The Evolution of Star Formation Rates in High-Redshift Galaxies

by

Andrew H. Marquis

A Thesis Submitted to Saint Mary's University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

 $_{in}$

Astronomy

(Department of Astronomy and Physics)

September 22, 2010, Halifax, Nova Scotia

© Andrew H. Marquis, 2010

Approved:

Approved:

Approved:

Dr. M. Sawicki Supervisor

Dr. R.J. Thacker Examiner

Dr. D.B. Guenther Examiner

Date: September 22, 2010

Library and Archives Canada

Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque et Archives Canada

Direction du Patrimoine de l'édition

395, rue Wellington Ottawa ON K1A 0N4 Canada

> Your file Votre référence ISBN: 978-0-494-71810-0 Our file Notre référence ISBN: 978-0-494-71810-0

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Contents

Contents				ii
List of Figures				v
List of Tables				xii
Acknowledgements				ii
Abstract				1
1 Introduction	<i>, .</i>			2
1.1 Motivation \ldots		•••••		2
1.2 Theory				4
1.3 The Lyman Break Selection Techniq	ue			6
2 Data			•••••	8
2.1 $z \sim 3$	· · · · · · · · · · · · ·			8
2.1.1 Observations			•••••	8
2.1.2 Data Reduction				10
2.1.3 Object Detection and Photor	netry			10
2.1.4 Selection Criteria				11
$2.2 z \sim 2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $				14
2.2.1 The Observations				14
2.2.2 Data Reduction, Object Dete	ection, and Photometry	y		16

ii

	Contents	iii
	2.2.3 Selection Criteria	16
	2.2.4 Initial Modeling	17
2.3	Comparison Data Sets	18
	2.3.1 The Need for Comparison Data Sets	18
	2.3.2 $z \sim 5$ (Yabe et al. 2009)	19
	2.3.3 $z \sim 2$ (Shapley et al. 2005)	19
6 Mo	del-fitting	29
3.1	SEDfit	29
	3.1.1 The Software	29
	3.1.2 The Parameters	30
3.2	<i>z</i> ~3	31
	3.2.1 Assuming Constant Star Formation	31
	3.2.2 Assuming Exponential Star Formation	32
3.3	<i>z</i> ~2	36
	3.3.1 Assuming Exponential Star Formation	36
3.4	Age Considerations	39
l Ana	alysis	41
4.1	The Stellar Mass-Star Formation Rate Relation	41
	4.1.1 For Constant Star Formation	41
	4.1.2 For Exponential Star Formation	45
4.2	Dust	55
	4.2.1 For Constant Star Formation	55
	4.2.2 For Exponential Star Formation	59
5 Sur	nmary and Conclusions	61

· ...

Contents		
Bibliography	64	
A $z \sim 3$ Best-fit SEDfit Parameters	67	
B $z \sim 2$ Best-fit SEDfit Parameters	92	

- 1.1 Star formation rate density versus redshift. The SFR density of the universe is seen to peak at approximately $z\sim2$. The data points are compiled from a number of surveys and scaled to the SalA IMF for illustrative purposes. The solid black lines are best-fit parameterizations of the data. For details, see Hopkins & Beacom (2006).
- 2.1 Filter transmission curves for WFPC2 $(U_{300}, B_{450}, V_{606}, I_{814})$ aboard HST and ISAAC (J_s, H, K_s) at the VLT. We use observations through these filters to select and model-fit a population of $z\sim3$ galaxies from the HDF-S. A $z\sim3$ model spectrum is overlaid in red.
- 2.3 Color-color plot displaying objects detected in the HDF-S and their relationship to the $z\sim3$ selection criteria of Steidel et al. (1996). Objects detected at all wavelengths are shown as asterisks, while objects undetected in U_{300} but detected in all other bands are represented by upward pointing triangles. We select all asterisks and triangles above and to the left of the solid red line, resulting in 242 total $z\sim3$ galaxy candidates. 14
- Filter transmission curves for WFPC2 (U₃₀₀, B₄₅₀, V₆₀₆, I₈₁₄) and NICMOS (J₁₁₀,
 H₁₆₀) aboard HST. Observations through these filters are used to select and model-fit
 a population of z~2 galaxies from the HDF. A z~2 model spectrum is overlaid in red. 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

9

- 2.5 Sample selection for $z\sim2$ objects in the HDF. The left panel shows the U_{300} - B_{450} - \mathcal{R}_{VI} color-color selection criteria Sawicki employs to define his sample. The symbol sizes are scaled to indicate their relative brightnesses. All objects shown are $23 \leq \mathcal{R}_{VI} \leq 28$. The selection region (Steidel et al. 1996) is outlined in red. Selected objects are color-coded according to their model-fit photometric redshifts. The right panel inset displays the photometric redshift distribution. Objects satisfying Eq. 2.8 are colored orange, while blue objects lie at $z_{phot} > 2.6$ and cyan objects at $z_{phot} < 1.8$. The right panel further shows the \mathcal{R}_{VI} number counts for selected objects. These histograms are stacked and do not overlap. Figures courtesy Sawicki (in preparation).
- 3.1 Example plots of best-fit model spectra determined by SEDfit assuming 3 different star formation histories. Left to right, the columns assume a constant SFR, an exponentially increasing (τ = 700 Myr) SFR, and an exponentially decreasing (τ = -700 Myr) SFR. The spectra are overlaid with the corresponding real-world photometry of z~3 galaxies from the HDF-S. Solid blue circles indicate a detection, while open circles represent upper limits. The horizontal wavelength uncertainties are indicative of the FWHM of that filter's transmission curve. Uncertainties of the magnitudes themselves are on the order of 0.01 or smaller. Best-fit parameters for each LBG are listed in the panels.
- 3.2 Number counts for best-fit ages output by SEDfit for $z_{phot}\sim3$ galaxies in the HDF-S assuming constant, exponentially increasing ($\tau = 700$ Myr), and exponentially decreasing ($\tau = -700$ Myr) star formation. The median best-fit age is given in each plot. The 2.11 Gyr age of the universe at $z\sim3$ is represented by t_0

vi

18

33

34

- 3.3 Number counts for best-fit ages output by SEDfit for $z_{phot} \sim 2$ galaxies in the HDF assuming constant, exponentially increasing ($\tau = 700$ Myr), and exponentially decreasing ($\tau = -700$ Myr) star formation. The median best-fit age is given in each plot. The 3.22 Gyr age of the universe at $z \sim 2$ is represented by t₀.
- 4.1 Stellar masses versus constant star formation rates. The three leftmost vertical panels display the complete data set(s) at each redshift. Uncertainties are plotted in light grey for all objects $\sim 30 \text{ Myr} \leq \text{age} \leq t_0$. The top right panel shows these intermediate aged objects and their corresponding lines of best-fit. The best-fit slope is calculated from the combined $z\sim2$ data sets of Sawicki et al. (2007) and Shapley et al. (2005). That slope is then assumed for the $z\sim3$ and $z\sim5$ populations. The bottom right panel displays the residual offsets for all data relative to the $z\sim2$ line of best-fit. We use these offsets to calculate the δ -term for each redshift in Equation 4.1.

37

38

43

vii

- 4.2 Stellar masses versus constant star formation rates. The black line is the evolutionary track of a toy galaxy evolved from $z\sim5$ to $z\sim2$. The open circles mark the location of the toy without accounting for mass loss, while the diamonds correct for mass loss. The $z\sim5$, ~3 , and ~2 best-fit lines are displayed in green, blue, and red, respectively. The light green, light blue, and pink lines enclose each redshift group's region of acceptable agreement (see Eqs. 4.4 and 4.5). At $z\sim3$, the toy galaxy is 4.02×10^8 M_{\odot}, or $\sim70\%$, more massive than the upper limit acceptable mass. At $z\sim2$, the toy is 1.14×10^9 M_{\odot}, or $\sim120\%$, more massive than the acceptable upper limit.
- 4.3 Stellar masses versus exponentially increasing star formation rates (τ = 700 Myr). The two leftmost vertical panels display the complete data set at each redshift. Uncertainties are plotted in light grey for all objects ~30 Myr ≤ age ≤ t₀. The top right panel shows these intermediate aged objects and their corresponding lines of best-fit. The best-fit slope is calculated from the Sawicki et al. (2007) z~2 data set. That slope is then assumed for the z~3 population. The bottom right panel displays the residual offsets for all data relative to the z~2 line of best-fit. We use these offsets to calculate the δ-term for each redshift in Equation 4.7.
- 4.4 Stellar masses versus exponentially increasing star formation rates ($\tau = 700$ Myr). The black line is the evolutionary track of a toy galaxy evolved from $z\sim5$ to $z\sim2$. The open circles mark the evolution of toy with no correction for mass loss. The diamonds mark its evolution as adjusted for mass loss. The $z\sim2$ and ~3 best-fit lines are shown in red and blue, respectively. The pink and light blue lines outline each redshift group's region of acceptable agreement. At $z\sim3$, the toy galaxy is $\sim58\%$ more massive than the spread in observational data allows. By $z\sim2$, the toy has evolved into a 1.45×10^{10} M_{\odot} object forming stars at 21.88 M_{\odot} yr⁻¹. These values lie within the $z\sim2$ region of acceptable agreement.

viii

44

48

- 4.6 Stellar mass versus exponentially increasing star formation rates ($\tau = 500$ Myr). The black line is the evolutionary track of a toy galaxy evolved from $z\sim5$ to $z\sim2$. The open circles mark the evolution of toy with no correction for mass loss. The diamonds mark its evolution as adjusted for mass loss. The $z\sim2$ and ~3 best-fit lines are shown in red and blue, respectively. The pink and light blue lines outline each redshift group's region of acceptable agreement. At $z\sim3$, the mass of the toy overshoots the upper limit acceptable mass $\sim15\%$. Correcting for mass loss does not bring the toy galaxy into agreement with the data. At $z\sim2$, the toy's evolution is consistent with the data spread, and no correction for mass loss is necessary.
- 4.7 Stellar masses versus star formation rates, assuming exponential star formation ($\tau = -700$ Myr). The two leftmost vertical panels display the complete data set at each redshift. Uncertainties are plotted in light grey for all objects ~ 30 Myr \leq age \leq t₀. The top right panel shows these intermediate aged objects and their corresponding lines of best-fit. The best-fit slope is calculated from Sawicki's $z\sim 2$ data set. That slope is then assumed for the $z\sim 3$ population. The bottom right panel displays the residual offsets for both data sets relative to the $z\sim 2$ line of best-fit. We use these offsets to calculate the δ -term for each redshift in Equation 4.13.

ix

50

53

х

54

57

but less than the age of the universe.

- 4.11 Color excess versus rest-frame UV magnitude for galaxies model-fit with exponential star formation ($\tau = 700$ Myr). The left panel shows all data regardless of magnitude or age. The right panel is limited to magnitudes where the samples at each redshift display overlap and presents only data for objects with ages greater than ~30 Myr but less than the age of the universe. The red and dotted blue lines show median color excesses for the data binned according to UV magnitude. Across the fainter bin, we find median color excesses of 0.19 and 0.14 for $z\sim2$ and $z\sim3$ galaxies, respectively. Across the brighter bin, objects at $z\sim3$ are found to have a median color excess of 0.18. 58

2.1	HDF-S Photometric Catalog. An uncertainty of 99.00 means the reported magnitude	
	is a 3σ upper limit	21
2.1	HDF-S Photometric Catalog. An uncertainty of 99.00 means the reported magnitude	
	is a 3σ upper limit	22
2.1	HDF-S Photometric Catalog. An uncertainty of 99.00 means the reported magnitude	
	is a 3σ upper limit	23
2.1	HDF-S Photometric Catalog. An uncertainty of 99.00 means the reported magnitude	
	is a 3σ upper limit	24
2.1	HDF-S Photometric Catalog. An uncertainty of 99.00 means the reported magnitude	
	is a 3σ upper limit	25
2.1	HDF-S Photometric Catalog. An uncertainty of 99.00 means the reported magnitude	
	is a 3σ upper limit	26
2.2	HDF catalog of Sawicki et al. (2007). An uncertainty of 99.00 means the magnitude	
	value is a 3σ upper limit.	27
2.2	HDF catalog of Sawicki et al. (2007). An uncertainty of 99.00 means the magnitude	
	value is a 3σ upper limit.	28
4.1	Median color excess and V -band extinction values for galaxies model-fit assuming	
	constant star formation and binned according to rest-frame UV magnitude. \ldots .	57

4.2	Median color excess and V -band extinction values for galaxies model-fit assuming	
	exponential star formation ($ au$ = 700 Myr) and binned according to rest-frame UV	
	magnitude.	59
A.1	Best-fit parameters for this work's HDF-S catalog, constant SFR	67
A.1	Best-fit parameters for this work's HDF-S catalog, constant SFR	68
A.1	Best-fit parameters for this work's HDF-S catalog, constant SFR	69
A.1	Best-fit parameters for this work's HDF-S catalog, constant SFR	70
A.1	Best-fit parameters for this work's HDF-S catalog, constant SFR	71
A.2	Best-fit parameters for this work's HDF-S catalog, 700 Myr e-folding exponential SFR.	72
A.2	Best-fit parameters for this work's HDF-S catalog, 700 Myr e-folding exponential SFR.	73
A.2	Best-fit parameters for this work's HDF-S catalog, 700 Myr e-folding exponential SFR.	74
A.2	Best-fit parameters for this work's HDF-S catalog, 700 Myr e-folding exponential SFR.	75
A.3	Best-fit parameters for this work's HDF-S catalog, 500 Myr e-folding exponential SFR.	76
A.3	Best-fit parameters for this work's HDF-S catalog, 500 Myr e-folding exponential SFR.	77
A.3	Best-fit parameters for this work's HDF-S catalog, 500 Myr e-folding exponential SFR.	78
A.3	Best-fit parameters for this work's HDF-S catalog, 500 Myr e-folding exponential SFR.	79
A.4	Best-fit parameters for this work's HDF-S catalog, 350 Myr e-folding exponential SFR.	80
A.4	Best-fit parameters for this work's HDF-S catalog, 350 Myr e-folding exponential SFR.	81
A.4	Best-fit parameters for this work's HDF-S catalog, 350 Myr e-folding exponential SFR.	82
A.4	Best-fit parameters for this work's HDF-S catalog, 350 Myr e-folding exponential SFR.	83
A.5	Best-fit parameters for this work's HDF-S catalog, 250 Myr e-folding exponential SFR.	84
A.5	Best-fit parameters for this work's HDF-S catalog, 250 Myr e-folding exponential SFR.	85
A.5	Best-fit parameters for this work's HDF-S catalog. 250 Myr e-folding exponential SFR.	86
A.5	Best-fit parameters for this work's HDF-S catalog, 250 Myr e-folding exponential SFR.	87

A.6	Best-fit parameters for this work's HDF-S catalog, -700 Myr e-folding exponential	
	SFR	88
A.6	Best-fit parameters for this work's HDF-S catalog, -700 Myr e-folding exponential	
	SFR	89
A.6	Best-fit parameters for this work's HDF-S catalog, -700 Myr e-folding exponential	
	SFR	90
A.6	Best-fit parameters for this work's HDF-S catalog, -700 Myr e-folding exponential	
	SFR	91
B.1	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 700 Myr e-folding expo-	
	nential SFR.	92
B.1	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 700 Myr e-folding expo-	
	nential SFR	93
B.1	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 700 Myr e-folding expo-	
	nential SFR	94
B.1	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 700 Myr e-folding expo-	
	nential SFR	95
B.2	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 500 Myr e-folding expo-	
	nential SFR	96
B.2	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 500 Myr e-folding expo-	
	nential SFR	97
B.2	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 500 Myr e-folding expo-	
	nential SFR	98
B.3	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 350 Myr e-folding expo-	
	nential SFR	99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 xiv

B.3	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 350 Myr e-folding expo-	
	nential SFR	100
B.3	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 350 Myr e-folding expo-	
	nential SFR	101
B.4	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 250 Myr e-folding expo-	
	nential SFR	102
B.4	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 250 Myr e-folding expo-	
	nential SFR	103
B.4	Best-fit parameters for Sawicki et al. (2007) HDF catalog, 250 Myr e-folding expo-	
	nential SFR	104
B.5	Best-fit parameters for Sawicki et al. (2007) HDF catalog, -700 Myr e-folding expo-	
	nential SFR	105
B.5	Best-fit parameters for Sawicki et al. (2007) HDF catalog, -700 Myr e-folding expo-	
	nential SFR	106
B.5	Best-fit parameters for Sawicki et al. (2007) HDF catalog, -700 Myr e-folding expo-	
	nential SFR	107

xv

Acknowledgements

First, thank you to Dr. Marcin Sawicki for the opportunity, knowledge, and patience. Thank you, as well, to Drs. Rob Thacker and David Guenther for their committee participation.

To Kathleen, Jon, James, Dave, Chris, Liz, Larkin, Pascal, and all four Michaels, whose friendship and experience I relied upon. To Larry, Amy, Laena, Shannon, and Kylene, who made Halifax both livable and lovable.

To my parents, Randy and Wendy, and my sister, Valerie, for everything.

Abstract

The Evolution of Star Formation Rates in High-Redshift Galaxies

by Andrew H. Marquis

We use photometric galaxy samples and spectral synthesis models to investigate the ability of three dramatically divergent star formation histories (SFHs) to describe the build-up of stellar mass in galaxy populations between $z\sim5$ and $z\sim2$. The SFHs in question assume constant, exponentially increasing, and exponentially decreasing star formation rates (SFRs). For each considered SFH, we use a broadband spectral energy distribution model-fitting technique to parameterize the galaxy samples according to photometric redshift, color excess, age, stellar mass, and SFR. Starting at $z\sim5$, we then evolve the stellar mass and SFR of a toy galaxy across the epochs in question and quantify its agreement with the model-fit observations at $z\sim3$ and $z\sim2$. This is done for each assumed SFH. We find the exponentially increasing SFH with a 500 Myr e-folding agrees best with the modelfit observations, while the exponentially decreasing SFH shows the worst agreement. We further analyze the model-fit data for trends in color excess versus rest-frame UV magnitude and identify that, for $z\sim3$ galaxies fit for constant star formation, UV-brighter objects are more highly obscured by dust than the UV-faint. This dependence is not identified in the other data sets.

September 22, 2010

Chapter 1 Introduction

1.1 Motivation

During the epoch immediately following the Big Bang, the universe was hot, dense, and relatively featureless. Some 13.5 billion years later, we observe structure across an immense range of scales. The evolution of structure in the universe is intimately linked to the evolution of galaxies across cosmological timescales and, more specifically, how structure evolves within galaxies. Structural evolution within a galaxy is governed by its gravitational potential. This determines the star formation history (SFH), or how stellar mass builds up. A galaxy's SFH describes how its star formation rate (SFR) changes with time.

The star formation rate density (SFR per unit volume) in the universe peaks at approximately redshift 2 (Hopkins & Beacom 2006; see Fig. 1.1). (When noting redshift, we will often use the standard redshift abbreviation z.) Therefore, an understanding of how galaxies built up their stellar masses in the epochs preceding $z\sim2$ is crucial to our picture high-redshift galaxy evolution. As yet, a clear, qualitative picture of the SFHs of high-redshift galaxies has not been established. Via the technique of model-fitting galaxies' broadband spectral energy distributions (SEDs; see Chapter 3), this work seeks to identify an SFH that both realistically model-fits observational data at $z\sim5$, ~3 , and ~2 and evolves a galaxy across those epochs in a manner consistent with the model-fit observations.

Previous studies that model-fit galaxies according to their broadband SED properties adopted exponentially decreasing SFHs, which assume galaxies exist in closed boxes. Any given galaxy has a certain amount of gas to transform into stars. As stars are created, the gas reservoir depletes,

Figure 1.1: Star formation rate density versus redshift. The SFR density of the universe is seen to peak at approximately $z\sim2$. The data points are compiled from a number of surveys and scaled to the SalA IMF for illustrative purposes. The solid black lines are best-fit parameterizations of the data. For details, see Hopkins & Beacom (2006).

and the SFR decreases. These model SFHs come in three varieties. First, the explicitly decreasing exponential SFH takes the form SFR(t) $\propto \exp(-t/\tau)$. The second and third varieties are the limiting cases of the explicit exponential: the single stellar population (SSP) model and the constant star formation (CSF) model. The SSP model assumes an instantaneous starburst, and no star formation occurs at later epochs, which mimics a sharply declining exponential. The CSF model assumes that a galaxy begins forming stars at some rate and continues to do so for the duration of the starburst episode, which mimics a slowly declining exponential.

Sawicki & Yee (1998) utilize SSP and CSF models to study the extinctions, star formation rates, ages, and masses of z > 2 galaxies in the Hubble Deep Field. Shapley et al. (2001) use the CSF model in their investigation of the $z\sim3$ rest-frame luminosity function, while Shapley et al. (2004; 2005) employ both the CSF model and the explicit exponential in their studies of stellar masses at $z\sim2$. Stellar masses are also analyzed by Papovich et al. (2001), who use the SSP and explicit exponential SFHs to model galaxies at redshifts $2.0 \leq z \leq 3.5$ in the Hubble Deep Field North.

Yabe et al. (2009) explore many of these parameters for objects at $z\sim5$. It is key to note that these groups' investigations treated galaxies at specific redshifts in isolation from the rest of cosmological time, with no focused effort on determining how a galaxy at, say, $z\sim5$ evolves to become a galaxy at $z\sim2$. In Chapter 4, we show that the explicitly decreasing exponential and CSF models fail to plausibly describe this evolution.

Contrary to the assumptions these models make, we know galaxies do not exist in complete isolation but in environments with which they interact. Furthermore, the star formation activity within a galaxy must not solely draw from some initial reservoir of baryonic gas because galaxies routinely acquire more via the smooth accretion and merger mechanisms (Mihos & Hernquist 1996).

Recent interpretations of observational data suggest the SFHs of high-redshift galaxies are best described by SFRs that increase with passing time. For instance, if it were true that high-redshift galaxies had either constant or decreasing SFRs, then it would follow that their progenitors would be characterized by higher specific SFRs (SFR per unit stellar mass). This proposition is contradicted by Stark et al. (2009), who observe no evolution in the specific SFRs of UV-selected galaxies at redshifts $4 \leq z \leq 6$. Additionally, Finkelstein et al. (2010) determine that, as cosmological time progresses from $z \sim 8$ to $z \sim 3$, the characteristic luminosity of the UV luminosity function, L_{UV}^* (Schechter 1976), increases, as do the stellar masses of galaxies at L_{UV}^* . The simplest explanation for this trend is that these galaxies' SFRs increase with time.

1.2 Theory

To make sense of these new interpretations, we turn to a theory of stellar mass build-up provided by Kouji Ohta (private communication, 2009). Ohta begins with the assumption that a galaxy's SFR is proportional to the rate at which it accretes gas.

$$SFR(t) = \frac{dM_*}{dt} = c_1 \frac{dM_{gas}}{dt}$$
(1.1)

For this derivation, all constants of proportionality are called c_i and indexed with numbers i to distinguish them from one another. Next, he supposes that a galaxy accretes both gas and dark matter at a rate proportional to the mass of its dark matter halo.

$$\frac{\mathrm{d}\mathrm{M}_{gas}}{\mathrm{d}\mathrm{t}} = \mathrm{c}_2\mathrm{M}_{DH} \tag{1.2}$$

$$\frac{\mathrm{d}M_{DH}}{\mathrm{dt}} = c_3 M_{DH} \tag{1.3}$$

Equation 1.3 is then rearranged to isolate the dark matter terms on the left hand side.

$$\frac{\mathrm{d}M_{DH}}{\mathrm{M}_{DH}} = \mathrm{c_3}\mathrm{dt} \tag{1.4}$$

Integrating this differential and applying an exponential to both sides yields

$$M_{DH}(t) = M_0 e^{C_3 t},$$
 (1.5)

where M_0 is the initial mass of the dark matter halo. The mass evolution of the dark matter halo (Eq. 1.5) is related back to the star formation rate via equation 1.2. These substitutions reveal a time-dependent exponentially increasing SFR of the form

$$SFR(t) = c_1 c_2 e^{c_3 t}, \tag{1.6}$$

which we rewrite as

$$SFR(t) = SFR_0 e^{t/\tau},$$
 (1.7)

where SFR_0 is the star formation rate at t = 0 and τ is the e-folding time measured in years. We will henceforth refer to this exponentially increasing SFR as the positive τ model and the exponentially decreasing SFR as the negative τ model. Using these model SFRs, we fit observational data at $z\sim3$

6

and ~2. For the positive τ model, we use 700, 500, 350, and 250 Myr e-foldings (see section 3.2.2). For the negative τ model, we use a 700 Myr e-folding. We also model-fit the $z\sim3$ data according to the CSF model to compare along side the model-fit catalogs of Sawicki (in preparation; $z\sim2$), Shapley et al. (2005; $z\sim2$), and Yabe et al. (2009; $z\sim5$).

1.3 The Lyman Break Selection Technique

All galaxy catalogs employed in this work are selected using the Lyman break technique, which culls galaxies based on their rest-frame ultraviolet (UV) colors. The Lyman break is a spectral discontinuity that occurs at rest-frame 912 Å and originates from the ionization of hydrogen in the atmospheres of massive stars. The discontinuity is enhanced by the photoelectric absorption of both interstellar and intergalactic HI gas (Steidel et al. 1995, 1999; Madau 1995).

For distant galaxies, the Lyman break spectral feature redshifts along with the rest of the light according to

$$1 + z = \frac{\lambda_{obs.}}{\lambda_{r.f.}},\tag{1.8}$$

where z is the redshift, $\lambda_{obs.}$ is the observed wavelength, and $\lambda_{r.f.}$ is the rest-frame wavelength. To then select galaxies at a specific redshift, we need only measure the flux ratios of filters on either side of the break. This task requires that the initial observations be taken with a filter set appropriate to the redshift of interest. However, if this condition is met, objects may be selected by a suitably chosen color-color criteria (see sections 2.1.4 and 2.2.3). Galaxies selected via this technique are often referred to as Lyman Break Galaxies (LBGs).

We note here that, by selecting galaxies according to their rest-frame UV properties alone, the Lyman break technique culls only actively star-forming galaxies. While ignoring quiescent objects may be a potentially damaging bias, every data set we utilize is biased in an identical way. We therefore assert our data are representative of high-redshift starbursting galaxies, if not the entire high-redshift population.

This thesis is organized as follows. In Chapter 2, we discuss the origins and qualities of the data we use. We describe the SED model-fitting process and its results in Chapter 3. (Appendix 1 and Appendix 2 contain tables listing the best-fit parameters for $z\sim3$ and ~2 , respectively.) In Chapter 4, we analyze the stellar mass-SFR relations of the model-fit observational data and briefly discuss the dust qualities of the CSF and 700 Myr e-folding model-fits. We present our conclusions in Chapter 5.

Throughout this work, we make casual use of Ned Wright's Cosmological Calculator (Wright 2006). We adopt the cosmology $(\Omega_M, \Omega_\Lambda, H_0) = (0.3, 0.7, 70 \text{ km s}^{-1} \text{ Mpc}^{-1})$. For this cosmology, the ages of the universe at redshifts 5, 3, and 2 are 1.15, 2.11, and 3.22 Gyr, respectively. We use the PerIDL software language (Glazebrook & Economou 1997) to analyze and plot all data. We report magnitudes in the Absolute Magnitude (AB) system.

Chapter 2 Data

$2.1 \quad z{\sim}3$

While past studies concerned themselves with galaxy populations at a single epoch, our interest lies in connecting these epochs together to form a single picture of high-redshift galaxy evolution. Previous works by Shapley et al. (2005), Sawicki et al. (2007), and Yabe et al. (2009) provide us with either suitable photometric or model-fit catalogs at $z\sim2$ and $z\sim5$. However, with no appropriate catalog to bridge these two epochs, we must consequently generate our own $z\sim3$ data set.

2.1.1 Observations

To create a sample of $z\sim3$ galaxies, this work uses publicly available image mosaics of the Hubble Deep Field South (HDF-S), a field whose existence is predicated upon its ability to constrain cosmological and galaxy evolution models. Ultra-deep optical (U_{300} , B_{450} , V_{606} , I_{814}) data are provided by the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). The WFPC2/HST data covers an area of ~5.05 arcmin² centered at $\alpha = 22^{h}32^{m}56^{s}.22$, δ = -60°33'02".69 (J2000.0). These data probe down to magnitudes of 26.8 in U_{300} , 27.7 in B_{450} , 28.3 in V_{606} , and 27.7 in I_{814} (10 σ limit for an object 0.2 arcsec² in area). The point-spread functions (PSFs) of these bands are best-fit by Gaussians with full-width half-maximums (FWHMs) of 0".163, 0".139, 0".126, and 0".143, respectively (Casertano et al. 2000).

The WFPC2/HST data are supplemented by the wide-field NIR J_s -, H-, and K_s -band data of the Faint Infrared Extragalactic Survey (FIRES; Franx et al. 2000) conducted with the Infrared Spectrometer and Array Camera (ISAAC) on the Very Large Telescope (VLT). The FIRES images

8

capture a ~6.25 arcmin² field of view approximately centered upon the HDF-S main field imaged by WFPC2. Limiting magnitudes (3σ for point sources) are 25.9 in J_s , 24.8 in H, and 24.4 in K_s (Labbé et al. 2002). The median Gaussian PSFs of these bands have FWHMs of 0".45, 0".48, and 0".46, respectively (Labbé et al. 2003). That these ISAAC PSFs stand in stark contrast to the significantly narrower PSFs of the WFPC2 can be attributed to the VLT's station as an earthbound observatory, whereas HST's loftier position in low Earth orbit places it above the influence of atmospheric turbulence.

Figure 2.1: Filter transmission curves for WFPC2 (U_{300} , B_{450} , V_{606} , I_{814}) aboard HST and ISAAC (J_s , H, K_s) at the VLT. We use observations through these filters to select and model-fit a population of $z\sim3$ galaxies from the HDF-S. A $z\sim3$ model spectrum is overlaid in red.

Crucially, both spectroscopic features essential to selecting and model-fitting $z\sim3$ galaxies are contained within these seven passbands. The Lyman break, observed in the rest-frame at 912 Å, appears in $z\sim3$ galaxies at 3600 Å. This placement identifies the relevant $z\sim3$ population as U_{300} dropouts. Meanwhile, the 4000 Å break, a metallicity indicator required to estimate a galaxy's age, shifts to 1.6×10^4 Å, which locates it near the central wavelength of the ISAAC/VLT *H*-filter.

Figure 2.1 shows transmission curves for all seven passbands as well as an overlaid $z\sim3$ model spectrum.

2.1.2 Data Reduction

We employ the image convolutions of Labbé et al. (2003) to procure photometry in all seven bands. The ISAAC/VLT NIR PSFs are found to be symmetric and invariable across the field. The J_s and K_s images are convolved with the *H*-band kernel, in accordance with its standing as the lowest quality image (FWHM $\simeq 0$ ".48). Because of the consistency of the NIR PSF, an excellent match is achieved with simple Gaussian smoothing. However, the WFPC2 PSF structure demands a more complicated kernel, which Labbé et al. (2003) construct by way of a deconvolution process. The resultant kernel is then applied to the U_{300} , B_{450} , V_{606} , and I_{814} images.

To check the fit of their convolutions, Labbé et al. (2003) divide the stellar growth curves of the six convolved images by the unsmoothed *H*-band growth curve. This analysis reveals, for radii $r \leq$ 0".35, the images' fractional enclosed fluxes agree to within 3%. Such a result ensures comparable aperture photometry among the different passbands.

2.1.3 Object Detection and Photometry

We employ SExtractor version 2.3.2 in dual-image mode to perform object detection and photometry (Bertin & Arnouts 1996). In this mode, SExtractor detects an object in one image, called the detection image, and then performs photometry at the same location in a second image, called the measure image.

Being the deepest among the seven bands, the unsmoothed V_{606} image acts as the detection image. This work considers a detection to be a collection of 5 or more pixels brighter than the 1.5σ sky background. The application of these criteria to the unsmoothed V_{606} image produces an initial yield of 3919 detected objects. Then, administering an aperture 50 pixels (~2".0) in diameter, we obtain photometry at corresponding coordinates in the measure images: the convolved U_{300} , B_{450} , V_{606} , I_{814} , J_s , and K_s images, as well as the unsmoothed H-band.

SExtractor is designed to measure fluxes, flux uncertainties, magnitudes, and magnitude uncertainties where it is possible, but it does not detect every object in every passband. For these undetected objects, it is vital we construct their magnitude upper-limits based upon the noise level at the site of the non-detection. All magnitude upper-limits are calculated from unsmoothed images to 3σ confidence according to the formula

$$m_{u.l.} = -2.5log(3\sigma \cdot df_{ap}) + ZP_{AB} \tag{2.1}$$

where df_{ap} is the aperture flux uncertainty and ZP_{AB} is that passband's zero-point in absolute magnitude. Magnitude upper-limits may become relevant when using color-color plots to select high-z galaxy candidates, as discussed in the next section.

2.1.4 Selection Criteria

We begin with a master sample of 3919 objects detected in the HDF-S and their complementing UV, optical, and NIR photometry. Because our sample is determined by HDF-S *HST* data, we rely upon the Hubble Deep Field (HDF) color-color selection criteria of Steidel et al. (1996) to select $z\sim3$ galaxy candidates and narrow the sample. These selection cuts require *R*-band data, which the WFPC2 is not equipped to provide. As per the example of Steidel et al. (1996), we average the V_{606} and I_{814} fluxes to create our own synthetic *R*-band photometry for each galaxy in the sample:

$$\mathcal{R}_{VI} = -2.5 \log(\frac{10^{-0.4V_{606}} + 10^{-0.4I_{814}}}{2}).$$
(2.2)

With the \mathcal{R}_{VI} magnitudes in place, we then limit our sample to galaxies within the magnitude range

$$23 < \mathcal{R}_{VI} < 26.6.$$
 (2.3)

The bright-end limit exists to protect our sample from the possibility of contamination by aberrant, suspiciously luminous objects, while the faint-end limit is crafted to expel objects with large photometric uncertainties. These too-uncertain data produce both dubious object selections and problematically generous uncertainties in the parameter-spaces of models, therefore supplying uselessly ambiguous model fits.

A concern for the completeness of the sample also informs our $\mathcal{R}_{VI} < 26.6$ faint-end cut. If the cut is made too deep, we forfeit the desired near completeness of our sample. However, if the cut is made too shallow, we sacrifice usable data. With this in mind, we construct a histogram of the \mathcal{R}_{VI} magnitudes and restrict our sample to objects brighter than the magnitude, 26.6, that corresponds to the first peak in the distribution (see Figure 2.2). This cut eliminates 2807 objects from inclusion in our final sample, leaving 1112 objects.

Having now limited our sample for data quality and completeness, we apply the $z\sim3$ color-color selection criteria of Steidel et al. (1996) to objects detected in all seven passbands. Selected galaxies must satisfy two conditions, the "spectral curvature" condition,

$$U_{300} - B_{450} > 1.2 + (B_{450} - \mathcal{R}_{VI}), \tag{2.4}$$

and the "blueness" condition,

$$B_{450} - \mathcal{R}_{VI} < 1.2. \tag{2.5}$$

The spectral curvature condition mandates the discontinuity across the U_{300} and B_{450} passbands must be greater than three times the gradient across the B_{450} and \mathcal{R}_{VI} passbands. The blueness condition reflects the Steidel group's expectation that high-redshift galaxies (up to $z\sim3.5$) will exhibit very blue continua. Of the 714 objects detected in all filters, 104 meet both criteria, and it is noteworthy that the majority of objects that satisfy the spectral curvature condition also satisfy the blueness condition. This is qualitatively consistent with the HDF results of Steidel et al. (1996).

We then apply the spectral curvature and blueness conditions to objects undetected in U_{300} but

Figure 2.2: Histogram of synthetic \mathcal{R}_{VI} magnitudes in the HDF-S. The vertical dotted line corresponds to $\mathcal{R}_{VI} = 26.6$, the first peak in the distribution and the faint-end limit of our galaxy sample.

detected at all other wavelengths. For these objects, the U_{300} 3σ magnitude upper-limit stands in place for the absent U_{300} aperture magnitude. 138 such objects are selected.

We initially detect 3919 objects in the HDF-S. After limiting our sample based on data quality, completeness, spectral curvature, and blueness, we model-fit a catalog of 242 $z\sim3$ LBG candidates (see Figure 2.3 for color-color selection plot). Table 2.1 contains the photometry for our entire color-color selected HDF-S catalog. Once model-fit, the catalog is further defined by a photometric redshift cut to excise any lower redshift interlopers (see section 3.2.1).

Figure 2.3: Color-color plot displaying objects detected in the HDF-S and their relationship to the $z\sim3$ selection criteria of Steidel et al. (1996). Objects detected at all wavelengths are shown as asterisks, while objects undetected in U_{300} but detected in all other bands are represented by upward pointing triangles. We select all asterisks and triangles above and to the left of the solid red line, resulting in 242 total $z\sim3$ galaxy candidates.

$2.2 z \sim 2$

2.2.1 The Observations

We complement our $z\sim3$ HDF-S data with a catalog of UV-selected galaxies culled from the original Hubble Deep Field (HDF; Williams et al. 1996). Taken from Sawicki et al. (2007), the catalog contains optical (U_{300} , B_{450} , V_{606} , I_{814}) and NIR (J_{110} , H_{160}) photometry measured from publicly available image mosaics taken by WFPC2 and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), both on board *HST*. The uncommonly deep U_{300} imaging in the HDF distinguishes it as a dataset particularly suited to studying galaxies at $z\sim2$. Limiting magnitudes for the WFPC2 observations are 27.0 in U_{300} , 27.9 in B_{450} , 28.2 in V_{606} , and 27.6 in I_{814} . The NICMOS filters each have a limiting magnitude of 26.5. For both instruments, these limits are 10σ in a 0.2 arcsec² aperture (Papovich et al. 2001). The HDF covers an area of \sim 5.3 arcmin² centered at $\alpha = 12^{h}36^{m}49^{s}.4$, $\delta = +62^{\circ}12'58''$ (J2000.0).

Figure 2.4: Filter transmission curves for WFPC2 (U_{300} , B_{450} , V_{606} , I_{814}) and NICMOS (J_{110} , H_{160}) aboard *HST*. Observations through these filters are used to select and model-fit a population of $z\sim2$ galaxies from the HDF. A $z\sim2$ model spectrum is overlaid in red.

It is once again critical to note that both features pertinent to selecting and model-fitting our galaxies-of-interest (this time at $z\sim2$) are captured within these six passbands. In $z\sim2$ galaxies, the Lyman break is observed at ~2700 Å, which identifies relevant objects as U_{300} -band dropouts. (Recall the Lyman break in $z\sim3$ LBGs also falls within the U_{300} filter.) The 4000 Å break, our age/metallicity indicator, shifts to 1.2×10^4 Å, placing it within the NICMOS J_{110} -band. Figure 2.4 shows transmission curves for all six filters as well as an overlaid $z\sim2$ model spectrum.

2.2.2 Data Reduction, Object Detection, and Photometry

Sawicki et al. (2007) convolve the U_{300} , B_{450} , V_{606} , I_{814} , and H_{160} images with Gaussian kernels to match the 0".22 seeing of the NICMOS J_{110} -band, the lowest resolution image. Thusly, the flux ratio for any given object is conserved image to image. They then perform object detection and photometry with SExtractor 2.3.2 in dual-image mode. The unsmoothed V_{606} -band serves as the detection image while the smoothed U_{300} , B_{450} , V_{606} , I_{814} , and H_{160} images are measured using fixed, circular apertures ~0".5 in diameter. The Sawicki group next procures photometry from the unsmoothed V_{606} image, which yields total V_{606} magnitudes. Total magnitudes for the other filters are then calculated according to the following formula:

$$m_{tot} = m_{ap} + (V_{606,tot} - V_{606,ap}).$$
(2.6)

The m_{tot} and m_{ap} refer to the U_{300} , B_{450} , I_{814} , J_{110} , and H_{160} total and aperture magnitudes, respectively.

2.2.3 Selection Criteria

Sawicki and company then apply the color-color criteria of Steidel et al. (1996) to their calculated total magnitudes to define the high-redshift (z > 1.7) sample (see Fig. 2.5 for this color-color plot). Recall we employ these same criteria to select LBGs at $z\sim3$ in the HDF-S. Section 2.1.4 contains the inequalities for spectral curvature (Eq. 2.4) and blueness (Eq. 2.5) that characterize the Steidel group's criteria. In addition to the color-color criteria, the Sawicki group limit their sample with the magnitude cut

$$23 < \mathcal{R}_{VI} < 28. \tag{2.7}$$

Doing so protects the sample against any infrequent, aberrant bright-end objects while, at the same time, excising those faint-end objects with large photometric uncertainties. Again, such faint-end objects are best restricted from the sample because their locations in the color-color scheme are ambiguous, and their inclusion only produces problematically large uncertainties in the model-fit parameters. Sawicki's catalog is virtually complete up to $\mathcal{R}_{VI} \leq 27$, with meaningful incompleteness exhibited solely in its final two magnitude bins (see Fig. 2.5 for \mathcal{R}_{VI} -band number counts). Administering these color-color and magnitude cuts generates a sample of 284 objects in the HDF.

2.2.4 Initial Modeling

Assuming a constant star formation history for each, Sawicki et al. (2007) then model-fit the 284 objects for photometric redshift, dust, stellar mass, SFR, and age (see Chapter 3). Uncertainties in the best-fit parameters are to 68% confidence. They define their $z\sim2$ sample according to the following photometric redshift cut:

$$1.8 \le z_{phot} \le 2.6.$$
 (2.8)

Requiring the $z\sim2$ population to be model-fit for $z_{phot} \ge 1.8$ prevents lower redshift interlopers from contaminating the analysis, and 87 objects are so eliminated. Meanwhile, filter availability in the HDF necessitates the upper limit cut. Objects at $z \ge 2.6$ do not have sufficient rest-frame spectral coverage to be accurately model-fit. With no filter redder than the WFPC2 H_{160} , the 4000 Å break cannot be constrained. This technological limitation reduces the sample by another 106 objects, leaving a subsample of 91 $z_{phot}\sim2$ UV-selected galaxies. The right panel inset of Fig. 2.5 displays the photometric redshift distribution for all 284 model-fit objects.

