M0 . Hardorp & Strittmatter 

(1968b) computed inclination curves for 6 masses in the range of 1.5 to 8 M0 from calcu-
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Figure 1.1: Shown are rotation displacement fans (dashed curves) and inclination curves 
(solid curves). Open circles indicate inclinations of 0° to 90° in steps of 10° 
from left to right along the inclination curves. The inclination curves are at 4 
different surface equatorial velocities of 0, 210, 405, and 575 km s-1 . Crosses 
show non-rotating ZAMS models for 12 M0 and 8 M0 . Data for these curves 
have been provided by Gillich (private communication).
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1. I n t r o d u c t i o n 12

lations based on von Zeipel’s theorem. Maeder &; Peytremann (1970) computed rotation 

displacement fans for 5, 2 and 1.4 M® models from atmospheres that included hydrogen 

lines of the Balmer and Lyman series. Collins, Truax, & Cranmer (1991) also computed 

rotational displacement fans, but obtained an effective gravity by assuming a Roche model 

and using von Zeipel’s “gravity darkening” theorem. Townsend, Owocki, & Howarth (2004) 

computed rotation displacement fans using von Zeipel’s theorem.

In general, when stellar interiors are handled in a more realistic way (Clement, 1974, 

1978, 1979; Jackson, 1970) than simply using a Roche model or a ID model with pertur­

bations or corrections applied, the modeling of the stellar atmosphere is neglected and only 

a simple gray atmosphere is used. The reverse seems to be true for modeling atmospheres. 

The works cited here, which have used non-gray atmospheres and even non-LTE to com­

pute inclination curves or rotation displacement fans, have all used von Zeipel’s theorem  

to calculate the effective temperature as a function of colatitude. The present work uses 

inclination curves by Gillich (2007), which have the interior structure and the atmospheres 

both handled in detail. This was done using the fully 2D stellar structure and evolution 

code ROTORC (Deupree, 1990, 1995, 1998) and the stellar atmosphere code PHOENIX  

(Hauschildt & Baron, 1999), treating the atmospheres in non-LTE.

1 .2  S y n t h e t i c  C l u s t e r s

Synthetic clusters are synthetically generated HR diagrams representing the observed 

effective temperature and luminosity of cluster members. Such synthetic clusters are com­

posed of individual points, each representing an observed star’s HR diagram location. To 

generate a synthetic cluster, evolutionary tracks computed from stellar structure codes are
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1. I n t r o d u c t i o n 13

interpolated to the desired mass and age. The age of the interpolated model is usually 

chosen to be the age of the cluster, and the masses of the models usually follow some initial 

mass function. A synthetic cluster is composed of many such interpolated models.

Synthetic clusters have not been as extensively studied as stellar interiors and atmo­

spheres, though that is expected because synthetic clusters depend on the latter for their 

calculation. One of the first to compute a theoretical HR diagram was Sandage (1962), 

who computed theoretical HR diagrams for clusters of different ages. He then compared 

the theoretical HR diagrams for clusters to observed clusters to determine estimates of the 

ages of the observed clusters. The theoretical HR diagrams were constructed by connecting 

points of constant age among evolutionary tracks for stars of different masses. The lines 

then formed the theoretical HR diagram for a cluster at a given age. This method provided 

what was later referred to as an isochrone.

A more sophisticated approach was performed by Schlesinger (1969), who used a Salpeter 

initial mass function. To compute the location of the cluster members in the HR diagram, 

Schlesinger interpolated among tracks calculated by Iben (1965a,b, 1966a,b,c, 1967a,b). The 

interpolation was done among stages in the evolutionary tracks in which the time variation 

of luminosity and effective temperature was approximately linear. For example the section 

of the evolutionary track between the ZAMS and where half the initial central hydrogen is 

depleted was one stage of 10 stages that Schlesinger defined between the ZAMS and core­

helium exhaustion. Meyer-Hofmeister (1969) constructed HR diagrams of synthetic clusters, 

and also considered the effects of a non-zero formation time on the synthetic clusters. 

Meyer-Hofmeister used a method similar to Schlesinger (1969) to linearly interpolate in 

mass between similar phases of evolution. Harris & Deupree (1976) used a method similar
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1. I n t r o d u c t i o n 14

to Meyer-Hofmeister (1969) and Schlesinger (1969), in which the evolutionary tracks were 

divided into segments, the Salpeter (1955) mass function was imposed, and a non-zero 

formation time was used to compare with observed clusters.

Becker & Mathews (1983) took synthetic cluster generation one step further by not 

only interpolating in mass and age, but in metallicity and helium abundance as well. They 

constructed a three-dimensional grid of theoretical evolutionary tracks in Y, Z and mass. 

Becker & Mathews approached the construction of the synthetic clusters in a similar way 

to Schlesinger (1969), in that the evolutionary tracks were divided into sections. Tracks 

bracketing the desired composition and mass were interpolated in log Z to the desired log Z 

(at fixed Y and mass) resulting in log(age), log(Te) and log(L/L0 ) at the desired metallicity. 

This interpolation scheme was then repeated in log Y and in log M.

In more recent years synthetic clusters have been almost entirely replaced with isochrones. 

Isochrones are curves of constant age on the HR diagram over a mass range. One of the 

first to use the term isochrone was Demarque (1967). To construct the isochrones in his 

paper, Demarque used 22 evolutionary tracks and 50 main-sequence models. Sandage & 

Eggen (1969) used isochrones to determine ages for clusters, and explored the effects of 

composition on the age estimates. Simpson et al. (1970) computed isochrones by inter­

polating evolutionary tracks in log mass. They then used the isochrones to estimate ages 

and distance to some galactic clusters. Mentioned here are some of the first workers to use 

isochrones. Isochrones have been extensively used up to present day to explore the features 

of star clusters.

Isochrones can be of great use for testing the theories of stellar evolution against ob­

servations of clusters and estimating properties of the clusters. However, in the present
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work, exploring the rotational effects on a cluster’s HR diagram cannot use isochrones. The 

reason is that the HR diagram location of a cluster member now depends on the rotation 

and inclination of that particular member. Thus, an individual isochrone curve would be 

broadened into a sizeable (2100K) swath on the HR diagram. Rotation does not merely 

widen the main sequence; it also shifts the star parallel to the non-rotating main sequence 

depending on the star’s inclination. As the rotation rate of a star is changed, the position 

of the star’s inclination curve in the HR diagram is moved nearly perpendicular to the 

non-rotating main sequence. For different inclinations the observed effective temperature 

and luminosity move nearly parallel to the non-rotating main sequence along the inclination 

curve. Rotation rates of cluster members will not all be similar, but will cover a range of 

values. Also the inclination of a given cluster member may well be independent of those for 

other cluster members. For these reasons synthetic clusters are used and comparison with 

observed clusters must be done in a statistical manner.

There are two primary goals of this thesis. The first is to determine whether the width 

of the ZAMS well below the turnoff can be fit by the inclusion of rotation, and whether 

the width tells us something about the distribution of rotation among individual cluster 

members. The second is to determine if constraints may be placed on specific cluster 

members based on their relative positions in the cluster HR diagram. This work will use 

improved stellar interior models and more detailed atmosphere models than are often used 

in examining the stellar structure of rotating stars, and seldom ever used in conjunction 

with one another. As previously mentioned, this thesis will use inclination curves provided 

by Gillich (2007), who incorporated improved stellar interior models and detailed stellar 

atmospheres in his computations. These calculations handle “gravity darkening” without
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resorting to von Zeipel’s theorem, and have limb darkening automatically built into the 

atmosphere calculation. Thus no ad hoc limb darkening or gravity darkening need to be 

employed.

To examine our second goal, we compute a number of synthetic clusters. Once a sample 

of synthetic clusters is created, the rotational characteristics of a selected member of the 

cluster, for example the hottest star in a cluster, can be examined to determine if the selected 

member has the expected rotation rate and inclination based on its HR diagram location. 

For example, if the hottest cluster member is at the age of the cluster we expect it to be 

a rapidly rotating star and seen pole-on because it has the longest inclination curve and a 

star seen pole-on occupies the hottest part of the inclination curve. Many synthetic clusters 

with rotation are created and the hottest member selected from each cluster and examined 

for its rotational characteristics. Thus, each synthetic cluster generated contributes one 

data point (e.g. the hottest star) to the sample. The sample size is the number of synthetic 

clusters generated. If the selected member is found to be rapidly rotating and seen pole- 

on, then it is included in the count of hottest stars that meet the specified criterion. The 

number of rapidly rotating hottest stars seen pole-on is then divided by the total number 

of synthetic clusters. This gives the fraction, which we shall define as Cf,  of hottest stars 

that are rapidly rotating and seen pole-on within the clusters sampled. This method of 

calculating the fraction is also applied to the other types of selected members to quantify 

how many of the selected members meet the specified criterion

We use a modified version of the synthetic cluster code used by Harris & Deupree (1976), 

which interpolates among evolutionary tracks. It has been adapted to read in the ROTORC 

output data files, to interpolate in rotation rate, and to generate random inclinations. The
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1. I n t r o d u c t i o n 17

code uses the same method for selecting masses and interpolating as a function of mass 

and age as Harris & Deupree (1976). Analytic expressions for the inclination curves were 

developed to specify the location of a cluster member in the HR diagram as it would be 

observed. Sections have been added to the code to allow one to create many synthetic 

clusters in quick succession and to specify the rotation and inclination distribution of the 

cluster members. A synthetic cluster allows one to specify the rotation rate, mass, age, 

and inclination of each individual cluster member and as such these quantities are known 

for each cluster member. In this study we assume that all members of the cluster have 

the same composition and the same age. Binaries have also been ignored and the rotating 

stellar models produced by ROTORC have solid body rotation on the ZAMS and only slight 

differential rotation in later stages of evolution due to local conservation of momentum 

during evolution. To compute C f  a C + +  code was developed to sort the cluster members 

of a given synthetic cluster according to various characteristics (e.g. effective temperature 

descending) in order to identify selected cluster members (e.g. the hottest). This sorting 

is repeated for each cluster, and the selected member is tested against specific rotational 

criteria (e.g. rapidly rotating and viewed pole-on), and if they are met that cluster will 

increase C f  towards 1, and if they are not met will decrease C f  towards 0.

In chapter 2 the methods used for modeling a star’s interior, computing the inclination 

curves and how they are then used to produce synthetic clusters are discussed. The results 

from the study are presented in chapter 3, including how the main sequence width is affected 

by varying rotation distributions, and CfS are derived for the selected members under 

varying conditions. A comparison of the synthetic clusters to four observed clusters is made 

in chapter 4. Finally chapter 5 will discuss and summarize the results.
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2  M e t h o d s

This chapter describes the methods used to create a synthetic cluster of stars, with the 

rotational effects on the deduced effective temperature and luminosity included. The first 

section, “ROTORC”, describes how this 2.5D stellar evolutionary code computes rotating 

stars. This section also discusses the settings used for calculating the evolution tracks 

used in this research. The next section, “Inclination Curves”, describes how inclination 

curves, which are used to determine the position of a rotating star on the HR-diagram, are 

computed. Then, in the same section, there is a discussion of analytic inclination curves. 

Analytic inclination curves are expressions that have been determined by fits to mimic the 

relationship between the computed surface properties and the deduced inclination curves. 

Analytic inclination curves are used in place of the computed inclination curves in order to 

speed up the calculation time of the inclination curves and make this research feasible. The 

last section of this chapter, “Synthetic Cluster Generation” , discusses how models within 

ROTORC evolution tracks are used to generate the observed properties of a synthetic cluster 

member. All of these facets coupled together allow the inclusion of rotational affects in the 

HR diagram of synthetic clusters.

2.1 ROTORC

Stellar structure models generated by ROTORC form the basis for all stellar structure 

information used in this reseaxch. This stellar structure information is used in computing 

inclination curves and generating the analytic inclination curves. The quantities required 

for the computed inclination curves are the effective temperature as a function of colatitude,
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Tef[(9), the fractional radius as a function of colatitude, r (9 ) /R eq, the equatorial radius, i^ q, 

and the effective gravity, geg. Other quantities useful for comparison and interpretation are 

the ROTORC luminosity, the ROTORC average effective temperature, and the surface 

equatorial velocity. The ROTORC luminosity is the total energy output of the star. The 

ROTORC average effective temperature is defined as the black body temperature required 

to produce the ROTORC luminosity on a spherical surface that has the same surface area as 

the rotating spheroid. Stellar structure models over a range of ages form the evolutionary 

tracks among which the synthetic cluster code interpolates. In this section ROTORC is 

described along with how it was used in the current work.

2 .1 .1  I n n e r  W o r k i n g s  o f  R O T O R C

ROTORC is a 2.5D stellar evolution code written by Deupree (1990, 1995, 1998). RO­

TORC has been designed with the intention of studying instabilities that occur on varying 

time scales which redistribute angular momentum. To study the instabilities, ROTORC 

implicitly solves the time-dependent conservation laws for mass, momentum, energy, and 

composition, as well as Poisson’s equation. Momentum is conserved in all 3 directions, r, 9, 

and 4>. Azimuthal symmetry is assumed, meaning that the azimuthal velocity, v$, is sym­

metric about the rotation axis but does not have to be zero. Because symmetry is assumed 

in the azimuth co-ordinate, it is not a true 3D calculation; however it is not strictly a 2D 

calculation either as momentum conservation is required in all 3 dimensions. The usual 

designation for this type of calculation is 2.5 dimensions.

