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Formalizations Of Error Models With Applications To Spelling Error 

Correction

By Jing Xu 

Date of Submission: April 20, 2004

Abstract:

For many information processing applications, there are several different 
existing error models and error correction algorithms. This research focuses on 
a general methodology for defining error models describing different types of 
errors in information processing. It includes formal definitions of channels and 
the error models and a general algorithm for applying an error model to correct 
errors. This general methodology represents all existing error models and 
corrects errors in a consistent way.

This research also discusses the computation of error models with application to 
spelling error correction. Different error models for various spelling error 
correction problems have been investigated. The improved Brill and Moore 
error model has been implemented to describe the approach of computing a 
spelling error model for specific users. Based on the general methodology 
devised in this research, four error models based on the improved Brill and 
Moore error model have also been described and tested.
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Chapter 1

Introduction

1.1 T he S tatem en t o f th e  P roblem

In a real world communication system, errors may occur anywhere and anytime. 

They can happen in computer to computer communications, human to computer 

communications (typing errors), or human to human communication (speech errors). 

A set of data D  generated from a sender may be transformed into D' {D with errors) 

at the receiver side after passing through a noisy channel. In order to reduce/ eliminate 

errors in a system, it is essential for us to have a thorough understanding of them.

Error modeling is used to assist in describing and analyzing various errors in an 

information processing system. A channel is a finite description of the (possibly 

infinitely many) error situations permitted in a communication system. An error 

model is the set of possible channels that one can use in modeling the errors of a 

communication system.



Over the years different error models and error correction algorithms have been 

developed for the spelling error correction problem. However, the characteristics 

of these models/algorithms determine their limitations in applying only to specific 

situations. For instance, references [3], [5], [31] only consider the isolated word error 

correction problem where spelling errors resulting in non-words will be corrected, 

and [21] only considers the real-word error correction problem where the spelling 

errors resulting in actual words will be corrected. To date, there has yet been no 

extensive work conducted in developing a general methodology for error models and 

a corresponding general error correction algorithm that can be used to describe all 

existing error models and correct errors in the same way.

1.2 O bjectives and Scope

The focus of this research is the development of a general methodology for error mod­

eling and error correction and its application to spelling error correction in computer 

typesetting. This methodology includes formal definitions of what a channel and an 

error model are and the algorithm that can correct errors described by the channel of 

a particular error model. The main application of this methodology in this research 

is to compute the channel corresponding to a specific typesetter.

The scope of the work in this thesis covers the following areas:

1. Investigate existing spelling error models and spelling error correction methods.

2. Introduce definitions of an error model and a general error correction algorithm



for all information processing applications.

3. Compute the channel of an error model for a specific typesetter from sample 

data. An existing spelling error model — the Brill and Moore Error Model — 

has been implemented with improvements according to our general methodol-

ogy-

4. Apply the error model to correct spelling errors of a specific typesetter.

5. Compare experimental results. Four error models, based on the improved Brill 

and Moore error model, have been described and tested.

1.3 Structure o f T hesis

This paper is organized into 8 chapters. The second chapter gives basic notions that 

will be used in this thesis and background information about error patterns, string 

distances, finite state automata and tries. Chapter 3 reviews techniques and issues 

related to automatic spelling error detection and correction in three areas. Chapter 

4 introduces a general methodology for error correction in information processing ap­

plications. It covers the formal definitions of channel and error model, the correction 

algorithm and examples. Chapter 5 discusses an approach to generating string pairs 

from given sample data, introduces an algorithm for string pairs generation and gives 

some experimental results. These string pairs are necessary for computing the chan­

nel that describes errors in the sample data of the typesetter. Chapter 6 describes 

the implementation of the improved Brill and Moore error model. Chapter 7 consists



of several testing cases. Four modified models derived from the improved Brill and 

Moore error model are described and tested. Chapter 7 also conducts comparisons on 

different error models. Finally, Chapter 8 gives conclusions and discusses the future 

works of this research.



Chapter 2

Basic N otions and Background

2.1 B asic N otion s

An alphabet is a finite nonempty set of symbols. It is often denoted by E. For ex­

ample, E^ =  {0 , 1} is an alphabet of two symbols, 0 and 1, and Eg — {a,b,c} is 

an alphabet of three symbols, a, b and c. Sometimes the space and comma symbols 

are in an alphabet while other times they are meta symbols used for descriptions. A 

word or string  is a finite sequence a i . . .  a„ such that each ai is in E. For example, 

OHIO and 111 are strings over the alphabet E^, aaabccc and bbb are strings over the 

alphabet Eg. The empty string  is the string with no symbols, usually denoted by A. 

The empty string  has length zero. Vertical bars around a string indicate the length 

of a string. For example |00100| =  5, |aa6| =  3, and |A| =  0 . A language is a set of 

strings over the alphabet E. The set may be empty, finite or infinite. The set of all 

possible strings over the alphabet E is denoted by E*.



A-NFA( [10], [29])

A nondeterministic finite automaton with A-transitions (A- NFA) is a quintuple 

A — Ç E a ,Q a ,  S a ,  F a , T a )  such that is an alphabet, Q a  is a finite nonempty 

set of states, Sa is the start state, Fa is the set of final states, and Ta is the set of 

transitions. Each transition in Ta is of the form qixq2 , where qi and % are states and 

X  is either A or a symbol that belongs to the alphabet. In this case, x  is the label of the 

transition. A computation of A  is an expression of the form qoxqi, . . . ,  such

that each qi-ixqi is a transition in Ta - A computation is accepting if go is the start 

state and g» is a final state. In this case, the string X i .. .Xn is called the accepted 

word. We denote by L{A) the language accepted by A. An example of a A-NFA is as 

below:

Figure 2.1: Some transitions of the A-NFA are: Oal, 2A2

If the label of every transition in Ta is not A then A  is called a nondeterministic 

finite automaton (NFA). If, moreover, for every transitions of the form go^gi and 

q^xq^ we have that gi =  g2 then A  is called a deterministic finite automaton (DFA). 

A finite automaton can be interpreted as a language recognizer or transducer.



W eighted Finite A utom aton

We recall from [23], [26] the definitions of weighted finite automaton and composition 

of weighted finite automata.

Some applications such as text, speech recognition and image processing, require 

more general devices to acconnt for the variability of the input data and to rank vari­

ous output hypotheses. A weighted (finite) automaton is a finite automaton in which 

each transition is labelled with some weight and possibly initial and final weights in 

addition to the usual transition label. In this research, we use weighted automata as 

a simple eflficient representation for all the inputs, outputs and transition information 

in text recognition. More formally a weighted (finite) automaton (W F A)  W is a 

quintnple W  = {T,w, Qw, Sw, Fw, Tw, Kw )  such that Ew  is a set of transition labels, 

Qw  is a finite set of states, Sw  is the start state, Fw is a set of final states, and Tw is 

the finite set of transitions, and K w  is the weight function that assigns a real number 

weight to each transition in Tw- Weights introduced on transitions also define an un­

derlying edge-weighted directed graph for which classical algorithms (shortest paths, 

maximal flow, etc.) apply. We can view any non-weighted automaton as a weighted 

automaton in which all transitions have weight 1. An example of a WFA is as below:

b: 0.3 c: 0.5

Figure 2.2: The weight of the transition lc2 is 0.5

A weighted (finite-state) transducer (WFST) is a weighted finite automaton W  

whose transitions are labelled with both an input and an output label such that



T,w =  E* X r* for given finite alphabets E and F. It is a mapping from pairs of 

strings over two alphabets to weights. For a given pair I — {s, w) € E* x F* we define 

/(in)=s and l{out)=w. Note that the input and output label of a transducer could be 

the empty string A. An empty input label indicates that no input string needs to be 

consumed when traversing the transition, while an empty output label indicates that 

no string is output when traversing the transition. Empty labels are needed because 

input and output strings do not always have the same length. An A- NFA A  can be 

considered as a WFST  when each transition qixq2 of A  is replaced with q\{x/x)q 2 

with weight equal to 1. The example of WFST can be viewed in the next section.

C om position ( [23], [10])

Composition is a key operation on F ST. The composition operator is denoted by o 

and its defination is similar to the intersection operation for recognizers. In the clas­

sical case, a WFST  for the composition of two given WFST A  and B  is constructed 

by considering the cross product of states of A  and B.

A single composition algorithm is used to combine in advance information sources 

such as language models and dictionaries. Informally, the composition of two WFST  

A  and B is a generalization of N F A  intersection. Each state in the composition 

corresponds to a state pair in which one state is in A  and another state is in B. If 

a transition in A  is qo(x/y)qi and a transition in B  is So{y/z)si, then the transition 

(%, So)x/z{qi, Si) is in A o B .  The weight of this transition is the sum of the weights of 

the corresponding transitions in A  and B. If the start states of A  and B  are % and sq,

9



the start state in 4̂ o 5  is (%, 80)- If the set of final states of A is Fa = { /a i, • • •, /a„} 

and the set of final sates oi B  is Fb = {fbi, ■■■, the final states in v4oB have to 

be in the set {fai,fbj},  where i = 1. .  . n  and j  — 1. .  .m. The composition operation 

thus formalizes the notion of coordinated search in two graphs, where the coordina­

tion corresponds to a suitable agreement between paths labels. The example below 

shows the detail of computing the composition for two WFST.

Exam ple of C om position on W F S T  

Given W F S T  A  as shown below, {Sa = 0) 

a/red: 0.3

b/blue: 0.3 c/green: 0

d/yellow: 0.6

the transitions in A  are:

0 (a/red:0.3) 0

0 (b/blue:0.3) 1

1 (c/green:0) 2

1 (d/yellow:0 .6) 2

Given W F S T  B  as shown below, {Sb  = 0) 

the transitions in B  are:

0 (red/water:0.2) 1

10



blue/coke: 0.4

red/water; 0.2 green/wine: 1.3

yellow/pepsi: 0.6

1 (blue/coke:0.4) 1 

1 (yellow/pepsi:0.6) 0 

1 (green/wine: 1.3) 2

Then A o  B  includes the following transitions — in fact, there are exactly the transi­

tions oi A o B  that are reachable from the start state (0,0) and can reach a final state 

oi A o  B.

(0,0) (a/water:0.5) (0,1)

(0,1) (b/coke:0.7) (1,1)

(1.1) (c/wine: 1.3) (2,2)

(1.1) (d/pepsi:1.2) (2,0)

0,0
a/water: 0.5 b/coke: 0.7

c/wine: 1.3

2,0d/pepsi: 1.2

11



2.2 B ackground Inform ation

2 .2 .1  Errors and strin g  d ifference

Given an alphabet E and the set R  of real numbers, we define the set E  of edit 

operations. An edit operation is a pair (æ, y)  or x / y ,  where x^y  G S U A, such that 

not both X,  y  are empty. II x  ^  y., we call (x, y )  an error. There exist three common 

errors:

(1) insertion error :A/x;

(2) deletion error; x/A;

(3) substitution error: x / y  with x ^  y  and x, y G E.

Given E =  {a, b}, the possible edit operations are: 

a/a, b/b, a/b, b/a, a/X, bjX, A/a, X/b

A cost function f  : E  ^  R  assigns costs to the edit operations in E.  Usually the cost 

values are assigned depend on applications. For example:

/(a /o )  =  0, f{a/b) = 2, /(a /A ) =  1, f{b/a) = 3, /(6/A) =  1, f{b/b) = 0

D efinition 1: An e-string (edit or error string) is a string in E*. The empty e- 

string over E  is (A/A). If h =  {x i j y i ) . . .  {xnjyn) is an e-string then we say that h 

transforms the word Xi . . .  x„ to y i . .. yn. Moreover we define the input and output 

parts of h such that inp{h) =  x i . . .  x„ and out(h) =  y \ . . .yn- Given an e-string 

h = 6x62 . . .  Cn, then the cost of h is f (h)  = /(e*).

For example, if h =  (a/a) (6/a) (6/6) (6/A) (a/A)

12



then inp{h) = abbba, and out{h) = aab and under the cost function described above,

f { h )  =  f ( a / a ) + f ( b / a )  +  f { b / b ) + } { b / \ )  +  f ( a / \ )

= O + S + O + l + l

Definition 2 : Suppose a cost function /  is given, we define the f-difference 

Df{u,v)  between two strings u, n G E* to be the minimum cost of an e-string h 

that transforms u to v.

For example, Given E  — {x/x,  x/ y,  x/X,  X/x : x , y  e E , x y}

Cost function f { x j x )  = 0 , f {x / y )  = f {x/X)  = f {X/x)  = 1 

Then, the f-difference between string Si =  aabbb and S2  =  aaba is 

>̂(81, 82) =  /((a /a )(o /a )(6/ 6)(6/o )(6/A)) =  2.

The proceeding concepts formalize the notion of error found in the literature on 

spelling error correction. Damerau (1964) [6] found that 80% of all misspelled words 

(non-word errors) in a sample of human keypunched text were caused by single-error 

misspelling, a single one of the following edit operations: 

insertion — insert a character into the source string, such as the —> ther] 

deletion — delete a character from the source string, such as the —> th] 

substitu tion  — substitute or replace one character with a different character at the 

same position in the sequence, such as the —> thw; 

transposition — reversal of two adjacent letters, such as the —> teh]

Kukich (1992) [17] divided human typing errors into two categories: typographic 

errors and cognitive errors. In typographic errors (spell speel) we assume that the

13



writer knows the correct spelling. The errors usually occur as the result of mistyping. 

In cognitive errors {separate —> separite), the errors are usually caused by typists 

misspellings of words. Phonetic error {naturally —> nacherly) is a special class of 

cognitive errors in which the writer knows a phonetically correct spelling but lacks 

the knowledge on the sequence of letters for the intended word.

From Grudin’s study (1983) [8], we know that most common errors result from 

the striking of a key immediately adjacent, either horizontally or vertically, to the 

intended key. The correct character could be replaced by a character immediately 

adjacent in the same row such as right rihgt. It is called a row error. Substitutions 

of a neighbouring letter could happen within the same column when the key for the 

substituted letter is in the same column as the key for the correct letter and is adjacent 

to the correct key, such as fa ther  —> ragher. This is called a column error.

Besides the row and column errors, transposition errors, doubling errors and al­

ternation errors have also played a major role in determining the structure of the 

model.

A transposition error is the reversal of two adjacent letters, which is one of the 

most common and most interesting categories of errors, such as 

because —> becuase which whihc

Transposition errors also involve adjacent keys (e and r, o and p), as in 

supremely —> supermely 

We also can see another interesting example where the four keystrokes on the right 

hand (n, space, o, n) have all been displaced with respect to the five left-hand

14



keystrokes.

went down->-wne todnw

A doubling error occurs when a word contains a double letter, the wrong letter 

is sometimes doubled, such as

look —> lokk school —> scholl

A lternation reversal errors are akin to the doubling error, but with an alter­

nating sequence. Such as:

these —> thses there —> threr

2.2 .2  L even sh tein  d istan ce

Levenshtein distance (LD) [19], [16] is a measure of similarity between two strings 

s and w, that are referred to as the source string s and the target string w. The 

distance is the minimum number of single-symbol deletions, insertions, or substitu­

tions required to transform s into w. The greater the Levenshtein distance, the more 

different the strings are.

For example.

If s =  “string” and w = “string” , then LD(s, w) =  0, because no transformations are 

needed. The strings are already identical.

If s =  “string” and w = “strang” , then LD(s, w) — 1, because one substitution (change 

'i' to 'a') is sufficient to transform s into w.

Levenshtein distance is named after the Russian scientist Vladimir Levenshtein, 

who introduced it in 1965. It is also called edit distance. This distance has been
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used in such areas as spell checking, speech recognition, DNA analysis, plagiarism 

detection, etc. ( [16], [9])

2.2 .3  D y n a m ic  program m ing

The classic algorithm [16], [20] for calculating the edit distance between two strings 

uses dynamic programming.

j

C(ij)

Figure 2.3: Table of Dynamic Programming

Suppose we are given two strings A  and B  where |A| =  n, \B\ =  m, A{i) is the 

ith character in A,  and B{j)  is the j t h  character in B. In Figure 2.3, assume that 

is the minimum cost of changing A{1) . . .  A{i) to B{1) . . .  B{j).  There are four 

possibilities corresponding to three different edit operations:

delete: if A{i) is deleted in the minimum change from A  to B, we have C{i , j )  — 

C(2-l,;) + l;

insert: if the minimum change from A to B is the insertion of a character to 

match B{j) ,  then we have C{i , j )  =  C{i , j  — 1) +  1;

replace: if A{i) is replacing B{j),  then C{i , j )  = j - 1 )  + 1, if A{i) ^  B{j)\
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m atch : if A{i) is equal to B{j),  then we have C{i ,j )  =  C{i — l , j  — 1).

