
Formalizations Of Error Models With Applications To

Spelling Error Correction

By

Jing Xu

A thesis submitted in partial fulfillment of

the requirements for the degree of

Master of Applied Science (in Computer Science)

Saint Mary’s University

Halifax, Nova Scotia

Submitted April 20, 2004

Copyright [Jing Xu, 2004]

All Rights Reserved

1^1 National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliothèque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre référence
ISBN: 0-612-90329-X
Our file Notre référence
ISBN: 0-612-90329-X

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de ce manuscrit.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
dissertation.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada

D edicated to my husband fo r his sincere support

Formalizations Of Error Models With Applications To Spelling Error

Correction

By Jing Xu

Date of Submission: April 20, 2004

Abstract:

For many information processing applications, there are several different
existing error models and error correction algorithms. This research focuses on
a general methodology for defining error models describing different types of
errors in information processing. It includes formal definitions of channels and
the error models and a general algorithm for applying an error model to correct
errors. This general methodology represents all existing error models and
corrects errors in a consistent way.

This research also discusses the computation of error models with application to
spelling error correction. Different error models for various spelling error
correction problems have been investigated. The improved Brill and Moore
error model has been implemented to describe the approach of computing a
spelling error model for specific users. Based on the general methodology
devised in this research, four error models based on the improved Brill and
Moore error model have also been described and tested.

Contents

1 Introduction 2

1.1 The Statement of the P rob lem ... 2

1.2 Objectives and S co p e ... 3

1.3 Structure of T h e s is .. 4

2 Basic N otions and Background 6

2.1 Basic N o tio n s .. 6

2.2 Background In fo rm atio n ... 12

2.2.1 Errors and string difference ... 12

2.2.2 Levenshtein d is ta n c e .. 15

2.2.3 Dynamic program m ing... 16

2.2.4 Trie .. 18

2.2.5 Finite state m a c h in e .. 21

3 Literature Survey 24

3.1 In troduction ... 24

3.2 Techniques for Correcting Words in T e x t ... 26

1

3.2.1 Nonword error d e te c tio n .. 26

3.2.2 Isolated-word error correction r e s e a rc h .. 27

3.2.3 Probabilistic techniques for isolated-word correction 28

3.2.4 Context-dependent word correction techniques........................... 35

4 General M ethodology 38

4.1 The Classic Stochastic A u to m a ta .. 39

4.2 Definition of C h an n e l... 42

4.3 Error Correction with a Given C h an n e l... 48

4.4 Examples ... 52

4.4.1 Church and Gale’s m e th o d ... 52

4.4.2 Mays and Damerau’s m e th o d .. 53

4.5 Improvements in the General M ethodology.. 55

4.6 Computing a Channel from Sample D a t a .. 59

5 G eneration O f String Pairs 61

5.1 The Edit Distance Between Two Sequences of S tr in g s 62

5.2 Alignment Between Two Sequences of S t r in g s .. 64

5.3 Dynamic Programming M e th o d .. 65

5.3.1 The recurrence re la tio n ... 67

5.3.2 Tabular com p u ta tio n .. 68

5.3.3 The traceback ... 69

5.4 Time A nalysis.. 72

5.5 R esu lts ... 76

6 Improving the Brill and M oore Error M odel 80

6.1 The Brill and Moore Error M o d e l.. 81

6.2 Training the Error M odel.. 83

6.3 Im provem ents... 85

6.3.1 Alignment of string p a ir s ... 85

6.3.2 Expand substitution edit o p e ra tio n ... 87

6.3.3 Assign the probabilities.. 88

6.4 Applying the M odel... 91

7 Experim entation 94

7.1 Comparison of the Original and Improved Brill and Moore Error Models 95

7.2 Comparison of Dynamic Programming and Channel Correction Algo­

rithms 97

7.2.1 E xam ple .. 98

7.2.2 R e s u l t ... 102

7.3 Other Error M odels.. 102

7.3.1 Total one m odel... 102

7.3.2 Different insertion m o d e l... 106

7.3.3 No-empty model .. 109

7.3.4 Three state m odel.. I l l

7.4 C om parison ... 113

8 Conclusion and Future Work 116

8.1 Conclusion.. 117

8.2 Future W ork ... 118

List o f Tables

5.1 Table of Dynamic Program m ing.. 70

5.2 Statistics for Error Types .. 77

5.3 Appropriate K for Different Files ... 78

7.1 Result of Original Brill and Moore Error M o d e l 96

7.2 Result of Improved Brill and Moore Error Model 96

7.3 Comparison Results for the improvedBM Error M o d e l 103

7.4 Comparison Results for the improvedBM Error M o d e l 104

7.5 Result of totalOne Model .. 106

7.6 Result of d i f Inser t M o d e l.. 108

7.7 Result of noEmpty M o d e l .. 110

7.8 Result of threeState Model ... 113

7.9 Table of All R esu lts ... 114

List of Figures

2.1 Some transitions of the A-NFA are: OAl, 2A .. 7

2.2 The weight of the transition lc2 is 0 .5 ... 8

2.3 Table of Dynamic Program m ing.. 16

2.4 Regular Trie to Store D ictionary.. 19

2.5 Data Structure for T r ie ... 19

2.6 Data Structure of B S T ... 20

3.1 The Noisy Channel M o d e l .. 28

4.1 Example of Classic Stochastic A u to m a to n ... 41

4.2 Example of Channel .. 44

4.3 Church and Gale’s Error M o d e l ... 53

4.4 Example of Mays and Damerau’s Error M o d e l....................................... 55

4.5 Example of Best Path ... 58

5.1 Table of Five Edit O p era tio n s .. 68

5.2 Computation Table of Dynamic P rog ram m ing 72

5.3 Example of K-lookahead A lgorithm -Stepl.. 73

6

5.4 Example of K-lookahead Algorithm-Step2... 74

5.5 Example of K-lookahead Algorithm-Step3... 74

5.6 Example of K-lookahead Algorithm-Step4... 75

6.1 Brill and Moore Error M odel.. 83

6.2 Example of Computing Distance In the T r i e .. 92

6.3 Ternary Search Trie to Store P a ra m e te rs ... 93

7.1 Comparison of Original and Improved Brill and Moore Error Model . 97

7.2 Dynamic Programming to Calculate String Correction 100

7.3 W F S T D of Dictionary abab.. 100

7.4 IP F 5 T S of Misspelling a 6 a .. 100

7.5 Channel P{b/b) : 0.2, P{a/a) : 0.2, P{ab/ab) : 0.1, P{ab/a) : 0.15 . . . 100

7.6 W P S T X = D o B - ^ ... 101

7.7 W P S T Y = Xo S ... 101

7.8 The Best Path from Xo B ... 101

7.9 The totalOne M o d e l ... 105

7.10 The d i f Insert M odel.. 108

7.11 The noEmpty M o d e l.. 110

7.12 The threeState M o d e l ... 112

7.13 Comparison of Five Models .. 115

AC K N O W LED G EM EN TS

It is a pleasure to thank many people who made this thesis possible.

First and foremost, 1 would like to thank my thesis supervisor, Dr. Stavros Kon-

stantinidis (Saint Mary’s University) for supervising me, providing resources and

subjects, and offering direction and penetrating criticism. He gives me lots of helpful

comments and critical review of this thesis.

Gratitude and sincere thanks are due to my thesis external examiner Dr. Todd

Wareham (Memorial University of Newfoundland) for his valuable comments and

suggestions. 1 also want to thank Dr. Sageev Oore (Saint Mary’s University) and Dr.

Cezar Campeanu (University of Prince Edward Island) my thesis advisor, for their

support and critical review on this thesis.

1 am grateful to all my friends and professors from Math and Computing Science,

Saint Mary’s University, for being the surrogate family during the time 1 stayed

there. Special thanks are due to Dr. Pawan Lingras for giving me the opportunity

to be involved in this program. 1 also would like to thank Rose Daurie and Owen

M. Smith for their care and technical support. 1 cannot end without thanking my

parents and my husband, for their constant encouragement and love 1 have relied on

throughout the time of writing this thesis. It is to them that 1 dedicate this work.

Chapter 1

Introduction

1.1 T he S tatem en t o f th e P roblem

In a real world communication system, errors may occur anywhere and anytime.

They can happen in computer to computer communications, human to computer

communications (typing errors), or human to human communication (speech errors).

A set of data D generated from a sender may be transformed into D' {D with errors)

at the receiver side after passing through a noisy channel. In order to reduce/ eliminate

errors in a system, it is essential for us to have a thorough understanding of them.

Error modeling is used to assist in describing and analyzing various errors in an

information processing system. A channel is a finite description of the (possibly

infinitely many) error situations permitted in a communication system. An error

model is the set of possible channels that one can use in modeling the errors of a

communication system.

Over the years different error models and error correction algorithms have been

developed for the spelling error correction problem. However, the characteristics

of these models/algorithms determine their limitations in applying only to specific

situations. For instance, references [3], [5], [31] only consider the isolated word error

correction problem where spelling errors resulting in non-words will be corrected,

and [21] only considers the real-word error correction problem where the spelling

errors resulting in actual words will be corrected. To date, there has yet been no

extensive work conducted in developing a general methodology for error models and

a corresponding general error correction algorithm that can be used to describe all

existing error models and correct errors in the same way.

1.2 O bjectives and Scope

The focus of this research is the development of a general methodology for error mod­

eling and error correction and its application to spelling error correction in computer

typesetting. This methodology includes formal definitions of what a channel and an

error model are and the algorithm that can correct errors described by the channel of

a particular error model. The main application of this methodology in this research

is to compute the channel corresponding to a specific typesetter.

The scope of the work in this thesis covers the following areas:

1. Investigate existing spelling error models and spelling error correction methods.

2. Introduce definitions of an error model and a general error correction algorithm

for all information processing applications.

3. Compute the channel of an error model for a specific typesetter from sample

data. An existing spelling error model — the Brill and Moore Error Model —

has been implemented with improvements according to our general methodol-

ogy-

4. Apply the error model to correct spelling errors of a specific typesetter.

5. Compare experimental results. Four error models, based on the improved Brill

and Moore error model, have been described and tested.

1.3 Structure o f T hesis

This paper is organized into 8 chapters. The second chapter gives basic notions that

will be used in this thesis and background information about error patterns, string

distances, finite state automata and tries. Chapter 3 reviews techniques and issues

related to automatic spelling error detection and correction in three areas. Chapter

4 introduces a general methodology for error correction in information processing ap­

plications. It covers the formal definitions of channel and error model, the correction

algorithm and examples. Chapter 5 discusses an approach to generating string pairs

from given sample data, introduces an algorithm for string pairs generation and gives

some experimental results. These string pairs are necessary for computing the chan­

nel that describes errors in the sample data of the typesetter. Chapter 6 describes

the implementation of the improved Brill and Moore error model. Chapter 7 consists

of several testing cases. Four modified models derived from the improved Brill and

Moore error model are described and tested. Chapter 7 also conducts comparisons on

different error models. Finally, Chapter 8 gives conclusions and discusses the future

works of this research.

Chapter 2

Basic N otions and Background

2.1 B asic N otion s

An alphabet is a finite nonempty set of symbols. It is often denoted by E. For ex­

ample, E^ = {0 , 1} is an alphabet of two symbols, 0 and 1, and Eg — {a,b,c} is

an alphabet of three symbols, a, b and c. Sometimes the space and comma symbols

are in an alphabet while other times they are meta symbols used for descriptions. A

word or string is a finite sequence a i . . . a„ such that each ai is in E. For example,

OHIO and 111 are strings over the alphabet E^, aaabccc and bbb are strings over the

alphabet Eg. The empty string is the string with no symbols, usually denoted by A.

The empty string has length zero. Vertical bars around a string indicate the length

of a string. For example |00100| = 5, |aa6| = 3, and |A| = 0 . A language is a set of

strings over the alphabet E. The set may be empty, finite or infinite. The set of all

possible strings over the alphabet E is denoted by E*.

A-NFA([10], [29])

A nondeterministic finite automaton with A-transitions (A- NFA) is a quintuple

A — Ç E a ,Q a , S a , F a , T a) such that is an alphabet, Q a is a finite nonempty

set of states, Sa is the start state, Fa is the set of final states, and Ta is the set of

transitions. Each transition in Ta is of the form qixq2 , where qi and % are states and

X is either A or a symbol that belongs to the alphabet. In this case, x is the label of the

transition. A computation of A is an expression of the form qoxqi, . . . , such

that each qi-ixqi is a transition in Ta - A computation is accepting if go is the start

state and g» is a final state. In this case, the string X i .. .Xn is called the accepted

word. We denote by L{A) the language accepted by A. An example of a A-NFA is as

below:

Figure 2.1: Some transitions of the A-NFA are: Oal, 2A2

If the label of every transition in Ta is not A then A is called a nondeterministic

finite automaton (NFA). If, moreover, for every transitions of the form go^gi and

q^xq^ we have that gi = g2 then A is called a deterministic finite automaton (DFA).

A finite automaton can be interpreted as a language recognizer or transducer.

W eighted Finite A utom aton

We recall from [23], [26] the definitions of weighted finite automaton and composition

of weighted finite automata.

Some applications such as text, speech recognition and image processing, require

more general devices to acconnt for the variability of the input data and to rank vari­

ous output hypotheses. A weighted (finite) automaton is a finite automaton in which

each transition is labelled with some weight and possibly initial and final weights in

addition to the usual transition label. In this research, we use weighted automata as

a simple eflficient representation for all the inputs, outputs and transition information

in text recognition. More formally a weighted (finite) automaton (W F A) W is a

quintnple W = {T,w, Qw, Sw, Fw, Tw, Kw) such that Ew is a set of transition labels,

Qw is a finite set of states, Sw is the start state, Fw is a set of final states, and Tw is

the finite set of transitions, and K w is the weight function that assigns a real number

weight to each transition in Tw- Weights introduced on transitions also define an un­

derlying edge-weighted directed graph for which classical algorithms (shortest paths,

maximal flow, etc.) apply. We can view any non-weighted automaton as a weighted

automaton in which all transitions have weight 1. An example of a WFA is as below:

b: 0.3 c: 0.5

Figure 2.2: The weight of the transition lc2 is 0.5

A weighted (finite-state) transducer (WFST) is a weighted finite automaton W

whose transitions are labelled with both an input and an output label such that

T,w = E* X r* for given finite alphabets E and F. It is a mapping from pairs of

strings over two alphabets to weights. For a given pair I — {s, w) € E* x F* we define

/(in)=s and l{out)=w. Note that the input and output label of a transducer could be

the empty string A. An empty input label indicates that no input string needs to be

consumed when traversing the transition, while an empty output label indicates that

no string is output when traversing the transition. Empty labels are needed because

input and output strings do not always have the same length. An A- NFA A can be

considered as a WFST when each transition qixq2 of A is replaced with q\{x/x)q 2

with weight equal to 1. The example of WFST can be viewed in the next section.

C om position ([23], [10])

Composition is a key operation on F ST. The composition operator is denoted by o

and its defination is similar to the intersection operation for recognizers. In the clas­

sical case, a WFST for the composition of two given WFST A and B is constructed

by considering the cross product of states of A and B.

A single composition algorithm is used to combine in advance information sources

such as language models and dictionaries. Informally, the composition of two WFST

A and B is a generalization of N F A intersection. Each state in the composition

corresponds to a state pair in which one state is in A and another state is in B. If

a transition in A is qo(x/y)qi and a transition in B is So{y/z)si, then the transition

(%, So)x/z{qi, Si) is in A o B . The weight of this transition is the sum of the weights of

the corresponding transitions in A and B. If the start states of A and B are % and sq,

9

the start state in 4̂ o 5 is (%, 80)- If the set of final states of A is Fa = { /a i, • • •, /a„}

and the set of final sates oi B is Fb = {fbi, ■■■, the final states in v4oB have to

be in the set {fai,fbj}, where i = 1. . . n and j — 1. . .m. The composition operation

thus formalizes the notion of coordinated search in two graphs, where the coordina­

tion corresponds to a suitable agreement between paths labels. The example below

shows the detail of computing the composition for two WFST.

Exam ple of C om position on W F S T

Given W F S T A as shown below, {Sa = 0)

a/red: 0.3

b/blue: 0.3 c/green: 0

d/yellow: 0.6

the transitions in A are:

0 (a/red:0.3) 0

0 (b/blue:0.3) 1

1 (c/green:0) 2

1 (d/yellow:0 .6) 2

Given W F S T B as shown below, {Sb = 0)

the transitions in B are:

0 (red/water:0.2) 1

10

blue/coke: 0.4

red/water; 0.2 green/wine: 1.3

yellow/pepsi: 0.6

1 (blue/coke:0.4) 1

1 (yellow/pepsi:0.6) 0

1 (green/wine: 1.3) 2

Then A o B includes the following transitions — in fact, there are exactly the transi­

tions oi A o B that are reachable from the start state (0,0) and can reach a final state

oi A o B.

(0,0) (a/water:0.5) (0,1)

(0,1) (b/coke:0.7) (1,1)

(1.1) (c/wine: 1.3) (2,2)

(1.1) (d/pepsi:1.2) (2,0)

0,0
a/water: 0.5 b/coke: 0.7

c/wine: 1.3

2,0d/pepsi: 1.2

11

2.2 B ackground Inform ation

2 .2 .1 Errors and strin g d ifference

Given an alphabet E and the set R of real numbers, we define the set E of edit

operations. An edit operation is a pair (æ, y) or x / y , where x^y G S U A, such that

not both X, y are empty. II x ^ y., we call (x, y) an error. There exist three common

errors:

(1) insertion error :A/x;

(2) deletion error; x/A;

(3) substitution error: x / y with x ^ y and x, y G E.

