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A bstract

We study the evolution of linear density perturbations in a cosmological 

background described by scalar-tensor theories (STT) of gravity. The evolution 

of the density constrast 6 is obtained using the Jeans formalism for an expanding 

Universe. Three classes of such theories are investigated: Brans-Dicke (ED) theory, 

which is the simplest possible STT: dynamical .\ theory, in which the function .V(o) 

plays the role of a decaying cosmological constant: and a varying-u,' theory, where 

the Brans-Dicke coupling function is no longer a constant. In general, theories with 

growing fluctuations admit faster growth that in conventional general relativity 

which may. in turn, allow for structure formation at earlier times. However, there arc 

solutions where growth is exponential, leading to conflicting ages for the Universe. 

There are also classes of theories with decaying and/or oscillatory modes which are 

incompatible with the paradigm of structure formation. The evolution of 6 depends 

on uj. and this is shown to constrain the allowed values of the coupling function. We 

also find a possible connection between the ansatz a<2>" =  constant  (where a is the 

cosmic scale factor and o  is the scalar field of STT) and the weak field limit of BD 

theorv.
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1. In trod u ction

1.1. T he Very E arly U niverse

Cosmology is one of the most challenging and yet obscure branches of science. 

The quest to understand the origin, evolution, and eventual fate of the Universe 

is probably an occupation as old as mankind itself. We are privileged to live in 

an era when technological advances so neatly reveal to us the deep mysteries of 

the observable Universe, whereas our understanding of the physical laws governing 

nature seem to account for most of what is observed with our telescopes.

The earliest stages of the Universe can be studied in the framework of 

inflationary Big Bang models. .Although these models are not able to explain where 

the Universe came from, or why it exists at all. they provide information about 

epochs as early as s after its creation. There is no satisfactory theory for the

creation itself, but it is possible that the whole Universe is the result of a quantum  

fluctuation [e.g. Tryon 197-3 and \ ’ilenkin 1982). in which case the issue belongs to 

the realm of quantum cosmology.

The theory of inflation (Guth 1981) came to the aid of the standard Big Bang 

picture in order to fix some cosmological problems with the latter. The original 

motivation for inflation had nothing to do with cosmolog}' and its main target 

was the study of magnetic monopoles in the early Universe (see. e.g.. Guth 1997). 

However, attention was soon directed to cosmology once it was realized that the 

theoiy could solve two of the most outstanding cosmological problems at th a t time: 

the horizon and flatness problems. The former can be understood on the basis of 

the observed isotropy of the cosmic microwave background (CMB) radiation. This 

radiation results from the fact that the Universe became transparent at the time of
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recombination and the CMB pilotons were no longer trapped into the hot primordial 

plasma. The horizon size at that time as seen by someone on Earth represents only 

a small fraction of the sky. That is. two regions in opposite directions in the sky. 

for example, could not be in causal contact .300.000 years after the Big Bang and 

yet they have the same temperature within one part in 10'\ The flatness problem, 

on the other hand, does not involve any contradiction but rather a lack of predictive 

power in the Big Bang theory, or a strong coincidence in nature. Calculations within 

the standard Big Bang show that if the total density parameter Ü was slightly larger 

than the critical value in the early Universe then the expansion would be halted in a 

time scale of the order of the Planck time (~  10~‘* ’ s). Correspondingly, a slightly 

open Universe would cool down to the currently observed temperature (T  ~  3 K) 

at t ~  10“ ^̂  s. and would be much larger and colder by now. The only way our 

Universe woidcl evolve to its present state is if the density parameter was extremely 

close to unity at early times, which is by no means predicted by the Big Bang.

The main idea behind inflation is that the Universe has undergone an epoch 

of exponentially accelerated expansion at a time t ~  10~ *' s that lasted for 

approximately s. This extraordinarily fast expansion is believed to have been

driven by a scalar field usually called an infiaton. As a result, the Universe is 

predicted to have had submicroscopic dimensions before the inflationary phase, so 

that all regions were causally connected. This is the inflationaiy solution to the 

horizon problem. Also, the rapid expansion would erase any cuiwature that might 

have existed before inflation, driving Q to unity and solving the flatness problem.

The original inflationar}' theory* was not perfect, and its proposers soon realized 

that the Universe would be filled with false vacuum bubbles during the inflationar}' 

phase, and collisions between these bubbles would break the homogeneity of the



Universe. This has become known as the graceful exit problem, and it took Linde 

(1982) and Albrecht &: Steinhardt (1982) to develop independently the so-called new 

inflation. The modified inflationary scenario was based on a special shape for the 

infiaton potential which caused the whole observable Universe to be contained inside 

a single false vacuum bubble, freeing the theory of the graceful exit problem.

The success of inflation is corroborated observationally by results from CMB 

experiments. The latest da ta  (e.y. Lange et al. 2000) favor a flat Universe with a 

scale-invariant spectrum of primordial fluctuations, in accordance with inflationary 

predictions. There is indeed strong agreement between CMB results and other 

extragalactic estimators such as type la supernovae and clusters of galaxies (Hu et a i  

2000). constraining cosmological parameters to a fairly small region of the parameter 

space. The next generation of CMB satellites {e.y. .\L \P ‘ and Planck') along with 

incoming redshift sun'eys {e.y.  SDSS*) will be able to further prol)e inflation and 

to constrain other cosmological parameters (such as the age of the Universe, the 

Hubble constant and the density parameter) with unprecedented precision.

The Universe started to evolve as described by the standard Big Bang theor>' 

from the end of inflation onward. The inflationary mechanism not only solved the 

flatness and horizon problems but also reheated the particle soup which is postulated 

to exist in the early Universe. This background of particles and radiation was merely 

the result of false vacuum decay. .A.t this stage the Universe was in nearly thermal 

equilibrium, but expansion made it cool down gradually. It was not before a time

^See http://m ap.gsfc.nasa.gov/

'See h ttp ://astro .estec.esa.n l/P lanck/ 

•^See h ttp :/ / w'ww.sdss.org/

http://map.gsfc.nasa.gov/
http://astro.estec.esa.nl/Planck/
http://w'ww.sdss.org/


t  ~  10"- to IQ- s that the temperature dropped enough so that protons and neutrons 

could combine to form the first light elements. This period is referred to as the Big 

Bang nucleosynthesis era. At an estimated time of ~  10" s the energ}  ̂ density in 

m atter and radiation became ec[ual (equivalence time) and after that the Universe 

became matter-dominated. As the tem perature dropped further, electrons and 

nuclei were able to combine and form atoms at t ~  10^  ̂ s. .\t  that point m atter and 

radiation decoupled, i.e.. they started to evolve independently because the expansion 

rate became greater than the interaction rate between them. This timescale is 

known as the recombination epoch, and as was mentioned before, the CMB photons 

started then their nearly straight line trajectories until the present time. It is 

not clear whether there really existed a time interval between the eciuivalence and 

recombination times. Nevertheless, structure formation processes are believed to 

have been triggered sometime after the equivalence time.

1.2. S tructure Form ation

The cosmological principle states that the Universe is isotropic and homogeneous 

on large scales, and that what we observe is typical of structure ever\"where. Big 

Bang models are based on the cosmological principle, and the observational 

confirmation of this hypothesis is key for the theory. The galaxy distribution is 

certainly isotropic on the largest scales, and it is conventional wisdom that the 

distribution tends to homogeneity. However, the major piece of evidence for the 

cosmological principle (and hence for the Big Bang theorj-) was the discovery of the 

CMB radiation by Penzias & Wilson (1965). The (almost) perfectly homogeneous 

and isotropic radiation of temperature T  ~  2.73 K indeed confirmed that the 

Universe used to be very hot in the past.