In our analysis of high redshift galaxies model-fit assuming constant SFRs, we place the Sawicki et al. (2007) $z_{phot}\sim 2$ model-fits along side those from Shapley et al. (2005; $z\sim 2$), Yabe et al. (2009; $z\sim 5$), and our own $z\sim 3$ HDF-S sample. Having been granted access to Sawicki's photometry, we also refit the potentially relevant subset of his catalog ($1.1 \leq z_{phot} \leq 2.9$, 171 objects) under the assumptions of both an exponentially increasing and an exponentially decreasing star formation history. Photometry for the 171 objects we refit may be found in Table 2.2.

Figure 2.5: Sample selection for $z\sim2$ objects in the HDF. The left panel shows the $U_{300}-B_{450}-\mathcal{R}_{VI}$ color-color selection criteria Sawicki employs to define his sample. The symbol sizes are scaled to indicate their relative brightnesses. All objects shown are $23 \leq \mathcal{R}_{VI} \leq 28$. The selection region (Steidel et al. 1996) is outlined in red. Selected objects are color-coded according to their model-fit photometric redshifts. The right panel inset displays the photometric redshift distribution. Objects satisfying Eq. 2.8 are colored orange, while blue objects lie at $z_{phot} > 2.6$ and cyan objects at $z_{phot} < 1.8$. The right panel further shows the \mathcal{R}_{VI} number counts for selected objects. These histograms are stacked and do not overlap. Figures courtesy Sawicki (in preparation).

2.3 Comparison Data Sets

2.3.1 The Need for Comparison Data Sets

This project seeks to understand how UV-selected galaxies, as characterized by certain parameters (see Chapter 3), evolve over time. We produce information describing objects at redshifts ~ 3 and ~ 2 , but where possible a broader context is desired. Consequently, we place our results alongside studies at redshifts ~ 5 (Yabe et al. 2009) and ~ 2 (Shapley et al. 2005). The results of Yabe et al. (2009) provide a key high-redshift base to our analysis of the evolution of constant SFRs, while the Shapley group's findings reinforce and extend Sawicki's $z\sim 2$ work. The utilization of these additional studies allows us to better track the evolution of LBG parameters as the universe ages from ~ 1.2 to ~ 3.2 billion years old.

18

2.3.2 $z \sim 5$ (Yabe et al. 2009)

Yabe et al. (2009) extract their $z\sim5$ LBG sample from the GOODS-N region and its associated flanking fields (GOODS-FF). Subaru Suprime-Cam provides their optical V, I_c , and z' data. These data, originally reported in Iwata et al. (2007), cover 508.5 arcmin² and are magnitude limited (3σ , 1".6 diameter aperture) at 28.1, 26.8, and 26.6, respectively. The reduced data are characterized by FWHMs of ~1".1.

Spitzer's publicly available Data Release 1 and Data Release 2 furnish Yabe et al. (2009) with GOODS-N MIR IRAC images at 3.6, 4.5, 5.8, and 8.0 μ m. The Yabe group also procure new IRAC observations blanketing ~400 arcmin² in the GOODS-FF. Here limiting magnitudes (3 σ , 2".4 diameter aperture) are 24.8, 24.1, 22.2, and 22.3, respectively. In lieu of smoothing their MIR data, Yabe et al. (2009) apply a filter-specific aperture correction factor to obtain their final magnitudes.

Object detection and photometry are performed with SExtractor. Those objects determined to be at $z\sim5$ according to a V- I_c -z' color-color criteria are then visually inspected for photometric contamination by near neighbors. All isolated objects are model-fit in the manner described in Chapter 3, section 3.1.1. Uncertainties for the Yabe et al. (2009) best-fit model parameters are to 90% confidence.

2.3.3 $z \sim 2$ (Shapley et al. 2005)

Shapley et al. (2005) model-fit a sample of 72 UV-selected galaxies situated in a 72 arcmin² tract centered about the bright background quasi-stellar object HS 1700+643. All 72 objects in the sample are spectroscopically confirmed to lie at $z = 2.0 \pm 0.3$. Optical data (U_n, G, R) come from the William Herschel 4.2 m telescope's Prime Focus Imager. NIR K_s data are the product of observations with the Wide Field Infrared Camera on the Palomar 5.1 m Hale telescope. The Shapley group's catalog is then completed by MIR IRAC/Spitzer images at 3.6, 4.5, 5.8, and 8.0 μ m. Limiting magnitudes (5 σ , 2" diameter aperture) for these data are 26.4 (U_n) , 26.5 (G), 25.7
(R), 24.0 (K_s), 24.6 (3.5 μ m), 24.3 (4.5 μ m), 23.0 (5.8 μ m), and 22.8 (8.0 μ m). Object detection, photometry, and model-fitting processes are similar to those of Sawicki, Yabe et al. (2009), and this work.

			_									_	_									_									_			_						_		
K_s	25.41 ± 0.06	10.0 ± c1.62	23.18 ± 0.01	25.11 ± 0.04	25.53 ± 0.05	22.44 ± 0.00	24.89 ± 0.03	26.18 ± 0.08	25.55 ± 0.05	26.15 ± 0.08	25.41 ± 0.04	24.96 ± 0.03	25.24 ± 0.04	26.09 ± 0.08	25.23 ± 0.03	26.01 ± 0.07	23.47 ± 0.01	25.64 ± 0.05	23.38 ± 0.01	23.57 ± 0.01	25.08 ± 0.03	25.08 ± 0.03	24.54 ± 0.02	26.46 ± 0.11	24.26 ± 0.01	24.02 ± 0.01	24.00 I 0.02	23.98 ± 0.02	26.00 ± 0.07	26.25 ± 0.09	25.78 ± 0.06	23.61 ± 0.01	25.41 ± 0.04	23.34 ± 0.01	22.71 ± 0.00	25.08 ± 0.03	23.34 ± 0.01	24.28 ± 0.01	23.34 ± 0.01	23.90 ± 0.01	00.0 ± 10.22	00.0 ± 55.22
H_{160}	27.19 ± 0.33	24.49 ± 0.00	23.66 ± 0.01	25.02 ± 0.04	26.45 ± 0.15	22.54 ± 0.00	24.96 ± 0.03	26.38 ± 0.12	27.47 ± 0.31	26.05 ± 0.09	25.83 ± 0.07	25.32 ± 0.05	25.47 ± 0.05	26.03 ± 0.08	24.75 ± 0.03	25.22 ± 0.04	23.46 ± 0.01	25.78 ± 0.07	23.55 ± 0.01	23.87 ± 0.01	25.15 ± 0.04	26.16 ± 0.09	24.70 ± 0.03	25.83 ± 0.07	24.01 ± 0.01	23.87 ± 0.01	24.73 T 0.03	24.25 ± 0.03	26.20 ± 0.10	26.32 ± 0.11	25.31 ± 0.04	23.82 ± 0.01	27.10 ± 0.22	23.01 ± 0.01	23.08 ± 0.01	24.85 ± 0.03	24.07 ± 0.01	24.61 ± 0.02	23.55 ± 0.01	24.53 ± 0.02	22.90 ± 0.00	10.0 ± 61.62
J_s	26.36 ± 0.07	10.0 ± 00.22	23.86 ± 0.01	25.36 ± 0.02	26.17 ± 0.05	22.91 ± 0.00	25.15 ± 0.02	25.46 ± 0.02	26.47 ± 0.06	25.45 ± 0.02	25.52 ± 0.02	24.94 ± 0.01	25.08 ± 0.02	25.28 ± 0.02	24.68 ± 0.01	26.59 ± 0.06	24.05 ± 0.01	25.82 ± 0.03	23.87 ± 0.01	24.29 ± 0.01	25.84 ± 0.03	25.28 ± 0.02	25.48 ± 0.02	25.95 ± 0.04	24.64 ± 0.01	23.95 ± 0.01	20.03 ± 0.02 94.91 ± 0.01	24.51 ± 0.02	25.73 ± 0.03	26.01 ± 0.04	25.42 ± 0.02	24.01 ± 0.01	26.11 ± 0.04	22.99 ± 0.00	23.35 ± 0.00	25.05 ± 0.02	24.13 ± 0.01	24.81 ± 0.01	24.11 ± 0.01	24.68 ± 0.01	00.0 H 21.62	00.0 H 10.02
I_{814}	26.49 ± 0.01	22.03 ± 0.00	25.03 ± 0.00	25.54 ± 0.01	26.42 ± 0.01	24.09 ± 0.00	25.88 ± 0.01	25.74 ± 0.01	26.03 ± 0.01	25.69 ± 0.01	25.75 ± 0.01	25.86 ± 0.01	26.00 ± 0.01	25.85 ± 0.01	24.91 ± 0.00	26.20 ± 0.01	24.11 ± 0.00	26.11 ± 0.01	24.77 ± 0.00	25.29 ± 0.00	26.24 ± 0.01	26.03 ± 0.01	25.79 ± 0.01	26.17 ± 0.01	24.83 ± 0.00	24.67 ± 0.00	25.02 ± 0.00	24.65 ± 0.00	26.32 ± 0.01	25.59 ± 0.00	25.43 ± 0.00	24.84 ± 0.00	26.52 ± 0.01	23.14 ± 0.00	24.70 ± 0.00	25.06 ± 0.00	25.41 ± 0.00	25.31 ± 0.00	24.26 ± 0.00	0.01 ± 0.00	24.14 H 0.00	24.92 X U.UU
V_{606}	26.26 ± 0.01	25.22 ± 0.00	25.49 ± 0.00	25.48 ± 0.00	26.37 ± 0.01	24.78 ± 0.00	26.13 ± 0.00	26.07 ± 0.00	26.14 ± 0.00	25.72 ± 0.00	26.31 ± 0.00	26.55 ± 0.01	26.70 ± 0.01	25.95 ± 0.00	25.47 ± 0.00	26.36 ± 0.01	24.50 ± 0.00	26.31 ± 0.00	25.10 ± 0.00	25.50 ± 0.00	26.07 ± 0.00	26.12 ± 0.00	25.72 ± 0.00	26.03 ± 0.00	25.07 ± 0.00	25.63 ± 0.00	25.12 ± 0.00	24.75 ± 0.00	26.31 ± 0.00	25.63 ± 0.00	25.55 ± 0.00	25.06 ± 0.00	26.65 ± 0.01	23.59 ± 0.00	25.20 ± 0.00	25.47 ± 0.00	25.98 ± 0.00	25.59 ± 0.00	24.35 ± 0.00	0.01 ± 0.00	0.00 II 14.000	00.0 H 06.62
B_{450}	26.45 ± 0.01	25.38 ± 0.00	25.83 ± 0.01	25.45 ± 0.00	26.64 ± 0.01	$.25.13 \pm 0.00$	26.21 ± 0.01	26.67 ± 0.01	26.25 ± 0.01	25.55 ± 0.00	26.54 ± 0.01	26.87 ± 0.01	27.12 ± 0.02	25.86 ± 0.01	26.01 ± 0.01	26.52 ± 0.01	25.13 ± 0.00	26.28 ± 0.01	25.36 ± 0.00	25.69 ± 0.00	26.04 ± 0.01	26.17 ± 0.01	25.88 ± 0.00	26.01 ± 0.01	26.06 ± 0.01	26.00 ± 0.01	95 45 ± 0.00	25.55 ± 0.00	26.10 ± 0.01	25.48 ± 0.00	25.78 ± 0.00	25.21 ± 0.00	27.01 ± 0.01	24.28 ± 0.00	25.54 ± 0.00	26.19 ± 0.01	26.31 ± 0.01	25.79 ± 0.00	24.59 ± 0.00	10.0 ± 86.02	24.70 ± 0.00	00.0 ± 10.02
U_{300}	27.78 ± 0.09	20.0 ± 0.03	28.81 ± 0.26	26.74 ± 0.03	28.17 ± 0.11	27.61 ± 0.04	27.93 ± 0.06	29.32 ± 0.22	29.36 ± 0.22	26.70 ± 0.02	29.65 ± 0.30	28.82 ± 0.16	29.46 ± 0.29	27.39 ± 0.04	28.50 ± 0.10	29.03 ± 0.19	27.71 ± 0.05	28.19 ± 0.09	27.51 ± 0.04	27.77 ± 0.05	27.77 ± 0.05	27.68 ± 0.05	27.80 ± 0.05	28.67 ± 0.12	29.48 ± 0.28	29.01 ± 0.16	28.32 ± 0.10	28.48 ± 0.11	28.73 ± 0.12	28.62 ± 0.13	27.54 ± 0.05	27.45 ± 0.04	29.09 ± 0.19	26.77 ± 0.02	28.41 ± 0.09	28.63 ± 0.11	28.87 ± 0.14	27.40 ± 0.04	29.74 ± 0.33	29.02 ± 0.05	20.15 ± 0.00	01.0 H 01.62
Dec(2000.0)	348.668 #73 77E	569 715	586.048	592.230	608.209	780.919	771.280	760.711	759.470	792.243	771.182	779.177	780.107	800.471	823.484	903.477	984.592	966.961	970.150	1025.748	1018.846	1036.668	1025.646	1076.114	1147.531	101.055	1287 941	1362.437	1336.697	1358.994	1367.513	1425.712	1388.452	1484.515	1618.243	1503.178	1613.618	1587.893	1662.547	1702 803	1636 615	010.0001
KA(J2000.0)	649.873	671 568	3802.951	2673.885	2918.725	1309.749	1124.201	1459.148	1375.951	2515.662	1934.582	3470.557	3475.316	2521.508	1899.508	2414.232	3125.174	2449.115	776.049	565.710	600.784	3309.787	592.990	1456.188	2351.010	1205.904	3882 017	280.470	1138.190	2233.973	3598.523	1135.531	3775.311	1636.649	976.116	1623.066	955.069	646.576	381.001	3015 000	062 200	200.120
_																_		_		~	~	~	-		~ .		h σ	5 01	6	-	5 C	00	പ	<u>-</u>	9	4	_	- 1	- 0	00	4 -	ť

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
ID RA/J2000.01 Dec(2000.0) Dec(2000.0) D_{400} B_{450} 1521 477.713 1667.295 28.89 ± 0.16 26.10 ± 0.00 1556 3011.660 1688.476 27.94 \pm 0.04 26.10 \pm 0.00 1566 3011.660 1688.476 27.94 \pm 0.04 26.10 \pm 0.00 1598 1776.5304 1713.935 28.11 \pm 0.07 26.01 \pm 0.00 1697 1780.5656 28.31 \pm 0.07 26.04 \pm 0.01 176.534 \pm 0.01 1817 765.3084 1716.5356 28.81 \pm 0.07 26.68 \pm 0.01 138.1 1955 1786.556 28.11 \pm 0.07 26.03 \pm 0.01 138.1 149.01 26.71 \pm 0.03 1957 3047.487 28.14 \pm 0.10 27.01 \pm 0.03 25.64 \pm 0.01 26.01 \pm 0.01 1955 3724.809 2066.802 28.15 \pm 0.03 26.42 \pm 0.01 200 1955 3724.809 29.66 24.64 200 26.64 \pm 0.01 26.64 \pm 0.01 1956 372.4809 206.548 28.11 \pm 0.01 26.71 \pm 0.01 2
ID $\mathbf{RA}(J2000, 0)$ $\mathbf{Dec}(2000, 0)$ U_{300} 1551 $477, 713$ $1667, 295$ $28, 99 \pm 0.15$ 1576 $372, 485$ $1667, 295$ $28, 99 \pm 0.16$ 1576 $372, 485$ $1667, 295$ $287, 10 \pm 0.03$ 1576 $375, 442$ $1661, 479$ $27, 10 \pm 0.03$ 1576 $178, 5304$ $178, 5335$ $28, 11 \pm 0.03$ 1973 $1354, 877$ $178, 536$ $29, 51 \pm 0.28$ 1973 $1354, 877$ $1786, 556$ $28, 11 \pm 0.03$ 1973 $1354, 877$ $1786, 556$ $28, 11 \pm 0.03$ 1973 $1564, 799$ $2032, 604$ $27, 242 \pm 0.04$ 1973 $1564, 799$ $21561, 233$ $28, 41 \pm 0.10$ 20042 $3724, 809$ $2161, 123$ $28, 41 \pm 0.10$ 2005 $3724, 809$ $2161, 123$ $28, 41 \pm 0.10$ 20042 $23261, 672$ $2323, 140, 03$ $28, 41 \pm 0.10$ 20042 $23261, 672$ $23261, 610, 03$ $23261, 610, 03$ 20
ID $\operatorname{RA}(12000.0)$ $\operatorname{Dec}(2000.0)$ 1521 477.713 1667.295 1556 3011.660 1684.476 1556 3011.660 1684.476 1556 3011.660 1684.476 1556 3011.660 1766.332 1604 1750.956 1766.332 1817 3047.482 1765.304 1933 1765.304 1713.935 1695 3047.482 1765.304 1933 564.799 1786.556 1933 564.799 2082.604 1973 1550.894 2101.282 2005 3724.809 2086.688 2033 3727.261 2095.802 2033 3727.261 2095.802 2034 3724.283 2044.663 2035 3723.067 2095.802 2036 2339.180 2046.688 2036 2333.322 2047.914 2367 2339.180 2372.304 2361 2353.322 2475.457 2367 2393.167 2095.668 2361 1920.233 2471.840 2361 1920.233 2471.645 2361 1920.233 2471.645 2361 7374 2332.104 2361 2355.096 2361 1777 2778.615 2361 2374 2364.196 2361 1920.233 2475.457 2562 $3740.242.356$ 2391.946 2361 2374 2364.196 2361 2374 2364.196 2389 373
ID $RA(J2000.0)$ 1521 477.713 1521 477.713 1555 502.660 1565 301.660 1576 455.442 1598 1765.304 1694 478.703 1933 1664.799 1933 1564.799 1933 564.799 1973 1354.877 1987 3047.482 2005 3724.809 2033 3727.261 2033 3727.261 2034 3724.809 2035 3724.809 20361 2233.320 2037 20067 2361 2724.809 20361 3724.809 2362 2399.167 2363 3724.809 2364 2724.833 2056 2233.32067 2361 1787.856 2362 22939.180 2372.3067 2361.672 2361 1920.233 2362 2393.1332 2556 1294.283 2556 2739.469 2557 $2763.3320.672$ 2380 2370.979 2561 1920.233 2563 3739.512 2765 3739.512 2765 3739.512 2765 3739.512 2837 2869.735 2839 2336.175 2765 3326.175 2765 3326.175 2839 33304.073 2837 2369.568 2839 3336.658 2839 3336.658 2839 3336.658 2839 <td< td=""></td<>
10 20 1575 1575 1575 1575 1565 1566 1566 1694 1693 1695 1693 1694 1693 1973 1973 1973 1973 1973 1973 1973 1973 1973 1973 1973 1973 1973 1973 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2006 2005 2006 2005 2006 2005 2006 2006 2366 2007 2366 2008 2008 2008 2008 2008 2008 2008 2008 2008

limit.
upper
3σ
is
de
itu
gn
ma
ed
ort
Gp
le l
s th
ans
me
00
99.
of
uncertainty
An
Catalog.
hotometric
Ы
F-S
[]
нц • •
2.1
Table

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
ID RA(J2000.0) Dec(2000.0) U_{300} B_{400} 3337 3050.417 3739.578 29.31 0.022 25.66 ± 0.01 34107 3739.577 3739.555 29.31 0.05 25.33 ± 0.02 3554 2378.105 3739.578 28.51 ± 0.05 25.33 ± 0.02 3550 3739.672 4044.583 27.13 ± 0.05 25.33 ± 0.01 3550 3379.672 4074.863 28.51 ± 0.10 25.93 ± 0.01 3550 3778.1764 27.12 ± 0.03 25.34 ± 0.01 25.52 ± 0.01 3551 3778.1764 4736.387 27.13 ± 0.35 27.02 ± 0.01 3552 3778.1764 4337.217 28.51 ± 0.01 25.52 ± 0.01 3782 29.11 ± 0.05 25.52 ± 0.01 25.52 ± 0.01 3783 3774.456 377.317 28.51 ± 0.07 25.52 ± 0.01 3783 29.13 ± 0.07 28.51 ± 0.01 25.24 ± 0.01 25.24 ± 0.01 3783 $29.14 \pm 9.0.07$ 28.51 ± 0.01 $29.52.44 \pm $
ID RA(J2000.0) Dec(2000.0) U $_{300}$ 3397 3050.417 3730.565 29.31 ± 0.05 3419 2570.686 4044.583 27.74 ± 0.05 3566 257.81 20.05 3556 2570.686 4044.583 27.74 ± 0.05 3556 277.81 20.05 3556 277.81 20.05 3551 277.61 29.14 ± 0.35 3665 2731 40.05 3783 377.376.52 29.14 ± 0.05 3666 2820.697 4051.707 28.95 ± 0.04 3683 277.136 3798.776 28.10 ± 0.07 3782 3231.963 276.4 ± 0.05 3783 3784.561 276.4 ± 0.05 3783 378.5761 3788.436 29.01 ± 0.21 3783 3784.561 237.14 ± 0.05 29.01 ± 0.21 3783 378.561 378.436 29.01 ± 0.21 3783 326.561 237.14 ± 0.05 29.01 ± 0.21 3783 378.558 <td< td=""></td<>
ID $RA(J2000.0)$ Dec(2000.0)33973050.4173730.56534192570.6863787.09535542378.1053787.09535562820.6923787.09535562820.6923787.09535562878.3073678.5236662820.6924121.75436533778.2173678.5236562820.6924121.7543650271.3163778.65236653778.2173678.652379535784051.7073689242.2344051.70737952591.5484051.196337952358.7613798.77637952358.7613798.77637952358.7613798.77637952358.7613798.77637952352.673331.963591900.733497.954692771.3163798.776591900.733497.954692771.3163798.77637031900.733497.95469274.425546.76111002842.045546.76111713825.990546.76111902842.045546.76111913774.426546.76111913825.990546.76111913825.990546.76111913825.990546.76111913825.990546.76111913825.990546.76111913825.990546.76111913826.663546.761
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c} 110\\ 110\\ 33397\\ 3419\\ 3556\\ 3656\\ 3556\\ 3556\\ 3556\\ 3656\\ 3656\\ 3656\\ 3656\\ 3656\\ 3656\\ 3666\\ 3666\\ 3666\\ 3666\\ 3789\\ 3789\\ 3789\\ 3789\\ 3666\\ 33789\\ 3789\\ 3789\\ 3789\\ 3789\\ 3789\\ 3789\\ 3789\\ 3789\\ 3779\\$

K_s	27.78 ± 0.07	27.78 ± 0.11	27.78 ± 0.19	27.78 ± 0.05	27.78 ± 0.04	27.78 ± 0.06	27.78 ± 0.03	27.78 ± 0.04	27.79 ± 0.02	27.79 ± 0.02	27.78 ± 0.01	27.78 ± 0.01	27.78 ± 0.03	27.78 ± 0.01	27.79 ± 0.01	27.78 ± 0.05	27.78 ± 0.20	27.78 ± 0.02	27.78 ± 0.01	27.78 ± 0.10	27.78 ± 0.19	27.78 ± 0.08	27.78 ± 0.02	27.78 ± 0.05	27.77 ± 0.04	27.78 ± 0.01	27.78 ± 0.03	27.66 ± 0.07	27.47 ± 0.06	27.78 ± 0.01	27.78 ± 0.01	27.78 ± 0.02	21.10 ± 0.04	21.10 ± 0.04	27 78 ± 0.00	27.78 + 0.02	27.78 ± 0.03	27.78 ± 0.06	27.78 ± 0.06	27.78 ± 0.01	27.78 ± 0.01	27.78 ± 0.01	27.78 ± 0.03	27.77 ± 0.06
H_{160}	27.63 ± 0.06	27.62 ± 0.11	27.62 ± 0.06	27.62 ± 0.04	27.62 ± 0.03	27.62 ± 0.07	27.63 ± 0.03	27.62 ± 0.08	27.64 ± 0.02	27.63 ± 0.03	27.62 ± 0.01	27.62 ± 0.02	27.63 ± 0.05	27.62 ± 0.01	27.63 ± 0.02	27.62 ± 0.05	27.62 ± 0.06	27.62 ± 0.03	27.62 ± 0.02	27.62 ± 0.04	27.63 ± 0.05	27.62 ± 0.22	27.63 ± 0.20	27.62 ± 0.17	27.62 ± 0.04	27.62 ± 0.02	27.62 ± 0.09	27.50 ± 0.06	27.32 ± 0.04	27.62 ± 0.03	27.62 ± 0.01	27.62 ± 0.02	CON I 70.17	21.02 ± 0.03	27.62 ± 0.01	27.63 ± 0.02	27.62 ± 0.04	27.62 ± 0.06	27.62 ± 0.15	27.62 ± 0.02	27.62 ± 0.01	27.62 ± 0.02	27.62 ± 0.05	27.62 ± 0.11
J_s	28.49 ± 0.02	28.49 ± 0.03	28.49 ± 0.04	28.48 ± 0.01	28.48 ± 0.01	28.48 ± 0.02	28.49 ± 0.02	28.48 ± 0.05	28.50 ± 0.01	28.49 ± 0.02	28.48 ± 0.01	28.48 ± 0.02	28.49 ± 0.02	28.48 ± 0.01	28.50 ± 0.02	28.49 ± 0.04	28.48 ± 0.11	28.49 ± 0.02	28.49 ± 0.01	28.48 ± 0.04	28.49 ± 0.03	28.49 ± 0.11	28.49 ± 0.02	28.48 ± 0.04	28.48 ± 0.04	28.48 ± 0.01	28.49 ± 0.02	28.35 ± 0.02	28.17 ± 0.07	28.48 ± 0.01	28.49 ± 0.01	28.48 ± 0.02	70.0 T 65.07	20.43 X 0.02	28.48 ± 0.00	28.49 ± 0.01	28.49 ± 0.02	28.49 ± 0.05	28.48 ± 0.03	28.49 ± 0.01	28.49 ± 0.01	28.49 ± 0.01	28.48 ± 0.03	28.48 ± 0.12
I ₈₁₄	30.36 ± 0.01	30.36 ± 0.01	30.36 ± 0.01	30.37 ± 0.00	30.37 ± 0.00	30.37 ± 0.01	30.32 ± 0.01	30.36 ± 0.01	30.33 ± 0.00	30.33 ± 0.00	30.37 ± 0.00	30.36 ± 0.00	30.33 ± 0.01	30.37 ± 0.00	30.32 ± 0.00	30.33 ± 0.01	30.21 ± 0.01	30.33 ± 0.01	30.34 ± 0.00	30.31 ± 0.01	30.32 ± 0.01	30.34 ± 0.01	30.34 ± 0.01	30.37 ± 0.01	30.35 ± 0.01	30.38 ± 0.00	30.33 ± 0.01	30.35 ± 0.01	30.33 ± 0.01	30.38 ± 0.01	30.37 ± 0.00	30.38 ± 0.01	10.0 ± 16.06	30.36 ± 0.01	30.31 ± 0.00	30.35 ± 0.00	30.38 ± 0.01	30.38 ± 0.01	30.34 ± 0.01	30.34 ± 0.00	30.32 ± 0.00	30.34 ± 0.00	30.36 ± 0.01	30.31 ± 0.01
V 606	31.03 ± 0.01	31.02 ± 0.01	31.02 ± 0.01	31.03 ± 0.00	31.02 ± 0.00	31.03 ± 0.01	30.98 ± 0.00	31.04 ± 0.01	31.00 ± 0.00	30.99 ± 0.00	31.05 ± 0.00	31.03 ± 0.00	31.00 ± 0.01	31.04 ± 0.00	30.99 ± 0.00	31.01 ± 0.01	30.89 ± 0.00	31.00 ± 0.01	31.02 ± 0.00	30.99 ± 0.01	30.99 ± 0.01	31.01 ± 0.01	31.02 ± 0.00	31.04 ± 0.01	31.02 ± 0.01	31.05 ± 0.00	31.01 ± 0.00	31.02 ± 0.00	31.01 ± 0.01	31.05 ± 0.00	31.05 ± 0.00	31.05 ± 0.01	31.04 ± 0.00	31.05 ± 0.01	30.99 ± 0.00	31.01 ± 0.00	31.04 ± 0.00	31.04 ± 0.01	31.02 ± 0.01	31.01 ± 0.00	31.00 ± 0.00	31.01 ± 0.00	31.01 ± 0.01	31.00 ± 0.01
B_{450}	30.59 ± 0.01	30.58 ± 0.01	30.59 ± 0.01	30.60 ± 0.01	30.59 ± 0.01	30.60 ± 0.01	30.52 ± 0.02	30.60 ± 0.01	30.53 ± 0.01	30.53 ± 0.01	30.61 ± 0.00	30.60 ± 0.01	30.53 ± 0.02	30.61 ± 0.01	30.53 ± 0.01	30.55 ± 0.01	30.37 ± 0.01	30.55 ± 0.02	30.56 ± 0.00	30.52 ± 0.01	30.52 ± 0.01	30.56 ± 0.02	30.56 ± 0.01	30.62 ± 0.02	30.60 ± 0.01	30.63 ± 0.01	30.55 ± 0.02	30.60 ± 0.01	30.58 ± 0.01	30.63 ± 0.01	30.62 ± 0.00	30.63 ± 0.02	10.0 ± 20.02	30.64 ± 0.01	30.51 ± 0.01	30.60 ± 0.00	30.62 ± 0.01	30.62 ± 0.01	30.56 ± 0.02	30.55 ± 0.00	30.53 ± 0.00	30.53 ± 0.00	30.57 ± 0.01	30.51 ± 0.01
U 300	29.88 ± 99.00	29.87 ± 99.00	29.88 ± 99.00	29.88 ± 99.00	29.88 ± 99.00	29.88 ± 99.00	29.76 ± 99.00	29.88 ± 99.00	29.77 ± 99.00	29.77 ± 99.00	29.90 ± 99.00	29.89 ± 99.00	29.77 ± 99.00	29.89 ± 99.00	29.76 ± 99.00	29.79 ± 1.25	29.64 ± 99.00	29.79 ± 99.00	29.80 ± 99.00	29.76 ± 99.00	29.76 ± 99.00	29.80 ± 99.00	29.80 ± 99.00	29.88 ± 99.00	29.85 ± 99.00	29.90 ± 0.41	29.80 ± 99.00	29.85 ± 99.00	29.84 ± 99.00	29.89 ± 99.00	29.89 ± 99.00	29.90 ± 0.63	23.00 H 33.00	20 00 + 00 UU	29.77 + 99.00	29.85 + 99.00	29.89 ± 99.00	29.89 ± 99.00	29.79 ± 99.00	29.79 ± 99.00	29.77 ± 0.65	29.79 ± 99.00	29.84 ± 99.00	29.75 ± 0.37
Dec(2000.0)	832.481	836.236	846.716	847.811	852.399	857.609	886.159	902.964	897.737	902.733	959.118	965.105	971.645	1082.719	1102.777	1169.706	1213.340	1297.586	1343.835	1294.901	1288.354	1366.619	1433.937	1518.481	1581.015	1645.727	1609.919	1668.703	1641.740	1693.728	1694.299	1663.504	1600 070	11690.311	1709.418	1779.715	1790.182	1787.107	1808.327	1868.321	2171.561	2036.550	1980.341	667.7102
RA(J2000.0)	1910.276	1915.552	1907.792	1803.282	1845.613	1808.814	2693.558	749.263	2701.871	2700.987	772.736	735.251	2674.570	726.081	2335.606	3279.945	2212.658	3618.822	2758.722	2266.537	2269.129	2770.030	3120.332	1612.254	628.498	983.064	3446.440	488.644	361.841	900.344	1603.752	942.724	1795 070	1589.613	2228,863	1361.556	1379.816	1798.389	2701.704	2605.547	3507.966	2874.599	913.031	2332.194
Ð	542	544	570	572	579	590	639	649	665	673	692	721	746	848	871	972	1047	1106	1108	1124	1140	1225	1273	1403	1471	1473	1501	1523	1527	1540	1543	1001	1585	1590	1593	1647	1676	1696	1699	1739	1863	1881	1908	616T

	dd
	۵.
_	ĕ
`	പ്
	ŝ
-	e
	d
•	H
	Ę0
1	H2
-	2
	ě
	5
	еb
	H D
÷	ğ
1	ß
	an
	це
c	5
č	5
č	22
5	5
1	Ž
	Ē
-	d C
1	er
	Ĕ
<	Z
,	
_	ğ
4	Ľ.
5	3
	۔ ت
j	E
Ì	Ie
-	5
1	ğ
Ē	Ľ
ŭ	n
E	4
Ê	3
Ģ	4
÷	-
Ċ	
Ż	ă
É	Р. Т

Chapter	2.	Data
---------	----	------

1	r	1								_								
oper limit.	K_s	27.78 ± 0.07	27.78 ± 0.04	27.78 ± 0.07	27.78 ± 0.03	27.78 ± 0.01	27.64 ± 0.05	27.78 ± 0.01	27.78 ± 0.03	27.69 ± 0.01	27.78 ± 0.01	27.54 ± 0.08	27.17 ± 0.09	27.75 ± 0.12	27.66 ± 0.06	27.61 ± 0.04	26.54 ± 0.09	27.63 ± 0.06
de is a 3 σ up	H_{160}	27.62 ± 0.08	27.62 ± 0.08	27.62 ± 0.05	27.62 ± 0.03	27.62 ± 0.01	27.48 ± 0.04	27.62 ± 0.01	27.62 ± 0.05	27.55 ± 0.01	27.62 ± 0.02	27.41 ± 0.06	27.03 ± 0.08	27.60 ± 0.05	27.52 ± 0.10	27.46 ± 0.05	26.48 ± 0.08	27.48 ± 0.05
rted magnitu	J_s	28.48 ± 0.03	28.49 ± 0.03	28.49 ± 0.02	28.48 ± 0.02	28.49 ± 0.00	28.35 ± 0.02	28.49 ± 0.01	28.48 ± 0.02	28.40 ± 0.01	28.48 ± 0.01	28.26 ± 0.05	27.91 ± 0.09	28.46 ± 0.03	28.37 ± 0.04	28.32 ± 0.03	27.26 ± 0.07	28.35 ± 0.02
ans the repo	I814 ,	30.37 ± 0.01	30.37 ± 0.01	30.37 ± 0.00	30.36 ± 0.00	30.33 ± 0.00	30.04 ± 0.01	30.37 ± 0.00	30.36 ± 0.01	30.36 ± 0.00	30.34 ± 0.01	30.37 ± 0.00	29.97 ± 0.01	30.33 ± 0.01	30.38 ± 0.01	30.36 ± 0.01	29.51 ± 0.01	30.36 ± 0.01
у of 99.00 те	V 606	31.04 ± 0.00	31.04 ± 0.00	31.04 ± 0.00	31.04 ± 0.00	31.00 ± 0.00	30.70 ± 0.00	31.04 ± 0.00	31.03 ± 0.01	31.02 ± 0.00	31.01 ± 0.01	31.02 ± 0.00	30.83 ± 0.01	31.00 ± 0.01	31.02 ± 0.01	31.02 ± 0.01	30.49 ± 0.01	31.02 ± 0.01
n uncertainty	B_{450}	30.61 ± 0.01	30.61 ± 0.01	30.59 ± 0.00	30.60 ± 0.00	30.53 ± 0.01	30.36 ± 0.02	30.62 ± 0.00	30.58 ± 0.02	30.57 ± 0.00	30.55 ± 0.01	30.56 ± 0.01	30.37 ± 0.02	30.54 ± 0.02	30.58 ± 0.02	30.55 ± 0.01	29.97 ± 0.01	30.56 ± 0.01
ic Catalog A	U_{300}	29.87 ± 99.00	29.87 ± 1.19	29.86 ± 99.00	29.86 ± 99.00	29.84 ± 99.00	29.45 ± 1.64	29.87 ± 99.00	29.87 ± 1.00	29.83 ± 99.00	29.85 ± 99.00	29.84 ± 99.00	29.62 ± 0.50	29.80 ± 99.00	29.85 ± 1.21	29.83 ± 99.00	29.31 ± 99.00	29.85 ± 99.00
S Photometr	Dec(2000.0)	3723.460	3713.056	3860.542	3748.706	3687.892	3625.988	3764.366	3671.002	4054.934	3677.715	4069.728	4250.810	3976.335	4004.585	4032.788	4445.883	4050.864
le 2.1: HDF-	RA(J2000.0)	3059.527	3048.244	3255.390	3138.367	2003.739	3773.460	2808.686	2052.299	3374.297	2011.037	2445.774	2489.990	3568.128	2637.433	2568.312	3209.050	2915.408
Tab	DI D	3485	3491	3503	3511	3542	3548	3563	3578	3635	3641	3646	3687	3767	3779	3797	3867	-3897
								-		_	_		_					_