Given E = {a, b}, the possible edit operations are:

a/a, b/b, a/b, b/a, a/X, bjX, A/a, X/b

A cost function f : E ^ R assigns costs to the edit operations in E. Usually the cost

values are assigned depend on applications. For example:

/(a /o) = 0, f{a/b) = 2, /(a /A) = 1, f{b/a) = 3, /(6/A) = 1, f{b/b) = 0

D efinition 1: An e-string (edit or error string) is a string in E*. The empty e-

string over E is (A/A). If h = {x i j y i) . . . {xnjyn) is an e-string then we say that h

transforms the word Xi . . . x„ to y i . .. yn. Moreover we define the input and output

parts of h such that inp{h) = x i . . . x„ and out(h) = y \ . . .yn- Given an e-string

h = 6x62 . . . Cn, then the cost of h is f (h) = /(e*).

For example, if h = (a/a) (6/a) (6/6) (6/A) (a/A)

12

then inp{h) = abbba, and out{h) = aab and under the cost function described above,

f { h) = f (a / a) + f (b / a) + f { b / b) + } { b / \) + f (a / \)

= O + S + O + l + l

Definition 2 : Suppose a cost function / is given, we define the f-difference

Df{u,v) between two strings u, n G E* to be the minimum cost of an e-string h

that transforms u to v.

For example, Given E — {x/x, x/ y, x/X, X/x : x , y e E , x y}

Cost function f { x j x) = 0 , f {x / y) = f {x/X) = f {X/x) = 1

Then, the f-difference between string Si = aabbb and S2 = aaba is

>̂(81, 82) = /((a /a)(o /a)(6/ 6)(6/o)(6/A)) = 2.

The proceeding concepts formalize the notion of error found in the literature on

spelling error correction. Damerau (1964) [6] found that 80% of all misspelled words

(non-word errors) in a sample of human keypunched text were caused by single-error

misspelling, a single one of the following edit operations:

insertion — insert a character into the source string, such as the —> ther]

deletion — delete a character from the source string, such as the —> th]

substitu tion — substitute or replace one character with a different character at the

same position in the sequence, such as the —> thw;

transposition — reversal of two adjacent letters, such as the —> teh]

Kukich (1992) [17] divided human typing errors into two categories: typographic

errors and cognitive errors. In typographic errors (spell speel) we assume that the

13

writer knows the correct spelling. The errors usually occur as the result of mistyping.

In cognitive errors {separate —> separite), the errors are usually caused by typists

misspellings of words. Phonetic error {naturally —> nacherly) is a special class of

cognitive errors in which the writer knows a phonetically correct spelling but lacks

the knowledge on the sequence of letters for the intended word.

From Grudin’s study (1983) [8], we know that most common errors result from

the striking of a key immediately adjacent, either horizontally or vertically, to the

intended key. The correct character could be replaced by a character immediately

adjacent in the same row such as right rihgt. It is called a row error. Substitutions

of a neighbouring letter could happen within the same column when the key for the

substituted letter is in the same column as the key for the correct letter and is adjacent

to the correct key, such as fa ther —> ragher. This is called a column error.

Besides the row and column errors, transposition errors, doubling errors and al­

ternation errors have also played a major role in determining the structure of the

model.

A transposition error is the reversal of two adjacent letters, which is one of the

most common and most interesting categories of errors, such as

because —> becuase which whihc

Transposition errors also involve adjacent keys (e and r, o and p), as in

supremely —> supermely

We also can see another interesting example where the four keystrokes on the right

hand (n, space, o, n) have all been displaced with respect to the five left-hand

14

keystrokes.

went down->-wne todnw

A doubling error occurs when a word contains a double letter, the wrong letter

is sometimes doubled, such as

look —> lokk school —> scholl

A lternation reversal errors are akin to the doubling error, but with an alter­

nating sequence. Such as:

these —> thses there —> threr

2.2 .2 L even sh tein d istan ce

Levenshtein distance (LD) [19], [16] is a measure of similarity between two strings

s and w, that are referred to as the source string s and the target string w. The

distance is the minimum number of single-symbol deletions, insertions, or substitu­

tions required to transform s into w. The greater the Levenshtein distance, the more

different the strings are.

For example.

If s = “string” and w = “string” , then LD(s, w) = 0, because no transformations are

needed. The strings are already identical.

If s = “string” and w = “strang” , then LD(s, w) — 1, because one substitution (change

'i' to 'a') is sufficient to transform s into w.

Levenshtein distance is named after the Russian scientist Vladimir Levenshtein,

who introduced it in 1965. It is also called edit distance. This distance has been

15

used in such areas as spell checking, speech recognition, DNA analysis, plagiarism

detection, etc. ([16], [9])

2.2 .3 D y n a m ic program m ing

The classic algorithm [16], [20] for calculating the edit distance between two strings

uses dynamic programming.

j

C(ij)

Figure 2.3: Table of Dynamic Programming

Suppose we are given two strings A and B where |A| = n, \B\ = m, A{i) is the

ith character in A, and B{j) is the j t h character in B. In Figure 2.3, assume that

is the minimum cost of changing A{1) . . . A{i) to B{1) . . . B{j). There are four

possibilities corresponding to three different edit operations:

delete: if A{i) is deleted in the minimum change from A to B, we have C{i , j) —

C(2-l,;) + l;

insert: if the minimum change from A to B is the insertion of a character to

match B{j) , then we have C{i , j) = C{i , j — 1) + 1;

replace: if A{i) is replacing B{j), then C{i , j) = j - 1) + 1, if A{i) ^ B{j)\

16

m atch : if A{i) is equal to B{j), then we have C{i ,j) = C{i — l , j — 1).

Now, we get to the formula for calculating

The base cases are: C(0,0)=0 and

for(i=l to n)

C(i,0) = i

and

for(j= l to m)

C(OJ) = j

The general case is:

C{i — I, j) + 1 deletion,

C{i , j — 1) + 1 insertion,

C{i — I, j — 1) + G{i, j) substitution.

where G{i,j) = 0 if A{i) = B{j),

% ;) = ! i f #) f B (j) ;

Note that, each entry only depends on the entries immediately above it and to its

left as illustrated in Figure 2.3.

In the dynamic programming algorithm, we maintain a matrix C [1. . . n, 1 . . . m]

in which each entry C[i,j] stores the minimum number of edit operations A{i)/X,

X/B{j),ov A{i) /B{j) required to transform the string composed of the first i symbols

of A into the string composed of the first j symbols of B. Thus we need to know the

values of G[i — l,j] , G[i, J — 1], and G[i — 1, j — 1]. The last change can be determined

17

according to which of the possibilities leads to the minimum value oi C[i,j].

The dynamic programming table for computing the edit distance between two

strings A of length n and B of length m can be filled in time Q{nm).

2.2 .4 Trie

A digital tree (usually called a trie from retrieval [35], [36]) is a finite automaton

with a tree structure useful for storing strings over an alphabet. The idea is that all

strings sharing a common stem or prefix hang off a common node. When strings are

words over a . . . z, a, node has at most 26 children - one for each letter. More formally,

each node of the trie contains the following fields: Character; Valid bit; An array of

26 pointers, one for each letter. The valid bit indicates if the node is a terminal or

not. If it is, the value is 1, otherwise it is 0.

For example, given strings an, ant, all, boy, the corresponding trie is given in Fig­

ure 2.4.

In this study a trie is implemented as a linked-list in which each node has at

most 26 child elements. The data structure of a trie for a dictionary is illustrated in

Figure 2.5:

A binary search trie (bst) ([37]) is called a ternary tree where a search on letters

is conducted like in a standard binary search tree over the alphabet set. Ternary

search trees combine attributes of binary search trees and digital search tries. Like

tries, they proceed character by character. Like binary search trees, they are space

efficient, though each node has three children, rather than two. A search compares

18

head

\0

Figure 2.4: Regular Trie to Store Dictionary

son char isWord father r_s

0 \0 ’b ’ 0 \0 \0

\0 \0 ’ 1 ’

\0

\0

Basic Data Structure defined for regular search trie:

typedef struct TrieNode * Trie;

struct TrieNode{
char ch;
Trie son;
Trie r_s;
Trie father;
bool isWord;
vector<double> distance;

};

’o ’ 0 \0

1
1

\0 ’y ’ 1 \0

Figure 2.5: Data Structure for Trie

19

the current character in the search string with the character at the node. If the search

character is less, the search goes to the left child; if the search character is greater, the

search goes to the right child. When the search character is equal, though, the search

goes to the middle child, and proceeds to the next character in the search string. The

process of searching in a ternary search trie with n strings for a string of length k

requires at most 0{logn + k) comparisons.

The Figure 2.6 represent an example that store strings ant, all, boy by using

ternary search trie.

\ T \
11

\ T \

\ ’o’ \

1

\ ’y’ \

Basic data Structure defined for ternary search trie:

typedef Struct searchTrieNode * sTrie;

struct searchTrieNode!
char ch;
sTrie left;
sTrie middle;
sTrie right;

}

Figure 2.6: Data Structure of BST

20

2.2 .5 F in ite s ta te m achine

The AT&T Finite State Machine (FSM) Library [38] will be used as the finite state

machine tool in this research.

The FSM library created by Mehryar Mohri and Michael D. Riley is a set of

general-purpose software tools available for the Unix environment, for building, com­

bining, optimizing, and searching in weighted (finite) automata (WFA) and weighted

(finite) transducers (WFST).

FSM includes about 30 stand-alone commands to construct, combine, determinize,

minimize, search, and compose WFA and WFST. These commands manipulate WFA

and WFST by reading from and writing to files or pipelines. The following example

shows the commands that create WFAs and WFSTs.

(1) The command that creates a WFA is

Fsmcompile — a.syms < b.stxt > b.fsa

where a.syms is a symbol file that stores all the symbols used in b.stxt. The file

format is described as below:

a 1
b 2

The text file b.stxt contains a textual representation of the WFA. The file format is

described as below:

21

ST DT LB CT

0 0 a 0.5

0 1 b 0.1

1 1 a 0.2

1

ST: start state DT: destination state

LB: lable CT: cost

The file b.fsa contains the WFA created by reading from the text file b.stxt. The

graphic representation of b.fsa is as below:

a /0.3 a /0.2

b/0.3

(2) The command that creates a WFST is

Fsmcompile — x.syms — x.syms — t < y.stxt > y . f s t

where x.syms is a symbol file that stores all the symbols used in y.stxt. The file

format is described as below:

a 1
b 2
red 3
blue 6

The text file y.stxt contains a textual representation of the WFST. The file format is

described as below:

22

ST DT IL OL CT

0 0 a red 0.1

0 1 b blue 0.2

1 2 a blue 0.2

1 2 b red 0.3

1

ST: start state DT: destination state

IL: input lable OL: output lable

CT: cost

The file y . f s t contains the WFST created by reading from the text file y.stxt. The

graphic representation of y . f s t is as below:

a/red: 0.1

a/blue: 0.2b/blue: 0.2

b/red: 0.3

(3) The command for composition

Suppose we are given two WFSTs c l . f s t and c2.fst as showing in Section 2.1 (Exam­

ple of Composition on WFST). The command for composition between c l . f s t and

c2.fst is:

F smcompose c l . f s t c2.fst > c . fs t

c . fs t is the ocmposition of c l . f s t and c2.fst.

23

Chapter 3

Literature Survey

3.1 In troduction

The study of typing comprises a fascinating mixture of elements from motor skills

and typewriter mechanics to anatomy and cognitive control structures.

The detection and correction of spelling errors is an integral part of modern word-

processors. Most existing spelling error correction techniques focus on isolated words,

without taking any information that might be gleaned from the textual context in

which the string appears. Such isolated-word correction techniques are unable to

detect real-word errors such as typographic, phonetic, cognitive, and grammatical

errors. For descriptive purposes, Kukich (1992) [17] breaks the field down into three

increasingly broader problems:

(1) non-word error detection: detecting spelling errors that result in non-word

(such as the —> teh).

24

(2) isolated-w ord error correction; correcting spelling errors that result in

non-words such as correcting teh to the, but looking only at the word in isolation.

(3) C ontext-dependent error detection and correction: using the context to

help detect and correct errors even if they accidentally result in actual words of English

(real-word errors). Some of these errors result from typos {there —> three, f ro m

form)-, some result because the writers substituting the wrong spelling of a homo­

phone or near-homophone (dessert —> desert,piece —> peace).

The working history for the first problem started in the early 1970s and continued

into the early 1980s. During that period of time, a number of efficient pattern-

matching and string comparison techniques were explored for deciding whether an

input string appears in a predefined word list or dictionary ([7], [12], [18], [32],

[33]). Work on the second problem began as early as in the 1960s and has continued

into the present. Various general and special purpose correction techniques have been

devised ([6], [27], [34], [5], [3]). Work on the third problem spanned from the early

1980s to the present ([21]).

In this chapter, we are going to describe several spelling error models, error detec­

tion and correction methods corresponding to each of these three problems. However,

the existing spelling correction techniques are limited in terms of their scopes and spe­

cial cases.

25

3.2 Techniques for C orrecting W ords in T ext

Research has focused progressively on the three problems mentioned in Section 3.1 for

correcting words in text. In response to the first problem (non-word error detection),

n-gmm analysis and dictionary lookup methods have been developed for detecting

spelling errors that result in non-words. W ith respect to the second problem (isolated-

word error correction), some error models have been developed. For the third problem

(Context-dependent error detection and correction) , statistical-language models have

been developd.

3 .2 .1 N onw ord error d etec tio n

N-grams analysis and dictionary lookup are the two main techniques for the nonword

error detection problem. Dictionary lookup technique is a straightforward task. N-

grams refers to n consecutive letters in a word or string. N-gram error analysis

techniques work by examining each N-gram in an input string and looking it up in a

precompiled table of N-gram statistics to ascertain either its existence or its frequency.

If a non-existent or rare N-gram is found the word is flagged as a misspelling, otherwise

not. N-grams statistics initially played a central role in text recognition techniques

while dictionary-based methods dominated spelling correction techniques.

N-gram techniques usually require either a dictionary or a large corpus of text in

order to precompile an N-gram table. The simplest N-gram table is called a binary

bigram array and is a two-dimensional array of size 26 x 26 whose elements represent

all possible two-letter combinations of the alphabet. The value of each element in the

26

array is set to either 0 or 1 depending on whether that bigram occurs in at least one

word in a predefined lexicon or dictionary.

Errors made by optical character recognition (OCR) devices typically confuse

characters with similar features, such as O and D, S and 5, t and / , or m and n.

The N-gram analysis technique has proven useful for detecting such errors because

they tend to result in improbable N-gram. For example, Morris and Cherry (1975)

[25] used digram frequencies to convert an unknown text word to the dictionary word

that it most closely resembles. Digram frequency tables are used to make the most

probable substitution for this. The new word is then looked up in the dictionary and

the result will be repeated until a valid word is created. This method only applies to

substitution errors.

3.2 .2 Iso la ted -w ord error correction research

Isolated-word error correction techniques have been developed for the problem of

correcting words in text. Some of these correction methods include allowing the user

to write over an error, allowing for keyboard correction, and providing n best matches

for the user to select from. We can group isolated-word error correction techniques

into the following main classes:

(1) minimum edit distance techniques (see [6] for instance);

(2) similarity key techniques (see [27] for instance);

(3) rule-based techniques (see [34] for instance);

(4) probabilistic techniques;

27

In this research, we focus on the probabilistic techniques.

3 .2 .3 P ro b a b ilistic tech n iq u es for iso la ted -w ord correction

Probabilistic M odels [13]

The issues in finding spelling errors in text can be explored using the Bayes Rule

and the noisy channel model. The Bayes rule and its application to the noisy channel

model used in data communications provide the probabilistic framework for many

problem-solving issues such as detection and correction of spelling errors, speech

recognition, etc. ([5], [3], [21], [11])

Figure 3.1 shows how the noisy channel model works.

(output word)(input word)

Type setter

ReceiverSender Noisy
Channel

Waves
Fiber optic line (email)
Storage medium (device)

Hard disk, DNA tube

Figure 3.1: The Noisy Channel Model

The problem of spelling correction for typing or for Optical Character Recognition

(OCR), can be modeled as the problem of mapping one string of symbols to another.

Given an incorrect sequence of letters in a misspelled word, we need to figure out the

correct sequence of letters in the correctly spelled word. The noisy channel introduces

noise which makes it hard to recognize the true word. We want to build a model of

the channel and figure out how to modify the misspelled word and hence recover the

28

true word.

We use Baysian classification for the noisy channel model. In Baysian classifica­

tion, we are given some observation and we want to determine which set of classes it

belongs to. For spelling error detection, the observation might be the string of letters

that constitutes a possible-misspelled word and we want to classify this observation

to a particular word. For example, the word “separate" , no m atter how this word is

misspelled, we would like to recognize it as “seperate" .

Given an input word “acress", we want to find the words corresponding to this

string. Bayesian classification considers all possible words and chooses the word which

is most probable given the observation we have (“acress") out of the possible words.