ROTORC uses the fractional radius, x  =  r /R ,  where r is the local radius and R  is the 

largest radius (usually the equatorial radius), instead of the mass interior to r, Mr, as the
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radial independent variable. Though Mr is an excellent independent variable for spheri­

cal stars because it is Lagrangian, it is not for non-spherical stars. That is because it is 

difficult to relate Mr to r  for a non-spherical density distribution. Simply using r  as the 

independent variable creates difficulties because the star can change its radius by a factor 

of 100 throughout its evolution, making it difficult to get good zoning for all parts of the 

star’s evolution. The choice of a: as an independent variable means the co-ordinate system  

is neither Lagrangian nor Eulerian but what is referred to as Euler-Lagrange. The second 

independent variable is 9, the colatitude which is an Eulerian variable. Given these assump­

tions and restrictions, and following Deupree (1990) we write the conservation equations. 

Mass conservation is given by:

R m  +  {v' ~  Va) t o  +  +  +  {v,sinB)  =  ° ’ (2'1)

where p is the density, t  the time, vT the radial component of the velocity , V0 the radial 

velocity of the co-ordinate system, and v$ the 9 component of the velocity. Momentum 

conservation in r  direction is given by:

+  R ( v r -  V0) ^  ^  +  R ^ + R ™ - R vl - R ' i =  0, (2.2)
ot ox x o9 p ox ox x x

where is the component of the velocity in the (f> direction and $  is the gravitational 

potential. Momentum conservation in 9 direction is given by:

2dve . dve Rvg dve R d P  R d §  v j  vrve
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Momentum conservation in the 4> direction is given by:

2dv$ dv<p Rve dv<p vTve vev0
* l f  + * (tv" Fo) to '+ ^  i f  + + i?~ cot*= a (2‘4)

Conservation of energy is given by:

„28 E  T. . 8 E  Rve d E  R 2P  8 , 2 x R 2P  8 . . m d2
R2—  +  R { v r - V 0) —  +  —  - j r j  ( x v rj  {ve sm9) -  R 2e

dt  ox x 89 px2 ox  v ' px sin 9 89 ^  r \
4<j 8 ( x2 8 T i \  4ct 8 f w a 9 d T * \  _   ̂ J

3px2 dx \pK  dx J Spx2 sin 9 89 \  Kp 89

where E  is the specific internal energy, T  the temperature, P  the pressure, o  the Boltzmann 

constant, and k the opacity. The gravitational potential, <f>, is obtained from Poisson’s 

equation:

1 8 (  , 1 O f .  „ d $ \  , „  _a
[x &  j  + ^ T e w  { ^ a o )  “ 4,,GpR =  °' (2 6)

Conservation of the hydrogen mass fraction (X) is given by:

8 X  , „ . d X  ve 8 X  n
+  + ^ ~ m  + ? _ 0 ’ ( *

with q being the nuclear destruction rate of hydrogen.

The boundary conditions at the stellar center are given by:

8 P
—  =  0 at r =  0, (2.8)
dr

Radial flux =  0 at r =  0, (2-9)
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and

—  =  0 at r =  0. 
or

(2 .10 )

At the stellar surface the boundary conditions are

P  — P r e f■> (2 .11 )

where pTef  is a chosen density cut off. The flux at the surface, Fs, can be related to the

surface temperature, Ts, by using Fs =  a Te4ff in conjunction with the equation for the 

temperature structure of a plane parallel gray atmosphere in LTE:

producing at the surface (r =  0) Fs — 2ctTs4.

The boundary condition for the potential is defined on a spherical surface just exterior 

to the star at the largest radius. This external gravitational potential, <f>ext, is evaluated 

using the method outlined in Deupree (1974). The method depends on the assumption of 

azimuthal symmetry by assuming that the density distribution can be represented as a large 

number of uniform density rings perpendicular to the rotation axis. The finite difference 

form of the solution for the external potential, $ ext,k, on a spherical surface with radius just 

exterior to R  at angle 0* from the pole is:

where ptj is the density in the zone at radius xt and at angle 9j. The Gijk s include all the

(2 .12 )

*&ext,k R (2.13)
i J
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geometrical factors. The G,jk s depend only on the zoning and need to be calculated once 

for a given (x, 9) zoning. The zoning is not changed in this work because we only consider 

core hydrogen burning and the very early phases of hydrogen shell burning for which the 

given zoning is adequate. The boundary condition for the potential on this spherical surface 

thus becomes:

$  =  $ex<- (2.14)

The potential at the surface of the star is determined by solving Poison’s equation (equa­

tion 2.6) from this spherical surface back to the star’s surface.

At 9 =  0 and n/2,  because of equatorial and azimuthal symmetry assumptions, vg — 0. 

That is because, if vg were non-zero, material would flow across the symmetry boundaries, 

which would violate the symmetry assumption. Also the symmetry assumption at 9 =  0 

and 9 — 7t/2  means that:

dp =  d T ^ d ^ _  =  dvL ^ d v ±  =
d9 39 d9 d9 d9 { ' ’

in order to assure that the dependent variables are continuous functions of 9 across the 

symmetry boundary. We solve for R  from the conservation of total mass, M,  in the following 

way:

M  — 2-kR 3 f  f  px2 sin 9d9dx =  0, (2.16)
Jx=o Je=o

with the finite difference form having the double integral replaced by a sum over all the 

zones in the 2D mesh. To locate the surface at all angles, it is assumed that the model’s 

surface is an equipotential surface of the total potential, ip , the gravitational potential plus
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the centrifugal potential, given by:

(2.17)

ip is computed at x  =  1. The surface is defined at other angles in the radial zones with ip 

closest to the value computed at x =  1.

Hydrodynamic calculations are usually preformed in one of two ways, explicitly or im­

plicitly. The difference between the two methods is how certain terms are handled. Consider 

the following differential equation:

new state n +  1. The explicit representation of the differential equation can easily and

by solving a much more complex equation. When converting from differential equations to

implicit calculation places an additional constraint on the solution, f n+1, by requiring it to

(2.18)

In finite difference form the equation can be represented as:

(2.19)

the explicit form, or
'n+l   fn

(2 .20)

the implicit form. The value of /  is known at state n and the value of /  is sought at some

directly be solved for /" +1. The implicit formulation on the other hand must solve for f n+1

finite difference representations the discretization introduces numerical instabilities. The
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satisfy the finite difference equation on both the right and left hand sides of the equation. 

This reduces the tendency of producing solutions that are not consistent with the true 

solution of the differential equations as A x  becomes larger.

In the case that x  is the time variable and g represents the conservation equations, 

the stability constraint for the explicit representation is known as the Courant condition 

(Richtmyer & Morton, 1957). The Courant condition requires the time step to be chosen 

such that a sound wave does not completely cross any particular zone within one time step. 

The sound speed, c, in an ideal gas is given as:

(2 .21)

where 7 is the ratio of the specific heat at constant-pressure over the specific heat at 

constant-volume, P  is the pressure and p is the density of the gas. If the flow of inter­

est is well subsonic (vgas « 2 x 10-8 km s_1 « c «  200 km s”1), as it is here, the Courant 

condition imposes too tight a constraint to make explicit solutions feasible over the time pe­

riods desired. Equation 2.20, the implicit form, has no constraint equivalent to the Courant 

condition.

ROTORC is fully implicit, and as such there is no stability constraint on the time step 

as for explicit calculations. However, there are accuracy constraints on the time step. If the 

conservation equations are used to follow the evolution of the convective core in an accurate 

manner, the time scales would be on the order of the convective flow patterns. This time 

scale is far too short compared with the stellar evolutionary time scale, and one could not 

hope to follow the evolution of a star this way. Instead the usual procedure for treating 

convective cores is used. This procedure forces the logarithmic gradient of the temperature
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with respect to pressure to be a minimum of the radiative and adiabatic gradients, i.e.:

^  =  m in(Vod,V ra(i). (2.22)
a i n F

To implement it either equation (2.5) would need to be replaced with an equation not suit­

able for following the hydrodynamic evolution of the convective core or equation (2.5) would 

need to be altered to be compatible with the procedure for handling the logarithmic gradi­

ent of temperature with respect to pressure (2.22). The former solution requires switching 

between two equations: one suitable for hydrodynamic calculations and one suitable for 

stellar evolution calculations. A switch from following stellar evolution to following hydro- 

dynamic evolution may not necessarily satisfy both equations at the time of the switch, 

and could generate unrealistic results. So that the adiabatic temperature gradient in the 

convective region is enforced, the opacity in equation (2.5) is altered to:

Keff =  K • (Vad/ v rad) if Vad < Vrad, (2.23)

where k is the usual radiative opacity. This imposes the adiabatic condition of equation 2.22 

when appropriate.

Once the differential equations and boundary conditions are fully specified, the remaining 

step is to develop a solution algorithm. To do so ROTORC uses a two-dimensionalization 

of the Henyey method (Henyey, Forbes, & Gould, 1964) to solve equations (2.1)-(2.7). 

The implementation of the Henyey method is described below. The concept behind the 

Henyey method is successive corrections to an initial guess for the dependent variables. 

The corrections are recalculated using the current solution for the dependent variables and
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applied to the current solution producing an updated solution; the process is repeated until 

the corrections are smaller than some predefined amount.

The corrections are calculated first by taking the partial derivatives of the finite difference 

forms of equations (2.1)-(2.7) with respect to the dependent variables (p, T, vT, v$: v#, $ , 

$ ext and R). The partial derivatives describe how the difference equations change as the 

dependent variables change. Let the partial derivatives of the finite difference form of 

equations (2.1)-(2.7), evaluated at the ith radial and the j th angular zone with respect to 

the dependent variable in the Ith radial and m th angular zone, be written as a matrix, 3]’̂ . 

The matrix is known as the Jacobian of the system and has the form:

l.m

d(eq.  2.1);,,• d(eq.  2.1
d P l , m  d T l . m

d(eq.  2 . 2 d(eq .  2.2);,,■ 

dpi.m dTl.m
(2.24)

J}'3m is an Neq x Neq matrix where Neq is the number of equations (in this case, seven). If 

the corrections to the dependent variables in the I, m th zone are written as the vector:

( \
&Pl,m

0,l,m

SXi,m

(2.25)
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and the finite difference equations evaluated with the initial guess for the dependent vari­

ables at the i, j th zone are written as the vector:

Q i j  =

I \
(eq. 2 .1) i j  

(eq. 2 .2) i j

y  (eq. 2 .7) i j  j

(2.26)

then the equation:

t )77l

can be solved for the corrections.

(2.27)

In the case of the 2D model described by second order conservation equations, the i , 

j th zone will depend on only some of the other zones. In particular it will depend on the 

neighboring zones in 9 and x. Equation (2.27) for the i, j th zone then becomes:

+  J i j K ;  +  J ^ / q i+1J +  J{ i +^ +1 +  Q i j  =  0. (2.28)

Note that the corrections solved for with this equation will not yield the exact solution 

for the dependent variables immediately, because equation 2.27 keeps only the terms to first 

order in 6q. If one considers the Taylor expansion of a function, f (x ) ,  about a point, a, the 

expansion is given by:

f i x )  =  f{a)  +  f '(a)(x  -  a) +  ~ ( a ) ( x  -  a)2 (2.29)

where f  and f" denote the first and second derivatives of / .  This is similar to the Henyey
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method, with /  as the differential equation, a as the initial guess for the dependent variable, 

x — a as the correction, f (a )  as the differential equations evaluated at the initial guess, and 

/ '  representing the Jacobian. Equations (2.27) and (2.28) are the linearization of this 

expansion and become closer to an equality as 5q becomes smaller. The process can be 

continued using the updated guess for the dependent variables until all <5q approach zero 

within some tolerance.

Equations (2.1)-(2.7) also depend on the total radius of the star. This is unknown and 

must be treated as another perturbable dependent variable. Equations (2.1)-(2.7) must 

have their partial derivatives taken with respect to R  as well forming the vector,

I  d (eq .  2.1)j,,- ^  
d R

d(eq .  2 .2 )j,, 
d R

(2.30)

The revised form of equation (2.28) can be written as:

=  0. (2.31)

The equation for the external potential, equation (2.13), also needs to be included. The 

partial derivatives of equation (2.13) at the kth angular zone on the spherical surface exterior 

to the model are taken with respect to the dependent variables listed in 5qitm, giving the 

row vector of length Neq with only one non-zero entry:

aM “  ° -  °)- (2.32)
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This is analogous to J \'3m except that there is only one equation, causing it to be a row 

vector. The zeroes come about because equation (2.13) depends only on all the P(,m’s and 

not on the other dependent variables in Sq^m. The external potential at each angular zone, 

k , is also a dependent quantity, and equation (2.13) must be partially differentiated with 

respect to $ ext,k as well. Let the partial differential be denoted as:

k d{eq.2.13)k . .
B  -  ' (2'M )

Equation (2.13) also depends on R, thus the partial derivative with respect to R  is taken, 

giving the scalar:

C* =  d ^ - 2 1 3 k  (2.34)
dR

If equation (2.13), evaluated with the initial guess at zone k , is denoted as D k, then the 

following can be written for the external potential:

N r Ng

£  £  A km6qi,m +  B k6 $ ext,k +  C kSR +  D k =  0. (2.35)
1=1 m=1

Finally, the finite difference form of the equation for the total mass (equation 2.16) must be 

included. This also depends on pi.m and R. It gives the row vector and scalar of the forms:

and

E,,m =  161 o ••• , (2-36)
®Pl,m
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Letting equation (2.16), evaluated with the initial guess, be G  produces:

N r N e

' £ ' £ l E l>m6ql,m +  F5R +  G =  0. (2.38)
(=1 m=1

There are now 3 sets of equations. The first set (equation 2.28) is a set of N , x N r x 

Ng equations, the second set (equation 2.35) is a set of Ng equations, and the third set 

(equation 2.38) is a single equation. The equations can be combined into a single giant 

matrix equation containing all the equations at all of the zones, perturbed (having their 

partial derivatives taken) with respect to all the unknowns. Let the giant matrix containing 

all the coefficients to the corrections be denoted by the square matrix Y  of size N eq x Ng x 