	RA(J2000.0)	Dec(2000.0)	U 300	B450	V 606	814	J110	H 160
3	189.216	62.199	29.49 ± 99.00	25.19 ± 0.00	24.33 ± 0.00	23.84 ± 0.00	23.98 ± 0.01	23.73 ± 0.01
12	189.201	62.196	29.49 ± 99.00	25.85 ± 0.01	25.25 ± 0.00	25.03 ± 0.00	24.97 ± 0.02	24.51 ± 0.01
00	189.228	62 201	29 49 + 99 00	26.99 ± 0.01	26.54 ± 0.01	26.56 ± 0.01	26.07 ± 0.03	25.28 ± 0.02
	100.017	62.201	20.40 ± 00.00			26.25 ± 0.01	20.01 ± 0.05	26.20 ± 0.04
00	189.217	62.199	29.49 ± 99.00	27.01 ± 0.01	26.30 ± 0.00	20.25 ± 0.01	20.00 ± 0.03	20.20 ± 0.04
96	189.228	62.201	29.49 ± 99.00	27.13 ± 0.01	27.04 ± 0.01	26.93 ± 0.01	26.98 ± 0.05	25.98 ± 0.03
97	189.212	62.198	29.49 ± 99.00	27.55 ± 0.01	$ $ 27.56 \pm 0.01	27.59 ± 0.01	28.16 ± 0.12	27.04 ± 0.05
182	189.243	62.205	28.78 ± 0.12	26.05 ± 0.00	25.70 ± 0.00	25.45 ± 0.00	24.80 ± 0.01	24.05 ± 0.01
106	180 254	62 207	29 49 + 99 00	26.92 ± 0.02	26.41 ± 0.01	26.23 ± 0.01	26.17 ± 0.05	2576 ± 0.04
190	189.234	02.207	29.49 1 99.00	20.52 ± 0.02		20.23 ± 0.01	20.11 ± 0.05	25.10 ± 0.04
JJ 210	189.194	62.194	30.34 ± 0.28	27.59 ± 0.01	27.49 ± 0.01	27.53 ± 0.01	27.51 ± 0.06	27.48 ± 0.07
215	189.250	62.206	31.51 ± 1.26	27.45 ± 0.01	27.05 ± 0.01	27.05 ± 0.01	26.60 ± 0.04	25.66 ± 0.02
242	189.254	62.207	29.49 ± 99.00	27.15 ± 0.01	26.81 ± 0.01	26.60 ± 0.01	26.64 ± 0.05	26.58 ± 0.06
248	189.216	62.199	30.74 ± 0.74	26.31 ± 0.01	26.24 ± 0.00	26.31 ± 0.01	26.75 ± 0.06	26.00 ± 0.03
0.84	180,100	62 105	29.49 ± 99.00	27.11 ± 0.02	26.90 ± 0.01	26.70 ± 0.01	28.88 ± 0.48	26.64 ± 0.08
	100.104	62.100					20.00 ± 0.01	
317	189.194	62.196	26.22 ± 0.08	26.14 ± 0.01	26.00 ± 0.00	25.91 ± 0.01	26.28 ± 0.04	23.32 ± 0.03
323	189.186	62.194	29.42 ± 0.14	26.72 ± 0.01	26.72 ± 0.00	26.75 ± 0.01	26.84 ± 0.04	26.86 ± 0.05
325	189.208	62.199	29.49 ± 99.00	26.85 ± 0.01	26.19 ± 0.00	26.04 ± 0.01	26.20 ± 0.03	25.59 ± 0.02
336	189.189	62.195	29.49 ± 99.00	27.33 ± 0.02	27.32 ± 0.01	27.23 ± 0.02	27.68 ± 0.15	28.07 ± 99.00
338	189 227	62 203	2857 ± 0.11	26.96 ± 0.01	26.99 ± 0.01	26.99 ± 0.02	27.45 ± 0.12	26.32 ± 0.05
264	180.102	62 106	20.45 ± 0.20	27.67 ± 0.02	27.95 ± 0.02	27.84 ± 0.03	20.20 ± 0.52	26.96 ± 0.07
304	109.195	02.190	29.40 ± 0.20	21.01 ± 0.02	27.93 1 0.02	21.64 ± 0.65	23.23 1 0.02	20.50 1 0.01
390	189.200	62.198	29.49 ± 99.00	27.43 ± 0.01	27.15 ± 0.01	27.13 ± 0.01	27.26 ± 0.07	20.05 ± 0.03
411	189.232	62.205	29.49 ± 99.00	27.68 ± 0.02	27.51 ± 0.01	27.62 ± 0.02	26.68 ± 0.05	27.50 ± 0.12
425	189.189	62.197	28.67 ± 0.09	26.83 ± 0.01	26.52 ± 0.00	26.23 ± 0.01	25.49 ± 0.01	24.65 ± 0.01
442	189.189	62.198	26.86 ± 0.05	24.76 ± 0.00	24.13 ± 0.00	23.86 ± 0.00	23.84 ± 0.01	23.17 ± 0.01
452	180 206	62 201	28.99 ± 0.13	27.16 ± 0.01	26.73 ± 0.01	26.62 ± 0.01	26.51 ± 0.04	25.81 ± 0.03
45.4	189.200	62.201	20.00 ± 0.10	26.78 1 0.01		26.02 ± 0.01	26.01 ± 0.04	25.61 ± 0.02
454	189.210	62.201	29.49 ± 99.00	20.78 ± 0.01	20.30 ± 0.00	20.17 ± 0.01	20.22 ± 0.04	25.01 ± 0.03
⁴⁶³	189.219	62.203	30.12 ± 0.31	20.92 ± 0.01	26.63 ± 0.00	20.01 ± 0.01	27.17 ± 0.06	26.30 ± 0.03
470	189.250	62.210	$ $ 28.79 \pm 0.10	26.61 ± 0.01	26.30 ± 0.00	$ $ 26.16 \pm 0.01	26.11 ± 0.03	$ 25.26 \pm 0.01 $
478	189.189	62.198	29.49 ± 99.00	25.26 ± 0.00	24.43 ± 0.00	24.02 ± 0.00	23.85 ± 0.01	23.01 ± 0.00
510	189 232	62,207	27.84 ± 0.04	26.43 ± 0.00	26.47 ± 0.00	26.46 ± 0.01	26.55 ± 0.03	25.66 + 0.02
EE2	180 001	62 200	28.07 ± 0.00	26 59 ± 0.01	26.41 ± 0.00	26 45 ± 0.01	26.25 ± 0.04	26.21 ± 0.04
11 552	109.231	02.200	23.07 ± 0.00	20.00 ± 0.01		0.40 1 0.01	20.20 ± 0.04	
578	189.186	62.198	28.59 ± 0.13	20.72 ± 0.01	26.55 ± 0.01	20.04 ± 0.01	26.35 ± 0.05	25.78 ± 0.04
592	189.191	62.199	29.00 ± 0.12	26.28 ± 0.00	26.00 ± 0.00	25.87 ± 0.00	26.21 ± 0.03	25.25 ± 0.01
i 604	189.186	62.198	29.41 ± 0.17	27.48 ± 0.01	27.34 ± 0.01	27.36 ± 0.01	27.40 ± 0.08	26.74 ± 0.05
610	189.215	62,205	28.33 ± 0.10	26.10 ± 0.01	25.72 ± 0.00	25.28 ± 0.00	24.69 ± 0.01	23.98 ± 0.01
621	180.200	62,202	20.75 ± 0.20	27.62 ± 0.01	27.56 ± 0.01	27.65 ± 0.02	27.58 ± 0.08	77.92 ± 0.14
021	189.209	02.203	29.15 ± 0.20	21.02 ± 0.01	27.50 ± 0.01	27.05 ± 0.02	21.38 ± 0.08	27.92 ± 0.14
653	189.215	62.205	29.24 ± 0.16	26.85 ± 0.01	26.45 ± 0.00	26.06 ± 0.01	25.65 ± 0.02	24.93 ± 0.01
668	189.207	62.204	27.00 ± 0.02	25.57 ± 0.00	25.39 ± 0.00	25.31 ± 0.00	25.03 ± 0.01	24.43 ± 0.01
673	189.176	62.197	27.84 ± 0.08	26.23 ± 0.01	26.28 ± 0.01	26.39 ± 0.01	25.84 ± 0.04	25.35 ± 0.03
709	189.236	62.210	31.05 ± 0.55	27.73 ± 0.01	27.74 ± 0.01	27.58 ± 0.01	27.86 ± 0.09	26.77 ± 0.04
712	189,199	62 202	29.06 ± 0.09	27.73 ± 0.01	27.85 ± 0.01	28.04 ± 0.02	27.78 ± 0.09	27.35 ± 0.07
761	180 015	62.202	28 50 ± 0.15	26.68 ± 0.01	26.70 ± 0.01	26.80 ± 0.02	26.40 ± 0.07	25.85 ± 0.05
151	189.215	02.200	28.30 ± 0.13	20.00 ± 0.01	20.70 ± 0.01	20.80 ± 0.02	20.40 ± 0.07	23.85 ± 0.05
• 762	189.216	62.207	28.24 ± 0.10	26.43 ± 0.01	26.10 ± 0.00	25.75 ± 0.01	25.07 ± 0.02	24.27 ± 0.01
766	189.235	62.210	29.44 ± 0.20	27.70 ± 0.02	27.48 ± 0.01	27.48 ± 0.02	27.23 ± 0.08	27.43 ± 0.12
789	189.170	62.197	29.38 ± 0.15	26.82 ± 0.01	26.79 ± 0.00	26.73 ± 0.01	27.01 ± 0.05	26.12 ± 0.03
790	189 203	62 204	29.04 ± 0.15	26.30 ± 0.01	25.64 ± 0.00	24.82 ± 0.00	23.64 ± 0.00	22.54 ± 0.00
707	180.207	62.205	28.64 ± 0.12	25.56 ± 0.00	25.32 ± 0.00	25.22 ± 0.00	25.21 ± 0.02	24.62 ± 0.01
197	189.207	62.205	28.50 ± 0.12	25.56 ± 0.00	.25.32 ± 0.00	25.22 ± 0.00	25.31 ± 0.02	24.02 ± 0.01
801	189.223	62.208	29.06 ± 0.15	27.67 ± 0.02	27.82 ± 0.02	27.99 ± 0.03	27.12 ± 0.08	27.50 ± 0.13
879	189.206	62.206	29.49 ± 99.00	27.56 ± 0.02	27.60 ± 0.01	27.57 ± 0.02	28.28 ± 0.23	27.00 ± 0.09 .
880	189.197	62.204	29.86 ± 0.18	27.36 ± 0.01	27.40 ± 0.01	27.39 ± 0.01	28.81 ± 0.21	27.68 ± 0.09
801	189 208	62 207	30.49 ± 0.33	27.62 ± 0.01	28.00 ± 0.01	27.88 ± 0.02	27.46 ± 0.06	27.11 ± 0.05
000	180 170	62 201	28.20 ± 0.05	26.95 ± 0.01	26.87 ± 0.00	26.75 ± 0.01	26.86 ± 0.04	26.04 ± 0.02
092	105.175	02.201	28.30 ± 0.03	20.55 ± 0.01	20.87 ± 0.00	20.10 1 0.01	20.00 ± 0.04	20.04 1 0.02
893	189.240	62.214	28.74 ± 0.09	26.73 ± 0.01	26.64 ± 0.00	20.35 ± 0.01	26.45 ± 0.03	23.44 ± 0.02
896	189.240	62.214	27.96 ± 0.05	26.46 ± 0.01	26.60 ± 0.00	26.68 ± 0.01	26.75 ± 0.05	25.67 ± 0.02
921	189.208	62.208	28.91 ± 0.12	26.92 ± 0.01	26.86 ± 0.01	26.64 ± 0.01	26.33 ± 0.03	25.75 ± 0.02
933	189.176	62.201	29.49 ± 99.00	26.77 ± 0.02	26.00 ± 0.01	25.54 ± 0.01	25.60 ± 0.03	25.34 ± 0.03
954	189.210	62,208	30.87 ± 0.53	27.89 ± 0.02	27.78 ± 0.01	27.73 ± 0.02	27.48 ± 0.07	27.02 ± 0.06
004	189 179	62,203	27.81 ± 0.05	26.06 ± 0.01	26.00 ± 0.00	26.02 ± 0.01	25.99 ± 0.03	25.48 ± 0.02
1002	100.224	62.203	20.40 ± 00.00		27.68 ± 0.01	2757 ± 0.02	27.59 ± 0.00	26.99 + 0.07
1 1000	109.234	02.214	29.49 ± 99.00	21.09 T 0.02	27.00 ± 0.01	27.01 ± 0.02	21.00 ± 0.09	27.64 ± 0.10
1007	189.109	02.201	29.03 ± 0.22	20.12 ± 0.03	21.01 ± 0.01	21.10 ± 0.02	20.44 ± 0.22	21.04 ± 0.13
1026	189.186	62.204	29.43 ± 0.34	26.82 ± 0.02	26.57 ± 0.01	25.69 ± 0.01	24.43 ± 0.01	23.33 ± 0.00
1048	189.241	62.216	29.66 ± 0.40	26.92 ± 0.02	26.35 ± 0.01	26.31 ± 0.01	26.34 ± 0.06	25.48 ± 0.03
1062	189.177	62.203	29.93 ± 0.30	27.98 ± 0.02	27.42 ± 0.01	27.10 ± 0.01	27.55 ± 0.10	27.02 ± 0.08
1073	189.196	62,207	28.81 ± 0.11	26.00 ± 0.00	25.77 ± 0.00	25.72 ± 0.00	25.91 ± 0.02	25.65 ± 0.02
1074	189 195	62 207	30.91 ± 0.74	26.08 ± 0.00	25.99 ± 0.00	26.06 ± 0.01	26.18 ± 0.03	26.01 + 0.03
1000	1 180 102	62 207	28.86 ± 0.11	27.11 ± 0.01	26.96 ± 0.01	26 78 + 0.01	26.60 ± 0.04	25 75 + 0.02
1083	100.100	02.207	20.00 ± 0.11	07.99 - 0.01	20.50 I 0.01	20.10 ± 0.01	20.00 ± 0.04	27.06 1 0.02
1095	189.192	62.207	29.49 ± 99.00	27.03 ± 0.02	27.00 ± 0.01	27.00 ± 0.02	20.01 ± 0.25	21.20 ± 0.08
1099	189.215	62.211	29.49 ± 99.00	27.89 ± 0.02	27.67 ± 0.01	27.58 ± 0.02	28.08 ± 0.15	27.43 ± 0.10
1106	189.181	62.204	29.49 ± 99.00	27.72 ± 0.02	27.78 ± 0.01	27.76 ± 0.02	28.73 ± 0.24	27.28 ± 0.08
1112	189.217	62.212	29.73 ± 0.28	27.74 ± 0.02	27.82 ± 0.02	27.64 ± 0.02	28.95 ± 0.40	26.38 ± 0.05
1129	189,180	62 205	28.76 ± 0.11	26.39 ± 0.01	26.13 ± 0.00	25.91 ± 0.00	25.51 ± 0.02	24.81 ± 0.01
1107	180 100	62 202	20.40 ± 00.00	26.71 ± 0.01	26.49 ± 0.00	26.50 ± 0.01	27.08 ± 0.07	26.15 ± 0.04
1 131	109.100	02.207	~a.4a T aa.00	20.72 ± 0.01	20.45 ± 0.00	De 41 1 0.01	21.00 ± 0.07	
1158	189.180	62.205	28.98 ± 0.11	20.06 ± 0.01	20.42 ± 0.00	20.41 ± 0.01	20.83 ± 0.05	23.73 ± 0.02
1190	189.184	62.206	28.49 ± 0.08	27.31 ± 0.01	27.46 ± 0.01	27.28 ± 0.02	27.49 ± 0.10	26.34 ± 0.04
1191	189.187	62.207	29.49 ± 99.00	27.29 ± 0.02	27.15 ± 0.01	26.66 ± 0.01	25.51 ± 0.02	25.10 ± 0.02
1226	189.238	62.218	29.49 ± 99.00	27.59 ± 0.02	27.69 ± 0.01	27.66 ± 0.02	28.20 ± 0.17	26.67 ± 0.05
1236	189 163	62,203	29.49 ± 99.00	26.90 ± 0.01	26.56 ± 0.01	26.38 ± 0.01	25.89 ± 0.03	25.90 ± 0.04
1241	180 218	62 214	20 16 ± 0 17	26.60 ± 0.01	26.21 ± 0.00	25.97 ± 0.01	25.95 ± 0.03	25.07 + 0.01
1241	109.210	02.214	29.10 I 0.1/	06 47 1 0.01	De 46 ± 0.00	36.07 ± 0.01	20.00 ± 0.00	
1264	189.207	62.212	28.77 ± 0.12	20.47 ± 0.01	20.40 ± 0.00	20.42 ± 0.01	20.62 ± 0.00	20.77 ± 0.03
1290	189.213	62.214	29.49 ± 99.00	27.44 ± 0.02	27.29 ± 0.01	27.56 ± 0.02	29.50 ± 0.65	26.77 ± 0.07
1294	189.198	62.211	27.51 ± 0.03	26.30 ± 0.00	26.37 ± 0.00	26.41 ± 0.01	26.63 ± 0.04	26.03 ± 0.03
1295	189.189	62.209	28.33 ± 0.09	26.50 ± 0.01	26.27 ± 0.00	25.97 ± 0.01	25.13 ± 0.01	24.38 ± 0.01
1296	189.236	62,219	29.16 + 0.16	26.97 ± 0.01	26.91 ± 0.01	26.89 ± 0.01	26.66 ± 0.05	26.24 ± 0.04
1929	189 200	62 212	2853 ± 0.10	26.66 ± 0.01	26.76 ± 0.01	26.75 ± 0.01	27.84 ± 0.15	26.23 ± 0.04
1050	180.041	60.001	20.00 1 0.10	26 12 - 0.01	25 58 1 0.00	25.05 - 0.00	24.97 ± 0.01	24.48 ± 0.01
1352	109.241	02.221	29.43 ± 0.29	20.12 T 0.01	20.00 ± 0.00	07.40 ± 0.00	00 00 J 00 00	
1362	189.166	62.205	31.44 ± 1.08	27.92 ± 0.02	27.49 ± 0.01	27.40 ± 0.02	28.30 ± 99.00	20.00 ± 0.04
1437	189.215	62.216	28.86 ± 0.14	27.19 ± 0.01	26.98 ± 0.01	26.85 ± 0.01	27.32 ± 0.10	26.46 ± 0.06
1474	189.174	62.209	28.20 ± 0.07	26.12 ± 0.01	25.90 ± 0.00	25.82 ± 0.00	25.57 ± 0.02	24.98 ± 0.01
1499	189.173	62.209	29.49 ± 99.00	27.60 ± 0.02	27.57 ± 0.01	27.45 ± 0.02	28.30 ± 99.00	26.68 ± 0.05

Table 2.2: HDF catalog of Sawicki et al. (2007). An uncertainty of 99.00 means the magnitude value is a 3σ upper limit.

ID	RA(J2000.0)	Dec(2000.0)	U 300	B450	V 606	1814	J110	H160
1501	189,173	62.209	30.16 ± 0.35	27.70 ± 0.02	27.70 ± 0.01	27.85 ± 0.02	28.30 ± 99.00	27.92 ± 0.17
1001	100.175	00.000						
1 1503	189.171	62.208	29.02 ± 0.16	26.97 ± 0.01	26.86 ± 0.01	26.49 ± 0.01	25.65 ± 0.02	25.50 ± 0.03
1516	189.220	62.219	27.93 ± 0.07	26.28 ± 0.01	26.12 ± 0.00	26.08 ± 0.01	26.08 ± 0.04	25.85 ± 0.04
1519	189 180	62 211	29.77 ± 0.49	26.09 ± 0.01	25.97 ± 0.00	26.03 ± 0.01	25.62 ± 0.03	24.90 ± 0.02
1010	100.100	60.014					26.60 1 0.00	26.04 1 0.05
11 1525	189.195	D2.214	27.86 ± 0.07	26.70 ± 0.01	26.74 ± 0.01	26.84 ± 0.02	20.89 ± 0.09	20.04 ± 0.05
1528	189.233	62.221	29.07 ± 0.15	27.31 ± 0.01	27.17 ± 0.01	27.18 ± 0.02	27.53 ± 0.11	26.26 ± 0.04
1531	189 188	62 212	29 49 + 99 00	27.28 ± 0.01	26.98 ± 0.01	26.85 ± 0.01	26.63 ± 0.04	$ 26.12 \pm 0.03 $
1001	103.100		23.43 1 33.00	27.20 1 0.01	20.30 ± 0.01	20.00 ± 0.01		
1535	189.180	62.211	27.79 ± 0.05	25.43 ± 0.00	25.33 ± 0.00	25.28 ± 0.00	25.25 ± 0.01	$ 24.49 \pm 0.01 $
1539	189.220	62.219	29.32 ± 0.17	27.14 ± 0.01	26.83 ± 0.01	26.91 ± 0.01	26.21 ± 0.03	$ 26.31 \pm 0.04 $
1556	189 180	62 211	29.79 ± 0.17	26.98 ± 0.01	26.70 ± 0.00	26.64 ± 0.01	26.57 ± 0.03	25.47 ± 0.01
1000	100.100	00.011		20.00 1 0.01	20.10 1 0.00		20.01 ± 0.05	
1551	169.181	02.211	28.80 ± 0.10	26.95 ± 0.01	20.80 ± 0.01	20.70 ± 0.01	21.32 ± 0.01	25.92 ± 0.03
1592	189.203	62.216	29.74 ± 0.19	27.54 ± 0.01	27.16 ± 0.01	27.05 ± 0.01	27.32 ± 0.06	$ 26.45 \pm 0.03 $
1606	189 237	62 223	28.21 ± 0.06	26.86 ± 0.01	26.84 ± 0.01	26.76 ± 0.01	27.02 ± 0.06	25 89 + 0.03
1000	100.207	00.000			20.01 1 0.00			
1610	189.237	62.223	28.40 ± 0.09	25.60 ± 0.01	26.41 ± 0.00	26.37 ± 0.01	26.19 ± 0.04	25.16 ± 0.02
1611	189.237	62.224	31.68 ± 2.90	26.44 ± 0.01	26.41 ± 0.01	26.41 ± 0.01	25.98 ± 0.05	25.30 ± 0.03
1621	189 188	62 214	26.38 ± 0.03	25.02 ± 0.00	24.96 ± 0.00	24.79 ± 0.00	24.20 ± 0.01	24.04 ± 0.01
1	100.174	60.010					24 50 4 0.00	
1054	189.174	02.212	30.43 ± 1.25	25.86 ± 0.01	25.35 ± 0.00	25.19 ± 0.01	24.52 ± 0.02	23.72 ± 0.01
1662	189.223	62.222	29.49 ± 99.00	26.23 ± 0.00	26.16 ± 0.00	26.23 ± 0.00	26.30 ± 0.03	26.08 ± 0.03
1 1700	189 190	62.215	28.62 ± 0.10	27.00 ± 0.01	27.13 ± 0.01	27.21 ± 0.02	26.58 ± 0.05	26.63 + 0.06
1700	100.100	62.210	20.02 1 00.00		06.41 ± 0.01	26 20 ± 0.01	20.00 + 0.00	25.92 1 0.04
1709	189.161	62.210	29.49 ± 99.00	26.49 ± 0.01	26.41 ± 0.01	26.39 ± 0.01	26.56 ± 0.06	25.63 ± 0.04
1734	189.193	62.216	29.34 ± 0.20	27.70 ± 0.02	27.29 ± 0.01	27.72 ± 0.03	29.41 ± 0.64	26.38 ± 0.05
1747	189167	62 211	29 49 + 99 00	27.16 ± 0.02	27.07 ± 0.01	27.02 ± 0.02	27.04 ± 0.09	26.68 + 0.08
1111	100.101	00.000						
1777	189.222	02.223	28.44 ± 0.09	25.44 ± 0.00	25.09 ± 0.00	24.93 ± 0.00	24.90 ± 0.01	24.08 ± 0.01
]] 1903	189.207	62.220	30.03 ± 0.38	$ $ 27.65 \pm 0.02	26.94 ± 0.01	26.55 ± 0.01	26.29 ± 0.04	26.00 ± 0.03
2006	189 101	62,218	29.49 + 99.00	27.13 ± 0.01	127.06 ± 0.01	26.72 ± 0.01	26.34 ± 0.03	$\begin{bmatrix} 25.65 + 0.02 \end{bmatrix}$
1 2000	180.010	60.005	21 70 1 1 51		07.04 - 0.01	07.69 0.00	27.00 . 0.10	
²⁰⁶⁰	189.219	02.225	31.72 ± 1.51	28.29 ± 0.03	21.84 ± 0.01	21.00 ± 0.02	21.90 ± 0.13	21.25 ± 0.09
2066	189.228	62.226	29.49 ± 99.00	$ $ 27.36 \pm 0.01	$ 27.18 \pm 0.01$	27.06 ± 0.01	27.65 ± 0.09	$ 26.36 \pm 0.04 $
2073	189 235	62,228	29.49 + 99.00	27.70 ± 0.02	27.65 ± 0.01	27.96 ± 0.03	27.67 ± 0.13	$ 27.19 \pm 0.10 $
1 2020	180.007	62.000	0.50 1 0.01		07.10 0.01	06 85 1 0.01	26 76 ± 0.05	
2079	189.227	62.226	30.58 ± 0.61	27.27 ± 0.01	27.12 ± 0.01	20.85 ± 0.01	20.70 ± 0.05	20.07 ± 0.04
2095	189.231	62.228	29.63 ± 0.28	$ 26.72 \pm 0.01$	$ 26.62 \pm 0.01$	26.49 ± 0.01	26.80 ± 0.06	26.13 ± 0.04
2106	189.187	62.219	30.86 + 0.60	26.02 ± 0.00	25.90 ± 0.00	25.86 ± 0.00	25.91 ± 0.02	25.29 + 0.01
2100	100.101							
2111	189.226	62.227	28.07 ± 0.05	26.33 ± 0.00	26.56 ± 0.00	26.59 ± 0.01	20.75 ± 0.04	25.00 ± 0.02
2169	189.235	62.229	30.06 ± 0.34	28.08 ± 0.03	27.93 ± 0.02	27.86 ± 0.03	30.39 ± 1.38	27.96 ± 0.18
2171	189 228	62 228	27.76 ± 0.05	25.67 ± 0.00	25.56 ± 0.00	25.54 ± 0.00	25.71 ± 0.02	24.98 ± 0.01
2100	100.005	60.007						
2188	189.225	62.227	29.39 ± 0.11	27.08 ± 0.01	27.33 ± 0.01	27.31 ± 0.01	27.36 ± 0.05	20.73 ± 0.04
2206	189.227	62.228	28.28 ± 0.06	26.53 ± 0.01	26.54 ± 0.00	26.58 ± 0.01	26.92 ± 0.05	25.85 ± 0.02
2208	189 214	62 226	29.58 ± 0.22	26.83 ± 0.01	26.65 ± 0.00	26.52 ± 0.01	26.46 ± 0.04	25.68 ± 0.02
2200	103.214	02.220	20.00 ± 0.22	20.00 ± 0.01	20.00 ± 0.00			
2221	189.197	62.222	30.21 ± 0.32	27.99 ± 0.02	27.92 ± 0.01	27.95 ± 0.02	27.89 ± 0.11	27.89 ± 0.14
2228	189.176	62.218	29.44 ± 0.20	26.19 ± 0.00	25.96 ± 0.00	25.53 ± 0.00	24.88 ± 0.01	24.15 ± 0.01
2255	189 209	62 225	28.99 ± 0.14	27.10 ± 0.01	27.36 ± 0.01	27.15 ± 0.02	26.50 ± 0.04	25 79 + 0.03
2200	100.100	02.220	20.55 1 0.11		21.00 1 0.01			
1 2260	189.183	62.220	29.65 ± 0.22	26.89 ± 0.01	26.23 ± 0.00	25.97 ± 0.00	25.90 ± 0.02	24.96 ± 0.01
2282	189.229	62.230	26.63 ± 0.02	24.79 ± 0.00	24.66 ± 0.00	24.59 ± 0.00	24.63 ± 0.01	23.98 ± 0.01
2200	180 227	62 220	28.05 ± 0.11	27.16 ± 0.01	26.74 ± 0.00	26.57 ± 0.01	26.47 ± 0.03	25 70 + 0.02
2300	103.221	02.223	20.30 1 0.11	21.10 1 0.01	20.14 1 0.00	20.01 ± 0.01		
2306	189.230	62.230	27.58 ± 0.05	25.85 ± 0.00	25.51 ± 0.00	25.34 ± 0.00	25.26 ± 0.02	24.50 ± 0.01
2342	189.221	62.228	30.03 ± 0.31	27.82 ± 0.02	27.93 ± 0.01	27.77 ± 0.02	27.48 ± 0.09	26.66 ± 0.05
2366	180 184	62 221	29.10 ± 0.15	27.07 ± 0.01	26.67 ± 0.01	26.21 ± 0.01	25.53 ± 0.02	24.35 ± 0.01
2300	103.104	02.221	23.10 1 0.10	27.07 ± 0.01	20.01 ± 0.01	20.21 ± 0.01		
2404	189.233	62.232	31.18 ± 0.67	27.97 ± 0.02	27.73 ± 0.01	27.78 ± 0.02	27.29 ± 0.06	20.93 ± 0.05
2409	189.222	62.229	30.73 ± 0.94	27.10 ± 0.02	26.92 ± 0.01	26.89 ± 0.02	26.47 ± 0.06	25.67 ± 0.03
2490	189 225	62 231	29.02 ± 0.07	26.86 ± 0.00	27.00 ± 0.00	27.05 ± 0.01	27.16 ± 0.04	26.13 ± 0.02
0.01	100.014	60,000		06 12 1 0.00	00.00 1.0.00	07 02 ± 0.00	25.85 ± 0.02	35 33 ± 0.01
2501	189.214	62.229	28.09 ± 0.06	26.13 ± 0.00	26.03 ± 0.00	25.93 ± 0.00	25.85 ± 0.02	25.23 ± 0.01
2560	189.208	62.229	31.55 ± 1.75	26.57 ± 0.01	26.41 ± 0.01	26.32 ± 0.01	25.94 ± 0.03	25.40 ± 0.02
2616	189.213	62.230	28.87 ± 0.14	26.26 ± 0.01	25.70 ± 0.00	25.46 ± 0.00	25.32 ± 0.02	24.53 ± 0.01
0.605	180.010	62.220	20.02 ± 0.66	26.99 ± 0.01	26.67 ± 0.00	26.62 ± 0.01	26.51 ± 0.02	2617 + 0.02
2020	109.413	02.230	30.93 ± 0.00	20.00 ± 0.01	20.07 ± 0.00	20.02 ± 0.01	20.31 ± 0.03	20.17 ± 0.03
2702	189.227	62.234	28.11 ± 0.07	26.07 ± 0.01	25.79 ± 0.00	25.66 ± 0.00	25.71 ± 0.02	24.99 ± 0.01
2710	189.208	62.231	26.56 ± 0.02	25.20 ± 0.00	25.12 ± 0.00	24.99 ± 0.00	24.86 ± 0.01	$ 24.12 \pm 0.01 $
2808	180 214	62 232	30.53 + 0.45	28.34 ± 0.03	27.80 ± 0.01	27.61 + 0.02	27.83 ± 0.11	2742 ± 0.10
2000	109.414	02.232	30.03 ± 0.43	20.34 ± 0.03	21.09 1 0.01	27.01 ± 0.02	21.03 ± 0.11	
2832	189.226	62.235	30.91 ± 0.66	27.10 ± 0.01	26.72 ± 0.00	26.66 ± 0.01	20.98 ± 0.05	23.81 ± 0.02
2835	189.228	62.235	31.15 ± 1.06	28.05 ± 0.03	27.68 ± 0.01	27.67 ± 0.03	28.11 ± 0.19	26.93 ± 0.08
2848	189 198	62 238	29.07 + 0.11	27.61 ± 0.01	27.77 ± 0.01	27.84 ± 0.02	27.95 ± 0.12	L 27.20 + 0.08
0.10	180 100	60.004		26.01 . 0.00	05.67 0.00		25 40 - 0.01	24 60 + 0.01
2849	199.198	62.234	20.22 ± 0.06	20.01 ± 0.00	23.67 ± 0.00	23.32 ± 0.00	25.49 ± 0.01	44.00 ± 0.01
2853	189.191	62.237	27.39 ± 0.05	25.44 ± 0.00	25.26 ± 0.00	25.18 ± 0.00	25.17 ± 0.02	24.57 ± 0.01
2876	189.227	62,236	26.81 + 0.02	25.69 ± 0.00	25.79 ± 0.00	25,83 + 0.00	25.91 ± 0.03	25.39 ± 0.02
1 2801	180 100	62 224	20 28 - 0 21	27.38 + 0.02	27.12 ± 0.01	27.21 ± 0.02	27.08 ± 0.08	26.66 + 0.07
4094	109.192	02.234	29.20 ± 0.21	21.30 ± 0.02	21.12 + 0.01	21.21 1 0.02	21.00 1 0.08	
2967	189.190	62.235	29.49 ± 99.00	27.08 ± 0.01	$ 26.80 \pm 0.01 $	26.80 ± 0.01	26.00 ± 0.03	25.61 ± 0.03
3025	189.190	62.231	29.49 ± 99.00	27.37 ± 0.01	26.99 ± 0.01	26.95 ± 0.01	27.18 ± 0.07	26.57 ± 0.05
1 2026	180.017	62.235	30.31 ± 0.26	27.73 ± 0.02	27.51 ± 0.01	27.61 ± 0.02	27.84 ± 0.11	27.04 + 0.07
3030	109.217	02.235	30.31 ± 0.36	21.13 ± 0.02	1 21.31 ± 0.01	27.01 ± 0.02	21.04 I U.II	
3042	189.202	62.234	29.49 ± 99.00	27.24 ± 0.01	27.24 ± 0.01	27.18 ± 0.01	26.84 ± 0.05	27.20 ± 0.09
3048	189.209	62.234	27.21 ± 0.05	25.06 ± 0.00	24.83 ± 0.00	24.65 ± 0.00	24.32 ± 0.01	$ 23.64 \pm 0.01 $
2000	190 190	60.001	27.24 ± 0.02	25.82 ± 0.00	25 71 ± 0.00	25.50 ± 0.00	25.18 ± 0.01	24 59 + 0.01
3083	109.199	02.231	21.24 ± 0.03	20.00 ± 0.00	23.11 ± 0.00	20.00 ± 0.00	20.10 ± 0.01	
3087	189.217	↓ 62.235	28.36 ± 0.10	26.78 ± 0.01	26.49 ± 0.01	26.43 ± 0.01	26.57 ± 0.06	20.23 ± 0.05
3111	189,184	62,236	26.47 ± 0.02	24.67 ± 0.00	24.63 ± 0.00	24.59 + 0.00	24.53 ± 0.01	$ 24.02 \pm 0.01 $
	100.100	60.000	07 51 ± 0.00	35 81 ± 0.01	25 40 ± 0.00	25.41 ± 0.01	25.00 ± 0.02	24 53 + 0.02
1 3115	109.192	02.230	21.51 ± 0.08	20.01 ± 0.01	23.40 ± 0.00	20.41 ± 0.01	20.00 ± 0.02	24.03 ± 0.02
3134	189.181	62.236	$ $ 28.91 \pm 0.15 $ $	25.51 ± 0.00	25.12 ± 0.00	25.06 ± 0.00	24.78 ± 0.01	24.04 ± 0.01
3176	189.217	62.243	27.82 ± 0.05	26.05 ± 0.01	25.95 ± 0.00	25.78 ± 0.00	25.61 ± 0.02	25.06 ± 0.02
1 2200	190 100	60.040	28 47 - 0.14	26.27 ± 0.01	26.07 ± 0.01	26.41 ± 0.01	25.07 + 0.04	25 56 + 0.04
3188	109.108	02.240	20.41 ± 0.14	20.21 ± 0.01	20.07 ± 0.01	20.41 ± 0.01	20.97 # 0.04	
3201	189.228	62.236	30.49 ± 0.68	27.59 ± 0.02	$ 27.22 \pm 0.01 $	27.10 ± 0.02	26.59 ± 0.06	26.28 ± 0.05
3250	189.185	62,234	28.76 ± 0.09	27.28 ± 0.01	27.14 ± 0.01	27.15 ± 0.01	27.34 ± 0.07	27.06 ± 0.07
1 2055	180.000	02.201		07.95 ± 0.01		26.62 ± 0.01	27.02 ± 0.04	
3255	199.208	62.233	29.49 ± 99.00	21.35 ± 0.01	20.84 ± 0.00	20.03 ± 0.01	47.02 ± 0.04	20.95 ± 0.02
3256	189.218	62.242	29.49 ± 99.00	27.34 ± 0.01	26.99 ± 0.01	26.81 ± 0.01	26.69 ± 0.04	26.61 ± 0.05
3263	189.210	62,233	30.96 ± 0.70	28.08 ± 0.02	27.60 ± 0.01	27.54 ± 0.02	26.90 ± 0.05	26.29 ± 0.04
0004	180 001	62.000	35.05 ± 0.01	24.04 ± 0.00	2281 ± 0.00	23 50 1 0.00	23 25 + 0.00	22.61 ± 0.00
3204	189.201	62.238	25.95 ± 0.01	24.04 ± 0.00	23.01 ± 0.00	23.50 ± 0.00	23.23 ± 0.00	
3269	189.191	62.237	29.19 ± 0.17	26.94 ± 0.01	$ 26.80 \pm 0.01 $	26.83 ± 0.01	26.90 ± 0.06	26.51 ± 0.05
3373	189.201	62 238	26.27 ± 0.02	24.59 ± 0.00	24.40 + 0.00	24.21 ± 0.00	23.95 ± 0.01	23.49 + 0.01
1.00.0	100.201	, 02.200	20.21 2 0.02	21.00 1 0.00				

Table 2.2: HDF catalog of Sawicki et al. (2007). An uncertainty of 99.00 means the magnitude value is a 3σ upper limit.

Chapter 3 Model-fitting

3.1 SEDfit

3.1.1 The Software

We model-fit selected LBGs using SEDfit, a broadband spectral energy distribution (SED) fitting software package. Now a standard high-redshift galaxy-analysis implement, Sawicki & Yee (1998) pioneered the technique studying z > 2 objects in the HDF. SEDfit quantitatively compares a galaxy's photometry to a cast of models parametrized by redshift, dust content (E(B - V)), age, stellar mass, SFR, and photometric magnitudes. A maximum likelihood test $(\chi^2$ -fit) is the method of comparison. Once the fit is completed for all LBGs in the catalog, SEDfit outputs the best-fitting parameters and associated uncertainties for each object. To calculate the parameter uncertainties, SEDfit perturbs the photometry within its uncertainties and recalculates the best-fit parameters accordingly (Sawicki & Yee 1998). Parameter uncertainties in this work are calculated to 68% confidence using 300 perturbations per object.

The stellar synthesis models of Bruzual & Charlot (2003) provide the underlying spectra used to create our cast of models. We build into these models an assumed solar metallicity, the stellar initial mass function (IMF) of Salpeter (1955), and a star formation history of our choosing. First, the spectra are reddened by the Calzetti et al. (2000) starburst extinction curve. This reddening is quantized in the output as the color excess E(B - V). The wavelengths and intensities of the newly reddened spectra are then transposed according to their appointed redshifts and our adopted cosmology, $(\Omega_M, \Omega_\Lambda, H_0) = (0.3, 0.7, 70 \text{ km s}^{-1} \text{ Mpc}^{-1})$. Next, the spectra are attenuated below 1216 Å according to the instruction of Madau (1995). This simulates neutral Hydrogen along the line of sight absorbing UV photons emitted by the galaxy. The final step is the integration of these spectra through the instrument-specific filter transmission curves, which generates the cast of model magnitudes SEDfit compares against the real-world photometry (Sawicki & Yee 1998).

The specific best-fit parameter values output by SEDfit are critically dependent upon the details of the assumptions built into the models. For instance, Papovich et al. (2001) use SEDfit to remodel many z>2 HDF objects previously fit by Sawicki & Yee (1998), yet the two teams report differing best-fit parameter values for these galaxies. This discrepancy is attributed to the Papovich group's employment of the Calzetti et al. (2000) extinction law rather than the Calzetti (1997) law adopted by Sawicki & Yee (1998). We therefore note that all model-fit data reported and analyzed in this work assume the stellar IMF of Salpeter (1955), the Calzetti et al. (2000) dust law, and the intergalactic attenuation prescription of Madau (1995). Sawicki et al. (2007), Shapley et al. (2005), and this work all assume solar metallicity, while Yabe et al. (2009) assume 0.2 Z_{\odot} . During our preliminary work, we fit our $z\sim3$ HDF-S sample with both solar and 0.2 Z_{\odot} metallicities and find no qualitative change in the data's trends. This consistency insures data from the handful of surveys here employed combine to form a coherent picture.

3.1.2 The Parameters

The architecture of the model-generating software requires us to define the limits of the parameter spaces that SEDfit will then explore with the input photometry. The age parameter, which measures the time elapsed since the onset of the current episode of star formation, ranges between 5.1 and 10.3 log years with a 0.1 step size between values. We must also delimit the potential values of E(B - V). Given the abundant dust in many high-redshift UV-selected galaxies, we provide a generous 0.00 to 1.00 range of possible E(B - V) fits, although a majority of objects will likely be best-fit with E(B - V) < 0.30. A step size of 0.02 is chosen to guarantee the necessary detail for later analysis. The final parameter we must constrain to generate the cast of models is the redshift itself.

30

Each catalog of model SEDs we fit to data allows for redshifts $0.00 \le z \le 5.00$, with a 0.05 step size. SED fitting cannot reliably determine photometric redshifts any more precisely.

Though these parameter arrays are built into the model catalogs, SEDfit conveniently gives its users the option to further restrict parameters. In fitting our samples, we use this feature to limit the redshifts to a range consistent with our color-color selection criteria. Doing so saves computation time.

The stellar mass and SFR parameters must undergo a scaling process before SEDfit outputs their ultimate best-fit values. To explain, the model magnitudes to which the data are fit are initially scaled to be compatible with a generic, hypothetical galaxy with an equally generic and hypothetical stellar mass and SFR. The real world photometry, on the other hand, originate from sources whose masses and SFRs can vary across orders of magnitude. SEDfit matches the data to a model according to the characteristic shape of the SED and then flux-scales the model magnitudes to values consistent with the data. As the magnitudes are flux-scaled, so are the stellar mass and SFR parameters. Note also that SEDfit automatically corrects its output SFRs for dust attenuation.

Using the Bruzual & Charlot (2003) source code, star formation histories of arbitrary complexity may be constructed. Indeed, exploring the consequences of alternate star formation histories is the central concern of this work. We model-fit our UV-selected $z\sim2$ and $z\sim3$ galaxies under the assumptions of constant, exponentially increasing, and exponentially decreasing SFHs. The U_{300} band is not used to model-fit galaxies at either redshift because the shape of spectrum across that filter is critically dependent upon the specific line-of-sight to individual galaxies.

$3.2 z \sim 3$

3.2.1 Assuming Constant Star Formation

We first model-fit our sample of 242 $z\sim3$ LBG candidates from the HDF-S assuming a constant star formation history. Here, the cast of models begin with an unscaled SFR of 1.0 M_{\odot} yr⁻¹. Given that

31

our U_{300} - B_{450} - \mathcal{R}_{VI} color-color selection criteria culls objects down to $z\sim1.7$, we allow LBGs in our sample to be fit for redshifts $1.5 \leq z \leq 3.7$. To define the subsample of $z\sim3$ galaxies, we apply the following photometric redshift cut:

$$2.6 < z_{phot} \le 3.5.$$
 (3.1)

Sawicki's $z\sim2$ upper limit photo-z cut ($z_{phot} \leq 2.6$; see Eq 2.8) informs our chosen asymmetric $z\sim3$ lower limit.

SEDfit places 167 objects at $z_{phot} \leq 2.6$ and one at a $z_{phot} > 3.5$. In total, 62 galaxies are model-fit as genuine $z\sim3$ objects according to equation 3.1. Three of these LBGs are best-fit by ages that exceed 2.11 Gyr, the age of the universe at $z\sim3$, while 24 are fit by ages less than 30 Myr (see left panel, Fig. 3.2). When an object is best-fit by an age greater than that of the universe, it indicates the assumed SFH is incorrect and an SFH that generates less stellar mass would be appropriate. The existence of such objects poses no threat to a reliable analysis so long as their number is low, as it is for the CSF model-fits. We discuss age and the treatment of these old and voung outliers in the last section of this chapter.

The best-fit parameters for galaxies fit for CSF are listed in Appendix A in Table A.1. We employ no χ^2 -based criteria for selecting objects. The best-fit spectra and corresponding photometry for four of these galaxies may be inspected in the first column of Figure 3.1. We note the horizontal uncertainties are not uncertainties in the strictest sense. Rather, they signify the FWHM of that filter's transmission curve. This wavelength range is the region across which both the real world and model fluxes are integrated to produce broadband magnitudes.

3.2.2 Assuming Exponential Star Formation

The Positive τ Models

We next fit the $z\sim3$ catalog assuming an exponentially increasing star formation history. Appropriate models are constructed using the Bruzual & Charlot (2003) source code. Here we equip each model

Figure 3.1: Example plots of best-fit model spectra determined by SEDfit assuming 3 different star formation histories. Left to right, the columns assume a constant SFR, an exponentially increasing ($\tau = 700$ Myr) SFR, and an exponentially decreasing ($\tau = -700$ Myr) SFR. The spectra are overlaid with the corresponding real-world photometry of $z\sim3$ galaxies from the HDF-S. Solid blue circles indicate a detection, while open circles represent upper limits. The horizontal wavelength uncertainties are indicative of the FWHM of that filter's transmission curve. Uncertainties of the magnitudes themselves are on the order of 0.01 or smaller. Best-fit parameters for each LBG are listed in the panels.

with a generic star formation history such that

$$SFR(t) = SFR_0 e^{t/\tau}, \qquad (3.2)$$

where $SFR_0 = 1.0 M_{\odot} \text{ yr}^{-1}$, t is the age parameter in units of years, and τ is the e-folding, also measured in years. We model-fit our $z\sim3$ LBGs for τ values of 700, 500, 350, and 250 Myr. The adoption of $\tau = 700$ Myr is recommended by the good agreement between the evolutionary track of a toy galaxy (with a $\tau = 700$ Myr SFR function) and data fit under the presumption of constant star formation (see Fig. 4.2). A 900 Myr e-folding evolutionary track was also tested in this way, but its agreement with the model-fit data was found to be qualitatively worse than the 700 Myr track's. Though admittedly inconsistent, this exercise proved instructive in selecting a reasonable τ , 700 Myr, to begin our investigation. The 500, 350, and 250 Myr τ values represent our efforts to better match the toy galaxy's evolutionary track to the model-fit data. We note here that SED fitting is unable to uniquely constrain τ (Papovich et al. 2001; Shapley et al. 2001), and so it cannot be made a free parameter for each galaxy.