That is we want to find out of all words in the dictionary, the single word such that

P{word\observation) is the highest. The equation for picking the best word given is:

Wmax = argmax^^^vP{w\^) (3.1)

Where,

w : our estimate of the correct w

s : the observation string

V : vocabulary

The function a r g m a X x f { x) returns the x where f { x) is maximized.

We can use Bayes’s rule to rephrase P{w\s) in terms of three other probabilities.

P („ | .) _ (3.2)

Thus we can get the following equation by substituting the above into Equation

29

3.1;

TJ7 P{s\w)P{w) ̂ ^
Wmax = argmaxyj^v ----- (3.3)

In this equation, the source model P{w) is the probability of occurrence of the

word itself, which can be estimated by the frequency of the word and P{s\w) the noisy

channel model is the probability that the speller transform the word w into the word

s. We will see how to compute P(g|w) later. The probability P{s) of the observed

string is harder to estimate; however, we can ignore it as we are maximizing over all

words and P(s) doesn’t change for each word. Therefore we can replace Equation 3.3

by

Wmax = argmaXyj^vP{s\w)P{w) (3.4)

From Equation 3.4, we can see that the most probable word, given some obser­

vation s, can be computed by taking the product of the source probability P{w) and

the noisy channel probability P{s\w) for each word w, and choosing the word with

the highest product.

The noisy channel model assumes that the natural language text is generated

as follows: first a person chooses an input word w, according to the probability

distribution P{w) (the source); then the person attempts to output the word w, but

the noisy channel induces the person to output string s instead, according to the

distribution f (g|w) (the channel). For the same observed string s, the probability

of different input strings are different. In computer typesetting, for example, under

typical circumstances such as people’s knowledge, typing skill, keyboard layout, etc.,

30

we would expect the following order of probabilities;

P{one\one) > P{oen\one) > P{two\one).

Church and G ale’s m ethod

In 1991, Church and Gale [5] described a program named correct which corrects

single-error misspellings by using a noisy channel algorithm based on the equation

3.4. In their study, Church and Gale assume that the correct word differs from the

misspelling just by a single insertion, deletion, substitution or transposition. Their

program corrects the words rejected by the program named spell [22] by generating

a list of potential correct words ranked according to Equation 3.4 and choosing the

highest-ranked one. A database of genuine errors extracted from a 44 million-word

corpus of AP newswire stories is used as the training set in the program.

Computing the likelihood term P{s\w) (error model) is difficult as the probability

of a word being mistyped depends on several external factors, such as the different

typists; and how familiar they are with the keyboard, whether one of their hands

happens to be more tired than the other, etc. Luckily, it can be estimated pretty well

since the most important factors in predicting an insertion, deletion, substitution or

transposition are all simple local factors, such as the identity of the correct letters

itself, the surrounding context, and the way that the letter was misspelled. For

instance, the letters m and n are often substituted for each other. This is partly

because of the fact that these two letters are pronounced similarly and they are next

to each other on the keyboard, and partly because of the fact that they occur in

similar contexts.

31

The channel probabilities P{s\w) can be computed from four 26 x 26 confusion

matrices, each of which represents the number of times one letter is incorrectly used in

place of another: (1) sub[x,y], the number of times that correct letter 'y' is typed as

incorrect letter 'x' (y/x). For example, the cell [o,e] in a substitution confusion matrix

will give the count of times that e is substituted by o. (2) ins[x,y], the number of

times that correct letter 'x' is typed as 'xy' (x/xy). For example the cell [t,s] in an

insertion confusion matrix gives the count of times that (t/ts) appears. (3) del[x,y],

the number of times that the letters 'xy' are typed as 'x' (xy/x). (4) trans[x,y], the

number of times that 'xy' is typed as 'yx' [xy/yx). The probability of inserting or

deleting a character is conditioned on the letter appearing immediately to the left of

that character.

Church and Gale estimated P{s\w) using the previous four matrices as follows:

d el[wp_ 1, rCp]/co u n t[rcp_i, n;p], if deletion

ins[uip. 1, Sp]/count [rcp-i], if insertion

sub [sp, Wp] / count [wp], if substitution

trans[wp, Wp+i]/count[wp, Wp+i], if transposition

where Wp is the pth character of the word w, Sp is the pth. character of the typed word

and p is where the edit operation occurs. Church and Gale’s method only considers

a single edit operation between s and w, p is unique.

count [x,y] and count [x] represent the number of times that 'xy' and 'x'

appear in the training set.

In their paper, Ghurch and Gale considered as the candidate source words only

32

P(g|w)

those words that are a single basic edit away from s, using the edit set as described

before. The Church and Gale mode is essentially a weighted Leveshtein technique. In

their proposed error model, they assigned different probabilities to each unique edit,

which makes the model a weighted Levenshtein technique.

Brill and M oore’s M ethod

In 2000, Eric Brill and Robert C. Moore [3] presented a new channel model for

spelling correction. The new channel model they described is based on generic string-

to-string edits. It solves the problem of automatically training a system to correct

generic single word spelling errors.

The Church & Gale error model mentioned above is based on the single edit

operation between two strings, which is the minimum number of single edit operation

insertions, substitutions, deletions and transpositions. The Brill and Moore error

model is a much more generic error model that allows all edit operations of the form

x/y , where x , y e J]* for some alphabet, E is an alphabet. It conditions the position

where the edit operation occurs in the string by the location of the substring x in the

start, middle, or end of the source word.

In the misspelling correction process, they first trained the error model to get a

set of probabilities P{x/y) and then they applied the error model to non-real word

spelling errors. Gompared with Church and Gale’s weighted Levenshtein distance

technique, a 52% reduction in spelling correction error rate was achieved by using

the improved error model. W ith a language model, their error model gave a 74%

33

reduction in error. One exciting future of this research is to obtain error models that

adapt to an individual or subpopulation. More details for Brill and Moore’s model

will be discussed in section 6 .1.

Touranova and M oore’s Pronunciation M odeling

In 2002, Kristina Toutanova and Robert C. Moore [31] presented a method that

incorporates word pronunciation information in a noisy channel model of spelling er­

ror correction problem. Spelling errors are generally grouped into two classes [25]:

typographic and cognitive. Typographic errors are mostly errors related to the key­

board. Cognitive errors are those misspellings whose pronunciation is same as the

correct word. Cognitive errors occur when the writer does not know how to spell a

word.

In [31], the authors took an approach to model phonetic errors explicitly by

building a separate error model for cognitive errors. Two different error models were

built by using the Brill and Moore learning algorithm. One was a letter-based model

(LTR) which is exactly the Brill and Moore model. The other was a phone-sequence-

to-phone-sequence error model (PH). In PH, the misspelled/ correct word pairs were

converted into pairs of pronunciations of the misspelled and the correct words, which

were then run gainst the Brill and Moore algorithm. Finally these two error models

were combined as a log linear model.

In their paper, Toutanova and Moore presented a method that uses word pro­

nunciation information to improve spelling correction accuracy. Compared to the

letters-only model, the combined model reduces the error rate over 23% for 1-Best

34

correction, and even higher for 2-Best, 3-Best and 4-Best. Here the n-best list will

contain the n most probable correct words for a misspelling.

3 .2 .4 C o n tex t-d ep en d en t w ord correction tech n iq u es

Reviewing the methods we described so far for isolated-word error correction problem,

there always remains a residual class of errors that is beyond the capacity of those

techniques to handle. This is the class of real-word errors in which one correctly

spelled word is substituted for another correctly spelled one. In this section, we will

describe a statistical method for the context-dependent word correction problem.

Statistically based error detection and correction

Statistical language models (SLM) are essentially tables of conditional probability

estimates for some or all words in a language that specify a word’s likelihood to

occur within the context of other words. In the statistical language-modeling ap­

proach, contextual information can be used to help set it expectations for possible

word choices. Thus, low-probability word sequences can be used to detect real-word

errors, and high-probability word sequences to rank correction candidates.

M ayes and D am erau’s M ethod

Mays and Damerau [21] discussed how to detect and correct real-word spelling errors

by using word trigrams. They employed the noisy channel model to correct spelling

errors. This model is similar to the model used in speech recognition as we discussed

35

before (equation 3.4).

Here, P{w) is the probability that the complete sequence of words w — Wi,. . . , Wn,

will be produced by the text generator. The probability of w is defined as:

P{w) = P{wi) X P{w2 \wi) X . . . X P{Wi\Wi-iWi^2) X . . . X P{Wn\Wn-lWn-2) ■

The quantity P(s|re) is the probability that the speller and typist transform the

sequence of words w into another sequence of words s = s i , . . . , s^-

In this error model, each output word Si is considered to occur in its correct

location without depending on adjacent words. That is as n = m, the following

equation is obtained:

P { s \ w) = P{Si \Wi)
i=l

For each P{si\wi), if a speller could produce Si when Wi is intended, then Sj is in

the confusion set C which might include all simple misspellings of the word Wi. Here,

the confusion set is determined by applying exactly one of four basic edit operations

described before. The error model P{si\wi) can be computed as:

a, i f Si = Wi,

1-
|c|-

P(^Si\Wij — <
otherwise.

where,

- |C| is the number of words in confusion set C.

- The constant a represents the prior probability of a typed input word, it can be

determined by experimentation.

- 1 —a represents the remaining probability, which is equally divided among the other

words in the confusion set.

36

If a is set too high the result will have the tendency to retain typed input words

even if they are incorrect. If a is set too low the result will tend to change typed

input words even if they are correct. In Mays and Dameraus’s study, they tested a

range of values for a and found that the optimum value is between 0.99 and 0.999.

37

Chapter 4

General M ethodology

In Chapter 3, we described many situations in text recognition where decisions have

to be made based on incomplete or uncertain information and discussed several error

models. In this chapter, we will introduce a general methodology for defining error

models that allow us to describe not only human spelling errors in the texts but also

various errors in the real world such as speech errors, DNA computing errors^, etc..

In text recognition, uncertainty and incompleteness arise from a number of sources,

such as contextual effects, homophones or typist variabilities. Finite-state stochastic

modeling is a flexible general method that handles such situations. This approach

consists of employing a probabilistic type of a WFST for the uncertainty or incom­

pleteness of information. Research in this field is motivated by the fact that deter­

ministic autom ata (DFA) are not suitable for modeling even the simplest forms of

behaviour, such as the acquisition of a conditioned reflex [2]. Thus, the finite-state

^These can be random substitution, insertion and deletion nucleotide errors in the DNA strands

that participate in DNA computations.

38

stochastic model is a particularly suitable approach to our general error model in text

recognition.

An abstract model for these situations of uncertainty is that there are two se­

quences of random variables: y{l) ,y (2),y{3), . . . ,y{t) and a;(l), a;(2),x(3),. . . ,

The x ’s represent the sequence that we wish to know, but are not able to observe

directly. The y ’s represent the sequence which are related to the x ’s and which we can

observe or we have already deduced by other means. The stochastic modeling consists

of formulating a probabilistic model that receives a sequence of y ’s and produces a

sequence of x ’s based on the sequence of y ’s. When a sequence of y ’s is observed,

certain techniques are used to find the sequence of x ’s which best fits the observed

sequence of y ’s. That is, the sequence of x ’s according to the model is the sequence

which is the most likely to produce the observed sequence of y ’s.

4.1 T he C lassic S tochastic A u tom ata

The classic stochastic system is considered as working on a discrete time-scale. It uses

states, input signals and output signals, in the same way as deterministic automata

(DFA). Thus, in every step, exactly one signal is received, exactly one signal is emit­

ted, and exactly one state occurs. In the stochastic system, for a given situation,

the external and internal reactions of the system are not uniquely determined, but

for every imaginable reaction, there is only a certain probability that would output y

and enter the state z for input x at the same time. This does not imply any loss of

generality if we assume that this probability only depends on certain situations and

39

not on the number of step t in which this situation occurs, or on the past history of

the situation as it happens in Markov Chains.

D efinition of Classic Stochastic A utom ata

A stochastic automaton C = E y , Z, H] is defined as follows:

(1) E%, Ey, Z are arbitrary non-empty sets and

(2) is a function defined on Z x Ex, such that each H[z, x] is a discrete prob­

ability measure over Ey x Z, that is, ^ ^ H[z,x^{yi, Zi) = 1
yeSy ziez

The elements Xi G E% are called input letters of C, and E% is the input alphabet of

C- The elements y, G Ey are the output letters of C, and E y is the output alphabet of

Ç The elements z G Z are called the states of The stochastic automaton (operates

on a discrete time scale in a countable infinite number of steps t = 1 ,2 ,___ In each

step t, (receives exactly one input signal, generates exactly one output signal and

reaches exactly one state. The function ff[z, Xi](yi, Zi) over (describes the probability

that in current state z the signal % would be generated and the next state will be

zi, if the input signal is Xj. The value of H[z,x]{y,z') is the probability that the

stochastic automaton (output the string y if the input string is x, the start state is

z and the final state is z ' . It is assigned as follows:

40

1, i f x = y = A;

j = i + l X i ^ y i ,

j = i otherwise,

%/a; = Z i . . . 2/ = 2/1 " - 2/Ti, > 1, G

0 , otherwise.

Y[H[zi,Xi]{yi,Zj), where
i=l

Exam ple

Figure 4.1 shows an example of classic stochastic automaton,

a/a: 2/3 a/a: 2/3

a/b: 1/3 a/b: 1/3
b/b: 1/3

b/b: 2/3
b/b:l

©
H[SO,a](a,SO) + H[SO,a](b,Sl) = 2/3 +1/3 = 1
H[SO,b](b,SO) + H[SO,b](a,Sl) = 2/3 +1/3 = 1
H[Sl,a](a,Sl) + H[Sl,a](b,S2) = 2/3 +1/3 = 1
H[Sl,b](b,Sl) = 1

Figure 4.1: Example of Classic Stochastic Automaton

If we send the input string aaba to this stochastic automaton, then the probability

of the possible output string abbb is:

%) = a](o,%) x o](6, S':) x 6](6,^i) x a](6,^2)

2 1 1

41

The above example and the definition of classic stochastic autom ata illustrate that

when we view the classic stochastic automata as channels they only allow substitution

errors. However, in Chapter 2, we have seen that there are three common errors in text

recognition: substitution, insertion and deletion. Therefore, the classic stochastic

automaton is not adequate to describe all of them. We will introduce a new type of

stochastic automata in the next section.

4.2 D efin ition o f C hannel

From Section 4.1, we know that the classic stochastic automaton only can describe

substitution errors. In this section, we introduce a new type of stochastic automaton

which we call a channel that will be able to describe all types of errors. A channel

describes error behaviours in different situations. For example, a channel could de­

scribe edit operations in spelling error correction; speech errors in speech recognition

DNA string errors in DNA computing, etc.

A channel is a particular type of weighted finite transducer(WFST) that allows us

to describe formally the combination of errors that are permitted in some information

processing applications. As we described in Chapter 2, a W F S T C consists of

• An input alphabet 3%, an output alphabet Ey;

• A set 5 = {^i, 52, . . . , Sn} of states {n > 1);

• Labelled transitions {Si,Xi/yi, Sf) with Si,Sj G 5 ad Xi,yi G E* and;

42

• A function w that maps any transition (Si, Xi/yi, Sj) to a number w(Si, Xi/yi, Sj),

called the weight of the transition.

A channel is a W F S T with the following restrictions:

• Allowoble ransitions are of the form (Si, Xi/yi, Sj) where Si, Sj E S, Xi E E^UA,

and % € Ey U A (note that this includes Xi/yi = A/A)

• All weights of transitions are positive numbers

• For every state Si and for every input symbol xi E E x, H[Si,Xi] is a discrete

probability measure on (E U {A/A}) x S such that

1. H[Si,Xi](xi/yi,Sj) = w(Si, Xi/yi, Sj) if (Si,Xi/yi, Sj) is a transition, or

H[Si,Xi](xi/yi,Sj) = 0 otherwise;

2 . H[Si, Xi](X/yi, Sj) = w(Si, X/yt, Sj) if (Si, A/%, Sj) is a transition, or

H[Si,Xi](X/yi, Sj) = 0 otherwise;

3. H[Si, Xi\(x'Jyi, Sj) = 0 for all x'̂ ^ Xi, and

4.

^ + = 1 (4.1)
j/ieSyUA,5jes

Note that for every pairs of states Si, Sj and output %, the quantity H[Si, a;*] (A/%, Sj)

is independent of Xi, that is, H[Si,Xi](Xlyi,Sj) = H[Si,x'/\(X/yi,Sj) for all Xi,x[E

Ex. This means that the probability of moving from state Si to state Sj and output %

without consuming the input is independent of the input. Thus, H[Si, A](A/%, Sj) =

H[Si,x[](X/yi, Sj) for all x\ E Ex-

43

A channel with the above definition is also a particular type of wfse-system [14],

which is a W F S T in which each labelled transition either is one edit operation or

A/A.

Let C be a stochastic transducer and E be the set of basic edit operations Xi/yi.

A C-event C is an expression of the form ei^*!. . . CnSn, where n > 1, Cj = Xi/yi^ each

Cj G £■ U A/A, 5'i € 5 and inp{ei . . . e„) 7̂ A. Intuitively, ei^*!. . . enSn represents the

event that the channel C will perform the edit operation Ci and move to state 5i,

then perform eg and move to %, etc. For each state Si E S and each C-event, the

number is the probability of the event (from start state Sq, is defined as:

^So(C) = H[SQ,Xi]{Xi/yi,Si) X H[Si,X2]{x2/y2,S2) . . . x H[Sn-l,Xn]{Xn/yn,Sn)-

The example below illustrates this theory.