N r +  Ng +  1. Let all the corrections (<5q/,m, S$ext,k and 5 R ) be placed in a column vector 

<5qa;i of length N eq x Ng x N r +  Ng +  1. Let the residues (Q1’5, D k and G) be placed in a 

column vector, Z of length iVeq x Ng x N T +  Ng +  1. Then the system of equations can be 

written as:

Y  6qau =  Z. (2.39)

To clarify the situation, Y , 5qaU and Z have been written out for N r =  Ng =  3. The matrix
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Y  is given by:

Y  =

T M
J l , l

T1!
1,2 I 1’12,1

>

p i . i

T1’2
J l , l

71’21,2
T i  2 

1,3
1 1 ,2

2,2
p i ,2

T l ,3
1,2

1 1 ,3
1,3

1 1 ,3
2,3

p i ,3

T2’1
1,1

1 2 ,1
2,1

1 2 , 1 
J 2,2

1 2 , i  
3,1

p 2 , l

T 2 ,2
1,2

1 2 ,2
2,1

1 2 ,2
2,2

1 2 ,2
J 2,3

1 2 ,2
3 ,2

p 2 , 2

t 2,3
J l,3

1 2 ,3
J 2,2

1 2 ,3
2,3

1 2 ,3
J 3,3

p 2 , 3

1 3 ,1
2,1

1 3 ,1
3,1

1 3 ,1
J 3,2

1 3 ,1  
° e i< , 1

p 3 , l

1 3 ,2
2,2

1 3 ,2
3,1

1 3 ,2
3 ,2

1 3 ,2
3,3

1 3 ,2
° e x t , 2

p 3 , 2

1 3 ,3
2,3

1 3 ,3
J 3,2

1 3 ,3
3,3

1 3 ,3  
°  e x t ,3

p 3 , 3

A 1" ■ l . i A 1" l , 2 A 1” l ,3 A 1” ■2,1 A 1*” ■2,2 A 1” 2,3 A 1” 3,1 A 1” 3,2 A 1” 3 ,3 B 1 C 1

A 2" 1,1 A 2" l , 2 A 2 A 2■” ■2,1 A 2” ■2,2 A 2” 2,3 A 2” 3,1 A 2” 3,2 A 2” 3 ,3 B 2 C 2

A ? , i
A 31,2 A 3” ■1,3 A 3” ■2,1 A 3” 2,2 A 3” 2,3 A 3” 3,1 A 3” 3,2 A 3” 3 ,3 B 3 C3

E ! . l E i i2 E i ,3 E 2,i E 2)2 E 2,3 E 3,2 e 3,3 F

(2.40)

where all the blank elements are zero and the J^t,* are given by:

T * J
extyk

d(eq. 2.1);,,-

d(eq. 2.2)j.j 
&̂ ext,k

\ /

(2.41)

The matrix Y  was created by stepping through the i, j  mesh by first stepping through 

angular zones j  =  1 — 3 for i =  1 and then incrementing the radial zone by one and stepping
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through all the angular zones, continuing in that manner until all of the zones have been 

evaluated. It is helpful to keep in mind that each T^m is an x iVeq matrix, each P*,J is 

a column vector of length Neq, each A f m and E;iTn are row vectors of length Neq, and each 

B k, C k and F  are scalars. 5qa« and Z are given by:

<5q all =

t  \
£qi,i

<̂ qi,2 

^qi,3 

^q2,i 

<̂ q2,2

6q2,3

^qs,i

5q3,2

^ 3,3

§& ext ,  2 

d ^ e x t ,  3

5R

(2.42)
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and

1 Q 1’1 ^

Q 1-2 

Q 13 

Q 21 

Q2’2 

Q2’3

Z =  Q 3 ,1  . (2.43)

Q3’2 

Q3,3 

D 1 

D 2 

D 3

\  G )

The matrix Y  has many zero elements in the upper N .  ̂ x N s x NT rows, which aid in 

the solution of 5qa/;. The knowledge of the zero elements can be used to avoid a number of 

computational steps involved in solving the system of equations. To illustrate the method, 

the first few steps are followed. If interior boundary conditions are applied to equation (2.28) 

with i =  j  =  1 then:

(2.44)
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Solving equation (2.44) for gives:

<5qi,i — +  £*1,1^ 2,i +  0i,i SR +  71, (2.45)

(2.46)

where

a ,i — (Jii i ) - 1!*1-1,

and 7 i , i= - ( J i;i)- 1Q 1’1- 

The a ’s are Neq x Areq matrices, and 0  and 7 are column vectors of length Neq. For i =  1, 

j  =  2, equation (2.28) becomes:

J i’1̂ 1,1 +  2 +  +  ^2,2 *̂12,2 +  P  1,2SR +  Q 1,z — 0.i1-2; rL>2 i>2; >i ,2j (2.47)

By substitution in equation (2.45) for Sqi j  in equation (2.47), the following is obtained:

£qi,2 — ai,2^qi,3 +  a l,2 1<̂q2,l +  “ 72^ 2,2 +  01,2 SR +  71,2, (2.48)

Where:

a

a l , 2 —  (*^1,2 +  J l , l a  

01,2~ +  J l’l a  

and 7i,2= —(J}’2 +  J l;?a

,1) H Jga i,? ).

,1)~1(P 1,2 +  

,i)~1(Q1’2 + Ji;i7i,i)-

(2.49)

Note the range of the upper index of the a ’s. The index starts at 1 and continues to
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N g .  In equation (2.45) there are no non-zero a ’s between 1 and N g ,  but as the process of 

elimination is repeated the a ’s will be filled in. In general:

i,j =  <*.• 1 +  • • • +  a?j  5qi+i j  +  PijSR  +  7i,j- (2.50)

The terms excluded correspond to the dq’s of the zones stepped through, starting at the 

i ,  j th zone, and stepping through the angular direction, j ,  and then the radial direction, i ,  

until 5qj+i j  is reached.

Once the first N g  rows of the matrix have been processed via the above method, the first 

N g  rows will have the terms left and below the diagonal reduced to zeros, with 1 ’s along the 

diagonal. For the next N g  x (Arr — 1) rows with i  >  1, the process will have to be repeated 

N g  times instead of just once. That is because the term from the adjacent interior radial 

zone ( i  —  1, j )  is no longer removed because of the boundary conditions. Because the new 

term is N g  elements away from the diagonal, it requires the steps leading to equation (2.49) 

to be repeated N g  times using the previous N g  rows. For the last N g  +  1  rows, coming 

from equation (2.13) for the external potential and equation (2.16) for the total mass, the 

steps leading to equation (2.49) must be repeated N g  x N T times because they will have no 

non-zero terms.

From the surface, global, and external boundary conditions, the last N g  5 q ,j’s can be 

eliminated and 5qvr,jv<, can be solved for. Equation (2.50) can now be used to back step 

to solve for all 5qi,j’s. If the corrections (<5qjj) overshoot the real solution by too much, 

the new guess could be outside the radius of convergence. To avoid that, the magnitude of 

the ratio of the correction to the current value is found in all zones. If the magnitude of 

the largest ratio is greater than some predefined maximum, all the corrections are scaled
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down by the same amount in order that the magnitude of the largest ratio is equal to the 

predefined maximum. The scaled corrections are then added to the current guess. The 

entire process is repeated until the corrections drop below some tolerance factor.

2 . 1 . 2  R O T O R C  O p e r a t i o n a l  P a r a m e t e r s

The models computed in this work were made with solid body rotation on the ZAMS 

and local conservation of angular momentum during evolution. No convective core over­

shooting was allowed, meaning that the convective region is determined only by the region 

in which the adiabatic temperature gradient is less than the radiative temperature gradi­

ent and the material is assumed to have convective motions only in this region and not 

overshoot the boundary. It is possible that solid body rotation and no overshooting are 

not realistic characteristics of stars. Schou et al. (1998) provide observational evidence for 

the Sun rotating differentially with rotation rate increasing outward, and Stoeckley (1968) 

and Smith (1971) supply observational evidence of other stars suggesting a rotation rate 

increasing towards the rotation axis. Numerical models of rotating stars suggesting that 

differential rotation can be sustained in the convective core are provided by Deupree (1998). 

Observational evidence of convective core overshooting from a comparison of observed clus­

ters with models is provided by Maeder & Meynet (1989). Deupree (2000, 2001) provides 

numerical models suggesting convective core overshooting takes place in both rotating and 

non-rotating stellar models. Though there is a trend in opinion that differential rotation 

and convective core overshooting are present in real stars, the degree to which these effects 

operate and what circumstances affect them are not well understood. Since it is not well 

known how much overshooting actually takes place in models that has been left out of our
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model calculations. Preliminary work that used models including overshooting produced 

values for the cluster fraction, Cf,  only differing by 0.05 to 0.1.

The effects of differential rotation on inclination curves were studied by Gillich (2007) 

for a 10 M0 star with surface equatorial velocities of 120 and 240 km s-1 . The differential 

rotation distribution of the ROTORC models is chosen to be:

fl(ro) --  ----^ —rj ,
v ' 1 +  ( a w y

where is the local angular rotation rate, vj is the distance from the rotation axis, a  is 

a constant, and /3 is a constant describing the severity and type of differential rotation. 

This rotation law is conservative. A value of /3 =  0 corresponds to solid body rotation, 

values of /3 <  0 correspond to a rotation profile with fl increasing with increasing w ,  

and values of /3 >  0 correspond to a rotation profile with fi decreasing with increasing 

w .  There is a physical limit set on the upper limit of (j (decreasing Q with increasing 

w) .  Stability constraints require that the angular momentum per unit mass must increase 

outward, putting an upper limit on /3 of 2 (Tassoul, 1978). Gillich was interested in /3 >  0 

because there is some evidence to suggest that early type stars have positive values of /3. 

The effects of decreasing rotation profile on spectral lines have not been well studied.

In the study done by Gillich as /3 increases from 0, the inclination curve becomes longer 

and the slope tends to decrease from nearly parallel to the ZAMS to a shallower slope than 

the ZAMS for sufficiently large /?. For example a 10 M0 star rotating with an equatorial 

surface velocity of 120 km s-1 with /3 =  1 has an inclination curve that is almost twice as 

long, and is inclined approximately 30° to the ZAMS. For /3 =  2 the inclination curve dips 

substantially below the ZAMS. Though the effects of differential rotation could have major
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implications for the results presented in this thesis, the amount of differential rotation in 

real stars has not been well quantified, making it difficult to choose realistic values of /?. 

Choosing to model stars with a solid body rotation profile and no overshooting provides 

a suitable starting point for this investigation and allows results to be compared to other 

common calculations with no differential rotation or overshooting.

All stellar evolution models considered in this work have 10 angular zones. The evolu­

tionary tracks with masses 3 — 12 M0 at all rotations and 15 M0 at rotations 0, 100, 405, 

and 455 km s_1 are computed with 350 radial zones. The evolutionary tracks at 15 M0 

at rotations 260 and 570 km s-1 where computed with 585 radial zones. The reason for 

the difference in zoning is that partial 15 M0 evolutionary tracks were available from work 

by Tanner (private communication) at those rotation rates. Models at other rotation rates 

were scaled up from a lower mass with fewer radial zones than those started by Joel Tanner. 

The difference in zoning has little effect in the properties of evolutionary tracks, including 

the effective temperature and luminosity.

The errors arising from the different zoning are estimated by interpolating an evolution­

ary track at a ZAMS surface equatorial velocity of 260 km s-1 using evolutionary tracks at 

ZAMS surface equatorial velocities of 210 km s-1 and 405 km s-1 . Section 2.3.2 describes 

the interpolation procedure used to create the evolutionary track. Both the 210 km s-1 and 

the 405 km s-1 tracks have 350 radial zones. The turning point at the end of core hydrogen 

burning, the point labeled ©  in figure 2.6, of the interpolated evolutionary track is then 

compared to the turning point of the computed 260 km s"1 evolutionary track having 570 

radial zones. The estimated difference in log(L /L 0) and log(Teff) from this different zoning 

is 3% (corresponding to a difference of 1100 L0 at a luminosity of 40,000 L0 ) and 0.4%
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(corresponding to a difference of 100 K at a temperature of 24,000 K) respectively.

Other physical parameters used by ROTORC in computing the models for this work 

are the OPAL 1996 opacities (Iglesias & Rogers, 1996), the equation of state from tables 

produced by Rogers, Swenson, & Iglesias (1996), and the composite hydrogen burning 

nuclear reaction rates given in Fowler, Caughlan, & Zimmerman (1967). The ROTORC 

models used in the present work have a fractional heavy element abundance of Z  =  0.02.

2 . 2  I n c l i n a t i o n  C u r v e s

Inclination curves determine the position on the HR diagram of a rotating star as a func­

tion of the star’s inclination. An inclination curve is specified by producing the effective 

temperature, Teff and luminosity, L, as functions of inclination. In this work analytic func­

tions replace the inclination curves computed using the results of the PHOENIX (Hauschildt 

& Baron, 1999) stellar atmosphere code and the stellar structure code ROTORC, discussed 

previously. The analytic functions are developed by fitting the inclination curves calculated 

by Gillich (2007). They are used because calculating the actual inclination curves is too 

computationally time consuming for the number of models needed for this work. The next 

section, 2.2.1, briefly discusses the procedure used by Gillich to compute inclination curves. 

The following section, 2.2.2 describes the development and implementation of the analytic 

inclination curves.