Now, we get to the formula for calculating 

The base cases are: C(0,0)=0 and 

for(i=l to n)

C(i,0) =  i

and

for(j= l to m)

C(OJ) =  j

The general case is:

C{i — I, j )  + 1 deletion,

C{i , j  — 1) +  1 insertion,

C{i — I, j  — 1) + G{i, j )  substitution.

where G{i,j)  =  0 if A{i) = B{j),

% ; )  =  !  i f # ) f  B ( j ) ;

Note that, each entry only depends on the entries immediately above it and to its 

left as illustrated in Figure 2.3.

In the dynamic programming algorithm, we maintain a matrix C [1. . .  n, 1 . . .  m] 

in which each entry C[i,j] stores the minimum number of edit operations A{i)/X, 

X/B{j),ov A{i) /B{j)  required to transform the string composed of the first i symbols 

of A into the string composed of the first j  symbols of B. Thus we need to know the 

values of G[i — l,j] ,  G[i, J — 1], and G[i — 1, j  — 1]. The last change can be determined
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according to which of the possibilities leads to the minimum value oi C[i,j].

The dynamic programming table for computing the edit distance between two 

strings A  of length n  and B  of length m  can be filled in time Q{nm).

2.2 .4  Trie

A digital tree (usually called a trie from retrieval [35], [36]) is a finite automaton 

with a tree structure useful for storing strings over an alphabet. The idea is that all 

strings sharing a common stem or prefix hang off a common node. When strings are 

words over a . . .  z, a, node has at most 26 children - one for each letter. More formally, 

each node of the trie contains the following fields: Character; Valid bit; An array of 

26 pointers, one for each letter. The valid bit indicates if the node is a terminal or 

not. If it is, the value is 1, otherwise it is 0.

For example, given strings an, ant, all, boy, the corresponding trie is given in Fig­

ure 2.4.

In this study a trie is implemented as a linked-list in which each node has at 

most 26 child elements. The data structure of a trie for a dictionary is illustrated in 

Figure 2.5:

A binary search trie (bst) ( [37]) is called a ternary tree where a search on letters 

is conducted like in a standard binary search tree over the alphabet set. Ternary 

search trees combine attributes of binary search trees and digital search tries. Like 

tries, they proceed character by character. Like binary search trees, they are space 

efficient, though each node has three children, rather than two. A search compares
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head

\0

Figure 2.4: Regular Trie to Store Dictionary

son char isWord father r_s

0 \0 ’b ’ 0 \0 \0

\0 \0 ’ 1 ’

\0

\0

Basic Data Structure defined for regular search trie:

typedef struct TrieNode * Trie;

struct TrieNode{ 
char ch;
Trie son;
Trie r_s;
Trie father; 
bool isWord; 
vector<double> distance;

};

’o ’ 0 \0

1
1

\0 ’y ’ 1 \0

Figure 2.5: Data Structure for Trie 
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the current character in the search string with the character at the node. If the search 

character is less, the search goes to the left child; if the search character is greater, the 

search goes to the right child. When the search character is equal, though, the search 

goes to the middle child, and proceeds to the next character in the search string. The 

process of searching in a ternary search trie with n strings for a string of length k 

requires at most 0{logn +  k) comparisons.

The Figure 2.6 represent an example that store strings ant, all, boy by using 

ternary search trie.

\ T \
11

\ T \

\ ’o’ \

1

\ ’y’ \

Basic data Structure defined for ternary search trie:

typedef Struct searchTrieNode * sTrie;

struct searchTrieNode! 
char ch; 
sTrie left; 
sTrie middle; 
sTrie right;

}

Figure 2.6: Data Structure of BST
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2.2 .5  F in ite  s ta te  m achine

The AT&T Finite State Machine (FSM)  Library [38] will be used as the finite state 

machine tool in this research.

The FSM library created by Mehryar Mohri and Michael D. Riley is a set of 

general-purpose software tools available for the Unix environment, for building, com­

bining, optimizing, and searching in weighted (finite) automata (WFA)  and weighted 

(finite) transducers (WFST).

FSM  includes about 30 stand-alone commands to construct, combine, determinize, 

minimize, search, and compose WFA and WFST. These commands manipulate WFA 

and WFST  by reading from and writing to files or pipelines. The following example 

shows the commands that create WFAs and WFSTs.

(1) The command that creates a WFA is

Fsmcompile — a.syms < b.stxt > b.fsa  

where a.syms  is a symbol file that stores all the symbols used in b.stxt. The file 

format is described as below:

a 1 
b 2

The text file b.stxt contains a textual representation of the WFA. The file format is 

described as below:
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ST DT LB CT

0 0 a 0.5

0 1 b 0.1

1 1 a 0.2

1

ST: start state DT: destination state

LB: lable CT: cost

The file b.fsa  contains the WFA created by reading from the text file b.stxt. The

graphic representation of b.fsa is as below:

a /0.3 a /0.2

b/0.3

(2) The command that creates a WFST  is

Fsmcompile — x.syms — x.syms — t <  y.stxt > y . f s t  

where x.syms  is a symbol file that stores all the symbols used in y.stxt. The file 

format is described as below:

a 1 
b 2 
red 3 
blue 6

The text file y.stxt  contains a textual representation of the WFST. The file format is 

described as below:
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ST DT IL OL CT

0 0 a red 0.1

0 1 b blue 0.2

1 2 a blue 0.2

1 2 b red 0.3

1

ST: start state DT: destination state

IL: input lable OL: output lable

CT: cost

The file y . f s t  contains the WFST  created by reading from the text file y.stxt. The

graphic representation of y . f s t  is as below: 

a/red: 0.1

a/blue: 0.2b/blue: 0.2

b/red: 0.3

(3) The command for composition 

Suppose we are given two WFSTs c l . f s t  and c2.fst  as showing in Section 2.1 (Exam­

ple of Composition on WFST). The command for composition between c l . f s t  and 

c2.fst  is:

F smcompose c l . f s t  c2.fst  > c . fs t  

c . fs t  is the ocmposition of c l . f s t  and c2.fst.
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Chapter 3

Literature Survey

3.1 In troduction

The study of typing comprises a fascinating mixture of elements from motor skills 

and typewriter mechanics to anatomy and cognitive control structures.

The detection and correction of spelling errors is an integral part of modern word- 

processors. Most existing spelling error correction techniques focus on isolated words, 

without taking any information that might be gleaned from the textual context in 

which the string appears. Such isolated-word correction techniques are unable to 

detect real-word errors such as typographic, phonetic, cognitive, and grammatical 

errors. For descriptive purposes, Kukich (1992) [17] breaks the field down into three 

increasingly broader problems:

(1) non-word error detection: detecting spelling errors that result in non-word 

(such as the —> teh).
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(2) isolated-w ord error correction; correcting spelling errors that result in 

non-words such as correcting teh to the, but looking only at the word in isolation.

(3) C ontext-dependent error detection  and correction: using the context to 

help detect and correct errors even if they accidentally result in actual words of English 

(real-word errors). Some of these errors result from typos {there —> three, f ro m  

form)-, some result because the writers substituting the wrong spelling of a homo­

phone or near-homophone (dessert —> desert,piece —> peace).

The working history for the first problem started in the early 1970s and continued 

into the early 1980s. During that period of time, a number of efficient pattern- 

matching and string comparison techniques were explored for deciding whether an 

input string appears in a predefined word list or dictionary ( [7], [12], [18], [32], 

[33]). Work on the second problem began as early as in the 1960s and has continued 

into the present. Various general and special purpose correction techniques have been 

devised ( [6], [27], [34], [5], [3]). Work on the third problem spanned from the early 

1980s to the present ( [21]).

In this chapter, we are going to describe several spelling error models, error detec­

tion and correction methods corresponding to each of these three problems. However, 

the existing spelling correction techniques are limited in terms of their scopes and spe­

cial cases.
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3.2 Techniques for C orrecting W ords in T ext

Research has focused progressively on the three problems mentioned in Section 3.1 for 

correcting words in text. In response to the first problem (non-word error detection), 

n-gmm analysis and dictionary lookup methods have been developed for detecting 

spelling errors that result in non-words. W ith respect to the second problem (isolated- 

word error correction), some error models have been developed. For the third problem 

(Context-dependent error detection and correction) , statistical-language models have 

been developd.

3 .2 .1  N onw ord  error d etec tio n

N-grams analysis and dictionary lookup are the two main techniques for the nonword 

error detection problem. Dictionary lookup technique is a straightforward task. N- 

grams refers to n consecutive letters in a word or string. N-gram error analysis 

techniques work by examining each N-gram in an input string and looking it up in a 

precompiled table of N-gram statistics to ascertain either its existence or its frequency. 

If a non-existent or rare N-gram is found the word is flagged as a misspelling, otherwise 

not. N-grams statistics initially played a central role in text recognition techniques 

while dictionary-based methods dominated spelling correction techniques.

N-gram techniques usually require either a dictionary or a large corpus of text in 

order to precompile an N-gram table. The simplest N-gram table is called a binary 

bigram array and is a two-dimensional array of size 26 x 26 whose elements represent 

all possible two-letter combinations of the alphabet. The value of each element in the
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array is set to either 0 or 1 depending on whether that bigram occurs in at least one 

word in a predefined lexicon or dictionary.

Errors made by optical character recognition (OCR) devices typically confuse 

characters with similar features, such as O and D, S  and 5, t  and / ,  or m  and n. 

The N-gram analysis technique has proven useful for detecting such errors because 

they tend to result in improbable N-gram. For example, Morris and Cherry (1975) 

[25] used digram frequencies to convert an unknown text word to the dictionary word 

that it most closely resembles. Digram frequency tables are used to make the most 

probable substitution for this. The new word is then looked up in the dictionary and 

the result will be repeated until a valid word is created. This method only applies to 

substitution errors.

3.2 .2  Iso la ted -w ord  error correction  research

Isolated-word error correction techniques have been developed for the problem of 

correcting words in text. Some of these correction methods include allowing the user 

to write over an error, allowing for keyboard correction, and providing n  best matches 

for the user to select from. We can group isolated-word error correction techniques 

into the following main classes:

(1) minimum edit distance techniques (see [6] for instance);

(2) similarity key techniques (see [27] for instance);

(3) rule-based techniques (see [34] for instance);

(4) probabilistic techniques;
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In this research, we focus on the probabilistic techniques.

3 .2 .3  P ro b a b ilistic  tech n iq u es for iso la ted -w ord  correction

Probabilistic M odels [13]

The issues in finding spelling errors in text can be explored using the Bayes Rule 

and the noisy channel model. The Bayes rule and its application to the noisy channel 

model used in data communications provide the probabilistic framework for many 

problem-solving issues such as detection and correction of spelling errors, speech 

recognition, etc. ( [5], [3], [21], [11])

Figure 3.1 shows how the noisy channel model works.

(output word)(input word)

Type setter

ReceiverSender Noisy
Channel

Waves
Fiber optic line (email) 
Storage medium (device) 

Hard disk, DNA tube

Figure 3.1: The Noisy Channel Model

The problem of spelling correction for typing or for Optical Character Recognition 

(OCR), can be modeled as the problem of mapping one string of symbols to another. 

Given an incorrect sequence of letters in a misspelled word, we need to figure out the 

correct sequence of letters in the correctly spelled word. The noisy channel introduces 

noise which makes it hard to recognize the true word. We want to build a model of 

the channel and figure out how to modify the misspelled word and hence recover the
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true word.

We use Baysian classification for the noisy channel model. In Baysian classifica­

tion, we are given some observation and we want to determine which set of classes it 

belongs to. For spelling error detection, the observation might be the string of letters 

that constitutes a possible-misspelled word and we want to classify this observation 

to a particular word. For example, the word “separate" , no m atter how this word is 

misspelled, we would like to recognize it as “seperate" .

Given an input word “acress", we want to find the words corresponding to this 

string. Bayesian classification considers all possible words and chooses the word which 

is most probable given the observation we have ( “acress" ) out of the possible words. 

That is we want to find out of all words in the dictionary, the single word such that 

P{word\observation) is the highest. The equation for picking the best word given is:

Wmax = argmax^^^vP{w\^) (3.1)

Where,

w : our estimate of the correct w

s : the observation string

V  : vocabulary

The function a r g m a X x f { x )  returns the x  where f { x )  is maximized.

We can use Bayes’s rule to rephrase P{w\s) in terms of three other probabilities.

P ( „ | . )  _  (3.2)

Thus we can get the following equation by substituting the above into Equation
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3.1;

TJ7 P{s\w)P{w)  ̂ ^
Wmax = argmaxyj^v -----  (3.3)

In this equation, the source model P{w) is the probability of occurrence of the 

word itself, which can be estimated by the frequency of the word and P{s\w) the noisy 

channel model is the probability that the speller transform the word w into the word 

s. We will see how to compute P(g|w) later. The probability P{s) of the observed 

string is harder to estimate; however, we can ignore it as we are maximizing over all 

words and P(s)  doesn’t change for each word. Therefore we can replace Equation 3.3 

by

Wmax = argmaXyj^vP{s\w)P{w) (3.4)

From Equation 3.4, we can see that the most probable word, given some obser­

vation s, can be computed by taking the product of the source probability P{w) and 

the noisy channel probability P{s\w) for each word w, and choosing the word with 

the highest product.

The noisy channel model assumes that the natural language text is generated 

as follows: first a person chooses an input word w, according to the probability 

distribution P{w)  (the source); then the person attempts to output the word w, but 

the noisy channel induces the person to output string s instead, according to the 

distribution f  (g|w) (the channel). For the same observed string s, the probability 

of different input strings are different. In computer typesetting, for example, under 

typical circumstances such as people’s knowledge, typing skill, keyboard layout, etc.,
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we would expect the following order of probabilities;

P{one\one) > P{oen\one) > P{two\one).

Church and G ale’s m ethod

In 1991, Church and Gale [5] described a program named correct which corrects 

single-error misspellings by using a noisy channel algorithm based on the equation 

3.4. In their study, Church and Gale assume that the correct word differs from the 

misspelling just by a single insertion, deletion, substitution or transposition. Their 

program corrects the words rejected by the program named spell [22] by generating 

a list of potential correct words ranked according to Equation 3.4 and choosing the 

highest-ranked one. A database of genuine errors extracted from a 44 million-word 

corpus of AP newswire stories is used as the training set in the program.

Computing the likelihood term P{s\w) (error model) is difficult as the probability 

of a word being mistyped depends on several external factors, such as the different 

typists; and how familiar they are with the keyboard, whether one of their hands 

happens to be more tired than the other, etc. Luckily, it can be estimated pretty well 

since the most important factors in predicting an insertion, deletion, substitution or 

transposition are all simple local factors, such as the identity of the correct letters 

itself, the surrounding context, and the way that the letter was misspelled. For 

instance, the letters m and n are often substituted for each other. This is partly 

because of the fact that these two letters are pronounced similarly and they are next 

to each other on the keyboard, and partly because of the fact that they occur in 

similar contexts.
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The channel probabilities P{s\w) can be computed from four 26 x 26 confusion 

matrices, each of which represents the number of times one letter is incorrectly used in 

place of another: (1) sub[x,y], the number of times that correct letter 'y' is typed as 

incorrect letter 'x' (y/x).  For example, the cell [o,e] in a substitution confusion matrix 

will give the count of times that e is substituted by o. (2) ins[x,y], the number of 

times that correct letter 'x' is typed as 'xy' (x/xy).  For example the cell [t,s] in an 

insertion confusion matrix gives the count of times that (t/ts)  appears. (3) del[x,y], 

the number of times that the letters 'xy' are typed as 'x' (xy/x).  (4) trans[x,y], the 

number of times that 'xy' is typed as 'yx' [xy/yx).  The probability of inserting or 

deleting a character is conditioned on the letter appearing immediately to the left of 

that character.