Exam ple

A/b:l-qa/a:p

b/a:p
A/a:l-p b/b:q

a/A :q

Figure 4.2: Example of Channel

In Figure 4.2, we have

FT[5i,a](a/a,5'i) = p,

ff[^i,o](A /o,^2) = 1 - p ,

44

H[Si,a]{xi/yi ,Sj) = 0, in all other cases

Therefore,

Z («■[Si, «](«/», S,) + ff[5 i,a](A /» ,S j)) = 1.
j/ ieS yU A ,5je5

Also,

= p,

^[^i,6](A/a,%) = 1 - p ,

H[Si,b]{xi/yi, Sj) — 0, in all other cases

Therefore,

Z m / » . Si) + 6](A/k, Si)) = 1.
2/i€EyUAj6S

Also,

H[S2 ,a]{a/\ ,S i) = q,

^[^2,o](A/6,^2) = 1 - 9 ,

H[S2 ,a]{xi/yi, S j) = 0, in all other cases

Therefore,

E {H[S2,a\{a/yi,Sj) + H[S2,a\{X/yi,Sj)) = 1.
K E E y U A je g

Also,

= 9,

^[% ,6](A /6,%) = 1 - 9 ,

H[S2 ,b]{x/y, Sj) = 0, in all other cases

Therefore,

45

z W S 2 , i](Wy>, Sj) + H\S 2 , 6](A/ÿi, Sj)) = 1 .
3/ieEyUAje5

Thus, some C-events can be generated:

^Si((a/a)5 î(6/a)5'2(A/6)5'2(6/6)6^2) = p x p x (l - g) x g > 0 ,

Hsi{{a/a)Si{a/b)S 2) = H[Si, a](a/a, Si) x H[Si, a]{a/b, S 2) = p x 0 = 0.

Let Zb be the set of channel event (such that inp{() = b. Then

+^sX(A/o)%(A/6)^2(V6)'92)

+^gX(A/a)^2(A/6)%(A/6)^2(6/6)'92) + . . .

00

= p + (1 - p) X I] (i - q)'" x q
r=0

1
= P + { l - P) X l _ (l _ ,) X 9

= p + { l - p) x ^ x q

= p + 1 - p

The set of possible outputs of the channel when the input is 6 is o U ab*b

D efinition An error model is a set of channels. Intuitively, an error model is the

set of possible channels that appear to model the errors in a particular information

processing application.

46

From the definition of a channel that each transition Si{xi /yi)S 2 has input label Xj

and output label yi. However, for some channels, transitions S \{x /y)S 2 with |x| > 2

or \y\ > 2 are needed, e.g., the channels of Church and Gale and Mays and Damerau

error models. Therefore, we need to convert each transition S \{x /y)S 2 to sequence of

transitions with single-symbol labels.

Convert the transition

If given a transition S i{x /y)S 2 with \x\ = n and \y\ = m, where n or m is greater

than 1, and H[Si,x]{x/y, %) = P, we conver S i{x /y)S 2 to a sequence of transitions

with single labels as below:

"̂ 1 (^ i/2/i)% (^2/ 2/2)% . . . { x j i j n=m,

'^l(3;/Z/)'^2 = ^i(Xi/% /i)^2 . . . (:Tm/2/m)'9m+l(:Cm+l/A)gm+2 - - - (a;n/A)^»+i M > TM, (4-2)

Pl{p^l/yi)^2 ■ • • (̂ n/2/n)'S*n,+l(- /̂z/ra+l)'S'ji-(-2 ■ • . (^^/ym)Pm+l ^ ^

In each of these three cases, only the probability of the first transition S i{x i /y i)S 2)

is P and all others are all equal to 1. Therefore,

mx(m,n)
H[Si ,x]{x /y ,S 2) n H[Si,Xi]{yi,Si+i) = P

i=l

Assign the probabilities

In rule 4.1, we know

(H[Si,Xi]{x'Jyi,Sj) + H[Si,Xi]{X/yi,Sj)) = 1

47

Therefore, we have

H[Si, Xi]{xi/yi, Sj) = Pi,
j/ieEyUA,5je5

And

Z H[St,Xt](X/yi,Sj) = P2,
2/ieEyUA,SjeS

where 0 < Pi < 1, 0 < P2 < 1, Pi + P2 = 1.

4.3 Error C orrection w ith a G iven C hannel

Channel Error Correction Problem

Problem D efinition Given a set of words D called the dictionary, a channel C and

a channel output y, find a channel event (of C with the highest probability such that

inp{() e D and out{() = y.

Although we focus on spelling errors in this research, the above problem definition

also applies to other information processing applications.

Let w = inp{() e D. For every w' Ç. D and for every channel event (' with

inp(C) = w', out{(^') = y, we have

This formula says that the probability of transforming w to y with the channel

event (is greater than or equal to, any other transformations oi w' E D into y with

some channel event ^ .

The wfse-system corresponding to a given channel

48

Given a channel C, a wfse-system B can be defined as:

Given states Si, Si^i of C and label Xi/yi of C, we have the transition

in B provided the probability

H^Si, xf^{xilyi, Si^i) > 0

The cost of each transition in B is:

The cost of a path Ço(3^i/ï/i)9i • • • {xn/yn)Qn in B is the quantity:
n

i=l
Given a wfse-system B, we can define the wfse-system B^^ to be exactly the same

as B only with the following change:

If Si{xi/yi)Si+i is in B then Si(yi/xi)Si+i is in

The string to regular-language correction problem addressed in [14] is related to

the channel error correction problem.

In the string to regular-language correction problem, we are given a string s, an

NFA A and a wfse-system B. The language L{A) is supposed to contain all the “syn­

tactically correct words” . We want to compute an e-string h that describes the edit

operations permitted by B that would transform s to a syntactically correct word

with the minimum cost. If we construct the (|s| -h l)-state automaton Ag to accept

string s, then we can use the X-NFA Ag o B o A to solve this problem.

Channel C orrection A lgorithm

In the channel error correction problem, an NFA A d can be created to store the

49

dictionary D, the channel output y will be stored in a deterministic automaton Ay.

As we know, if Si{xi/yi)Si+i is in wfse-system B, then Si(yi/xi)Si+i is in B~^.

The correction of the channel output y over the dictionary D can be determined

by finding the channel event (with the minimum cost in the weighted directed graph

Ay o B~^ o Ad such that inp{f) = y and out{C,) G D. This also can be considered

as finding a path p in the weighted automaton Ay o B^^ o Ad such that p has the

smallest cost with inp{p) = y and out{p) G D.

To see this, first note that Ay o B~^ can be considered as the XNFA accepting all

words w such that w is an output of B~^ when y is used as input, that is, w G B~^{y).

Then {Ay o B~^) o Ad represents the set of all words w as above that belong to D

as well. Hence, a minimum cost path qo{yi/xi)qi. . . {yn/xn)qn in Ay o B~^ o Ad

defines the word w = x i . . . Xn ia D that would result from y = y \ .. .yn via the wfse-

ssystem B~^. Equivalently, qo{xi/yi)qi. . . {Xn/yn)qn is a path of B of minimum cost
n

'Y^vjB{qi-i{xi/yi)qi) such that X \ . . .Xn G D and yi ■. .yn = V- Equivalently again,
1 = 1

C = i^i/yi)qi • • • {xn/yn)qn is a channel event of C with the highest probability Hq̂ {Cf)

such that X i . . .Xn G D and y i .. .yn = y, which solves the channel error correction

problem.

AT&T Tool

From Chapter 2, we know that the AT&T FSM library provides tools to describe

and manipulate finite state automata. Therefore, we can use these tools to describe

Ay, Ad and B~^ and compute Ay o B~^ o Ad.

50

The FSM command used to create Ay (if Ay = oen) is;

Fsmcompile — idic.syms < oen.stxt > oen. f sa

The FSM command used to create is:

Fsmcompile — idic.syms < dic.stxt > die. f sa

The FSM command used to create is:

Fsmcompile — idic.syms < model.stxt > model, f sa

The FSM command used to create Ay o is:

Fsmcompose oen. f sa model, f s t > basic, f s t

The FSM command used to create basic.fst o A d is:

Fsmcompose die .fsa > oen. fst

where, dic.syms stores all the symbols used in dictionary;

dic.stxt contains a textual representation of dictionary;

model.stxt contains a textual representation of B~^;

oen.stxt contains a textual representation of Ay(oen).

Again, the above methodology is applicable to any channel and applications other

than spelling error correction. Moreover, for the spelling error correction problem,

this methodology can find the correction of any type of spelling errors as permitted

by the given channel.

In the next section, two examples of spelling error correction methods from Chap­

ter 3 are described by using the general methodology.

51

4.4 E xam ples

In Chapter 3, we have seen two methods of probabilistic technique for spelling error

correction problem:

— Church and Gale’s method

— Mays and Damerau’s method.

The Church and Gale’s method is for isolated-word error correction; the Mays

and Damerau’s method is for context-dependent (real) word error correction. Both

of these two methods use the probabilistic technique to solve problems, but they use

different error models and different error correction algorithms. However, the general

methodology is able to describe these two methods in the same way.

4.4 .1 C hurch and G a le’s m eth o d

Church and Gale [5] presented a probabilistic technique for the isolated-word error

correction problem.

Recall that the error model of [5] uses the following probabilities:

= # # ’̂(^1^») = ^

^’(^1») = f W l p r) =

This method also can be described by using our general methodology as below

(Figure 4.3):

In Figure 4.3, y could be any letter, that is, y G E. The probabilities P2, P3, P4, P5

are computed as above. Therefore, we have:

52

x/x: P1 x/x: 1

xy/x: P2(y) □x/xy: P3(y)
xy/yx: P4(y)

x/y: P5(y)

Figure 4.3: Church and Gale’s Error Model

In [5], the probabilities for the non-error pair {x\x) are not assigned. Thus, ac­

cording to our theory of channels, P{x\x) is assigned as:

f 1 = 1 - -P f 3(i/) + f 4(^) -P f 5W)
yes

Once a channel of this error model has been computed, we can use the channel

correction algorithm introduced in Section 4.3 to correct spelling errors. Again, as

mentional in Section 4.3, if this channel is given, we can correct not only non-word

spelling errors but also the real-word errors by using the channel correction algorithm.

4 .4 .2 M ays and D a m era u ’s m eth o d

Mays and Damerau [21] presented a statistical technique capable of detecting and

correcting real-word errors when they occurred in sentences. Recall that the method

53

of [21] use the probabilities:

(X if Sj =

otherwise.|C |-1

For a word w, we denote by C{w) the confusion set of w. This is the set of possible

raispellings of the word w.

Our general methodology also can be used to describe Mays and Damerau’s

method. As we illustrated in our general methodology, the sum of all probabilities of

transitions that start from same state with the same input letter is 1.

Suppose we are given several confusion sets of intended words as below:

Word Misspellings

do fo

door doer, foor

The error model can be defined as below. (Figure 4.4)

In Figure 4.4, all the transitions from the start state are A/A, and the probabilities

of them are 1/N, Where N is the size of the dictionary. The probability of each

transition after the first transition is assigned based on Mays and Damerau’s confusion

sets. Therefore, in Figure 4.4 we have that:

f (do/do) = f 1 X f 6 = a/Æ f (/o/do) = f 2 x P6 =

P{door/ door) = P3 x P7 — a / N P{doer/ door) = PA x P7 — -c(doo?)-i/ ^

f (/oor/door) = f 5 x f 7 = ë(È R - i / ^

Therefore the probabilities for each pair are divided by N. So that the probabilities

of the possible outputs for a given input sum to 1. From a mathematical point of

54

do/do: PI

fo/do: P2

door/door: P3

doer/door: P4

foor/door; P5

Where, P1 = P3 = a, P2 = (1 -a) / (C(do)-1),

P5 = (1-a) / (C(door)-l),

P4 = (l-a)/(C(door)-l)

P6 = P7 = 1/N

Figure 4.4: Example of Mays and Damerau’s Error Model

view, the probabilities have not been changed. We also notice that in Figure 4.4,

all probabilities of each transitions from same state with same input sum to 1, as

required by our general methodology.

4.5 Im provem ents in th e G eneral M eth od o logy

In Section 4.3, the correction algorithm of using a given channel has been introduced.

We can find the correction of misspelling s by finding the string labeling a path of

the weighted directed graph Ag o o A d with the lowest cost. However, in the

general spelling error correction problem, more than one candidate words might be

needed. Therefore, finding n strings with the lowest costs in the weighted directed

graph becomes important. The algorithm for the n best-strings problem introduced

55

by Mohri and Riley [24] can find the n-best distinct words in weighted directed graph

easier and faster than the classic n best-string algorithms [4], [30].

N -best d istinct words

The problem of determining the n shortest paths of a weighted directed graph is a

well studied problem in computer science. The automaton searched may contain in

general several paths labelled with the same sequence, thus the problem does not

coincide with the classic n-shortest-paths problem. In fact, in many applications, the

n best paths may be labelled with the same sequence many times.

Mohri and Riley [24] present an efficient algorithm for solving the n-best-strings

problem in a weighted automaton. This algorithm is based on two general algorithms,

the determinization of weighted automata and a general n-shortest-paths algorithm.

The authors of [24] use weighted determinization to deal with the problem of several

paths labelled with the same string and a single-source shortest paths algorithm to

find the n strings with the lowest cost in the result of determinization automaton.

A weighted automaton is a directed weighted graph in which each edge or transi­

tion has a label with weight. In the case of spelling error correction in this research,

the label is error operation. The weights are interpreted as negative log of probabili­

ties.

The first step of this algorithm consists of computing the shortest distance from

each state to the set of final states. After execution of this first step, the algorithm will

find the n best paths in the result of a weighted determinization of the automaton.

56

Weighted determinzation takes as input a weighted automaton A and outputs an

equivalent subsequential or deterministic automaton B. The weighted automaton B

is deterministic if it has a unique initial state and if no two transitions leaving the

same state share the same input label.

The algorithm presented in [24] is a generalization of the classical algorithm of

Dijkstra [1]. They assume that the determinization automaton B contains only one

final state. This does not affect the generality of this algorithm since one can always

complete an automaton by introducing a single final state / to which all previously

final states are connected by X-transitions. The pseudo code of this algorithm is

shown below, where Q' is the finite set of states, E is the finite set of transitions and

F is the set of final states.

I for p 1 to \Q'\ do r[p] 0

3 (/,0)

4 While S ^ X

5 Do (p, c) head{S)\ Dequeue(S)

6 r[p] —> r[p] + 1

7 If (r[pj = = n and p E. F) then exit

8 If r[p] < n

9 Then for each e E F\p]

10 Do c' —> c + w[e\

II Z[{n[e],c')]^ {p,c)

57

12 ENQUEUE (^,(n[e],c'))

They consider pairs {p, c) of a state p E Q' and a cost c. The algorithm uses

a priority queue S containing the set of pairs (p, c) to examine next. The queue is

in increasing order. This algorithm maintains for each state p an attribute r[p] that

gives at any time during its execution the number of times a pair (p, c) with first

state p has been extracted from S. r\p] is initiated to 0 and incremented after each

extraction from S. The priority queue S is initiated to the pair containing the initial

state i' of B and the cost 0. Each time through the loop of lines 4-12 a pair (p, c) is

extracted from S. For each outgoing transition e of p, a new pair (n[e],c') made of

the destination state of e and the cost obtained by taking the sum of c and the weight

of e is created. The predecessor of this new pair is defined to be (p, c) and the new

pair is inserted in S. The algorithm terminates when the n shortest paths have been

found, that is when the final state of B has been extracted from S n times. Since at

most n shortest paths may go through any state p, the search can be limited to at

most n extractions of any state p. By construction, in each pair (p, c), c corresponds

to the cost of a path from the initial state i' to p. Let us use the Figure 7.8 to

illustrate this algorithm.

b/0.7

a/0.3

c/1.0
b/0.1

Figure 4.5: Example of Best Path

58

In Figure 4.5, we have:

(1) S = (%,0)

(2) S = (^1,0.1) (^1,0.3)

(3) S = (^1,0.3) (^2,0.8) (^3,1.0)

(4) S = (^2,0.8) (%,1.0) (% ,!.!) (%,1.3)

So, if n = 2 , then the 2-best paths are:

hb with cost = 0.8

ab with cost = 1.0

4.6 C om puting a C hannel from Sam ple D ata

In this chapter, the general methodology has been described. It can be applied to

many information processing applications, such as spelling error correction, speech

recognition, etc. In this research, we are focusing on spelling error correction problem.

The process of computing a channel of the given error model can be defined as

below:

— Given sample data and an error model

— Compute a channel of the error model that corresponds to the sample data

Therefore, the computation of a channel of an error model from sample data is

important part of our research.

According to our general methodology, we will follow equation (4.1) (see Section

4.2) to compute the desired channel of the error model.

59

For each state z in the channel, we need a set of sample data consisting of a pair

of string sequences (si,S2) such that si[f] is the i t h string of si and 62b] is the j t h

string of S2 . We shall allow some edit operations on 82, such as insert a string into 82,

delete a string from 82, substitute a string in 82 with another string, as well as other

possible edit operations. Thus, a set of pairs (si[i]/s2b']) corresponding to the above

edit operations can be generated. Next, we could align each pair (si[z]/s2[j]) of this

set to obtain a list of sequence pairs { x / y) , where x and y are substrings of Si[i] and

82 b] with any length. Using statistical data about the sequence pairs and equation

4.1, we shall find the probability of each channel transition. If we have n states in

the channel of the error model, then n sets of sample data are needed.