2 . 2 . 1  C o m p u t e d  I n c l i n a t i o n  C u r v e s

Inclination curves are produced by integrating weighted intensities over the visible sur­

face of the star to produce the observed spectral energy distribution (SED), from which
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the luminosity and effective temperature can be deduced. This is performed with a code 

written by Lovekin (2005) and Lovekin, Deupree, & Short (2006). The integration is done 

by dividing the stellar surface into a mesh of 200 9 zones and 400 $  zones, where 9 and (j) are 

colatitude and azimuth angle respectively. For each mesh zone, an effective temperature,

Teff, and an effective surface gravity, logoff, are determined from ROTORC models through 

linear interpolation. An interpolation through a grid of plane parallel model atmospheres is 

then used to specify the intensities in the direction of the observer at each of these Tes (9 )s 

and loggeff(0)s in the mesh zones.

The model atmospheres are computed by the stellar atmosphere code PHOENIX (Hauschildt 

& Baron, 1999). PHOENIX solves the equation of radiative transfer,

for the source function, S(v)  =  Here j v and k u are the emission and absorption co­

efficients respectively, and ru is the optical depth. To solve for the source function, the

atomic elements included. These populations can be calculated in two main ways: using 

local thermodynamic equilibrium (LTE), or using non-LTE (NLTE). In LTE, matter and 

radiation are always assumed to be in equilibrium with each other locally. Thus, the ra­

diation is described by the Planck function, B(X,T),  and energy levels of the atoms are 

populated according to Maxwell-Boltzmann statistics. In NLTE, the determination of the 

source function is greatly complicated because no assumptions about how matter and ra­

diation interact are made. In NLTE, level populations are calculated by actually solving 

coupled rate equations. These equations track the transition probabilities of populating or

Jv_
Kv

(2.52)

occupation of thousands of atomic energy levels by electrons must be determined for the
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depopulating a given energy level, n, from all energy levels where a transition to or from 

n is possible. If all important atomic species are treated in this manner, the level popula­

tions can be calculated from a given radiation field. NLTE is a more realistic method for 

calculating model atmospheres, and is the method used to calculate model atmospheres by 

Gillich (2007), from which come the inclination curves used in the present work.

From the grid of model atmospheres, the intensity, for a wavelength, A, and at an 

angle between the surface normal and the observer’s line of sight, £, can be logarithmically 

interpolated using log(Teff) and logoff at each mesh zone. £ depends on 6,(f>, and i, the 

colatitude, azimuth, and inclination of the rotation axis to the line of sight of the observer, 

respectively. The projection of the surface area of a given mesh zone in the direction of an 

observer is also needed to calculate the observed fluxes. It is given by:

dApTOj — R 2 (9) sin 9 cos £

It is the area of a spherical surface element with a local radius R, multiplied by a correction 

factor to account for the distortion of the surface from a sphere. From dAproj  and /a(0>  

the observed flux can be calculated by performing the following integral over the surface of 

the mesh:

f t  i:o =  H  h m  <t>, o )  cy %  * ' . (2 .54)

where d is the distance to the star from the observer. It is done for each wavelength at 

various selected inclinations.

From such fluxes the effective temperature and luminosity as functions of inclination
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can be obtained. The luminosity can be determined from the simple relation:

L(i) =  And2F(i),  (2.55)

where d is the distance of the star from the observer, and F(i)  is the total flux integrated 

over all wavelengths for a given inclination. L(i) is seen to be independent of distance to 

the star, as it should be, by noting the form of F  in equation (2.54). In practice the flux 

is integrated from 300 -  10, 000A and then a Rayleigh-Jeans tail is used to evaluate the 

flux analytically from 10,000 — oo A. The cutoff of 10,000 Awas chosen to include the most 

important lines and to produce a smooth continuation from the model atmosphere fluxes 

to the analytic Rayleigh-Jeans expression for the fluxes.

To compute the observed effective temperature as a function of inclination, Teg (i), Gillich 

(2007) adopts a procedure utilized by observational astronomers. Color indices are used 

to calculate effective temperatures from the shape of the spectral energy distributions. 

Color indices are differences in magnitude of a star through two different color filters. In 

terms of fluxes, color indices become a ratio of fluxes because the magnitude of a star is 

proportional to the log of the flux. For spherical stars, a given temperature and effective 

surface gravity correspond to a unique color index for any two appropriately selected spectral 

energy bands. For a spherical star the surface gravity is constant. For a rotating star the 

observed spectral energy distribution is composed of the sum of different spectral energy 

distributions, all with differing effective surface gravities and effective temperatures. Once 

the spectral energy distribution for a rotating star is computed, Teg and logoff must be 

determined simultaneously. The following method will uncover values Teg and log geg that 

an observer would deduce from the star’s SED. Since there are two unknowns, Teg and
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logoff, two color indices must be used to determine them uniquely. Colors are measured 

from SEDs by integrating the flux over a wavelength band.

The above process is described with no mention of the inclination of the star’s rotation 

axis to the line of sight of the observer, and can be performed on an SED at any inclination. 

SEDs at differing inclinations will determine Teg(i) and L(i) at discrete values of i. Gillich 

(2007) computed inclination curves for 12 Ms  uniformly-rotating ZAMS models. More 

details can be found in his work. The uncertainties in the luminosities and temperatures of 

the inclination curves computed by Gillich come from three main sources: the uncertainty 

arising from difficulties converging the non-LTE atmospheres (0-4%), the integration code 

which integrates over the surface of the model and interpolates in atmospheric models 

(1-4%), and the uncertainties in deriving luminosity and temperature from the computed 

spectra (1-6% for luminosity and 0.1-0.6% for temperature).

2 . 2 . 2  A n a l y t i c  I n c l i n a t i o n  C u r v e s

As discussed in the previous section, the method for determining the effective temper­

ature, Teg(i), and the luminosity, L(i),  as functions of inclination (inclination curves) is 

obtained by integrating the weighted intensity over the observed surface of a star. Such in­

tegration is very computer intensive because of the large number of wavelengths, and takes 

approximately 15 hours to complete for one stellar model using 10 cores from a 92 core Be- 

owolf cluster of 2.6 GHz, dual-core, Opteron processors. Each dual-core has 2GB of RAM. 

The 15 hours to compute the inclination curve does not include the time to compute the 

grid of necessary stellar atmospheres covering the Teg and log geg space in which the star’s 

local surface properties reside. For the 12 M@ rotating models computed by Gillich (2007),

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 . M e t h o d s 4 5

the ranges of Teg and logoff on the surface of the star are covered by a grid consisting of 60 

model atmospheres. Each model atmosphere takes on the order of 40-60 hours to complete, 

using 6 processors from a 48 processor cluster of 2.4 and 2.8 GHz Xeon processors for the 

first 20-30 hours of the calculation, and then using only 1 processor for the remaining time, 

as part of the computation can only be completed in serial. If only the time to compute 

the inclination curve is considered (i.e. excluding the time to compute the grid of model 

atmospheres) to make computations for enough stars (300 stars) in enough clusters (300 

clusters) to obtain statistically useful results, at least 150 years would be required. There­

fore, analytic functions have been developed to translate the ROTORC-computed effective 

temperature, Teg (9), and luminosity, L(9), to the inclination curves.

Let L(9) be the luminosity of a spherical star, with radius R(9) and effective temperature 

Teg{9). The luminosity is defined as:

L(9) =  4irR(9)2aTeS( 9 ) \  (2.56)

where a is the Stefan-Boltzmann constant and R(9) is the local radius as a function of 

colatitude.

The analytic inclination curves are described by relations for Teg(i) and L(i). The 

relations are found by fitting functions to the inclination curves calculated by Gillich (2007) 

for zero age main sequence (ZAMS) 12 M0 models at 13 different rotations: 0, 50, 100, 

150, 210, 255, 310, 350, 405, 450, 500, 550 and 575 km s-1 . As the star ages, its surface 

equatorial velocity will slow if there is local conservation of angular moment at the surface, 

as is assumed in the calculations. It is also assumed that the effect on observed Teg(i) and 

L(i) from evolution will be the same as that for a ZAMS model at a corresponding lower
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surface equatorial velocity. We shall discuss a test of this assumption shortly.

We define Tav and Lav as the average effective temperature and luminosity. These 

averages are used as a reference point from which to measure the deformation of the observed 

surface properties from rotation. The average effective temperature is defined as:

1 N„
T*v =  ^ - £ T m  (2-57)

and likewise:
i Ne

Lm =  — Y . L i ^  (2-58)

where the 0* are the ROTORC colatitudes for each angular zone, and Ng is the number of 

ROTORC angular zones.

The transformations from the colatitude dependent variables to the inclination depends 

on how much the ROTORC surface properties vary. The difference between the pole and 

equator of Teff (0) and L(9) can be used as a measure of this variation. Define the difference 

between pole and equator values of Teff (0) and L{9) as:

A T  =  Teff(0 =  4°.5) -  Teff(0 =  85°.5), (2.59)

and likewise

A L =  L(9 =  4°.5) -  L(9 =  85°.5), (2.60)

respectively. Note that 0 =  4°.5 and 0 =  85°.5 correspond to the center of the ROTORC 

zones adjacent to the pole and equator respectively. To aid in making our transformations 

more independent of the specific models, the As are divided by the average quantities. The
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Figure 2.1: Rotation relation for (a) temperature and (b) luminosity for 12 Me models at 
various rotation rates.

amount of departure from a spherical uniform temperature distribution is clearly dependent 

on the amount of rotation. Therefore, the quantities ^  and ^  are indicators of how much
i  av -^av

Teff(i) and L(i) differ from Tav, and Lav, because they are related to the amount of rotation 

in the model. Figure 2.1 (a) shows the relation between ^  and the surface equatorial 

velocity. Likewise, figure 2.1 (b) shows the relation for . The relationship is essentially 

quadratic, which is expected since the angular velocity Q turns up in the conservation 

equations as Q2. We also note that Veq =  QR,  and if the radius, R : is constant, V̂ q oc Q. 

R  is nearly constant for slow and moderate rotation rates, but this is not true for faster 

rotation rates.

and are monotonically increasing functions with surface equatorial velocity, at 

least in the case for solid body rotation considered here. During core hydrogen burning for 

massive stars, the amount of differential rotation generated from evolution is small, and we 

assume our approach is adequate.

The range of equatorial surface velocities used in the fit (0-575 km s-1) spans the range
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of equatorial surface velocities of the most massive stellar evolutionary track, 15 M©, used 

by the synthetic cluster code. Models at lower masses have their equatorial surface velocities 

chosen such that they have the same surface shape, and thus have lower equatorial surface 

velocities than a more massive star with similar surface shape. More important than the 

surface equatorial velocity being within the range considered is whether the indicators for 

the degree of departure from Tav and Lav are with in the range used for the fit. The range 

for over the equatorial surface velocities of the 12 M© models is (0.0, 0.317), and for 

the range is (0.0, 0.535). Neither range is exceeded over the entire mass and surface 

equatorial velocity range of the grid of ROTORC stellar evolution tracks.

As done for the ROTORC surface properties, we non-dimensionalize the inclination 

dependent luminosity and effective temperature calculated by Gillich (2007). For example, 

we use Tav rTeff('). We complete the analytic fit by plotting rav~^effM versus ^  for each 

inclination. The results are shown in figure 2.2 for four selected inclinations. Similar plots 

for the luminosity are shown in figure 2.3. It can easily be seen that Tav-~^eff̂  follows a 

cubic reasonably well, while La-y LM follows a quadratic. The cubic and quadratic fits in■L/ av

the plots are shown with a dashed line, and have coefficients provided in tables 2.1 and 2.2 

for temperature and luminosity, respectively, at the corresponding inclinations. A total of 

ten fits were done, corresponding to the ten inclinations at which the computed inclination 

curves are defined. This results in 10 sets of coefficients for both temperature and luminosity 

at inclinations of 0°, 10°, 20°, . . .  90°.

If the trends shown in figure 2.2 and figure 2.3 hold across mass and age, the effective 

temperature and luminosity as functions of inclination can be found by solving Tav~r<!ff0) anc[ 

l &w- l ( i )  £or and L(i).  That gives Teg and L at discrete inclinations corresponding to
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Figure 2.2: The departure of T(i)  from Tav at differing, (a), (b), (c) and (d) are at 
inclinations of 90°, 60°, 30° and 0° respectively. The intermittent inclinations, 
10°, 20°, 40°, etc. are not shown, but show similar trends. The dashed lines are 
the fits described by the temperature coefficients given in table 2.1.
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Figure 2.3: The departure of L(i) from Lav at differing, (a), (b), (c) and (d) are at 
inclinations of 90°, 60°, 30° and 0° respectively. The intermittent inclinations, 
10°, 20°, 40°, etc. are not shown, but show similar trends. The dashed lines are 
the fits described by the luminosity coefficients given in table 2.2.
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i At B i C ifxlO 1) A ( x l 0 3)
0 2.94248287 -0.92347285 -1.26452264 -2.80255079
10 3.12245783 -1.00418961 -1.11505019 -2.76241808
20 3.31228923 -1.17267050 -0.56545552 -2.78688538
30 3.10929192 -1.20200219 0.06983017 -2.56526421
40 2.99650915 -1.28245733 0.94656344 -2.37822413
50 4.09471937 -1.83267857 2.38845949 -2.71371317
60 6.64960207 -2.49591152 3.72340463 -2.80450185
70 -0.28525034 0.67783626 1.85131072 -0.15163749
80 -4.08899070 2.42107583 1.38519203 0.35934546
90 -2.96911393 2.21933769 1.94703489 -0.16966418

Table 2.1: Temperature function coefficients

i Et F i (x  101) G i(x l0 3)

0 -1.70878235 -9.98920733 -7.46829403
10 -1.66322538 -9.40406315 -7.33754680
20 -1.49486706 -7.89817367 -6.53055571
30 -1.23077435 -5.55427584 -5.37411417
40 -0.89008923 -2.61670215 -4.17380908
50 -0.48802384 0.55424950 -3.09441280
60 -0.02815609 3.46493106 -1.88880111
70 0.46112084 5.65280279 -0.31326165
80 0.88227498 6.87326154 1.44306299
90 1.08186403 7.20450151 2.48222159

Table 2.2: Luminosity function coefficients
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the coefficients in table 2.1 and table 2.2. Thus the effective temperatures and luminosities 

are given by:

The two functions now define inclination curves at inclinations 0°, 10°, 20°, ...9 0 ° . To

The resulting inclination curves on the H-R diagram are shown in figure 2.4 for various 

rotational velocities. The analytic inclination curve has a maximum difference from the

0.013 in log(L /L q ). The overall curve shape is very well reproduced for high rotations. For

not as well reproduced, but the absolute departures for the curves still remain small. See 

figure 2.4 for an example of the poor shape reproduction for a surface equatorial velocity 

of 210 km s-1 . The small extent of the low velocity curves causes the poor reproduction of 

shape to be unimportant in this analysis.