Church and Gale estimated P{s\w) using the previous four matrices as follows:

d el[wp_ 1, rCp]/co u n t[rcp_i, n;p], if deletion

ins[uip. 1, Sp]/count [rcp-i], if insertion

sub [sp, Wp] / count [wp], if substitution

trans[wp, Wp+i]/count[wp, Wp+i], if transposition

where Wp is the pth character of the word w, Sp is the pth. character of the typed word 

and p is where the edit operation occurs. Church and Gale’s method only considers 

a single edit operation between s and w, p is unique.

count [x,y] and count [x] represent the number of times that 'xy' and 'x' 

appear in the training set.

In their paper, Ghurch and Gale considered as the candidate source words only
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those words that are a single basic edit away from s, using the edit set as described 

before. The Church and Gale mode is essentially a weighted Leveshtein technique. In 

their proposed error model, they assigned different probabilities to each unique edit, 

which makes the model a weighted Levenshtein technique.

Brill and M oore’s M ethod

In 2000, Eric Brill and Robert C. Moore [3] presented a new channel model for 

spelling correction. The new channel model they described is based on generic string- 

to-string edits. It solves the problem of automatically training a system to correct 

generic single word spelling errors.

The Church & Gale error model mentioned above is based on the single edit 

operation between two strings, which is the minimum number of single edit operation 

insertions, substitutions, deletions and transpositions. The Brill and Moore error 

model is a much more generic error model that allows all edit operations of the form 

x/y ,  where x , y  e J]* for some alphabet, E is an alphabet. It conditions the position 

where the edit operation occurs in the string by the location of the substring x  in the 

start, middle, or end of the source word.

In the misspelling correction process, they first trained the error model to get a 

set of probabilities P{x/y)  and then they applied the error model to non-real word 

spelling errors. Gompared with Church and Gale’s weighted Levenshtein distance 

technique, a 52% reduction in spelling correction error rate was achieved by using 

the improved error model. W ith a language model, their error model gave a 74%

33



reduction in error. One exciting future of this research is to obtain error models that 

adapt to an individual or subpopulation. More details for Brill and Moore’s model 

will be discussed in section 6 .1.

Touranova and M oore’s Pronunciation M odeling

In 2002, Kristina Toutanova and Robert C. Moore [31] presented a method that 

incorporates word pronunciation information in a noisy channel model of spelling er­

ror correction problem. Spelling errors are generally grouped into two classes [25]: 

typographic and cognitive. Typographic errors are mostly errors related to the key­

board. Cognitive errors are those misspellings whose pronunciation is same as the 

correct word. Cognitive errors occur when the writer does not know how to spell a 

word.

In [31], the authors took an approach to model phonetic errors explicitly by 

building a separate error model for cognitive errors. Two different error models were 

built by using the Brill and Moore learning algorithm. One was a letter-based model 

(LTR) which is exactly the Brill and Moore model. The other was a phone-sequence- 

to-phone-sequence error model (PH). In PH, the misspelled/ correct word pairs were 

converted into pairs of pronunciations of the misspelled and the correct words, which 

were then run gainst the Brill and Moore algorithm. Finally these two error models 

were combined as a log linear model.

In their paper, Toutanova and Moore presented a method that uses word pro­

nunciation information to improve spelling correction accuracy. Compared to the 

letters-only model, the combined model reduces the error rate over 23% for 1-Best
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correction, and even higher for 2-Best, 3-Best and 4-Best. Here the n-best list will 

contain the n most probable correct words for a misspelling.

3 .2 .4  C o n tex t-d ep en d en t w ord correction  tech n iq u es

Reviewing the methods we described so far for isolated-word error correction problem, 

there always remains a residual class of errors that is beyond the capacity of those 

techniques to handle. This is the class of real-word errors in which one correctly 

spelled word is substituted for another correctly spelled one. In this section, we will 

describe a statistical method for the context-dependent word correction problem.

Statistically  based error detection  and correction

Statistical language models (SLM) are essentially tables of conditional probability 

estimates for some or all words in a language that specify a word’s likelihood to 

occur within the context of other words. In the statistical language-modeling ap­

proach, contextual information can be used to help set it expectations for possible 

word choices. Thus, low-probability word sequences can be used to detect real-word 

errors, and high-probability word sequences to rank correction candidates.

M ayes and D am erau’s M ethod

Mays and Damerau [21] discussed how to detect and correct real-word spelling errors 

by using word trigrams. They employed the noisy channel model to correct spelling 

errors. This model is similar to the model used in speech recognition as we discussed
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before (equation 3.4).

Here, P{w)  is the probability that the complete sequence of words w — Wi,. . . ,  Wn, 

will be produced by the text generator. The probability of w is defined as:

P{w) = P{wi)  X P{w2 \wi) X . . .  X  P{Wi\Wi-iWi^2 ) X . . .  X P{Wn\Wn-lWn-2 ) ■

The quantity P(s|re) is the probability that the speller and typist transform the 

sequence of words w into another sequence of words s = s i , . . . ,  s^-

In this error model, each output word Si is considered to occur in its correct 

location without depending on adjacent words. That is as n =  m, the following 

equation is obtained:

P { s \ w )  =  P{Si \Wi)  
i=l

For each P{si\wi), if a speller could produce Si when Wi is intended, then Sj is in 

the confusion set C which might include all simple misspellings of the word Wi. Here, 

the confusion set is determined by applying exactly one of four basic edit operations 

described before. The error model P{si\wi) can be computed as:

a, i f  Si =  Wi,

1-  
|c|-

P(^Si\Wij — <
otherwise.

where,

- |C| is the number of words in confusion set C.

- The constant a  represents the prior probability of a typed input word, it can be 

determined by experimentation.

- 1 —a  represents the remaining probability, which is equally divided among the other 

words in the confusion set.

36



If a  is set too high the result will have the tendency to retain typed input words 

even if they are incorrect. If a  is set too low the result will tend to change typed 

input words even if they are correct. In Mays and Dameraus’s study, they tested a 

range of values for a  and found that the optimum value is between 0.99 and 0.999.
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Chapter 4

General M ethodology

In Chapter 3, we described many situations in text recognition where decisions have 

to be made based on incomplete or uncertain information and discussed several error 

models. In this chapter, we will introduce a general methodology for defining error 

models that allow us to describe not only human spelling errors in the texts but also 

various errors in the real world such as speech errors, DNA computing errors^, etc..

In text recognition, uncertainty and incompleteness arise from a number of sources, 

such as contextual effects, homophones or typist variabilities. Finite-state stochastic 

modeling is a flexible general method that handles such situations. This approach 

consists of employing a probabilistic type of a WFST for the uncertainty or incom­

pleteness of information. Research in this field is motivated by the fact that deter­

ministic autom ata (DFA) are not suitable for modeling even the simplest forms of 

behaviour, such as the acquisition of a conditioned reflex [2]. Thus, the finite-state

^These can be random substitution, insertion and deletion nucleotide errors in the DNA strands 

that participate in DNA computations.
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stochastic model is a particularly suitable approach to our general error model in text 

recognition.

An abstract model for these situations of uncertainty is that there are two se­

quences of random variables: y{l) ,y (2),y{3), . . .  ,y{t) and a;(l), a;(2),x(3),. . . ,

The x ’s represent the sequence that we wish to know, but are not able to observe 

directly. The y ’s represent the sequence which are related to the x ’s and which we can 

observe or we have already deduced by other means. The stochastic modeling consists 

of formulating a probabilistic model that receives a sequence of y ’s and produces a 

sequence of x ’s based on the sequence of y ’s. When a sequence of y ’s is observed, 

certain techniques are used to find the sequence of x ’s which best fits the observed 

sequence of y ’s. That is, the sequence of x ’s according to the model is the sequence 

which is the most likely to produce the observed sequence of y ’s.

4.1 T he C lassic S tochastic  A u tom ata

The classic stochastic system is considered as working on a discrete time-scale. It uses 

states, input signals and output signals, in the same way as deterministic automata 

(DFA). Thus, in every step, exactly one signal is received, exactly one signal is emit­

ted, and exactly one state occurs. In the stochastic system, for a given situation, 

the external and internal reactions of the system are not uniquely determined, but 

for every imaginable reaction, there is only a certain probability that would output y 

and enter the state z for input x  at the same time. This does not imply any loss of 

generality if we assume that this probability only depends on certain situations and
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not on the number of step t  in which this situation occurs, or on the past history of 

the situation as it happens in Markov Chains.

D efinition of Classic Stochastic A utom ata

A stochastic automaton C =  E y , Z, H] is defined as follows:

(1) E%, Ey, Z  are arbitrary non-empty sets and

(2) is a function defined on Z x Ex, such that each H[z, x] is a discrete prob­

ability measure over Ey x Z, that is, ^  ^  H[z,x^{yi,  Zi) =  1
yeSy ziez

The elements Xi G E% are called input letters of C, and E% is the input alphabet of 

C- The elements y, G Ey are the output letters of C, and E y is the output alphabet of 

Ç The elements z G Z are called the states of The stochastic automaton (  operates

on a discrete time scale in a countable infinite number of steps t =  1 ,2 ,___ In each

step t, (  receives exactly one input signal, generates exactly one output signal and 

reaches exactly one state. The function ff[z, Xi](yi, Zi) over (  describes the probability 

that in current state z the signal % would be generated and the next state will be 

zi, if the input signal is Xj. The value of H[z,x]{y,z')  is the probability that the 

stochastic automaton (  output the string y if the input string is x, the start state is 

z and the final state is z ' . It is assigned as follows:
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1, i f x  = y = A;

j  = i + l X i ^ y i ,  

j  = i otherwise,

%/a; =  Z i . . .  2/ =  2/1 "  - 2/Ti, >  1, G

0 , otherwise.

Y[H[zi,Xi]{yi,Zj), where
i=l

Exam ple

Figure 4.1 shows an example of classic stochastic automaton, 

a/a: 2/3 a/a: 2/3

a/b: 1/3 a/b: 1/3
b/b: 1/3

b/b: 2/3
b/b:l

©
H[SO,a](a,SO) + H[SO,a](b,Sl) = 2/3 +1/3 = 1 
H[SO,b](b,SO) + H[SO,b](a,Sl) = 2/3 +1/3 = 1 
H[Sl,a](a,Sl) + H[Sl,a](b,S2) = 2/3 +1/3 = 1 
H[Sl,b](b,Sl) = 1

Figure 4.1: Example of Classic Stochastic Automaton

If we send the input string aaba to this stochastic automaton, then the probability 

of the possible output string abbb is:

%) =  a](o,%) x o](6, S':) x 6](6,^i) x a](6,^2)

2 1 1

41



The above example and the definition of classic stochastic autom ata illustrate that 

when we view the classic stochastic automata as channels they only allow substitution 

errors. However, in Chapter 2, we have seen that there are three common errors in text 

recognition: substitution, insertion and deletion. Therefore, the classic stochastic 

automaton is not adequate to describe all of them. We will introduce a new type of 

stochastic automata in the next section.

4.2 D efin ition  o f C hannel

From Section 4.1, we know that the classic stochastic automaton only can describe 

substitution errors. In this section, we introduce a new type of stochastic automaton 

which we call a channel that will be able to describe all types of errors. A channel 

describes error behaviours in different situations. For example, a channel could de­

scribe edit operations in spelling error correction; speech errors in speech recognition 

DNA string errors in DNA computing, etc.

A channel is a particular type of weighted finite transducer(WFST) that allows us 

to describe formally the combination of errors that are permitted in some information 

processing applications. As we described in Chapter 2, a W F S T  C  consists of

• An input alphabet 3%, an output alphabet Ey;

• A set 5  =  {^i, 52, . . . ,  Sn} of states {n >  1);

• Labelled transitions {Si,Xi/yi, Sf) with Si,Sj  G 5  ad Xi,yi G E* and;
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• A function w that maps any transition (Si, Xi/yi, Sj) to a number w(Si, Xi/yi, Sj), 

called the weight of the transition.

A channel is a W F S T  with the following restrictions:

• Allowoble ransitions are of the form (Si, Xi/yi, Sj) where Si, Sj E S, Xi E E^UA,  

and % € Ey U A (note that this includes Xi/yi  =  A/A)

• All weights of transitions are positive numbers

• For every state Si and for every input symbol xi E E x, H[Si,Xi] is a discrete 

probability measure on (E  U {A/A}) x S  such that

1. H[Si,Xi](xi/yi,Sj) =  w(Si, Xi/yi, Sj) if (Si,Xi/yi, Sj) is a transition, or 

H[Si,Xi](xi/yi,Sj) = 0 otherwise;

2 . H[Si, Xi](X/yi, Sj) = w(Si, X/yt, Sj) if (Si, A/%, Sj) is a transition, or 

H[Si,Xi](X/yi, Sj) =  0 otherwise;

3. H[Si, Xi\(x'Jyi, Sj) =  0 for all x'̂  ^  Xi, and

4.

^  +  =  1 (4.1)
j/ieSyUA,5jes

Note that for every pairs of states Si, Sj and output %, the quantity H[Si, a;*] (A/%, Sj) 

is independent of Xi, that is, H[Si,Xi](Xlyi,Sj) =  H[Si,x'/\(X/yi,Sj) for all Xi,x[ E 

Ex. This means that the probability of moving from state Si to state Sj and output % 

without consuming the input is independent of the input. Thus, H[Si, A](A/%, Sj) =  

H[Si,x[](X/yi, Sj) for all x\ E Ex-
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A channel with the above definition is also a particular type of wfse-system [14], 

which is a W F S T  in which each labelled transition either is one edit operation or

A/A.

Let C be a stochastic transducer and E  be the set of basic edit operations Xi/yi. 

A C-event C is an expression of the form ei^*!. . .  CnSn, where n >  1, Cj =  Xi/yi^ each 

Cj G £■ U A/A, 5'i € 5  and inp{ei . . .  e„) 7̂  A. Intuitively, ei^*!. . .  enSn represents the 

event that the channel C  will perform the edit operation Ci and move to state 5i, 

then perform eg and move to %, etc. For each state Si E S  and each C-event, the 

number is the probability of the event (  from start state Sq, is defined as:

^So(C) =  H[SQ,Xi]{Xi/yi,Si) X H[Si,X2]{x2/y2,S2) . . . x H[Sn-l,Xn]{Xn/yn,Sn)-

The example below illustrates this theory.

Exam ple

A/b:l-qa/a:p

b/a:p
A/a:l-p b/b:q

a/A :q

Figure 4.2: Example of Channel 

In Figure 4.2, we have

FT[5i,a](a/a,5'i) =  p,

ff[^i,o](A /o,^2) =  1 - p ,
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H[Si,a]{xi/yi ,Sj)  =  0, in all other cases

Therefore,

Z  («■[Si, «](«/», S,) +  ff[5 i,a ](A /» ,S j)) =  1.
j/ ieS yU A ,5je5

Also,

=  p,

^[^i,6](A/a,%) =  1 - p ,

H[Si,b]{xi/yi, Sj) — 0, in all other cases

Therefore,

Z  m / » .  Si) +  6](A/k, Si)) =  1.
2/i€EyUAj6S

Also,

H[S2 ,a]{a/\ ,S i)  = q,

^[^2,o](A/6,^2) =  1 - 9 ,

H[S2 ,a]{xi/yi, S j )  =  0, in all other cases

Therefore,

E  {H[S2,a\{a/yi,Sj) + H[S2,a\{X/yi,Sj)) = 1.
K E E y U A je g

Also,

=  9,

^[% ,6](A /6,% ) =  1 - 9 ,

H[S2 ,b]{x/y, Sj) = 0, in all other cases

Therefore,
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z  W S 2 , i](Wy>, Sj) + H\S 2 , 6](A/ÿi, Sj)) = 1 .
3/ieEyUAje5

Thus, some C-events can be generated: 

^Si((a/a)5 î(6/a)5'2(A/6)5'2(6/6)6^2) = p x p x ( l - g ) x g > 0 ,

Hsi{{a/a)Si{a/b)S 2 ) = H[Si, a](a/a, Si) x H[Si, a]{a/b, S 2 ) = p x 0 = 0.