In Chapter 5, the algorithm of generating string pairs from sample data is intro­

duced. This is the first step of computing channels. In Chapter 6 , we will see the

details about how to compute channels of the Brill and Moore error model.

60

Chapter 5

Generation Of String Pairs

In this chapter we will develop an algorithm for generating string pairs from sample

data. This is also the problem of aligning two sequences of strings, which plays an

important role in the area of computing channels.

Given two sequences of strings Fi and F2, we assume that Fi contains m strings

and F2 contains n strings. Let u represent string Pi(i), and v represent string F2Ü),

then a string pair can be defined as u/v. An error pair is a special case of string

pair u/v, with u ^ v.

Papers [3], [5], [15], [21] introduced different error models for the spelling

error correction problem. In order to compute channels of these error models, a set

of training data consisting of string pairs is needed. However in these papers, the

authors did not describe the method of obtaining the string pairs. In this chapter,

we are going to introduce a dynamic programming algorithm to compute the training

data set of string pairs. In the beginning of this chapter we will concentrate on the

61

formal and technical aspects of the problem.

5.1 T he E dit D istan ce B etw een T w o Sequences o f

Strings

Frequently, one wants a measure of the difference between two strings (for example, in

spelling correction methods, current molecular biology or textual database retrieval).

Various approaches to the problem of string distance measurement have been defined

(see [9], [14], [20] and references). A measure of the difference between two sequences

of strings or between two files is also a common requirement for these applications.

A file can be viewed as a sequence of strings.

Given a pair of two string sequences, we shall allow the following edit operations

on the second sequence; the insertion of a string into the second sequence, deletion

of a string from the second sequence, substitution (or replacement) of a string from

the second sequence with a string in the first sequence, repetition of a string in

the second sequence (which is a special case of insertion), and concatenation of two

strings in the second sequence. For example, letting I denote the insertion operation,

D denote the deletion operation, S denote the substitution operation, R denote the

repetition operation, C denote the concatenation operation and M the nonoperation

of “match". Given the above, the sequence of strings “error situations permitted in a

communication system" can be edited to “error permittedin a a data communicaton

system" as follows:

62

M D C R I S M

error permittedin a a data communicaton system

error situations permitted in a communication system

We now can more formally define the terms sequence of edit transcripts and edit

distance. A string over the alphabet I,D,S,C,R,M that describes a transformation of

one sequence of strings to another sequence of strings is called an edit transcript of

the two sequences of strings ([16]).

By examining the above example again, we find that there are several ways to

transform the second sequence to the first one.

M D S D M I I S M

error permittedin a a data communicaton system

error situations permitted in a communication system

or

I D D C R I S M

error permittedin a a data communicaton system

error situations permitted in a communication system

However, there exists a best (possibly more than one) way to have edit transcripts

between these two sequences. Hence, the edit distance between two sequences of

strings is defined as the minimum number of edit operations needed to transform

the first sequence into the second one where matches are not counted. Therefore,

the edit distance problem is to compute the sequence edit distance between two

63

given sequences of strings, along with an optimal edit transcript that describes the

transformation.

5.2 A lignm ent B etw een Tw o Sequences o f Strings

An edit transcript is one way to represent a particular transformation of one string

sequence to another. An alternate way is to display an explicit alignment of the two

sequences of strings. This idea is borrowed from the alignment of two strings. In

[9], the author describes the concept of string alignment as; "A global alignment of

two strings S i and S2 is obtained by first inserting chosen spaces, either into or at

the ends of S i and S2, and then placing the two resulting strings one above the other

so that every character or space in either string is opposite a unique character or a

unique space in the other string. ”

An alignment of two sequences of strings Fi and F2 is a set of string pairs. It is

obtained by first inserting the chosen dashes, either into or at the ends of Fi and F2 ,

and then placing the two resulting sequences above each other so that every string or

dash in either sequence is opposite to a string or a unique dash in the other sequence.

As an example of an alignment, considering the alignment between the two sequences

we discussed before:

e rro r------------ permittedin a a data communicaton system

error situations permitted in a communication system

In this alignment, the string communicaton is matched with communication] the

64

strings situations, a and data are opposite dashes; permittedin is matched with per­

mitted in, and all other strings match their counterparts in the opposite string.

From a mathematical view, an alignment and an edit transcript are equivalent

ways to describe a relationship between two sequences of strings. An alignment can

be easily converted to the equivalent edit transcript and vice versa. Specifically, two

opposing strings that mismatch in an alignment correspond to substitution in the

equivalent edit transcript; a dash in an alignment contained in the second sequence

corresponds in the transcript to an insertion of the opposing string into the second

sequence; a dash in the first sequence corresponds to a deletion of the opposing

string from the second sequence; one string from the first sequence with opposing

two strings in the second sequence that mismatch in an alignment correspond to

the concatenation operation; and the above alignment example also shows that the

repetition of a string from second sequence is a special case of the deletion operation.

5.3 D ynam ic P rogram m ing M ethod

We now turn to the algorithmic question of how to compute the edit distance between

two sequences of strings along with the accompanying alignment by using dynamic

programming. We use the method of dynamic programming, which is based on the

dynamic programming algorithm for computing the string distance ([9], [20]) - see

Section 2.2.4. However our algorithm not only includes deletion, insertion, substitu­

tion, but also repetition and concatenation.

The cost of each operation is calculated as below. The concatenation operation

65

between two strings is represented using underscore for seperating these two string.

Let u and v be two strings containing at most one underscore.

|m|, if u contains no space and v = X, (deletion)

|u|, if u contains no space and u = X, (insertion)

cost{u,v) = LD{u,v), ii u ,v X and contain no space, (substitution)

LD{uiU2 , vv), if u = U1 JU2 and ui, U2 , v contain no space, (repetition)

LD{u, V1 -V2), if V = V1 JV2 and u, Vi,V2 contain no space, (concatenation).

The edit operation of repetition repeats a string from the source sequence, such

as a a a] the edit operation of concatenation concatenates two strings from the

source sequence, such as permitted in —> permittedin. According to the definition

of repetition and concatenation, one would expect that repetition = (u, uju) and

concatenation = (ui_U2, u^Ug).

Suppose we are given a pair of sequences (files) Fi and Fg, then D(i, j) is defined

to be the edit distance between Fi[l,...,i] and By using this notation, if

Fi has n strings and Fg has m strings, then the edit distance between Fi and Fg is

precisely the value of D{n, m). We will compute D(n, m) by solving the more general

problem of computing D{i ,j) for all combinations of i and j, where i ranges from 0 to

n and j ranges from 0 to m. Note that, F i [l . . . 0] and F g[l. . . 0] represent the empty

sequence. The dynamic programming approach has three essential components: the

recurrence relation, the tabular computation, and the traceback.

66

5.3 .1 T h e recurrence re la tion

The recurrence relation of two files Fi and F2 establishes a recursive relationship for

the value of D{i,j) , for i and j both positive, in terms of the values of D with index

pairs smaller than i , j . When there are no smaller indices, the value of D{i,j) must

be stated explicitly in what are called the base conditions for D{i,j) . Also, we define

the length of the strings Fi[i] and as Fi[i].length and F2 [j].length, respectively.

The base conditions are: D (0 ,0) — 0 and

for (i—1 to size of Fi)

D(i, 0) = D(i-1, 0) + Fi[i].length

and

for (j= l to size of F2)

D(0, j) = D(0, j-1) + F2 [j].length

The second base condition is clearly correct because the only way to transform the

first i strings of to the empty sequence is to delete all the i strings of Fi. Similarly,

the third base condition is correct because j strings must be inserted to convert the

empty sequence to . . . j].

The recurrence relation for D{i,j) when both i and j are strictly positive is (see

67

Figure 5.1).

If % < 2

If j < 2

D{i - l , j) + Fi[i].length

D{i , j - 1) + F2 [j].length

D { i - l , j - l) + LD{F^[^\,F2[j])

D (i-l,j-l)

D(i-2,j-l)+LD(Fi[z - 1]Fi [z],F2[j]F2

D(i-lj-2)+Z,D(FiM ,F2b' -

D{i — 2 , j — 1) = INFINITY (repetition)

D(i — 1, j — 2) = INFINITY (concatenation)

(deletion in F2)

(insertion in F2)

(replace in F2 ,ifFi[i]

(match)

(repetition in F2)

(concatenation in F2)

(5.1)

5.3 .2 Tabular co m p u ta tion

The second essential component of any dynamic program is to use the recurrence

relation to efficiently compute the value D(n,m). We will first compute D(i , j) for the

j

F2

FI

repetition

concate­
nation substitution deletion

insertion

Figure 5.1: Table of Five Edit Operations

68

smallest possible values for i and j , and then compute values of D{i ,j) for increasing

values of i and j . Typically, this method is organized with a dynamic programming

table of size (n + 1) x (m + 1). The table holds the values of D{i,j) for all the choices

of i and j . The file Fi corresponds to the vertical axis of the table and the file Fg

corresponds to the horizontal axis. Because the ranges of i and j begin at zero, the

table has a zero row and a zero column. The values in row zero and column zero

are filled in directly from the base conditions for D{i,j) . After that, the remaining

n X m subtable is filled in one row at time, in order of increasing i. Within each

row, the cells are filled in order of increasing j . From Table 5.1, we see that the

values for row one can be computed in order of increasing index j . After that, all

the values need to be computed in row two are known, and that row can be filled in,

in order of increasing j . By extension, the entire table can be filled in one row at a

time, in order of increasing i, and in each row the values can be computed in order of

increasing j . The detailed tabular example of computing the edit distance between

the two sequences as considered earlier is shown in the Table 5.1.

5.3 .3 T h e traceback

Once the value of the edit distance has been computed, we can establish pointers in

the table to find the associated optimal edit transcript (that is the alignment between

Fi and Fg). From here, we also can get the string pairs between Fi and Fg. In each cell

of this table, we store two values; D{i,j).cost and D{i,j).ope. D{i,j).cost stores the

value of edit distance from D{0,0) to D{i,j) and D{i,j).ope stores the edit operation

69

F2 error situations permitted in a communication system

Fi 0 5 15 24 26 27 40 46

error 5 0 10 19 21 22 35 41

permittedin 16 11 9 12 10 11 24 30

a 17 12 10 13 12 10 22 28

a 18 13 11 14 13 10 22 28

data 22 17 15 18 17 14 21 27

communicaton 34 29 27 24 28 26 15 21

system 40 35 33 30 30 31 21 15

Table 5.1: Table of Dynamic Programming

that corresponds to the calculation in formula 5.1.

In particular, when the value of cell (i , j) is computed, we can consider a set of

pointers as follows:

deletion: set a pointer from (i , j) to {i — l , j)

if D{i,j).cost = D{i — 1, j).cost + F2[j].length;

the pair is D(i,j) .ope =

insertion: set a pointer from cell (i , j) to cell {i, j — 1)

if D{i,j).cost = D{i , j - l).cost + Fi[i].length;

the pair is D{i,j) .ope = X/Fi[i];

substitution: set a pointer from {i, j) to (i - l , j — 1)

if D(2,j) = D(% - 1, J - 1) + LD(FiH,

70

the pair is D{i,j).ope = F2 [j]/Fi[i]-,

match: set a pointer from (i, j) to (z — 1, j — 1)

if = D{i - l , j - 1); the operation is D{i,j) .ope = Fi[i]/F2 [j]]

concatenation: set a pointer from {i,j) to {i — l , j — 2),

if D{i, j).cost = D{i - l , j - 2).cost + L D (^ [; - l]F2 [j], Fi\i])

D{i,j) .ope = {F2 \j - 1]-F2[j])/Fi[i] (refers to space)

repetition: set a pointer from {i,j) to {i — 2 , j — 1)

if D(z, j).cost = D(% - 2 ,; - l).cost + LD(F2[7']F2|;]/Fi[z -

D(z, j).ope = (Fziz - 1]_F2H)/F ib l

These rules apply to cells in row zero and column zero as well. Hence, each cell in

row zero points to the cell to its left, and each cell in column zero points to the cell

just above it. The pointers allow one to recover an optimal edit transcript: simply

follow the path of pointers from cell (n, m) to cell (0,0). Figure 5.2 shows a detailed

example.

According to Figure 5.2, the alignment between these two sequences is as following:

error I error \/ si tuations permittedin/{permitted in) {aa)/a

data/X communicaton / communication system / system

There are 1 deletion error, 1 insertion error, 1 substitution error, 1 concatenation

error and 1 repetition error in this sample alignment.

71

5.4 T im e A nalysis

We now discuss the time complexity of this algorithm. When computing the value

for a specific cell only cells {i — l , j — 1), (i , j — 1), {i — l , j) , {i — 2 , j — 1) and

{i — 1, j — 2) are examined, along with the two strings Fi(i) and Hence, to fill

in one cell takes a constant number of cell examinations, arithmetic operations, and

comparisons. The distance D(n,m).cost can be computed in &{mn) time. The space

used for this dynamic algorithm is also @{mn) strings. In practice, a file (sequence)

could contain a large number of strings and this algorithm would not be very efficient.

To overcome this we introduce a heuristic method, called the K-lookahead method,

where % is a positive integer. This method will only test the next K strings of each

file every time, and store the first string pair for these K strings. If the pair is a

D(iJ) F2 error situations permitted in a communication system

FI 0 -^5 ^ 1 5 ^ 2 4 ^ 2 6 ^ 2 7 ^ 40 46

error f5 error/error A,\situations 21 ^ 22 ^ 3 5 -^41

permittedin 116 t 11 ^ 9 ^ 1 2 perniîttemW
(permitted V)

^ 1 1 ^ 24 ^ 3 0

a 117 t 12 1 10 |13
N

f l2 '^ lO V -^ 2 2 XT 28

a t 18 t 13 f l l f l4 fl3
Yi(A

(a £t)/a ^^22 ^ 2 8

data f 22 f 17 fl5 f is f l7 ^ 27

communicaton f 34 f 29 127 ^ 2 4 ^ 2 8 f 26 comm^i^àt^i/
communication

^ 2 1

system f 40 f3 5 f33 f 30 "*\30 ^ 3 1 21
system

Figure 5.2; Computation Table of Dynamic Programming

72

deletion of a string F2Q) from F2, then the next run will start from F2D+I] and

Fi[i]; if the pair is an insertion of a string Fi[i] into F2 , then the next run will start

from F i[i+ 1] and if the pair is a match of or a substitution of the string Fi[i]

with the string F2Ü]) then the next run will start from F i[i+ 1] and F2U+I]; if the

pair is a repetition of string Fi[i] with string then the next run will start with

F i[i+2] and if the pair is a concatenation of string Fi[i] with strings

and then the next run will start with Fi[i+1] and F^[j+2]. This process will

be repeated again and again until the whole file is finished. Figure 5.3, Figure 5.4,

Figure 5.5 and Figure 5.6 show a detailed execution of this algorithm(FT = 5):

In these dynamic programming tables, K'^ steps are performed each time for a

total of M = size{longerFile^)-K+l times . So this K-lookahead algorithm runs in

&{MK^) time. The space for this dynamic programming algorithm is Q(K^).

 ̂lon gerF ile is the file that is the longer one of the two input files

D(ij) error situations permitted in a

0 5 15 24 26 27

error 5 X 2) 21 22

permittedin 16 11 9
\

11

a 17 12 10 13 12 \ 10

a 18 13 11 14 13

data 22 17 15 18 17 1 @

error / error

Figure 5.3: Example of K-lookahead Algorithm-Stepl

73

D(i,j) communicationsituations permitted m

permittedin

data

communicaton

X / situations

Figure 5.4: Example of K-lookahead Algorithm-Step2

D(i,j) permitted in a communication system

___ 9 11 12 25 31

permittedin 11 2 1 14 20

a 12 3 A 0\ 13 19

a 13 4 2 A 12 18

data 17 8 6 11 10

communicaton 29 20 18 16 — ®
permittedin / (permitted in)

Figure 5.5: Example of K-lookahead Algorithm-Step3

74

Sometimes a small K is not sufficient to find the correct string pairs between two

files. In this case, a larger K needs to be tested each time until the sufficient K is

identified. Binary search has been used for finding the proper K in our training set.

First, we choose K = size{longerFile)/2. If it is sufficient to find the correct string

pairs, then we chose K = K /2 to test the program again; otherwise, K — K + K /2

will be chosen as the next parameter for the program. The process is repeated until

the optimal K has been found. The bigger K we have, the more time is needed to

run and the more proper string pairs can be generated.

A number of other alignment alogrithms that save time and space by putting

restrictions on the form of the alignment have been described in [9]. The gen­

eral (original) string generation algorithm is used to derive results in this research.