To test the assumptions of portability for the analytic inclination curve, the analytic 

inclination curve was compared with two computed curves for a 15 M0 model with a ZAMS 

surface equatorial velocity of 570 km s-1 at two different stages of core hydrogen burning. 

The result is shown in figure 2.5. The two models correspond to phases of evolution where

2eff,i =  Tav 1 — (2.61)

and

(2.62)

obtain L and Teg at inclinations between the discrete inclinations, linear interpolation is

used.

computed inclination curve over all inclinations and rotations of 0.0036 in log(Teff) and

lower surface equatorial velocities (below 255 km s 1), the inclination curves’ shapes are
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Figure 2.4: Inclination curves computed by Gillich (2007) (dashed curve with open circles) 
for a 12 M@ star compared to the analytic fits (solid curve with solid dots). 
Each point on the curve is a different inclination starting at 0° in the upper left 
corner to 90° in the lower right corner in increments of 10°. Curves from top to 
bottom  are at differing rotation speeds of 575 km s-1 , 405 km s-1 , 210 km s-1 , 
and 0 km s-1 .
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Figure 2.5: Inclination curves computed by Gillich (private communication) are shown as 
black dashed curves with open circles. Analytic inclination curves are shown 
as solid curves with filled circles. The inclination curves are computed for two 
models in the evolutionary sequence of a 15 Me star with a ZAMS surface 
equatorial velocity of 570 km s_1. The lower left curve is for a model with a 
central hydrogen mass fraction of 0.305 the upper right curve is for a model 
with a central hydrogen mass fraction of 0.115.
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the central hydrogen mass fraction is 0.305 and 0.115. The position of the two curves relative 

to each other results primarily from evolution. It can also be seen that the length of the 

more evolved inclination curve is shorter. That results from a slowing down of the surface 

equatorial velocity as the star ages. The analytic curve mimics the shortening well. It is also 

noted that the overall shape of the curve changed somewhat as the star aged, which is not 

well reproduced by the analytic curve. The maximum difference in effective temperature is 

found in the older curve and is 600 K, at a temperature of 24,000 K it amounts to about 

2.6%. The maximum difference in the luminosity is also found in the older curve, and is 

1,000 Lq . At a luminosity of 24,000 Le this amounts to about 5.5%. If one compares the 

errors to the uncertainties in the computed inclination curve found by Gillich, of at least 

1-6% in luminosity and 0.1-0.6% for temperature, the lack of agreement for the luminosity 

does not appear serious. While not within the uncertainty estimates of Gillich (2007), the 

differences between temperatures are not large when compared to the changes in luminosity 

and temperature over the length of the inclination curve. The discrepancy in temperature 

will not greatly affect the results. The luminosity agrees with the computed curves to within 

the maximum uncertainty. From figure 2.5 it can be noted that the end points and length 

of the inclination curves are reasonably well represented. The curve shape, which is not 

as well represented as desired, is less important to the current work. That is because the 

present work looks at selected cluster stars which are at outer edges of the cluster in the 

HR diagram, and the end points of the inclination curves dictate the location of the stars 

in these areas.
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2 . 3  S y n t h e t i c  C l u s t e r  G e n e r a t i o n

We must generate stellar evolutionary tracks to create synthetic clusters. The tracks 

were made for a grid in mass (3, 5, 8, 12, and 15 Me ) and rotation. An upper limit 

of 15 M0 was decided on in order to avoid problems arising from mass loss in massive 

stars. Generally studies considering mass loss focus on stars with masses > 20 M0 , see 

Chiosi & Maeder (1986) for examples. At each of the five masses indicated there are six 

different rotation rates, giving a total of 30 evolutionary tracks. The rotation rates at each 

of the five masses are chosen to maintain the same approximate surface shape across all 

masses. The surface shape depends on uj/ ujc, which is believed to be the best variable 

to measure rotation. The ratio of the polar radius to the equatorial radius, Rv0\(i/R e(v 

is monotonically related to uj/ ujc and is used as an indicator of the surface shape. This 

method for identifying models with similar surface properties was adopted from the original 

synthetic cluster code provided by Deupree (private communication). It is desirable for the 

models to have similar surface shapes so that surface properties will vary between tracks 

only as a function of mass within a given surface shape. To maintain surface shape as the 

mass increases, the surface equatorial velocity must also increase. Table 2.3 lists the grid of 

masses and surface equatorial velocities of each of the tracks, and also includes the ratio of 

the polar to equatorial radius, the fractional polar radius {Rvo\e/Req)- The fractional polar 

radius is unknown before the model is computed. Determining a surface equatorial velocity 

for a given mass that will reproduce a particular fractional polar radius involves a degree 

of trial and error. Some of the models have been selected from previously computed ZAMS 

models that have approximately the same fractional polar radius as those at other masses. 

Other models have been computed specifically to produce the desired fractional polar radius.
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The next section describes what properties must be defined in order to determine a cluster 

member’s position in the HR diagram along with how the properties are determined. The 

section “Evolutionary Track Interpolation” describes how the properties of a cluster member

are used to determine its HR diagram position.

Rot. 15 M0 12 M0 8 M0 5 M0 3M0
Index Ueq Rpole /  -Req Ueq Rpole/ Req Ueq Rpole/Req Ueq Rpole/Req Ueq Rpole/Req

1 0 1.00000 0 1.00000 0 1.00000 0 1.00000 0 1.00000
2 100 0.99125 100 0.99014 90 0.99103 80 0.99103 70 0.99182
3 260 0.94077 240 0.94492 210 0.94905 205 0.94077 185 0.94077
4 405 0.85966 375 0.86640 330 0.87880 300 0.87467 275 0.87055
5 455 0.82319 435 0.82095 405 0.81683 375 0.80858 345 0.79618
6 570 0.72593 540 0.72593 495 0.72593 450 0.72181 410 0.71353

Table 2.3: The grid of evolution tracks used by the synthetic cluster code. Veq is the surface 
equatorial velocity at the ZAMS in km s-1 . Rpoie/Req is the fractional radius of 
the pole with respect to the equator radius. Rot. index is the rotation index 
assigned to each surface shape. See section 2.3.1 for details about the rotation 
index.

2 . 3 . 1  D e t e r m i n i n g  P r o p e r t i e s  o f  C l u s t e r  M e m b e r s

The free parameters related to the stellar evolutionary curves are the mass, rotation rate, 

and age. How those properties axe determined for each cluster member is discussed here. 

The inclination is also important for determining the observed effective temperature and 

luminosity, as it allows the position along the analytical inclination curve to be determined.

The amount of rotation is described by a floating point index between 1 and 6 and is 

referred to as the rotation index. It corresponds to the six values of rotation for each mass 

in table 2.3. A rotation index of 1 corresponds to an surface equatorial velocity of zero and 

a rotation index of 6 to the maximum surface equatorial velocity, as given in table 2.3. For 

example, a 12 M0 star with a rotation index of 3 has a ZAMS surface equatorial velocity of 

240 km s-1 . A constant rotation index represents constant surface shape on the ZAMS for 

any mass because of the manner in which the ZAMS equatorial surface velocities are chosen.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 . M e t h o d s 58

The fractional part of the rotation index corresponds to equatorial surface velocities between 

the grid velocities. To determine the surface equatorial velocity from the rotation index, 

we must interpolate among the surface equatorial velocities of the surrounding computed 

models.

The rotation index is chosen in the range (1-6) by using the random number generation 

function, RAND, in FORTRAN which returns a number between 0 and 1 with equal prob­

ability of the number being anywhere in that range. The result from the RAND function is 

then scaled and shifted to cover the range of the rotation index using:

rotation index =  5(RAND)P +  1. (2.63)

Raising RAND to the power of p  allows for different rotation distribution functions for stars 

within a cluster to be tested. A value of p  greater than 1 produces a distribution favoring 

slower rotators whereas a value of p less than 1 produces a distribution favoring faster 

rotators. The impact of the rotation distribution on the results of this thesis is discussed in 

section 3.2.

Environmental effects can play a role on the distribution of rotation among cluster 

members. However, such a relationship is complex and the details are not well understood. 

There may also be many subtleties which make the prescription of a generally applicable 

rotation distribution difficult. However, some trends have been found; for example, a sample 

of stars from dense clusters typically has more rapid rotating stars when compared to a 

sample of field stars (Wolff et al., 2007). One theory for this is mergers of binary systems, 

as mentioned by Turner (1996a), which would spin up the merged star by conservation 

of angular momentum. Regardless, the above prescription allows us to consider differing
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smooth distributions of rotation among clusters in a simplistic way and allows us to obtain 

relevant information while avoiding many of the complexities and unknowns, for example 

the v sin i dependence, of a more detailed observed distribution.

The star’s mass is chosen in a slightly more complicated way. The Salpeter (1955) initial 

mass function (IMF) is used. To establich the masses of stars in the cluster, the range that 

a single star can occupy in mass is determined. That range is determined based on the 

Salpeter power law, keeping the number of stars in the cluster fixed at N. The Salpeter 

IMF gives the number of stars, n(m), as a function of mass, m, as:

n(m) =  C m p , (2-64)

where m  is units of M©, C  is a constant, and P  =  —1.35 . The power, P , was left as a 

variable in the interpolation code, so that it could be changed later if desired. The number 

of stars, N ,  in a given mass range, Mmin to M max, is given by:

N  =  C  m Fdm  =  - 4 L -  ( M S  -  ■ (2.65)
J  M m i n  ~ F  -*■

Given the number of stars in the cluster and the mass range of the cluster (Mmax, M min), 

the normalization constant C  can be found as:

C =  [̂P + 1l+1, (2-66)M P+1 -  M p+11  '-1  m  n  t  -*■ m l  n

so that the integration over the mass range will produce N  stars. If N  in equation (2.66) 

is set to 1, the mass bounds that this single star can be between can be solved for. Let the
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upper and lower masses of a single star be defined as M* and Mj+i. Solving equation (2.66) 

for Mi+1 with N  =  1 produces:

Mi+1 =  +  M'P+l)  P+1 ‘ (2'67)

Given Mi =  Mmin, the above recursion relation allows each successive mass range to be 

determined until Mi+i =  Mmax. It produces N  mass ranges in which the N  stars are to be 

placed. To pick a mass for the i th star, the RAND function is used to choose a random mass 

in the range Mj to Mj+i. The same approach was used by Harris &; Deupree (1976).

The age of the cluster must still be chosen. This is an input that the user specifies, and 

is assumed to be the same for all cluster members. The synthetic cluster code does have 

some functionality built in to allow the age to be randomly chosen within a specific range in 

a similar manner to the inclination or rotation. The formation time, as well as the age of the 

cluster, is limited by the largest mass evolutionary track. Though that functionality may 

be used to explore the effects of a finite cluster formation time, the option is not utilized in 

this research. Instead, it is primarily used as a means of computing interpolated quantities 

over a range of ages for comparison, for example an interpolated evolution track that may 

be compared with a ROTORC evolutionary track.

Finally, the inclination of the star’s rotation axis to the line of sight is chosen randomly 

between 0 °  and 9 0°. Again, the RAND function is used and scaled up to the desired range. 

This assumption is valid because a star’s rotation axis must be random with respect to an 

arbitrary observer. However, it is possible that members within a cluster may have some 

preferred rotation axis orientation since they likely formed out of the same cloud of gas with 

some net angular momentum. Of course, effects such as a gravitational interaction with

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 . M e t h o d s 61

other formed or forming stars in the cluster could affect the orientation of the rotation axis 

in a random way.

2 . 3 . 2  E v o l u t i o n a r y  T r a c k  I n t e r p o l a t i o n

Evolutionary track interpolation takes the model information from the ROTORC evo­

lution tracks and interpolates it to the required mass, rotation, and age. The following 

ROTORC quantities must be interpolated: Tes(9), R(9)/Req, and Req, the equatorial ra­

dius. These interpolated quantities, plus the inclination, permit the determination of the 

model’s apparent location in the HR diagram. Other quantities that are also interpolated 

but not required to determine the observed luminosity and effective temperature are: RO­

TORC total luminosity, ROTORC average effective temperature, and surface equatorial 

velocity. These additional quantities are useful for testing and understanding the results of 

the interpolation.

Before the interpolation can be done, eight models are found that bracket the desired 

mass, rotation, and age. To describe the interpolation process and how the bracketing 

models are found, the interpolation of a 6.85 M© model at an age of 0.028 byr at a rotation 

index of 3.89 is followed step by step.