Figure 3.2: Number counts for best-fit ages output by SEDfit for $z_{phot}\sim3$ galaxies in the HDF-S assuming constant, exponentially increasing ($\tau = 700$ Myr), and exponentially decreasing ($\tau = -700$ Myr) star formation. The median best-fit age is given in each plot. The 2.11 Gyr age of the universe at $z\sim3$ is represented by t₀.

For $\tau = 700$ Myr, applying the photometric redshift cut of equation 3.1 to the model-fit data identifies 168 objects at $z_{phot} \leq 2.6$ and one object at a $z_{phot} > 3.5$. In total, 61 galaxies are fit as $z_{phot} \sim 3$ LBGs. Ten of these objects are best-fit by ages older than the $z \sim 3$ universe, and 25 are younger than 30 Myr (see middle panel, Fig. 3.2). The middle column of Figure 3.1 shows the model spectra and corresponding photometry for four galaxies fit assuming $\tau = 700$ Myr exponentially increasing SFRs. The best-fit parameters for these objects are listed in Appendix A in Table A.2. For $\tau = 500$ Myr, 169 objects are fit for $z_{phot} \leq 2.6$, and two are fit for $z_{phot} > 3.5$. Altogether, SEDfit identifies 59 galaxies as $z_{phot} \sim 3$ LBGs. Among these, 14 are best-fit with ages greater than 2.11 Gyr. Twenty-three are younger than 30 Myr. The best-fit parameters for these objects are listed in Appendix A in Table A.3.

For $\tau = 350$ Myr, 167 objects are fit for $z_{phot} \leq 2.6$, and two are fit for $z_{phot} > 3.5$. In all, SEDfit classifies 61 galaxies as $z_{phot} \sim 3$ LBGs. Among these, 23 are best-fit with ages greater than 2.11 Gyr. Twenty-five are younger than 30 Myr. The best-fit parameters for these objects are listed in Appendix A in Table A.4.

For $\tau = 250$ Myr, 133 objects are fit for $z_{phot} \leq 2.6$. None are fit for $z_{phot} > 3.5$. Altogether, SEDfit identifies 44 galaxies as $z_{phot} \sim 3$ LBGs. Among these, 15 are best-fit with ages greater than 2.11 Gyr. Eighteen are younger than 30 Myr. Here we note an unexpected peculiarity. Fifty-four galaxies are best-fit with an age of 20 Gyr. For these objects, SEDfit returns no stellar mass, SFR, flux normalization, or χ^2 value. We do not count these objects in the tallies presented here. The best-fit parameters for these objects are listed in Appendix A in Table A.5.

The Negative τ Model

Having model-fit the $z\sim3$ catalog for positive values of τ , we subsequently perform the operation again for a token negative τ value, $\tau = -700$ Myr. In sharp contrast with its positive counterpoint, the compelling suggestion of a viable $-\tau$ model is absent from our preliminary evolutionary track experiments. Indeed, the agreement is strikingly poor (see Fig. 4.2). Nonetheless, in the interests of rigor and symmetry, we refit the $z\sim3$ LBGs assuming an exponentially decreasing star formation history. Here, SEDfit places 166 objects at $z_{phot} \leq 2.6$ and one at $z_{phot} > 3.5$. Sixty-three galaxies are classified as $z_{phot}\sim3$ LBGs according to equation 3.1. Among these, none are fit with ages greater than that of the $z\sim3$ universe. Twenty-four are younger than 30 Myr (see right panel, Fig. 3.2). The best-fit parameters for these objects are listed in Appendix A in Table A.6.

$3.3 \quad z{\sim}2$

3.3.1 Assuming Exponential Star Formation

From our $z\sim3$ model-fits, we learn the best-fit photometric redshift for any given object is relatively unaffected by the assumption of different star formation histories, or at least those tested here. To save computation time, we limit our refits of Sawicki's HDF sample to objects already fit with photometric redshifts $(1.1 \le z_{phot} \le 2.9)$ moderately close to the $z\sim2$ selection window $(1.8 \le z_{phot} \le 2.6)$. This reduces the size of the Sawicki et al. (2007) catalog from 284 to 171 objects.

The Positive τ Models

Again defining the star formation rate by equation 3.2, we refit the newly reduced Sawicki et al. (2007) sample for an e-folding of 700 Myr. SEDfit places 24 objects at $z_{phot} < 1.8$ and 49 objects at $z_{phot} > 2.6$. In total, 99 galaxies are fit for $1.8 \leq z_{phot} \leq 2.6$. This star formation history produces a dramatic effect in the best-fit ages of these objects. The Sawicki group's initial modeling, which assumed constant star formation, generated a $z_{phot} \sim 2$ sample with only 12 objects older than 3.22 Gyr, the age of the $z\sim2$ universe. However, under this new assumed SFR, 55 galaxies, or ~56% of the sample, are best-fit by unphysical ages. For LBGs at $z\sim3$ in the HDF-S, the age distribution holds relatively constant for the $\tau = 700$ Myr star formation history (see Fig. 3.2). Figure 3.3 shows this is not the case for $z\sim2$ galaxies in the HDF. For both $z\sim2$ and ~3, successively smaller values of τ produce increasingly older populations. The best-fit parameters for these objects are listed in Appendix B in Table B.1.

For an e-folding of 500 Myr, SEDfit places 28 objects at $z_{phot} < 1.8$ and 47 objects at $z_{phot} >$ 2.6. In all, 96 objects are fit at $z_{phot} \sim 2$. Among these, 67 are fit with ages greater than that of the $z\sim2$ universe. Six are younger than 30 Myr. The best-fit parameters for these objects are listed in Appendix B in Table B.2.

For an e-folding of 350 Myr, SEDfit places 27 objects at $z_{phot} < 1.8$ and 42 objects at $z_{phot} > 1.8$

2.6. In total, 102 objects are fit at $z_{phot} \sim 2$. Among these, 77 are fit with ages greater than that of the $z \sim 2$ universe. Seven are younger than 30 Myr. The best-fit parameters for these objects are listed in Appendix B in Table B.3.

For an e-folding of 250 Myr, SEDfit places 24 objects at $z_{phot} < 1.8$ and 24 objects at $z_{phot} > 2.6$. In all, 64 objects are fit at $z_{phot} \sim 2$. Among these, 50 are fit with ages greater than that of the $z\sim2$ universe. Six are younger than 30 Myr. As with the $z\sim3$ model-fits for $\tau = 250$ Myr, SEDfit determines a best-fit age of 20 Gyr for 53 objects and returns no stellar mass, SFR, flux normalization, or χ^2 for them. Again, we do not include these objects in the tallies presented here. The best-fit parameters for these objects are listed in Appendix B in Table B.4.

Figure 3.3: Number counts for best-fit ages output by SEDfit for $z_{phot} \sim 2$ galaxies in the HDF assuming constant, exponentially increasing ($\tau = 700$ Myr), and exponentially decreasing ($\tau = -700$ Myr) star formation. The median best-fit age is given in each plot. The 3.22 Gyr age of the universe at $z \sim 2$ is represented by t_0 .

The Negative τ Model

The same negative e-folding we assume for the $z\sim3$ fits, $\tau = -700$ Myr, is assumed here. SEDfit places 21 objects at $z_{phot} < 1.8$ and 58 objects at $z_{phot} > 2.6$. In total, 92 galaxies are fit at $z_{phot}\sim2$ according to equation 2.8. Among these, none are best-fit by unphysical ages. This is consistent with the age distribution we find for $z\sim3$ LBGs. Five galaxies are younger than 30 Myr. The best-fit parameters for these objects are listed in Appendix B in Table B.5.

Figure 3.4 shows best-fit model spectra and corresponding photometry for four objects from

Sawicki's HDF sample fit at $z_{phot}\sim 2$. The first column presents constant star formation, and its best-fit parameters come from Sawicki's upcoming $z\sim 2$ paper. The second and third columns display exponentially increasing ($\tau = 700$ Myr) and exponentially decreasing ($\tau = -700$ Myr) star formation, respectively, and feature best-fit parameters determined by the refitting process described here.

Figure 3.4: Example plots of best-fit model spectra determined by SEDfit assuming 3 different star formation histories. Left to right, the columns assume a constant SFR, an exponentially increasing ($\tau = 700$ Myr) SFR, and an exponentially decreasing ($\tau = -700$ Myr) SFR. The spectra are overlaid with the corresponding real-world photometry of $z\sim2$ galaxies from the HDF. Solid red circles indicate a detection, while open circles represent upper limits. The horizontal wavelength uncertainties are indicative of the FWHM of that filter's transmission curve. Uncertainties of the magnitudes themselves are mostly on the order of 0.01 or smaller. Best-fit parameters for each LBG are listed in the panels. Photometry courtesy Sawicki.

38

3.4 Age Considerations

In Chapter 4, we present, for inspection, data encompassing the entire range of model-fit ages but limit our calculations to objects whose ages are best fit between \sim 30 Myr and the age of the universe at their particular redshift.

$$30 Myr < age < t_0 \tag{3.3}$$

The reason for the latter cut is the unphysical nature of the best-fit ages caused by an incorrectly assumed SFH. We enact the young-end age cut because the star formation rates SEDfit calculates for galaxies dominated by young stellar populations are disproportionately high given their masses. This creates a secondary population of very young objects whose best-fit parameters clash with those of more mature galaxies. This population may be seen in the model-fit catalogs of Shapley et al. (2005) and Yabe et al. (2009), as well as our own $z\sim3$ HDF-S catalog (see Fig. 4.1).

Let us first assume these suspiciously high SFRs are real. This project investigates the evolution of galaxy parameters across cosmological timescales. To do so, we rely upon trends in the best-fit parameters output by SEDfit. At $z\sim5$, ~3 , and ~2 , it is unlikely these objects are legitimately young. More probably, these are older galaxies whose underlying, more representative stellar populations are being obscured by very young starbursts. So to include this offset population of extremely young objects in our analysis would bias our results against those objects that parameterize the majority of a galaxy's lifetime (~30 Myr \leq age \leq t₀). Put another way, we do not wish to obscure the trends of stable, sustained evolution in favor of the transient, rapid evolution of newly starbursting galaxies.

Let us now assume the alternative. The aberrantly high model-fit SFRs of young galaxies are an unphysical artifact of the fitting process itself. This interpretation is bolstered by the lack of a natural spread in the data; the relation between SFR and stellar mass is suspiciously tight among these objects. In either case, we restrict them from our analysis.

We stress that the existence of these outlying young and old populations is to be expected based on the results of previous SED-fitting studies. Our age restriction is relatively innocuous to the analyses of constant star formation and the ± 700 Myr τ models. The usable population is still large enough to reliably identify trends in the model-fit data. However, the subset of galaxies satisfying equation 3.3 becomes disadvantageously small for the 500 Myr τ model-fits and statistically untenable for the 350 and 250 Myr e-folding fits. This aging effect is more pronounced in the Sawicki group's HDF catalog, but is also seen in our HDF-S sample. We are therefore forced to limit our analyses of exponentially increasing SFRs to the 700 and 500 Myr e-folding model-fits.

Chapter 4

Analysis

4.1 The Stellar Mass-Star Formation Rate Relation

4.1.1 For Constant Star Formation

We first consider the stellar mass-star formation rate relation as it applies to galaxies model-fit assuming constant star formation. Figure 4.1 presents the dependence of star formation rate on stellar mass. Excluding the age $\geq t_0$ and age $\leq \sim 30$ Myr outlying populations (see section 3.4), the remaining galaxies are fit with the following formula:

$$\log\left(\frac{\text{SFR}}{M_{\odot}/yr}\right) = 0.83\log\left(\frac{M_{stars}}{M_{\odot}}\right) - 7.14 + \delta_z,\tag{4.1}$$

where

$$\delta_{z\sim2} = 0.00, \, \delta_{z\sim3} = 0.20, \text{ and } \delta_{z\sim5} = 1.01.$$
 (4.2)

We use a standard matrix inversion technique to calculate a least squares/minimum χ^2 second-order polynomial fit to the combined $z\sim2$ data sets of Sawicki and Shapley et al. (2005). This calculation accounts for the first three terms of equation 4.1. We assume the $z\sim2$ slope for all data sets because, for higher redshifts, the data are not good enough to reliably constrain both the slope of the line and its normalization. This is not an ideal situation, but, until more data are acquired, it will have to suffice. Next, we calculate the median residual offset of each population from the $z\sim2$ line of best-fit (see Fig. 4.1, bottom right panel). The δ -term then comes directly from each population's

41

median residual offset relative to the median $z\sim2$ residual offset:

$$\delta_z = \kappa_z - \kappa_{z \sim 2}.\tag{4.3}$$

The variable κ represents the median residual offset, and the subscript z indexes the $z\sim 2$, 3, and 5 galaxy populations. Hence, $\delta_{z\sim 2}$ is always zero. We adopt this process to calculate linear relationships throughout our analysis.

The simple assumption we make in equation 4.1 and Figure 4.1 is that a single unifying slope describes the M_{stars} -SFR relation, regardless of redshift. As a population of galaxies evolves over cosmological time, here converting gas into stars at an assumed constant rate, that slope translates accordingly to higher and higher stellar masses, but its essential character remains unchanged. In the bottom right panel of Figure 4.1, the increased spread at $z\sim3$ and ~5 argues that this assumption is not perfectly valid, but it does not appear to be altogether unreasonable, either. Again, given the relatively poor quality of the $z\sim3$ and ~5 data, this analysis must suffice for now.

Having observed some progression in the model-fit data, our next task is to test the efficacy of the constant star formation assumption. Toward this end, we evolve a toy galaxy from $z\sim5$ to $z\sim2$ and compare the agreement between the toy's evolutionary track and the limits set by the model-fit data.

We quantify the data's spread by calculating the population root-mean-square (PRMS) deviation for each galaxy set. This measures each sample's average deviation from its κ_z according to

$$PRMS_{z} = \sqrt{\frac{\sum_{n=0}^{N} (x_{n,z} - \kappa_{z})^{2}}{N}}$$
(4.4)

where

$$x_{n,z} = \log\left(\frac{\text{SFR}_{n,z}}{\text{SFR}_{best-fit\ line,z\sim2}}\right)$$
(4.5)

Figure 4.1: Stellar masses versus constant star formation rates. The three leftmost vertical panels display the complete data set(s) at each redshift. Uncertainties are plotted in light grey for all objects $\sim 30 \text{ Myr} \leq \text{age} \leq t_0$. The top right panel shows these intermediate aged objects and their corresponding lines of best-fit. The best-fit slope is calculated from the combined $z\sim 2$ data sets of Sawicki et al. (2007) and Shapley et al. (2005). That slope is then assumed for the $z\sim 3$ and $z\sim 5$ populations. The bottom right panel displays the residual offsets for all data relative to the $z\sim 2$ line of best-fit. We use these offsets to calculate the δ -term for each redshift in Equation 4.1.

for the n^{th} element in a galaxy set z containing N elements. We broaden the best-fit line for each redshift group by $\pm PRMS_z$. This defines the region of acceptable agreement in the M_{stars} -SFR parameter-plane at each redshift. For galaxies fit assuming constant star formation, the PRMS

43

values are

$$PRMS_{z\sim2} = 0.32, PRMS_{z\sim3} = 0.33, and PRMS_{z\sim5} = 0.41.$$
 (4.6)

44

Note that some of the data spread's broadening (i.e., the magnitude of $PRMS_z$) at $z\sim3$ and ~5 is artificial and caused by our assumption of a fixed slope for all populations.

Figure 4.2: Stellar masses versus constant star formation rates. The black line is the evolutionary track of a toy galaxy evolved from $z\sim5$ to $z\sim2$. The open circles mark the location of the toy without accounting for mass loss, while the diamonds correct for mass loss. The $z\sim5$, ~3 , and ~2 best-fit lines are displayed in green, blue, and red, respectively. The light green, light blue, and pink lines enclose each redshift group's region of acceptable agreement (see Eqs. 4.4 and 4.5). At $z\sim3$, the toy galaxy is $4.02 \times 10^8 \text{ M}_{\odot}$, or $\sim70\%$, more massive than the upper limit acceptable mass. At $z\sim2$, the toy is $1.14 \times 10^9 \text{ M}_{\odot}$, or $\sim120\%$, more massive than the acceptable upper limit.

Our toy galaxy begins its evolution at $z\sim5$ as a 3.25×10^7 M_{\odot} object transforming gas into

stars at a constant rate of 1.0 M_{\odot} yr⁻¹. Note this evolutionary track is completely independent of galaxy age, meaning its epoch of formation is irrelevant to any subsequent evolution. Also note that the shape of this track, and all tracks explored in this work, are independent of initial stellar mass. The evolutionary track simply translates along the $z\sim5$ best-fit line according to its initial stellar mass and initial SFR. At $z\sim3$, we find the toy evolved to $9.77 \times 10^8 M_{\odot}$. To agree with the z~3 data spread, a galaxy with a 1.0 ${\rm M}_{\odot}~{\rm yr}^{-1}$ SFR must not be more massive than 5.75 \times 10^8 M_{\odot} . The mass of the toy already overshoots the data by ~70%. At z~2, the toy has grown to $2.09 \times 10^9 M_{\odot}$, which surpasses the upper limit acceptable mass by ~120%. The open circles in Figure 4.2 mark this evolution, which does not account for stellar mass loss due to gas recycled back into the interstellar medium by stellar winds and supernovae. Using the Bruzual & Charlot (2003) model-construction files, we correct the stellar mass of the toy galaxy at $z\sim3$ and $z\sim2$ to account for this mass loss (shown as diamonds in Fig. 4.2). We calculate that, at $z\sim3$, a galaxy retains $\sim91\%$ of the stellar mass it has created. At $z\sim 2$, this figure decreases to $\sim 84\%$. The mass loss correction trivially improves the agreement between the toy's evolutionary track and the model-fit data, with the masses still overshooting at both epochs. This result argues against the SFHs of high-redshift galaxies being best characterized by CSF.

4.1.2 For Exponential Star Formation

$\tau = 700 \text{ Myr}$

We now turn our attention to the M_{stars} -SFR relation as derived from data model-fit assuming exponential star formation of the form SFR(t) $\propto e^{t/\tau}$ (see Eq. 1.7). We first investigate $\tau = 700$ Myr. Figure 4.3 shows a revised plot of the dependence of star formation rate on stellar mass. Again ignoring extremely old or young outliers (see section 3.4), we fit the remaining populations by

$$\log\left(\frac{\text{SFR}}{M_{\odot}/yr}\right) = 0.81\log\left(\frac{M_{stars}}{M_{\odot}}\right) - 6.73 + \delta_z,\tag{4.7}$$

where

$$\delta_{z\sim2} = 0.00 \text{ and } \delta_{z\sim3} = 0.16.$$
 (4.8)

Without the Shapley group's photometry to refit, we rely solely upon the Sawicki group's $z\sim2$ sample from the HDF to calculate the new best-fit line coefficients. The least-squares/minimum χ^2 polynomial fit here returns a slightly shallower slope and a reduced offset between the $z\sim2$ and $z\sim3$ populations. However, these shifts are minor despite the dramatic reduction in the sample's size. Recall the median value of the 700 Myr τ -assuming best-fit ages is greater than the age of the universe at $z\sim2$ (see Fig. 3.3). The stubborn consistency of the best-fit slope is certainly noteworthy. The more massive galaxies in each redshift group have systematically higher SFRs. Most importantly, the data remain suggestive that our assumption of a fixed slope for all galaxy populations remains reasonable, if not ideal.

Once again, we test the efficacy of the underlying star formation assumption by evolving a toy galaxy from $z\sim5$ to $z\sim2$. For this analysis, we must also regrettably proceed without any refit $z\sim5$ photometry from Yabe et al. (2009). We are nonetheless confident in retaining approximately the same $z\sim5$ starting point for the toy model's evolution (calculated assuming $\delta_{z\sim5} = 1.01$) given the enduring consistency of the M_{stars}-SFR relation. The best-fit lines for each redshift are broadened into regions of acceptable agreement by

$$PRMS_{z\sim2} = 0.27 \text{ and } PRMS_{z\sim3} = 0.28.$$
 (4.9)

When assuming an exponential star formation history, we must consider the age of the galaxy at the epoch we begin to track its evolution because the galaxy's SFR is increasing exponentially right from its inception. To test the effects of this time dependency, we evolve toy galaxies with 1, 10, and 100 Myr ages at $z\sim5$. These ages correspond to $z\sim5$ SFRs of 1.00, 1.02, and 1.16 M_{\odot} yr⁻¹, respectively. The effects in both log(M_{stars}/M_{\odot}) and log(SFR/(M_{\odot}/yr)) are found to be negligible, on the order of ~0.01. We assign the toy galaxy an age_{$z\sim5$} of 100 Myr. Irrefutably, this would be

Figure 4.3: Stellar masses versus exponentially increasing star formation rates ($\tau = 700$ Myr). The two leftmost vertical panels display the complete data set at each redshift. Uncertainties are plotted in light grey for all objects ~30 Myr \leq age \leq t₀. The top right panel shows these intermediate aged objects and their corresponding lines of best-fit. The best-fit slope is calculated from the Sawicki et al. (2007) $z\sim2$ data set. That slope is then assumed for the $z\sim3$ population. The bottom right panel displays the residual offsets for all data relative to the $z\sim2$ line of best-fit. We use these offsets to calculate the δ -term for each redshift in Equation 4.7.

a late forming galaxy because surveys have identified galaxy populations at $z \ge 7$ (Bouwens et al. 2008, Labbé et al. 2010). However, the 100 Myr $age_{z\sim5}$ is consistent with the median age fit by Yabe et al. (2009), and we assume these objects are experiencing their inaugural starburst episodes. If the formation epoch of the toy is not completely consistent with observations, the toy itself is still useful in qualitatively assessing the star formation history.

47

Figure 4.4: Stellar masses versus exponentially increasing star formation rates ($\tau = 700$ Myr). The black line is the evolutionary track of a toy galaxy evolved from $z\sim5$ to $z\sim2$. The open circles mark the evolution of toy with no correction for mass loss. The diamonds mark its evolution as adjusted for mass loss. The $z\sim2$ and ~3 best-fit lines are shown in red and blue, respectively. The pink and light blue lines outline each redshift group's region of acceptable agreement. At $z\sim3$, the toy galaxy is $\sim58\%$ more massive than the spread in observational data allows. By $z\sim2$, the toy has evolved into a 1.45×10^{10} M_{\odot} object forming stars at 21.88 M_{\odot} yr⁻¹. These values lie within the $z\sim2$ region of acceptable agreement.

The toy begins its evolution at $z\sim5$ as a $1.38 \times 10^7 \text{ M}_{\odot}$ object converting gas into stars at a rate of 1.16 M_{\odot} yr⁻¹. At $z\sim3$, the toy galaxy has evolved to $2.34 \times 10^9 \text{ M}_{\odot}$, which overshoots the upper limit acceptable mass by $8.60 \times 10^8 \text{ M}_{\odot}$, or $\sim58\%$. Correcting for mass loss does not bring this evolution into agreement with the model-fit data. However, 1.11 Gyr later, the toy galaxy has evolved into a $1.45 \times 10^{10} \text{ M}_{\odot}$ object generating new stars at 21.88 M_{\odot} yr⁻¹. This position on the

 M_{stars} -SFR plain lies within the $z\sim2$ region of acceptable agreement (see Fig. 4.4).

$\tau = 500 \text{ Myr}$

We next fit the M_{stars} -SFR relation as it applies to the 500 Myr e-folding model-fits:

$$\log\left(\frac{\text{SFR}}{M_{\odot}/yr}\right) = 0.86\log\left(\frac{M_{stars}}{M_{\odot}}\right) - 7.07 + \delta_z,\tag{4.10}$$

where

$$\delta_{z\sim2} = 0.00 \text{ and } \delta_{z\sim3} = 0.08.$$
 (4.11)

Figure 4.5 shows the dependence of star formation rate on stellar mass for these galaxies. We note here the drastic reduction in sample size for the 500 Myr e-folding. This reduction is enforced by the age cut of equation 3.3 (see section 3.4). The $z\sim2$ sample consists of 23 galaxies (down from 37 for $\tau = 700$ Myr), and the $z\sim3$ sample consists of 22.

To test the efficacy of 500 Myr e-folding SFR, we broaden the best-fit lines defined by equations 4.10 and 4.11 according to the PRMS deviations of the model-fit data:

$$PRMS_{z\sim2} = 0.24 \text{ and } PRMS_{z\sim3} = 0.25.$$
 (4.12)

We now track the evolution of a toy galaxy from $z\sim5$ to $z\sim2$. The toy begins at $z\sim5$ with a stellar mass of $1.41 \times 10^7 \,\mathrm{M_{\odot}}$ and an SFR of $1.23 \,\mathrm{M_{\odot}} \,\mathrm{yr^{-1}}$. At $z\sim3$, the toy evolves to a 3.55×10^7 $\mathrm{M_{\odot}}$ galaxy creating new stars at a rate of $8.32 \,\mathrm{M_{\odot}} \,\mathrm{yr^{-1}}$. This mass overshoots the 3.09×10^9 $\mathrm{M_{\odot}}$ upper limit of the data's spread by $\sim15\%$. Correcting for mass loss does not bring the toy galaxy and model-fit data values into agreement. By $z\sim2$, the toy has become a $3.80 \times 10^{10} \,\mathrm{M_{\odot}}$ object with a 75.86 $\mathrm{M_{\odot}} \,\mathrm{yr^{-1}}$ SFR, which resides inside the $z\sim2$ region of acceptable agreement. A mass loss correction is unnecessary here (see Fig. 4.6). For both the 700 Myr and 500 Myr efoldings, the agreement between the toy galaxy's evolutionary track and the model-fit observations

Figure 4.5: Stellar masses versus exponentially increasing star formation rates ($\tau = 500$ Myr). The two leftmost vertical panels display the complete data set at each redshift. Uncertainties are not calculated for these model-fits but are assumed to be similar to the 700 Myr e-folding model. The top right panel shows these intermediate aged objects and their corresponding lines of best-fit. The best-fit slope is calculated from the Sawicki et al. (2007) $z\sim2$ data set. That slope is then assumed for the $z\sim3$ population. The bottom right panel displays the residual offsets for all data relative to the $z\sim2$ line of best-fit. We use these offsets to calculate the δ -term for each redshift in Equation 4.10

are qualitatively very similar because of small adjustments in the M_{stars} -SFR relation between the two e-foldings. Even so, the $\tau = 500$ Myr evolutionary track better agrees with its model-fit data than the 700 Myr track, though both exponential models show better agreement than the CSF model.

Figure 4.6: Stellar mass versus exponentially increasing star formation rates ($\tau = 500$ Myr). The black line is the evolutionary track of a toy galaxy evolved from $z\sim5$ to $z\sim2$. The open circles mark the evolution of toy with no correction for mass loss. The diamonds mark its evolution as adjusted for mass loss. The $z\sim2$ and ~3 best-fit lines are shown in red and blue, respectively. The pink and light blue lines outline each redshift group's region of acceptable agreement. At $z\sim3$, the mass of the toy overshoots the upper limit acceptable mass $\sim15\%$. Correcting for mass loss does not bring the toy galaxy into agreement with the data. At $z\sim2$, the toy's evolution is consistent with the data spread, and no correction for mass loss is necessary.

 $\tau = 350, 250 \text{ Myr}$

We once more reiterate that we model-fit the Sawicki group's $z\sim2$ HDF catalog and our $z\sim3$ HDF-S catalog for e-foldings of 350 and 250 Myr. However, the number of usable galaxies, given our age cut, is so low that we cannot identify meaningful trends in the data. Furthermore, the trend of successively smaller e-foldings producing older and older best-fit ages in the populations signals that our assumed star formation histories are flawed. These galaxies would be better fit by SFHs that generate less stellar mass. The star formation histories of real galaxies are most likely much more complex than the simple exponential with which we fit them. Also, the ages model-fit to the observational data are indicative of the time elapsed since the onset of the current starburst, while we determine the e-foldings to which the data are fit from toy galaxy evolutionary tracks that assume a single starburst that lasts the toy's entire lifetime. Again, this is greatly simplified against reality and contributes to the unphysical model-fits to the data.

The Negative τ Model

The final star formation assumption this work explores is the negative τ model. This SFR is structurally identical to the positive τ model, except the e-folding time is negative instead of positive. To appropriately contrast the two exponential regimes, we have adopted $\tau = -700$ Myr. Figure 4.7 shows the dependence of star formation rate on stellar mass for galaxies fit with decreasing exponential SFRs.

As neither galaxy population contains any objects best-fit for ages $\geq t_0$, we need only restrict the extremely young outliers from our calculations (see section 3.4). Galaxies with ages $\geq \sim 30$ Myr are fit by

$$\log\left(\frac{\text{SFR}}{M_{\odot}/yr}\right) = 0.80\log\left(\frac{M_{stars}}{M_{\odot}}\right) - 7.00 + \delta_z, \qquad (4.13)$$

where

$$\delta_{z\sim2} = 0.00 \text{ and } \delta_{z\sim3} = 0.27.$$
 (4.14)

Best-fit line coefficients are again calculated exclusively from the Sawicki et al. (2007) $z\sim2$ sample. Now fit for three markedly divergent star formation archetypes, the slope of the M_{stars} -SFR relation remains conspicuously robust. Indeed, the choice of underlying star formation history impacts the total M_{stars} -SFR relation very little, even as that assumption shifts and reshuffles parameters within the galaxy populations (see Figs. 3.1 and 3.4).

Figure 4.7: Stellar masses versus star formation rates, assuming exponential star formation ($\tau = -700$ Myr). The two leftmost vertical panels display the complete data set at each redshift. Uncertainties are plotted in light grey for all objects ~ 30 Myr \leq age \leq t₀. The top right panel shows these intermediate aged objects and their corresponding lines of best-fit. The best-fit slope is calculated from Sawicki's $z\sim2$ data set. That slope is then assumed for the $z\sim3$ population. The bottom right panel displays the residual offsets for both data sets relative to the $z\sim2$ line of best-fit. We use these offsets to calculate the δ -term for each redshift in Equation 4.13.

We now test the capacity of the negative τ model to describe an individual galaxy's evolution from $z\sim5$ to $z\sim2$. Best-fit lines are broadened according to the appropriate PRMS deviations,

 $PRMS_{z\sim2} = 0.34 \text{ and } PRMS_{z\sim3} = 0.35.$ (4.15)

54

Figure 4.8: Stellar masses versus exponentially decreasing star formation rates ($\tau = -700$ Myr). The black line is the evolutionary track of a toy galaxy evolved from $z\sim5$ to $z\sim2$. The best-fit lines for the $z\sim2$ and ~3 populations are displayed in red and blue, respectively. The pink and light blue lines enclose the region of acceptable agreement at each redshift. At $z\sim3$, the stellar mass of the toy galaxy is $\sim250\%$ too large for its SFR. The agreement worsens at $z\sim2$ where its stellar mass (5.89×10^8 M_{\odot}) is $\sim1000\%$ larger than the acceptable upper limit.

With an assumed $age_{z\sim5}$ of ~100 Myr, the toy galaxy begins its evolution as a $2.57 \times 10^7 M_{\odot}$ object creating new stars at a rate of 0.99 $M_{\odot} \text{ yr}^{-1}$. At $z\sim3$, the toy galaxy has evolved to $4.67 \times 10^8 M_{\odot}$, which overshoots the upper limit acceptable mass by $3.32 \times 10^8 M_{\odot}$, or ~250%. At $z\sim2$, the toy's $5.89 \times 10^8 M_{\odot}$ stellar mass is ~1000% too large for its $0.05 M_{\odot} \text{ yr}^{-1}$ SFR. The assumption of exponentially decreasing star formation in high-redshift galaxies matches observations poorly, and so we limit further analysis to the more physically plausible mechanisms of constant and exponentially

increasing star fomation.

4.2 Dust

4.2.1 For Constant Star Formation

It is well established that LBGs may contain significant quantities of dust, which attenuate their spectra. This extinction effect is particularly strong at UV wavelengths (Meurer et al. 1997; Sawicki & Yee 1998). Figures 3.1 and 3.4 display how dust attenuation steepens the rest-frame UV spectral slope for galaxies presented in this study. Specifically, objects fit for larger color excesses have steeper best-fit model spectral slopes at rest-frame UV wavelengths (e.g., object 182 versus object 994 in Fig. 3.4). Figure 4.9 shows the dependence of dust extinction on absolute rest-frame UV magnitude for galaxies model-fit assuming constant star formation.

We calculate absolute rest-frame UV magnitudes for a rest-frame wavelength of ~ 1700 Å according to the typical cosmological distance modulus (DM) and k-correction (K):

$$M_{1700} = m_{\lambda obs.} - DM - K.$$
(4.16)

Here, the k-correction provides the color difference between rest-frame ~1700 Å and the rest-frame \mathcal{R} -filter. At $z\sim2$ and $z\sim3$, we expect k-corrections to be modest because the "observed" \mathcal{R} -band reasonably approximates rest-frame ~1700 Å. Since the quantity DM + K varies little across each particular redshift range, we opt to assume an estimated DM + K value for each redshift group rather than calculate a separate correction for each object based on its photometric redshift. For $z\sim2$, we adopt Sawicki's value of DM + K = 44.9. For $z\sim3$, we estimate DM + K = 45.6.

We limit our analysis of dust extinction to rest-frame UV magnitudes $-19 \ge M_{1700} \ge -21$, where our $z\sim3$ sample significantly overlaps in luminosity with the $z\sim2$ samples of Sawicki et al. (2007) and Shapley et al. (2005). For the entire analyzed range, we calculate median color excesses of 0.15

Figure 4.9: Color excess versus rest-frame UV magnitude for galaxies model-fit with constant star formation. The left panel shows all data regardless of magnitude or age. The right panel is limited to magnitudes where the samples at each redshift have significant overlap and presents only data for objects with ages greater than ~30 Myr but less than the age of the universe. The red and dotted blue lines show median E(B - V) values for magnitude bins -19 to -20 and -20 to -21. Across the fainter bin, we find $E(B - V)_{med.} = 0.12$ for both $z\sim2$ and $z\sim3$. Across the brighter bin, we find $E(B - V)_{med.} = 0.16$ for $z\sim2$ and $E(B - V)_{med.} = 0.18$ for $z\sim3$. Shapley et al. (2005) provide no uncertainties for their data here.

and 0.14 for $z\sim2$ and ~3 , respectively. These medians agree to within the data's uncertainty (±0.02 median uncertainty). The $z\sim2$ and ~3 median color excesses are transformed into median V-band extinctions of 0.61 and 0.57 by the formula

$$A(V) = R(V) \times E(B - V).$$
(4.17)

where, in accordance with the Calzetti et al. (2000) starburst extinction law, R(V) = 4.05.

To investigate how extinction varies with magnitude, we divide the data into two magnitude bins, $-19 \ge M_{1700} > -20$ and $-20 \ge M_{1700} \ge -21$. The right panel of Figure 4.9 shows the binned median color excesses for each redshift group, while the median color excess and V-band extinction values for each bin are listed below in Table 4.1. For each bin, the $z\sim2$ and ~3 values agree to Chapter 4. Analysis

within uncertainty, and so we must conclude there is no detectable dust evolution between the two redshifts.

	<i>z</i> ~2	<i>z</i> ~2	<i>z~</i> 3	<i>z</i> ~3
Rest-frame UV mag.	E(B - V)	A(V)	E(B - V)	A(V)
$-19 \ge M_{1700} > -20$	0.12 ± 0.02	0.47 ± 0.08	0.12 ± 0.02	0.47 ± 0.08
$-20 \ge M_{1700} \ge -21$	0.16 ± 0.02	0.65 ± 0.08	0.18 ± 0.02	0.73 ± 0.08

Table 4.1: Median color excess and V-band extinction values for galaxies model-fit assuming constant star formation and binned according to rest-frame UV magnitude.

However, when the bins are considered in tandem, the $z\sim3$ color excesses display an unmistakable dependence on rest-frame UV magnitude, with the UV-brighter objects suffering higher extinction than the UV-faint. The $z\sim2$ color excess medians superficially display the same trend; however, to within the ± 0.02 median uncertainty, these values are indistinguishable. Adelberger & Steidel (2000) also identify this dependence.

Figure 4.10: Stellar mass versus rest-frame UV magnitude for galaxies model-fit with constant star formation. The left panel shows all data regardless of age. The right panel presents the $z\sim2$ to $z\sim3$ population offset for those objects with ages greater than ~30 Myr but less than the age of the universe.

The dependence of stellar mass on rest-frame UV magnitude may be seen in Figure 4.10. For a given stellar mass, objects at $z\sim3$ are UV-brighter that their $z\sim2$ counterparts. A possible explanation for this is that galaxies at $z\sim2$ are dustier than those at $z\sim3$, but the color excess data do not bear this hypothesis out. We instead interpret this in the context of the M_{stars} -SFR relation (see section 4.2.1). According to those data, for a given stellar mass, a galaxy at $z\sim3$ will have a higher star formation rate than one at $z\sim2$. This results in the stellar mass-UV magnitude relation observed here because the rest-frame UV magnitude of a galaxy is a reliable tracer of its star formation.

Figure 4.11: Color excess versus rest-frame UV magnitude for galaxies model-fit with exponential star formation ($\tau = 700$ Myr). The left panel shows all data regardless of magnitude or age. The right panel is limited to magnitudes where the samples at each redshift display overlap and presents only data for objects with ages greater than ~ 30 Myr but less than the age of the universe. The red and dotted blue lines show median color excesses for the data binned according to UV magnitude. Across the fainter bin, we find median color excesses of 0.19 and 0.14 for $z\sim 2$ and $z\sim 3$ galaxies, respectively. Across the brighter bin, objects at $z\sim 3$ are found to have a median color excess of 0.18.

58

4.2.2 For Exponential Star Formation

The Positive τ Model ($\tau = 700$ Myr)

We now apply the same analysis to galaxies fit for exponentially increasing star formation, where $\tau = 700$ Myr. Figure 4.11 shows the dependence of dust extinction on rest-frame UV magnitude for these objects. Without model-fits for the UV-bright Shapley et al. (2005) catalog, our analysis of $z\sim2$ galaxies is limited to the fainter magnitude bin, $-19 \ge M_{1700} > -20$. Here we can conclusively say that $z\sim2$ galaxies are dustier than those at $z\sim3$. Across the entire analyzed range, the $z\sim3$ color excess medians are once again suggestive that UV-brighter galaxies are more obscured by dust than the UV-faint, but the medians are indistinguishable given the ±0.02 uncertainty. Table 4.2 lists the median color excesses, V-band extinctions, and uncertainties according to UV magnitude bin.

	<i>z</i> ~2	$z\sim 2$	<i>z</i> ~3	<i>z</i> ~3
Rest-frame UV mag.	E(B - V)	A(V)	E(B-V)	A(V)
$-19 \ge M_{1700} > -20$	0.19 ± 0.02	0.77 ± 0.08	0.14 ± 0.02	0.57 ± 0.08
$-20 \ge M_{1700} \ge -21$	N/A	N/A	0.18 ± 0.02	0.73 ± 0.08

Table 4.2: Median color excess and V-band extinction values for galaxies model-fit assuming exponential star formation ($\tau = 700$ Myr) and binned according to rest-frame UV magnitude.

The dependence of stellar mass on rest-frame UV magnitude for galaxies fit with exponentially increasing SFRs is shown in Figure 4.12. Once more, we see that, for a given stellar mass, galaxies at $z\sim3$ are UV-brighter than their $z\sim2$ counterparts. This effect may be, in part, a result of these $z\sim2$ galaxies being dustier than their $z\sim3$ analogs (see Fig. 4.11), but we must again note that rest-frame UV magnitude is a faithful indicator of star formation activity. Given the M_{stars} -SFR relation for these objects, we must conclude the primary driver for the observed stellar mass-UV magnitude dependence is the $z\sim3$ population's higher SFR for a given mass.

Figure 4.12: Stellar mass versus rest-frame UV magnitude for galaxies model-fit with exponential star formation ($\tau = 700$ Myr). The left panel shows all data regardless of age. The right panel presents the $z\sim2$ to $z\sim3$ population offset for those objects with ages greater than ~30 Myr but less than the age of the universe.

60

Chapter 5 Summary and Conclusions

This work uses publicly available image mosaics of the HDF-S to create a catalog of $z\sim3$ LBGs. Optical data (U_{300} , B_{450} , V_{606} , I_{814}) are provided by WFPC2/HST. ISAAC/VLT supply the NIR data (J_s , H, K_s). We procure photometry using SExtractor on the image convolutions of Labbé et al. (2003) and define a sample of $z\sim3$ LBG candidates using the color-color selection criteria of Steidel et al. (1996). We model-fit this sample using the SEDfit software package and define the $z\sim3$ subsample with the photometric redshift cut 2.6 < $z_{phot} \leq 3.5$. We repeat this process for three archetypal star formation histories: the constant SFR, the exponentially increasing SFR (for $\tau =$ 700, 500, 350, and 250 Myr), and the exponentially decreasing SFR ($\tau = -700$ Myr).