We are fortunate that the CMB radiation is not totally homogeneous and 

isotropic because it would be otherwise hard to explain how the observed large 

scale structure formed. Shortly after its discovery, astronomers pursued the task 

of finding anisotropies in the CMB radiation, which should be an imprint of the 

small density fluctuations in the early Universe that gave rise to the formation of 

structures. Almost 30 years elapsed between the discovery by Penzias & Wilson 

and the detection of the desired anisotropies by the COBE satellite (Smoot et al. 

1992). The COBE mission yielded an all-sky map of the CMB on angular scales 

of approximately 10 degrees. Balloon-borne experiments have complemented the 

COBE measurements on smaller scales (e.g. de Bernardis et al. 2000 and Hanany 

et al. 2000). and the combined results constrain several important cosmological 

parameters such as the baryoiiic and dark m atter density, the Hubble constant, the 

cosmological constant and the age of the Universe.

The physical origin of the primordial fluctuations can be explained with the 

help of (piantum mechanics {e.g. Bardeen. Steinhardt Turner 1983). The idea is 

that inflation ends at different places in different times due to quantum effects, and 

since particles are created at the end of inflation, it could generate inhomogeneities 

in the early Universe. The fluctuations are very small, but they are amplified by 

gravity. The small density perturbations will create slightly overdense regions, which 

will in turn a ttrac t more and more m atter towards their centres of mass.

It can be shown classically that the density contrast can be decomposed into 

plane waves (.Jeans 1902 and Bonnor 1957). and that it is unstable to growth 

in amplitude for wavelengths greater than a critical value. This amplification 

mechanism is known as gravitational instability and will be discussed in some more 

detail in chapter three. Similar results can be obtained using general relativity



(henceforth GR), with the difference that now the problem is treated as perturbations 

to space-time itself and to the energ}-momentum tensor {e.g. Peebles 1993).

1.3. G ravitational Theories

Gravity is the weakest interaction amongst the three known fundamental 

forces in nature (the other two being the strong and electroweak forces). However. 

The long-range of the gravitational interaction and the fact that the gravitational 

charge is always positive' gives gravity a key role in the understanding of the large 

scale structure in the Universe. Any attem pt to study structure formation in the 

early Universe has to make use of some gravitational theory. In the original leans 

formalism (.leans 1902). gravity enters through the Poisson equation. This is a 

purely Newtonian approach as far as a gravitational theory is concerned. However, 

the original .Jeans equation was designed for a static Universe. The fact that our 

Universe is expanding affects the way structure is formed: expansion will slow down 

the collapse of objects. An extension of the .Jeans formalism for an expanding 

Universe was first developed by Lifshitz (1946). where GR was used. Bonnor (1957) 

used Newtonian cosmology to show that the same basic results could be obtained 

with no need for a relativistic gravitational theory.

The basic equation for the growth of density perturbations in an expanding 

Universe is
» Cl V
(Î +  2—Ô — A'irGpd — 0. ( 1.1 )

where p is the density of the Universe. 5 =  d p /p  is the density contrast. G  is 

Newton's gravitational constant, a is the scale factor and dots represent time

'classically, one could say that the gravitational force is always attractive.



derivatives. Note th a t this equation can be obtained either within a fully relativistic 

context or using Newtonian gravity. One of the reasons is that for epochs after 

the equivalence time (when structure formation starts taking place) the Universe is 

matter-dominated and pressure effects become negligible. In other words, the main 

contribution to the energy-momenturn tensor comes from its time-time component, 

which is solely the density p. In order to solve eq. (1.1), however, we must know 

how both a and p  vary with time. Newtonian gravity does not predict the time 

evolution of these quantities, although we can postulate the scale factor evolution 

by deriving the Friedmann equation from classical considerations. We thus need to 

have a background cosmological model to solve eq. (1.1). which usually comes from 

a specific relativistic gravitational theory.

The standard background cosmological models used to solve the .leans equation 

for an expanding Universe are usually based on solutions to the Friedmann equation, 

which is in turn derived from GR. .\lthough Einstein's theory is regarded as the 

best gravitational theory to date, being repeatedly tested and confirmed through 

the years, it is not the only one available. There are se\eral proposed modifications 

to the Einstein field equations, one of the oldest being the introduction of a m atter 

creation field (or C-field) into the original equation in the context of the steady 

state theory (Hoyle 1948). It is common knowledge today that the steady state 

theor}' is not to be taken too seriously because of its difficulty in explaining the 2.73 

K background radiation, which finds a rather natural explanation in the context 

of Big Bang (i.e. general relativistic) models. More recent attem pts to rescue 

the steady state theory are embedded in the so-called quasi-steady state theoiy 

(Hoyle. Burbidge & Narlikar 1993). There are in fact a large number of alternative 

gra\itational theories, and we cannot review all of them here. For a comprehensive



review of gravitational physics involving different theories see, e.g., Will (1981).

One of the alternatives to GR that interests us is the one developed by Brans &: 

Dicke (1961). The Brans-Dicke (henceforth BD) theory is a relativistic gravitational 

theory which, as opposed to GR, incorporates Mach's principle, which states that 

the local dynamics of a system is determined by the global distribution of m atter in 

the Universe. The field equations in BD theory are characterized by a time-varying 

scalar field o  coupled to the metric tensor and a climensionless constant coupling 

parameter us (giving the general label of scalar-tensor to this type of theory). The 

weak field approximation of the theory shows that Newton's gravitational constant 

is actually a function of o  and u j :

«-IB#
and Solar System experiments constrain u: to lx> greater than ôOO (Reasenberg at 

al. 1979). One attractive aspect of BD theory is that it explains satisfactorily the 

precession of Mercury’s perihelion. However, the coupling parameter is shown to be 

constrained systematically to small values (u,' < 2. including negative values) when 

the theory is applied to the study of some models of extended inflation (Susperregi 

& Mazurndar 1998) and cosmic strings (Dahia &: Romero 1999). or to explain the 

present accelerated expansion of the Universe (Batista. Fabris & Ribeiro 2000: Sen 

& Seshadri 2000: Sen. Sen & Sethi 2000). This might be indicating that a more 

general scalar-tensor theor}' should be considered in order to maintain consistency 

between theor\- and observations.



1.4. Scalar-Tensor Theories

The most general scalar-tensor theory has two arbitrary functions of the scalar 

field: uj{(t>) and A(çj). The former is a generalization of the coupling constant from 

BD theory, and the second one can be shown to play the role of a cosmological 

constant. In fact, current d a ta  on gravitational lensing statistics (Helbig 1999) and 

type la supernovae (Efstathiou et al. 1999) favor a non-zero cosmological constant, 

and any alternative gravitational theory should take th a t into account. This might 

be another sign that BD theory should be extended, since it is a special case in 

which X is constant and A =  0. The equivalent to the gravitational constant still 

takes the form of eq. (1.2). with x  being substituted by x ( o ) .  VVe see that G  in 

this case can be a complicated function of o  depending on the form of à.’(o). which 

opens the possibility to put theoretical predictions in agreement with observational 

constraints for the present value of x .