Let Zb be the set of channel event (  such that inp{() =  b. Then

+^sX(A/o)%(A/6)^2(V6)'92)

+^gX(A/a)^2(A/6)%(A/6)^2(6/6)'92) +  . . .

00

=  p +  (1 - p )  X I ] ( i  - q)'" x q
r=0

1
=  P +  { l - P ) X l _ ( l _ , ) X 9

=  p + { l - p ) x ^ x q

=  p + 1 - p

The set of possible outputs of the channel when the input is 6 is o U ab*b

D efinition An error model is a set of channels. Intuitively, an error model is the 

set of possible channels that appear to model the errors in a particular information 

processing application.
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From the definition of a channel that each transition Si{xi /yi )S 2 has input label Xj 

and output label yi. However, for some channels, transitions S \{x /y )S 2 with |x| >  2 

or \y\ > 2  are needed, e.g., the channels of Church and Gale and Mays and Damerau 

error models. Therefore, we need to convert each transition S \{x /y )S 2 to sequence of 

transitions with single-symbol labels.

Convert the transition

If given a transition S i{x /y )S 2 with \x\ = n  and \y\ =  m, where n or m is greater 

than 1, and H[Si,x]{x/y,  %) =  P, we conver S i{x /y )S 2  to a sequence of transitions 

with single labels as below:

"̂ 1 ( ^ i/2/i)%  (^2/ 2/2)% . . .  { x j i j n=m, 

'^l(3;/Z/)'^2 =  ^i(Xi/% /i)^2 . . . (:Tm/2/m)'9m+l(:Cm+l/A)gm+2 - - - (a;n/A )^»+i M >  TM, (4-2)

Pl{p^l/yi)^2 ■ • • (̂ n/2/n)'S*n,+l(- /̂z/ra+l)'S'ji-(-2 ■ • . (^^/ym)Pm+l ^  ^

In each of these three cases, only the probability of the first transition S i{x i /y i )S 2 ) 

is P  and all others are all equal to 1. Therefore,

mx(m,n)
H[Si ,x]{x /y ,S 2 ) n  H[Si,Xi]{yi,Si+i) = P

i=l

Assign the probabilities

In rule 4.1, we know

(H[Si,Xi]{x'Jyi,Sj) + H[Si,Xi]{X/yi,Sj)) = 1
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Therefore, we have

H[Si, Xi]{xi/yi, Sj) =  Pi,
j/ieEyUA,5je5

And

Z  H[St,Xt](X/yi,Sj) = P2,
2/ieEyUA,SjeS

where 0 <  Pi <  1, 0 <  P2 <  1, Pi +  P2 =  1.

4.3 Error C orrection w ith  a G iven C hannel

Channel Error Correction Problem

Problem  D efinition Given a set of words D  called the dictionary, a channel C  and 

a channel output y, find a channel event (  of C with the highest probability such that 

inp{() e  D  and out{() =  y.

Although we focus on spelling errors in this research, the above problem definition 

also applies to other information processing applications.

Let w = inp{() e  D. For every w' Ç. D  and for every channel event (' with 

inp(C) =  w', out{(^') =  y, we have

This formula says that the probability of transforming w to y with the channel 

event (  is greater than or equal to, any other transformations oi w' E D  into y with 

some channel event ^ .

The wfse-system  corresponding to  a given channel
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Given a channel C, a wfse-system B  can be defined as:

Given states Si, Si^i of C  and label Xi/yi of C, we have the transition 

in B  provided the probability 

H^Si, xf^{xilyi, Si^i) > 0 

The cost of each transition in B  is:

The cost of a path Ço(3^i/ï/i)9i • • • {xn/yn)Qn in B  is the quantity:
n

i=l
Given a wfse-system B,  we can define the wfse-system B^^ to be exactly the same 

as B  only with the following change:

If Si{xi/yi)Si+i is in B  then Si(yi/xi)Si+i is in

The string to regular-language correction problem addressed in [14] is related to 

the channel error correction problem.

In the string to regular-language correction problem, we are given a string s, an 

NFA A  and a wfse-system B.  The language L{A) is supposed to contain all the “syn­

tactically correct words” . We want to compute an e-string h that describes the edit

operations permitted by B  that would transform s to a syntactically correct word 

with the minimum cost. If we construct the (|s| -h l)-state automaton Ag to accept 

string s, then we can use the X-NFA Ag o B  o A  to solve this problem.

Channel C orrection A lgorithm

In the channel error correction problem, an NFA A d can be created to store the
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dictionary D, the channel output y will be stored in a deterministic automaton Ay. 

As we know, if Si{xi/yi)Si+i is in wfse-system B,  then Si(yi/xi)Si+i is in B~^.

The correction of the channel output y over the dictionary D  can be determined 

by finding the channel event (  with the minimum cost in the weighted directed graph 

Ay o B~^ o Ad  such that inp{f) =  y and out{C,) G D. This also can be considered 

as finding a path p in the weighted automaton Ay o B^^ o Ad  such that p has the 

smallest cost with inp{p) = y and out{p) G D.

To see this, first note that Ay o B~^ can be considered as the XNFA accepting all 

words w such that w is an output of B~^ when y is used as input, that is, w G B~^{y). 

Then {Ay o B~^) o Ad  represents the set of all words w as above that belong to D 

as well. Hence, a minimum cost path qo{yi/xi)qi. . .  {yn/xn)qn in Ay o B~^ o Ad  

defines the word w = x i . . .  Xn ia D that would result from y = y \ .. .yn via the wfse- 

ssystem B~^. Equivalently, qo{xi/yi)qi. . .  {Xn/yn)qn is a path of B  of minimum cost
n

'Y^vjB{qi-i{xi/yi)qi) such that X \ . . .Xn G D  and yi ■. .yn = V- Equivalently again, 
1 = 1

C =  i^i/yi)qi  • • • {xn/yn)qn is a channel event of C  with the highest probability Hq̂ {Cf) 

such that X i . . .Xn G D  and y i .. .yn = y, which solves the channel error correction 

problem.

AT&T Tool

From Chapter 2, we know that the AT&T FSM library provides tools to describe 

and manipulate finite state automata. Therefore, we can use these tools to describe 

Ay, Ad  and B~^ and compute Ay o B~^ o Ad.
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The FSM command used to create Ay (if Ay = oen) is;

Fsmcompile — idic.syms < oen.stxt > oen. f  sa 

The FSM command used to create is:

Fsmcompile — idic.syms < dic.stxt > die. f  sa 

The FSM command used to create is:

Fsmcompile — idic.syms < model.stxt > model, f  sa 

The FSM command used to create Ay o is:

Fsmcompose oen. f  sa model, f s t  > basic, f s t  

The FSM command used to create basic.fst o A d is:

Fsmcompose die .fsa > oen. fst  

where, dic.syms  stores all the symbols used in dictionary;

dic.stxt contains a textual representation of dictionary; 

model.stxt contains a textual representation of B~^; 

oen.stxt contains a textual representation of Ay(oen).

Again, the above methodology is applicable to any channel and applications other 

than spelling error correction. Moreover, for the spelling error correction problem, 

this methodology can find the correction of any type of spelling errors as permitted 

by the given channel.

In the next section, two examples of spelling error correction methods from Chap­

ter 3 are described by using the general methodology.
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4.4 E xam ples

In Chapter 3, we have seen two methods of probabilistic technique for spelling error 

correction problem:

— Church and Gale’s method

— Mays and Damerau’s method.

The Church and Gale’s method is for isolated-word error correction; the Mays 

and Damerau’s method is for context-dependent (real) word error correction. Both 

of these two methods use the probabilistic technique to solve problems, but they use 

different error models and different error correction algorithms. However, the general 

methodology is able to describe these two methods in the same way.

4.4 .1  C hurch and G a le’s m eth o d

Church and Gale [5] presented a probabilistic technique for the isolated-word error 

correction problem.

Recall that the error model of [5] uses the following probabilities:

= # #  ’̂(^1^») =  ^

^’(^1») =  f W l p r )  =

This method also can be described by using our general methodology as below 

(Figure 4.3):

In Figure 4.3, y could be any letter, that is, y G E. The probabilities P2, P3, P4, P5 

are computed as above. Therefore, we have:
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x/x: P1 x/x: 1

xy/x: P2(y) □x/xy: P3(y) 
xy/yx: P4(y) 

x/y: P5(y)

Figure 4.3: Church and Gale’s Error Model

In [5], the probabilities for the non-error pair {x\x) are not assigned. Thus, ac­

cording to our theory of channels, P{x\x)  is assigned as: 

f  1 =  1 -  -P f  3(i/) +  f  4(^) -P f  5W )
yes

Once a channel of this error model has been computed, we can use the channel 

correction algorithm introduced in Section 4.3 to correct spelling errors. Again, as 

mentional in Section 4.3, if this channel is given, we can correct not only non-word 

spelling errors but also the real-word errors by using the channel correction algorithm.

4 .4 .2  M ays and D a m era u ’s m eth o d

Mays and Damerau [21] presented a statistical technique capable of detecting and 

correcting real-word errors when they occurred in sentences. Recall that the method
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of [21] use the probabilities:

(X if Sj =

otherwise.|C |-1

For a word w, we denote by C{w) the confusion set of w. This is the set of possible 

raispellings of the word w.

Our general methodology also can be used to describe Mays and Damerau’s 

method. As we illustrated in our general methodology, the sum of all probabilities of 

transitions that start from same state with the same input letter is 1.

Suppose we are given several confusion sets of intended words as below:

Word Misspellings

do fo

door doer, foor

The error model can be defined as below. (Figure 4.4)

In Figure 4.4, all the transitions from the start state are A/A, and the probabilities 

of them are 1/N,  Where N  is the size of the dictionary. The probability of each 

transition after the first transition is assigned based on Mays and Damerau’s confusion 

sets. Therefore, in Figure 4.4 we have that: 

f  (do/do) =  f  1 X f  6 =  a/Æ  f  (/o/do) =  f  2 x P6 =

P{door/ door) = P3 x P7 — a / N  P{doer/ door) = PA x P7 — -c(doo?)-i/ ^  

f  (/oor/door) =  f  5 x f  7 =  ë(È R - i / ^

Therefore the probabilities for each pair are divided by N. So that the probabilities 

of the possible outputs for a given input sum to 1. From a mathematical point of
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do/do: PI

fo/do: P2

door/door: P3

doer/door: P4

foor/door; P5

Where, P1 = P3 = a, P2 = ( 1 -a) / (C(do)-1 ), 

P5 = (1-a) / (C(door)-l),

P4 = (l-a)/(C(door)-l) 

P6 = P7 = 1/N

Figure 4.4: Example of Mays and Damerau’s Error Model

view, the probabilities have not been changed. We also notice that in Figure 4.4, 

all probabilities of each transitions from same state with same input sum to 1, as 

required by our general methodology.

4.5 Im provem ents in th e  G eneral M eth od o logy

In Section 4.3, the correction algorithm of using a given channel has been introduced. 

We can find the correction of misspelling s by finding the string labeling a path of 

the weighted directed graph Ag o o A d with the lowest cost. However, in the 

general spelling error correction problem, more than one candidate words might be 

needed. Therefore, finding n strings with the lowest costs in the weighted directed 

graph becomes important. The algorithm for the n best-strings problem introduced
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by Mohri and Riley [24] can find the n-best distinct words in weighted directed graph 

easier and faster than the classic n best-string algorithms [4], [30].

N -best d istinct words

The problem of determining the n shortest paths of a weighted directed graph is a 

well studied problem in computer science. The automaton searched may contain in 

general several paths labelled with the same sequence, thus the problem does not 

coincide with the classic n-shortest-paths problem. In fact, in many applications, the 

n  best paths may be labelled with the same sequence many times.

Mohri and Riley [24] present an efficient algorithm for solving the n-best-strings 

problem in a weighted automaton. This algorithm is based on two general algorithms, 

the determinization of weighted automata and a general n-shortest-paths algorithm. 

The authors of [24] use weighted determinization to deal with the problem of several 

paths labelled with the same string and a single-source shortest paths algorithm to 

find the n strings with the lowest cost in the result of determinization automaton.

A weighted automaton is a directed weighted graph in which each edge or transi­

tion has a label with weight. In the case of spelling error correction in this research, 

the label is error operation. The weights are interpreted as negative log of probabili­

ties.

The first step of this algorithm consists of computing the shortest distance from 

each state to the set of final states. After execution of this first step, the algorithm will 

find the n  best paths in the result of a weighted determinization of the automaton.
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Weighted determinzation takes as input a weighted automaton A  and outputs an 

equivalent subsequential or deterministic automaton B. The weighted automaton B  

is deterministic if it has a unique initial state and if no two transitions leaving the 

same state share the same input label.

The algorithm presented in [24] is a generalization of the classical algorithm of 

Dijkstra [1]. They assume that the determinization automaton B  contains only one 

final state. This does not affect the generality of this algorithm since one can always 

complete an automaton by introducing a single final state /  to which all previously 

final states are connected by X-transitions. The pseudo code of this algorithm is 

shown below, where Q' is the finite set of states, E  is the finite set of transitions and 

F  is the set of final states.

I for p 1 to \Q'\ do r[p] 0

3 ( /,0 )

4 While S ^ X

5 Do (p, c) head{S)\ Dequeue(S)

6 r[p] —> r[p] +  1

7 If (r[pj = =  n  and p E. F)  then exit

8 If r[p] <  n

9 Then for each e E F\p]

10 Do c' —> c +  w[e\

II  Z[{n[e],c')]^ {p,c)

57



12 ENQUEUE (^,(n[e],c'))

They consider pairs {p, c) of a state p E Q' and a cost c. The algorithm uses 

a priority queue S  containing the set of pairs (p, c) to examine next. The queue is 

in increasing order. This algorithm maintains for each state p an attribute r[p] that 

gives at any time during its execution the number of times a pair (p, c) with first 

state p has been extracted from S. r\p] is initiated to 0 and incremented after each 

extraction from S. The priority queue S  is initiated to the pair containing the initial 

state i' of B  and the cost 0. Each time through the loop of lines 4-12 a pair (p, c) is 

extracted from S. For each outgoing transition e of p, a new pair (n[e],c') made of 

the destination state of e and the cost obtained by taking the sum of c and the weight 

of e is created. The predecessor of this new pair is defined to be (p, c) and the new 

pair is inserted in S. The algorithm terminates when the n  shortest paths have been 

found, that is when the final state of B  has been extracted from S  n times. Since at 

most n  shortest paths may go through any state p, the search can be limited to at 

most n  extractions of any state p. By construction, in each pair (p, c), c corresponds 

to the cost of a path from the initial state i' to p. Let us use the Figure 7.8 to 

illustrate this algorithm.

b/0.7

a/0.3

c/1.0
b/0.1

Figure 4.5: Example of Best Path 
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In Figure 4.5, we have:

(1) S =  (%,0)

(2) S =  (^1,0.1) (^1,0.3)

(3) S =  (^1,0.3) (^2,0.8) (^3,1.0)

(4) S =  (^2,0.8) (%,1.0) (% ,!.!) (%,1.3)

So, if n = 2 , then the 2-best paths are: 

hb with cost =  0.8 

ab with cost =  1.0

4.6 C om puting  a C hannel from  Sam ple D ata

In this chapter, the general methodology has been described. It can be applied to 

many information processing applications, such as spelling error correction, speech 

recognition, etc. In this research, we are focusing on spelling error correction problem.

The process of computing a channel of the given error model can be defined as

below:

— Given sample data and an error model

— Compute a channel of the error model that corresponds to the sample data 

Therefore, the computation of a channel of an error model from sample data is

important part of our research.