D(i,j) a communication system

1 14 20

a
\

1
\ “

13 19

a 2
t ®

12 18

data 6 11 17

communicaton 18 16 11

system 24 20 11

(a a) / a, % I data, communicaton / communication, system / system

Figure 5.6: Example of K-lookahead Algorithm-Step4

75

5.5 R esu lts

We ran the experiments by using 12 pairs of files. Each pair consists of a file that

may contain spelling errors and a correct file. Totally these 12 pairs of files have

around 7500 string pairs. First, by running the original string generation algorithm

in Section 5.3, a set of string pairs has been found. A sample typing file, correct file

and their output results are shown below:

Rule based techniques are algorithms that attem pt to represent knowledge of common spiling error patterns in

the form of rules fo r transforming m isspellings into valid word. The candidate generation process consistsof applying

all applicable rules ot a misspelled string retainng every valid d ictionary word that result. It defines the estim ation of

probability of having m ade the particular error that te invoked rule corrected. Yhe candidates identified in the above

process thus can be ranked by assigning nmberical scores to them based on the previous estim ation.

Rule based techniques are algorithms that a ttem pt to represent knowledge of common spelling error patterns in the

form of rules fo r transform ing m isspellings into valid words. The candidate generation process consists of applying all

applicable rules to a misspelled string and retaining every valid d ictionary word that result. It defines the estim ation

of the probability of having m ade the particular error that the invoked rule corrected. The candidates identified in the

above process thus can be ranked by assigning numerical scores to them based on the previous estim ation.

Output: spiling/spelling, word/words, consistsof/(consists of), ot/to, */and, re­

tainng/retaining, */the, te/the, yhe/the, nmberical/numerical

There are 1042 error pairs in total of 7500 string pairs. Table 5.2 shows the

percentage of different error types. Substitution error is the most common spelling

error made by the specific user - the author of this thesis (84% of the total). It is

76

Total Del. Ins. Sub. Con. Rep.

1042

100%

16

1.54%

40

3.84%

876

84%

100

10%

10

0.62%

Table 5.2: Statistics for Error Types

also the error type that is mostly related to the keyboard.

We have also tested an actual file in this study. A draft file was entered at the

beginning. After going through the whole correction procedures, several paragraphs

have been added up or cut down from the input file. And a reasonable set of string

pairs as illustrated in the following have been identified:

by/*, viewd/viewed, */We, */note, */that, */an, */interesting, */product, */con­

struction, */between, */two, */copies, */of, */the, */same, */automaton, */is, */de-

fined, */in, */cite, */for, */the, */purpose, */of, */deciding, */the, */property, */of,

*/unique, */decodability, */for, */regular, */languages

From this result, we found that if we insert or delete an entire sentence or para­

graph, the output will be a sequence of word insertions or deletions. This nice result

shows that this algorithm is useful for generating error pairs.

In this study, we also test the appropriate K for different pair of files. We tested

various values for K for each file pair from small to big, until the appropriate K's are

found. Table 5.3 shows the appropriate K's we got from the training data sets.

In Table 5.3, the most values of K are satifying. The value of K is around 3 even

when the total string of a file is more than 800. However, for files Sample6,7,8, the K

77

File Name Total number of strings K

Samplel 815 3

Sample2 798 3

Samples 840 3

Sample4 315 2

Samples 902 3

Samples 443 280

Sample? 578 205

Samples 562 243

Sample9 546 3

SamplelO 485 3

Samplel 1 709 3

Samplel2 500 3

Table 5.3: Appropriate K for Different Files

78

is relatively big, K = 280, K = 205, K = 243 respectively. Each of these three sample

pair files has the situation mentioned before: entire sentences have been deleted from

or inserted into the input file. Therefore, the value of K is much bigger.

The optimal value of K is important. Once we found K from the training file, we

can use the K as the parameter for our K-lookahead algorithm, which will save time

and space. From the above training data, K can be chosen as 5 if the file contains

strings no more than 800 and there is no significant change between the two files.

79

Chapter 6

Improving the Brill and M oore

Error M odel

This chapter focuses on the application of our general methodology to the spelling

error correction problem. A set of techniques have been introduced in Chapter 3 for

the spelling error correction problem. Among them, the probabilistic method is more

interesting to us due to it capability to correct spelling errors in text by using the

Bayes Rule and the Noisy Channel Model [13], which has been successfully applied

to a wide range of problems, including spelling error correction.

In 2000 Eric Brill and Robert C. Moore introduced a new channel model for

spelling error correction [3]. In this chapter, we will have a close look at this model

and implement it with several improvements based on our general methodology de­

scribed in Chapter 4.

80

6.1 T h e B rill and M oore Error M odel

Usually in an error model, people only consider a single edit operation (insertion,

deletion, substitution) in the input string s ([5], [6], [15], [21]). Brill and Moore

had improved on this by analyzing spelling errors in terms of more general string-to-

string edit operations. Therefore, more than one edit operation can be considered in

their model. For example, people are more likely to type tion as iton rather than t

as i and i as t.

Let S be an alphabet, s be the input string, w be the output string. The Brill

and Moore error model allows all edit operations of the form a/P, where a ,P are

substrings with any length of s and w respectively, and a ,P G E*. P{a/P) is the

probability that users intend to type the string a but they type /? instead. Note that

the edit operations allowed in [5], [6], [15], [21] are properly included by this generic

string to string substitutions.

The main idea of this error model can be described as follows.

Generate a word from the input s e t > Pick a partition of the characters of that

w o rd > Type each partition, possibly with some mistakes.

Here is an example to illustrate this process. The word technical is chosen by a

person. Then he/she picks a partition from the set of all possible partitions of that

word, such as: te-ch-ni-cal. After typing each partition, possibly with errors such

as ta-k-ni-kal, and choosing the particular word and partition, the probability of

generating the string taknikal with the partition ta k n i kal would be P{ta\te) x

P{k\ch) X P(ni\ni) x P(kal\cal). Obviously there are many other possible partitions

81

of technical.

In this example, we may notice that neither P{k\ch) nor P{kal\cal) is modeled

directly using other error modeling methods ([6], [15], [21]).

A more formal description of this error model can be described:

— Given an alphabet E and a string s, where s ^ D (dictionary) and s G E*, a

partition T of s is a sequence of strings T — (Ti, Tg, - - -, Tm), such that T) G E* and

s = T 1 T2 . . . Tjn- Let Part{s) be the set of all possible partitions of the string s.

— Given another string w E D, a, partition R oî w is a sequence of strings R —

(i?i, i?2) • • •, Rn), such that Ri eTi*, and w — R 1 R 2 ■ ■ ■ Rn- Let Part{w) be the set of

all possible partitions of the string w.

If,

The partitions R = (i?i, i?2, • • ■, Rn) and T = (Ti, T2, . . . , T^) can be found such

that n = m, |i?i[< N, for some fixed parameter N.

Then,

By only considering the best partitioning of s and w, we can define the error

model:

\R\
P{s\w) = MAXR^Part{w),TePart(s),\R\=\T\YiP{Ti\Ri), (6.1)

i=l

where, |T| and |i?| are the number of components in T and R, respectively.

The general methodology introduced in Chapter 4 for defining error models can be

used to describe the Brill and Moore error model. In the Brill and Moore error model,

every channel has only 1 state. Let S be the only state. If given a transition of the

channel S (x /y)S , the input string x is Tj, output string y is Ri and H[S, x]{x/y, S) =

82

P{Tj]Ri). The channel can be viewed in Figure 6.1.

X /a:Pl
ac/d:P3

a/b:P2a/cd:P4

V
X /a:Pl

a/d:P3

c/A,:l

'a/b:P2X/d:l

a/c:P4
S2

P(l/a)+P(a/b)+P(a/d)+P(a/c)
= P1+P2+P3+P4 = 1

P(c/ X) = 1

P(A,/d) = 1

Figure 6.1: Brill and Moore Error Model

6.2 Training th e Error M odel

In Section 6.1, an useful error model has been described. Our next task is to describe

the method of [3] to compute a channel of this error model corresponding to a given

set of data. We call this the training problem. To conduct training in this error

model, a training set consisting of error pairs (si/wi) is needed. Recall that, in the

previous chapter, a string pair generation algorithm was applied to identify a set of

error pairs (si/wi), where Si is a word with possible spelling errors and Wi is a correct

word.

83

Equation 6.1 suggests that we need to find a pair of partitions R = (i? i,. . . , Rn)

and T — for and Sj. To achieve this, we begin by aligning the

characters in Si with those in Wi based on minimizing the edit distance between them.

Then we expand each substitution edit operation to its left and right to allow general

string-to-string edit operations and identify possible partitions of Sj and w,. After

that we can calculate the probability P{a/(3) of each sequence pair (a/P), where a

and P are substrings of Si and Wi of variable length. The process of training the error

model is described below:

• Get an optimal alignment between two strings;

• Expand each substitution edit operation to its left and right to allow string-to-

string edit operations;

For example, the optimal alignment between strings baa and aaca is b/a, A/a,

a /c and a/a. By expanding substitution edit operation 6/ a 1 position to it right,

(b/aa) is obtained; by expanding substitution edit operation a/c 1 position to

its left, (a/ac) is obtained; by expanding a /c to 1 position to its right, (aa/ca)

is obtained.

• Generate the training set that contains all the sequence pairs (ajP).

• Compute the fractional count of each sequence pair {ajP)\

Using the same example above, the pairs (6a/aa), (ad/aa), (da/aa), . . . need to

be counted the total appearing time in the training set.

• Calculate the probability of each pair {a/P) as P{a/P) = count{a/ P)/ count{a).

84

By training the given data, a set that contains all the pairs (a//?) is generated.

The quantity count{a/(3) is simply the total number of (a/P) that appears in this

training set. The quantity of count{a) is the number of times that substring a occurs

in the input texts.

6.3 Im provem ents

In the previous section, we reviewed the general process of training the Brill and Moore

error model. In order to enhance its applicability to a broader range of spelling errors,

several improvements should be considered.

6.3 .1 A lign m en t o f str in g pairs

In the Brill and Moore’s paper ([3]), the alignment between Si and Wi was accom­

plished based on single character insertions, deletions and substitutions. We de­

scribe an example here to illustrate their method of alignment.

The error pair (ot/to) appears a number of times in our training set. But when

we are trying to correct the misspelling 'of, the expected correction 'to' didn’t appear

in our result. Now, let us analyze the alignment of this error pair. According to the

Levenshtein distance, there are different alignments between 'ot' and 'to', but they all

have the same minimal edit distance 2 :

(1) A o t

t o A (one insertion A/t and one deletion t/A)

(2) o t A

85

A t o (one deletion o/A and one insertion A/o)

(3) o t

t o (two substations o /t and t/o)

Obviously, the third alignment {o/t) {t/o) is the best alignment based on most

people’s typing habit. However, the first alignment (A/t) (o/o) (t/A) is chosen by the

program because the authors of [3] didn’t consider transposition edit operation. In

this example, we couldn’t get any string-to-string edit operations because there is no

substitution error in this alignment. By only using the pairs above (A/t) (o/o) (t/A),

we are not able to find the correction for ot.

The transposition error (ot/to) is more natural than any of the above three align­

ments. Thus, the fourth edit operation transposition has been added to our alignment

algorithm (Section 2.2.3) as showing below:

C{i ,j) = min

C{i — l , j) + l deletion,

C{i , j — 1) + 1 insertion,

C{i — l , j — 1) + G{i,j) substitution,

C{i — 2 , j — 2) + T{ i , j) transposition,

where G (z,j) = 0 ii A{i) — B{j),

% ;) = ! i f #) f B(j);

T (z,;) = 1 if A(z - l)A(z) = B (j)B (; - 1),

T(2, j) = 2 if ;l(2 - 1)A(%) f B(;)B(j - 1);

After adding transposition, the alignment (o/t) (t/o) can be chosen by the pro­

gram. Therefore by expanding the substitution edit operation, the following sequence

86

pair can be generated: ot/to.

W ith the above changes, the correction 'to' for the misspelling 'ot' can be identified

in our result list.

6.3 .2 E xp an d su b stitu tio n ed it op eration

In the same paper, Brill and Moore introduced a method that expands each substi­

tution error to incorporate up to N additional adjacent edits, and allow for richer

contextual information, where N is the fixed parameter of the model. At each sub­

stitution position, the letters are expanded to the left and right.

For the sake of illustration let us consider an example. Suppose we have two

strings s = baada and w = aaaaa. W ith Brill and Moore’s method the training pair

{baada, aaaaa) can be aligned as: b/a, a/a, a/a, d/a, a/a. This means when N = 0,

we have R = (6, a, a, d, a) and T = (o, a, a, a, a). The substitution errors are b/a and

d/a. To allow for richer contextual information, we can expand each substitution:

For N = l, the following sequence pairs are generated: ba/aa, ad/aa, da/aa]

For N=2, the following sequence pairs are generated: baa/aaa, aad/aaa, ada/aaa.

However, if we turn to another example, there is a problem. Given another training

pair {baa, aaca), by using the same method shown above, we would generate the

following substitutions:

N=0: b/a,a/c

N =l: b/aa,a/ac,aa/ca

N=2: ba/aac,ba/aac,aa/aca

87

In this example, when N=2, the pair (ba/aac) occurs twice. But when we look

back to our original training pair [baa, aaca), the pair [ba/aac^ only occurs once.

Therefore, we modified this method to allow more suitable sequence pairs. For each

no match and matched position in the allignment, we expand the character only to

the right. For instance, in the example above, we could regenerate the following

sequence pairs:

N =0: 6/a , A/a, a/c, a /a

N =l: b/aa,a/ac,aa/ca

N=2: ba/aac, aa/aca

In our new result, ba/aac occurs only once. Therefore, from this example, we

could find that the new method gives ns more proper seqnence pairs.

6 .3 .3 A ssign th e p rob ab ilities

Fractional count o f sequence pairs

In [3], the authors described the method for calculating the probability of each

sequence pair [a/j3) as P[a\j3) = count[a/(5)/count[a). For each (a//?) in the set of

sequence pairs we define;

— count[a/P) is the number of times that [oi/(3) occurs in the set of

sequence pairs;

— count (a) is the number of times that substring a occurs in the text

corpus. In other words, count[a) is the sum of the number of times that count[a/P)

occurs in the set of sequence pairs, but this time, /? could be any letter occurring in

88

that set.

Hence, the probability P{a/(3) — count{a./ P)/ count{a). We also define the

Distance Cost between a and (3 as C{a/P) = — \ogP{a/f5).

The Brill and Moore error model only considers a as a non empty letter, but

neglects the fact that empty strings are also frequently encountered in insertion errors

(X//3). Therefore, we can redefine the probability calculation method for each pair as

below:

If a is the empty string (A), count(a) is the number of times that A occurs

in the input files. It equals to the sum of each word length plus 1. For example,

if the input files contains two words wi and W2 with \wi\ = 5 and \w2 \ = 6 , then

count{a) = 6 + 7 = 13.

Convert the transition

In the Brill and Moore error model, transitions such as So{a/(3)Si have |a | = n and

1/31 — m, where n or m is greater than 1. By using the rule 4.2, we can convert

So{a/P)Si to a sequence of transitions with single labels. To further demonstrate

this, let us look at the following examples:

Given a transition So(xy/ab)Si with P{xy/ab) — P, it can be converted to

So{x/a)Si{y/b)S 2 with P{x/a) = P and P{y/b) — 1;

Given a transition So{xy/a)Si with P{xy/a) = P, it can be converted to

So{x/a)Si{y/X)S 2 with P{x/a) = P and P { y / \) = 1;

Given a transition So{x/ab)Si with P{x/ab) = P , it can be converted to

89

So{x/a)Si{X/b)S2 with P{x/a) — P and P{X/b) = 1.

The Figure 6.1 illustrates this method.

As illustrated in Figure 6.1, S{a/cd)S with P{a/cd) = P4 is converted to S{a/c)S 2 {X/d)S

with P{a/c) = P4 and P{X/d) = 1; S{ac/d)S with P{ac/d) = P3 is extended to

S{a/d)Si{c/X)S with P{a/d) — P3 and P{c/X) = 1.

Assign the probabilities

In this research, we are going to determine a proper way to calculate the probability

P(a//3) of pair {a/(3).

As we discussed before, if the transition So{a/P)Si with |a | or |/5| is greater than

1, we will convert it to a sequence of transitions with single labels. According to the

method of assigning probabilities in Section 4.2, thus, if a = XiZ, € 2 , z E E*, we

have

Z E f(zizta) = Pi.
/3eS* Z E E '

And,

E PW0) = a,
/3eE*

p w m = X -P2.

where,

— count{xiz) is the number that substring in which start letter is x\ occurs in the

text. In other words, count{xiz) is the sum of the number times that count{xiz/(3)

occurs in the set of sequence pairs, where z G E*,/3 E S*.

90

— 0 < P i < 1, 0 < ^2 < 1, f l + ^2 — 1

6.4 A pp ly ing th e M odel

In Section 6.3, we described how to train the error model and how to obtain the set of

parameters P{a/P), which define the channel. Each P{ajj3) is the probability that

if a substring a is intended, the channel will produce j3 instead {a,P G Z*). In this

section, we will describe Brill and Moore’s algorithm to correct spelling errors by ap­

plying their error model. In particular, the working process of spelling error correction

problem can be described in 3 steps: (1) detecting an error; (2) generating n candidate

corrections; (3) ranking the list of candidate corrections. For example, if n = 3, then

the 3-best list will contain 3 words Wi,W2 ,W3 , such that tci G D, W2 G D, W3 G D, and

they have the minimal distance to s in the order of C{wi/s) < C{w2 /s) < C{ws/s),

where C{wi/s) = —logP{wi/s).

A pply the m odel

In [3], the authors introduced a dynamic programming that correct errors by

applying the error model.