.Applications of STT to the study of structure formation have been carried out 

in a number of papers. Starobinsky & Vokoyama (1994) studied the spectrum of 

fluctuations generated during inflation within BD theor}-. and Chiba. Sugiyarna & 

Abkoyama (1998) extended their work for a more general STT. Also in the context of 

a general STT. Seshadri (1992) investigated the generation of density perturbations 

during an inflationary epoch due to c[uantum fluctuations of the scalar field o.

This theory is restricted, however, due to the number of assumptions regarding the 

fluctuations 6o.  Sen & Seshadri (2000) and Bertolami & .Martins (2000). motivated 

by the obser\-ed acceleration of the Universe, studied which type of self-interacting 

BD potential would be in agreement with observations. Increasing modes for the 

density contrast were found in both works. Chin & Kaniionkowski (1999) studied 

CMB anisotropies in a BD background, and found that both the width and height

9



of the power spectrum acoustic peaks are changed as compared to GR. They 

also pointed out that there is a degeneracy in the determination of cosmological 

parameters for high angular scales (or equivalently low multipoles), and that higher 

resolution observations with Planck and MAP and polarization measurements by 

Planck will be able to break this degeneracy and make this cosmological test to 

BD theory as good as Solar System tests. Two im portant results for the present 

work are the papers by Gaztanaga & Lobo (2001) and Esposito-Farese & Polarski 

(2000). The former have obtained a relativistic equation for the growth of density 

perturbations in a BD background which is identical to the classical .Jeans equation 

for an expanding Universe in a BD cosmology, while the latter generalized this 

result for the case when u; is not constant. Thus we are justified in using the .leans 

equation with a STT background to study structure formation.

In the present work we are interested primarily on how different scalar-tensor 

theories affect the process of structure formation in the early Universe. We review 

in the following chapters three classes of scalar-tensor theories: (1) simple BD 

models. (2) models by Diaz-Rivera & Pimentel (1999). in which A(o) is explored 

as a decaying cosmological constant, and (3) models with var\ ing u.’ from Barrow 

& Mimoso (1994). We apply the .Jeans formalism and determine how structure 

grows in the early Universe for each of these models. The expressions we obtain 

for the density contrast depend on u j .  which provides us with a new confrontation 

between theoretical predictions and observational limits of the coupling function. 

Also, we study the evolution of the Jeans mass within the physically motivated 

models. We then summarize our results and present a discussion on the power-law 

relation between a and o  for BD theorv* based on a perturbative treatm ent of the 

field ecpiations.
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2. T he M odels

The action for the most general STT is (Will 1981):

/  =  (167t)“  ̂ j [ o R  -  0~^iü{0)g^‘'0 ,^ ,(p .^+2é \i0)] i-( jŸ^-d''x  +  /,vcr (2.1)

where Greek indices run from 0 to 3 and represent spacetime coordinates. Commas 

represent usual partial derivatives, while semicolons indicate covariant derivatives 

(see e.g. Weinberg 1972). g is the determinant of the metric tensor ĝ ,̂ (g'‘  ̂=

R  is the Ricci scalar, uj and A are arbitrary' functions of the scalar field &. and I \ c

is the action for non-gravitational interactions. The function uj{0 ) is associated 

with the gravitational strength (see comment below), while \ { o )  plays the role of a 

cosmological constant.

\  ariations on /  with respect to and o yield the field equations 

SttT  1
Gftu -- — +  A(o)Off,,i/ +  u:(o)o "(o./iO.t/ — -gtiP<t>.\0' )̂ +  o — gfiu'^o) (2.2)

2 0 -d X /d 0  — 20X{0) 8~ T  — 0 ,i0 '''du:/d0

■ 3 +  2. ( 0 ,-------=  3 + 1 . ( 0 )  '

The left-hand side of eq. (2.2) is the usual Einstein tensor, and T  is the trace of

the energ}-momentum tensor T î,. Note that is dimensionaily equal to the 

gravitational constant, and in fact G  is a time-varying scalar in this type of theory 

with its strength depending on the value of 0 and the dimensionless coupling 

function uj{é) at a given time (see e.g. eq. (1.2). chapter one). If we assume the 

isotropic and homogeneous Robertson-Walker metric

dr~
ds-  =  - d t -  -H a- -  +  r-(c/6>- +  sin- 0d0~) (2.4)

1 — k r

as a solution to the above equations, we obtain the modified Friedmann equations:

+  (2.5)
0  b \ 0  J a- 3 00
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0 3 H +
2a; (0) + 3

0 -  2[A(ç)) -  0clX{0)/d0] =  (2.6)

O
Û , t/2 , '̂{(P) f ( p y  , Xio) 87tp(37 -  2)a;(©)+  3 , 1 w(©) ©

~  U J  ~  9  ~ r ^ ~  ■2u,(o)+3' " ^ 2 -2 u, Io ) T 3 Î ,

p +  3 7 i/p  =  0. (2.8)

where

p =  {3 -  l ) p  (2.9)

H  =  -  (2.10)
a

and 3  is a constant defining the barotropic equation of state.

Different types of solutions to ecis. (2.5)-(2.8) can be oi;tained depending on the 

underlying assumptions about A(©). o-’(©) and the relation between a and ©. In what

follows, we briefly describe the specific solutions that are going to be used for the

study of the evolution of density perturbations.

2.1. Brans-D icke T heory

The gravitational theory developed by Brans & Dicke (1961) is the simplest 

possible STT. The motivation for BD theory was the incorporation of Mach's 

principle into a theory of gravity, as was mentioned in chapter one. The BD theory 

can be represented by eqs. (2.5)-(2.8) in the special case when a? is constant and 

A is zero. Brans & Dicke (1961) showed that these cosmological equations admit 

power-law solutions for a  and © provided that oa'  ̂ =  0 as a —> 0. and a power-law 

relation between these two quantities is indeed commonly assumed in order to 

obtain exact solutions to scalar-tensor theories {e.g. Dehnen &: Obregon 1971. 1972. 

Diaz-Rivera & Pimentel 1999 and appendix .A.). VVe are going to describe models 

by Dehnen & Obregon (1971. hereafter D071) in this section, from which we will
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extract the necessary- information for the study of structure formation in chapter 

three.

Solutions with and without an initial singularity were studied in D071 and 

D072. respectively. In both studies, a power-law relation between the cosmic 

expansion factor and the effective gravitational constant (ultimately the scalar field 

0 . see eq. 1.2) was assumed:

S-G'o" =  C. (2.11)

where n and C  are constants. They also used m atter conservation in order to 

eliminate the density p  from eq. (2.2) (in other words, they assumed a dust-fluid-like 

equation of state for the Universe):

pa'  ̂ =  padi)'  ̂ =  B.  (2.12)

with po and oq being the present values of the density of the Universe and its 

curvature radius, respectively, po was in fact used to constrain a," in D071.

We are going to focus on models with an Initial singularity in the present work. 

.According to D071 and eqs. (2.11) and (2.12). the gravitational constant, the scale

factor and the density of the Universe in the Hat BD case can be written respectively

as

f  C B  A
a =

(2.15)

The exponent in eq. (2.11) for this particular case is simply n =  (Brans & Dicke 

1961 and D 071). For closed models the set of equations becomes

13



=  (2.18)

where n =  —i  was used in eq. (2.11). Only this value for n yields exact solutions for 

models with positive curvature (D071). One obvious consequence for closed models 

is the constraint u: <  —2 from the above equations. An open Universe is excluded

according to D071.