According to our general methodology, we will follow equation (4.1) (see Section 

4.2) to compute the desired channel of the error model.
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For each state z in the channel, we need a set of sample data consisting of a pair 

of string sequences (si,S2) such that si[f] is the i t h  string of si and 62b] is the j t h  

string of S2 . We shall allow some edit operations on 82, such as insert a string into 82, 

delete a string from 82, substitute a string in 82 with another string, as well as other 

possible edit operations. Thus, a set of pairs (si[i]/s2b']) corresponding to the above 

edit operations can be generated. Next, we could align each pair (si[z]/s2[j]) of this 

set to obtain a list of sequence pairs { x / y ) ,  where x  and y  are substrings of Si[i] and 

82 b] with any length. Using statistical data about the sequence pairs and equation 

4.1, we shall find the probability of each channel transition. If we have n  states in 

the channel of the error model, then n  sets of sample data are needed.

In Chapter 5, the algorithm of generating string pairs from sample data is intro­

duced. This is the first step of computing channels. In Chapter 6 , we will see the 

details about how to compute channels of the Brill and Moore error model.
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Chapter 5

Generation Of String Pairs

In this chapter we will develop an algorithm for generating string pairs from sample 

data. This is also the problem of aligning two sequences of strings, which plays an 

important role in the area of computing channels.

Given two sequences of strings Fi and F2, we assume that Fi contains m strings 

and F2  contains n strings. Let u represent string Pi(i), and v represent string F2Ü), 

then a string pair can be defined as u/v.  An error pair is a special case of string 

pair u/v,  with u ^  v.

Papers [3], [5], [15], [21] introduced different error models for the spelling

error correction problem. In order to compute channels of these error models, a set 

of training data consisting of string pairs is needed. However in these papers, the 

authors did not describe the method of obtaining the string pairs. In this chapter, 

we are going to introduce a dynamic programming algorithm to compute the training 

data set of string pairs. In the beginning of this chapter we will concentrate on the
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formal and technical aspects of the problem.

5.1 T he E dit D istan ce B etw een  T w o Sequences o f  

Strings

Frequently, one wants a measure of the difference between two strings (for example, in 

spelling correction methods, current molecular biology or textual database retrieval). 

Various approaches to the problem of string distance measurement have been defined 

(see [9], [14], [20] and references). A measure of the difference between two sequences 

of strings or between two files is also a common requirement for these applications. 

A file can be viewed as a sequence of strings.

Given a pair of two string sequences, we shall allow the following edit operations 

on the second sequence; the insertion of a string into the second sequence, deletion 

of a string from the second sequence, substitution (or replacement) of a string from 

the second sequence with a string in the first sequence, repetition of a string in 

the second sequence (which is a special case of insertion), and concatenation of two 

strings in the second sequence. For example, letting I denote the insertion operation, 

D denote the deletion operation, S denote the substitution operation, R  denote the 

repetition operation, C denote the concatenation operation and M  the nonoperation 

of “match". Given the above, the sequence of strings “error situations permitted in a 

communication system" can be edited to “error permittedin a a data communicaton 

system" as follows:
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M D C R I S  M

error permittedin a a data communicaton system

error situations permitted in a communication system

We now can more formally define the terms sequence of edit transcripts and edit 

distance. A string over the alphabet I,D,S,C,R,M that describes a transformation of 

one sequence of strings to another sequence of strings is called an edit transcript of 

the two sequences of strings ( [16]).

By examining the above example again, we find that there are several ways to 

transform the second sequence to the first one.

M D S D M I  I S M

error permittedin a a data communicaton system

error situations permitted in a communication system

or

I D D C R I S M

error permittedin a a data communicaton system

error situations permitted in a communication system

However, there exists a best (possibly more than one) way to have edit transcripts 

between these two sequences. Hence, the edit distance between two sequences of 

strings is defined as the minimum number of edit operations needed to transform 

the first sequence into the second one where matches are not counted. Therefore, 

the edit distance problem is to compute the sequence edit distance between two
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given sequences of strings, along with an optimal edit transcript that describes the 

transformation.

5.2 A lignm ent B etw een  Tw o Sequences o f Strings

An edit transcript is one way to represent a particular transformation of one string 

sequence to another. An alternate way is to display an explicit alignment of the two 

sequences of strings. This idea is borrowed from the alignment of two strings. In 

[9], the author describes the concept of string alignment as; "A global alignment of 

two strings S i  and S2 is obtained by first inserting chosen spaces, either into or at 

the ends of S i  and S2, and then placing the two resulting strings one above the other 

so that every character or space in either string is opposite a unique character or a 

unique space in the other string. ”

An alignment of two sequences of strings Fi and F2  is a set of string pairs. It is 

obtained by first inserting the chosen dashes, either into or at the ends of Fi and F2 , 

and then placing the two resulting sequences above each other so that every string or 

dash in either sequence is opposite to a string or a unique dash in the other sequence. 

As an example of an alignment, considering the alignment between the two sequences 

we discussed before:

e rro r------------ permittedin a a data communicaton system

error situations permitted in a  communication system

In this alignment, the string communicaton is matched with communication] the
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strings situations, a and data are opposite dashes; permittedin is matched with per­

mitted in, and all other strings match their counterparts in the opposite string.

From a mathematical view, an alignment and an edit transcript are equivalent 

ways to describe a relationship between two sequences of strings. An alignment can 

be easily converted to the equivalent edit transcript and vice versa. Specifically, two 

opposing strings that mismatch in an alignment correspond to substitution in the 

equivalent edit transcript; a dash in an alignment contained in the second sequence 

corresponds in the transcript to an insertion of the opposing string into the second 

sequence; a dash in the first sequence corresponds to a deletion of the opposing 

string from the second sequence; one string from the first sequence with opposing 

two strings in the second sequence that mismatch in an alignment correspond to 

the concatenation operation; and the above alignment example also shows that the 

repetition of a string from second sequence is a special case of the deletion operation.

5.3 D ynam ic P rogram m ing M ethod

We now turn to the algorithmic question of how to compute the edit distance between 

two sequences of strings along with the accompanying alignment by using dynamic 

programming. We use the method of dynamic programming, which is based on the 

dynamic programming algorithm for computing the string distance ( [9], [20]) -  see 

Section 2.2.4. However our algorithm not only includes deletion, insertion, substitu­

tion, but also repetition and concatenation.

The cost of each operation is calculated as below. The concatenation operation
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between two strings is represented using underscore for seperating these two string.

Let u and v be two strings containing at most one underscore.

|m|, if u contains no space and v = X, (deletion)

|u|, if u contains no space and u = X, (insertion)

cost{u,v) = LD{u,v), ii u ,v  X and contain no space, (substitution)

LD{uiU2 , vv), if u =  U1 JU2 and ui, U2 , v contain no space, (repetition) 

LD{u, V1 -V2 ), if V = V1 JV2 and u, Vi,V2 contain no space, (concatenation).

The edit operation of repetition repeats a string from the source sequence, such 

as a a a] the edit operation of concatenation concatenates two strings from the 

source sequence, such as permitted in —> permittedin. According to the definition 

of repetition and concatenation, one would expect that repetition =  (u, uju) and 

concatenation = (ui_U2, u^Ug).

Suppose we are given a pair of sequences (files) Fi and Fg, then D(i, j) is defined 

to be the edit distance between Fi[l,...,i] and By using this notation, if

Fi has n  strings and Fg has m  strings, then the edit distance between Fi and Fg is 

precisely the value of D{n, m). We will compute D(n, m) by solving the more general 

problem of computing D{i ,j )  for all combinations of i and j, where i ranges from 0 to 

n and j  ranges from 0 to m. Note that, F i [ l . . .  0] and F g[l. . .  0] represent the empty 

sequence. The dynamic programming approach has three essential components: the 

recurrence relation, the tabular computation, and the traceback.
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5.3 .1  T h e  recurrence re la tion

The recurrence relation of two files Fi and F2  establishes a recursive relationship for 

the value of D{i,j) ,  for i and j  both positive, in terms of the values of D  with index 

pairs smaller than i , j .  When there are no smaller indices, the value of D{i,j )  must 

be stated explicitly in what are called the base conditions for D{i,j) .  Also, we define 

the length of the strings Fi[i] and as Fi[i].length and F2 [j].length, respectively.

The base conditions are: D (0 ,0) — 0 and 

for (i—1 to size of Fi)

D(i, 0) =  D(i-1, 0) +  Fi[i].length

and

for ( j= l to size of F2 )

D(0, j) =  D(0, j-1) +  F2 [j].length

The second base condition is clearly correct because the only way to transform the 

first i strings of to the empty sequence is to delete all the i strings of Fi. Similarly, 

the third base condition is correct because j  strings must be inserted to convert the 

empty sequence to . . .  j].

The recurrence relation for D{i,j )  when both i and j  are strictly positive is (see
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Figure 5.1).

If % < 2 

If j < 2

D{i -  l , j )  +  Fi[i].length 

D{i , j  -  1) +  F2 [j].length 

D { i - l , j - l )  + LD{F^[^\,F2[j])

D (i-l,j-l) 

D(i-2,j-l)+LD(Fi[z -  1]Fi [z],F2[j ]F2

D(i-lj-2)+Z,D(FiM ,F2b' -

D{i — 2 , j  — 1) = INFINITY (repetition)

D(i — 1, j  — 2) =  INFINITY (concatenation)

(deletion in F2 ) 

(insertion in F2 ) 

(replace in F2 ,ifFi[i]

(match)

(repetition in F2 ) 

(concatenation in F2 )

(5.1)

5.3 .2  Tabular co m p u ta tion

The second essential component of any dynamic program is to use the recurrence 

relation to efficiently compute the value D(n,m).  We will first compute D(i , j )  for the

j

F2

FI

repetition

concate­
nation substitution deletion

insertion

Figure 5.1: Table of Five Edit Operations 
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smallest possible values for i and j ,  and then compute values of D{i ,j )  for increasing 

values of i and j .  Typically, this method is organized with a dynamic programming 

table of size ( n + 1) x ( m + 1). The table holds the values of D{i,j )  for all the choices 

of i and j .  The file Fi corresponds to the vertical axis of the table and the file Fg 

corresponds to the horizontal axis. Because the ranges of i and j  begin at zero, the 

table has a zero row and a zero column. The values in row zero and column zero 

are filled in directly from the base conditions for D{i,j) .  After that, the remaining 

n X m  subtable is filled in one row at time, in order of increasing i. Within each 

row, the cells are filled in order of increasing j .  From Table 5.1, we see that the 

values for row one can be computed in order of increasing index j .  After that, all 

the values need to be computed in row two are known, and that row can be filled in, 

in order of increasing j .  By extension, the entire table can be filled in one row at a 

time, in order of increasing i, and in each row the values can be computed in order of 

increasing j .  The detailed tabular example of computing the edit distance between 

the two sequences as considered earlier is shown in the Table 5.1.

5.3 .3  T h e traceback

Once the value of the edit distance has been computed, we can establish pointers in 

the table to find the associated optimal edit transcript (that is the alignment between 

Fi and Fg). From here, we also can get the string pairs between Fi and Fg. In each cell 

of this table, we store two values; D{i,j).cost and D{i,j).ope. D{i,j).cost stores the 

value of edit distance from D{0,0) to D{i,j)  and D{i,j).ope stores the edit operation
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F2 error situations permitted in a communication system

Fi 0 5 15 24 26 27 40 46

error 5 0 10 19 21 22 35 41

permittedin 16 11 9 12 10 11 24 30

a 17 12 10 13 12 10 22 28

a 18 13 11 14 13 10 22 28

data 22 17 15 18 17 14 21 27

communicaton 34 29 27 24 28 26 15 21

system 40 35 33 30 30 31 21 15

Table 5.1: Table of Dynamic Programming

that corresponds to the calculation in formula 5.1.

In particular, when the value of cell (i , j) is computed, we can consider a set of 

pointers as follows:

deletion: set a pointer from (i , j) to {i — l , j )

if D{i,j).cost =  D{i — 1, j).cost +  F2[j].length; 

the pair is D(i,j) .ope = 

insertion: set a pointer from cell (i , j)  to cell {i, j  — 1)

if D{i,j).cost = D{i , j  -  l).cost +  Fi[i].length; 

the pair is D{i,j) .ope = X/Fi[i]; 

substitution: set a pointer from {i, j) to (i -  l , j  — 1) 

if D(2,j) =  D(% -  1, J -  1) +  LD(FiH,
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the pair is D{i,j).ope = F2 [j]/Fi[i]-, 

match: set a pointer from (i, j)  to (z — 1, j  — 1)

if =  D{i -  l , j  -  1); the operation is D{i,j) .ope = Fi[i]/F2 [j]]

concatenation: set a pointer from {i,j) to {i — l , j  — 2),

if D{i, j).cost =  D{i - l , j  -  2).cost +  L D (^ [; -  l]F2 [j], Fi\i]) 

D{i,j) .ope  =  {F2 \j -  1]-F2[j])/Fi[i] ( refers to space) 

repetition: set a pointer from {i,j) to {i — 2 , j  — 1)

if D(z, j).cost =  D(% -  2 ,; -  l).cost +  LD(F2[7']F2|;]/Fi[z -  

D(z, j).ope =  (Fziz -  1]_F2H )/F ib l 

These rules apply to cells in row zero and column zero as well. Hence, each cell in 

row zero points to the cell to its left, and each cell in column zero points to the cell 

just above it. The pointers allow one to recover an optimal edit transcript: simply 

follow the path of pointers from cell (n, m) to cell (0,0). Figure 5.2 shows a detailed 

example.

According to Figure 5.2, the alignment between these two sequences is as following: 

error I  error \/ si tuations permittedin/{permitted in) {aa)/a

data/X communicaton /  communication system /  system

There are 1 deletion error, 1 insertion error, 1 substitution error, 1 concatenation 

error and 1 repetition error in this sample alignment.
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5.4 T im e A nalysis

We now discuss the time complexity of this algorithm. When computing the value 

for a specific cell only cells {i — l , j  — 1), ( i , j  — 1), {i — l , j ) ,  {i — 2 , j  — 1) and

{i — 1, j  — 2) are examined, along with the two strings Fi(i) and Hence, to fill

in one cell takes a constant number of cell examinations, arithmetic operations, and 

comparisons. The distance D(n,m ).cost can be computed in &{mn) time. The space 

used for this dynamic algorithm is also @{mn) strings. In practice, a file (sequence) 

could contain a large number of strings and this algorithm would not be very efficient.

To overcome this we introduce a heuristic method, called the K-lookahead method, 

where % is a positive integer. This method will only test the next K  strings of each 

file every time, and store the first string pair for these K  strings. If the pair is a

D(iJ) F2 error situations permitted in a communication system

FI 0 -^5 ^ 1 5 ^ 2 4 ^ 2 6 ^ 2 7 ^  40 46

error f5 error/error A,\situations 21 ^  22 ^ 3 5 -^41

permittedin 116 t 11 ^ 9 ^ 1 2 perniîttemW 
(permitted V)

^ 1 1 ^  24 ^ 3 0

a 117 t 12 1 10 |13
N

f l2 '^ lO V -^ 2 2 XT 28

a t 18 t 13 f l l f l4 fl3
Yi(A

(a £t)/a ^^22 ^ 2 8

data f 22 f 17 fl5 f is f l7 ^  27

communicaton f 34 f 29 127 ^ 2 4 ^ 2 8 f 26 comm^i^àt^i/
communication

^ 2 1

system f 40 f3 5 f33 f 30 "*\30 ^ 3 1 21
system

Figure 5.2; Computation Table of Dynamic Programming
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deletion of a string F2Q) from F2, then the next run will start from F2D+I] and

Fi[i]; if the pair is an insertion of a string Fi[i] into F2 , then the next run will start

from F i[i+ 1] and if the pair is a match of or a substitution of the string Fi[i]

with the string F2Ü]) then the next run will start from F i[i+ 1] and F2U+I]; if the

pair is a repetition of string Fi[i] with string then the next run will start with

F i[i+2] and if the pair is a concatenation of string Fi[i] with strings

and then the next run will start with Fi[i+1] and F^[j+2]. This process will

be repeated again and again until the whole file is finished. Figure 5.3, Figure 5.4,

Figure 5.5 and Figure 5.6 show a detailed execution of this algorithm(FT =  5):

In these dynamic programming tables, K'^ steps are performed each time for a

total of M =  size{longerFile^)-K+l times . So this K-lookahead algorithm runs in

&{MK^)  time. The space for this dynamic programming algorithm is Q(K^).