In the standard dynamic programming of computing the Levenshtein distance, in

order to fill the cell (i , j) in the matrix, we need to only test cells — {insertion

error), {i — l , j) {deletion evvov) and {i — l , j — l) {substitution evvov). In this research,

however, we allow generic edit operations (error pairs) of the form a / (3, where each

a / p has a cost C{a/P) = — \ogP{a/P). This means that in order to fill in the cell

91

(i , j) in the edit distance matrix, all cells (a, b) where a < i and b < j might have to

be examined.

Following [3], we precompiled the dictionary into a trie, and store a vector of

weights in each node of the trie. Then we consider the standard matrix of computing

edit distance between two strings (one is the misspelling s, and the other one is the

correct word w in the dictionary). Thus the vector of weights for each node in the trie

corresponds to a column in the weight matrix associated with computing the distance

between s and the prefix of w ending at that trie node. Therefore the last number

stored in the vector of the final nodes in the trie will represent the edit distance

between the input string s and the string w in the dictionary reached at that node.

Figure 6.2 shows an example that illustrates this dictionary trie, where s = ann and

w = ant.

ann/ant

0 1
a 1 0
n 2 1
t 3 2

0 1 2 3

J _ _0_ - L
1 _o J _

2 J _ J _

O o - • o - o
Figure 6.2: Example of Computing Distance In the Trie

We store all the P[a/(5) parameters in a ternary search trie, each node of which

92

contains a ternary search trie. Figure 6.3 shows the ternary search trie that stores a

list of P{a/(3) : ac /akg,ad /hc,ab /agh .

ac/akg, ad/bc, ab/agh

L M S R

\ ’b’ \
1

L M R P

\ ’a’ \ 0

\ ’g’ \ 0

\ ’h’ \ P

\ ’a’ \ 0

\ ’k’ \ 0

\ ’g’ \ P

\ ’b’ \ 0

\ ’c’ \ P

L; left son; R: right son; M: middle son; S: sub_trie; P: probability

Figure 6.3: Ternary Search Trie to Store Parameters

In particular, we have one ternary trie corresponding to all string pairs that appear

on the left hand side (string a) in our parameter set. In this trie, if we reach the end

of the string a, then we have a pointer sub-trie pointing to a ternary trie that consists

of all strings (3 appearing on the right hand side of the set of P{a/ f3) parameters with

OL on the left hand side. We will store the substitution probabilities at the terminal

nodes of the P ternary trie. Both a and /3 string will be stored in the reverse order.

We then need to compute edit distance over the entire dictionary one by one.

93

Chapter 7

Experim entation

In this chapter, we will conduct experimental tests on both the original and the

improved Brill and Moore [improvedBM for short) error model. We also will compare

the experimental results of applying the dynamic programming and the channel error

correction algorithm on the improvedBM error model. Moreover, four more error

models modified from the improvedBM error model will be described, tested and the

experimental results will be reported.

In order to get reasonable experimental results, a total of 12 pairs of files (con­

taining around 7500 string pairs) have been used for training various error models. A

total of 1042 error pairs are generated from the training set to compute the channels

of these error models. Our dictionary contains approximately 250,000 correct words,

including all words in the training set. For evaluation, we have run experiments using

two testing sets of misspellings (words with common English spelling errors). Both

of these sets are generated from the typing mistakes created by the author of this the-

94

sis. The first testing set has 134 misspellings and the second one has 91 misspellings.

The first testing set contains a number of misspellings that have been used also for

training the channel. But no misspellings in the second testing set have been used.

In the experimental results tables, n-best lists contain n-candidate correct words for

each misspelling where n = 1, 2 , —

In this research, we are interested in computing the channel of given error model

that corresponds to a specific typesetter. Therefore, all the training files and testing

misspellings are from a specific user (the author of this thesis).

7.1 C om parison o f th e O riginal and Im proved B rill

and M oore Error M odels

Testing the original Brill and M oore error models

The Original Brill and Moore error model (without any improvements) has been

tested in this section. Totally 2526 sequence pairs (a//?) {a ^ (5) are generated from

1042 error pairs (s^/w,) to compute a channel of this error model. The results on the

two testing sets of misspellings are shown in Table 7.1. However, since we don’t have

large quantity of training data set, the results on improvedBM error model don’t

have the same accuracy level as that has been illustrated in Brill and Moore’s paper

[3].

Testing the improved Brill and M oore error m odel

Totally 6692 sequence pairs {a/(3), including the case of a = /?, are generated from

95

Total 1-best 2-best 3-best

First Set

(%)

132 102

77.28

117

88.64

122

92.42

Second Set

(%)

91 61

67.03

73

80.22

80

87.91

Table 7.1: Result of Original Brill and Moore Error Model

the 1042 error pairs used above to compute a channel of the improvedBM error

model. The results on the two testing sets of misspellings are shown in Table 7.2.

Total 1-best 2-best 3-best

First Set

(%)

132 114

86.36

122

92.42

126

95.45

Second Set

(%)

91 66

72.52

76

83.51

82

90.1

Table 7.2: Result of Improved Brill and Moore Error Model

Comparison

As illustrated in Figure 7.1, for both two testing sets the improvedBM error model

has a better result than the original Brill and Moore error model. In particular, if

the misspelling contains more than one errors, the improved error model can find

more appropriate corrections. For example, the misspelling 'peoid' can be corrected

to 'period' in the first candidate word by using the improved model, but can not be

96

corrected in any candidate words by using the original model. Three candidate words

prodeced by using the original model are: Lepid, tepid and paid.

1
0.95

0.9

0.85

I ...
0.7

0.65

0.8

- , *
— r

2
N-best

. Original(F) | . _ noEm pty(F) . - O riginal(S) - - noEm pty(S)

Figure 7.1: Comparison of Original and Improved Brill and Moore Error Model

7.2 C om parison o f D ynam ic P rogram m ing and C han­

nel C orrection A lgorithm s

In Chapter 4, a general error correetion algorithm is defined to correct errors for a

given channel which is called the channel correction algorithm in this research.

In the channel error correction problem, we are given a channel output s, an

NFA A d that stores the dictionary D, and a wfse-symtem that corresponds to

the channel. If s is described as a DFA Ag, then the channel correction algorithm

97

addressed in Section 4.3 can be used to find the correction of s.

In this section, we are going to use this algorithm to find out the correction of

misspellings if the wfse-system B~^ corresponds to the channel of the im provedBM

error model. Theoretically, the results of finding corrections by using dynamic pro­

gramming described in Section 6.5 are the same as the results of using the channel

correction algorithm. The example in Section 7.2.1 shows that also in practice the

results are the same.

The A T h T finite state machine tools described in Chapter 2 were used to create

the WFA As, A ^ and the W FST B~^. This tool also can be used to compute the

composition o B ~ ^ o A d -

7.2 .1 E xam p le

The example below shows how the corrections of a certain misspelling can be identified

by using dynamic programming.

misspelling: aha\ dictionary word: abab

We consider the following 1-state channel of the im provedBM error model:

P{b/b) : 1 .0 ,P (a/a) : 0.15, P(a5/a5) : 0.5 ,P(a5/a) : 0.35;

As we know, the Distance Cost C is the negative log of the probability P , that is,

C(6/6) : 0, C(a/a) : 0.82, C(o6/a6) : 0.3, C(a6/a) : 0.45;

Dynamic Programming:

We can create a two-dimensional table as displayed in Figure 7.2

There are two paths shown in this table to reach the final destination:

98

(1) pairs: {ab/ab){ah/a)

cost: 0.30 + 0.45 = 0.75 (total)

(2) pairs: {a/a){b/b){ab/a)

cost: 0.82 + 0 + 0.45 = 1.27 (total)

In these two paths, the edit operations (ab/ab){ab/a) has the smallest cost 0.75

to reach the correction.

The next example shows how to determine the corrections of the same misspelling

by using the channel correction algorithm.

Create a weighted finite-state transducer (W FST) for the dictionary D = {abab}:

Figure 7.3

Create a W FST for the misspelling S — aba: Figure 7.4

Create a W FST for the same channel B~^: Figure 7.5

Create a W FST ioi X = D o (o is the composition operator): Figure 7.6

Create a W FST for Y = X o S: Figure 7.7

Figure 7.7 illustrates that two paths are able to reach the correction:

{a/a){b/b){ab/a) with the total cost of 1.27;

(ab/ab){ab/a) with the total cost of 0.75.

Then the best path has been found in Y : (Figure 7.8)

Therefore, the pairs (ab/ab)(ab/a) have the smallest cost 0.75 to reach the correc­

tion, which is the same result as in the case of dynamic programming.

99

X a b a b

X A
a \ ^ 0 .8 ^ "'0.35

b \).8 2 ^
-0 .3 0 ^

a
X

^1.27
^0.75

Figure 7.2: Dynamic Programming to Calculate String Correction

Q . a:a/0 A b:b/0 a:a/0 &:a/0

Figure 7.3: W F S T D of Dictionary abab

Q ̂ a:a/0 b:b/0 ^ a:a/0

A

83
Figure 7.4: W F S T 8 of Misspelling aba

b:b/0 a:a/0.82

a: a/0.3

b:b/0

a:a/0.45

Figure 7.5: Channel P{b/b) : 0.2, P (a /a) : 0.2, F{ab/ab) : 0 .1 ,P (a5/a) : 0.15

100

b:b/0 b:b/0a:a/0.8: a:a/0.82

b:b/0a:a/0.3 a:a/0.3 b:b/0

a:a/0.45a:a/0.45
b:A,/0b:A,/0

Figure 7.6: W F S T X = D o B '

b:b/0
a:a/0.8:

b:A./0b:b/0a:a/0.3 a:a/0.45

Figure 7.7: W F S T Y = X oS

Q j a:a/0.3 ̂ b:b/0 a:a/0.45 ̂ b:X/0 ^

Figure 7.8: The Best Path from Xo B

101

7.2 .2 R esu lt

In this section, we compare the results by applying the dynamic programming and the

channel correction algorithms on the im provedBM method. The results are displayed

in Table 7.3 and 7.4.

From Table 7.3 and Table 7.4, we can see that the correction of misspellings by

using the channel correction algorithm is same as the correction by using the dynamic

programming. The corrections are also with essentially the same cost, considering the

possibility of computer arithmetic imprécisions.

7.3 O ther Error M odels

In this research, four more error models will be considered by modifying the im provedBM

error model. We use the same data to train these error models and use the same sets

of misspellings to test these models - see Section 7.1. We will illustrate each of them

in the following sections.

7.3 .1 T ota l on e m odel

Ristad and Yianilos presented a stochastic transducer to determine the similarity

of two strings [28]. This stochastic transducer allows us to learn a string-edit dis­

tance function from a corpus of examples. They modeled string-edit distance as a

memoryless stochastic transducer. In this model, each channel has one state and

each transition generates either a substitution pair (a /6), a deletion pair (a/A), an

102

Misspelling Correction

(Our algorithm)

Cost Correction

(Dynamic Programming)

Cost

one(l-best) wen 0.734 wen 0.735

(2-best) fen 0.774 fen 0.776

(3-best) ten 0.81 ten 0.811

benn(l-best) bean 0.904 bean 0.906

(2-best) benny 0.915 benny 0.918

(3-best) bend 0.94 bend 0.941

ot(1-best) to 0.655 to 0.655

(2-best) fo 0.714 ft 0.715

(3-best) sot 0.734 sot 0.735

peoid(1-best) peroid 1.133 period 1.134

(2-best) prid 1.713 prid 1.713

(3-best) pierid 1.727 pierid 1.729

specity(l-best) specify 1.104 specify 1.106

(2-best) specialty 1.774 specialty 1.776

(3-best) asperity 1.988 asperity 1.99

bu(l-best) bus 0.741 bus 0.741

(2-best) but 0.757 but 0.757

(3-best) bun 0.775 bun 0.775

skils skis 1.203 skis 1.205

Table 7.3: Comparison Results for the im provedBM Error Model

103

Misspelling Correction

(Our algorithm)

Cost Correction

(Brill and Moore’s Method)

Cost

anatmy anatomy 1.084 anatomy 1.086

contro control 1.118 control 1.121

goint going 0.996 going 0.998

detectin detection 1.271 detection 1.274

speling spelling 1.156 spelling 1.157

metods metis 1.868 metis 1.87

sincd since 1.001 since 1.003

owrd word 0.668 word 0.668

machanincs mechanics 1.952 mechanics 1.952

folliwgn following 1.668 following 1.67

decidng deciding 1.171 deciding 1.171

correciton correction 1.211 correction 1.212

bcause because 1.094 because 1.096

seciton section 0.909 section 0.909

etecting detecting 1.326 detecting 1.327

precdeing preceding 1.35 preceding 1.351

prbability probability 1.39 probability 1.392

isolatd isolated 1.224 isolated 1.226

Table 7.4: Comparison Results for the im provedBM Error Model

104

insertion pair (A/6), or the distinguished termination symbol Of course, the null

operation (A/A) is not included in the alphabet E of edit operations. The sum of the

probabilities of all edit transitions is 1.

Ristad and Yianilos use this stochastic transducer to generate strings from a cor­

pus of examples, so they need the termination symbol # to delimit resulted words.

However, in our research, a set of input strings is given. We will use error model

to find the correction of these input strings. Therefore, in this section, the similar

stochastic automaton will be used to define our spelling error correction model with

only one difference: the termination symbol # is not considered in the error model.

The error model is illustrated in Figure 7.9, such that the probabilities of all the

transitions sum to 1.

P1+P2+P3+P4 = 1

a/b:P2
b/b:Pl

a/a:P3

OR

A /a:ql
a/a:P

b/b:l-ql

P(a/a)+P(b/A) = 1
P(A/a)+P(b/b) = 1

Figure 7.9: The totalOne Model

The result of using our training data in this error model is shown in Table 7.5:

105

Total 1-best 2-best 3-best

First Set

(%)

132 108

81.8

115

87.12

121

91.67

Second Set

(%)

91 64

70.32

72

79.12

75

82.42

Table 7.5: Result of totalOne Model

The result of totalOne error model in Table 7.5 shows that it doesn’t have the

same accuracy as that of im provedBM model. In the first testing set, the 1-best

accuracy of totalOne model is 81.81%, the 2-best accuracy is 87.12% and 3-best accu­

racy can reach up to 91.67%. In the first testing set, the accuracy of all n-best list for

this model is lower than the im provedBM model. However, a number of misspellings

such as oen that can be corrected in the 1-best set of this model cannot be corrected

in the 1-best set of im provedBM model. If the correction of The misspelling can

not be found in the 1-best and 2-best sets in the totalOne model, then the chance of

the correction appearing in the 3-best set is limited. In the second testing set, the

accuracy of all n-best list is lower than that from im provedBM model.

7.3 .2 D ifferent in sertion m od el

The typing behaviour of people can be very complicated. It depends on the indi­

vidual’s typing skill and knowledge, as well as the layout of keyboard being used.

In Chapter 2, we mentioned that Damerau [6] found that approximately 80% of all

106

misspelled words contain a single instance of one of the following four error types:

insertion, deletion, substitution, and transposition.

In the im provedBM error model, when we deal with insertion errors, we consider

them independent of the next letter. For example, in the error pair {thre/there), there

is one insertion error A/e. However, this insertion error may depend on the next letter

r. In the most cases, when people are typing, they always think of the next input

letter. Therefore the insertion errors may relate to that letter. We modified the

im provedBM error model to be more specific to insertion errors. In this new error

model, we use \ { x) / y instead of edit operations X/ y , such that the edit operation

(X{ x) / y) is applied only if the next input letter is x. Thus, the probability measure

H[S i , x] is now defined in the same manner as before but with the following change:

H[Si , x] { X(x ') / y , Sj) — 0 ior x' ^ X (the probability is 0 if the next input is x with

x ^ x')

H [S i , x] { X { x) / y , S j) > 0

Figure 7.10 shows the error model we described in this part:

The result of using this error model is shown below:

From the result of this different insertion {dif In sert for short) error model, we

can see that the accuracy is a little better than the totalOne model. In the first

testing set, the 1-best set accuracy is 83.33%, the 2-best set accuracy is 91.42% and

the 3-best set accuracy can reach 93.94%. The result of this error model is similar to

but a little worse than the im provedBM model. All the misspellings that can not

be found by the im provedBM model, were not identified by this error model either.

107

X (b)/b:l-ql
a/a:Pl

b/a:l

b/b:qlc/A, :q2^
c/a:l-q2

P(a/a)+P(A,(a)/a) = P l+ l-P l = 1

P(b/b)+P(A-(b)/b) = q l+ l-q l =1

P(c/a)+P(c/ A) = l-q2+q2 = 1

Figure 7.10: The d if In ser t Model

Total 1-best 2-best 3-best

First Set

(%)

132 110

83.3

122

91.42

124

93.94

Second Set

(%)

91 62

68.13

68

74.73

70

76.92

Table 7.6: Result of d if In sert Model

108

In the result of the second set of misspellings, the accuracy is lower than that of the

im provedBM model and the totalOne model. We trained this error model by using

the same data set. The result shows that the different insertion error model may not

correct as many misspellings as im provedBM error model and totalOne error model

do.