2 .2 . D ynam ical T heory

120 orders of magnitude represents the discrepancy between the predicted 

value of the cosmological constant .\ from particle physics and limits imposed by 

observations. This is one of the greatest puzzles in contemporary physics (see Sahni 

& Starobinsky 2000 for a recent review). One of the proposals to solve the so-called 

cosmological constant problem is the hypothesis that .V is a dynamical scalar field 

which decreases with time {e.g. Ratra & Peebles 1988). Models with time-decreasing 

.V were exhaustively studied by Overduin & Cooperstock (1998) in the context of 

general relativity. Diaz-Rivera &: Pimentel (1999. hereafter DRP99) conjectured 

th a t scalar-tensor theories would be more suitable for the study of a dynamical .V 

because of the available function X{o) in eq. (2.1). In this case, one does not have to 

postulate the desired behavior of .V. as it appears naturally.

DRP99 assumed a relationship between a and G  similar to the one used in 

D071:

a©" =  C  =  constant.  (2.19)

The only difference is that now the explicit relation is given in terms of © instead of
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G.  The scalar-tensor theory they used is more general than the BD theory' in the 

sense that now A(ç») 7̂  0. At the same time it is not the most general theory because 

the coupling parameter uj is still assumed to be a constant. It was further assumed 

that A((p) is some power of 0 .

It is worth mentioning that the family of cosmological solutions found in that 

case is very restricted. Although vacuum solutions were found for all values of the 

exponent n in eq. (2.19) (which arc of no interest in the present work for obvious 

reasons), exact solutions considering m atter with a barotropic equation of state are 

found only for n =  1/2. That is a severe restriction on the coupling between 0 and 

a. implying that

noco~^. (2.20)

There is no reason to believe that nature behaves just like that, except for 

mathematical convenience.

We are going to use here two classes of exact solutions with barotropic equation 

of state from DRP99. namely the dust-fluid and stiff-matter-fluid cases. .As was the 

case before, we are only interested in the evolution of the scale factor, the scalar field 

(i.e. the effective gravitational constant) and the density of the Universe in order to 

solve the .leans equation in chapter three. Solutions for the dust-fluid case in a flat 

Universe are given by

G =  c , i ^ r '  (2.21,

a =  c-,t- (2.22)

p =  c-iil -  (2.23)

where ci. c> and C3 are constants'’ and the effective gravitational constant takes the

■’ci is an integration constant while c> and c;j are combinations of c, and the
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form of eq. (1.2).

Although DRP99 found two types of solutions for the dust-fluid case with 

curvature (depending on /  =  k / {3  -I- 2w) being positive or negative), they represent 

the same thing for our purposes. The two models evolve exactly in the same way, 

with the difference that a  positive /  implies an initial singularity state in the 

Universe, whereas there is no singularity for /  <  0. The solution in this case can be 

written as

a =  - ^  (2.25)

7T ( f

where

and the constants C[. r.> and C;j are defined as in the previous solution. G  again 

assumes the asympotic form from BD theory, and that will always be the case 

throughout this work.

The last type of solution with dynamical A from DRP99 we wish to study is the 

one with a barotropic equation of state given by p =  p (stiff-matter-fluid). At a first 

glance, it does not seem realistic to consider such models since we expect pressure 

effects to be negligible after the ecjuivalence time between m atter and radiation. 

However, we do not know exactly how the scalar field will contribute to pressure, 

and if the current acceleration of the Universe is due to the presence of such field.

constant C  from eq. (2.19)
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then it is certainly dom inating over m atter at the present time. This picture would 

therefore admit the need to include pressure effects even after the equivalence time.

We are going to explore only non-flat cosmologies here, because of the unphysical

solution for k =  0 found by DRP99. The relevant expressions in this case are

a =  (2.29)

p =  (2.30)

where

and Cl. c-2 and c.t are defined as in the two previous solutions. A similar discussion 

as in the dust-Huid case regarding the singularity problem was also presented by 

DRP99 in this case, but again the issue is not of interest hen*.

2.3. N on-Trivial j,' T heory

-\nother way of generalizing STT's is by using the full form of the coupling 

function uj{o) rather than keeping it constant as in BD theory. It has been shown 

that we must have j j  oc and dcj /do  —> 0 today in order to have this type 

of STT approaching GR and agreeing with observational tests (Nordvedt 1970). 

Exact cosmological solutions are difficult to address in this case due to the relative 

arbitrariness of û,’(o). Here we are going to study a particular one-parameter family 

of flat solutions found by Barrow & Mimoso (1994. henceforth BM94) which, as in 

the previous sections, are going to be used for the study of structure formation in 

the Universe. .A.lthough BM94 presented a broad range of solutions depending on
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the choice of u { o ) ,  we are going to use iiere only one of the two dust-fluid solutions 

worked out on that paper. We will restrict ourselves to the presentation of the 

solutions and refer the reader to BM94 for further development. The relation

3 4- 2k,(,p) (2.3i2)

is assumed for this model, and the im portant equations in this case become

(2.33)
4c.i/j 0

a =  cj^-/'^(ln (2.34)

p == C;;[(ln . (2.35)

where C|. co. c, and c., are integration constants. 5 > Ü is the free param eter 

(constant) of this theory and

0 == ct(lnf) k (2.3C)

describes the evolution of the scalar held.

More general STT's would be a mixture of the two previous models (dynamical 

•V and nontrivial u j ) .  However, exact cosmological solutions involving both u j { 0 )  and 

A(o) are not available in the literature and it is not the purpose of the present work

to extend STT’s. but rather to study their implications for structure formation. A

summary of the models we are going to investigate is presented in table 1.
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Model Theory Curvature Equation of State

I BD k =  0 Dust-Fluid

la BD k =  1 Dust-Fluid

II Dynamical A k =  0 Dust-Fluid

Ila Dynamical A k =  ±1 Dust-Fluid

Ilb Dynamical A k =  ±1 Stiff-Matter-Fluid

III Xon-Trivial u: A- =  0 Dust-Fluid

Table 1; Summary of Background Cosmological Models
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3. S tructure Form ation a la Jeans

3.1. T he Jeans Form alism

The idea that the structure we observe in the Universe today was formed 

through gravitational instability was first introduced by Jeans (1902). The physics 

needed to understand the Jeans formalism is very simple. The Universe is treated 

as a self-gravitating ideal fluid in ecpnlibrium. so that it can be described by the 

equations of fluid mechanics:

/) +  V - ( p c ) = 0  (.3.1)

'c +  ( v - V ) c  =  - - V p - V \ '  (3.2)
P

V -U  =  4-G p. (3.3)

Eqs. (3.1)-(3.3) are the continuity equation. Euler's equation and Poisson s equation, 

respectively, p. v and p  characterize the fluid’s density, velocity and pressure, and 

1 ’ is the gravitational potential generated l)y the fluid. If we make use of linear 

perturbations in the above set of ecpiations of the type

p —> p +  dp (3.4)

r - > r 4 - d ‘c (3.5)

p ^  p  +  dp (3.6)

+  (3.7)

where

Sp/p  % S v / v  % Sp/p  % s \  y \  ' <§: 1. (3.8)
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we get the following equation, after some algebraic manipulation*’:

6p — V'Sp  — -lirGpSp =  0. (3.9)

If we now use the equation of state for a monatomic ideal gas

K T

and consider an adiabatic expansion

(3.10)

/> X . (3.11)

where /v is Boltzmann's constant. T  is the gas temperature, iv is the atomic mass 

of the gas particles and 7 is the adiabatic index, then eq. (3.9) becomes

S p  — A~Gp6p  =  0 . (3.12)

The sound speed c, in the above equation is defined in terms of the derivative of

pressure with respect to density at constant entropy:

Eq. (3.12) resembles the equation of a classical wave and it is no coincidence that 

its solution can be decomposed into plane waves. That is. small density fluctuations 

will oscillate with time throughout the fluid. The general solution to eq. (3.12) can 

thus be written as

6p =  Spoe‘^^ -̂ ‘̂K (3.14)

where Spo is the initial amplitude of the fluctuations, k is the wavenumber and u 

is the angular frequency. Substitution of eq. (3.14) into eq. (3.12) shows that the 

dispersion relation

u'- =  L''̂ k~ — AnGp (3.15)

'’For details on this derivation see e.g. Coles &: Lucchin (1995)
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must be satisfied. When u is complex {u- <  0), the density contrast will grow 

exponentially with time, establishing a critical wavelength

A7 =  ÿ— =  pr"' (3.1G)

and causing fluctuations of wavelengths A > A./ to be unstable to gravitational 

collapse.