 ̂lon gerF ile  is the file that is the longer one of the two input files

D(ij) error situations permitted in a

0 5 15 24 26 27

error 5 X 2) 21 22

permittedin 16 11 9
\

11

a 17 12 10 13 12 \  10

a 18 13 11 14 13

data 22 17 15 18 17 1 @

error / error

Figure 5.3: Example of K-lookahead Algorithm-Stepl
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D(i,j) communicationsituations permitted m

permittedin

data

communicaton

X / situations

Figure 5.4: Example of K-lookahead Algorithm-Step2

D(i,j) permitted in a communication system

___ 9 11 12 25 31

permittedin 11 2 1 14 20

a 12 3 A 0\ 13 19

a 13 4 2 A 12 18

data 17 8 6 11 10

communicaton 29 20 18 16 — ®
permittedin / (permitted in)

Figure 5.5: Example of K-lookahead Algorithm-Step3
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Sometimes a small K  is not sufficient to find the correct string pairs between two 

files. In this case, a larger K  needs to be tested each time until the sufficient K  is 

identified. Binary search has been used for finding the proper K  in our training set. 

First, we choose K  = size{longerFile)/2. If it is sufficient to find the correct string 

pairs, then we chose K  = K /2  to test the program again; otherwise, K  — K  + K /2  

will be chosen as the next parameter for the program. The process is repeated until 

the optimal K  has been found. The bigger K  we have, the more time is needed to 

run and the more proper string pairs can be generated.

A number of other alignment alogrithms that save time and space by putting 

restrictions on the form of the alignment have been described in [9]. The gen­

eral (original) string generation algorithm is used to derive results in this research.

D(i,j) a communication system

1 14 20

a
\

1
\ “

13 19

a 2
t ®

12 18

data 6 11 17

communicaton 18 16 11

system 24 20 11

(a a) / a, % I data, communicaton / communication, system / system 

Figure 5.6: Example of K-lookahead Algorithm-Step4
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5.5 R esu lts

We ran the experiments by using 12 pairs of files. Each pair consists of a file that 

may contain spelling errors and a correct file. Totally these 12 pairs of files have 

around 7500 string pairs. First, by running the original string generation algorithm 

in Section 5.3, a set of string pairs has been found. A sample typing file, correct file 

and their output results are shown below:

Rule based techniques are algorithms that attem pt to  represent knowledge of common spiling error patterns in  

the form  of rules fo r  transforming m isspellings into valid word. The candidate generation process consistsof applying 

all applicable rules ot a misspelled string retainng every valid d ictionary word that result. It defines the estim ation  of 

probability of having m ade the particular error that te invoked rule corrected. Yhe candidates identified in  the above 

process thus can be ranked by assigning nmberical scores to them  based on the previous estim ation.

Rule based techniques are algorithms that a ttem pt to represent knowledge of common spelling error patterns in the 

form  of rules fo r  transform ing m isspellings into valid words. The candidate generation process consists of applying all 

applicable rules to a misspelled string and retaining every valid d ictionary word that result. It defines the estim ation  

of the probability of having m ade the particular error that the invoked rule corrected. The candidates identified in  the 

above process thus can be ranked by assigning numerical scores to them  based on the previous estim ation.

Output: spiling/spelling, word/words, consistsof/(consists of), ot/to, */and, re­

tainng/retaining, */the, te/the, yhe/the, nmberical/numerical

There are 1042 error pairs in total of 7500 string pairs. Table 5.2 shows the 

percentage of different error types. Substitution error is the most common spelling 

error made by the specific user -  the author of this thesis (84% of the total). It is
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Total Del. Ins. Sub. Con. Rep.

1042

100%

16

1.54%

40

3.84%

876

84%

100

10%

10

0.62%

Table 5.2: Statistics for Error Types

also the error type that is mostly related to the keyboard.

We have also tested an actual file in this study. A draft file was entered at the 

beginning. After going through the whole correction procedures, several paragraphs 

have been added up or cut down from the input file. And a reasonable set of string 

pairs as illustrated in the following have been identified:

by/*, viewd/viewed, */We, */note, */that, */an, */interesting, */product, */con­

struction, */between, */two, */copies, */of, */the, */same, */automaton, */is, */de- 

fined, */in, */cite, */for, */the, */purpose, */of, */deciding, */the, */property, */of, 

*/unique, */decodability, */for, */regular, */languages

From this result, we found that if we insert or delete an entire sentence or para­

graph, the output will be a sequence of word insertions or deletions. This nice result 

shows that this algorithm is useful for generating error pairs.

In this study, we also test the appropriate K  for different pair of files. We tested 

various values for K  for each file pair from small to big, until the appropriate K's  are 

found. Table 5.3 shows the appropriate K's  we got from the training data sets.

In Table 5.3, the most values of K  are satifying. The value of K  is around 3 even 

when the total string of a file is more than 800. However, for files Sample6,7,8, the K
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File Name Total number of strings K

Samplel 815 3

Sample2 798 3

Samples 840 3

Sample4 315 2

Samples 902 3

Samples 443 280

Sample? 578 205

Samples 562 243

Sample9 546 3

SamplelO 485 3

Samplel 1 709 3

Samplel2 500 3

Table 5.3: Appropriate K for Different Files
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is relatively big, K  =  280, K  =  205, K  =  243 respectively. Each of these three sample 

pair files has the situation mentioned before: entire sentences have been deleted from 

or inserted into the input file. Therefore, the value of K  is much bigger.

The optimal value of K  is important. Once we found K  from the training file, we 

can use the K  as the parameter for our K-lookahead algorithm, which will save time 

and space. From the above training data, K  can be chosen as 5 if the file contains 

strings no more than 800 and there is no significant change between the two files.
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Chapter 6

Improving the Brill and M oore

Error M odel

This chapter focuses on the application of our general methodology to the spelling 

error correction problem. A set of techniques have been introduced in Chapter 3 for 

the spelling error correction problem. Among them, the probabilistic method is more 

interesting to us due to it capability to correct spelling errors in text by using the 

Bayes Rule and the Noisy Channel Model [13], which has been successfully applied 

to a wide range of problems, including spelling error correction.

In 2000 Eric Brill and Robert C. Moore introduced a new channel model for 

spelling error correction [3]. In this chapter, we will have a close look at this model 

and implement it with several improvements based on our general methodology de­

scribed in Chapter 4.
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6.1 T h e B rill and M oore Error M odel

Usually in an error model, people only consider a single edit operation (insertion, 

deletion, substitution) in the input string s ( [5], [6], [15], [21]). Brill and Moore 

had improved on this by analyzing spelling errors in terms of more general string-to- 

string edit operations. Therefore, more than one edit operation can be considered in 

their model. For example, people are more likely to type tion  as iton  rather than t 

as i and i as t.

Let S be an alphabet, s be the input string, w be the output string. The Brill 

and Moore error model allows all edit operations of the form a/P,  where a ,P  are 

substrings with any length of s and w respectively, and a ,P  G E*. P{a/P)  is the 

probability that users intend to type the string a  but they type /? instead. Note that 

the edit operations allowed in [5], [6], [15], [21] are properly included by this generic 

string to string substitutions.

The main idea of this error model can be described as follows.

Generate a word from the input s e t  > Pick a partition of the characters of that

w o rd  > Type each partition, possibly with some mistakes.

Here is an example to illustrate this process. The word technical is chosen by a 

person. Then he/she picks a partition from the set of all possible partitions of that 

word, such as: te-ch-ni-cal. After typing each partition, possibly with errors such 

as ta-k-ni-kal, and choosing the particular word and partition, the probability of 

generating the string taknikal with the partition ta  k n i kal would be P{ta\te) x 

P{k\ch) X P(ni\ni)  x  P(kal\cal). Obviously there are many other possible partitions
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of technical.

In this example, we may notice that neither P{k\ch) nor P{kal\cal) is modeled 

directly using other error modeling methods ( [6], [15], [21]).

A more formal description of this error model can be described:

— Given an alphabet E and a string s, where s ^  D (dictionary) and s G E*, a 

partition T  of s is a sequence of strings T  — (Ti, Tg, - - -, Tm), such that T) G E* and 

s = T 1 T2  . . .  Tjn- Let Part{s) be the set of all possible partitions of the string s.

— Given another string w E D, a, partition R  oî w is a sequence of strings R  — 

(i?i, i?2) • • •, Rn), such that Ri eTi*, and w — R 1 R 2 ■ ■ ■ Rn- Let Part{w)  be the set of 

all possible partitions of the string w.

If,

The partitions R  =  (i?i, i?2, • • ■, Rn) and T  = (Ti, T2, . . . ,  T^) can be found such 

that n = m,  |i?i[ < N,  for some fixed parameter N.

Then,

By only considering the best partitioning of s and w, we can define the error 

model:

\R\
P{s\w) = MAXR^Part{w),TePart(s),\R\=\T\YiP{Ti\Ri), (6.1)

i=l

where, |T| and |i?| are the number of components in T  and R, respectively.

The general methodology introduced in Chapter 4 for defining error models can be 

used to describe the Brill and Moore error model. In the Brill and Moore error model, 

every channel has only 1 state. Let S  be the only state. If given a transition of the 

channel S (x /y )S ,  the input string x  is Tj, output string y is Ri and H[S, x]{x/y, S) =
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P{Tj]Ri). The channel can be viewed in Figure 6.1.

X /a:Pl
ac/d:P3

a/b:P2a/cd:P4

V
X /a:Pl

a/d:P3

c/A,:l

'a/b:P2X/d:l

a/c:P4
S2

P(l/a)+P(a/b)+P(a/d)+P(a/c) 
= P1+P2+P3+P4 = 1

P(c/ X) = 1 

P(A,/d) = 1

Figure 6.1: Brill and Moore Error Model

6.2 Training th e  Error M odel

In Section 6.1, an useful error model has been described. Our next task is to describe 

the method of [3] to compute a channel of this error model corresponding to a given 

set of data. We call this the training problem. To conduct training in this error 

model, a training set consisting of error pairs (si/wi) is needed. Recall that, in the 

previous chapter, a string pair generation algorithm was applied to identify a set of 

error pairs (si/wi), where Si is a word with possible spelling errors and Wi is a correct 

word.
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Equation 6.1 suggests that we need to find a pair of partitions R  =  ( i? i,. . . ,  Rn) 

and T  — for and Sj. To achieve this, we begin by aligning the

characters in Si with those in Wi based on minimizing the edit distance between them. 

Then we expand each substitution edit operation to its left and right to allow general 

string-to-string edit operations and identify possible partitions of Sj and w,. After 

that we can calculate the probability P{a/(3) of each sequence pair (a/P),  where a 

and P are substrings of Si and Wi of variable length. The process of training the error 

model is described below:

• Get an optimal alignment between two strings;

• Expand each substitution edit operation to its left and right to allow string-to- 

string edit operations;

For example, the optimal alignment between strings baa and aaca is b/a, A/a, 

a /c  and a/a. By expanding substitution edit operation 6/ a  1 position to it right, 

(b/aa) is obtained; by expanding substitution edit operation a/c 1 position to 

its left, (a/ac) is obtained; by expanding a /c  to 1 position to its right, (aa/ca) 

is obtained.

• Generate the training set that contains all the sequence pairs (ajP).

• Compute the fractional count of each sequence pair {ajP)\

Using the same example above, the pairs (6a/aa), (ad/aa), (da/aa), . . .  need to 

be counted the total appearing time in the training set.

• Calculate the probability of each pair {a/P) as P{a/P) = count{a/ P)/ count{a).
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By training the given data, a set that contains all the pairs (a//?) is generated. 

The quantity count{a/(3) is simply the total number of (a/P)  that appears in this 

training set. The quantity of count{a) is the number of times that substring a  occurs 

in the input texts.

6.3 Im provem ents

In the previous section, we reviewed the general process of training the Brill and Moore 

error model. In order to enhance its applicability to a broader range of spelling errors, 

several improvements should be considered.

6.3 .1  A lign m en t o f  str in g  pairs

In the Brill and Moore’s paper ( [3]), the alignment between Si and Wi was accom­

plished based on single character insertions, deletions and substitutions. We de­

scribe an example here to illustrate their method of alignment.

The error pair (ot/to) appears a number of times in our training set. But when 

we are trying to correct the misspelling 'of,  the expected correction 'to' didn’t appear 

in our result. Now, let us analyze the alignment of this error pair. According to the 

Levenshtein distance, there are different alignments between 'ot' and 'to', but they all 

have the same minimal edit distance 2 :

(1) A o t

t  o A (one insertion A/t and one deletion t/A)

(2) o t A
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A t o (one deletion o/A and one insertion A/o)

(3) o t

t o (two substations o /t and t/o)

Obviously, the third alignment {o/t) {t/o) is the best alignment based on most 

people’s typing habit. However, the first alignment (A/t) (o/o) (t/A) is chosen by the 

program because the authors of [3] didn’t consider transposition edit operation. In 

this example, we couldn’t get any string-to-string edit operations because there is no 

substitution error in this alignment. By only using the pairs above (A/t) (o/o) (t/A), 

we are not able to find the correction for ot.

The transposition error (ot/to) is more natural than any of the above three align­

ments. Thus, the fourth edit operation transposition has been added to our alignment 

algorithm (Section 2.2.3) as showing below:

C{i ,j )  =  min

C{i — l , j )  + l  deletion,

C{i , j  — 1) + 1 insertion,

C{i — l , j  — 1) + G{i,j)  substitution,

C{i — 2 , j  — 2) + T{ i , j )  transposition,

where G (z,j) =  0 ii A{i) — B{j),

% ; )  =  ! i f # ) f  B(j);

T (z,;) =  1 if A(z -  l)A(z) =  B (j)B (; -  1),

T(2, j) = 2 if ;l(2 -  1)A(%) f  B(;)B(j -  1);

After adding transposition, the alignment (o/t) (t/o) can be chosen by the pro­

gram. Therefore by expanding the substitution edit operation, the following sequence

86



pair can be generated: ot/to.

W ith the above changes, the correction 'to' for the misspelling 'ot' can be identified 

in our result list.

6.3 .2  E xp an d  su b stitu tio n  ed it op eration

In the same paper, Brill and Moore introduced a method that expands each substi­

tution error to incorporate up to N  additional adjacent edits, and allow for richer 

contextual information, where N  is the fixed parameter of the model. At each sub­

stitution position, the letters are expanded to the left and right.

For the sake of illustration let us consider an example. Suppose we have two 

strings s = baada and w = aaaaa. W ith Brill and Moore’s method the training pair 

{baada, aaaaa) can be aligned as: b/a, a/a, a/a, d/a, a/a. This means when N  = 0, 

we have R  = (6, a, a, d, a) and T  = (o, a, a, a, a). The substitution errors are b/a and 

d/a. To allow for richer contextual information, we can expand each substitution: 

For N = l, the following sequence pairs are generated: ba/aa, ad/aa, da/aa]

For N=2, the following sequence pairs are generated: baa/aaa, aad/aaa, ada/aaa. 

However, if we turn to another example, there is a problem. Given another training 

pair {baa, aaca), by using the same method shown above, we would generate the 

following substitutions:

N=0: b/a,a/c

N =l: b/aa,a/ac,aa/ca

N=2: ba/aac,ba/aac,aa/aca
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In this example, when N=2, the pair (ba/aac) occurs twice. But when we look 

back to our original training pair [baa, aaca), the pair [ba/aac^ only occurs once. 

Therefore, we modified this method to allow more suitable sequence pairs. For each 

no match and matched position in the allignment, we expand the character only to 

the right. For instance, in the example above, we could regenerate the following 

sequence pairs:

N =0: 6/a , A/a, a/c, a /a

N =l: b/aa,a/ac,aa/ca

N=2: ba/aac, aa/aca

In our new result, ba/aac occurs only once. Therefore, from this example, we 

could find that the new method gives ns more proper seqnence pairs.

6 .3 .3  A ssign  th e  p rob ab ilities  

Fractional count o f sequence pairs

In [3], the authors described the method for calculating the probability of each 

sequence pair [a/j3) as P[a\j3) =  count[a/(5)/count[a). For each (a//?) in the set of 

sequence pairs we define;

— count[a/P) is the number of times that [oi/(3) occurs in the set of 

sequence pairs;

— count (a) is the number of times that substring a  occurs in the text 

corpus. In other words, count[a) is the sum of the number of times that count[a/P) 

occurs in the set of sequence pairs, but this time, /? could be any letter occurring in
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that set.