7.3 .3 N o -em p ty m od el

We now consider the no empty model. In this model, we will only consider edit

operations a / (3 with |a | > 1 and construct the channel using only those edit opera­

tions. In other words, this model doesn’t consider the single insertion edit operation

(A/y). As before, in this new model we don’t want to consider the insertion error

individually. Rather we combine the single insertion error with the previous let­

ter. For example, given an error pair {thre/there), the optimal alignment of it is:

{tjt), (h/h), (A/e), (r /r) , (e/e). However, in this model, the single insertion is not con­

sidered. Therefore, the following edit operations are generated by expanding the char­

acters in the alignment: (th /th), [hjhe], (r/e r), (re/re), [th/the], {hr/her), {re/ere).

Figure 7.11 illustrates this error model with a very simple channel:

The result of using our training data in this error model is shown in Table 7.7:

In the first testing set of No Empty model, the accuracy of 1-best set only reach

69.7%, the accuracy of 2-best is 72.73%, and the accuracy of 3-best doesn’t change

much, still less than 75%. The accuracy shown in the second data set is also lower than

that of the other error models. The reason of the lower accuracy of this error model is

109

a/x:Pl
ab/xyb:P3

aa/xya:P2ab/xb:P4

P(a/x) + P(aa/xya) + P(ab/xyb) + P(ab/xb) = P1+P2+P3+P4 = 1

Figure 7.11: The noEm pty Model

Total 1-best 2-best 3-best

First Set

(%)

132 92

69.7

96

72.73

97

73.48

Second Set

(%)

91 46

50.55

47

51.65

47

51.65

Table 7.7; Result of noEmpty Model

110

that all the single letter error pairs have been removed, only those edit operation a / (3

with |a | > 2 are considered. So the size of the training set is reduced. We know that

the more training data we have the more accuracy we can get. However, a number of

misspellings that can be found in the 1-best set by using this error model can not be

identified in the 1-hest set by using other models such as ofd, converence. Therefore,

if there were enough training data for this error model, it might get good result. But

in this research, small training data sets are important since we are interested in

modeling the error behaviour of a specific typesetter in this study. In practice, it is

hard to get big data set from a certain typesetter.

7.3 .4 T h ree s ta te m od el

The idea of this error model is borrowed from [3]. In this error model, we assign

probabilities depending on the position in the string where an edit operation occurs.

This can be the start of the word, middle of word and end of word. The position of

an edit operation (a/P) is determined by the location of the substring a in the word.

Positional information is a powerful conditioning feature for rich edit operations.

For example, people rarely mistype antler as entier, but often mistype reluctant as

reluctent.

Compared with other error models, the threeState model has three states rather

than only one state. We use three vectors to store all beginning sequence pairs, middle

sequence pairs and end sequence pairs and we calculate the probabilities for each of

them. For example, for the error pair (aab/acb), the set of beginning sequence pairs

111

is: {(a/a), (aa/ac)}, the set of middle sequence pairs is: {(a/c)}, and the set of end

sequence pairs is: {(6 /6), (o6 /c6)}.

When applying threeState error model, we checked different vector according to

the position of the substring a in the source (dictionary) word. Similarly, according

to the theory in Chapter 4, we define the sum of all probabilities that start from same

state with the same input to be 1.

Figure 7.12 illustrates this error model with a simple example:

a/bc c/f

a/a c/b

b/dc/f

a/bc

In State B: P(a/a) + P(a/bc) = 1
In State M: P(a/bc) = 1, P(c/f) = 1, P(b/d) = 1

In State E: P(c/f) + P(c/b) = 1

Figure 7.12: The threeState Model

There are 2172 sequence pairs (a/P), including the case of a = /?, generated for

the set of beginning pairs; 4824 pairs generated for the set of middle pairs and 2164

pairs generated for the set of end pairs. The result of using our training data in this

error model is shown in Table 7.8:

This is the last error model that has been tested. The accuracy result of this

threeState model shows that it is the good choice for the misspelling correction

problem. In the first testing set, the accuracy of 1-best list is 81.06%, the 2-hest list

accuracy result is much better, which is 90.91%, and the accuracy of 3-best list can

112

Total 1-best 2-best 3-best

First Set

(%)

132 107

81.06

120

90.9

126

95.45

Second Set

(%)

91 68

74.73

79

86.81

82

90.11

Table 7.8; Result of threeState Model

reach to 95.45%. The accuracy of 1-best list is lower than the result from the totalOne

model. But the accuracy of 2-hest set by using this model increases by 9%, which is

better than totalOne model. The accuracy of the 3-best list increases by 5%, which

is a litter higher than improvedBM model. The accuracy of all 1-best, 2-best and

3-best lists in the second testing set is higher than all other error models.

7.4 C om parison

In the last part of this chapter, we list all the result of each error model together in

Table 7.9 and draw a picture for them.

In Table 7.9, we notice that, in all cases, the accuracy of the second testing set

is lower than the accuracy of the first testing set. Recall that, the first testing set

contains a number of misspellings that have already been used in the training data set

to train the error model. But no misspelling in the second testing set has been used

before. Therefore, the result in the first set is better than the result in the second

set.

113

Total 1-best 2-best 3-best

First Set improvedBM

(%)

132 114

86.36

122

92.42

126

95.25

Second Set improvedBM

(%)

91 66

72.53

76

83.52

82

90.11

First Set noEmpty

(%)

132 92

69.7

96

72.73

97

73.48

Second Set noEmpty

(%)

91 46

50.55

47

51.65

47

51.65

First Set totalOne

(%)

132 108

81.82

115

87.12

121

91.67

Second Set totalOne

(%)

91 64

70.33

72

79.12

75

82.42

First Set diflnsert

(%)

132 110

83.33

122

91.42

124

93.94

Second Set diflnsert

(%)

91 62

68.13

68

74.73

70

76.92

First Set threeState

(%)

132 107

81.06

120

90.91

126

95.45

Second Set threeState

(%)

91 68

74.73

79

86.81

82

90.11

Table 7.9: Table of All Results

114

0.9

I
I

0.6

0.5

0.4

1 2 3
N-best

ImprovedBM(F)

ImprovedBM(S)

- noEmpty(F)

- noEmpty(S)

g ThreeState(F)

4 ThreeState(S)

-H - - totalOne(F)

A totalOne(S)

- diflnsert(F)

diflnsert(S)

Figure 7.13: Comparison of Five Models

As we can see from the figure 7.13, the threeState error model has the highest

accuracy in the first testing set and the second testing set since the threeState error

model consider the positional information which is a powerful conditioning feature.

The noEm pty error model has the lowest accuracy in both two testing set since it

has less training data to train the error model.

115

Chapter 8

Conclusion and Future Work

In this thesis, we introduced a general methodology to define error models describing

different types of errors in information processing application, discussed the channel

computation for the specific user with the application to spelling errors, improved the

Brill and Moore spelling correction method by employing the theory of the general

methodology. Several data structures and algorithms have been used in this thesis to

help us apply the general methodology, compute channels and improve the Brill and

Moore method:

Data Structures:

• Trie: It was used to store the dictionary

• Binary Search Trie (bst): It was used to store all {a/f3) pairs

Algorithms:

• String Distance algorithm: The concept of string distance algorithm was used

116

in this thesis to develop the algorithm that generates string pairs from given

data

• N-best string algorithm: The algorithm was used to find n-best distinct words

in WFST.

Aside from the above data structures and algorithms, the AT&T tools were also used

in the thesis to create WFST, WFA and compute the composition between them.

8.1 C onclusion

As illustrated in Chapters 4 and 6 of the thesis, with its capability of using basic tools

from stochastic automata to describe various error situations, our general methodol­

ogy is able to provide us with a tool to derive different error models (such as Church

and Gale error model. Mays and Damerau error model, Brill and Moore error model)

in the same way.

The same experimental results from applying the dynamic programming method

and the channel correction algorithm to the improved Brill and Moore error model

in Chapter 7 of the thesis shows that the latter can be used to correct the errors

described by the error model channels.

The better results in 1-best, 2-best and 3-best lists from using the improved Brill

and Moore error model than the original Brill and Moore model demonstrates that

the general methodology with its capability of utilizing the probabilities assignment

and transitions conversion method can assist us in creating better error models in the

117

information processing system.

As described in the Chapter 7, among the four modified error models from the

improved Brill and Moore error model, the threeState error model with the consid­

eration of positional information has the highest accuracy for the 3-best list in the

first testing set and has the highest accuracy for all 1-best, 2-best and 3-best lists in

the second testing set. The noEm pty error model with the less training data has the

lowest accuracy for all 1-best, 2-b est and 3-best lists in both two testing sets. This

model may have a better performance result with a larger data set; however, as we

are interested in modeling the error behaviour of a specific typesetter in this research,

having small training data sets is essential to the construction and implementation

of our methodology. The other factor that affects us in choosing the small training

data sets is that it is usually difficult to get large data sets from a certain typesetter

in practice.

8.2 Future W ork

The possible future work of this thesis might concentrate on the following aspects:

• Add Source Model P(W)\

As mentioned in the thesis, a source model P(W) is a model that describes the

probabilities of a word w to be produced by the text generator. It is usually used

with the error model P(s|n;) together for the probabilistic technique of correct­

ing misspellings. This research focuses on the general methodology of defin in g

an error model, which can be considered as a finite state source model if we

118

omit the output parts of the channel transitions. In the future, we can explore

what happens to the results if we consider a source model P{W) independently

of the error model.

• Incorporate the keyboard layout into the string pair generating algorithm:

The string pair generating algorithm described in this thesis uses Levenshtein

distance to compute the string distance without considering the impact of key­

board layout on the computation. The consideration of the keyboard layout

may give a more satisfying result in the string distance computation. In order

to get a better result, the author also experimented with the Church and Gale’s

confusion matrices to generate string pairs with considering of the keyboard

layout. However, due to the limited knowledge of statistical data in these four

matrices, the results were not satisfying. Therefore, finding an appropriate way

that incorporate the keyboard layout into the string pair generating algorithm

is our next step of this research.

• Test more data:

In this research, we collected 12 pairs of files to train various error models. Two

testing sets with total 225 misspellings were used to test the improved Brill and

Moore error model and four other modified error models. All these data are

from a specific user — the author of this thesis. To have a more representative

data set that covers a wide range of situations, it is necessary in the future work

of the research to have testing data sets from a variety of specific users and run

the experiments for them.

119

Employ appropriate tools to assist in collecting training data:

In this research, a manual approach was employed to collect training data to

generate string pairs for the specific user. The author used two Microsoft word

documents files to store the original and modified copy of a data set each time.

However, in practice, to collect training data sets from a large group of specific

users, such an approach may not seem to be realistic. Thus, it could be an

appropriate next step in this research to find or develop some sort of tools that

will enable us to automatically keep track of every change that a specific user

makes to a training data set.

120

Bibliography

[1] Aho, A. V., Hopcroft, J. E., Ullman, J. D. The design and analysis of computer

algorithms Addison Wesley publishing company, cl974, pp. 207-209.

[2] Braines, S. N., Napalkov, A. V., Svechinski, W. B. Neurocybernetics, Berlin 1964.

[3] Brill, E., Moore, B.C. An Improved Error Model for Noisy Channel Spelling Cor­

rection, 38th Annual Meeting, Association for Computational Linguistics, 2000.

[4] Chow, Y., Schwartz, R. The N-Best Algorithm: An Efficien Procedure for Eind-

ing top N Sentence Hypotheses, Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing (ICASSP ’90), Albuquerque, New Mex­

ico, April 1990, pp. 81-84.

[5] Church, K. W. and Gale, W. A. Probability scoring for spelling correction, Statis­

tics and Computing, 1991, 1:93-103.

[6] Damerau, Fred J. A technique for computer detection and correction of spelling

errors. Communications of the ACM, 7, 3 (March 1964), pp. 171-176.

121

[7] Gailil, Z. and Park, K., An improved algorithm for approximate string matching,

SIAM Journal on Computing, 19, 1990, pg 989- 999.

[8] Grudin, J. T. Error patterns in novice and skilled transcription typing in Cognitive

Aspects of Skilled Typewriting, W. E. Cooper, Ed, Springer-Verlag, New York,

1983.

[9] Gusfield, D., Algorithms on Strings, Trees, and Sequences: Computer Science and

Computation Biology, Cambridge University Press, New York, NY, USA, 1997,

pp. 215-223

[10] Hopcroft, J. E., Motwani, R. and Ullman, J.D. Introduction To Automata The­

ory, Languages, And Computation, Second Edition, Addson-Wesley, 2001

[11] Jelinek, F. S elf-organized Language Modeling for Speech Recognition, IBM Re­

port, 1985.

[12] Jokinen,P., Ukkonen, E., Two algorithms for approximate string matching in

static texts, Proceedings of the 16th International Symposium on Mathematical

Foundations of Computer Science, Lecture Notes in Computer Science, 52, 1991,

pg 241- 248.

[13] Jurafsky, D., Martin, J. H. Speech and Language Processing, Prentice Hall, 2000,

pp. 142 199.

122

[14] Kari, L., Konstantinidis, S., Perron, S., Wozniak, G., Xu, J. Finite-state

error/edit-systems and difference-measures for languages and words^ Technical

Report No. 2003-01, 2003, April.

[15] Kernighan, M. D., Church, K. W., and Gale, W. A. A spelling correction program

based on a noisy channel model, Proceedings of COLING-90, The 13th Interna­

tional Conference on Computational Linguistics, Vol. 2. Hans Karlgren, Ed. pp.

205-210.

[16] Kruskal, J.B. An Overview of sequence Comparison, Sankoff and Kruskal (eds.),

1983, pp. 1-44.

[17] Kukich K. Techniques for Automatically Correcting Words in Text, ACM Com­

puting Surveys, Vol.24, No. 4, 1992, pp. 377-440.

[18] Landau, C., Vishkin, U., Fast string matching with k differences, Journal of

Computer and System Sciences, 37, 1988, pp 63-78.

[19] Levenshtein, V. I. Binary codes capable of correcting deletions insertions and

reversals, Soviet Physics-Doklandy, 10(8), 1966, pp. 707-710.

[20] Manber, U., Introduction to Algorithms A creative Approach, Reading Mass.,

Don Mills, Ont.: Addison Wesley, 1989, pp. 155-158.

[21] Mayes, E., F. Damerau, Context Based Spelling Correction, Information Process­

ing and Management, 1991, 27(5): pp. 517-522.

123

[22] Mcllroy, M.D., Development of a spelling list IEEE Transactions on communi­

cations, 30(1), 1982, pp. 91-99

[23] Mohri, M., Pereira, P., Riley, M. Weighted Automata in Text and Speech Pro­

cessing, 12th European Conference on Artificial Intelligence, 1996.

[24] Mohri, M., Riley, M., An efficient algorithm for the n-best-strings problem, Pro­

ceedings of the International Conference on Spoken Language Processing 2002

(ICSLP ’02). Denver, Colorado, September 2002.

[25] Morris, R., Cherry,L. L. Computer detection of typographical error, IEEE Trans.

Profess. Commun., 1975, PC-18,1, pp. 54-63.

[26] Pereira, F.C.N., Riley, M.D. Speech Recognition by Composition of Weighted

Finite Automata, In [29] 1997, pp. 431-453.

[27] Pollock, J. J., Zamora, A. Automatic spelling correction in scientific and scholarly

text. Commun. ACM 27, 4 (Apr.), 1984, pp. 358-368.

[28] Ristad, E. S., Yianilos, P. N. Learning String-Edit Distance, IEEE Transaction

on Pattern Analysis and Machine Intelligence, Vol. 20, No. 5, May 1998, pp.

522-532

[29] Roche, E., Schabes, Y. (eds.) Finite-state Language Processing, The MIT Press,

Cambridge, MA., 1997

[30] Soong, P., Huang, E. P. A Tree-Trellis Based Fast Search for Finding the N

Best Sentence Hypotheses in Continuous Speech Recognition, Proceedings of the

124

International Conference on Acoustics, Speech, and Signal Processing (ICASSP

’91), Toronto, Canada, 1991, pp.705-708.

[31] Toutanova, K., Moore, R.C. Pronunciation Modeling for Improved Spelling Cor­

rection, Proceeding of the 40th Annual Meeting of the Association for computation

Linguistics (ACL), July 2002, pp. 144-151

[32] Ukkonen,E., Algorithms for approximate string matching, Information and con­

trol, 64, 1985, pp 100-118.

[33] Ukkonen,E., Finding approximate patterns in strings. Journal of Algorithms, 6 ,

1985, pp 132-137.

[34] Yannakoudakis, E. J., and Fawthrop, D. The rules of spelling errors. Information

Processing & Management 19,2,1983, pp. 87-99.

[35] Allison, L., TYies, http://www.csse.monash.edu.au/ lloyd/ 1ildeAlgDS/ Tree/Trie/ ,

Visited on Sep. 14, 2003

[36] Black, P.E., trie, http://www.nist.gov/dads/HTM L/trie.htm l, Visited on

Sep. 14, 2003

[37] Bentley, J., Sedgewick, B., Ternary Search Trees,

http: / / algorithm. myr ice .com/resources / technicahartile / ternary _search_tree / terstree.htm,

Visited on Sep. 14, 2003

[38] Mohri, M., Pereira, F.C.N., Non-commercial license agreement and software [bi­

nary], http://www.research.att.com /sw/tools/fsm /, Visited on Seq.l4, 2003

125

http://www.csse.monash.edu.au/
http://www.nist.gov/dads/HTML/trie.html
http://www.research.att.com/sw/tools/fsm/