The simple gravitational instability mechanism for the growth of structures from 

small density perturbations provided by the .leans theory has to be modified in order 

to be applicable to cosmology. One of the reasons is that .leans had to assume that 

the unperturbed gravitational field 1 ' does not contribute to the fluid's self-gravity 

in order to keep physical and m athematical consistency, with only the perturbed 

field S\'  making a significant contribution. .Another obvious drawback in the original 

formulation is that the Universe is expanding, and the .leans equation was envisaged 

for a static Universe. In order to take expansion effects into consideration, we must 

work out the equations in comoving (Lagrangean) coordinates. In this way. p. r and 

I should be parametrized as {e.g. Weinberg 1972)

P =  Pq ^ — j  (3.17)

F = F ( i )  (3.18)

=  (3.19)

where the vector r  is comoving with the fluid's particles. We then obtain ecj. (1.1) if

we perform the .leans analysis using the above equations [e.g. Lifshitz 1946. Bonnor

1957. Weinberg 1972 and Coles & Lucchin 1995).

.A well known application of the .leans equation for an expanding Universe is 

the Einstein-de Sitter solution. We shall briefly introduce this solution here since we
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will refer to it many times along this work. The scale factor and the density of the 

Universe evolve in this model according to

p =  { 6 n G t - ) - \  (3.21)

Substituting the above equations into ecj. (1.1) we obtain

4^-1 . Of--
S +  -  2— A =  0. (3.22)

3 3

whose solution is given by

S =  C \ r ^  +  (3.23)

with Cl and Cv constants.

We use background cosmological models from scalar-tensor theories (see chapter 

two) in the .leans ecpiation for an expanding Universe in order to investigate the 

evolution of the density contrast in such models. .A,s was mentioned in chapter one. 

eq. (1.1) can be shown to be valid for both BD and varying-u.’ theories. However, 

we lack a formal proof that the same equation can be applied to dynamical A 

theories. Nonetheless, we assume it to be valid here for the purpose of this study. 

We present analytical solutions for the perturbations whenever is possible, and 

solve the equations numerically otherwise. The numerical solutions are based on a 

Runge-Kutta-type algorithm of fourth order and the model constants used on each 

integration (as well as in the plots of analytical solutions) were assumed to be of 

order unity. We have also studied the implications of using different sets of model 

constants for each solution and found that this does not affect the general properties 

of the solutions. We have adopted the initial conditions

Sitrec) =  10 -’ (3.24)
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S(trec) =  0. (3.25)

where tree is the age of the Universe at the recombination time. Eq. (3.24) is 

motivated by results from CMB experiments (Lange et al. 2000). whereas eq. (3.25) 

is an arbitrary choice. VVe have allowed for different initial values of S{trec) and 

the interpretation of the results remained unchanged. It is also assumed that the 

perturbations have a scale-invariant power spectrum, so that the same amplitude 

for the perturbations apply to all scales. As was mentioned in the introduction, 

inflationary theories predict fluctuations with such scale-invariant form {e.g. Guth 

1981) and recent CMB observations give further support to this type of power 

spectrum {e.g. Lange et al. 2000).

3.2. E volution  o f T h e D en sity  C ontrast

t}.2.l. Model I 

Using eqs. (2.13)-(2.15) in eq. (1.1) we obtain

whose solution is

6 =  C\t~^ +  C > t ^ . (3.27)

The two modes become y. t~^  and (h oc in the limit u; oc (which agrees to 

the general relativistic prediction for an Einstein-de Sitter Universe). Eq. (3.26) is 

identical to the equation found by Gaztahaga & Lobo (2001. henceforth GL2001) to 

describe the evolution of d in flat Brans-Dicke cosmologies. These authors resorted 

to the BD field equations and the Raychaudhuri ecjuation (Wald 1984). GL2001 

argue that the second term in eq. (3.27) corresponds to the growing mode only if
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|w| 3> 1. We do not see any reason why this would be so. and fig. (3.1) illustrates 

our point. model with o,’ =  0, for instance, would produce rapid growth of the type 

S oc t. W e  find rather that & is a growing mode whenever u j  <  —2 or u j  >  —1/3. If 

|u.’| :§> 1 then the solution is indistinguishable from the Einstein-de Sitter case as was 

mentioned above. We would also like to point out a mistake in the interpretation of 

the results from GL2001 concerning the solution to eq. (3.2G) (or equivalently, eq. 62 

in their paper). They expressed their solution in terms of r; rather than t:

6 =  C i ( i ~  4- Coa . (3.28)

and argued that the second term on the right-hand side of the above eciuatiou can 

be either an increasing or a decreasing mode depending on u j .  We point out that if 

we simply substitute the expression for a as a function of time (eq. 54 in GL2000 or 

ecj. 2.14 in the present paper) we see that this mode is always a decreasing mode 

proportional to as in eq. (3.27). with no dependence on a.- whatsoever.

2.2. M odel la

In this case, we have to solve the equation:

C  B
6 4-  2 f ‘j  +  — (2 -r ^ ' ) r -S  =  0. (3.29)

But

C B  =  4 (3.30)

according to Dehnen & Obregon (1971). so that we can rewrite eq. (3.29) as

6 4- 2 r  bi 4-  (2 4- uj)r'-S =  0. (3.31)

which leads to the solution

S =  44 (3.32)
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with

ni =  — \ / — I — AuJ. (3.33)

Note that tiie constraint

o.- < - 2  (3.34)

discussed in section 2.1 assures that eq. (3.32) represents a real function, which 

makes the first term in this equation always an increasing mode. The second term 

corresponds always to a decreasing mode.

‘L2.S. Model  II  

The .leans ec[uation corresponding to model II is

J +  4r>,( -  4 -̂* +  ~  =  0. (3.30)
(3 +  2ü.')

with power-law solutions given by

() =  c , r K " '  +  (3.3C)

where
1 V - (3  -f 2c '̂)(Gd:.'- +  78a.' -  91)

=  r --------------3 T 2 = ----------------- ■

The requirement that i) in the above ecpiation is a real quantity provides interesting 

constraints on u: in this case:

-1 .5  < 0.73 (3.38)

or

vu- < -  1.9 (3.39)

DRP99 constrained u j  to be approximately 1/5 from observational considerations 

of the mass density parameter Q\f  and the possible contribution of a cosmological
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constant Q \ .  If we use this value for the coupling constant in eq. (3.36). we find 

that the growing mode will evolve approximately with the 4/5 power of time. That 

means that structure will form faster in this case when compared to the rate of 

an Einstein-de Sitter Universe. Conversely, if a,- is ~  0.26 or ~  —2.07 we reproduce 

the growth rate of J for an Einstein-de Sitter Universe.