Throughout, we employ the $z\sim2$ sample of Sawicki et al. (2007). We use their catalog of modelfit parameters in our analyses of constant star formation, and, having been granted access to their photometry, we refit the Sawicki group's sample assuming exponentially increasing and decreasing SFRs. Where possible we also employ the $z\sim2$ sample of Shapley et al. (2005) and the $z\sim5$ sample of Yabe et al. (2009).

Using these data, we study the M_{stars} -SFR relation and dust content of high-redshift galaxies. We conclude:

1. The M_{stars} -SFR relation is qualitatively independent of the underlying star formation history. We model-fit observational data with three dramatically divergent archetypal star formation histories and find only minor changes in the mathematical formulation of the relationship. With a much steeper declining exponential than the -700 Myr e-folding model we assume, one more akin to the single stellar population model discussed in section 1.1, this relationship would likely break down

- 2. The assumption of an exponentially increasing star formation history with a 500 Myr e-folding provides the best match between the model-fit observational data and the evolutionary track of a toy galaxy. For this SFR, the toy galaxy overshoots the upper limit data mass at $z\sim3$ by $\sim15\%$, but the toy's evolution is consistent with the spread in model-fit observational data at $z\sim2$. We identify the 500 Myr e-folding as an approximate upper limit constraint on the value of τ . However, we are unable to constrain τ at the low end because the e-foldings that might produce such a lower limit also produce an epidemic of unphysical ages in the model-fit catalogs. We attribute this trend to the overly simplistic star formation history we adopt in our model-fitting and analysis.
- 3. We identify no conspicuous dust evolution between $z\sim3$ and $z\sim2$. For the $z\sim3$ constant star formation model-fits, we find that UV-brighter galaxies are more highly obscured by dust than the UV-faint. This trend is inconclusive for all other data.
- 4. For a given stellar mass, galaxies at $z\sim3$ are UV-brighter than their $z\sim2$ counterparts. We interpret this trend in the context of the M_{stars} -SFR relation, wherein, for a given stellar mass, objects at $z\sim3$ have higher SFRs than those at $z\sim2$. Because rest-frame UV magnitude is a reliable tracer of star formation activity, we believe the observed M_{stars} -UV magnitude trend is driven by the SFR offset between $z\sim3$ and ~2 .

We find, for redshifts $5 \gtrsim z \gtrsim 2$, galaxies likely build up their stellar masses in an exponentially increasing manner. This is contrary to previous assumptions about the star formation histories of high-redshift galaxies, which treated these objects as isolated from the intergalactic medium. Even so, the specific formulation of the exponentially increasing SFH we use to model-fit our galaxy samples produces unphysical ages in an alarming number of objects. In the future, a more nuanced SFR function should be explored. We propose a sawtooth-type function wherein the peaks increase exponentially with time but are separated by valleys of lower star formation activity. This would allow for periods of relative quiescence and almost certainly more closely resemble the SFHs of actual galaxies. Future analysis would be greatly aided by the inclusion of a galaxy sample at $z\sim4$, as well.

Bibliography

- [1] Adelberger, K.L. & Steidel, C.C. 2000, ApJ, 544, 218
- [2] Bertin, E. & Arnouts, S. 1996, A&AS, 117, 393
- [3] Bouwens, R.J., Illingworth, G.D., Franx, M., & Ford, H. 2008, ApJ, 686, 230
- [4] Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000
- [5] Calzetti, D., Armus, L., Bohlin, R.C., Kinney, A.L., Koornneef, J., & Storchi-Bergmann, T. 2000, ApJ, 533, 682
- [6] Capak, P., et al. 2004, AJ, 127, 180
- [7] Casertano, S., et al. 2000, AJ, 120, 2747
- [8] Dickinson, M., Giavalisco, M., & The GOODS Team 2003, in The Mass of Galaxies at Low and High Redshift, ed. R. Bender & A. Renzini (Berlin: Springer), 324
- [9] Fazio, G.G., et al. 2004, ApJ, 154, 10
- [10] Finkelstein, S.L., Papovich, C., Giavalisco, M., Reddy, N.A., Ferguson, H.C., Koekemoer, A.M.,
 & Dickinson, M. 2010, ApJ, 719, 1250
- [11] Franx, M., Moorwood, A., Rix, H.-W., Kuijken, K., Röttgering, H., van der Werf, P., van Dokkum, P., Labbé, I., & Rudnick, G. 2000, The Messenger, 99, 20
- [12] Glazebrook, K. & Economou, F. 1997, The Perl Journal, 5, 5
- [13] Hopkins, A.M. & Beacom, J.F. 2006, ApJ, 651, 142

- [14] Ichikawa, T., Suzuki, R., Tokoku, C., Uchimoto, Y.K., Konishi, M., Yoshikawa, T., Yamada,
 T., Tanaka, I., Omata, K., & Nishimura, T. 2006, Proc. of SPIE, 6269, 38
- [15] Iwata, I., Ohta, K., Tamura, N., Akiyama, M., Aoki, K., Ando, M., Kiuchi, G., & Sawicki, M. 2007, MRAS, 376, 1557
- [16] Kajisawa, M., et al. 2009, ApJ, 702, 1393
- [17] Labbé, I., et al. 2002, The Messenger, 110, 38
- [18] Labbé, I., et al. 2003, AJ, 125, 1107
- [19] Labbé, I., et al. 2010, ApJL, 716, L103
- [20] Madau, P. 1995, ApJ, 441, 18
- [21] Meurer, G.R., Heckman, T.M., Lehnert, M.D., Leitherer, C., & Lowenthal, J. 1997, AJ, 114, 1
- [22] Mihos, J.C. & Hernquist, L. 1996, ApJ, 464, 641
- [23] Miyazaki, S., et al. 2002, PASJ, 54, 833
- [24] Papovich, C., Dickinson, M., & Ferguson, H.C. 2001, ApJ, 559, 620
- [25] Salpeter, E.E. 1955, ApJ, 121, 161
- [26] Sawicki, M. & Yee, H.K.C. 1998, AJ, 115, 1329
- [27] Sawicki, M., Iwata, I., Ohta, K., Thompson, D., Tamura, N., Akiyama, M., Aoki, K., Ando, M., & Kiuchi, G. 2007, in Astronomical Society of the Pacific Conference Series, "Deepest Astronomical Surveys," eds. J. Afonso, H.C. Ferguson, B. Mobasher, & R. Norris, 433
- [28] Schechter, P. 1976, ApJ, 203, 297
- [29] Shapley, A.E., Steidel, C.C., Adelberger, K.L., Dickinson, M., Giavalisco, M., & Pettini, M. 2001, ApJ, 562, 95

65

[30] Shapley, A.E., Erb, D.K., Pettini, M., Steidel, C.C., & Adelberger, K.L. 2004, ApJ, 612, 108

- [31] Shapley, A.E., Steidel, C.C., Erb, D.K., Reddy, N.A., Adelberger, K.L., Pettini, M., Barmby,
 P., & Huang, J. 2005, ApJ, 626, 698
- [32] Stark, D.P., Ellis, R.S., Bunker, A., Bundy, K., Targett, T., Benson, A., & Lacy, M. 2009, ApJ,
 697, 1493
- [33] Steidel, C.C., Pettini, M., & Hamilton, D. 1995, AJ, 110, 2519
- [34] Steidel, C.C., Giavalisco, M., Dickinson, M., & Adelberger, K.L. 1996, AJ, 112, 352
- [35] Steidel, C.C., Adelberger, K.L., Giavalisco, M., Dickinson, M., & Pettini, M. 1999, ApJ, 519, 1
- [36] Williams, R.E., et al. 1996, AJ, 112, 1335
- [37] Wright, E.L. 2006, PASP, 118, 1711
- [38] Yabe, K., Ohta, K., Iwata, I., Sawicki, M., Tamura, N., Akiyama, M., & Aoki, K. 2009, ApJ,
 693, 507

Appendix A

$z \sim 3$ Best-fit SEDfit Parameters

Table A.1: Best-fit parameters for this work's HDF-S catalog, constant SFR.

				-		==					_						_			• •								÷.,																
χ^2	75.62	77.34	32.41	15.03	4.43	27.58	74.53	10.79	106.15	133.62	51.09	64.16	115.82	110.33	101.14	97.70	19.51	15.53	8.94	2.75	22.85	140.53	5.82	19.89	56.32	192.91	5.20	15.77	10.30	30.90	14.20	9.37	3.51	91.69	70.83	18.58	68.60	5.34	6.41	23.70	8.32	15.38	20.32	234.24
log(SFR/(M _O /yr))	$0.47_{-0.03}^{+0.09}$	$3.30_{-0.33}^{+0.05}$	$0.79_{-0.12}^{+0.12}$	$1.26_{-0.31}^{+0.07}$	0.55 ± 0.02	0.71 + 0.09	$3.18_{-0.04}^{+0.04}$	$0.56_{-0.12}^{+0.19}$	2.41 ± 0.14	$0.78_{-0.12}^{+0.11}$	$1.27^{+-0.00}_{-0.00}$	$3.45^{\pm1.31}_{-0.32}$	$2.25_{-0.00}^{+0.05}$	$2.12_{-0.24}^{+0.00}$	$1.37_{-0.06}^{+0.00}$	$0.42_{-0.07}^{+0.03}$	$1.97_{-0.29}^{+0.16}$	$0.61_{-0.13}^{+0.41}$	$1.46_{-0.13}^{+0.29}$	$1.08_{-0.10}^{+0.28}$	$0.31_{-0.02}^{+0.02}$	0.48 ± 0.17 -0.08	0.54 ± 0.09	0.23 ± 0.06	2.61 ± 0.16	$2.70^{+-0.00}_{-0.03}$	$0.77_{-0.16}^{+0.10}$	$1.36_{-0.26}^{+0.08}$	$1.35_{-0.28}^{+0.09}$	$-0.07^{+0.00}_{-0.10}$	$0.84_{-0.20}^{+0.18}$	$1.89_{-1.88}^{+0.18}$	$1.03_{-0.18}^{+0.19}$	$0.83_{-0.12}^{+0.03}$	$3.25_{-0.33}^{+0.02}$	$1.38_{-0.18}^{+0.00}$	$1.37_{-0.07}^{+0.14}$	$1.44 \substack{+0.32 \\ -0.14}$	$1.38_{-0.09}^{+0.11}$	1.56 ± 0.33 -0.33	$1.71_{-0.10}^{+0.19}$	1.54 ± 0.18	$2.02_{-0.98}^{+0.22}$	$2.19_{-0.33}^{+0.06}$
log(M*/M _☉)	$8.02^{+0.07}_{-0.01}$	$9.86_{-0.13}^{+0.05}$	$9.34_{-0.07}^{+0.07}$	$9.91^{+0.13}_{-0.04}$	$9.20_{-0.11}^{+0.02}$	$8.17_{-0.04}^{+0.07}$	9.94 ± 0.04	$9.21_{-0.05}^{+0.15}$	$8.76_{-0.01}^{+0.04}$	$8.34_{-0.12}^{+0.10}$	8.03 ± 0.00	$8.86_{-0.01}^{+0.17}$	$8.91_{-0.00}^{+0.05}$	$8.78_{-0.14}^{+0.00}$	$8.13_{-0.06}^{+0.00}$	$9.17_{-0.02}^{+0.13}$	$10.03_{-0.13}^{+0.21}$	$8.56^{+0.16}_{-0.14}$	$9.92^{+0.22}_{-0.08}$	$10.13_{-0.15}^{+0.11}$	$9.65_{-0.02}^{+0.02}$	$8.63_{-0.13}^{+0.02}$	10.09 ± 0.12	$8.49_{-0.06}^{+0.16}$	9.37 ± 0.06	9.35 + 0.00	$9.52_{-0.05}^{+0.21}$	$9.42_{-0.06}^{+0.14}$	$10.00^{+0.22}_{-0.13}$	8.48 ± 0.00	$8.00^{+0.10}_{-0.16}$	$8.54_{-0.32}^{+0.08}$	$9.78^{+0.26}_{-0.11}$	$8.19^{+0.01}_{-0.16}$	$9.80_{-0.13}^{+0.02}$	$10.23_{-0.08}^{+0.03}$	$9.72_{-0.06}^{+0.03}$	$9.00^{+0.28}_{-0.17}$	$10.13^{+0.05}_{-0.13}$	$9.41^{+0.36}_{-0.16}$	$10.26_{-0.06}^{+0.15}$	$10.29_{-0.10}^{+0.12}$	$10.47_{-0.06}^{+0.61}$	$8.74^{+0.06}_{-0.12}$
log(Age/yr)	$7.60^{+0.10}_{-0.10}$	$6.56_{-0.00}^{+0.21}$	$8.64_{-0.10}^{+0.10}$	$8.74_{-0.10}^{+0.31}$	8.74 ± 0.00	$7.49^{+0.10}_{-0.10}$	6.76 ± 0.00	8.74 ± 0.10	6.35 ± 0.10	7.60 ± 0.21	$6.76_{-0.00}^{+0.00}$	$5.41^{+0.31}_{-1.14}$	$6.66_{-0.00}^{+0.00}$	$6.66_{-0.00}^{+0.10}$	$6.76_{-0.00}^{+0.00}$	$8.84^{+0.21}_{-0.00}$	$8.12^{+0.52}_{-0.31}$	$8.01^{+0.21}_{-0.42}$	$8.53_{-0.21}^{+0.10}$	$9.16_{-0.31}^{+0.10}$	$9.47^{+0.00}_{-0.10}$	8.22 ± 0.10 8.22	9.68 ± 0.21	8.32+0.21	$6.76_{-0.10}^{+0.00}$	6.66+0.00	8.84+0.31	$8.12_{-0.10}^{+0.42}$	$8.74_{-0.21}^{+0.52}$	$8.64_{-0.00}^{+0.00}$	$7.18_{-0.31}^{+0.31}$	$6.66^{+1.56}_{-0.10}$	$8.84_{-0.10}^{+0.31}$	$7.39_{-0.10}^{+0.10}$	$6.56_{-0.00}^{+0.21}$	$8.95_{-0.00}^{+0.10}$	$8.43_{-0.21}^{+0.10}$	$7.60_{-0.31}^{+0.42}$	$8.84^{+0.10}_{-0.21}$	$7.91_{-0.31}^{+0.73}$	$8.64_{-0.10}^{+0.10}$	8.84 ± 0.10	$8.53^{+1.66}_{-0.10}$	$6.56_{-0.00}^{+0.21}$
E(B - V)	$0.14^{+0.02}_{-0.00}$	$0.26_{-0.02}^{+0.02}$	0.08 ± 0.02 -0.02	$0.32_{-0.04}^{+0.02}$	0.00+0.00	$0.22_{-0.00}^{+0.02}$	0.66 + 0.00	$0.14_{-0.02}^{+0.02}$	0.26 ± 0.00	0.08 ± 0.02	0.20 ± 0.00	0.50 ± 0.04	0.58 ± 0.02	$0.56_{-0.04}^{+0.00}$	$0.26_{-0.00}^{+0.02}$	$0.02^{+0.00}_{-0.02}$	$0.20_{-0.06}^{+0.04}$	$0.14_{-0.06}^{+0.06}$	0.26 ± 0.04	$0.18_{-0.02}^{+0.04}$	0.00 + 0.00	0.14 ± 0.04	0.02 ± 0.02	0.00 + 0.00	0.34 ± 0.04	0.60 + 0.02	0.10 + 0.02	0.30 + 0.02	$0.06^{+0.02}_{-0.08}$	$0.00^{+0.00}_{-0.00}$	$0.02^{+0.02}_{-0.02}$	$0.24_{-0.06}^{+0.04}$	$0.16_{-0.04}^{+0.02}$	$0.28_{-0.02}^{+0.00}$	0.28 ± 0.00	0.32 ± 0.00	0.40 ± 0.04	0.30 ± 0.04	$0.08_{-0.02}^{+0.02}$	$0.42_{-0.10}^{+0.04}$	0.26 ± 0.02	0.36 ± 0.02	0.26 ± 0.02	$0.26_{-0.02}^{+0.02}$
Zphot	1.50	3.05	1.95	1.50	2.30	1.50	1.55	1.70	3.05	2.55	1.50	1.50	1.50	1.50	1.50	2.75	2.90	1.80	1.85	2.00	2.35	1.50	2.45	2.00	2.95	1.50	2.15	1.50	3.20	1.50	2.45	2.30	1.70	1.50	3.05	1.50	1.50	1.70	2.55	1.70	1.85	1.65	1.85	3.05
\mathcal{R}_{VI}	26.37	23.02	25.25	25.24	25.51	26.40	24.38	26.00	25.90	26.08	25.71	25.99	26.15	26.29	25.90	26.27	24.29	26.20	24.92	25.39	26.15	26.08	25.75	26.10	24.94	25.05	25.66	25.09	24.70	26.32	25.61	25.49	24.95	26.58	23.34	24.92	25.66	25.45	24.30	25.90	24.27	25.12	23.49	25.78
Ð	e	147	156	172	177	201	356	401	428	430	447	462	472	475	481	650	715	720	726	779	797	818	824	876	878	901	1029	1089	1102	1159	1191	1195 .	1228	1239	1267	1366	1441	1451	1467	1478	1482	1484	1498	1521

67

	-																																																					
χ^2	174.32	4.40	139.67	193.59	1.61	61.00	82.71	13.30	54.97	30.76	16.26	20.12	31.07	39.33 96 F1	10.00	61.62 64.76	6.08	17.76	86.27	6.07	5.53	7.07	134.19	13.09	49.53	204.98	14.44	84.68	355.14	24.54	7.88	21.95	5.89	2.09	11.48	8.96	2.13 E 6.1	10.04	45.19	41.16	10.98	135.08	20.86	38.48	6.58	54.62	20.40	48.10	20.36	30.46	103.08	104.35	100.21	7.68
log(SFR/(M _☉ /yr))	0.66 + -0.00	1.34-0.18 0.47+0.18	9.42 + 0.11	0.54 ± 0.21	$1.75_{-0.24}^{-0.05}$	0.27 ± 0.10	$2.26_{-0.21}^{+0.24}$	$1.75_{-0.16}^{+0.03}$	$0.49^{+0.03}_{-0.15}$	0.24 ± 0.01	0.99-0.11	0.32_0.07	0.28-0.02	1.50 - 0.17	0.21 - 0.02	0.06+0.10	0.74 ± 0.03	$0.76^{+0.12}$	$3.16^{+0.02}$	1.15 ± 0.58	$0.48^{+0.12}_{-0.12}$	$0.67^{+0.28}_{-2.14}$	-0.08 + 0.00	$1.21^{+0.19}_{-0.15}$	1.75 ± 0.04	0.40 ± 0.27	$0.98^{+0.59}_{-0.11}$	$0.10^{+0.00}_{-0.17}$	$0.09^{+0.00}_{-0.02}$	$2.02^{+0.26}_{-1.29}$	$1.59_{-0.22}^{+0.08}$	$1.29^{+0.07}_{-0.12}$	$1.79^{+0.39}_{-0.14}$	$2.32^{+0.17}_{-0.21}$	$0.63^{+0.02}_{-0.10}$	2.75-2.30	0.47 0.047	0.02 ± 0.11	1 10+0.12	$0.34^{+0.12}$	2.18 + 0.05	$0.42^{+0.21}_{0.45}$	$0.23^{+0.22}_{-0.12}$	$1.15_{-0.00}^{+0.21}$	$0.28_{-0.31}^{+0.13}$	$-0.06^{+0.10}_{-0.25}$	$0.22^{+0.19}_{-0.17}$	$2.15^{+-0.00}_{-0.07}$	1.57 ± 0.05	$0.34^{+0.10}$	0.71	U.08-0.10 1 An+0.06	1.40_0.03 0.67+0.02	1.87 ± 0.03
$\log(M_*/M_{\odot})$	9.51 ± 0.08	9.79-0.09	8.22-0.12 8.98+0.00	8.89+0.04	$9.80_{-0.05}^{+0.18}$	9.02 ± 0.03	$8.82^{+0.14}_{-0.11}$	$10.10^{+0.03}_{-0.13}$	$9.14_{-0.05}$	8.79705 0001 0001 0001	8.25-0.00	9.27-0.15	9.03-0.02	8.72_0.18 0 70+0.12	0.12 - 0.01 0 $0.01 - 0.02$	0.01+0.05	9 29+0.12	9.11 ± 0.15	$9.71^{+0.02}_{-0.02}$	$8.11^{+0.01}_{-0.01}$	9.13 + 0.16	$7.43_{-0.03}^{+0.03}$	8.57-0.05	9.66 + 0.09	$8.41^{+0.04}_{-0.11}$	8.55 ± 0.12	$7.94_{-0.78}^{+0.00}$	$9.24_{-0.26}^{+0.03}$	$9.44_{-0.02}^{+0.10}$	8.57 ± 0.16 -0.25	8.55 + 0.06	$9.94_{-0.03}^{+0.08}$	8.65 ± 0.21	$10.17^{+0.15}_{-0.15}$	9.58 ± 0.13	9.71-0.44	$0.74_{-0.06}$	0.20-0.06	8 05+0.03	8.99 ± 0.62	8.74 ± 0.05	$8.97^{+0.06}_{-0.06}$	8.68+0.12	8.31+0.00	$9.23_{-0.20}^{+0.17}$	$8.49_{-0.08}^{+0.14}$	60.0+10.0	8.81 ± 0.07	$10.42_{-0.05}^{+0.09}$	8.9970.11	8.96 ^{-0.26}	9.23-0.14 8 16+0.06	0.10-010 0 79+0.17	10.33 ± 0.08
log(Age/yr)	8.95+0.10 8.95+0.10	8.53_0.10	6.56 ^{+0.10}	8.43+0.10	$8.12^{+0.21}_{-0.21}$	8.84 ± 0.00	$6.56_{-0.10}^{+0.10}$	8.4371.04	8.74_0.00	8.64 + 0.10 2 - 0.10	7.70-0.00	$9.05_{-0.31}$	9.47-0.00	7.18-0.31 0.10-0.10	0.03-0.00 0 74+0.10	2.17-0.10 2 20+0.10	8 64+0.21	8.43+0.31	6.56 + 0.52	$6.97^{+0.10}_{-0.10}$	8.74 ± 0.21	$6.76^{+1.66}_{-0.73}$	8.74 -0.10	8.53+0.10	6.66 ± 0.10	$8.22_{-0.31}^{+0.42}$	$6.97_{-1.35}^{+0.00}$	$9.26_{-0.10}^{+0.10}$	$9.47_{-0.00}^{+0.10}$	$6.56_{-0.10}^{+1.04}$	$6.97_{-0.21}^{+0.10}$	$8.74_{-0.10}^{+0.21}$	6.87 ± 0.62	$7.91^{+0.42}_{-0.31}$	$9.05^{+0.21}_{-0.00}$	$6.97^{+1.0}_{-0.52}$	0.02-1.35	0.00-00-01 0.42+0.21	6 87+0.21	8.74+0.83	6.56 + 1.46	8.64 ± 0.21	$8.53_{-0.21}^{+0.21}$	$7.18_{-0.00}^{+0.00}$	$9.05_{-0.21}^{+0.42}$	$8.64_{-0.00}^{+0.31}$	8.95 ± 0.10 -0.21	6.66 + 0.00	8.95+0.10	$8.74_{-0.10}^{+0.21}$	8.32-0.52	8.04-0.21 R 7R+0.00	0.10-0.00 0.16+0.21	$8.53^{+0.21}_{-0.21}$
E(B-V)	0.24 ± 0.00	$0.30_{-0.04}$	0.10-0.02	$0.04^{+0.02}_{-0.02}$	0.22 ± 0.04	0.08 ± 0.02	$0.56_{-0.02}^{+0.04}$	0.22 ± 0.04	0.0810.02	0.00	0.14_0.02	0.04-0.02	0.00-0.00	0.24-0.02	0.04+0.00	0.10+0.02	0.10-0.02	0.06 + 0.02	0.34 + 0.00	$0.26^{+0.16}_{-0.16}$	0.06 + 0.02	0.00+0.00	0.00+0.00	0.16+0.04	$0.42_{-0.04}^{+0.00}$	0.06 ± 0.04	$0.24_{-0.02}^{+0.16}$	$0.00^{+0.00}_{-0.02}$	$0.00^{+0.00}_{-0.00}$	$0.36_{-0.06}^{+0.06}$	$0.30^{+0.04}_{-0.04}$	$0.16_{-0.02}^{+0.02}$	$0.20_{-0.02}^{+0.06}$	$0.20^{+0.04}_{-0.06}$	0.04 ± 0.00	0.24	0.40_0.02	$0.32_{-0.02}$	0.10-0.04	0.10 + 0.02	$0.36^{+0.02}$	$0.16^{+0.06}$	0.08+0.04	$0.28_{-0.04}^{+0.04}$	0.10 + 0.04	$0.00^{+0.00}_{-0.04}$	$0.04^{+0.04}_{-0.02}$	$0.56_{-0.02}^{+0.00}$	$0.18_{-0.02}^{+0.02}$	$0.04^{+0.02}_{-0.02}$	0.10+0.06	0.08 ± 0.02 0.24 ± 0.02	U.34_0.00	0.22+0.06
Zphot	1.65	1.85	1.5U 2.85	2.45	2.85	1.65	1.50	2.35	1.70	2.75	1.50	2.20	2.20	7.00	2.2	01-1-C	04.70	2.55	2.85	1.50	2.00	2.95	1.60	1.70	1.65	1.70	1.50	1.50	2.45	1.95	1.60	2.45	2.50	2.75	2.55	2.60	1.00	1 00	1 50	2.05	2.55	1.50	1.85	1.50	1.50	1.70	1.60	1.50	3.05	1.85	2.45	1.85	1.0U	3 00
\mathcal{R}_{VI}	26.40	25.54	20.02	26.05	25.04	26.23	26.17	24.50	25.69	26.55	26.06	26.35	26.06	25.80	20.40	00.02	95.30	25.71	24.01	26.08	25.90	26.56	26.46	24.56	26.50	25.91	26.36	25.79	26.59	26.04	25.41	25.15	25.21	23.43	25.82	23.09	20.03	24.0U	20.03 96 59	26.59	26.30	26.18	26.57	25.96	26.05	. 26.47	25.95	26.28	25.13	25.93	26.16	25.43	20.42	24 78
Ð	1533	1565	1598	1604	1634	1695	1817	1933	1973	1985	2005	2033	2042	2050	2617	1022	2361	2367	2389	2560	2575	2597	2661	2728	2747	2763	2765	2784	2799	2817	2837	2849	2889	2913	2958	3043	0000	3166	3160	3217	3321	3330	3397	3407	3419	3554	3560	3625	3639	3666	3689	3782	2102	3808

Table A.1: Best-fit parameters for this work's HDF-S catalog, constant SFR.

				_					_						_														-					_															
-X ²	13.48	112.31	8.04	106.11	67.25	55.35	112.03	2.60	303.02	145.74	180.90	65.50	3.35	69.59 24 21	56.31	131.14	137.72	132.30	136.30	1.65 20	02.601 108 13	338.40	6.40	63.39	12.78	9.35	14.62	87.94	19.30	4.99	3.74 18.63	144.37	35.70	0.57	115.30	127.50 E0.47	466.73	53.40	37.40	39.02	131.75	49.91	174.00	15.13	36.85	54.98	139.47	33.63	123.18 30.49
log(SFR/(M _G /vr))	1.53+0.66	$1.63_{-0.19}^{+0.20}$	0.48 + 0.23	2.30 ^{+0.17}	0.83 ± 0.15	2.41+0.85 -0.04	$1.92^{+0.03}_{-0.17}$	2.59-0.17 1 22+0.22	$0.46^{+0.00}$	0.53 ± 0.04	0.96 + 0.16	$1.94_{-0.03}^{+0.02}$	1.52 ± 0.18	1.32-0.06	$0.77^{+0.04}_{-0.04}$	2.08 + 0.02 -0.05	$2.36_{-0.02}^{+0.02}$	$1.78^{+0.00}_{-0.19}$	$1.59^{+-0.00}_{-1.88}$	1.95 - 0.02	1.34-0.00	-0.03+0.00	2.85 + 0.23	1.16 ± 0.11	3.37 ± 0.24	$2.81_{-1.68}^{+0.23}$	$0.89_{-0.14}^{+0.09}$	0.90 + 0.00	2.81 ± 0.10	1.20-00 00-0-00	$1.23_{-0.06}$	0.88+0.30	$2.51_{-0.41}^{+0.13}$	$1.36_{-0.06}^{+0.06}$	1.71 ± 0.21	1.68 -0.03 0.96+0.03	$1.01^{+0.03}_{-0.00}$	$0.52^{+0.02}_{-0.09}$	0.85 ± 0.10	$0.99_{-0.07}^{+0.10}$	$2.72^{+1.74}_{-1.49}$	2.20_0.47	0.57-0.10	1.36+0.21	0.93 ± 0.20	3.85 ± 1.78 -0.22	$3.15_{-0.87}^{+0.24}$	0.58 ± 0.14	0.71 + 0.10
log(M. /M _G)	8.39+0.03	$8.39_{-0.08}^{+0.10}$	7.84 ± 0.14	8.85+0.13 0.05-0.13 0.09	$9.38^{+0.05}_{-0.11}$	$9.37_{-0.64}^{+0.00}$	8.78+0.03 8.78+0.03	9.35-0.07	$7.92^{+0.00}_{-0.00}$	9.18 ± 0.10	8.02 + 0.06	$8.49_{-0.03}^{+0.02}$	9.47 ± 0.13 0.17	9.77-0.11 2 06+0.05	$9.62^{+0.13}_{-0.13}$	$8.64_{-0.05}^{+0.02}$	$8.91_{-0.02}^{+0.02}$	$8.44^{+0.00}_{-0.08}$	8.25+0.32 6 71+0.13	8.51-0.02 60+0.00	8.00-00 8.85+0.00	8.91 ± 0.03	9.41 ± 0.00	8.91 + 0.12	$9.61^{+0.18}_{-0.03}$	$9.37_{-0.22}^{+0.13}$	$9.64_{-0.11}^{+0.06}$	10.74 ± 0.02	9.27 ± 0.14	$10.65_{-0.12}^{+0.12}$	9-96-0.13 8 74+0.13	7.74 ± 0.07	9.27 ± 0.04	$10.21_{-0.04}^{+0.13}$	8.47 ± 0.11	8.34_0.03 0.71+0.19	$8.47^{+0.00}_{-0.00}$	$9.47_{-0.10}^{+0.22}$	$9.40_{-0.11}^{+0.07}$	9.74 ± 0.03	$9.17_{-0.45}^{+0.11}$	8.82_0.17	9.52_0.11 0 05+0.08	9.00 - 0.30 9.91 + 0.14	9.68 +0.16	$9.06_{-0.12}^{+0.32}$	9.08 ± 0.03 ± 0.04	$9.33^{+0.15}_{-0.09}$	$9.36_{-0.05}^{+0.13}$
log(Age/vr)	6.87+0.21	$6.76_{-0.10}^{+0.10}$	$7.39_{-1.04}^{+0.31}$	6.56+0.10 7 40+0.31	8.64 ± 0.10	$6.97^{+0.00}_{-1.46}$	$6.87^{+0.10}_{-0.00}$	6.76-0.10 A 15+0.21	$7.49^{+0.00}_{-0.00}$	8.74+0.10	7.08 ± 0.21	$6.56_{-0.00}^{+0.00}$	$8.01^{+0.31}_{-0.42}$	8.53_0.21 6 56+1.46	$8.95^{+0.21}_{-0.00}$	$6.56_{-0.00}$	$6.56_{-0.00}^{+0.00}$	$6.66_{-0.00}^{+0.10}$	6.66 ^{+1.00}	0.30-0.10 6.66+0.00	0.00-0.00 6.66+0.00	9.05+0.10	6.56 + 1.46	7.80+0.31	$6.24_{-0.31}^{+0.21}$	$6.56_{-0.10}^{+1.46}$	$8.84_{-0.21}^{+0.21}$	$9.99^{+0.00}_{-0.31}$	6.45+1.33	9.57-0.21	7 98+0.42	6.87 ± 0.10	$6.76_{-0.10}^{+0.21}$	8.95 ± 0.21	$6.76^{+0.10}_{-0.10}$	6.66	$7.49^{+0.00}_{-0.00}$	9.05 ± 0.31	8.64 ± 0.10	$8.84_{-0.10}^{+0.10}$	6.45 + 1.35 6.45 - 2.29	0.00-0.00	9.05-0.10	8.64+0.31 8.64+0.31	8.84+0.10	5.20 + 0.10	5.93 ± 0.83	8.84+0.21 8.84-0.10 0.00+0.00	$9.26_{-0.00}$ $8.74_{-0.10}$
E(B-V)	$0.16^{+0.10}$	$0.32^{+0.02}_{-0.04}$	$0.14_{-0.04}^{+0.12}$	$0.40^{+0.04}_{-0.04}$	0.14 ± 0.02	0.58+0.20	$0.38^{+0.00}_{-0.02}$	0.40-0.04	$0.00^{+0.02}_{-0.02}$	0.06 + 0.04	$0.04_{-0.02}^{+0.02}$	$0.16_{-0.00}^{+0.00}$	$0.22^{+0.06}_{-0.04}$	$0.18_{-0.02}$	$0.10^{+0.00}_{-0.00}$	$0.36^{+0.00}_{-0.02}$	$0.38_{-0.00}^{+0.00}$	$0.42^{+0.02}_{-0.02}$	$0.40^{+0.06}_{-0.06}$	$0.32_{-0.02}$	0.42 - 0.00	0.06 + 0.00	$0.48^{+0.04}$	$0.26_{-0.02}^{-0.02}$	$0.46^{+0.04}_{-0.00}$	$0.42_{-0.04}^{+0.04}$	$0.18_{-0.04}^{+0.02}$	$0.02^{+0.02}_{-0.00}$	$0.44_{-0.02}^{+0.02}$	0.20-0.02	0.12 - 0.02 0 30 + 0.08	$0.02^{+0.04}_{-0.02}$	$0.48^{+0.02}_{-0.06}$	$0.06_{-0.02}^{+0.02}$	$0.32^{+0.04}_{-0.04}$	$0.36_{-0.02}$	$0.26^{+0.00}_{-0.00}$	0.00+0.00	$0.18_{-0.02}^{+0.04}$	$0.26_{-0.02}^{+0.02}$	$0.38^{+0.32}_{-0.02}$	0.38-0.04	0.08-0.02	0.28 ± 0.02	$0.30^{+0.04}_{-0.02}$	$0.56^{+0.16}_{-0.00}$	0.60 + 0.00	$0.18^{+0.02}_{-0.02}$	$0.40_{-0.00}^{-0.00}$ $0.12_{-0.02}^{+0.02}$
Zahot	2.95	1.65	1.50	2.25	2.10	1.50	2.05	2.45	3.70 2.45	1.85	2.45	2.30	2.80	2.95	2.65	2.40	2.30	1.50	1.50	2.35	1.65U	1.50	2.80	2.45	2.90	2.90	1.50	3.20	2.85	2.30	30.5 71 C	3.20	2.60	3.35	2.35	1.85	3.20 1.50	3.50	2.50	1.65	3.05	2.20	2.60	1 70	1.85	1.50	1.50	1.60	1.70
$\mathcal{R}_{\mathcal{M}I}$	25.81	25.82	26.47	25.97 05 76	25.80	25.26	25.91	25.09 25.69	26.06	25.64	25.49	24.91	25.60	25.68 95.07	26.11	26.31	25.69	26.10	26.46 26.46	20.25	20.10	26.47	25.98	26.58	25.50	25.59	25.18	25.32	26.07	25.57	20.43	26.19	26.05	24.77	26.47	26.52	25.92	26.34	26.50	25.78	25.94	25.86	26.37	25.04	26.54	25.99	26.27	26.06	25.52 25.44
Ð	29	69	73	100	203	207	242	288	310	. 313	328	339	448	464	410	520	533	542	544	0/.9 570	2/2	590	639	649	665	673	692	721	746	848	020	215	1106	1108	1124	1140	1273	1403	1471	1473	1501	1523	1527	1543	1551	1572	1585	1590	1593 1647

Table A.1: Best-fit parameters for this work's HDF-S catalog, constant SFR.

69

																																			_																		
χ^2	8.75	43.48	98.81 7 0.1	1.01 25.86	5.04	79.77	60.85 6 85	0.62 9.13	32.65	209.02	218.99	2.24	9.36	4.39	151.19	41.77	20.07	33.95	104.83 53 61	38.09	37.57	14.38	251.04	119.19	38.23	56.67	49.14	13.16	47.28	113.07	6.33	205.94	141.20	15.23	30.99	20.67	3.28	67.162	38.07	125.91	141.58	26.35	179.41	194.47	68.06	74.73	49.48	10.08	49.19	32.62	10.18	82.01	78.90
$\log(SFR/(M_{\odot}/yr))$	0.51 ± 0.10	0.55 ± 0.17	3.66	1.28 - 0.09 1 10 + 0.07	1.05+0.06 1.05+0.06	0.83 ± 0.83	0.24 ± 0.02	0.50 + 0.09	2.42 ± 0.69	$2.26^{+0.02}_{-0.02}$	$2.71_{-0.00}^{+-0.00}$	$0.72_{-0.24}^{+0.01}$	$1.44_{-1.74}^{+0.24}$	$1.15_{-0.15}^{+0.06}$	$1.58_{-0.12}^{+0.11}$	$1.76_{-0.12}^{+0.42}$	$0.76_{-0.00}$	$1.23_{-0.08}^{+0.13}$	2.88-1.51 0.05+0.10	0.70 + 0.03	$0.73_{-0.08}^{-0.08}$	2.18 ± 0.23	2.80 ± 0.35	$3.66_{-0.31}^{+0.52}$	1.08 ± 0.01 -0.01	$1.73_{-0.42}^{+0.51}$	$1.34_{-0.00}^{+0.12}$	$1,73_{-0.18}^{+0.59}$	$0.04_{-0.02}^{+0.03}$	2.36 ± 0.20	0.89 - 0.14 0.75 + 0.02	0.53 - 0.08 0.20 + 0.02	$1.66^{+0.00}$	$0.68^{+0.02}_{-0.00}$	2.89 + 0.00	$1.14^{+0.06}_{-0.15}$	1.34 ± 0.03 0.19 0.05	2.20 - 0.24	$1.29^{+0.14}_{-0.14}$	$0.42^{+0.03}_{-0.02}$	0.45 ± 0.02	1.86 ± 0.11	$0.24_{-0.24}^{+0.34}$	$2.12^{+0.24}_{-0.00}$	2.91 ± 0.21	1.85 ± 0.22 0.40 \pm 0.10	$0.42_{-0.08}$	1.23 ± 0.15	0.74 + 0.37	$1.72^{+0.30}_{-1.79}$	$1.34_{-0.25}^{+0.11}$	$2.92^{+1.40}_{-0.17}$	2.53
$\log(M_*/M_{\odot})$	$9.16_{-0.10}^{+0.16}$	$9.20^{+0.13}_{-0.11}$	9.07 ^{+0.22}	9.55-0.04 9.85+0.03	10.00 ± 0.05	$9.78_{-0.09}^{+0.76}$	9.19+0.11 9.10-0.10	$0.45^{+0.11}$	8.97+0.22	$8.82^{+0.02}_{-0.02}$	$9.27_{-0.00}^{+0.00}$	$9.07^{+0.16}_{-0.09}$	$8.00^{+0.14}_{-0.28}$	$9.80_{-0.04}^{+0.17}$	$9.23_{-0.11}^{+0.11}$	$9.32^{+0.06}_{-1.17}$	$10.90^{+0.02}_{-0.00}$	$10.68_{-0.12}^{+0.12}$	9.33_0.16	9.45 ± 0.04	$9.38_{-0.12}^{+0.12}$	$8.74_{-0.13}^{+0.13}$	$8.63_{-0.03}$	$9.07_{-0.00}^{+0.00}$	$10.03_{-0.05}^{+0.09}$	$8.39_{-0.22}^{+0.12}$	$8.70_{-0.08}^{+0.00}$	$8.69_{-0.45}^{+0.09}$	$8.99_{-0.02}^{+0.03}$	8.81+0.10 4.0 - 40.26	$10.54^{+0.09}_{-0.09}$	9.28-0.02	8.32+0.00 8.32+0.00	$10.43_{-0.10}^{-0.32}$	$9.45_{-0.10}^{+0.00}$	$9.49^{+0.10}_{-0.04}$	$10.19^{+0.14}_{-0.02}$	0.04 - 0.14 0.00+0.49	9.74 ± 0.07	$9.07^{+0.10}_{-0.10}$	8.80+0.11	$10.41_{-0.07}^{+0.04}$	$8.79_{-0.15}^{+0.16}$	8.68+0.14 -0.00	$9.36^{+0.11}_{-0.08}$	8.61+0.12	$9.17_{-0.13}$	8,09+0.06	8.49+0.30	8.38+0.12	$9.09^{+0.17}_{-0.11}$	9.68 + 0.43	9.0870.10
log(Age/yr)	$8.74^{+0.21}_{-0.10}$	8.74+0.31	$5.41_{-1.14}$	8.04-0.10 8 74+0.21	9.05 ± 0.10	9.05 ± 1.66	9.05 +0.10 9.05 -0.10 9.10 +0.21	0.43-0.21 9.05+0.21	6.56 + 1.46	6.56+0.00	6.56 + 0.00	$8.43_{-0.10}^{+0.42}$	$6.56_{-0.10}^{+1.46}$	$8.74^{+0.31}_{-0.10}$	$7.70^{+0.21}_{-0.21}$	$7.60^{+0.41}_{-1.66}$	10.30 ± 0.00	9.57 -0.21 2.1 - 1.35	0.45-0.10 2 42+0.31	8.84+0.10	8.74+0.21	$6.56_{-0.10}^{+1.46}$	5.83 ± 0.73	$5.41_{-0.52}$	9.05 ± 0.10	$6.66_{-0.52}^{+0.21}$	$7.39_{-0.21}^{+0.00}$	$6.97_{-1.04}^{+0.10}$	9.05 ± 0.00	6.45 ± 1.33 0.10	9.78-0.10	8.84-0.00	$6.66^{+1.56}$	9.88+0.10	$6.56_{-0.00}^{+0.00}$	$8.43_{-0.10}^{+0.21}$	8.95+0.31 2.75+0.31	0.00-0.00 10+1.04	8.53 ± 0.21	$8.74_{-0.10}$	8.43+0.10	8.64+0.10	$8.64_{-0.52}^{+0.42}$	$6.56_{-0.10}^{+0.00}$	6.45 + 0.42	$6.76_{-0.00}$	8.84_0.21 0 7.4+0.10	6.87+0.10	7.80 ± 0.62	$6.66_{-0.21}^{+1.56}$	$7.80_{-0.21}^{+0.42}$	$6.76_{-1.98}^{+0.10}$	6.5670.70
E(B-V)	$0.12^{+0.02}_{-0.02}$	0.10+0.02	0.42 ± 0.02	0.10 - 0.02 0.30 + 0.02	0.08+0.04	0.06 ± 0.05	0.00+0.00	0.30 - 0.04 0.04 + 0.02	0.44 ± 0.02	$0.42^{+0.02}_{-0.02}$	0.66 + 0.00	$0.00^{+0.00}_{-0.06}$	$0.12_{-0.06}^{+0.04}$	$0.12^{+0.02}_{-0.04}$	$0.32_{-0.02}^{+0.02}$	0.56 ± 0.24	0.24 ± 0.00	0.22+0.02	0.48_0.02	0.08 ± 0.04	$0.14^{+0.02}$	$0.30^{+0.04}_{-0.06}$	$0.48^{+0.00}_{-0.00}$	0.58+0.00	0.14 ± 0.02	$0.28_{-0.06}^{+0.06}$	$0.42_{-0.00}^{+0.02}$	$0.32_{-0.04}^{+0.10}$	0.00+0.00	0.38 + 0.04 0.38 - 0.02	0.12 - 0.04	0.00 - 0.02	$0.42^{+0.00}_{-0.00}$	0.00+0-00	0.68 ± 0.02	$0.14^{+0.02}_{-0.04}$	$0.18^{+0.00}_{-0.04}$	0.40-0.00	0.28 ± 0.02	0.00+0.00	0.00+0.00	0.50+0.02	$0.16_{-0.06}^{+0.10}$	0.56 + 0.04	$0.44_{-0.02}^{+0.02}$	0.3070.04	0.00-002	0.12 - 0.02 0.30 + 0.18	0.16 ± 0.06	$0.20^{+0.06}_{-0.10}$	$0.20_{-0.04}^{+0.02}$	0.68+0.32	$0.34^{+0.00}$
Zphot	1.70	2.55	2.80	2.95	2.60	3.35	2.80	2.40 2.40	2.40	2.50	1.50	3.15	2.85	2.95	2.55	1.50	1.80	2.10	2.45	02.2	1.70	3.05	1.50	1.50	2.75	2.65	1.50	2.25	1.60	2.80	3.10	2.80	1.50	3.50	1.50	3.00	2.30	02.2	2.40	3.20	3.40	1.65	1.50	1.50	2.85	2.40	700	1.50	1.70	2.20	2.40	1.60	3.10
\mathcal{R}_{VI}	25.94	26.55	26.53	25.04	25.15	26.01	26.55 or co	26.00	26.23	26.47	25.67	25.66	26.18	25.56	26.09	26.20	26.39	25.40	20.78	26.11	25.55	26.22	26.34	26.08	25.75	26.47	26.34	26.04	26.12	26.55	26.34	25.81	26.45	25.90	25.54	25.85	25.05	20.49	26.16	26.31	26.35	25.37	26.55	26.48	25.86	25.98	20.03	26.31	26.01	25.49	25.57	25.31	25.80
ID	1676	1696	1699	1739 1863	1881	1908	1915	1954	1960	2021	2025	2030	2052	2071	2188	2219	2257	2266	2300	5329	2356	2427	2429	2529	2545	2553	2561	2568	2652	2684	2698	2722	2754	2759	2854	2946	2955	2969	3163	3258	3275	3294	3349	3399	3411	3420	3405	346U 3485	3491	3503	3511	3542	3548

Table A.1: Best-fit parameters for this work's HDF-S catalog, constant SFR.