Hence, the probability P{a/(3) — count{a./ P)/ count{a). We also define the 

Distance Cost  between a  and (3 as C{a/P) = — \ogP{a/f5).

The Brill and Moore error model only considers a  as a non empty letter, but 

neglects the fact that empty strings are also frequently encountered in insertion errors 

(X//3). Therefore, we can redefine the probability calculation method for each pair as 

below:

If a  is the empty string (A), count(a) is the number of times that A occurs 

in the input files. It equals to the sum of each word length plus 1. For example, 

if the input files contains two words wi and W2  with \wi\ =  5 and \w2 \ =  6 , then 

count{a) =  6 +  7 =  13.

Convert the transition

In the Brill and Moore error model, transitions such as So{a/(3)Si have |a | =  n  and 

1/31 — m, where n or m is greater than 1. By using the rule 4.2, we can convert 

So{a/P)Si  to a sequence of transitions with single labels. To further demonstrate 

this, let us look at the following examples:

Given a transition So(xy/ab)Si with P{xy/ab) — P,  it can be converted to 

So{x/a)Si{y/b)S 2 with P{x/a)  =  P  and P{y/b) — 1;

Given a transition So{xy/a)Si  with P{xy/a) = P,  it can be converted to 

So{x/a)Si{y/X)S 2 with P{x/a) = P  and P { y / \ )  =  1;

Given a transition So{x/ab)Si with P{x/ab) =  P , it can be converted to

89



So{x/a)Si{X/b)S2 with P{x/a) — P  and P{X/b) = 1.

The Figure 6.1 illustrates this method.

As illustrated in Figure 6.1, S{a/cd)S  with P{a/cd)  =  P4 is converted to S{a/c)S 2 {X/d)S 

with P{a/c) =  P4 and P{X/d) = 1; S{ac/d)S  with P{ac/d) = P3  is extended to 

S{a/d)Si{c/X)S  with P{a/d) — P3  and P{c/X) = 1.

Assign the probabilities

In this research, we are going to determine a proper way to calculate the probability 

P(a//3) of pair {a/(3).

As we discussed before, if the transition So{a/P)Si  with |a | or |/5| is greater than 

1, we will convert it to a sequence of transitions with single labels. According to the 

method of assigning probabilities in Section 4.2, thus, if a  =  XiZ, € 2 , z E E*, we 

have

Z E f(zizta) = Pi.
/3eS* Z E E '

And,

E PW0) = a,
/3eE*

p w m  = X -P2.

where,

— count{xiz) is the number that substring in which start letter is x\  occurs in the 

text. In other words, count{xiz) is the sum of the number times that count{xiz/(3) 

occurs in the set of sequence pairs, where z G E*,/3 E S*.
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— 0 < P i  <  1, 0 < ^2 < 1, f l  +  ^2 — 1

6.4 A pp ly ing  th e  M odel

In Section 6.3, we described how to train the error model and how to obtain the set of 

parameters P{a/P),  which define the channel. Each P{ajj3) is the probability that 

if a substring a  is intended, the channel will produce j3 instead {a,P G Z*). In this 

section, we will describe Brill and Moore’s algorithm to correct spelling errors by ap­

plying their error model. In particular, the working process of spelling error correction 

problem can be described in 3 steps: (1) detecting an error; (2) generating n candidate 

corrections; (3) ranking the list of candidate corrections. For example, if n =  3, then 

the 3-best list will contain 3 words Wi,W2 ,W3 , such that tci G D, W2 G D, W3 G D, and 

they have the minimal distance to s in the order of C{wi/s) < C{w2 /s)  < C{ws/s),  

where C{wi/s) = —logP{wi/s).

A pply the m odel

In [3], the authors introduced a dynamic programming that correct errors by 

applying the error model.

In the standard dynamic programming of computing the Levenshtein distance, in 

order to fill the cell (i , j)  in the matrix, we need to only test cells — {insertion 

error), {i — l , j )  {deletion evvov) and {i — l , j  — l) {substitution evvov). In this research, 

however, we allow generic edit operations (error pairs) of the form a / (3, where each 

a / p  has a cost C{a/P)  =  — \ogP{a/P).  This means that in order to fill in the cell
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(i , j) in the edit distance matrix, all cells (a, b) where a < i and b < j  might have to 

be examined.

Following [3], we precompiled the dictionary into a trie, and store a vector of 

weights in each node of the trie. Then we consider the standard matrix of computing 

edit distance between two strings (one is the misspelling s, and the other one is the 

correct word w in the dictionary). Thus the vector of weights for each node in the trie 

corresponds to a column in the weight matrix associated with computing the distance 

between s and the prefix of w ending at that trie node. Therefore the last number 

stored in the vector of the final nodes in the trie will represent the edit distance 

between the input string s and the string w in the dictionary reached at that node. 

Figure 6.2 shows an example that illustrates this dictionary trie, where s =  ann  and 

w =  ant.

ann/ant

0 1
a 1 0
n 2 1
t 3 2

0 1 2 3

J _ _0_ - L
_1_ _o J _

2 J _ J _

O o - • o - o
Figure 6.2: Example of Computing Distance In the Trie

We store all the P[a/(5) parameters in a ternary search trie, each node of which
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contains a ternary search trie. Figure 6.3 shows the ternary search trie that stores a

list of P{a/(3)  : ac /akg,ad /hc,ab /agh .  

ac/akg, ad/bc, ab/agh

L M S R

\ ’b’ \
1

L M R P

\ ’a’ \ 0

\ ’g’ \ 0

\ ’h’ \ P

\ ’a’ \ 0

\ ’k’ \ 0

\ ’g’ \ P

\ ’b’ \ 0

\ ’c’ \ P

L; left son; R: right son; M: middle son; S: sub_trie; P: probability

Figure 6.3: Ternary Search Trie to Store Parameters

In particular, we have one ternary trie corresponding to all string pairs that appear 

on the left hand side (string a) in our parameter set. In this trie, if we reach the end 

of the string a, then we have a pointer sub-trie pointing to a ternary trie that consists 

of all strings (3 appearing on the right hand side of the set of P{a/ f3)  parameters with 

OL on the left hand side. We will store the substitution probabilities at the terminal 

nodes of the P ternary trie. Both a  and /3 string will be stored in the reverse order.

We then need to compute edit distance over the entire dictionary one by one.
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Chapter 7

Experim entation

In this chapter, we will conduct experimental tests on both the original and the 

improved Brill and Moore [improvedBM for short) error model. We also will compare 

the experimental results of applying the dynamic programming and the channel error 

correction algorithm on the improvedBM  error model. Moreover, four more error 

models modified from the improvedBM  error model will be described, tested and the 

experimental results will be reported.

In order to get reasonable experimental results, a total of 12 pairs of files (con­

taining around 7500 string pairs) have been used for training various error models. A 

total of 1042 error pairs are generated from the training set to compute the channels 

of these error models. Our dictionary contains approximately 250,000 correct words, 

including all words in the training set. For evaluation, we have run experiments using 

two testing sets of misspellings (words with common English spelling errors). Both 

of these sets are generated from the typing mistakes created by the author of this the-
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sis. The first testing set has 134 misspellings and the second one has 91 misspellings. 

The first testing set contains a number of misspellings that have been used also for 

training the channel. But no misspellings in the second testing set have been used. 

In the experimental results tables, n-best lists contain n-candidate correct words for 

each misspelling where n =  1, 2 , —

In this research, we are interested in computing the channel of given error model 

that corresponds to a specific typesetter. Therefore, all the training files and testing 

misspellings are from a specific user (the author of this thesis).

7.1 C om parison o f th e  O riginal and Im proved B rill 

and M oore Error M odels

Testing the original Brill and M oore error models

The Original Brill and Moore error model (without any improvements) has been 

tested in this section. Totally 2526 sequence pairs (a//?) {a ^  (5) are generated from 

1042 error pairs (s^/w,) to compute a channel of this error model. The results on the 

two testing sets of misspellings are shown in Table 7.1. However, since we don’t have 

large quantity of training data set, the results on improvedBM  error model don’t 

have the same accuracy level as that has been illustrated in Brill and Moore’s paper

[3].

Testing the improved Brill and M oore error m odel

Totally 6692 sequence pairs {a/(3), including the case of a  =  /?, are generated from

95



Total 1-best 2-best 3-best

First Set 

(%)

132 102

77.28

117

88.64

122

92.42

Second Set 

(%)

91 61

67.03

73

80.22

80

87.91

Table 7.1: Result of Original Brill and Moore Error Model

the 1042 error pairs used above to compute a channel of the improvedBM  error 

model. The results on the two testing sets of misspellings are shown in Table 7.2.

Total 1-best 2-best 3-best

First Set 

(%)

132 114

86.36

122

92.42

126

95.45

Second Set 

(%)

91 66

72.52

76

83.51

82

90.1

Table 7.2: Result of Improved Brill and Moore Error Model 

Comparison

As illustrated in Figure 7.1, for both two testing sets the improvedBM  error model 

has a better result than the original Brill and Moore error model. In particular, if 

the misspelling contains more than one errors, the improved error model can find 

more appropriate corrections. For example, the misspelling 'peoid' can be corrected 

to 'period' in the first candidate word by using the improved model, but can not be

96



corrected in any candidate words by using the original model. Three candidate words 

prodeced by using the original model are: Lepid, tepid and paid.

1
0.95

0.9

0.85

I ...
0.7

0.65

0.8

- ,  *
— r

2
N-best

. Original(F) | . _  noEm pty(F) . - O riginal(S) -  -  noEm pty(S)

Figure 7.1: Comparison of Original and Improved Brill and Moore Error Model

7.2 C om parison o f D ynam ic P rogram m ing and C han­

nel C orrection A lgorithm s

In Chapter 4, a general error correetion algorithm is defined to correct errors for a 

given channel which is called the channel correction algorithm in this research.

In the channel error correction problem, we are given a channel output s, an 

NFA A d that stores the dictionary D, and a wfse-symtem that corresponds to 

the channel. If s is described as a DFA Ag, then the channel correction algorithm
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addressed in Section 4.3 can be used to find the correction of s.

In this section, we are going to use this algorithm to find out the correction of 

misspellings if the wfse-system B~^ corresponds to the channel of the im provedBM  

error model. Theoretically, the results of finding corrections by using dynamic pro­

gramming described in Section 6.5 are the same as the results of using the channel 

correction algorithm. The example in Section 7.2.1 shows that also in practice the 

results are the same.

The A T h T  finite state machine tools described in Chapter 2 were used to create 

the WFA As, A ^  and the W FST B~^. This tool also can be used to compute the 

composition o B ~ ^  o A d -

7.2 .1  E xam p le

The example below shows how the corrections of a certain misspelling can be identified 

by using dynamic programming.

misspelling: aha\ dictionary word: abab

We consider the following 1-state channel of the im provedBM  error model: 

P{b/b) : 1 .0 ,P (a/a) : 0.15, P(a5/a5) : 0.5 ,P(a5/a) : 0.35;

As we know, the Distance Cost C  is the negative log of the probability P , that is, 

C(6/6) : 0, C(a/a) : 0.82, C(o6/a6) : 0.3, C(a6/a) : 0.45;

Dynamic Programming:

We can create a two-dimensional table as displayed in Figure 7.2 

There are two paths shown in this table to reach the final destination:
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(1) pairs: {ab/ab){ah/a)

cost: 0.30 +  0.45 =  0.75 (total)

(2) pairs: {a/a){b/b){ab/a)

cost: 0.82 +  0 +  0.45 =  1.27 (total)

In these two paths, the edit operations (ab/ab){ab/a) has the smallest cost 0.75 

to reach the correction.

The next example shows how to determine the corrections of the same misspelling 

by using the channel correction algorithm.

Create a weighted finite-state transducer (W FST) for the dictionary D = {abab}: 

Figure 7.3

Create a W FST  for the misspelling S  — aba: Figure 7.4 

Create a W FST  for the same channel B~^: Figure 7.5

Create a W FST ioi X  = D o (o is the composition operator): Figure 7.6 

Create a W FST  for Y = X  o S: Figure 7.7

Figure 7.7 illustrates that two paths are able to reach the correction: 

{a/a){b/b){ab/a) with the total cost of 1.27;

(ab/ab){ab/a) with the total cost of 0.75.

Then the best path has been found in Y  : (Figure 7.8)

Therefore, the pairs (ab/ab)(ab/a) have the smallest cost 0.75 to reach the correc­

tion, which is the same result as in the case of dynamic programming.
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X a b a b

X A
a \ ^ 0 .8 ^ "'0.35

b \).8 2 ^
-0 .3 0 ^

a
X

^1.27
^0.75

Figure 7.2: Dynamic Programming to Calculate String Correction

Q . a:a/0 A  b:b/0 a:a/0 &:a/0

Figure 7.3: W F S T  D of Dictionary abab

Q  ̂ a:a/0 b:b/0 ^ a:a/0

A

83
Figure 7.4: W  F S T  8 of Misspelling aba

b:b/0 a:a/0.82

a: a/0.3

b:b/0

a:a/0.45

Figure 7.5: Channel P{b/b) : 0.2, P (a /a )  : 0.2, F{ab/ab) : 0 .1 ,P (a5/a) : 0.15
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b:b/0 b:b/0a:a/0.8: a:a/0.82

b:b/0a:a/0.3 a:a/0.3 b:b/0

a:a/0.45a:a/0.45
b:A,/0b:A,/0

Figure 7.6: W F S T  X  = D o B '

b:b/0
a:a/0.8:

b:A./0b:b/0a:a/0.3 a:a/0.45

Figure 7.7: W F S T  Y =  X oS

Q j a:a/0.3  ̂ b:b/0 a:a/0.45  ̂ b:X/0 ^

Figure 7.8: The Best Path from Xo B
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7.2 .2  R esu lt

In this section, we compare the results by applying the dynamic programming and the 

channel correction algorithms on the im provedBM  method. The results are displayed 

in Table 7.3 and 7.4.

From Table 7.3 and Table 7.4, we can see that the correction of misspellings by 

using the channel correction algorithm is same as the correction by using the dynamic 

programming. The corrections are also with essentially the same cost, considering the 

possibility of computer arithmetic imprécisions.

7.3 O ther Error M odels

In this research, four more error models will be considered by modifying the im provedBM  

error model. We use the same data to train these error models and use the same sets 

of misspellings to test these models - see Section 7.1. We will illustrate each of them 

in the following sections.

7.3 .1  T ota l on e m odel

Ristad and Yianilos presented a stochastic transducer to determine the similarity 

of two strings [28]. This stochastic transducer allows us to learn a string-edit dis­

tance function from a corpus of examples. They modeled string-edit distance as a 

memoryless stochastic transducer. In this model, each channel has one state and 

each transition generates either a substitution pair (a /6 ), a deletion pair (a/A), an
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Misspelling Correction 

(Our algorithm)

Cost Correction 

(Dynamic Programming)

Cost

one(l-best) wen 0.734 wen 0.735

(2-best) fen 0.774 fen 0.776

(3-best) ten 0.81 ten 0.811

benn(l-best) bean 0.904 bean 0.906

(2-best) benny 0.915 benny 0.918

(3-best) bend 0.94 bend 0.941

ot( 1-best) to 0.655 to 0.655

(2-best) fo 0.714 ft 0.715

(3-best) sot 0.734 sot 0.735

peoid( 1-best) peroid 1.133 period 1.134

(2-best) prid 1.713 prid 1.713

(3-best) pierid 1.727 pierid 1.729

specity(l-best) specify 1.104 specify 1.106

(2-best) specialty 1.774 specialty 1.776

(3-best) asperity 1.988 asperity 1.99

bu(l-best) bus 0.741 bus 0.741

(2-best) but 0.757 but 0.757

(3-best) bun 0.775 bun 0.775

skils skis 1.203 skis 1.205

Table 7.3: Comparison Results for the im provedBM  Error Model
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Misspelling Correction 

(Our algorithm)

Cost Correction 

(Brill and Moore’s Method)

Cost

anatmy anatomy 1.084 anatomy 1.086

contro control 1.118 control 1.121

goint going 0.996 going 0.998

detectin detection 1.271 detection 1.274

speling spelling 1.156 spelling 1.157

metods metis 1.868 metis 1.87

sincd since 1.001 since 1.003

owrd word 0.668 word 0.668

machanincs mechanics 1.952 mechanics 1.952

folliwgn following 1.668 following 1.67

decidng deciding 1.171 deciding 1.171

correciton correction 1.211 correction 1.212

bcause because 1.094 because 1.096

seciton section 0.909 section 0.909

etecting detecting 1.326 detecting 1.327

precdeing preceding 1.35 preceding 1.351

prbability probability 1.39 probability 1.392

isolatd isolated 1.224 isolated 1.226

Table 7.4: Comparison Results for the im provedBM  Error Model
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insertion pair (A/6), or the distinguished termination symbol Of course, the null 

operation (A/A) is not included in the alphabet E  of edit operations. The sum of the 

probabilities of all edit transitions is 1.