Four bracketing evolutionary tracks are found, first by identifying masses which bracket 

the desired mass (in this case 8 and 5 M©). Then the rotation indices for each of these 

masses which bracket the desired rotation index (in this case 3 and 4) are identified. This 

now defines four evolutionary tracks which bracket the desired m odel’s mass and rotation 

rate. The next step is to find which two models, on each of these four tracks, bracket the 

desired age. This is not as straightforward as it might appear.
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Figure 2.6: (a) Turning points of a 5 M@ star with a rotation rate of 205 km s-1 . At ®  the 
model is on the ZAMS, at (2) the model is at the second turning point, at (3) the 
model is at the third turning point, and @ is the last model in the evolution 
sequence, (b) Solid black lines are evolutionary tracks of 5 M0 and 8 M0 
stars with the larger mass being hotter and more luminous. The dashed black 
line shows an interpolated evolution track at 6.85 M0 . The blue dots indicate 
turning points and the dashed blue lines connect common turning points across 
mass. The red dots indicate models in the tracks which are in a similar phase 
of evolution as the desired model (0.028 byr). The red dashed line indicates the 
same phase of evolution across mass as the desired model, (c) Red dots indicate 
the 8 bracketing models from the evolution tracks. The blue dots indicate the 
interpolation in age, the green dots represent the interpolation in mass, and the 
black dot the interpolation in rotation. The scale of figure (c) is arbitrary as 
the real scale is difficult to clearly depict the mechanics of the interpolation.
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To produce a model at a mass between the calculated masses, models must be interpo­

lated within similar phases of evolution. Finding models in similar phases of evolution at 

different masses is not simply a matter of searching the evolutionary tracks and selecting 

the ages that bracket the desired age. Since more massive stars evolve faster than lower 

mass stars, interpolation must be between similar phases of evolution, not ages (Meyer- 

Hofmeister, 1969; Schlesinger, 1969). To find similar phases of evolution, turning points 

in the HR diagram are used. Figure 2.6 (a) shows the turning points with red dots. The 

numbers identify a particular turning point.

Turning point (D corresponds to the zero age main sequence (ZAMS), where the star 

has just begun hydrogen burning in the core. From (T) to (2) the star is burning hydrogen 

in the core. When hydrogen begins to become depleted in the core (hydrogen mass fraction 

of ~  0.01), hydrogen burning slows to the point that the star as a whole begins to contract. 

The curve between points (2) and (3) in figure 2.6 (a) corresponds to the overall contraction 

phase. At point (3) the star begins hydrogen burning in a shell around the core. Point (4) 

in figure 2.6 corresponds to the end of the calculated evolutionary sequence.

Because the cluster members all share the same age, only for the most massive evo­

lutionary tracks will the synthetic cluster code interpolate in this last calculated phase of 

evolution ( (3 )-@ ). The time the star spends on (3)-(4) branch of evolution is far less than the 

time spent in core hydrogen burning. Very few observed clusters will have any stars in this 

region of the cluster’s HR diagram, since the stars will rapidly cool as they expand, moving 

first to cooler effective temperatures at nearly the same L and then moving up the super 

giant branch to begin helium burning. We note that we cannot include stars in the cluster 

synthesis much beyond the gravitational contraction phase because of the upper mass limit
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of the models. In practice, that restricts the ages we can impose on the cluster.

To determine which phase of evolution our desired model is in, the age of the turning 

points must be determined at the desired model’s mass. That is done by linear interpolation 

in log age from the turning points of each bracketing mass to the desired mass using the 

log of mass. In figure 2.6 (b) the turning points are shown as blue dots. The evolutionary 

tracks of the grid are solid black lines. The dashed black line represents the interpolated 

evolutionary track of the desired mass. Note that evolutionary tracks are not actually 

computed during the interpolation process. All evolutionary tracks in figure 2.6 (b) are at 

the same rotation index of 3. The blue dots on the dashed black line are the interpolated 

turning points. The ages of the turning points are tested to find which two turning points 

our desired model is between. For the model parameters given above, that corresponds to 

the turning points labeled ©  and © . The age at the two bracketing masses corresponding 

to the same phase of evolution as the desired mass can be found by using the age fraction, 

which is the age fraction of the desired model between the two interpolated turning points. 

These interpolated turning points are shown as the blue dots on the black dashed curve in 

figure 2.6 (b). Then two adjacent models are found on each evolutionary track that span an 

age determined at each track using the age fraction. These models are shown in figure 2.6

(b) as red dots. The separation of these age-bracketing models has been exaggerated so 

that the two models can be visually differentiated from each other. This process is then 

repeated at the other rotation index of 4, resulting in a total of eight models. Figure 2.6

(c) shows these eight models as red dots among which the interpolations are performed.

Once all the bracketing models have been found, a desired quantity, q, is interpolated

to the desired age, mass, and rotation from the eight bracketing models. The models form
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Figure 2.7: Two evolutionary tracks of a 14 M0 model with a ZAMS surface equatorial 
velocity of 498 km s-1 . The dashed line is the evolutionary track computed using 
ROTORC, while the solid line is the track interpolated from the ROTORC grid 
of models.
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a hexahedron in age, mass, and rotation space. First q is interpolated in age between the 

two models on each evolution track. That is done by linearly interpolating in log age. 

The result of one interpolation corresponds to one of the blue dots in figure 2.6 (c), and 

is repeated for the other 4 evolutionary tracks. There are now 4 q’s interpolated from the 

original 8 ROTORC models to the correct age at the differing masses and rotations of the 

4 bracketing ROTORC evolutionary tracks. At each of the rotations the two q values are 

then interpolated linearly in log mass, and results in the two green points in figure 2.6 (c). 

Finally, q is linearly interpolated in rotation index, producing the value of q at the desired 

mass, age, and rotation index. To obtain the actual surface equatorial velocity instead of 

a rotation index the surface equatorial velocity is interpolated from bracketing models just 

as any other quantity would be. The fractions between bracketing age, mass, and rotation 

index are calculated once for each interpolated model, and are reused for each quantity, q 

being interpolated. The quantities that are interpolated are the effective temperature as a 

function of colatitude, the equatorial radius, fractional radius as a function of colatitude, 

and the surface equatorial velocity.

The accuracy of the interpolation code has been tested using a 14 M0 evolutionary track 

calculated with ROTORC having a ZAMS rotation speed of 498.46 km s-1 with solid body 

rotation, no overshooting, and the same metal abundance as the grid of ROTORC models 

used for interpolation. The rotation index (5.4863) of the interpolated model was chosen 

so that the surface equatorial velocities at the ZAMS of the interpolated model matched 

that of the ROTORC model calculated at the ZAMS. The accuracy of interpolating the 

effective temperature and fractional radius as a function of colatitude and equatorial radius 

was determined by interpolating models at ages of 0 0.009 and 0.0110282 byr at a mass of
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14 M0 and a rotation index of 5.4863. The maximum relative errors of the interpolated 

quantities are as follows: 0.6% for the ROTORC effective temperature as a function of 

colatitude (corresponding to 190 K at a temperature of 30,000 K), 1.2% for the fractional 

radius as a function of colatitude (corresponding to 0.011 at a fractional radius of 0.935), 

and 0.7% for the equatorial radius (corresponding to 0.06 R® at a equatorial radius of

8.4 R0 ).The relative error in interpolating the surface equatorial velocity was also found to 

be 0.2% (corresponding to 0.67 km s-1 at a velocity of 292.39 km s-1). However, because 

the surface equatorial velocity was used as a means of determining the rotation index for 

the interpolation, the test would only determine the accuracy of the interpolator with age, 

because the rotation index was fit on the ZAMS. In addition, an interpolated evolutionary 

track for the 14 M0 ROTORC track was compared with that computed by ROTORC. The 

result is shown in figure 2.7. The two curves are quite close in logTeff and logL , and have 

differences characteristic of the uncertainties mentioned above. The plotted logTeff and 

log L  in figure 2.7 are the ROTORC luminosity and effective temperature.
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3 R e s u l t s

3 . 1  S e l e c t e d  M e m b e r s

The problem of understanding the properties of selected cluster members needs to be 

handled in a statistical manner, and, as such, a large number of test cases need to be 

computed. The test cases are used to quantify the fraction of cluster members at selected 

locations in the HR diagram having various inclinations and rotation rates. The fractions, 

Cf depends on the number of stars in a cluster. When there are more stars in a cluster, 

there is a wider range of rotational characteristics represented by cluster members producing 

different C /S . Of course, one must recognize when comparing with observations that the 

number of stars in the cluster is fixed and may be too small to provide valid statistics. The 

calculated fractions also depend on the number of clusters that are used in the calculation. 

For such reasons, the first step in the analysis is to compute synthetic clusters ranging from 

20 to 500 member stars in increments of 20 members, resulting in 25 sets, each composed 

of 500 clusters. All clusters have a mass range of 3 M0 to 15 M0 , an inclination range of 

0° to 90°, a rotation index range of 1 to 6 (essentially, zero to critical rotation), and an 

age of 11 Myr. Figure 3.1 and figure 3.2 show two characteristic clusters with 160 and 340 

member stars respectively. Open circles show rapidly rotating stars, with rotation indices 

between 3.5 and 6 (surface equatorial velocities of 308 km s-1 to 570 km s-1 for a 15 M0 

ZAMS star), and viewed nearly equator-on, with inclinations between 60° and 90°. Open 

diamonds show rapidly rotating stars, with rotation indices between 3.5 and 6, and viewed 

nearly pole-on, with inclinations between 0° and 30°. Closed circles represent all other
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stars in the synthetic cluster, whether they are slowly rotating stars at any inclination, or 

rapidly rotating stars with inclinations between 30° and 60°. Since cluster members are 

displayed with different symbols, it can be seen that the rapidly rotating stars seen pole-on 

are generally the brightest and hottest cluster members. It can also be noted that the 

rapidly rotating equator-on stars are nearly always to the redder side of the main sequence 

turnoff. Finally, one can see that it is difficult to distinguish between a rapidly rotating 

massive star viewed equator-on and a less massive rapidly rotating star viewed pole-on along 

the main sequence below the turnoff.

The selected members that were studied in this analysis are as follows: the brightest 

core hydrogen burning star in the cluster, the bluest star in the cluster, and the reddest star 

above a predefined luminosity cutoff in the cluster. These qualifiers for selected members 

were chosen based on our knowledge of the inclination curves discussed in section 2.2. The 

ability of the inclination curve to produce the selected members in the cluster is greatly 

hindered along the main sequence because the effects of moving along the inclination curve 

are nearly identical to those of changing mass, which is referred to here as mass effects. 

However, the main sequence is widened by rotation independent of the inclination. As a 

star rotates more rapidly, the overall inclination curve moves to lower temperatures and 

higher luminosities, as can be seen in figure 2.4. At higher masses, cluster members are 

beginning to move noticeably off the ZAMS which is referred to as the main sequence 

turnoff. Their luminosity and temperature begin to change with mass in a direction that 

is no longer parallel to that of the inclination curve and the inclination curve is no long 

parallel to the to main sequence. Hence, selected members are now produced. The region 

above the main sequence turnoff is therefore the target of this analysis.
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The brightest core hydrogen burning star in the cluster is likely to be viewed pole-on 

and to be rapidly rotating, as that corresponds to the most luminous part of the inclination 

curve. The fraction, C f ,  of clusters with the brightest star in the rotation index range from

3.5 to 6 and inclination range of 0° to 30°, as a function of the number of stars in the cluster, 

is shown in figure 3.3 (a) using 500 synthetic clusters. As can be seen from the example 

cluster in figure 3.1, the most luminous star in this particular cluster is not rapidly rotating 

and not viewed pole-on, but is more massive than the second most luminous star which is 

rapidly rotating and viewed pole-on. As the number of stars in the cluster increases there are 

more massive stars and the fraction of clusters having both a massive and rapidly rotating 

star viewed pole-on increases. Clusters having a membership of 130 stars produce a value 

of C f  of 0.5 for the brightest star being rapidly rotating and seen pole-on. C j  increases as 

the number of stars increases, though the rate of increase shows signs of slowing at larger 

cluster memberships.

To determine if a sufficiently large sample of clusters was used in obtaining the results, 

the fraction of clusters with the brightest star in a rotation index range of 3.5 to 6 and 

inclination range from 0° to 30° was plotted as a function of the number of clusters up to 

500 clusters, each cluster with 340 stars. The results are shown in figure 3.3 (b). As can 

be seen from the figure, approximately 150-200 clusters and greater will give reasonably 

consistent fractions.

To examine how the fraction of clusters with brightest stars within the specified range 

changes as the inclination range changes, the fraction of clusters with the brightest star in 

the rotation index range of 3.5 to 6 and an inclination range from 0° to a varying maximum  

inclination is shown in figure 3.3 (c). One can see that as the inclination range increases, so
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does the fraction of clusters with the brightest star in the defined range. More interesting is 

that an inclination range from 0° to 50° includes all the brightest stars which are within the 

given rotation index range. It indicates that any of the other brightest stars are more slowly 

rotating stars below the lower bound of the rotation index range of 3.5. These stars are 

likely either more massive stars which are more evolved than the other stars or moderately 

rotating stars viewed nearly pole-on, or a combination of both. It also means that no stars 

that are rapidly rotating with inclinations greater than 50° are ever selected as the brightest 

cluster members in this sample of clusters. Again, that is expected as higher inclinations 

will move the star to lower luminosities (see figure 2.4).

To investigate how the fraction of clusters with the brightest star within the specified 

ranges changes as the rotation range varies, the fraction of clusters with the brightest star 

having a rotation index in the range of a varying minimum to 6 and inclination in the range 

from 0° to 30° is plotted in figure 3.3 (d). As can be seen, the fraction of clusters with 

the brightest star within the specified ranges increases rather rapidly up to a minimum  

rotation index of about 3.3, slightly over half the rotation index range. After that, the 

curve flattens out considerably and only increases slightly. The curve continues to increase, 

though slowly, indicating that some of the brightest stars are from slowly rotating stars, 

seen nearly pole-on.