20

Table A.1: Best-fit parameters for this work's HDF-S catalog, constant SFR.

ID	\mathcal{R}_{VI}	zphot	E(B - V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
3563	24.80	2.95	$0.20^{+0.04}_{-0.06}$	$8.12^{+0.42}_{-0.31}$	$9.86^{+0.16}_{-0.13}$	$1.80^{+0.16}_{-0.24}$	24.48
3578	26.16	1.50	$0.62^{+0.08}_{-0.02}$	$6.56\substack{+0.10\\-0.00}$	$8.94^{+0.00}_{-0.28}$	$2.38^{+-0.00}_{-0.28}$	163.96
3635	24.67	3.05	$0.16\substack{+0.02\\-0.02}$	$8.64^{+0.10}_{-0.21}$	$10.24\substack{+0.04\\-0.11}$	$1.69^{+0.09}_{-0.06}$	2.88
3641	26.09	1.50	$0.26\substack{+0.00\\-0.04}$	$8.95^{+0.21}_{-0.00}$	$9.59^{+0.03}_{-0.08}$	$0.74^{+-0.00}_{-0.21}$	90.82
3646	25.77	2.80	$0.18\substack{+0.12\\-0.06}$	$6.87^{+0.21}_{-1.14}$	$8.42_{-0.43}^{+0.06}$	$1.56^{+0.67}_{-0.32}$	28.74
3687	26.32	3.00	$0.08^{+0.04}_{-0.06}$	$8.74_{-0.21}^{+0.42}$	$9.35_{-0.13}^{+0.24}$	$0.70^{+0.12}_{-0.22}$	9.26
3767	26.58	2.20	$0.46^{+0.02}_{-0.00}$	$6.56^{+0.00}_{-0.00}$	$8.81^{+0.03}_{-0.05}$	$2.25^{+0.03}_{-0.05}$	103.03
3779	26.44	3.15	$0.10^{+0.06}_{-0.10}$	$8.43_{-0.42}^{+0.73}$	$9.15_{-0.24}^{+0.27}$	$0.80^{+0.20}_{-0.43}$	85.66
3797	26.34	1.50	$0.18^{+0.06}_{-0.04}$	$8.43^{+0.31}_{-0.42}$	$8.80^{+0.13}_{-0.54}$	$0.45^{+0.07}_{-0.35}$	13.71
3867	25.76	2.45	$0.18\substack{+0.02\\-0.06}$	$8.22\substack{+0.62\\-0.21}$	$9.31_{-0.13}^{+0.32}$	$1.16_{-0.32}^{+0.12}$	16.98
3897	26.05	1.60	$0.44_{-0.04}^{+0.00}$	$6.66^{+0.10}_{-0.00}$	$8.60^{+0.07}_{-0.07}$	$1.94_{-0.17}^{+0.07}$	75.37

F			=		-			_				. ~							-						· · · · ·					
 | | | |
 | | |
 | | | |
 | | | |
 | | | |
 | |
|--|------------------------|------------------------|------------------------|------------------------|--------------------------|------------------------|----------------------------------|----------------------------|------------------------|------------------------|------------------------|-----------|-----------------|-----------------------|-------------|-------------------------|------------------------|------------------------|------------------------|------------------------|-----------|------------------------|-----------------|------------------------------------|---|--|---|---|--|--
---	--	--
--	--	--
--	---	---
--	--	---
--	--	--
--	--	--
-x	75.67	76.55
 | 25.50
56.69
5.64
15.58
8.72
8.72
8.72
14.25
9.41
9.41
9.41
9.1.71
70.05 | 23.40
19.96
5.66
5.66
5.66
5.66
5.66
5.66
8.72
8.72
8.72
9.41
14.25
9.41
14.25
9.41
9.41
9.41
9.171
91.71
70.05
27.01 | 25.40
19.96
5.66
5.66
5.66
5.66
15.58
8.55
32.32
14.12
9.41
14.25
9.41
9.41
9.41
9.41
9.171
70.05
69.43 | 25.40
19.96
5.64
5.64
15.58
15.58
15.58
15.58
15.58
15.58
14.25
9.41
14.25
9.41
14.25
9.41
14.25
9.41
9.41
9.41
9.41
9.41
9.41
9.41
9.41
 | 23.40
19.96
5.64
5.64
15.58
8.72
8.72
3.23
9.41
14.25
9.41
9.41
70.05
5.23
5.23
5.23
3.27
73.27 | 23.40
19.96
5.64
5.65
5.65
5.65
15.58
8.72
3.2.34
14.25
9.43
2.64
14.25
9.43
2.64
14.25
9.43
2.64
14.25
6.43
2.64
14.25
6.94
3.27
6.94
3.374
5.23
3.277
5.23
3.277
5.23
3.277
5.23
5.23
5.23
5.23
5.23
5.23
5.23
5.23 | 23.40
19.96
5.64
15.58
15.58
15.58
8.27
14.25
91.71
70.05
21.20
91.71
70.05
5.23
3.27
27.01
69.43
5.23
3.27
21.20
99.98
 | 23.40
19.96
5.6.9
15.64
15.58
15.58
15.58
2.5.65
9.41
14.25
9.41
14.25
9.41
9.41
9.41
9.41
9.41
70.05
5.23
3.27
23.40
9.98
89.23
3.27
22.03
9.998
89.23
23.40
23.40
23.40
5.23
3.27
22.203 | 23.40
19.96
5.64
5.64
15.58
15.58
15.58
15.58
15.58
15.58
14.1
2.66
9.41
14.25
9.41
9.41
9.41
9.41
69.43
23.40
23.40
9.23.41
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.341
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.3411
23.34111
23.34111
23.3411121
23.3411121
23.341111211111111111 | 23.40
19.06
5.64
5.64
15.58
15.58
15.58
15.58
15.58
2.66
9.41
14.25
9.41
14.25
5.23
9.41
9.41
9.41
9.41
9.41
9.41
9.41
2.66
9.43
2.701
5.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
9.23
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.3.40
2.5.40
2.5.40
2.5.40
2.5.50
2 |
23.40
19.06
5.6.9
5.6.6
1.5.58
1.5.58
1.5.58
1.5.58
2.5.66
9.41
1.4.25
9.41
1.4.25
9.41
1.4.25
2.2.01
5.23
2.2.01
2.3.401
2.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.3.401
2.3.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.401
2.3.5.4010000000000000000000000000000000000 | 23.40
13.56
5.66
5.66
5.66
8.5.58
8.5.58
8.5.58
8.5.58
8.5.53
9.41
14.25
9.41
9.41
2.00
5.23
5.23
2.1920
9.33.41
190.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
199.06
19 | 23.40
19.96
5.64
5.65
1.5.58
8.5.58
8.5.58
8.5.58
8.5.58
8.5.53
9.41
1.4.25
9.41
9.41
2.00
5.23
3.27
5.23
3.27
2.33.41
190.05
199.05
199.05
199.05
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199.55
199 |
23.40
19.96
56.69
15.58
8.5.58
8.5.58
8.5.58
8.5.58
8.5.58
9.41
14.25
9.41
2.66
9.43
70.05
5.23
3.27
2.33.41
190.05
193.06
193.06
193.06
193.06
194.55
193.06
193.06
194.55
193.06
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55
194.55 | 23.40
19.96
5.6.9
5.6.9
1.1.25
8.7.58
8.7.56
8.7.56
9.41
1.4.25
9.41
9.41
70.05
5.23
3.27
2.06
6.9.43
5.23
3.27
2.1.09
0.05
2.3.41
190.05
199.05
199.05
199.05
199.05
199.57
199.56
199.56
199.56
199.56
199.56
199.57
199.56
199.56
199.57
199.57
199.56
199.57
199.57
199.56
199.57
199.56
199.57
199.57
199.56
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.5 | 23.40
19.96
5.6.9
5.6.9
1.1.25
5.6.9
1.1.25
5.6.9
1.1.25
9.41
1.4.25
2.06
9.41
2.0.05
5.23
2.1.09
5.23
2.1.09
2.3.3.41
190.05
199.05
199.05
199.55
199.56
199.56
199.56
199.56
199.56
199.56
199.56
199.56
199.56
199.56
199.56
199.56
199.56
199.56
199.56
199.57
199.56
199.56
199.56
199.56
199.56
199.56
199.56
199.56
199.56
199.57
199.56
199.56
199.57
199.56
199.56
199.56
199.56
199.56
199.57
199.56
199.56
199.57
199.56
199.56
199.57
199.56
199.57
199.56
199.57
199.56
199.57
199.56
199.57
199.57
199.56
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199.57
199. |
23.40
19.56
5.66
5.66
5.66
1.12.56
8.15.58
8.15.58
8.15.58
9.41
1.4.25
9.41
2.66
9.43
2.00
5.23
2.3.41
190.05
19.05
19.05
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55 | 23.40
19.96
56.69
19.96
14.25
9.41
14.25
9.41
2.66
9.41
14.25
2.70
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05
19.05 | 23.40
19.96
56.69
8.75
8.75
8.75
8.75
9.41
14.25
9.41
14.25
70.05
5.23
2.70
69.43
70.05
5.23
2.70
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.000
19.000
19.000
19.0000000000 |
23.40
19.96
56.69
5.6.69
8.72
8.72
8.72
9.41
14.25
9.41
14.25
70.05
5.23
3.27
2.66
9.41
70.05
2.70
19.05
19.05
19.05
19.56
19.56
19.57
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.57
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.57
19.56
19.56
19.56
19.57
19.56
19.56
19.56
19.57
19.56
19.56
19.57
19.56
19.56
19.56
19.56
19.57
19.56
19.56
19.56
19.56
19.57
19.56
19.56
19.57
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.57
19.56
19.56
19.56
19.57
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.5 |
| $\operatorname{og(SFR/(M_{\odot}/\operatorname{yr}))}$ | 0.47 ± 0.00 | $3.31^{+0.00}_{-0.34}$ | 0.86 ± 0.12 | $1.36_{-0.17}^{+0.08}$ | 0.55 ± 0.04
-0.11 | $0.72_{-0.03}$ | 3.23 ± 0.00 | 0.65 - 0.15
0.06 + 0.06 | $2.03_{-0.45}$ | 0.60-0.12 | $\frac{1.26}{2}$ | 9.96+0.00 | 2.13 ± 0.00 | $1.38_{0.00}^{+0.00}$ | 0.50 + 0.02 | $1.91^{+0.08}_{-0.33}$ | $0.48_{-0.35}^{+0.19}$ | $1.48_{-0.11}^{+0.22}$ | $1.05_{-0.25}^{+0.04}$ | $0.62^{+0.12}_{-0.02}$ | 0.48+0.09 | 0.00-0.00 | | 2.62 ± 0.13
2.62 ± 0.24 | 2.62 ± 0.13
2.62 ± 0.24
0.85 ± 0.07 | $\begin{array}{c} 2.62 \pm 0.13 \\ 2.62 \pm 0.24 \\ 0.85 \pm 0.07 \\ 1.45 \pm 0.17 \\ 1.45 \pm 0.17 \end{array}$ | 2.62+0.13
2.62+0.24
0.85+0.07
0.85+0.07
1.45+0.15
1.45+0.15
1.43-0.05
1.43-0.05 | $\begin{array}{c} \textbf{0.52} \\ \textbf{2.62} + \textbf{0.13} \\ \textbf{2.62} + \textbf{0.01} \\ \textbf{0.85} + \textbf{0.07} \\ \textbf{0.85} + \textbf{0.17} \\ \textbf{1.45} + \textbf{0.17} \\ \textbf{1.43} + \textbf{0.05} \\ \textbf{1.43} + \textbf{0.05} \\ \textbf{1.61} \\ \textbf{0.05} + \textbf{0.00} \end{array}$ | $\begin{array}{c} 2.52 \pm 0.13\\ 2.62 \pm 0.04\\ 0.85 \pm 0.06\\ 0.85 \pm 0.15\\ 1.43 \pm 0.15\\ 1.43 \pm 0.16\\ 0.55 \pm 0.06\\ 0.05 \pm 0.00\\ 0.05 \pm 0.10\\ 0.05 \pm 0.10$ | 2.52 ± 0.13
2.52 ± 0.24
2.52 ± 0.24
0.85 ± 0.04
1.45 ± 0.15
1.43 ± 0.15
1.43 ± 0.05
0.05 ± 0.00
0.84 ± 0.15
1.89 ± 0.15
1.89 | 2.62 +0.13
2.62 +0.13
2.65 +0.00
0.85 +0.15
1.45 +0.15
1.43 +0.05
0.65 +0.00
0.84 +0.15
0.84 +0.15
1.89 +0.15
1.89 +0.15
1.13 +2.18
1.33 +2.18
0.35 +0.15
0.35 +0.15 0.35 +0.15
0.35 +0.15 0.35 +0.15
0.35 +0.15 0.35 +0.15
0.35 +0.15 0.35 | $\begin{array}{c} \textbf{2.6} $ | $\begin{array}{c} \textbf{2.62} \\ \textbf{2.62} \\ \textbf{2.62} \\ \textbf{-0.13} \\ \textbf{2.65} \\ \textbf{-0.24} \\ \textbf{2.65} \\ \textbf{-0.24} \\ \textbf{2.65} \\ \textbf{-0.15} \\ \textbf{-0.15} \\ \textbf{-0.16} \\ \textbf{-0.16} \\ \textbf{-0.16} \\ \textbf{-0.16} \\ \textbf{-0.16} \\ \textbf{-0.16} \\ \textbf{-0.18} \\ \textbf{-0.23} \\ \textbf{-0.33} \\ \textbf{-0.34} \\ \textbf{-0.34} \\ \textbf{-0.34} \\ \textbf{-0.34} \end{array}$ | $\begin{array}{c} 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.$ | $\begin{array}{c} 2.52 \pm 0.13\\ 2.62 \pm 0.03\\ 2.62 \pm 0.03\\ 2.62 \pm 0.03\\ 2.62 \pm 0.03\\ 1.45 \pm 0.15\\ 1.45 \pm 0.15\\ 1.43 \pm 0.04\\ 1.43 \pm 0.05\\ 1.38 \pm 0.12\\ 0.84 \pm 0.18\\ 0.84 \pm 0.18\\ 1.38 \pm 0.12\\ 0.93 \pm 0.12\\ 1.38 \pm 0.03\\ 3.26 \pm 0.03\\ 1.38 \pm 0.03$ | $\begin{array}{c} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\$ | $\begin{array}{c} 2.52+0.13\\ 2.62+0.034\\ 0.85+0.034\\ 1.45+0.15\\ 1.45+0.15\\ 1.43+0.05\\ 0.05+0.05\\ 0.05+0.05\\ 0.05+0.05\\ 0.035+0.16\\ 1.89+0.15\\ 1.89+0.25\\ 1.38+0.038\\ 1.38+0.038\\ 1.38+0.038\\ 1.38+0.038\\ 1.38+0.038\\ 1.38+0.038\\ 1.38+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.038\\ 1.48+0.0$ | $\begin{array}{c} 2.62 \pm 0.13\\ 2.62 \pm 0.024\\ 2.62 \pm 0.024\\ 2.62 \pm 0.024\\ 2.62 \pm 0.024\\ 2.62 \pm 0.015\\ 1.43 \pm 0.015\\ 1.43 \pm 0.015\\ 0.84 \pm 0.016\\ 0.84 \pm 0.016\\ 0.84 \pm 0.016\\ 0.93 \pm 0.016\\ 0.93 \pm 0.016\\ 1.13 \pm 0.008\\ 1.62 \pm 0.008\\ 1.62 \pm 0.008\\ 1.38 \pm 0.008\\ 1.48 \pm 0.008\\ 1.48 \pm 0.008\\ 1.38 \pm 0.008\\ 1.38 \pm 0.008\\ 1.38 \pm 0.008\\ 1.48 \pm 0.0$ | $\begin{array}{c} 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.$ | $\begin{array}{c} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\$ | $\begin{array}{c} 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.$ | $\begin{array}{c} 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.$ | $\begin{array}{c} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\$ | $\begin{array}{c} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\$ | $\begin{array}{c} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\$ | $\begin{array}{c} 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.$ | $\begin{array}{c} 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 1.45 \\ 1.45 \\ 1.45 \\ 1.45 \\ 1.45 \\ 1.50 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.$ | $\begin{array}{c} 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.$ | $\begin{array}{c} 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.52 \\ 2.$ | $\begin{array}{c} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\$ | $\begin{array}{c} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\$ |
| log(M*/M _☉) h | $8.02^{+0.07}_{-0.00}$ | $9.86_{-0.12}^{+0.00}$ | $9.29_{-0.13}^{+0.02}$ | $9.86_{-0.14}^{+0.01}$ | $9.30_{-0.04}^{+0.11}$ | 8.1770.03 | 9.98+0.0
000-0-0-0
001-0-0 | 9.21-0.13 | 0.04-0.13
0.09+0.09 | 0.00-0.11
0.00+0.10 | 8.03-0.00
8.86+0.18 | 8 01+0.00 | 8.78+0.00 | 8.13+0.00 | 9.11+0.05 | $10.10^{+0.13}_{-0.03}$ | 8.58 ± 0.21 | $9.97^{+0.22}_{-0.07}$ | $9.80_{-0.25}^{+0.07}$ | $9.36_{-0.02}$ | 8.67 | 8 11+0.10
8 11+0.10 | 0.17
0.17 | | 9.50+0.20 | 9.50+0.20
9.50+0.20
9.38+0.09
9.38+0.09 | 9.50+0.20
9.50+0.20
9.38+0.01
9.99+0.13
9.99+0.14 | 9.50+0.20
9.50+0.20
9.38+0.00
9.99+0.16
9.115
9.115
9.115
9.115
9.115
9.115
9.115 | 9 5 5 | 9 5 5 7 - 0 20
9 5 5 7 - 0 20
9 5 5 7 - 0 12
9 9 5 5 7 - 0 12
9 9 9 - 0 114
8 5 1 - 0 0 15
8 7 4 - 0 0 16
7 0 - 0 0 16
9 0 0 - 0 0 16
9 0 0 - 0 0 16
9 0 0 - 0 0 16
0 0 - 0 0 0 0
0 0 - 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0 | 9 50 +0.00
9 50 +0.00
9 550 +0.01
9 550 +0.01
9 550 +0.01
8 51 +0.015
8 51 +0.016
8 554 +0.16
8 754 +0.16
9 758 +0.21
8 78 +0.028
1 8 +0.008
1 8 +0.00 | 9 5 5 7 - 0 20
9 5 5 7 - 0 20
9 5 5 7 - 0 12
9 5 5 7 - 0 12
9 9 - 0 15
8 5 1 - 0 0 15
8 5 5 1 - 0 0 15
8 7 5 4 - 0 16
9 7 8 + 0 0 16
9 7 8 + 0 0 16
9 1 8 - 0 0 16
9 2 8 1 8 - 0 0 16
9 2 1 8 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | 9.567+0.20
9.567+0.12
9.567+0.12
9.99+0.14
8.51+0.06
8.51+0.01
8.54+0.16
8.54+0.16
8.18+0.06
9.78+0.23
9.78+0.23
9.78+0.06
8.18+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.81+0.06
9.82+0.06
9.82+0.06
9.82+0.06
9.82+0.06
9.92+0.06
9.82+0.06
9.92+0.06
9.92+0.06
9.92+0.06
9.92+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.06
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.00
9.02+0.000
9.02+0.000
9.02+0.000
9.02+0.000000000000000000000000000000000 | $\begin{array}{c} 9.56 + 0.00 \\ 9.56 + 0.02 \\ 9.55 + 0.02 \\ 9.55 + 0.02 \\ 8.51 + 0.06 \\ 8.51 + 0.06 \\ 8.51 + 0.06 \\ 8.51 + 0.06 \\ 8.51 + 0.06 \\ 8.18 + 0.06 \\ 8.18 + 0.06 \\ 9.81 + 0.00 \\ 9.81 + 0.$ | 9.567+000
9.567+000
9.567+0013
9.595+0013
9.995+0014
8.511+00.05
8.511+00.05
8.511+00.05
8.512+00.05
8.18+00.05
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.03
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038
9.738+0.038 | $\begin{array}{c} 9.50+0.00\\ 9.50+0.05\\ 9.550+0.05\\ 9.550+0.05\\ 9.99+0.15\\ 8.51+0.05\\ 8.51+0.05\\ 8.54+0.15\\ 8.54+0.16\\ 8.54+0.06\\ 8.18+0.06\\ 9.18+0.06\\ 9.18+0.06\\ 9.18+0.06\\ 9.18+0.06\\ 9.28+0.07\\ 9.73+0.01\\ 9.73+0.07\\ 9.73+0.07\\ 9.78+0.02\\ 9.38+0.06\\ 9.38+0.06\\ 9.38+0.02\\
9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.38+0.02\\ 9.$ | $\begin{array}{c} 9.56 + 0.20\\ 9.56 + 0.02\\ 9.56 + 0.02\\ 9.56 + 0.05\\ 9.99 + 0.05\\ 8.51 + 0.05\\ 8.54 + 0.05\\ 8.54 + 0.05\\ 8.18 + 0.06\\ 8.18 + 0.02\\ 8.18 + 0.03\\ 9.81 + 0.03$ | $\begin{array}{c} 9.56 + 0.20\\ 9.56 + 0.05\\ 9.58 + 0.05\\ 9.99 + 0.14\\ 8.51 + 0.05\\ 8.51 + 0.05\\ 8.55 + 0.06\\ 8.55 + 0.06\\ 8.55 + 0.06\\ 8.18 + 0.06\\ 8.18 + 0.03\\ 9.73 + 0.07\\ 9.81 + 0.06$ | $\begin{array}{c} 9.36 + 0.02\\ 9.56 + 0.02\\ 9.56 + 0.02\\ 9.99 + 0.14\\ 8.51 + 0.05\\ 8.55 + 0.03\\ 8.55 + 0.04\\ 8.55 + 0.04\\ 8.54 + 0.06\\ 8.54 + 0.04\\ 9.78 + 0.03\\ 9.78 + 0.03\\ 9.78 + 0.04\\ 9.73 + 0.04\\ 9.23 + 0.04\\ 9.38 + 0.03$ | 9.56 + 0.00
9.56 + 0.00
9.551 + 0.05
9.99 + 0.14
8.51 + 0.05
8.51 + 0.05
8.51 + 0.05
8.54 + 0.05
9.78 + 0.03
9.73 + 0.04
9.73 + 0.04
9.73 + 0.04
9.73 + 0.03
10.28 + 0.03
10.23 + 0.03
10.23 + 0.03
10.23 + 0.03
10.25 +
 | $\begin{array}{c} 9.55+0.02\\ 9.55+0.02\\ 9.55+0.02\\ 9.99+0.14\\ 8.51+0.05\\ 8.51+0.05\\ 8.51+0.05\\ 8.54+0.05\\ 8.18+0.06\\ 9.18+0.06\\ 9.18+0.06\\ 9.18+0.06\\ 9.18+0.06\\ 9.18+0.06\\ 9.23+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.03\\ 9.28+0.00\\$ | $\begin{array}{c} 9.56 + 0.20\\ 9.56 + 0.20\\ 9.55 + 0.13\\ 9.55 + 0.15\\ 8.51 + 0.15\\ 8.51 + 0.15\\ 8.51 + 0.15\\ 8.51 + 0.15\\ 8.51 + 0.15\\ 8.51 + 0.05\\ 9.73 + 0.03\\ 9.73 + 0.03\\ 9.73 + 0.03\\ 9.73 + 0.03\\ 9.73 + 0.03\\ 9.73 + 0.03\\ 9.73 + 0.03\\ 9.73 + 0.03\\ 9.84 + 0.03\\ 9.84 + 0.03\\ 9.84 + 0.03\\ 9.85 + 0.03$ | $\begin{array}{c} 9.55 + 0.020\\ 9.550 + 0.020\\ 9.551 + 0.015\\ 8.51 + 0.015\\ 8.51 + 0.015\\ 8.51 + 0.015\\ 8.51 + 0.015\\ 8.52 + 0.015\\ 9.73 + 0.015\\ 9.73 + 0.015\\ 9.73 + 0.015\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.018\\ 9.73 + 0.017\\ 9.85 + 0.028\\ 9.85 + $ | $\begin{array}{c} 9.55 + 0.020\\ 9.550 + 0.020\\ 9.551 + 0.015\\ 8.51 + 0.015\\ 8.51 + 0.015\\ 8.51 + 0.015\\ 8.51 + 0.015\\ 8.52 + 0.015\\ 9.73 + 0.015\\ 9.73 + 0.015\\ 9.73 + 0.015\\ 9.73 + 0.015\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.017\\ 9.73 + 0.012\\ 9.73 + 0.012\\ 9.73 + 0.017\\ 9.25 + 0.023\\ 9.25 +
0.023\\ 9.25 + $ | $\begin{array}{c} 9.55 + 0.02\\ 9.55 + 0.02\\ 9.55 + 0.02\\ 9.55 + 0.02\\ 9.55 + 0.02\\ 8.51 + 0.05\\ 8.51 + 0.05\\ 8.51 + 0.05\\ 8.52 + 0.05\\ 8.18 + 0.06\\ 8.18 + 0.06\\ 9.73 + 0.01\\ 9.73 + 0.00\\ 9.73 + 0.00\\ 9.73 + 0.00\\ 9.73 + 0.00\\ 9.73 + 0.00\\ 10.22 + 0.02\\ 9.33 + 0.02\\ 9.33 + 0.02\\ 9.33 + 0.02\\ 9.33 + 0.02\\ 9.33 + 0.02\\ 9.33 + 0.02\\ 9.35 + 0.02\\ 9.5 + 0.02\\$ | $\begin{array}{c} 9.55 + 0.020\\ 9.55 + 0.020\\ 9.55 + 0.020\\ 9.55 + 0.015\\ 8.51 + 0.015\\ 8.51 + 0.015\\ 8.55 + 0.025\\ 9.75 + 0.025\\ 9.73 + 0.01\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.73 + 0.005\\ 9.74 + 0.0$ | $\begin{array}{c} 9.56 + 0.20\\ 9.56 + 0.13\\ 9.56 + 0.03\\ 9.55 + 0.03\\ 8.51 + 0.05\\ 8.51 + 0.05\\ 8.51 + 0.05\\ 8.51 + 0.05\\ 8.51 + 0.05\\ 8.51 + 0.05\\ 8.18 + 0.03\\ 8.18 + 0.03\\ 9.73 + 0.01\\ 9.73 + 0.01\\ 9.73 + 0.01\\ 9.73 + 0.01\\ 9.22 + 0.03\\ 9.23 + 0.17\\ 9.23 + 0.01\\ 9.23 + 0.03\\ 9.25 + 0.03\\ 9.24 + 0.00\\ 9.25 + 0.03\\ 9.24 + 0.00\\ 9.25 + 0.03\\ 9.24 + 0.00\\ 9.24 + 0.00\\ 9.25 + 0.03\\ 9.24 + 0.00$ | $\begin{array}{c} 9.56 + 0.20\\ 9.56 + 0.02\\ 9.56 + 0.02\\ 9.55 + 0.02\\ 9.55 + 0.02\\ 8.51 + 0.05\\ 8.51 + 0.05\\ 8.51 + 0.05\\ 8.51 + 0.05\\ 8.51 + 0.05\\ 8.18 + 0.06\\ 8.18 + 0.06\\ 8.18 + 0.06\\ 9.73 + 0.01\\ 9.73 + 0.01\\ 9.73 + 0.01\\ 9.73 + 0.01\\ 9.23 + 0.03\\ 9.24 + 0.03\\ 9.28 + 0.00\\ 9.28
+ 0.00\\ 9.28 + 0.00$ | $\begin{array}{c} 9.55+0.02\\ 9.55+0.02\\ 9.55+0.02\\ 9.55+0.02\\ 9.55+0.02\\ 8.51+0.06\\ 8.51+0.06\\ 8.51+0.06\\ 8.54+0.06\\ 8.18+0.06\\ 9.73+0.00\\ 9.73+0.00\\ 9.73+0.00\\ 9.73+0.00\\ 10.22+0.03\\ 9.73+0.00\\ 10.22+0.03\\ 9.38+0.03\\ 9.38+0.00\\ 10.23+0.12\\ 9.38+0.00\\ 9.38+0.$ | $\begin{array}{c} 9.56+0.00\\ 9.56+0.00\\ 9.56+0.00\\ 9.55+0.00\\ 8.51+0.06\\ 8.51+0.06\\ 8.50+0.06\\ 8.50+0.06\\ 8.55+0.06\\ 9.73+0.001\\ 9.73+0.001\\ 9.73+0.001\\ 9.73+0.001\\ 9.73+0.001\\ 9.73+0.001\\ 9.73+0.001\\ 9.73+0.001\\ 9.73+0.001\\ 9.73+0.001\\ 9.38+0.002\\ 9.16+0.002\\ 9.16+0.002\\ 9.16+0.002\\ 9.16+0.007\\ 8.98+0.001\\ 8.98+0.000\\ 8.98+0.001\\ 8.98+0.000\\ 8.98+0.0$ | 9.56 + 0.00
9.56 + 0.00
9.55 + 0.00
9.55 + 0.00
8.51 + 0.05
8.51 + 0.05
8.51 + 0.05
8.55 + 0.00
8.54 + 0.05
9.78 + 0.02
9.78 + 0.02
9.73 + 0.02
9.73 + 0.02
9.38 + 0.03
9.38 + 0.03
9.55 + 0.03
9.5 |
| log(Age/yr) | 7.60 ± 0.10 | 6.56-0.00 | 8.64 -0.31 | 8.74 -0.31 | 9.88+0.94 | $7.49_{-0.10}$ | 6.76+0.00 | 8.84-0.42 | 0.00_000
7_60+0.21 | 1.00-0.21 | 5.00+0.10 | 6 66+0.00 | 6.66+0.10 | 6.76+0.00 | 8.95+0.21 | 8.32+0.62 | 8.22+0.52 | $8.74_{-0.21}^{+0.21}$ | $9.99^{+0.83}_{-0.31}$ | 9.68 ± 0.51 | 8.32-0.31 | 9.10-0.00
2 20+0.21 | 6.76 ± 0.00 | | $9.05^{+0.52}$ | 9.05 ± 0.52
8.01 ± 0.21
8.01 ± 0.21
2.29 | $\begin{array}{c} 9.05 \substack{+0.52\\-1.25}\\ 8.01 \substack{+0.21\\-2.29}\\ 8.84 \substack{+0.42\\-2.29\\-1.46\end{array}\end{array}$ | $\begin{array}{c} 9.05 \pm 0.52\\ 8.01 \pm 1.25\\ 8.84 \pm 0.42\\ 8.84 \pm 1.46\\ 8.84 \pm 1.46\\ 8.84 \pm 1.46\\ 8.84 \pm 1.146\\ 8.84 \pm 1.146\\ 9.10\end{array}$ | 9.05+0.522
8.01+0.215
8.84+0.225
8.84+0.225
8.84+0.146
8.84+0.146
7.184+0.10
7.184+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.10
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.100
1.84+0.1000
1.84+0.100000000000000000000000000000000000 | 9.05+152
8.01+152
8.84+10-22
8.84+10-22
8.84+10-22
8.84+0-10
7.184+0-10
7.184-0-10
7.185
6.65+10-10
6.65+10-10
8.84+0-10
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.185
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195
7.195 | 9.05+1052
8.01+1022
8.01+1022
8.84+1046
8.84+1046
7.18+1010
7.18+1010
6.66+1056
6.66+1056
7.9210
7.28+0010
9.05+0010
7.28+0010 | $\begin{array}{c} 9.05 \pm 0.52 \\ 8.01 \pm 0.22 \\ 8.01 \pm 0.22 \\ 8.84 \pm 0.146 \\ 8.84 \pm 0.146 \\ 8.84 \pm 0.146 \\ 8.84 \pm 0.110 \\ 7.18 \pm 0.21 \\ 7.18 \pm 0.21 \\ 9.05 \pm 0.21 \\ 9.05 \pm 0.01 \\ 9.05 \pm 0.00 \\ 9.05 \pm 0.00 \\ 0.00 $ | $\begin{array}{c} 9.05 + 0.52 \\ 9.05 + 0.52 \\ 8.01 + 0.22 \\ 8.84 + 0.42 \\ 7.18 + 0.10 \\ 7.18 + 0.21 \\ 7.18 + 0.21 \\ 7.28 + 0.10 \\ 9.05 + 0.13 \\ 9.05 + 0.21 \\ 9.05 + 0.$ | $\begin{array}{c} 9.05 \pm 0.22\\ 9.05 \pm 0.22\\ 8.01 \pm 0.22\\ 8.84 \pm 0.122\\ 7.18 \pm 0.21\\ 7.18 \pm 0.21\\ 9.05 \pm 0.10\\ 9.05 \pm 0.21\\ 9.05 \pm 0.20\\ 9.02 \pm 0.2$ | 9.05+1052
8.01+022
8.01+022
8.84+0146
8.84+0146
7.18+021
6.66+1156
6.65+1056
6.55+021
7.28+002
7.28+002
6.55+002
7.28+002
7.28+002
8.53+002
8.53+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+002
7.56+000000000000000000000000000000000000 | $\begin{array}{c} 9.05 \pm 0.52 \\ 8.01 \pm 0.22 \\ 8.01 \pm 0.22 \\ 8.84 \pm 0.140 \\ 7.18 \pm 0.21 \\ 7.18 \pm 0.21 \\ 7.18 \pm 0.21 \\ 9.05 \pm 0.21 \\ 7.00 \pm 0.21 \\ 7.00 \pm 0.21 \\ 7.00 \pm 0.21 \\ 9.05 \pm 0.21 \\ 7.00 \pm 0$ | $\begin{array}{c} 9.05 \pm 0.52 \\ 8.01 \pm 0.22 \\ 8.84 \pm 0.140 \\ 7.18 \pm 0.110 \\ 7.18 \pm 0.110 \\ 7.18 \pm 0.110 \\ 6.55 \pm 0.110 \\ 9.05 \pm 0.100 \\ 9.05 \pm 0.100 \\ 7.28 \pm 0.100 \\ 9.05 \pm 0.221 \\ 7.60 \pm 0.221 \\ 7.80 \pm 0.221 \\ 7$ | $\begin{array}{c} 9.05 + 0.52 \\ 8.01 + 0.22 \\ 8.84 + 0.142 \\ 7.184 + 0.110 \\ 7.184 + 0.110 \\ 7.184 + 0.110 \\ 7.184 + 0.110 \\ 7.284 + 0.110 \\ 7.284 + 0.110 \\ 7.284 + 0.110 \\ 7.284 + 0.110 \\ 7.284 + 0.110 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.100 \\ 7.284 + 0.10$ | $\begin{array}{c} 9.05 \pm 0.52 \\ 8.01 \pm 0.22 \\ 8.01 \pm 0.22 \\ 8.84 \pm 0.140 \\ 7.18 \pm 0.21 \\ 7.18 \pm 0.21 \\ 9.05 \pm 0.10 \\ 9.05 \pm 0.10 \\ 9.05 \pm 0.01 \\ 10.20 \pm 0.02 \\ 10.20 \pm 0.02 \\ 10.20 \pm 0.02 \\ 10.20 \pm 0.02 \\ 10.22 \pm 0.01 \\ 8.53 \pm 0.01 \\ 0.05 \pm 0.02 \\ 10.22 \pm 0.02 $ | $\begin{array}{c} 9.05 + 0.52 \\ 8.01 + 0.22 \\ 8.01 + 0.22 \\ 8.84 + 0.140 \\ 7.18 + 0.110 \\ 7.18 + 0.110 \\ 8.53 + 0.110 \\ 9.55 + 0.211 \\ 9.55 + 0.211 \\ 9.55 + 0.211 \\ 9.55 + 0.221 \\ 9.55 + 0.221 \\ 9.55 + 0.221 \\ 9.55 + 0.221 \\ 8.53 + 0.221 \\ 8.53 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.$ | $\begin{array}{c} 9.05 \pm 0.1251\\ 8.01\pm 0.221\\ 8.01\pm 0.221\\ 7.18\pm 0.110\\ 7.18\pm 0.110\\ 7.18\pm 0.110\\ 7.28\pm 0.110\\ 7.28\pm 0.110\\ 7.28\pm 0.100\\ 7.28\pm 0.000\\ 9.55\pm 0.000\\ 9.55\pm 0.000\\ 9.55\pm 0.000\\ 9.55\pm 0.000\\ 9.55\pm 0.000\\ 9.55\pm 0.000\\ 10,20\pm 0.000\\ 10,20\pm 0.000\\ 8.53\pm 0.000\\ 8.55\pm 0.000\\ 8.55\pm 0.000\\ 8.55\pm 0.000\\ 10,20\pm 0.000\\ 8.55\pm 0.000\\ 10,20\pm 0.000\\ $ | $\begin{array}{c} 9.05 \pm 0.1221\\ 8.01\pm 0.221\\ 8.01\pm 0.221\\ 8.84\pm 0.110\\ 7.18\pm 0.211\\ 6.66\pm 0.110\\ 6.65\pm 0.10\\ 1.28\pm 0.211\\ 9.05\pm 0.00\\ 1.28\pm 0.211\\ 9.05\pm 0.00\\ 1.28\pm 0.211\\ 1.28\pm 0.211\\$ | $\begin{array}{c} 9.05 \pm 0.123\\ 8.01\pm 0.225\\ 8.01\pm 0.225\\ 8.01\pm 0.225\\ 8.84\pm 0.116\\ 7.18\pm 0.116\\ 7.18\pm 0.116\\ 7.28\pm 0.010\\ 9.05\pm 0.100\\ 7.60\pm 0.010\\ 9.05\pm 0.010\\ 7.60\pm 0.010\\ 7.80\pm 0.000\\ 7.80\pm 0.000\\ 8.53\pm 0.000\\ 7.80\pm 0.000\\ 8.53\pm 0.000\\ 8.55\pm 0.020\\ 8.55\pm 0.02$ | $\begin{array}{c} 9.05 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 7.18 + 0.110 \\ 7.18 + 0.110 \\ 7.18 + 0.110 \\ 7.18 + 0.110 \\ 8.5 + 0.110 \\ 7.6 + 0.110 \\ 7.6 + 0.211 \\ 7.6 + 0.211 \\ 7.6 + 0.211 \\ 7.6 + 0.211 \\ 7.6 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 + 0.221 \\ 8.5 +$ | $\begin{array}{c} 9.05 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 7.18 + 0.110 \\ 7.18 + 0.110 \\ 8.84 + 0.110 \\ 7.18 + 0.110 \\ 8.54 + 0.110 \\ 7.28 + 0.110 \\ 8.55 + 0.211 \\ 7.60 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 10.20 + 0.522 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 8.55 + 0.221 \\ 10.20 + 0.522 \\ 8.55 + 0.221 \\ 10.20 + 0.522 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\ 10.20 + 0.521 \\$ | $\begin{array}{c} 9.05 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 7.18 + 0.10 \\ 8.8 + 0.10 \\ 7.18 + 0.10 \\ 8.8 + 0.10 \\ 7.18 + 0.10 \\ 8.5 + 0.10 \\ 8.5 + 0.21 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.22 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\$ | $\begin{array}{c} 9.05 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 7.18 + 0.110 \\ 8.05 + 0.110 \\ 8.05 + 0.110 \\ 8.05 + 0.110 \\ 8.05 + 0.110 \\ 8.05 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20 + 0.020 \\ 10.20$ | $\begin{array}{c} 9.05 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 8.01 + 0.52 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.$ | $\begin{array}{c} 9.05 + 0.52 \\ 8.84 + 0.125 \\ 7.18 + 0.166 \\ 8.84 + 0.166 \\ 7.18 + 0.166 \\ 8.84 + 0.166 \\ 7.18 + 0.166 \\ 8.84 + 0.166 \\ 7.18 + 0.166 \\ 8.55 + 0.216 \\ 9.55 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 8.55 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.221 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.20 \\ 10.20 + 0.$ | $\begin{array}{c} 9.05 + 0.52 \\ 8.84 + 0.125 \\ 7.18 + 0.160 \\ 8.84 + 0.160 \\ 7.18 + 0.160 \\ 8.84 + 0.160 \\ 7.18 + 0.160 \\ 8.84 + 0.160 \\ 7.18 + 0.160 \\ 8.84 + 0.160 \\ 7.18 + 0.160 \\ 8.55 + 0.221 \\ 7.60 + 0.221 \\ 7.80 + 0.221 \\ 8.85 + 0.221 \\ 8.85 + 0.221 \\ 8.85 + 0.221 \\ 8.85 + 0.221 \\ 8.85 + 0.221 \\ 7.80 + 0.221 \\ 8.85 + 0.221 \\ 8.85 + 0.221 \\ 8.85 + 0.221 \\ 8.85 + 0.221 \\ 8.85 + 0.221 \\ 8.85 + 0.221 \\ 8.85 + 0.221 \\ 8.85 + 0.221 \\ 7.7 + 0.221 \\ 7.7 + 0.221 \\ 7.80 + 0.221 \\ 7.80 + 0.221 \\ 7.80 + 0.221 \\ 7.80 + 0.221 \\ 7.80 + 0.221 \\ 7.80 + 0.221 \\ 7.80 + 0.221 \\ 7.80 + 0.221 \\ 7.80 + 0.221 \\ 7.7 + 0.221 \\ 7.7 + 0.221 \\ 7.7 + 0.221 \\ 7.8 + 0.221 \\ 7.7 + 0.221 \\ 7.7 + 0.221 \\ 7.7 + 0.221 \\ 7.7 + 0.221 \\ 7.7 + 0.221 \\ 7.7 + 0.221 \\ 7.7 + 0.221 \\ 7.7 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7.8 + 0.221 \\ 7$ | $\begin{array}{c} 9.05 \pm 0.01 \pm 0.$ |
| E(B-V) | 0.14 ± 0.00 | $0.26_{-0.02}^{+0.00}$ | 0.10 + 0.02 | $0.34_{-0.02}^{+0.02}$ | 0.00 + 0.00 | $0.22_{-0.00}^{+0.00}$ | 0.66+0.02 | $0.16_{-0.02}$ | 0.24_0.02 | 0.00-002 | 0.50+0.04 | 0.58+0.02 | 0.56+0.00 | 0.26+0.00 | 0.04+0.00 | 0.18+0.02 | $0.12_{-0.06}^{+0.02}$ | $0.26_{-0.02}^{+0.02}$ | $0.24_{-0.00}^{+0.00}$ | 0.08+0.00 | 0.14+0.02 | 00.0+0.00 | 0.34 ± 0.04 | | 0.12 ± 0.00 | $0.12^{+0.00}_{-0.04}$
$0.32^{+0.12}_{-0.02}$ | $\begin{array}{c} 0.12 \substack{+0.00\\0.12 \substack{+0.04\\0.32 \substack{+0.12\\0.08 \substack{+0.02\\0.04\\0.04\end{array}}\end{array}}$ | $\begin{array}{c} 0.12 + 0.00 \\ 0.32 + 0.02 \\ 0.08 + 0.02 \\ 0.08 + 0.02 \\ 0.04 + 0.02 \\ 0.04 + 0.02 \\ 0.04 \\ 0.00 \end{array}$ | $\begin{array}{c} 0.12 \pm 0.00\\ 0.32 \pm 0.04\\ 0.32 \pm 0.02\\ 0.08 \pm 0.02\\ 0.00 \pm 0.02\\ 0.00 \pm 0.02\\ 0.02 \pm 0.02$ | $\begin{array}{c} 0.12 \pm 0.00\\ 0.32 \pm 0.00\\ 0.08 \pm 0.02\\ 0.08 \pm 0.02\\ 0.00 \pm 0.00\\ 0.02 \pm 0.00\\ 0.00 \pm 0.00$ | $\begin{array}{c} 0.12 \pm 0.02\\ 0.32 \pm 0.02\\ 0.08 \pm 0.02\\ 0.00 \pm 0.02\\ 0.02 \pm 0.02\\ 0.02 \pm 0.02\\ 0.02 \pm 0.02\\ 0.18 \pm 0.02\\ 0.18 \pm 0.02\\ 0.18 \pm 0.02\\ 0.02\end{array}$ | $ \begin{array}{c} 0.12 \\ 0.12 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0$ | $\begin{array}{c} 0.12 \pm 0.00\\ 0.32 \pm 0.00\\ 0.08 \pm 0.02\\ 0.00 \pm 0.00\\ 0.02 \pm 0.00\\ 0.28 \pm 0.00\\ 0.28 \pm 0.00\\ 0.18 \pm 0.00\\ 0.28 \pm 0.00$ | $\begin{array}{c} 0.12 \pm 0.02\\ 0.22 \pm 0.02\\ 0.02 \pm 0.02$ | $\begin{array}{c} 0.12 \pm 0.02\\ 0.22 \pm 0.02\\ 0.08 \pm 0.02\\ 0.08 \pm 0.02\\ 0.02 \pm 0.02$ | $\begin{array}{c} 0.12 \pm 0.02\\ 0.22 \pm 0.02\\ 0.08 \pm 0.02\\ 0.08 \pm 0.02\\ 0.02 \pm 0.02$ | $\begin{array}{c} 0.12 \pm 0.02\\ 0.22 \pm 0.02\\ 0.08 \pm 0.02\\ 0.08 \pm 0.02\\ 0.08 \pm 0.02\\ 0.01 \pm 0.02\\ 0.01 \pm 0.02\\ 0.02 \pm 0.02$ | $\begin{array}{c} 0.12 \\ 0.12 \\ 0.32 \\ +0.022 \\ 0.08 \\ +0.022 \\ 0.018 \\ +0.022 \\ 0.02 \\ +0.022 \\ 0.02 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ +0.022 \\ 0.028 \\ 0.028 \\ +0.022 \\ 0.028 \\ 0.028 \\ +0.022 \\ 0.028 \\ 0.028 \\ +0.028 \\ 0.028 \\ +0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0$ | $\begin{array}{c} 0.12 \pm 0.02\\ 0.22 \pm 0.02\\ 0.08 \pm 0.022\\ 0.08 \pm 0.022\\ 0.018 \pm 0.022\\ 0.02 \pm 0.0$ | $\begin{array}{c} 0.12 \pm 0.02\\ 0.22 \pm 0.02\\ 0.08 \pm 0.022\\ 0.08 \pm 0.022\\ 0.018 \pm 0.022\\ 0.02 \pm 0.0$ | $\begin{array}{c} 0.12 \pm 0.02\\ 0.22 \pm 0.02\\ 0.08 \pm 0.022\\ 0.08 \pm 0.022\\ 0.08 \pm 0.022\\ 0.018 \pm 0.022\\ 0.022 \pm 0.022\\ 0.022 \pm 0.022\\ 0.022 \pm 0.022\\ 0.024 \pm 0.022\\ 0.024 \pm 0.022\\ 0.024 \pm 0.022\\ 0.024 \pm 0.022\\ 0.028 \pm 0.028\\ 0.028 $ | $\begin{array}{c} 0.12 \pm 0.08\\ 0.22 \pm 0.022\\ 0.08 \pm 0.022\\ 0.02 \pm 0.0$ | $\begin{array}{c} 0.12 \\ 0.12 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.$ | $\begin{array}{c} 0.12 \\ 0.12 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.$ | $\begin{array}{c} 0.12 \\ 0.12 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.$ | $\begin{array}{c} 0.12\\ 0.22\\ 0.08\\ 0.08\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\$ | $\begin{array}{c} 0.12 \\ 0.12 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.$ | $\begin{array}{c} 0.12 \\ 0.12 \\ 0.08 \\ 0.08 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.0$ | $\begin{array}{c} 0.12 \\ 0.12 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.$ | $\begin{array}{c} 0.12 \pm 0.02\\ 0.22 \pm 0.02\\ 0.02 \pm 0.02$ | $\begin{array}{c} 0.12 \pm 0.02\\ 0.22 \pm 0.02\\ 0.00 \pm 0.02$ |
| z_{phot} | 1.50 | 3.05 | 1.90 | 1.50 | 2.25 | 1.50 | 1.60 | 1.70
2.05 | 0.00 | 2.00 | 1 20 | 1 50 | 1.50 | 1.50 | 2.70 | 2.95 | 1.70 | 1.85 | 1.55 | 2.30 | 1.50 | 1 90 | 20 6 | 1.2.1 | 2.10 | 2.10
1.50 | 2.10
2.10
3.15 | 2.10
2.10
3.15
1.50 | 2.10
2.10
3.15
1.50
2.45 | 2.10
2.10
3.15
2.45
2.45
2.30 | 2.10
2.10
1.50
1.50
2.45
2.45
2.45
2.30
1.70
 | 2.10
2.10
1.50
1.50
2.45
2.30
1.70
1.70
3.05 | 2.10
1.50
1.50
1.50
2.45
2.30
1.70
1.70
1.50
1.60 | 2.10
2.10
1.50
2.45
2.45
2.45
2.45
1.50
1.70
1.50
1.50 | 2.10
2.15
3.15
3.15
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1
 | 2.10
2.10
3.15
3.15
2.45
2.45
2.30
3.05
1.70
1.50
1.60
1.60
1.60
1.60 | 2.55
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1 | 2.30
2.10
2.15
2.15
2.45
2.45
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.5
 | 2.50
2.10
2.15
2.15
2.15
2.30
2.45
1.50
1.70
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.5 | 2.30
2.10
2.15
3.15
3.15
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1 | 2.30
2.10
2.15
1.50
1.50
1.50
1.50
1.50
1.50
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65 | 2.30
2.10
2.15
3.15
3.15
1.50
1.50
1.50
1.50
1.60
1.60
1.60
1.60
1.60
1.60
1.60
1.6
 | 2.30
2.10
2.15
3.15
3.15
1.50
1.50
1.50
1.50
1.50
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65 | 2.45
2.10
2.15
3.15
3.15
1.50
1.50
1.50
1.50
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65 | 2.10
2.15
2.15
3.15
3.15
1.50
1.50
1.50
1.50
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65 | 2.10
2.15
2.15
2.15
1.50
1.50
1.50
1.50
1.55
1.55
2.45
1.55
1.55
1.55
1.55
1.55
1.55
1.55
1
 | 2.10
2.15
2.15
2.15
2.15
1.50
1.50
1.50
1.50
1.65
2.85
1.65
2.85
1.65
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.8 | 2.10
2.15
2.15
2.15
2.15
1.50
1.50
1.50
1.50
1.55
1.55
1.55
1 | 2.10
2.15
2.15
2.15
2.15
1.50
1.50
1.50
1.55
1.55
2.45
1.55
1.55
2.45
1.55
2.45
2.85
2.45
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.8 | $\begin{array}{c} 2.22\\ 2.15\\ 2.15\\ 2.15\\ 2.15\\ 2.25\\
2.25\\ 2.25\\$ | 2.30
2.10
2.15
2.15
2.45
2.45
1.50
1.50
2.35
1.50
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85 |
| RVI | 26.37 | 23.02 | 25.25 | 25.24 | 25.51 | 26.40 | 24.38 | 26.00 | 06.02 | 20.02 | 23.61 | 20.02 | 0T-07 | 25.90 | 26.27 | 24.29 | 26.20 | 24.92 | 25.39 | 26.15 | 26.08 | 01.90 | 01.04 | · | 25.66 | 25.66
25.09 | 25.66
25.09
24.70 | 25.66
25.09
24.70
26.32 | 25.66
25.09
24.70
26.32
25.61 | 25.66
25.09
24.70
26.32
25.61
25.61 | 25.66
25.09
25.09
24.70
26.32
25.61
25.49
24.95
24.95
26.58
 | 25.66
25.66
24.70
26.32
25.61
25.61
25.61
25.63
26.58
26.58
23.34 | 25.66
25.66
25.60
25.61
25.61
25.49
25.49
25.58
26.58
26.58
24.95
23.34
24.92 | 25.66
25.66
24.70
25.61
25.61
25.61
25.61
25.53
25.58
24.95
23.34
25.58
25.66 |
25,66
25,66
25,66
25,61
25,65
25,61
25,66
25,49
26,58
26,58
26,58
25,66
25,66
25,66
25,66
25,66
25,66
25,66
25,66
25,66
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,67
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,57
25,577
25,577
25,577
25,577
25,577
25,577
25,577
25,5777
25,57777
25,57777777777 | 25.66
25.66
24.70
25.61
25.61
25.61
25.66
25.49
25.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.66
22.5.56
22.5.56
22.566
22.566
25 | $\begin{array}{c} 25.66\\ 225.66\\ 225.61\\ 225.61\\ 225.61\\ 225.62\\ 225.60\\ 225.66\\ 225.60\\ 225.92\\ 255.92\\ $ |
25.66
25.66
225.61
25.61
25.61
25.61
25.65
24.92
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.55
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45 | 25,66
25,66
25,66
25,61
25,61
25,65
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25,45
25, | 25,66
25,66
28,30
28,32
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,56
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,566
28,5666
28,5666
28,5666
28,5666
28,5666
28,5666
28,5666
28,5666
28,5666
28,56666
28,56666
28,56666
28,566666666
28,5666666666666666666666666666666666666 | $\begin{array}{c} 25.66\\ 225.66\\ 225.66\\ 225.61\\ 225.65\\ 225.66\\ 225.66\\ 225.43\\ 225.66\\ 225.43\\ 225.43\\ 225.43\\ 225.43\\ 225.43\\ 225.43\\ 225.43\\ 225.45\\ 225.45\\ 225.45\\ 225.45\\ 225.45\\ 225.54\\ 225.54\\ 225.54\\ 225.54\\ 225.54\\ 225.55\\ 225.54\\ 225.55\\
225.55\\ $ | $\begin{array}{c} 25.66\\ 24.70\\ 25.66\\ 225.61\\ 225.65\\ 225.66\\ 225.66\\ 225.43\\ 225.66\\ 225.43\\ 225.43\\ 225.43\\ 225.43\\ 225.54\\ 225.54\\ 225.54\\ 225.54\\ 225.54\\ 225.54\\ 225.55\\ 225.54\\ 225.55\\ 22$ | $\begin{array}{c} 25.66\\ 24.70\\ 25.66\\ 24.92\\ 25.61\\ 225.66\\ 225.66\\ 225.66\\ 225.66\\ 225.74\\ 225.66\\ 225.74\\ 225.74\\ 225.74\\ 225.74\\ 225.74\\ 225.76\\ 225.74\\ 225.76\\ 225.74\\ 225.76\\ 225.74\\ 225.76\\ 225.74\\ 225.76\\ 225.$ | $\begin{array}{c} 25.66\\ 24.70\\ 25.66\\ 24.70\\ 25.61\\ 225.66\\ 225.66\\ 225.66\\ 225.66\\ 225.74\\ 225.74\\ 225.74\\ 225.74\\ 225.74\\ 225.76\\ 225.74\\ 225.76\\ 225.$ | $\begin{array}{c} 25.66\\ 25.66\\ 225.66\\ 225.66\\ 225.66\\ 225.66\\ 225.66\\ 225.66\\ 225.74\\ 225.66\\ 225.74\\ 225.74\\ 225.76\\ 225.76\\ 225.76\\ 225.76\\ 225.76\\ 225.76\\ 225.76\\ 225.76\\ 225.76\\ 225.76\\ 225.76\\ 225.76\\ 225.76\\ 225.76\\
225.76\\ 2$ | $\begin{array}{c} 25.66\\ 25.66\\ 25.66\\ 225.66\\ 225.66\\ 225.66\\ 225.66\\ 225.66\\ 225.74\\ 225.66\\ 225.74\\ 225.74\\ 225.74\\ 225.74\\ 225.76\\ 22$ | $\begin{array}{c} 25.66\\ 24.70\\ 25.66\\ 225.66\\ 225.66\\ 225.66\\ 225.54\\ 225.66\\ 225.54\\ 225.54\\ 225.54\\ 225.54\\ 225.54\\ 225.26\\ 225.22\\ 225.04\\ 225.22\\ 225.24\\ 225.25\\ 22$ | $\begin{array}{c} 25.66\\ 24.70\\ 25.66\\ 24.70\\ 25.66\\ 22.56\\ 22$
 | $\begin{array}{c} 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.56\\ 25$ | $\begin{array}{c} 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.56\\ 25$ | $\begin{array}{c} 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.56\\ 25$ |
| ID | e | 147 | 156 | 172 | 177 | 201 | 356 | 401 | 420 | 430 | 441 | 70F | 475 | 481 | 650 | 715 | 720 | 726 | 579 | 262 | 818 | 624
876 | 878 | 2 | 1029 | 1029
1089 | 1029
1089
1102 | 1029
1089
1102
1159 | $ \begin{array}{c} 1029\\ 1089\\ 1102\\ 1159\\ 1191\\ \end{array} $ | 1029
1089
1189
1159
1191
1191 | 1029
1089
1102
1159
1159
1191
1191
1195
1228
 | 1029
1089
1102
1159
1159
1191
1195
1228
1228
1239 | 1029
1089
1159
1159
1191
1195
1228
1228
1228
1239
1239 | 1029
1089
1159
1159
1159
1191
1191
1228
1228
1239
1239
1267
1239 | 1029
1089
1102
1159
1159
1159
1151
1287
1286
1287
1286
1286
1286
1286
1287
1286
1287
1286
1287
1286
1287
1286
1286
1286
1286
1286
1286
1286
1286
 | 1029
1089
1102
1159
1159
1191
1195
11267
1228
1228
1267
1267
1267
1267
1267
1267
1267
1267 | 1029
1089
1102
1159
1151
1151
1155
11239
1239
1239
1239
1241
1441
1451
1451
1457
1478 | 1029
1089
1159
1159
1191
1191
1191
1228
1239
1239
1239
1239
1239
1241
1471
1471
1471
1478
1484
 | 1029
1089
1102
1159
1191
1195
1195
1195
1228
1228
1239
1267
1441
1451
1451
1451
1451
1453
1458
1458
1458
1458
1458
1458
1458
1458 | 1029
1029
1159
1159
1151
1191
1195
1195
1228
1228
1267
1441
1441
1441
1441
1451
1442
1442
1442 | 1029
1029
1159
1159
1156
1191
1195
1195
1195
1441
1441
1441
1441 | 1029
1029
1159
1159
1159
11528
1191
1195
1195
1441
1441
1441
1441
1443
1443
1443
144
 | 1029
1089
1159
1159
1151
1191
1195
11267
1267
1467
1467
1467
1467
1478
1467
1482
1467
1482
1482
1482
1482
1482
1488
1555
1555
1556 | 1029
1089
1102
1159
1191
1195
1195
1228
1228
1228
1245
1441
1451
1451
1453
1458
1458
1482
1482
1482
1482
1482
1482
1488
1555
1555
1556
1556
1556
1556
1557
1558
1558
1558
1558
1558
1558
1558 | 1029
1089
1159
1159
1151
1155
1155
1228
1228
1267
1451
1451
1451
1452
1467
1482
1482
1482
1482
1482
1482
1482
1482 | 1029
1029
1159
1159
1159
1151
1155
1267
1267
1467
1467
1467
1467
1467
1467
1478
1467
1478
1467
1478
1478
1478
1478
1478
1478
1458
1555
1556
1556
1556
1556
1556
1556
15
 | 1029
1029
1159
1159
1159
11528
1267
1267
1267
1441
1467
1467
1467
1478
1467
1482
1482
1467
1482
1482
1482
1482
1488
1488
1555
1555
1555
1556
1558
1558
1558
15 | 1029
1029
1159
1159
1159
1150
1150
1267
1267
1441
1451
1467
1467
1482
1467
1482
1482
1467
1482
1482
1482
1482
1482
1488
1555
1555
1556
1556
1558
1558
1558
15 | 1029
1029
1159
1159
1159
1150
1155
1228
1228
1256
1451
1451
1451
1452
1452
1452
1452
1452 | 1029
1029
1159
1159
1159
1150
1228
1228
1267
1257
1451
1451
1451
1452
1452
1452
1452
1453
1453
1453
1555
1555
1555
1558
1558
1558
1558
15
 | 1029
1029
1159
1159
1159
1156
1239
1257
1366
1451
1451
1451
1451
1452
1452
1473
1555
1553
1556
1558
1558
1558
1558
1558
1558
1558 |