Ristad and Yianilos use this stochastic transducer to generate strings from a cor­

pus of examples, so they need the termination symbol #  to delimit resulted words. 

However, in our research, a set of input strings is given. We will use error model 

to find the correction of these input strings. Therefore, in this section, the similar 

stochastic automaton will be used to define our spelling error correction model with 

only one difference: the termination symbol #  is not considered in the error model.

The error model is illustrated in Figure 7.9, such that the probabilities of all the 

transitions sum to 1.

P1+P2+P3+P4 = 1

a/b:P2
b/b:Pl

a/a:P3

OR

A /a:ql
a/a:P

b/b:l-ql

P(a/a)+P(b/A) = 1 
P(A/a)+P(b/b) = 1

Figure 7.9: The totalOne Model 

The result of using our training data in this error model is shown in Table 7.5:
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Total 1-best 2-best 3-best

First Set 

(%)

132 108

81.8

115

87.12

121

91.67

Second Set 

(%)

91 64

70.32

72

79.12

75

82.42

Table 7.5: Result of totalOne Model

The result of totalOne error model in Table 7.5 shows that it doesn’t have the 

same accuracy as that of im provedBM  model. In the first testing set, the 1-best 

accuracy of totalOne model is 81.81%, the 2-best accuracy is 87.12% and 3-best accu­

racy can reach up to 91.67%. In the first testing set, the accuracy of all n-best list for 

this model is lower than the im provedBM  model. However, a number of misspellings 

such as oen that can be corrected in the 1-best set of this model cannot be corrected 

in the 1-best set of im provedBM  model. If the correction of The misspelling can 

not be found in the 1-best and 2-best sets in the totalOne model, then the chance of 

the correction appearing in the 3-best set is limited. In the second testing set, the 

accuracy of all n-best list is lower than that from im provedBM  model.

7.3 .2  D ifferent in sertion  m od el

The typing behaviour of people can be very complicated. It depends on the indi­

vidual’s typing skill and knowledge, as well as the layout of keyboard being used. 

In Chapter 2, we mentioned that Damerau [6] found that approximately 80% of all
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misspelled words contain a single instance of one of the following four error types: 

insertion, deletion, substitution, and transposition.

In the im provedBM  error model, when we deal with insertion errors, we consider 

them independent of the next letter. For example, in the error pair {thre/there), there 

is one insertion error A/e. However, this insertion error may depend on the next letter 

r. In the most cases, when people are typing, they always think of the next input 

letter. Therefore the insertion errors may relate to that letter. We modified the 

im provedBM  error model to be more specific to insertion errors. In this new error 

model, we use \ { x ) / y  instead of edit operations X/ y ,  such that the edit operation 

( X{ x ) / y )  is applied only if the next input letter is x.  Thus, the probability measure 

H[ S i , x ]  is now defined in the same manner as before but with the following change: 

H[ Si ,  x ] { X( x ' ) / y ,  Sj )  — 0 ior x'  ^  X (the probability is 0 if the next input is x  with 

x  ^  x')

H [ S i , x ] { X { x ) / y , S j )  >  0

Figure 7.10 shows the error model we described in this part:

The result of using this error model is shown below:

From the result of this different insertion {dif In sert for short) error model, we 

can see that the accuracy is a little better than the totalOne model. In the first 

testing set, the 1-best set accuracy is 83.33%, the 2-best set accuracy is 91.42% and 

the 3-best set accuracy can reach 93.94%. The result of this error model is similar to 

but a little worse than the im provedBM  model. All the misspellings that can not 

be found by the im provedBM  model, were not identified by this error model either.
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X (b)/b:l-ql
a/a:Pl

b/a:l

b/b:qlc/A, :q2^  
c/a:l-q2

P(a/a)+P( A,(a)/a) = P l+ l-P l = 1 

P(b/b)+P(A-(b)/b) = q l+ l-q l =1 

P(c/a)+P(c/ A) = l-q2+q2 = 1

Figure 7.10: The d if  In ser t Model

Total 1-best 2-best 3-best

First Set 

(%)

132 110

83.3

122

91.42

124

93.94

Second Set 

(%)

91 62

68.13

68

74.73

70

76.92

Table 7.6: Result of d if  In sert Model
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In the result of the second set of misspellings, the accuracy is lower than that of the 

im provedBM  model and the totalOne model. We trained this error model by using 

the same data set. The result shows that the different insertion error model may not 

correct as many misspellings as im provedBM  error model and totalOne error model 

do.

7.3 .3  N o -em p ty  m od el

We now consider the no empty model. In this model, we will only consider edit 

operations a / (3 with |a | >  1 and construct the channel using only those edit opera­

tions. In other words, this model doesn’t consider the single insertion edit operation 

(A/y). As before, in this new model we don’t want to consider the insertion error 

individually. Rather we combine the single insertion error with the previous let­

ter. For example, given an error pair {thre/there), the optimal alignment of it is: 

{tjt), (h/h), (A/e), ( r /r ) , (e/e). However, in this model, the single insertion is not con­

sidered. Therefore, the following edit operations are generated by expanding the char­

acters in the alignment: (th /th), [hjhe], (r/e r), (re/re), [th/the], {hr/her), {re/ere). 

Figure 7.11 illustrates this error model with a very simple channel:

The result of using our training data in this error model is shown in Table 7.7: 

In the first testing set of No Empty model, the accuracy of 1-best set only reach 

69.7%, the accuracy of 2-best is 72.73%, and the accuracy of 3-best doesn’t change 

much, still less than 75%. The accuracy shown in the second data set is also lower than 

that of the other error models. The reason of the lower accuracy of this error model is
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a/x:Pl
ab/xyb:P3

aa/xya:P2ab/xb:P4

P(a/x) + P(aa/xya) + P(ab/xyb) + P(ab/xb) = P1+P2+P3+P4 = 1 

Figure 7.11: The noEm pty  Model

Total 1-best 2-best 3-best

First Set 

(%)

132 92

69.7

96

72.73

97

73.48

Second Set 

(%)

91 46

50.55

47

51.65

47

51.65

Table 7.7; Result of noEmpty Model

110



that all the single letter error pairs have been removed, only those edit operation a / (3 

with |a | >  2 are considered. So the size of the training set is reduced. We know that 

the more training data we have the more accuracy we can get. However, a number of 

misspellings that can be found in the 1-best set by using this error model can not be 

identified in the 1-hest set by using other models such as ofd, converence. Therefore, 

if there were enough training data for this error model, it might get good result. But 

in this research, small training data sets are important since we are interested in 

modeling the error behaviour of a specific typesetter in this study. In practice, it is 

hard to get big data set from a certain typesetter.

7.3 .4  T h ree  s ta te  m od el

The idea of this error model is borrowed from [3]. In this error model, we assign 

probabilities depending on the position in the string where an edit operation occurs. 

This can be the start of the word, middle of word and end of word. The position of 

an edit operation (a/P)  is determined by the location of the substring a  in the word. 

Positional information is a powerful conditioning feature for rich edit operations. 

For example, people rarely mistype antler as entier, but often mistype reluctant as 

reluctent.

Compared with other error models, the threeState  model has three states rather 

than only one state. We use three vectors to store all beginning sequence pairs, middle 

sequence pairs and end sequence pairs and we calculate the probabilities for each of 

them. For example, for the error pair (aab/acb), the set of beginning sequence pairs
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is: {(a/a), (aa/ac)}, the set of middle sequence pairs is: {(a/c)}, and the set of end 

sequence pairs is: {(6 /6 ), (o6 /c6)}.

When applying threeState  error model, we checked different vector according to 

the position of the substring a  in the source (dictionary) word. Similarly, according 

to the theory in Chapter 4, we define the sum of all probabilities that start from same 

state with the same input to be 1.

Figure 7.12 illustrates this error model with a simple example:

a/bc c/f

a/a c/b

b/dc/f

a/bc

In State B: P(a/a) + P(a/bc) = 1
In State M: P(a/bc) = 1, P(c/f) = 1, P(b/d) = 1

In State E: P(c/f) + P(c/b) = 1

Figure 7.12: The threeState  Model

There are 2172 sequence pairs (a/P),  including the case of a  =  /?, generated for 

the set of beginning pairs; 4824 pairs generated for the set of middle pairs and 2164 

pairs generated for the set of end pairs. The result of using our training data in this 

error model is shown in Table 7.8:

This is the last error model that has been tested. The accuracy result of this 

threeState  model shows that it is the good choice for the misspelling correction 

problem. In the first testing set, the accuracy of 1-best list is 81.06%, the 2-hest list 

accuracy result is much better, which is 90.91%, and the accuracy of 3-best list can
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Total 1-best 2-best 3-best

First Set 

(%)

132 107

81.06

120

90.9

126

95.45

Second Set 

(%)

91 68

74.73

79

86.81

82

90.11

Table 7.8; Result of threeState  Model

reach to 95.45%. The accuracy of 1-best list is lower than the result from the totalOne 

model. But the accuracy of 2-hest set by using this model increases by 9%, which is 

better than totalOne model. The accuracy of the 3-best list increases by 5%, which 

is a litter higher than improvedBM  model. The accuracy of all 1-best, 2-best and 

3-best lists in the second testing set is higher than all other error models.

7.4 C om parison

In the last part of this chapter, we list all the result of each error model together in 

Table 7.9 and draw a picture for them.

In Table 7.9, we notice that, in all cases, the accuracy of the second testing set 

is lower than the accuracy of the first testing set. Recall that, the first testing set 

contains a number of misspellings that have already been used in the training data set 

to train the error model. But no misspelling in the second testing set has been used 

before. Therefore, the result in the first set is better than the result in the second 

set.
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Total 1-best 2-best 3-best

First Set improvedBM

(%)

132 114

86.36

122

92.42

126

95.25

Second Set improvedBM

(%)

91 66

72.53

76

83.52

82

90.11

First Set noEmpty

(%)

132 92

69.7

96

72.73

97

73.48

Second Set noEmpty

(%)

91 46

50.55

47

51.65

47

51.65

First Set totalOne

(%)

132 108

81.82

115

87.12

121

91.67

Second Set totalOne

(%)

91 64

70.33

72

79.12

75

82.42

First Set diflnsert

(%)

132 110

83.33

122

91.42

124

93.94

Second Set diflnsert

(%)

91 62

68.13

68

74.73

70

76.92

First Set threeState

(%)

132 107

81.06

120

90.91

126

95.45

Second Set threeState

(%)

91 68

74.73

79

86.81

82

90.11

Table 7.9: Table of All Results
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Figure 7.13: Comparison of Five Models

As we can see from the figure 7.13, the threeState error model has the highest 

accuracy in the first testing set and the second testing set since the threeState  error 

model consider the positional information which is a powerful conditioning feature. 

The noEm pty  error model has the lowest accuracy in both two testing set since it 

has less training data to train the error model.
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Chapter 8

Conclusion and Future Work

In this thesis, we introduced a general methodology to define error models describing 

different types of errors in information processing application, discussed the channel 

computation for the specific user with the application to spelling errors, improved the 

Brill and Moore spelling correction method by employing the theory of the general 

methodology. Several data structures and algorithms have been used in this thesis to 

help us apply the general methodology, compute channels and improve the Brill and 

Moore method:

Data Structures:

• Trie: It was used to store the dictionary

• Binary Search Trie (bst): It was used to store all {a/f3) pairs 

Algorithms:

• String Distance algorithm: The concept of string distance algorithm was used

116



in this thesis to develop the algorithm that generates string pairs from given 

data

• N-best string algorithm: The algorithm was used to find n-best distinct words 

in WFST.

Aside from the above data structures and algorithms, the AT&T tools were also used 

in the thesis to create WFST, WFA and compute the composition between them.

8.1 C onclusion

As illustrated in Chapters 4 and 6 of the thesis, with its capability of using basic tools 

from stochastic automata to describe various error situations, our general methodol­

ogy is able to provide us with a tool to derive different error models (such as Church 

and Gale error model. Mays and Damerau error model, Brill and Moore error model) 

in the same way.

The same experimental results from applying the dynamic programming method 

and the channel correction algorithm to the improved Brill and Moore error model 

in Chapter 7 of the thesis shows that the latter can be used to correct the errors 

described by the error model channels.

The better results in 1-best, 2-best and 3-best lists from using the improved Brill 

and Moore error model than the original Brill and Moore model demonstrates that 

the general methodology with its capability of utilizing the probabilities assignment 

and transitions conversion method can assist us in creating better error models in the
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information processing system.

As described in the Chapter 7, among the four modified error models from the 

improved Brill and Moore error model, the threeState  error model with the consid­

eration of positional information has the highest accuracy for the 3-best list in the 

first testing set and has the highest accuracy for all 1-best, 2-best and 3-best lists in 

the second testing set. The noEm pty error model with the less training data has the 

lowest accuracy for all 1-best, 2-b est and 3-best lists in both two testing sets. This 

model may have a better performance result with a larger data set; however, as we 

are interested in modeling the error behaviour of a specific typesetter in this research, 

having small training data sets is essential to the construction and implementation 

of our methodology. The other factor that affects us in choosing the small training 

data sets is that it is usually difficult to get large data sets from a certain typesetter 

in practice.

8.2 Future W ork

The possible future work of this thesis might concentrate on the following aspects:

• Add Source Model P(W)\

As mentioned in the thesis, a source model P(W) is a model that describes the 

probabilities of a word w to be produced by the text generator. It is usually used 

with the error model P(s|n;) together for the probabilistic technique of correct­

ing misspellings. This research focuses on the general methodology of defin in g  

an error model, which can be considered as a finite state source model if we
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omit the output parts of the channel transitions. In the future, we can explore 

what happens to the results if we consider a source model P{W)  independently 

of the error model.

• Incorporate the keyboard layout into the string pair generating algorithm:

The string pair generating algorithm described in this thesis uses Levenshtein 

distance to compute the string distance without considering the impact of key­

board layout on the computation. The consideration of the keyboard layout 

may give a more satisfying result in the string distance computation. In order 

to get a better result, the author also experimented with the Church and Gale’s 

confusion matrices to generate string pairs with considering of the keyboard 

layout. However, due to the limited knowledge of statistical data in these four 

matrices, the results were not satisfying. Therefore, finding an appropriate way 

that incorporate the keyboard layout into the string pair generating algorithm 

is our next step of this research.

• Test more data:

In this research, we collected 12 pairs of files to train various error models. Two 

testing sets with total 225 misspellings were used to test the improved Brill and 

Moore error model and four other modified error models. All these data are 

from a specific user — the author of this thesis. To have a more representative 

data set that covers a wide range of situations, it is necessary in the future work 

of the research to have testing data sets from a variety of specific users and run 

the experiments for them.
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Employ appropriate tools to assist in collecting training data:

In this research, a manual approach was employed to collect training data to 

generate string pairs for the specific user. The author used two Microsoft word 

documents files to store the original and modified copy of a data set each time. 

However, in practice, to collect training data sets from a large group of specific 

users, such an approach may not seem to be realistic. Thus, it could be an 

appropriate next step in this research to find or develop some sort of tools that 

will enable us to automatically keep track of every change that a specific user 

makes to a training data set.
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