The same four plots created for the brightest star in the cluster were produced for 

the other two types of selected members considered: the bluest star, and the reddest star 

above a predefined luminosity cutoff. Unlike the other two types of selected members 

considered, the luminosity cutoff involves more work than merely picking the maximum or 

minimum of luminosity or temperature. A luminosity is used, below which stars are not
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included in the search for the reddest cluster member, because the main sequence becomes 

progressively cooler at lower luminosities. Thus, the luminosity limit was chosen to exclude 

stars that would be redder merely because of a lower mass. This luminosity corresponds to  

the luminosity at which the cluster begins to turn off the ZAMS noticeably. This luminosity 

changes with the age of the cluster because lower mass stars are turning off the ZAMS. A 

plot of the chosen cutoff luminosity, as a function of age, is shown in figure 3.4. Plotted  

as solid curves are isochrones generated from non-rotating ROTORC evolutionary tracks 

at ages from 0 to 24 Myr in steps of 2 Myr with a mass range of 3 to 15 M@. The dashed 

line shows the luminosity that is used as a luminosity cutoff. Once an age is selected, the 

luminosity cutoff can be taken from the curve. The dashed line is parallel to the ZAMS but 

shifted upwards by 0.38 in log(L /L 0 ).

Figure 3.5 (a), (b), (c) and (d) are the corresponding four plots for the reddest star 

above a log( L / L @) cutoff of 4.11 corresponding to the age of 11 Myr. The range in rotation 

index is again 3.5 to 6, the range for the inclination is now 60° to 90°, viewed equator-on to 

place the star in the lower temperature regime of the inclination curve. The general trends 

seen here are similar to the results shown in figure 3.3, only with a much higher fraction 

of clusters with the reddest star within the specified rotation and inclination ranges. The 

higher fraction of clusters results from using the luminosity cutoff to eliminate most stars 

of lower mass and slower rotation, and from the fact that higher mass stars will be so cool 

only if they are rapidly rotating. The fraction of clusters with the reddest star above a 

luminosity cutoff that is rapidly rotating and seen pole-on is 0.5, when the membership 

of the clusters is 50 stars. At a membership of 150 stars the fraction of clusters with the 

reddest star above a luminosity cutoff that is rapidly rotating and seen pole-on is 0.84.
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When membership of the clusters is increased from 150 to 500 stars, there is only a modest 

increase in the fraction of clusters with the reddest star above a luminosity cutoff being 

rapidly rotating and seen pole-on.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



log
 (

L
/L

e)

3 . R e s u l t s 7 4

4.5

• O

3.5

O %
« •2.5

t> < >• o

O O

GO

4.2 4.1 4.05 44.3 4.25 4.154.45 4.4 4.35

log(Teff)

Figure 3.1: Characteristic clusters from the sample of 12,500 clusters with a 160 member 
stars. Open circles denote rapidly rotating (rotation index between 3.5 and 
6) equator-on (inclination between 60° and 90°) stars. Open diamonds denote 
rapidly rotating (rotation index between 3.5 and 6) pole-on (inclination between 
0° and 30°) stars. Filled circles are slowly rotating stars or stars which are 
rapidly rotating and in the inclination range 30° to 60°.
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Figure 3.2: Characteristic cluster from the sample of 12,500 clusters with 340 member stars.
Open circles denote rapidly rotating (rotation index between 3.5 and 6) equator- 
on (inclination between 60° and 90°) stars. Open diamonds denote rapidly 
rotating (rotation index between 3.5 and 6) pole-on (inclination between 0° and 
30°) stars. Filled circles are slowly rotating stars or stars which are rapidly 
rotating and in the inclination range 30° to 60°.
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Figure 3.3: (a) is a plot of the fractions of clusters with the first, second, third, and fourth 
brightest stars within the rotation index and inclination ranges of 3.5 to 6 and 0° 
to 30° respectively, plotted as a function of the number of stars in the cluster.
(b) is a plot of the four brightest stars within the same rotation index and 
inclination range as (a) but as a function of the number of clusters, (c) is a plot 
of the fraction of clusters with a first, second, third, and fourth brightest star 
within the rotation index and inclination ranges of 3.5 to 6 and 0° to a varying 
maximum inclination respectively, (d) is a plot of the fraction of clusters with 
a first, second, third, and fourth brightest stars within the rotation index and 
inclination ranges of a varying minimum to 6 and 0° to 30° respectively. Plots
(c) and (d) were both computed from 500 clusters, each with 340 stars.
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Figure 3.4: This plot illustrates how the luminosity cutoff for the reddest cluster member 
is determined. Plotted are isochrones generated from non-rotating ROTORC 
evolution tracks at ages from 0 to 24 Myr in steps of 2 Myr. The dashed line 
is parallel to the ZAMS and indicates the luminosity cutoff as a function of the 
age of the isochrone the line is crossing.
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Figure 3.5: (a) is a plot of C f  for the four reddest stars above a luminosity cutoff having 
rotation rates and inclinations within the rotation index and inclination ranges 
of 3.5 to 6 and 60° to 90° respectively, plotted as a function of the number of 
stars in the cluster, (b) is a plot of the four reddest stars above a luminosity 
cutoff within the same rotation index and inclination range as (a) but as a 
function of the number of clusters, (c) is a plot of Cf  having the reddest star 
above a luminosity cutoff within the rotation index and inclination ranges of 3.5 
to 6 and a varying minimum to 90° respectively, (d) is a plot of C f  having the 
reddest star above a luminosity cutoff within the rotation index and inclination 
ranges of a varying minimum to 6 and 60° to 90° respectively. Plots (c) and (d) 
were both computed from 500 clusters, each with 340 stars.
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Figure 3.6: (a) is a plot of C f  for the four bluest stars of being within the rotation index and 
inclination ranges of 3.5 to 6 and 0° to 30° respectively, plotted as a function of 
the number of stars in the cluster, (b) is a plot of the four reddest stars above 
a luminosity cutoff within the same rotation index and inclination range as (a) 
but as a function of the number of clusters, (c) is a plot of C f  having the bluest 
member within the rotation index and inclination ranges of 3.5 to 6 and 0° to 
a varying maximum respectively, (d) is a plot of C f  having the bluest member 
within the rotation index and inclination ranges of a varying minimum to 6 and 
0 to 30° respectively. Plots (c) and (d) were both computed from 500 clusters, 
each with 340 stars.
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The final type of selected member that was examined was the bluest star in the cluster 

(i.e., hottest). Figure 3.6 shows the corresponding four plots for this case. A rapidly 

rotating star seen pole-on appears hotter than a slower rotating star or a star seen at a 

higher inclination (see figure 2.4). Thus, it is expected that the bluest star will likely be 

rapidly rotating and seen pole-on. The range in rotation index is again 3.5 to 6, the range for 

the inclination is again 0° to 30°. When the membership of the synthetic cluster reaches 50 

stars, half of the clusters ( C f  — 0.5) have the bluest star being rapidly rotation (a rotation 

index between 3.5 and 6) and viewed pole-on (an inclination between 0° and 30°). At a 

membership of 140 stars, C f  — 0.84 for the bluest star being viewed pole-on and rapidly 

rotating. C f  increases very little for increased memberships from 140 to 500 stars.

Interestingly, as seen in figure 3.6 (a), the first bluest star’s C f  drops below that of 

the second bluest star’s C f  as the number of stars increases. This can be understood by 

looking at figure 3.7, a plot of the HR diagram of a cluster of 380 stars with the bluest star 

represented by an open circle and the second bluest star by an open diamond. The dashed 

curve shows the isochrone for non-rotating stars corresponding to the cluster’s age. The 

bluest star is one of the most massive stars and is nearly non-rotating, while the second 

bluest star is a rapidly rotating star seen pole-on. The reason for the decrease in C f  for 

the bluest star below that of the second bluest star, as the number of stars in the cluster 

increases, is that the mass bins (see equation 2.66 and equation 2.67) for the cluster members 

become small enough for stars to start populating the gravitational contraction phase of 

evolution (between (2) and ©  in figure 2.6 (a) ). As long as there is a star in the upper 

mass range that is hotter than the bluest star near the main sequence turnoff, the bluest 

star may have any rotation or inclination properties so long as it is massive. If there were a
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sufficient number of stars in the gravitational contraction phase, then rotational properties 

could again start to play a role. The time a star spends in the gravitational contraction 

phase, however, is short compared to the main sequence lifetime, and the number of stars 

in a cluster would need to be greater than the largest number of stars (500) considered here 

to populate the gravitational contraction phase to this extent.
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Figure 3.7: Plotted is a cluster illustrating the cause of the trend seen in figure 3.6. The 
open circle is the bluest cluster member and the open diamond is the second 
bluest cluster member. The open circle is a massive nearly non-rotation model 
where as the diamond is a pole-on rapidly rotating star. The dashed line is a 
non-rotating isochrone of the same age as the cluster. The filled circles are the 
rest of the cluster members.
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Figure 3.8: Plotted is a 14 Myr cluster with 340 members. The open circles are rapidly 
rotating equator on stars (rotation index and inclination ranges of 3.5 to 6 and 
60° to 90°). The open diamonds are rapidly rotating pole-on stars (rotation 
index and inclination ranges of 3.5 to 6 and 0° to 30° respectively). The filled 
circles are the remaining members.
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Figure 3.9: These plots have been produced from a set of 250 clusters each with 340 stars at 
an age of 14 Myr. The above plots have the same ranges, from top to bottom, 
as figures 3.3 (c) and (d), figures 3.5 (c) and (d) and figures 3.6 (c) and (d) 
respectively.
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From the isochrone for figure 3.7, it is noted that the age of 11 Myr for the most massive 

stars is no longer on the evolutionary tracks for all rotations. In the upper portions of the 

evolutionary tracks, the model’s luminosity and temperature are changing rapidly and a 

small difference in age can correspond to a large difference in the evolutionary phase of the 

models. This results in a premature ending of the track, because two tracks at the same 

mass and at different rotations can end at the same phase of evolution at different ages. 

This is an issue only when the cluster’s age is near the terminal age for main sequence. 

Older or younger ages will not correspond to these rapidly changing evolutionary phases 

and will not have this issue. To explore the effects of the premature ending in our cluster’s 

mass distribution, a set of 250 clusters at an age of 14 Myr, each cluster consisting of 340 

stars, was computed. At this age the most massive stars are completely off the end of the 

evolutionary track, after rapidly moving to cooler temperatures on the HR diagram. The 

results of this set of computations are shown in figure 3.9 for the three types of selected 

members: the brightest, reddest above a luminosity cutoff, and the bluest. The results are 

nearly the same for the brightest and reddest cluster members, with C f  only changing by a 

few hundredths. Such a small change can be explained by a different and smaller sample of 

clusters. The bluest cluster member’s Cf  has dropped below even the third bluest member 

at a maximum of 30° (figure 3.9 (e)), and below even the fourth brightest when the minimum 

rotation index is below 3 (figure 3.9 (f)).

3 . 2  D i f f e r i n g  R o t a t i o n  D i s t r i b u t i o n s

To examine if the width of the main sequence can be used as an indicator of the dis­

tribution of rotation among cluster members, sets of 250 clusters consisting of 340 stars
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with differing rotation distribution powers, p,  in equation 2.63 were created. This sample of 

synthetic clusters can also be used to examine how C /  for the selected members having spe­

cific rotational characteristics is affected by different rotation distributions among cluster 

members. 20 sets were created with p  =  1 to 10.0, in steps of 0.5. Recall that increasing p  

produces more stars which are slowly rotating. A typical cluster from the set with p  =  10.0 

is shown in figure 3.10 in order to illustrate the effects of the increased rotation distribution 

power on the synthetic clusters. The three selected member types have been re-examined 

with p  =  5.0 and p  =  10.0 and are shown in figures 3.11 and 3.12 respectively.

A value of p  decreasing from 1 to 0 increases the number of rapidly rotating stars in the 

cluster. More rapid rotators improve C /  for the three considered types of selected members 

being within the rotation index and inclination ranges considered (see figure 3.13). The 

examination of the effects on C f  is aimed at determining for which rotation distribution 

power C j  is no longer meaningful. When fewer than half the clusters have selected members 

which meet the specified rotational characteristics (C /=0.5) it becomes equally likely that 

the selected members meet or do not meet the specified criteria.

In figure 3.11 for p  =  5.0 the brightest star’s C f ,  with an inclination range from 0° to 

50° and a rotation index range of 3.5 to 6, has decreased to 0.34. The reddest star above 

the luminosity cutoff with an inclination range of 40° to 90° and a rotation index range of

3.5 to 6 has a C f  of nearly 0.8. The bluest star has a higher C f ,  at 0.56, than the brightest 

star in the same inclination and rotation index range, but still not nearly as large a C f  as 

the reddest star above a luminosity cutoff.
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Figure 3.10: Plotted is a cluster with 340 members and a rotation distribution power, p, of 
10. The open circles are rapidly rotating equator-on stars (rotation index and 
inclination ranges of 3.5 to 6 and 60° to 90°) The open diamonds are rapidly 
rotating pole-on stars (rotation index and inclination ranges of 3.5 to 6 and 0° 
to 30° respectively). The filled circles are the remaining members.
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Figure 3.11: These plots have been produced from a set of 250 clusters with a rotation 
distribution power of p — 5. The above plots have the same ranges, from top 
to bottom, as figures 3.3 (c) and (d), figures 3.5 (c) and (d) and figures 3.6 (c) 
and (d) respectively.
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Figure 3.12: These plots have been produced from a set of 250 clusters each with 340 stars 
at a rotation distribution power of p  =  10. The above plots have the same 
ranges, from top to bottom, as figures 3.3 (c) and (d), figures 3.5 (c) and (d) 
and figures 3.6 (c) and (d) respectively.
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In figure 3.12 at p  — 10.0 the brightest star has decreased to a C f  of 0.24 in the inclination 

range from 0° to 40° and rotation index range of 3.5 to 6. The reddest star at a p  =  10.0 

has decreased to a Cf  of 0.46 in the inclination range from 60° to 90° and rotation index 

range of 3.5 to 6. Finally at a p  =  10.0 the bluest star has decreased to a C f  of 0.36 in the 

same inclination and rotation range as the brightest star.