3.2.4- Model IIu

The non-flat dust-Huid dynamical .\ model requires that we solve the equation

where (j is defined as in section 2.2. Fig. (3.2) shows the numerical solution to this 

equation for different values of the coupling parameter. Solutions with negative and 

positive curvature are identical, and the following criteria were imposed in order to 

integrate eq. (3.40):

> - 3 /2  (3.41)

and

f >  (3.42)

The two above equations combined with the unitary values assumed for the model 

constants eliminates singularities along the integration of eq. (3.40) due to f/ =  0. 

Structure does not grow in this model. Instead, the density contrast undergoes a 

damped oscillation until the fluctuations are eventually smoothed out.



3.2.5.  Model lib

Following the sequence from table 1. the next model to be studied is the one 

defined by the equation

with solution given by:

d =  Cl sill X +  C -2 cos .r, (3.44)

where

X =  2C, / — +  ^’) a rc ta n  ' : = = .  (3.45)
V n  C / ( 3  +  2a.')c,A:

We will limit ourselves to the regimes where

( 3 +  2^')ciA->  0. (3.46)

Thus if we further assume the integration constant ci to be [lositive we must have 

u; >  —3/2 whenever k =  1. Conversely we must have u.' < —3/2 for k =  — I. .\lso

note that the constant q, is related to ct. C and k (section 2.2 and DRP99):

c:i =  (3.47)

which means that q, and k carry the same sign.

Let us first examine the example with positive curvature. In this case, we learn 

that the general behavior of the solution is dominated by an exponential growth 

during the early stages followed by a slower growth rate which will eventually drive 

the density contrast asymptotically to a constant value. The duration of the two 

stages (rapid and slow growth rates) will depend on the coupling param eter u: (and. 

of course, on the unknowm constants of the model). We can see in fig. (3.3) that lower 

values for u j  lead to a shorter exponential period for the growth of S. whereas the
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exponential phase dominates for greater values of the coupling parameter. Although 

the results shown on the plots are for specific values of the model constants, we find 

that the same trends are preserved for different sets of constants.

Examples with k =  —1 are displayed in figs. (3.4) and (3.5). Fig. (3.4) shows one 

example of the —2 <  uj <  —3/2 regime, whereas fig. (3.5) illustrates the case uj <  —2. 

Perturbations do not grow in the former case, while they evolve in the latter case in 

a way similar to the positive curvature counterpart. VVe should recall, however, that 

pressure effects are being taken into consideration in this model according to its very 

definition. Therefore a relativistic derivation of the density perturbations would be 

desirable to confirm the applicability of the .leans equation to this model.

3.2.6. Modal III

VVe will now focus our attention on the last model from table I. namely the one 

with the coupling parameter u: varying with time. This model has one free parameter 

(/;). which defines the way u: evolves. It should be stressed that several other models 

for scalar-tensor theories with nontrivial coupling parameter exist {a.y. Seshadri 

1992. Barrow & Mimoso 1994. Chiba. Sugiyama & Yokoyama 1998. Navarro. Serna 

&: Alimi 1999 and Esposito-Farese & Polarski 2000). VVe do not make any attem pt 

here to present a complete analysis of models with nontrivial u j .  but we have rather 

chosen a particular theory to check its consistency with structure formation via 

gravitational instability.

For this matter, we have to solve the .Jeans equation for model III:

i  (- + "  « lb )  (k & T  ■"'*)'* = “■

The above equation was solved numerically and the residts are shown in figs. (3.6)
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and (3.7). The density contrast evolves very fast when 6 < 1. and it grows otherwise 

in a slower rate. The regimes 6 1 (say, b >  100) do not change the appearance of

the plots much, because the terms involving the free parameter in eq. (3.48) vanish, 

which means that the theory never approaches GR as far as ^ is concerned.

3.3. E volu tion  o f th e  Jeans M ass

We have defined the Jeans length in section 3.1 (eq. (3.10)) as the critical 

wavelength above which density fluctuations are unstable to gravitational collapse. 

We can also think in terms of a critical mass, that is. the mass contained inside a 

sphere whose diameter is the Jeans length:

. \ h  =  ^ p \ - y  (3.49)

The sound speed during the post-recombination epoch, which is necessary to evaluate 

the Jeans length according to eq. (3.16). is given by

- ( i f ) "
where A' =  1.38 x 10“ ‘̂  erg l \ “  ̂ is Boltzmann’s constant. T  is the radiation 

tem perature and nip =  1.67 x 10"-' g is the proton mass. If we now use

(.3.51)

as the expression for temperature in terms of the present tem perature (To % 2.73A’) 

and the relative size of the Universe compared to the recombination era («o/a). we 

are able to calculate the Jeans Mass by introducing the expressions for a. G  and p 

from the models we are studying.
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3.3.1. Model I

It follows from eqs. (2.13)-(2.15) that the Jeans mass evolves in BD theory 

according to

V j  =  J/„ (3.32)

where

Mo =  5 X (3.53)

The evolution rate of GR (oc f'^) is recovered when .x.’ -» oc. for the Jeans mass then 

become;
f/-'

.\Ij =  3.2 X (3.54)

.\nother interesting result arises when uj =  0. which leads to a constant value for 

. \Ij. Intermediate values of a.' are more difficult to address.

3.3.2. Model Id 

In this case we take eqs. (2.16)-(2.18) to derive

M j  =  Mo

with

C B

a/%
r ' \  (3.55)

M q =  " (3.56)
ü4

3.3.3. Model II

Following the sequence, the evolution of the Joans mass for the Hat dynamical 

-V model is given by:

o (3.57
'c - v f -  2 +  Ù,' V (2 +  a . ' ) ( l - 2a.')
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with Mo ~  4.3 X 10^K We can see immediately that we must have u! <  1/2  so that 

eq. (3.57) yields a real number. Another critical value is the well known u j  =  —2. 

which would lead to an infinite Jeans mass (this is also true for model I). That 

indeed makes sense if we recall that this value for the coupling parameter implies a 

null gravitational constant, meaning that structure would never collapse under the 

influence of gravity (in other words, an infinite mass would be required to produce 

collapse). Finally, the range

—2 < u.' <  —1.5 (.3.58)

is forbidden for that would also cause M j  to be an imaginary number. Eq. (3.57) 

also shows that the Jeans mass has a strong time dependence in this case, as opposed 

to the Einstein-de Sitter case for example, and that it goes to zero in the limit 

UJ —> —oc.

Model [ la

The Jeans mass was not calculated in this case due to the uninteresting behavior 

of the density contrast for structure formation, as demonstrated by the numerical 

integration of eq. (3.40).

d. 3.5. Model l ib

If we now use eqs. (3.49)-(3.51) and the solutions for n. G  and p from model 

lib . we obtain the evolution of the Jeans mass for the non-flat stiff-matter-fluid case:
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with Mo the same as in eq. (3.57). Note that g oc t'-, which implies M j  oc for 

this example. The influence of u; in the above eciuation is not as simple to access 

as was with the previous case. The reason is that the coupling param eter acts on 

ec[. (3.59) together with the model constants C  and C[ (through the term </‘̂ ') .  For 

k  =  1  { u j  >  —3/2) the general effect of increasing u j  is to slow the decay of M j  

(fig. (3.8)). The open case of this model { k  =  —1: u j  <  —3/2) requires that uj >  —2 

so that eci. (3.59) yields a real number, which poses a rather restrictive range for the 

allowed values of the coupling parameter.