Table A.2: Best-fit parameters for this work's HDF-S catalog, 700 Myr e-folding exponential SFR.

.

ſ	ID	\mathcal{R}_{VI}	Zphot	E(B - V)	$\log(Age/yr)$	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2]
ľ	2192	26.46	2.70	0.00+0.00	8.64+0.10	8.72+0.08	$0.29^{+0.02}$	35.89	1
	2207	25.00	2.45	$0.06^{+0.02}$	$8.84^{+0.10}$	$9.60^{+0.05}$	$1.04^{+0.10}_{-0.00}$	32.85	
	2306	25 77	2 75	$0.10^{+0.02}$	$843^{+0.21}$	$9.24^{+0.10}$	$0.97^{+0.09}$	64.53	ł
	2361	25 30	2.65	$0.02^{\pm 0.02}$	$8.64^{\pm 0.10}$	$9.25^{+0.09}$	$0.82^{\pm 0.08}$	6.36	
	2367	25.71	2.55	0.02_0.00	8 53+0.42	0.13 ± 0.13 0.13 ± 0.18	$0.78^{+0.06}$	18 71	
	2301	20.11	2.00	$0.00_{-0.04}$	$6.56^{+0.10}$	$0.71^{+0.07}$	2.17 ± 0.03	96.47	
	2309	24.01	2.00	$0.34_{-0.08}$	$6.00_{-0.00}$	9.71 - 0.19 8 11 + 0.01	$\frac{5.17-0.62}{1.15+0.55}$	6 1 1	
	2560	20.08	1.50	$0.20_{-0.02}$	$0.97_{-1.35}$	8.11 ± 0.75 0.11 \pm 0.15	$1.15_{-0.16}$. 0.11	
	2070	25.90	1.95	$0.08_{-0.02}$	0.04 - 1.46	$9.11_{-0.11}$	$0.55_{-0.12}$	0.31	
	2597	20.50	2.95	$0.00_{-0.12}$	$0.87_{-0.62}$	$(.4)_{-0.45}$	$0.62_{-2.50}$	1.10	
	2661	26.46	1.60	$0.00_{-0.00}^{+0.00}$	$8.95_{-0.00}$	$8.50_{-0.04}$	$-0.05_{-0.05}$	137.93	
	2728	24.56	1.70	$0.16_{-0.02}$	$8.64_{-0.21}$	$9.66_{-0.08}$	$1.23_{-0.14}$	14.23	
	2747	26.50	1.50	$0.44_{-0.04}$	$6.66_{-0.00}$	$8.37_{-0.14}$	$1.72_{-0.24}$	49.44	
	2763	25.91	1.70	$0.06_{-0.06}$	$8.32_{-0.31}$	$8.59_{-0.08}$	$0.40^{+0.30}_{-0.31}$	204.82	
	2765	26.36	1.50	$0.24_{-0.02}^{+0.10}$	$6.97_{-1.46}$	$7.94^{+0.01}_{-0.82}$	$0.98_{-0.11}$	14.50	
	2784	25.79	1.50	$0.08^{+0.00}_{-0.00}$	$9.68_{-0.62}$	$9.15_{-0.03}$	$0.40^{+0.00}_{-0.03}$	106.70	
·	2799	26.59	2.45	$0.08^{+0.00}_{-0.00}$	$9.36_{-0.94}^{+0.21}$	$9.15_{-0.02}^{+0.00}$	$0.43^{+0.01}_{-0.00}$	378.46	l
	2817	26.04	2.05	$0.32^{+0.00}_{-0.06}$	$6.66^{+0.42}_{-0.00}$	8.48+0.03	$1.83^{+0.03}_{-0.70}$	24.53	
	2837	25.41	1.60	$0.30^{+0.04}_{-0.04}$	$6.97^{+0.10}_{-0.21}$	$8.55^{+0.06}_{-0.15}$	$1.60^{+0.08}_{-0.20}$	7.54	
	2849	25.15	2.45	$0.18^{+0.00}_{-0.02}$	$8.84_{-0.00}^{+0.21}$	$9.95^{+0.05}_{-0.02}$	$1.39^{+0.02}_{-0.08}$	24.10	
	2889	25.21	2.50	$0.20^{+0.06}_{-0.02}$	$6.87^{+0.10}_{-0.62}$	$8.65^{+0.05}_{-0.23}$	$1.79^{+0.38}_{-0.14}$	5.98	
	2913	23.43	2.70	$0.22^{+0.06}_{-0.04}$	$7.80^{+0.42}_{-0.52}$	$10.13^{+0.18}_{-0.21}$	$2.39^{+0.25}_{-0.21}$	7.06	
	2958	25.82	2.55	$0.08^{+0.00}_{-0.00}$	$10.20^{+1.14}_{-0.10}$	$9.55^{+0.09}_{-0.02}$	$0.81^{+0.04}_{-0.02}$	16.31	
	3043	23.09	2.75	$0.22^{+0.04}_{-0.16}$	$7.08^{+1.98}_{-0.42}$	$9.76^{+0.10}_{-0.40}$	$2.70^{+0.22}_{-2.64}$	8.92	
	3098	25.83	1.60	$0.40^{+0.14}_{-0.02}$	$5.72^{+0.62}_{-1.14}$	$8.74_{-0.08}^{+0.53}$	$3.07^{+1.72}_{-0.95}$	2.20	
	3127	24.50	1.85	$0.32^{+0.02}_{-0.02}$	$8.74_{-0.31}^{+0.21}$	$10.33_{-0.08}^{+0.23}$	$1.84^{+0.23}_{-0.11}$	6.38	
	3166	25.59	1.90	$0.20^{+0.04}_{-0.22}$	$8.43^{+1.56}_{-0.42}$	$9.33^{+0.59}_{-0.18}$	$1.06^{+0.28}_{-0.83}$	42.83	
	3169	26.52	1.50	$0.32^{+0.06}_{-0.06}$	$6.87^{+0.21}_{-0.21}$	$8.05_{-0.17}^{+0.02}$	$1.19^{+0.12}_{-0.35}$	45.19	
	3217	26.59	1.95	$0.10^{+0.00}_{-0.04}$	$9.16^{+0.62}_{-1.14}$	$9.00^{+0.28}_{-0.13}$	$0.32^{+0.03}_{-0.17}$	40.60	
	3321	26.30	2.55	$0.36\substack{+0.02\\-0.04}$	$6.56^{+1.46}_{-0.00}$	$8.74^{+0.05}_{-0.22}$	$2.19^{+0.05}_{-1.97}$	10.95	
	3330	26.18	1.50	$0.16^{+0.02}_{-0.04}$	$8.84^{+0.31}_{-1.46}$	$9.00^{+0.07}_{-0.44}$	$0.44^{+0.08}_{-0.49}$	136.78	
	3397	26.57	1.85	$0.08^{+0.00}_{-0.04}$	$8.64^{+0.31}_{-0.10}$	$8.68^{+0.10}_{-0.11}$	$0.25^{+0.09}_{-0.18}$	22.18	
	3407	25.96	1.50	$0.26^{+0.00}_{-0.02}$	$7.39^{+0.21}_{-0.00}$	$8.38^{+0.07}_{-0.00}$	$1.03^{+-0.00}_{-0.13}$	38.08	
	3419	26.05	1.50	$0.14^{+0.00}_{-0.02}$	$10.30^{+1.35}_{-0.00}$	$9.20^{+0.07}_{-0.03}$	$0.45^{+0.00}_{-0.09}$	6.44	
	3554	26.47	1.80	$0.02^{+0.02}_{-0.04}$	$8.64^{+0.31}_{-0.21}$	$8.50^{+0.14}_{-0.10}$	$0.08^{+0.14}_{-0.20}$	55.70	
	3560	25.95	1.60	$0.08^{+0.02}_{-0.00}$	$9.05^{+0.10}_{-1.25}$	$9.04^{+0.10}_{-0.11}$	$0.38^{+0.09}_{-0.10}$	28.53	
	3625	26.28	1.60	$0.56\substack{+0.00\\-0.02}$	$6.66^{+0.00}_{-0.00}$	$8.88^{+0.07}_{-0.00}$	$2.23^{+0.07}_{-0.00}$	48.78	
ļ	3639	25.13	3.00	$0.22\substack{+0.00\\-0.00}$	$9.05^{+0.10}_{-1.25}$	$10.38^{+0.04}_{-0.07}$	$1.73^{+0.03}_{-0.00}$	27.77	ļ
	3666	25.93	1.85	$0.06\substack{+0.00\\-0.02}$	$8.74_{-0.10}^{+0.21}$	$8.94^{+0.09}_{-0.06}$	$0.44^{+0.09}_{-0.09}$	33.28	
	3689	26.16	2.45	$0.08^{+0.02}_{-0.06}$	$8.64^{+0.73}_{-0.42}$	$9.06^{+0.32}_{-0.18}$	$0.63^{+0.08}_{-0.28}$	102.72	
	3782	25.43	1.85	$0.10^{+0.02}_{-0.00}$	$8.74^{+0.10}_{-0.21}$	$9.26^{+0.07}_{-0.04}$	$0.77^{+0.07}_{-0.03}$	112.21	
	3789	26.42	1.50	$0.34_{-0.00}^{+0.02}$	$6.76^{+0.00}_{-0.00}$	$8.16^{+0.06}_{-0.06}$	$1.40^{+0.06}_{-0.06}$	104.31	
	3795	25.94	2.25	$0.26\substack{+0.24 \\ -0.04}$	$7.39^{+0.31}_{-2.91}$	$8.73_{-0.81}^{+0.33}$	$1.38^{+0.60}_{-0.21}$	214.88	
	3808	24.78	3.05	$0.20^{+0.00}_{-0.04}$	$9.05^{+0.52}_{-1.25}$	$10.49^{+0.19}_{-0.09}$	$1.83^{+0.03}_{-0.14}$	5.92	
	59	25.81	2.95	$0.16^{+0.10}_{-0.06}$	$6.87^{+0.21}_{-1.14}$	$8.39^{+0.02}_{-0.44}$	$1.54_{-0.34}^{+0.62}$	13.55	
	69	25.82	1.50	$0.34\substack{+0.04\\-0.02}$	$6.76^{+0.10}_{-0.10}$	$8.36^{+0.07}_{-0.12}$	$1.61^{+0.17}_{-0.22}$	112.30	
	73	26.47	1.50	$0.14\substack{+0.14 \\ -0.04}$	$7.39^{+0.31}_{-1.46}$	$7.83^{+0.13}_{-0.97}$	$0.48^{+0.25}_{-0.26}$	8.12	
	100	25.97	2.25	$0.40^{+0.04}_{-0.00}$	$6.56^{+0.10}_{-0.00}$	8.86+0.07	$2.31^{+0.07}_{-0.24}$	105.58	
	190	25.76	1.50	$0.22^{+0.02}_{-0.02}$	$7.39^{+0.21}_{-0.10}$	$8.36^{+0.07}_{-0.13}$	$1.01^{+0.09}_{-0.13}$	60.62	
	203	25.80	2.10	$0.14^{+0.00}_{-0.02}$	$8.95^{+0.31}_{-0.00}$	$9.45^{+0.13}_{-0.00}$	$0.84^{+0.05}_{-0.07}$	70.68	1
	207	25.26	1.70	$0.40^{+0.02}_{-0.18}$	$8.32^{+1.35}_{-0.10}$	$9.89^{+0.51}_{-0.13}$	$1.70^{+0.07}_{-0.76}$	54.22	
[242	25.91	2.05	$0.38^{+0.00}_{-0.02}$	$6.87^{+0.10}_{-0.00}$	8.78+0.03	$1.93^{+0.03}_{-0.17}$	111.81	
	288	25.09	2.45	$0.40\substack{+0.02\\-0.04}$	$6.76\substack{+0.10\\-0.10}$	$9.35^{+0.09}_{-0.07}$	$2.59^{+0.19}_{-0.17}$	2.77	
	296	25.59	3.65	$0.10\substack{+0.04\\-0.00}$	$6.45^{+0.31}_{-0.10}$	$8.40^{+0.18}_{-0.03}$	$1.96^{+0.29}_{-0.35}$	119.00	
	310	26.06	2.45	$0.00\substack{+0.00\\-0.00}$	$7.49^{+0.10}_{-0.00}$	$7.91^{+0.07}_{-0.00}$	$0.47^{+0.00}_{-0.02}$	303.12	
	313	25.64	1.85	$0.08\substack{+0.00\\-0.02}$	$8.84^{+0.21}_{-0.10}$	$9.18^{+0.06}_{-0.05}$	$0.62^{+0.02}_{-0.10}$	153.68	
	328	25.49	2.45	$0.04\substack{+0.02\\-0.02}$	$7.08^{+0.21}_{-0.21}$	$8.02^{+0.04}_{-0.08}$	$0.97^{+0.14}_{-0.16}$	180.93	
	339	24.91	2.35	$0.16\substack{+0.00\\-0.00}$	$6.56\substack{+0.00\\-0.00}$	$8.51^{+0.03}_{-0.03}$	$1.96^{+0.03}_{-0.03}$	65.62	
	448	25.60	2.75	$0.24^{+0.06}$	$7.91^{+0.21}$	$9.42^{+0.08}$	$1.59^{+0.23}_{-0.11}$	3.85	1

Table A.2: Best-fit parameters for this work's HDF-S catalog, 700 Myr e-folding exponential SFR.

ID	\mathcal{R}_{VI}	z_{phot}	$E(B-\overline{V})$	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
464	25.68	2.95	$0.18^{+0.00}_{-0.02}$	$8.74^{+0.21}_{-0.00}$	$9.82^{+0.08}_{-0.00}$	$1.33^{+0.02}_{-0.06}$	71.85
470	25.97	2.75	$0.36^{+0.02}_{-0.06}$	$6.56^{+1.46}_{-0.00}$	$8.96^{+0.03}_{-0.22}$	$2.42^{+0.03}_{-1.97}$	24.14
480	26.11	2.60	$0.14^{+0.02}_{-0.00}$	$8.95^{+0.10}_{-1.35}$	$9.54_{-0.10}^{+0.07}$	$0.93_{-0.02}^{+0.10}$	62.99
520	26.31	2.30	$0.38^{+0.02}_{-0.00}$	$6.56^{+0.00}_{-0.00}$	$8.66^{+0.03}_{-0.02}$	$2.12^{+0.03}_{-0.02}$	131.13
533	25.69	2.30	$0.38^{+0.00}_{-0.00}$	$6.56^{+0.00}$	$8.92^{+0.02}$	$2.37^{+0.02}_{-0.02}$	137.39
542	26.10	1.50	$0.42^{+0.02}$	$6.66^{+0.10}_{-0.00}$	8.44+0.00	$1.79^{+-0.02}$	131.85
544	26.46	1.50	$0.40^{+0.00}$	$6.66^{+1.56}$	8.25+0.00	$1.60^{+-0.25}$	136.36
570	26.25	2.35	$0.32^{+0.06}$	$6.56^{+0.00}$	$8.51^{+0.14}$	$1.96^{+0.25}$	170.34
572	25.78	1.50	$0.42^{+0.00}$	$6.66^{+0.00}$	$8.60^{+0.00}$	$1.95^{+-0.00}$	165.62
579	25.66	1.65	$0.46^{+0.00}$	$6.66^{+0.00}$	8.85 ^{+0.00}	$2.20^{+-0.00}$	198.64
590	26.00	1.50	$0.12^{+0.02}$	$9.05^{\pm 0.00}_{\pm 0.21}$	$885^{+0.04}$	$0.20^{+0.06}$	362.44
639	25.98	2.80	$0.12_{-0.02}$ $0.48^{+0.04}$	$6.56^{+1.25}$	$9.41^{\pm0.13}$	$2.86^{\pm 0.23}$	6.40
649	26.50	2.00	$0.10_{-0.02}$ $0.28^{+0.04}$	$7.70^{+0.21}$	$8.80^{+0.10}$	1.00 - 1.95 1.25 + 0.19	63 39
665	25.50	2.40	$0.20_{-0.02}$ $0.46^{+0.04}$	$6.35^{+0.21}$	$9.60^{+0.11}_{-0.17}$	$327^{\pm 0.38}$	12.81
673	25.50	2.00	0.40 - 0.00 $0.42^{+0.04}$	$6.56^{+0.21}_{-0.46}$	$9.37^{+0.13}$	$\begin{array}{c} 0.21 - 0.24 \\ 2.82 + 0.23 \end{array}$	0.22
602	25.55	1.50	$0.42_{-0.04}$	0.00 - 0.10 0.88 + 0.94	$0.72^{+0.22}$	0.07 ± 0.00	15 74
701	20.10	2.05	$0.20_{-0.02}$ 0.14 ± 0.00	$10.20^{+0.31}$	$10.04^{\pm0.00}$	$1.20^{+0.00}$	164.01
746	20.52	2.30	$0.14_{-0.00}$	$6.45^{+1.35}$	$0.04_{-0.00}$	283+0.21	10 32
140	20.07	2.00	$0.44_{-0.02}$	$10.09^{+0.10}_{-0.10}$	$10.44^{\pm0.06}$	2.03 - 1.78 1.69 $+0.06$	19.02
871	20.01	3.00	$0.02_{-0.00}$	$0.03_{-0.21}$	10.44 - 0.03 10.06 + 0.06	1.03 - 0.03 1.31 + 0.00	5.88
072	20.40	2 45	0.14_0.00	$728^{+0.31}$	$874^{\pm0.02}$	$1.01_{-0.03}$ $1.49^{+0.42}$	18 72
1047	20.40	3 20	0.00 - 0.04 $0.00^{+0.00}$	$7.18^{+0.42}$	$7.84^{+0.17}$	$0.68^{\pm0.17}$	144.38
1106	26.15	2.60	$0.00_{-0.06}$	$6.76^{+0.73}$	0 27 ^{+0.04}	$252^{\pm 0.14}$	35.84
1100	20.00	2.00	0.08 ^{+0.00}	$10.09^{\pm0.10}$	$10.10^{+0.06}$	$1.02_{-0.39}$ $1.44^{+0.02}$	3.51
1100	24.11	2 35	$0.03_{-0.00}$	$6.76^{+0.10}$	$847^{\pm 0.13}$	$1.72^{+0.02}$	115 23
1124	20.41	1.85	$0.32_{-0.04}$ $0.36^{+0.04}$	$6.66^{+0.00}$	$834^{+0.14}$	$1.69^{\pm 0.16}$	127 74
1225	26.52	3.25	0.00 ± 0.02	$8.64^{\pm 0.10}$	$8.80^{+0.15}$	$0.37^{+0.02}$	57 74
1220	20.00	1.50	$0.00_{-0.00}$	$7.49^{+0.10}$	$8.46^{+0.07}$	$1.01^{+0.02}$	467 35
1403	26.34	3 45	0.20 ± 0.00 0.04 ± 0.02	$9.26^{+0.31}$	$9.41^{\pm 0.10}$	$0.70^{+0.08}$	56.05
1471	26.54	2.55	$0.04_{-0.00}$	$8.84^{+0.21}$	9.41 - 0.03 $9.44^{+0.10}$	$0.89^{\pm 0.05}$	38 49 -
1473	25.78	1.65	$0.30^{+0.00}$	$8.95^{+0.10}$	$9.75^{+0.04}$	$1.14^{+-0.08}$	48.57
1501	25.94	3.05	$0.38^{+0.30}$	$6.45^{+1.35}$	$9.17^{+0.11}$	$2.73^{+1.68}$	131.74
1523	25.86	2.20	$0.38^{+0.06}$	$6.56^{+0.31}$	$8.82^{+0.11}$	$2.27^{+0.11}$	49.40
1527	26.37	2.55	$0.12^{+0.00}$	$9.88^{+0.83}$	$9.48^{+0.09}$	$0.73^{+0.02}$	87.36
1540	25.86	1.60	$0.42^{+0.04}$	$7.18^{+0.10}$	$8.85^{+0.07}$	$1.69^{+0.18}$	174.82
1543	25.04	1.70	$0.30^{+0.02}$	$8.64^{+0.21}$	$9.89^{+0.14}$	$1.46^{+0.14}$	14.91
1551	26.54	1.85	$0.34^{+0.02}$	$8.95^{+0.10}$	$9.69^{+0.18}$	$1.08^{+0.20}$	44.70
1572	25.99	1.50	$0.56^{+0.16}$	$5.10^{+0.00}$	$9.06^{+0.32}$	$4.26^{+2.17}$	54.98
1585	26.27	1.50	$0.60^{+0.00}$	$5.20^{+0.10}$	$9.08^{+0.05}$	$4.09^{+1.29}$	139.44
1590	26.06	1.70	$0.22^{+0.02}$	$8.74^{+0.00}$	$9.31^{+0.09}$	$0.81^{\pm 0.22}_{-0.22}$	35.97
1593	25.52	1.50	$0.48^{+0.00}$	$10.20^{+1.14}$	$10.40^{+0.03}$	$1.66^{+0.00}$	162.59
1647	25.44	1.70	$0.14^{+0.02}$	8.74 ^{+0.10}	$9.31^{+0.03}_{-0.03}$	$0.82^{+0.03}$	32.39
1676	25.94	1.70	$0.14^{+0.02}$	$8.74^{+0.21}$	$9.11^{+0.08}$	$0.62^{+0.10}_{-0.14}$	9.01
1696	26.55	2.50	$0.12^{+0.02}$	$8.84^{+0.31}$	$9.18^{+0.12}_{-0.12}$	$0.63^{+0.08}_{-0.08}$	42.84
1699	26.53	2.80	$0.42^{+0.04}$	$5.72^{+0.62}$	$9.07^{+0.22}_{-0.03}$	$3.40^{+1.10}_{-0.00}$	98.81
1739	25.04	2.95	$0.12^{+0.02}_{-0.02}$	$8.64^{+0.00}$	$9.80^{+0.03}_{-0.12}$	$1.38^{+0.08}_{-0.08}$	8.69
1863	25.24	1.65	$0.32^{+0.02}$	$8.74^{+0.21}$	$9.90^{+0.11}_{-0.10}$	$1.41^{+0.18}_{-0.11}$	27.31
1881	25.15	2.60	$0.12^{+0.02}$	$10.20^{+0.83}_{-0.10}$	9.98 + 0.02	1.23 + 0.02	11.59
1908	26.01	3.10	$0.14^{+0.04}$	$8.64^{+1.25}_{-1.66}$	$9.50^{+0.48}_{-0.25}$	$1.08^{+0.14}_{-0.50}$	80.12
1915	26.55	2.75	$0.02^{+0.14}_{-0.00}$	$10.09^{+0.94}$	9.07 + 0.06	$0.32^{+0.02}_{-0.06}$	63.04
1926	25.69	2.55	$0.38^{+0.04}_{-0.02}$	$8.43_{-0.42}^{+0.21}$	$10.21_{-0.15}^{+0.11}$	$1.93_{-0.09}^{+0.16}$	6.57
1954	26.00	2.40	0.08 + 0.00	$9.68_{-0.62}^{+0.52}$	$9.42^{+0.07}_{-0.04}$	$0.68_{-0.04}^{+0.04}$	14.18
1960	26.23	2.40	$0.44^{+0.10}_{-0.04}$	$6.56^{+1.46}_{-0.52}$	$8.97_{-0.24}^{+0.24}$	$2.43^{+0.69}_{-1.99}$	32.76
2021	26.47	2.45	0.42 + 0.00	$6.56_{-0.00}^{+0.00}$	$8.80^{+0.00}_{-0.05}$	$2.25^{+0.00}_{-0.05}$	209.10
2025	25.67	1.50	0.66+0.04	$6.56_{-0.10}^{+0.00}$	$9.27_{-0.00}^{+0.14}$	$2.72_{-0.00}^{+0.24}$	219.03
2030	25.66	3.15	0.00+0.00	$8.64_{-0.10}^{+0.52}$	$9.15_{-0.06}^{+0.19}$	$0.72_{-0.23}^{+0.00}$	1.72
2052	26.18	2.85	$0.12_{-0.06}^{+0.04}$	$6.56^{+1.46}_{-0.10}$	$8.00^{+0.13}_{-0.28}$	$1.45_{-2.03}^{+0.23}$	9.24
2071	25.56	2.90	$0.14^{+0.02}$	$8.84^{+0.42}_{-0.42}$	$9.79_{-0.10}^{+0.14}$	$1.23_{-0.14}^{+0.06}$	4.39

Table A.2: Best-fit parameters for this work's HDF-S catalog, 700 Myr e-folding exponential SFR.