It is expected that C f  spikes when the very slow rotators are included, as can be seen in 

figures 3.11 (b), (d), and (f), and figures 3.12 (b), (d), and (f). That is because the rotation 

distribution powers have created so many more slowly rotating members that their inclusion 

in the criteria drastically increases the C f .  To aid in understanding how these CfS change 

as a function of p,  figure 3.13 shows the C f  for the brightest, reddest above a luminosity 

cutoff, and bluest cluster members being within the rotation index and inclination ranges of

3.5 to 6 and 0° to 30°, 3.5 to 6 and 60° to 90°, and 3.5 to 6 and 0° to 30° respectively. The 

brightest, reddest above a luminosity cutoff, and bluest stars are shown with the double 

dashed, dashed, and solid curves respectively. The reddest and bluest stars decrease with 

increasing p  in a nearly linear fashion; whereas the brightest star C /  drops off more rapidly 

initially, but the drop in C f  slows as p  increases above 4. The brightest star reaches a C f  

of 0.5 at a p ~  2.5. The bluest star reaches a C f  of 0.5 at a p  ~  5.5 or 6.5. The reddest 

star reaches a C f  of 0.5 at p  ~  9 or 10.

To examine if the width of the main sequence could be used as an indicator of the 

rotation distribution of the cluster, the bluest and reddest cluster members where found in 

a luminosity band from log(L/L©) =  3 to 3.2, and the width in log(Teff) , w,  produced by 

the reddest and bluest members was calculated for each of the 250 clusters at each of the 

rotation distribution powers. This range in luminosity was chosen so that the size of the
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band would be small enough to reduce the measured large from differing masses of the stars 

within the luminosity band, but at the same time wide enough to have multiple stars within 

it. It was chosen to be well below from the ZAMS turnoff so that the width of the main 

sequence would depend only on amount of rotation and not on the length of the inclination 

curve. The average was calculated as:

w =  T ; 5 2 wi, (3-1)
JV i=1

where N  is the number of clusters and the standard deviation, a  was calculated as:

a
1 N

-  w)2. (3.2)
iV i=1

The results of the calculation are shown in figure 3.14. The points correspond to the average 

temperature width and the error bars to the standard deviation. The change in temperature 

width from a rotation distribution power, p, of 1 to a p of 10 is 0.013, while the minimum  

standard deviation is 0.008. Also, as the rotation distribution power changes from 1 to 0, 

the temperature width changes by 0.018 which is not very significant compared with the 

minimum standard deviation. While one could likely determine a difference between the 

two extremes of all cluster members rotating near critical rotation rate and a completely 

flat and even distribution of rotation rates, the intermediate rotation distributions would 

be difficult to discern. Thus, the main sequence width is not a very sensitive indicator of 

rotation distribution.
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Figure 3.13: Plotted are the CfS of the brightest star, bluest star and reddest star above a 
luminosity cutoff as double dashed, dashed and solid curves respectively. The 
rotation index and inclination ranges for the brightest star, reddest star above 
a luminosity cutoff, and bluest star are 3.5 to 6 and 0° to 30°, 3.5 to 6 and 60° 
to 90° and 3.5 to 6 and 0° to 30° respectively.
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Figure 3.14: Plotted is the measured average temperature width of the main sequence on a 
luminosity band from 3 to 3.2 in log(L /L 0 ). The error bars show the standard 
deviation of the averages.
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4  C o m p a r i s o n  W it h  O b s e r v e d  
C l u s t e r s

The results presented in the previous section provide a method for constraining a cluster 

member’s rotation rate and inclination based on its position in the HR diagram. To make 

use of CfS one must compare with observed clusters. Such a comparison is not an easy task 

since observed clusters have other effects besides rotation affecting the observed luminosity 

and effective temperature. For example stars with an unresolved binary companion can 

help to broaden the main sequence by allowing the combined SED to produce temperatures 

both to the blue and red side of the non rotating main sequence depending on the types 

of stars combined. Here we compare synthetic cluster HR diagrams with observed cluster 

HR diagrams for NGC 3293, h and % Persei (a composite HR diagram), NGC 3766, and 

NGC 4755. These clusters were chosen because their ages are within the range covered by 

our evolutionary tracks and they have uvby photometry or effective temperatures and lumi­

nosities for a sizeable sample of stars within our mass range. The results of this comparison 

are shown in figure 4.1, figure 4.2, figure 4.3, and figure 4.4, respectively. The HR diagram 

data, masses, and age for h and y  Persei members are taken from Slesnick, Hillenbrand, 

& Massey (2002). For NGC 3293 the uvby photometry, distance, and age are taken from 

Balona (1994b). For NGC 3766 and NGC 4755 the uvby photometry has been taken from 

WEBDA1, and ages of 20 Myr (Patenaude, 1978) and 10 Myr (Sanner et al., 2001) are 

adopted for these clusters, respectively.

The photometry for NGC 3293, NGC, 3766, and NGC 4755 has been dereddened fol-

1 WEBDA is an online database for open star clusters. The URL for the site is 
http://www.univie.ac.at/webda/.
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Figure 4.1: A  com parison of h and x  Persei w ith a syn th etic  cluster. T h e  synthetic cluster  
has been created with an age of 12.8 Myr over the mass range 4 to 15 M0 and 
are denoted by “X” ’s. The filled symbols are members whose temperature has 
been determined using spectroscopy, and the open symbols are members who’s 
temperature has been determined only photometrically. Circles correspond to 
stars with masses within the 4 to 15 M0 range. The squares correspond to stars 
outside this range. The data for h and x  Persei are from Slesnick, Hillenbrand, 
& Massey (2002).
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Figure 4.2: A comparison of NGC 3293 with a synthetic cluster of age 10 Myr. The open 
circles are members within the 3 to 15 M@ range. The open squares denote 
members outside the mass range. The X ’s represent the synthetic cluster. Pho­
tometry for the observed cluster is from Balona (1994b).
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Figure 4.3: A comparison of NGC 3766 with a synthetic cluster of age 20 Myr. The open 
circles are members within the 3 to 15 M0 range. The open squares denote 
members outside the mass range. The X ’s represent the synthetic cluster. Pho­
tometry for the observed cluster is from WEBDA.
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Figure 4.4: A comparison of NGC 4755 to a synthetic cluster of age 10 Myr. The open circles 
are members within the 3 to 15 M0 range. The open squares denote members 
outside the mass range. The X ’s represent the synthetic cluster. Photometry 
for the observed cluster is from WEBDA.
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lowing the procedure of Shobbrook (1983), and converted into effective temperatures, lu­

minosities and masses using the procedure outlined by Balona (1994a). By dereddening 

the individual stars following the procedure by Shobbrook (1983), and not using simply a 

mean reddening for the cluster, the circumstellar reddening suggested by Turner (1993), 

who states that the effects of circumstellar reddening are almost indistinguishable from 

those of interstellar reddening, should be adequately treated.

In figure 4.1 for h and x  Persei, the X ’s denote the synthetic cluster stars, and the filled 

symbols denote members whose temperature was determined using spectral types, and the 

open symbols denote members whose temperature was determined only photometrically. 

Squares correspond to stars with masses outside the mass range of the synthetic cluster (4 

to 15 M0 ). In figures 4.2, 4.3, and 4.4 the open circles are members within the 3 to 15 M0 

range. The open squares denote members outside the mass range. The X’s again represent 

the synthetic cluster stars. The numbers of stars for all synthetic clusters have been chosen 

to match that of the observed sample within our mass range, and a Salpeter (1955) mass 

function has been used for all synthetic clusters. For h and x  Persei, NGC 3293, NGC 3766, 

and NGC 4755 there were 266, 80, 54, and 50 members, respectively, within our grid’s mass 

range. While a membership of 266 will certainly allow application of the computed Cf,  a 

membership of 80 allows one to draw only marginal conclusions about selected members 

while memberships of 54 and 50 allow no conclusions for selected members. All clusters, 

however, allow a comparison of the width of the observed main sequence to the width of 

the synthetic main sequence.

The spread of the main sequence of h and x  Persei is much larger, 1.8 times wider in 

temperature, than that of the synthetic clusters. Collins (1966) states that many other
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effects may play a role, such as metal abundance and age spread. Because h and x  Persei 

are considered together, there may be differences between the clusters which could help to 

spread out the observed main sequence. Inaccuracies in the relative distance estimates for 

the h and x  clusters would also increase the width of observed main sequence. Another 

effect to consider is differential rotation, which will likely help to broaden the main sequence 

(Collins & Smith, 1985). Differential rotation can have a great effect on the length and 

orientation of the inclination curve (see Gillich, 2007), and thus could be a factor. From 

figure 4.1 and 4.3 it can be seen that there are significantly more slowly rotating stars near 

the ZAMS turnoff for the synthetic cluster than in the observed cluster. This suggests that 

there may be more rapidly rotating stars than in the synthetic cluster, which assumes a 

uniform distribution of rotation (p =  1), supporting the suggestion by Strom, Wolff, & 

Dror (2005) and Wolff, Strom, Dror, & Venn (2007) that dense clusters have more rapidly 

rotating stars.

In view of the comparison of NGC 3293, NGC 3766, and NGC 4755 to synthetic clusters, 

the width of the observed main sequence is reasonably well matched by the rotationally 

widened main sequence of the synthetic cluster. This could be a result of using a single 

cluster that is more confined and more homogenous. The width of the observed cluster 

being reasonably well matched by a synthetic cluster that includes rotational effects is not 

inconsistent with the idea that the observed width, at least in part, results from rotation, 

and the assumptions made in generating the synthetic clusters are possibly valid.

In the case of NGC 3293 and NGC 4755, however, the age of 10 Myr is such that 

there are still stars present with masses above the upper mass limit of our grid. Thus, C/S 

determined here cannot be strictly applied to this cluster. It can likely be said that the
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stars on the redder side are rapidly rotating. The number of stars in NGC 3293 causes 

the brightest star not to be a very reliable indicator. However, the reddest star and the 

bluest star both have a Cf  of 0.68 in which they are rapidly rotating and seen equator-on 

or pole-on, respectively, for a membership of 80 stars. In NGC 4755 there are too few stars 

to make any conclusions about the selected members’ rotational characteristics.

h and x  Persei and NGC 3766, at ages of 12.8 Myr and 20 Myr respectively, are old 

enough that the most massive stars in our grid will have moved to the right in the HR 

diagram. However, there are still massive stars present near the ZAMS. This could be from 

field star contamination or from stars in the cluster that have formed relatively recently. 

In either case the stars would have to be removed from consideration to apply directly the 

rotational constraints on members based on their location.

The difficulties highlighted here indicate that it is very important to consider the prop­

erties of the observed cluster used for comparison. Namely the age of the cluster must be 

old enough to remove stars more massive than those of our grid, and the cluster must be 

homogenous and well confined. Composite HR diagrams are likely not as useful because 

they can introduce heterogeneity into the sample. Also the observed cluster should have a 

large number of members in order to be reasonably confident of the rotational characteris­

tics of the selected cluster members. Cluster memberships of more than 150 in this mass 

range are ideal.
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5 C o n c l u s i o n s

In this thesis the effects of stellar rotation were examined in the context of synthetic 

clusters. The width of the main sequence was examined for different rotation distributions 

among cluster members to see if there was a trend in the main sequence width with rotation 

distribution. It was found that, while there is generally a trend in the main sequence width 

to be largest when there is a wide range of rotations and to be smallest when there is 

either many slow or fast rotators but not both, the trend is small compared to the standard 

deviation of the sample. That makes it impossible to say with any certainty what the 

distribution of rotation is among cluster members based on the width of the main sequence.

The comparison of synthetic cluster to observed clusters is complicated by multiple fac­

tors affecting the observed main sequence width, such as age spread among cluster members, 

unresolved binary companions, field star contamination, and photometric errors. Out of the 

four observed clusters examined, three have main sequence widths consistent with that of 

a synthetic rotationally broadened cluster. In h and x  Persei the observed main sequence 

width significantly exceeds that of the synthetic cluster main sequence on both the blue and 

red sides.

The results of the statistics on synthetic clusters suggests that by selecting specific 

locations on the HR diagram will allow one to put constraints on the rotation rate and 

inclination of a cluster member with some modest but not overwhelming certainty. The 

locations which appear to be the best indicators of rotation are ones in which the select 

cluster member can only obtain the location from rotational effects, and changing mass 

cannot achieve the same location. The selected member which is the most robust is the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5. C o n c l u s i o n s 1 0 3

reddest star above a predefined luminosity cutoff. The reason is that the effects of changing 

mass on the star’s HR location play a minor role in placing a star at the selected location, 

while rotational effects are needed for a cluster member to reach the selected location. The 

applicability of the C/s depend on the properties of the observed cluster. The cluster would 

need to have an age near 11 Myr and have photometry available for about 150 members in 

our mass range to be able to draw meaningful conclusions about selected members.

Another interesting result is that using the bluest star as an indicator of rotational char­

acteristics when a cluster has members in the gravitational contraction phase of evolution 

produces lower Cj  values. The members that are in the gravitational contraction phase can 

be bluer than the bluest stars at the ZAMS turn-off even for those on the ZAMS turn-off 

seen exactly pole-on and very rapidly rotating. Because there will be very few stars in the 

gravitational contraction phase, because of the short lifetime of the phase, it is unlikely that 

the bluest of these stars will have specific rotational characteristics, and it can only be said 

that they are massive. This problem may be fixed with application of a luminosity cutoff 

as was done with the reddest cluster member.
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