S.ji.6. Model III

Finally, using eĉ s. (2.33)-(2.35) we obtain that the leans mass for the model 

with a varying reads as

^  ( 3+Lh!
where

Mo =  9.7 X 10‘'-n"/-c;7‘ '̂-(ci5)-*/- . (3.C1)

Figs. (3.9)-(3.11) show the influence of b in the .Jeans mass for this model, where we 

consider the same values for the free param eter as used in figs. (3.6) and (3.7). We 

see that the cases 5 =  0.1 and 5 = 1  are very similar, contrary to what happens when 

we consider the evolution of the density contrast alone. .A.s we increase the value of 

the free parameter [b =  10. fig. 3.10). the logarithmic function in the numerator of 

ecj. (3.60) starts being significant and the .Jeans mass becomes peaked rather than 

monotonically decreasing. This logarithmic term dominates the behavior of the 

.Jeans mass completely for larger values of 5 (5 =  100. fig. 3.11). causing the .Jeans 

mass to increase ver}' rapidly.
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Fig. 3.1.— as a function of f/trec iu BD theon’ for different values of the coupling 

parameter: u; =  0 (dashed): u j  =  5 (dot-dashed): uj =  10 (dotted): u j  =  100 (short- 

dotted): and the cases u j  =  ±500 (dash-dot-dot for plus and short-dashed for minus) 

and Einstein-de Sitter (solid), which are barely distinguishable on the plot.
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Fig. .3.2.— 6 as a function of t/trec for the closed dynamical A model for uj =  500 

(solid), a,’ =  0.5 (dashed) and ic =  —1 (dotted)
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Fig. 3.3.— S as a function of t /trec  for the stiff-inatter-fiuici case with k  =  1 and

u.’ =  — 1 (upper left), a.' =  1 (lower left), u.' =  10 (upper right) and u.’ =  100 (lower

right).
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Fig. .3.4.— ()' as a function of ^/irec with A: =  — 1 in the stiff-matter-fluicl case with 

Ô,' =  —1.9.
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Fig. 3.5.— Same as fig. (3.4) with a,’ =  —3 (upper) and uj =  —100 (lower)
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Fig. .3.6.— Ù as a function of f/trec for a fiat non-trivial u,- model with b =  0.1.
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Fig. 3.7.— Same as fig. (3.6) for 6 =  1 (clot-daslieci). b =  10 (dotted), b =  100 

(daslied) and an Einstein-de Sitter Universe (solid).
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Fig. 3.8.— Evolution of the .Jeans mass with f//rec for the closed stiff-matter-fiuid 

model with jj =  — I (solid). 10 (dashed). 100 (dotted) and 500 (dot-dashed).
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Fig. 3.9.— Evolution of the Jeans mass with tjtrec for the flat non-trivial a.' model

with b =  0.1 (solid) and h =  I (dashed).
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Fig. 3.10.— Evolution of the .leans mass with t/irec for the flat non-trivial x  model

with b =  10.
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Fig. 3.11.— Evolution of the .leans mass with t jtrec  for the fiat non-tri\ial a.’ model

with h =  100.
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4. Sum m ary and C onclusions

We have investigated three classes of scalar-tensor cosmological models 

(Brans-Dicke, dynamical A and varying u)  with flat, spherical and hyperbolic 

geometries. The main goal of this work is the study of the linear growth of density 

perturbations in such theories, which was undertaken within the Jeans formalism for 

an expanding Universe. It was found that some models lead to power-law growth 

rates for the density contrast, with the coupling function w dictating its evolution. 

In some other models, structure formation is either supressed or takes place with an 

exponential growth rate. The results may be summarized as follows:

Brans-Dicke theorx): as one of the simplest extensions of general relativity. BD 

theory is known to approach GR as a.' oc. However, this result is verified only for 

flat curvature. Our analysis for flat BD theory corroborates the work of Gaztanaga 

& Lobo (2001) and the expected asymptotic behavior of BD theory towards GR. We 

point out a misinterpretation of the results in Gaztanaga & Lobo (2001) though (see 

discussion in section 3.2): these authors chose to study the solution for à as a function 

of the cosmic scale factor a. and they would have concluded that the mode a-> in 

their paper is always equal to —1 if they had considered the explicit time-dependence 

of a. They also pointed that the mode oi in their paper (corresponding to the second 

term  from eq. 3.27 in the present work) is a growing mode only for large values of 

|u;|, which we do not agree with and give examples to illustrate our point (fig. 3.1). 

The closed BD model also presents unambiguous increasing and decreasing modes. 

Fig. (4.1) shows the dependence of the growing modes (denoted by a  in the plot) of
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each model (flat and closed) on u  for comparison'. One can see that a  goes rapidly 

to 2/3 as |w| increases for the flat model, whereas it grows indefinitely for the closed 

counterpart throughout the allowed range of the coupling param eter (w <  —2 ). 

Finally, the constants Ci and Co in eqs. (3.27) and (3.32) are a;-dependent, as can 

be seen if we solve the Jeans equation for models I and Ib using our assumed initial 

conditions. We thus have

for model I and

Co =  2 X 10-i ( -  , 4- l )  (4.4)
\  V — ( — 4cj )

for model Ib. There is no further constraint for model Ib from the above equations. 

However, we must have a; 7̂  —8/5 for model la according to eqs. (4.1) and (4.2).

Dynamical \  theory: Here we have studied flat, open and closed models with 

a dust-fluid-like equation of state (models II and Ha) and non-flat models with a 

stiff-matter-like equation of state (model Ilb). The age of the Universe and the 

Hubble constant are related to each other in model II according to (DRP99):

^0 =  7 - (4.5)

This scenario requires Ho % 30 km s~‘Mpc~^ in order to be consistent with the latest 

estimates of the age of the Universe (~  13.2 billion years, e.g. Lineweaver 1999).

' Note that growing modes exist for flat BD cosmologies only if u.' is outside the 

range —2 < cj <  —4/3.
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Recent measurements of the Hubble constant point to a value of approximately 68 

km s“ ^Mpc“  ̂ (Mould et al. 2000). Therefore, in spite of having power-law growing 

modes for S, model II can not agree with the inferred values of the age of the Universe 

and of H q simultaneously. The model reproduces the Einstein-de Sitter solution 

when uj =  The Jeans mass for this model is proportional to t~^, meaning

that it goes rapidly to zero. We have discovered two important aspects of this model:

(1) structure formation processes will take place during a short period of time: and

(2) the closest to -2 is the coupling parameter the greatest is the Jeans mass in a 

given time. It is striking that one of the values for ui (% —2.07) which reproduces 

the Einstein-de Sitter equivalent for S lies just outside the forbidden range imposed 

by the Jeans mass (eq. 3.58). This assures that if the density contrast is to grow as 

in the Einstein-de Sitter Universe then the initial Jeans mass had to be high because 

of the proximity to the resonant value u j  =  —2. The density contrast never grows 

in the context of model Ila. but rather undergoes a damped oscillation similar to 

the oscillations present in the radiation epoch, which are damped by the interaction 

with the primordial plasma according to standard cosmological models (e.g. Coles 

& Lucchin 1995). Our main finding about model lib  with positive curvature is that 

there are two distinct stages in the evolution of the density contrast, namely, early 

exponential evolution followed by a slower growth rate. The duration of the two 

stages is controlled by u j . but in any case structure grows rather steeply during 

the earliest stages of evolution and after some time the density contrast ceases to 

grow. Unlike in standard Big Bang models. S is not predicted to grow monotonically 

during the linear regime. Model lib  with negative curvature has the same behavior 

of the & =  1 counterpart for u j  <  —2. while for —2 <  ^ < —3/2 there is no growing 

mode. Values of the coupling param eter greater than -1.5 are excluded for k =  —1 

due to our choice of model constants.



Varying-oj theory: we do find growing modes for this particular varying-w flat 

cosmology. The growth rates found are always higher than the Einstein-de Sitter 

counterpart, specially when the free parameter b of the theory is less than unity. 

Greater values of b slow the growth rate, but even when b oc the density contrast 

grows faster than in GR. Perhaps other theories with varying coupling parameter 

would yield different results, and we leave this for future work.

In summary, we have shown that a treatment as simple as the .leans analysis 

for an expanding Universe is useful to test for realistic scalar-tensor cosnr,logics. 

Comparisons with observations are not straightforward for every cos mo log}- studied 

here because of the many model constants involved. However, the very absence of 

growing modes (or the presence of exponentially increasing modes) can be enough to 

decide whether a model is viable, or not. for structure formation. Also, the fact that 

we can have faster growth rates of à' in some of the theories studied when compared 

to GR means that structure forms at earlier times in these models.

A fully relativistic treatm ent to the evolution of perturbations within the 

theories we have analyzed would be a natural extension of the present work, and we 

leave this for future work. O ther theories with var\'ing-a,' should also be investigated. 

Exact solutions involving both A(o) and uj{0) have not been found yet. and they 

can be promptly tested within the framework we have introduced as soon as they 

become available.
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Fig. 4.1.— Growth rates for flat (solid) and closed (dashed) BD cosmologies as a 

function of the coupling constant.
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A. On The Pow er-Law  R elation b etw een  a  and in flat dust-flu id  

Brans-D icke C osm ology

In order to obtain exact cosmological solutions in scalar-tensor theories, it is 

usually assumed that ec). (2.19) is valid {e.g. Dehnen k. Obregon 1971. 1972 and 

Diaz-Rivera k  Pimentel 1999). It has been argued that this relation is a condition 

for the deceleration param eter to be constant for flat models in BD theoiy (.lohri k  

Desikan 1994). We show through a linear perturbation treatment tha t this ansatz is 

also necessary in order for flat dust-fluid Brans-Dicke models to be consistent with 

Newtonian physics in the weak field approximation.

Let us allow small perturbations in the metric, in the scalar field and in the 

energy-niomentum tensor:

F /it/  ^  ĝ iu f  )

o  => o  +  ()0 (A2)

T̂ w ^  T^u +  %)<[/' (A3)

and assume all the perturbations to be static and of the same order, so that any 

terms involving scjuares or products of perturbations are ignored in the analysis, 

and their time derivatives vanish. Let us also assume that the perturbations in the 

Robertson-Walker metric are of the same form as in the weak field approximation 

of this scalar-tensor theory (i.e. it takes the form of the so-called post-Newtonian 

parameters of the theorj', e.g. Will 1981). This is the main ansatz used here and it

is by no means the usual approach for treating perturbations in the field equations.

In the canonical treatm ent the perturbed terms are found by plugging them into the 

field ecjuations and then solving for them. Besides, it is usually assumed that spatial 

derivatives of the perturbations are negligible compared to their time derivatives.
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This Is how one can study the evolution of primordial density perturbations in the 

context of a relativistic gravitational theory [e.g. Peebles 1993 and Gaztanaga & 

Lobo 2001). Therefore the perturbed metric used here has components

goo =  1 (A4)

2 \ '( l+ a . ') a ' . . ,
9ij =  - a  + ---^-^77  ̂ : ' =  J (Ao)

gij = 0: i ^  j .  (A6)

We are considering Hat spacetime. Note that the above expressions are written 

in a synchronous gauge, i.e. in time-orthogonal coordinates [e.g. Zel'dovich & 

Xovikov 1983 and Peebles 1993). In this way the time-time component of the metric 

remains unperturbed. I ' in eq. (A5) is the Newtonian gravitational potential.

For the perturbations in the energy-momentum tensor it is assumed that only

its time-time part, namely p. makes a significant contribution (i.e. we are neglecting

pressure contributions in 7). ,̂). so that

=  Sp. (AT)

We have made no assumption about the perturbation in the scalar field 60 .

Substituting eqs. (.A4)-(A7) in eqs. (2.2) and (2.3). wo get the corresponding 

perturbed and unperturbed parts of each equation. The unperturbed time-time 

component of eq. (2.2) is simply eq. (2.5). while the corresponding perturbed 

equation is given by

V - r  =  f — )  ( 47tô> +  \  3 - -  -  a.' f - )  -  ^  Ô0 +  4 V -d o | .
\ 0 /  \ 1  - f u /  ^ 2 a o  J o  a ~  j

Similarly, the unperturbed part ofeq. (2.3) is eq. (2.6). with its perturbed component 

being

- -47Ta~(5/3. (A9)
3-f2o.’
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Eq. (A8) and (A9) can be combined and rewritten as

V - \ '  =
Area-5p 4- 2w \ 1

O \3  +  2a.J 2 \ a )  2 \ ( p )  l l  f w /  G
2 +  a -  , 

-60 . 
0

where we have used the identity

-?jiR
a 0 0 (: - I I

(AlO)

(A ll)

from eq. (2.2).

If (1) 6p  is some local density. (2) 0 assumes its present value Oq and (3) 

a =  constan t  =  1 is the present size of the Universe, then ecj. (.\10) is the Poisson 

equation with an effective gravitational constant given by

4 +  2i
l a T S ; ) -

(A12)

which is precisely the expression obtained in BD theory. This result is expected 

since we are using the post-Newtonian parameters for STTs. However, the complete 

eq. (.A.10) tells us that the Poisson equation is not valid as we know it for any epoch 

in the Universe. There are time-dependent corrections to it. and perhaps even 

scale-dependent corrections embedded in 60 (if. for example, we integrate eq. (A9)).

In order to get rid of the extra terms in the Poisson equation (leaving it invariant 

for all times and all scales), we require:
► » *J"

'2 +f a \ - UJ 0

U  - 2  U . =  0 .
. 1 4- w

We are not considering here the case u j  =  —2 since that would imply a null 

gravitational constant. Therefore eq. (-A.13) is valid if

(A13)

where

a =  Jfrnci0~

m =  \ ----
G

(A14)

(A15)

o z



and Cl is an integration constant.

We see immediately that eq. (A14) is of the sort assumed in order to find exact 

solutions in STTs (eq. (2.19)). Besides, eq. (.A.13) shows that the exponent m is 

related to u j  in a rather simple way. Examination of eqs. (-A.14) and (A15) shows 

that in order to get a real value for m the coupling param eter u j  must be negative. 

The power-law relation we have found is valid specifically in the BD case. A more 

general perturbation treatment would be required to access the validity of the 

relation for other STTs. It is possible that there are scale-dependent modifications 

to the Poisson equation arising from the term proportional to 60 . Such scenario 

would be a variant of the scale-varying O' cosmological models (Bertolami. Mourào 

&: Pérez-Mercader 1993) and perhaps a more theoretically motivated approach to 

the proi)lem.
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