 $\frac{\chi^2}{151.48}$ 42.10
144.87
67.65
164.60 53.7141.86 40.05 14.33 251.04 49.74 56.47 56.47 56.47 49.74 113.19 2274.78 31.16 5.02 91.22 31.16 141.32 91.22 31.16 141.32 33.32 33.32 33.32 33.32 1194.36 1194.36 1194.36 1194.36 1194.35 1194.36 1194.35 1104.35 1105.55 1105.5 $\begin{array}{c} \log(\mathrm{SFR}/(\mathrm{M}_\odot/\mathrm{Yr})) \\ 1.58+0.11\\ 1.77+0.11\\ 1.77+0.12\\ 1.59+0.03\\ 1.51+0.036\\ 1.51+0.036\\ 1.61+0.036\\ 0.78+0.036\\ 0.78+0.036\\ 0.78+0.036\\ 0.78+0.036\\ 0.27+0.036\\ 1.24+0.036\\ 1.24+0.036\\ 1.24+0.036\\ 1.24+0.036\\ 0.21+0.036\\ 1.24+0.036\\ 0.21+0.036\\ 1.24+0.036\\ 0.21+0.036\\ 1.24+0.036\\ 0.21+0.036\\ 0.21+0.036\\ 1.24+0.036\\ 0.22+0.036\\ 0.22+0.036\\ 1.28+0.151\\ 1.28+0.16\\ 1.28+0.16\\ 0.21+0.036\\ 0.21+0.036\\ 1.28+0.16\\ 1.28+0.16\\ 1.28+0.16\\ 1.28+0.16\\ 1.28+0.036\\ 1.28+0.006\\ 1.28+0$ 1.71 + 0.00 +0.55+61.23+6 1.95+6 $\begin{array}{c} \hline log (M_{\star}/M_{\odot}) \\ \hline log (M_{\star}/M_{\odot}) \\ 9.22 \pm 0.05 \\ 9.32 \pm 0.05 \\ 10.33 \pm 0.05 \\ 10.33 \pm 0.05 \\ 9.32 \pm 0.014 \\ 9.32 \pm 0.05 \\ 9.32 \pm 0.05 \\ 9.33 \pm 0.05 \\ 9.35 \pm 0.016 \\ 9.35$ $\begin{array}{c} \hline log(Age/yr) \\ \hline log(Age/yr) \\ \hline 7.70+0.21 \\ \hline 7.70+0.21 \\ \hline 7.70+0.21 \\ \hline 7.70+0.22 \\ \hline 8.64+0.124 \\ \hline 8.64+0.124 \\ \hline 8.64+0.034 \\ \hline 8.64+0.032 \\ \hline 8.84+0.032 \\ \hline 8.85+0.030 \\ \hline 8.87+0.032 \\ \hline 8.8$ -0 -0 00 0 8.32+1 8.12+1 6.66+1 2 $\begin{array}{c} \overline{B}(\overline{B}-1) \\ \hline 0.32 \pm 0.11 \\ \hline 0.32 \pm 0.01 \\ \hline 0.32 \pm 0.01 \\ \hline 0.34 \pm 0.01 \\ \hline 0.38 \pm 0.01 \\ \hline 0.38$ 0.46+10.12+10.20+10.20+10.4+10.4+10.62 + 0.16 + 10.022 + 0.122 + 10.0220.10+ $\begin{array}{c} z_{phot} \\ z_{phot} \\ 2.55 \\ 2.55 \\ 2.65 \\ 2.50 \\ 2.55 \\ 2.65 \\ 1.70 \\ 3.00 \\ 1.50 \end{array}$ 1.502.702.651.502.251.60 2.85 2.85 2.85 2.85 2.85 2.85 3.30 3.30 3.00 2.30 2.20 2.30 2.35 3.20 3.40 1.65 1.50 1.50 2.85 2.45 2.555 1.70 1.70 1.70 2.20 2.45 1.60 3.10 3.10 3.05 3.05 1.65 2.80 3.00 2.25 3.15 1.50 2.40 1.60 RVI 26.09 26.20 26.39 25.40 25.78 26.37 26.11 25.55 25.22 26.22 26.34 26.08 25.75 26.47 26.34 26.04 26.12 26.55 26.34 26.34 25.81 26.4226.45 25.90 25.54 25.54 25.85 25.05 26.49 26.49 26.49 26.31 26.31 26.35 25.37 26.55 26.48 25.86 25.98 26.53 26.33 26.31 26.31 26.01 25.49 25.57 25.31 25.31 24.8026.16 24.6726.0925.77 26.32 58 44 34 76 05 26. 25. 26. 2188 2219 2257 2266 2266 2266 2315 2329 2356 2427 2429 2545 2545 2553 2561 2568 2652 2684 2698 2722 2751 2754 2759 2759 2854 29462955 2989 3145 3163 3258 3275 3294 3349 3349 3411 3420 3465 3485 3485 3491 3503 3511 3542 3548 3563 3563 3578 3635 3641 3646 3687 3767 3779 3797 3867 3897 B

SFR. e-folding exponential 700 MyrBest-fit parameters for this work's HDF-S catalog, Table A.2:

75

-									-
Π	ID	RVI	Znhot	E(B - V)	log(Age/vr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/vr))$	χ^2	1
h	3	26.37	1.50	0.14	7.60	8.01	0.47	75.77	1
	147	23.02	3.05	0.26	6.56	9.86	3.31	76.55	
	156	25.25	1.90	0.10	8.74	9.31	0.87	35.61	
ł	$\cdot 172$	25.24	1.50	0.34	8.95	9.90	1.37	15.87	
I	177	25.51	2.25	0.02	9.78	9.25	0.63	6.66	
I	201	26.40	1.50	0.22	7.49	8.16	0.72	27.56	
	356	24.38	1.60	0.66	6.76	9.98	3.23	74.97	
	401	26.00	1.70	0.18	8.74	9.17	0.73	13.59	l
	428	25.90	3.05	0.24	6.56	8.64	2.09	106.14	l
	430	26.08	2.55	0.08	7.60	8.33	0.79	133.76	l
	447	25.71	1.50	0.20	6.76	8.03	1.28	50.99	l
l	462	25.99	1.50	0.50	5.52	8.86	3.44	64.16	l
ļ	472	26.15	1.50	0.58	6.66	8.91	2.26	115.37	ł
li	475	26.29	1.50	0.56	6.66	8.78	2.13	111.25	
	481	25.90	1.50	0.26	6.76	8.13	1.38	101.16	
	650	26.27	2.70	0.06	8.95	9.12	0.59	102.95	ł
I	715	24.29	2.90	0.22	8.01	9.99	2.08	19.64	ļ
	720	26.20	1.70	0.12	8.22	8.57	0.49	15.66	l
	726	24.92	1.85	0.26	8.84	9.97	1.49	10.39	l
	779	25.39	1.55	0.26	10.30	9.74	1.13	17.21	l
	797	26.15	2.10	0.08	9.99	9.16	0.55	111.10	l
	818	26.08	1.50	0.14	8.32	8.66	0.49	140.21	l
	824	25.75	2.45	0.14	9.78	9.65	1.04	77.25	ļ
ł	876	26.10	1.95	0.00	8.43	8.48	0.23	20.03	i
l	878	24.94	2.95	0.34	6.76	9.37	2.62	56.38	l
Į	901	25.05	1.50	0.60	6.66	9.36	2.71	191.87	
Í	1029	25.66	2.10	0.14	8.95	9.46	0.93	6.00	l
l	1089	25.09	1.50	0.32	8.01	9.37	1.46	15.63	ł
	1102	24.70	3.15	0.08	9.78	10.04	1.43	8.23	l
	1159	26.32	1.50	0.00	9.05	8.52	-0.04	33.69	l
	1191	25.61	2.45	0.02	7.18	8.00	0.85	14.21	ļ
	1195	25.49	2.30	0.24	6.66	8.54	1.89	9.42	l
	1228	24.95	1.60	0.20	8.95	9.68	1.15	3.23	ļ
ļ	1239	26.58	1.50	0.30	7.28	8.18	0.93	91.61	
	1267	23.34	3.05	0.28	6.56	9.81	3.26	70.05	l
	1366	24.92	1.60	0.38	8.95	10.23	1.70	29.93	l
1	1441	25.66	1.50	0.42	8.43	9.70	1.46	69.70	l
i	1451	25.45	1.70	0.28	7.80	9.07	1.34	5.24	l
	1467	24.30	2.55	0.12	9.36	10.16	1.56	6.70	l
l	1478	25.90	1.70	0.44	7.80	9.38	1.65	23.36	
	1482	24.27	1.85	0.28	8.74	10.25	1.81	10.93	
l	1484	25.12	1.65	0.40	8.95	10.25	1.72	24.09	l
	1498	23.49	1.85	0.28	8.53	10.44	2.12	21.29	l
	1521	25.78	3.05	0.26	6.56	8.74	2.20	233.41	l
	1533	26.40	1.85	0.30	8.84	9.53	1.04	195.40	l
1	1565	25.54	1.85	0.32	8.64	9.81	1.43	5.40	l
l	1576	26.02	1.50	0.10	7.80	8.21	0.48	19.37	l
1	1598	25.26	2.85	0.28	6.56	8.98	2.43	139.65	
	1604	26.05	2.45	0.04	8.64	8.93	0.55	195.06	I
1	1634	25.04	2.80	0.24	8.01	9.74	1.83	1.66	ĺ
	1695	26.23	1.65	0.12	9.99	9.04	0.43	77.63	
	1817	26.17	1.50	0.56	6.56	8.82	2.28	82.51	
l	1933	24.50	2.30	0.20	9.05	10.22	1.66	9.77	I
	1973	25.69	1.85	0.12	8.74	9.18	0.74	61.32	I
1	1985	26.55	2.75	0.00	10.30	8.87	0.26	28.11	
	2005	26.06	1.50	0.14	7.70	8.24	0.61	93.66	l
I	2033	26.35	2.10	0.10	9.78	9.14	0.53	37.63	
(I	2042	<u>26 06 </u>	1.50	L 0.22	1 7.80	8 56	0.83	⊨ 52.09 I	ſ.

Table A.3: Best-fit parameters for this work's HDF-S catalog, 500 Myr e-folding exponential SFR.

									-
ſ	ID	RVI	Znhot	E(B - V)	log(Age/vr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/vr))$	χ^2	η
ł	2192	26.46	2.70	0.00	8.74	8.73	0.29	35.85	ī
ł	2207	25.00	2.45	0.06	0.00	9.66	1 04	34.93	
١	2201	25.00	2.10	0.00	832	9.00	1.04	65 36	I
I	2300	25.20	2.70	0.12	0.02	0.20	0.84	6.56	I
I	2301	25.50	2.70	0.02	0.14	9.20	0.84	10.00	l
I	2307	23.71	2.50	0.08	0.43	9.09	0.64	10.32	
ł	2389	24.01	2.85	0.34	0.00	9.71	3.17	80.47	
l	2560	26.08	1.50	0.26	6.97	8.11	1.15	6.11	
ł	2575	25.90	1.95	0.08	9.05	9.12	0.56	6.88	l
I	2597	26.56	2.95	0.00	6.87	7.47	0.62	7.15	
I	2661	26.46	1.70	0.00	10.09	8.61	0.00	141.66	
ļ	2728	24.56	1.70	0.16	8.74	9.68	1.24	14.95	
Ì	2747	26.50	1.70	0.42	6.66	8.44	1.79	49.43	
ł	2763	25.91	1.70	0.06	8.32	8.58	0.41	205.07	
ł	2765	26.36	1.50	0.24	6.97	7.94	0.98	14.44	Ì
I	2784	25.79	1.50	0.10	9.68	9.09	0.48	115.54	
I	2799	26.59	1.50	0.06	10.09	8.56	-0.05	382.14	
l	2817	26.04	1.95	0.36	6.56	8.57	2.03	24.50	
ł	2837	25.41	1.60	0.30	6.97	8 55	1.60	7 50	ł
l	2840	25.15	2.45	0.00	9.05	9.96	1.00	25.89	l
ł	2043	25.10	2.40	0.10	6.87	8.65	1.40	6.01	l
I	2009	20.21	2.50	0.20	0.01	10.00	0.21	7.02	
l	2913	23.43	2.75	0.20	0.01	0.47	2.31	1.03	
ļ	2958	25.82	2.50	0.10	9.20	9.47	0.87	21,00	I
l	3043	23.09	2.60	0.24	6.97	9.71	2.76	8.91	l
l	3098	25.83	1.60	0.40	5.83	8.74	2.95	2.20	l
ļ	3127	24.50	1.85	0.34	8.64	10.30	1.92	7.51	ł
I	3166	25.59	1.90	0.18	8.64	9.37	0.99	43.71	J
I	3169	26.52	1.50	0.32	6.87	8.05	1.19	45.16	
ĺ	3217	26.59	1.95	0.12	9.16	8.98	0.40	40.13	l
Ì	3321	26.30	2.55	0.36	6.56	8.74	2.19	10.95	l
l	3330	26.18	1.50	0.16	10.30	9.05	0.44	137.98	
ļ	3397	26.57	1.85	0.10	8.53	8.65	0.33	22.42	ł
ł	3407	25.96	1.50	0.26	7.39	8.38	1.03	37.87	l
l	3419	26.05	1.50	0.18	9.05	9.15	0.59	8.50	l
l	3554	26.47	1.80	0.04	8.53	8.47	0.16	56.32	l
l	3560	25.95	1.60	0.10	8.95	8.99	0.46	32.34	I
l	3625	26.28	1.60	0.56	6.66	8.88	2.23	48.69	
ł	3630	25.13	3.00	0.00	10.30	10.35	1 74	31 31	ł
I	3666	25.13	1.85	0.08	8.64	8 90	0.52	34 35	l
l	2680	26.35	2.45	0.00	8 53	0.00	0.02	102.63	J
l	2700	20.10	1.40	0.10	0.00	0.07	0.72	112 78	İ
l	3702	20.43	1.60	0.10	6.04	9.27	1.40	104.10	I
l	3709	20.42	1.50	0.34	7 20	0.10	1.40	014.15	I
t	3795	25.94	2.25	0.20	7.59	0.75	1.38	214.91	ł
l	3808	24.78	3.00	0.22	8.95	10.42	1.89	6.02	ł
l	8	25.68	1.50	0.64	6.56	9.18	2.64	230.06	ł
l	59	25.81	2.95	0.16	6.87	8.39	1.54	13.63	I
ļ	69	25.82	1.50	0.34	6.76	8.36	1.61	112.37	I
	73	26.47	1.50	0.14	7.39	7.83	0.49	8.05	ļ
Į	100	25.97	2.25	0.40	6.56	8.86	2.31	105.58	ł
l	190	25.76	1.50	0.22	7.39	8.36	1.01	60.77	I
	203	25.80	2.05	0.16	8.84	9.38	0.90	71.83	
l	207	25.26	1.75	0.40	8.32	9.90	1.74	55.12	
l	242	25.91	2.05	0.38	6.87	8.78	1.93	111.89	l
l	288	25.09	2.45	0.40	6.76	9.35	2.59	2.77	ĺ
l	296	25 59	3 65	0.10	6.45	8.40	1.96	119.03	ļ
	310	26.06	2 45	0.00	7 49	7.91	0.47	302.70	
ł	313	25.64	1.95	0.10	8 74	9.14	0.70	156.88	
l	200	25.04	2.60	0.10	7 08	8 02	0.07	181 18	
l	320	20.49	2.40	0.04	6.56	9.02	1.06	101.10	
l	339	24.91	2.35	0.10	0.00	0.01	1.90	05.02	I
E.	1/18	1 25 60	- 9 8A	0.22	× 12	9.52	1.52	3/2	1

Table A.3: Best-fit parameters for this work's HDF-S catalog, 500 Myr e-folding exponential SFR.

ID	\mathcal{R}_{VI}	zphot	E(B-V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
464	25.68	2.95	0.18	8.84	9.83	1.34	73.20
470	25.97	2.75	0.36	6.56	8.96	2.42	24.14
480	26.11	2.60	0.14	9.88	9.55	0.94	65.32
520	26.31	2.30	0.38	6.56	8.66	2.12	131.13
533	25.69	2.30	0.38	6.56	8.92	2.37	137.39
542	26.10	1.50	0.42	6.66	8.44	1.79	131.76
544	26.46	1.50	0.40	6.66	8.25	1.60	136.58
570	26.25	2.40	0.32	6.56	8.53	1.98	170.79
572	25.78	1.50	0.42	6.66	8.60	1.95	165.54
579	25.66	1.65	0.46	6.66	8.85	2.20	198.26
590	26.47	1.50	0.14	9.05	8.83	0.27	369.47
639	25.98	2.80	0.48	6.56	9.41	2.86	6.40
649	26.58	2.45	0.28	7.70	8.89	1.25	63.38
665	25.50	2.90	0.46	6.35	9.60	3.27	12.82
673	25.59	2.90	0.42	6.56	9.37	2.82	9.22
692	25.18	1.50	0.22	9.78	9.66	1.05	18.06
721	25.32	2.90	0.16	10.30	9.96	1.35	181.94
746	26.07	2.85	0.44	6.45	9.27	2.83	19.21
848	25.57	2.35	0.34	10.09	10.38	1.77	65.31
871	25.43	3.00	0.16	9.26	9.99	1.40	8.56
972	26.43	2.45	0.30	7.28	8.74	1.49	18.71
1047	26.19	3.20	0.02	6.87	7.74	0.88	144.28
1106	26.05	2.60	0.48	6.76	9.27	2.52	35.78
1108	24.77	3.25	0.10	9.57	10.12	1.51	7.85
1124	26.47	2.35	0.32	6.76	8.47	1.72	115.09
1140	26.52	1.85	0.36	6.66	8.34	1.69	127.74
1225	26.56	3.25	0.00	9.36	8.97	0.37	56.11
1273	25.92	1.50	0.26	7.49	8.46	1.02	467.34
1403	26.34	3.45	0.04	10.30	9.32	0.70	57.17
1471	26.50	2.50	0.20	8.74	9.39	0.95	39.00
1473	25.78	1.65	0.30	10.09	9.77	1.15	53.16
1501	25.94	3.55	0.10	8.74	9.59	1.15	131.28
1523	25.86	2.20	0.38	6.56	8.82	2.28	49.40
1527	26.37	2.55	0.14	10.20	9.42	0.81	91.38
1540	25.86	1.50	0.44	7.08	8.77	1.72	174.64
1543	25.04	1.70	0.30	8.74	9.90	1.47	15.90
1551	26.54	1.85	0.34	9.78	9.71	1.09	48.50
1572	25.99	1.50	0.56	5.41	9.06	3.77	55.07
1585	26.27	1.50	0.60	5.62	9.08	3.53	139.44
1590	26.06	1.70	0.22	8.95	9.35	0.82	37.89
1593	25.52	1.50	0.50	10.20	10.34	1.73	174 71
1647	25.44	1.70	0.16	8.64	9.28	0.90	33.84
1676	25.94	1.70	0.14	8.95	9.15	0.62	9,94
1696	26.55	2.50	0.12	9.26	9.23	0.63	42.63
1699	26.53	2.80	0.42	5.83	9.07	3.29	98.81
1739	25.04	2.95	0.12	8.74	9.82	1.38	8.85
1863	25.24	1.70	0.34	8.64	9.90	1.52	29.21
1881	25.15	2.60	0.14	10.20	9.92	1.31	19.48
1908	26.01	3.10	0.14	8.74	9.52	1.08	79.37
1915	26.55	2.70	0.04	10.30	9.00	0.39	00.10
1926	25.69	2.55	0.36	8.64	10.24	1.80	6.27
1954	26.00	2.40	0.10	10.30	9.37	0.76	19.12
1960	26.23	2.40	· 0.44	6.56	8.97	2.43	32.84
	26.47	2.45	0.42	6.56	8.80	2.25	209.10
2025	25.67	1.50	0.66	0.56	9.27	2.72	219.03
2030	25.66	3.15	0.00	8.74	9.17	0.73	1.99
2052	26.18	2.85	0.12	6.56	8.00	1.46	9.24

Table A.3: Best-fit parameters for this work's HDF-S catalog, 500 Myr e-folding exponential SFR.

-								
ſ	ID	\mathcal{R}_{VI}	z_{phot}	E(B - V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
ſ	2071	25.56	2.90	0.16	8.64	9.70	1.32	4.36
l	2188	26.09	2.55	0.32	7.70	9.22	1.59	151.81
l	2219	26.20	1.50	0.56	7.60	9.32	1.78	42.23
l	2257	26.39	1.55	0.50	10.20	10.08	1.47	161.08
l	2266	25.40	2.05	0.34	10.09	10.30	1.69	79.46
l	2300	25.78	2.50	0.48	6.45	9.36	2.91	164.68
Į	2315	26.37	2.25	0.24	8.32	9.20	1.04	53.73
l	2329	26.11	2.65	0.12	9.05	9.43	0.87	43.53
l	2356	25.55	1 70	0.18	8.74	9.34	0.90	41.11
l	2427	26.22	3.00	0.34	5.10	8.96	4.17	14.43
l	2420	26.34	1 50	0.48	5.62	8.63	3.08	251.04
l	2520	26.09	1.50	0.58	5 31	9.07	3 92	110 10
	2545	25.75	2.65	0.00	0.01	0.02	1 30	58 55
l	2540	26.10	2.00	0.20	6.66	8 30	1 73	56 58
l	2561	20.47	1 50	0.28	7 30	8.60	1.13	49.66
l	2569	20.34	2.15	0.42	7.08	8 70	1.64	13.00
ļ	2000	20.04	1.60	0.52	0.78	8.70	0.20	72.80
l	2002	20.12	1.00	0.00	9.10	0.90	0.29	112 10
l	2004	20.00	2.00	0.30	10.00	0.00	1.01	113.19
l	2098	20.34	2.00	0.20	10.20	9.94	1.33	29.04
l	2722	25.61	2.75	0.04	0.90	9.23	0.70	176 15
l	2751	20.42	2.70	0.02	10.30	9.01	0.40	170.45
l	2754	26.45	1.50	0.42	0.00	0.32	1.07	141.11
l	2709	25.90	3.20	0.10	9.88	9.04	1.03	100.70
l	2854	25.54	1.55	0.08	0.00	9.49	2.94	31.10
l	2940	25.85	3.00	0.10	0.43	9.40	1.24	21.34
l	2955	25.05	2.30	0.22	9.00	10.14	1.55	0.41
ł	2989	26.49	2.20	0.40	0.00	0.04	2.29	290.94
l	3145	25.38	2.30	0.22	8.01	9.34	1.43	10.99
l	3103	20.10	2.35	0.30	8.04	9.74	1.30	38.00
l	3258	26.31	3.25	0.00	9.68	9.07	0.46	124.60
l	3275	26.35	3.40	0.00	8.74	8.90	0.46	139.83
	3294	25.37	1.65	0.52	8.74	10.40	1.96	31.24
l	3349	26.55	1.50	0.16	10.30	8.87	0.26	179.92
Ľ	3399	26.48	1.50	0.54	0.00	8.59	1.94	194.18
l	3411	25.86	2.85	0.44	6.45	9.30	2.92	68.15
ľ	3420	25.98	2.40	0.30	6.76	8.61	1.85	74.53
l	3465	26.53	2.50	0.10	9.88	9.18	0.57	48.83
l	3480	26.33	1.70	0.16	8.84	9.02	0.54	130.47
	3485	26.31	1.50	0.30	0.87	8.09	1.24	10.09
l	3491	26.01	1.80	0.18	7.70	8.52	0.88	49.32
L	3503	25.49	2.20	0.20	6.66	8.38	1.73	32.55
	3511	25.57	2.45	0.20	7.80	9.10	1.37	9.95
l	3542	25.31	1.60	0.68	6.76	9.68	2.93	82.50
l	3548	25.80	3.10	0.34	6.56	9.09	2.54	78.66
ļ	3563	24.80	2.95	0.20	8.22	9.89	1.81	24.31
	3578	26.16	1.50	0.62	6.56	8.94	2.40	164.51
ŀ	3635	24.67	3.00	0.18	8.84	10.26	1.77	5.62
	3641	26.09	1.65	0.34	8.84	9.64	1.15	111.52
1	3646	25.77	2.80	0.18	6.87	8.41	1.56	28.76
1	3687	26.32	3.00	0.10	8.84	9.30	0.81	9.84
1	3767	26.58	2.25	0.46	6.56	8.83	2.29	102.82
1	3779	26.44	3.20	0.08	9.47	9.36	0.75	86.14
	3797	26.34	1.50	0.18	8.53	8.79	0.48	13.45
l	3867	25.76	2.45	0.20	8.12	9.26	1.26	16.97
r I	2007	26.05	1 60	0.44	6 66	8 60	105	1 75.97 [

Table A.3: Best-fit parameters for this work's HDF-S catalog, 500 Myr e-folding exponential SFR.

	Ru	7-1-4	E(B - V)	log(Age/vr)	$\log(M_{\star}/M_{\odot})$	$\log(SFB/(M_{\odot}/vr))$	$\sqrt{2}$
3	26.37	$\frac{\sim phot}{1.50}$	0.14	7 60	8.01	0.48	75 79
147	23.02	3.05	0.24	6.56	9.86	3 32	76 72
156	25.02	1 90	0.12	8 74	9.31	0.95	37.51
170	25.20	1.50	0.12	8.84	0.85	1.45	17.04
172	20.24	1.00	0.50	10.04	0.10	0.79	11.04
201	20.01	1.50	0.04	7 40	9.15	0.72	27.40
201	20.40	1.50	0.22	6 76	0.00	2.02	75.05
300	24.30	1.00	0.00	10.20	9.90	3.23	14.72
401	26.00	1.70	0.10	10.30	9.21	0.74	14.75
428	25.90	3.05	0.24	0.50	0.04	2.09	103.00
430	26.08	2.55	0.08	7.60	8.32	0.79	133.84
447	25.71	1.50	0.20	5.75	8.03	1.28	50.79
462	25.99	1.50	0.50	5.20	8.80	3.87	64.10
472	26.15	1.50	0.58	0.00	8.91	2.26	115.70
475	26.29	1.60	0.56	6.66	8.80	2.21	111.10
481	25.90	1.50	0.26	6.76	8.13	1.38	100.94
650	26.27	2.70	0.06	9.78	9.07	0.60	104.93
715	24.29	2.90	0.20	8.22	10.05	1.99	19.69
720	26.20	1.70	0.14	8.12	8.55	0.57	15.37
726	24.92	1.85	0.28	8.74	9.93	1.57	11.65
779	25.39	1.55	0.28	9.99	9.68	1.21	23.79
797	26.15	2.05	0.10	9.68	9.08	0.60	127.32
818	26.08	1.50	0.12	8.64	8.74	0.42	140.63
824	25.75	2.45	0.16	10.09	9.59	1.12	97.89
876	26.10	1.95	0.00	8.43	8.44	0.24	20.10
878	24.94	2.95	0.34	6.76	9.37	2.62	56.49
901	25.05	1.50	0.60	6.66	9.36	2.71	192.16
1029	25.66	2.05	0.16	8.84	9.39	0.99	7.66
1089	25.09	1.50	0.30	8.22	9.43	1.38	15.72
1102	24.70	3.15	0.10	9.36	9.98	1.53	8.77
1159	26.32	1.50	0.02	9.99	8.51	0.03	37.58
1191	25.61	2.45	0.02	7.18	8.00	0.85	14.14
1195	25.49	2.30	0.24	. 6.66	8.54	1.89	9.42
1228	24.95	1.60	0.22	8.84	9.63	1.24	5.34
1239	26.58	1.50	0.28	7.49	8.25	0.81	91.79
1267	23.34	3.05	0.28	6.56	9.81	3.26	70.04
1366	24.92	1.65	0.40	8.95	10.24	1.82	35.65
1441	25.66	1.50	0.40	8.74	9.76	1.40	70.45
1451	25.45	1.60	0.28	7.80	9.01	1.29	5.03
1467	24.30	2.55	0.14	9.36	10.10	1.65	13.44
1478	25.90	1.70	0.44	7.80	9.37	1.66	23.38
1482	24.27	1.85	0.30	8.64	10.21	1.90	13.17
1484	25.12	1.65	0.42	8.84	10.20	1.80	29.52
1498	23.49	1.85	0.30	8.43	10.41	2.21	22.48
1521	.25.78	3.05	0.26	6.56	8.74	2.20	233.39
1533	26.40	1.85	0.30	10.20	9.52	1.05	203.13
1565	25.54	1.85	0.32	8.84	9.84	1.44	6.42
1576	26.02	1.50	0.10	7.80	8.20	0.48	19.64
1598	25.26	2.85	0.28	6.56	8.98	2.43	139.65
1604	26.05	2.45	0.06	8.53	8.90	0.64	195.58
1634	25.04	2.85	0.22	8.22	9.82	1.76	1.59
1695	26.23	1.65	0.14	10.20	8.98	0.51	83.47
1817	26.17	1.50	0.56	6.56	8.82	2.28	82.62
1933	24.50	2.30	0.22	9.36	10.20	1.74	9.74
1973	25.69	1.85	0.14	8.64	9.14	0.82	63.26
1985	26.55	2.75	0.00	10.09	8.74	0.27	31.57
2005	26.06	1.50	0.14	7.70	8.24	0.61	93.84
2033	26.35	1.50	0.10	9.99	8.72	0.25	42.80
2042	26.06	1.50	0.22	7.80	8.55	0.84	52.36
2050	25.86	2.60	0.24	7.18	8.72	1.57	39.36

Table A.4: Best-fit parameters for this work's HDF-S catalog, 350 Myr e-folding exponential SFR.

ID	RVI	Znhot	E(B-V)	log(Age/vr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/vr))$	χ^2
2192	26.46	$\frac{p_{100}}{2.70}$	0.00	9.57	8.77	0.30	36.21
2207	25.00	2.45	0.08	9.88	9.60	1.13	37.74
2306	25.77	2 75	0.10	8.64	9.29	0.98	65.94
2361	25.30	2.10	0.10	9.47	0.31	0.85	7 15
2301	25.50	2.10	0.02	8 4 2	0.07	0.00	18.88
2307	24.01	2.00	0.08	6.40	9.07	9.17	96 57
2309	24.01	2.00	0.34	6.07	9.71	3.17	612
2560	26.08	1.50	0.26	0.97	8.11	1.15	0.13
2575	25.90	1.90	0.10	8.95	9.04	0.62	7.89
2597	26.56	2.95	0.00	6.87	7.47	0.62	7.16
2661	26.46	1.70	0.02	10.20	8.55	0.08	147.67
2728	24.56	1.70	0.18	8.64	9.64	1.32	15.65
2747	26.50	1.50	0.44	6.66	8.37	1.72	49.44
2763	25.91	1.70	0.06	8.43	8.61	0.41	205.53
2765	26.36	1.50	0.24	6.97	7.94	0.98	14.48
2784	25.79	1.50	0.14	9.78	9.08	0.61	123.81
2799	26.59	1.50	0.08	9.16	8.49	0.04	383.45
2817	26.04	1.95	0.36	6.56	8.57	2.03	24.61
2837	25.41	1.60	0.30	6.97	8.55	1.60	7.35
2849	25.15	2 45	0.20	8.95	9.91	1.49	27.27
2880	25.21	2.50	0.20	6.87	8 65	1 79	6.06
2003	23.43	2.00	0.20	8.01	10.21	2 32	6.66
2913	20.40	2.10	0.20	0.01	0.41	0.06	20.72
2900	20.62	2.00	0.12	9.20	9.41	0.90	29.12
3043	23.09	2.70	0.22	F 20	9.70	2.70	0.04
3098	25.83	1.60	0.40	5.20	8.74	3.75	2.20
3127	24.50	1.85	0.34	8.74	10.29	1.93	8.68
3166	25.59	1.90	0.20	8.53	9.34	1.07	44.29
3169	26.52	1.50	0.32	6.87	8.05	1.19	45.19
3217	26.59	1.95	0.14	9.36	8.94	0.48	40.78
3321	26.30	2.55	0.36	6.56	8.74	2.20	10.93
3330	26.18	1.50	0.18	10.30	9.00	0.52	138.72
3397	26.57	1.85	0.10	8.64	8.65	0.34	23.00
3407	25.96	1.50	0.26	7.39	8.38	1.03	37.95
3419	26.05	1.50	0.20	8.95	9.10	0.67	11.06
3554	26.47	1.85	0.04	8.64	8.50	0.19	56.94
3560	25.95	1.70	0.12	9.05	9.03	0.59	37.95
3625	26.28	1.60	0.56	6.66	8.88	2.23	48.63
3639	25.13	2.95	0.24	9.99	10.27	1.80	37.21
3666	25.93	1.85	0.08	8 84	8 93	0.53	36.33
3689	26.16	2.45	0.10	8.64	9.04	0.73	102.37
3782	25.10	1.85	0.12	874	9.22	0.86	115 75
2780	26.40	1.50	0.12	6.76	8.16	1.40	104 30
2705	20.42	2.00	0.34	7 30	8 73	1 20	214.60
2000	20.94	2.20	0.20	1.39	10 41	1.55	214.00
3000	24.10	4.90	0.24	9.30	0.19	1.90	220 12
N FO	25.08	1.50	0.04	0.00	9.10	2.04	430.14
59 00	25.81	2.95	0.16	0.87	8.39	1.54	13.07
69	25.82	1.50	0.34	0.76	8.36	1.61	112.39
73	26.47	1.50	0.14	7.39	7.83	0.49	8.05
100	25.97	2.40	0.38	6.56	8.86	2.31	105.76
190	25.76	1.50	0.22	7.39	8.36	1.01	60.40
203	25.80	2.05	0.16	9.57	9.38	0.91	74.26
207	25.26	1.70	0.40	8.43	9.90	1.70	55.16
242	25.91	2.05	0.38	6.87	8.78	1.93	111.89
288	25.09	2.45	0.40	6.76	9.35	2.60	2.80
296	25.59	3.65	0.08	6.56	8.29	1.75	119.07
310	26.06	2.45	0.00	7.49	7.91	0.47	302.75
313	25.64	1.85	0.10	10.30	9.18	0.71	161.56
328	25.49	2.45	0.04	7.08	8.02	0.97	180.93
320	24 91	2.35	0.16	6.56	8.51	1.96	65.74
149	25.60	2.00	0.22	812	9.50	1 53	3 31

Table A.4: Best-fit parameters for this work's HDF-S catalog, 350 Myr e-folding exponential SFR.

-					·······				-
ſ	ID	\mathcal{R}_{VI}	zphot	E(B-V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2	1
ŀ	464	25.68	2.90	0.20	8.74	9.77	1.40	74.65	ſ
	470	25.97	2.75	0.36	6.56	8.96	2.42	23.94	I
l	480	26.11	2.60	0.16	10.30	9.49	1.02	70.97	I
ł	520	26.31	2.30	0.38	6.56	8.66	2.12	130.99	I
ł	533	25.69	2.30	0.38	6.56	8.92	2.37	137.20	ıÌ
1	542	26.10	1.50	0.42	6.66	8.44	1.79	131.76	I
	544	26.46	1.50	0.40	6.66	8.25	1.60	136.06	I
l	570	26.25	2.35	0.32	6.56	8.51	1.96	170.21	
	572	25.78	1.50	0.42	6.66	8.60	1.95	165.54	I
ł	579	25.66	1.65	0.46	6.66	8.85	2.20	198.64	h
l	590	26.47	1.50	0.44	6.76	8.41	1.66	374.41	I
	639	25.98	2.80	0.48	6.56	9.41	2.86	6.40	I
	649	26.58	2.45	0.28	7.70	8.88	1.26	63.16	I
	665	25.50	2.90	0.46	6.35	9.60	3.27	12.82	I
ł	673	25.59	2.90	0.42	6.56	9.37	2.82	9.23	ıİ
	692	25.18	1.50	0.24	10.30	9.60	1.13	22.44	I
l	721	25.32	2.80	0.18	9.68	9.86	1.39	200.31	I
l	746	26.07	2.80	0.46	6.14	9.35	3.23	19.28	I
	848	25.57	2.35	0.36	9.99	10.32	1.85	82.09	
ł	871	25.43	2.95	0.18	10.09	9.93	1.46	12.01	I
1	972	26.43	2.45	0.30	7.28	8.74	1.49	18.67	I
I	1047	26.19	3.20	0.00	7.28	7.91	0.66	144.45	I
	1106	26.05	2.60	0.48	6.76	9.27	2.52	35.79	I
ł	1108	24.77	3.20	0.12	9.26	10.04	1.58	15.48	ĺ
١	1124	26.47	2.35	0.32	6.76	8.47	1.72	115.27	l
ł	1140	20.52	1.85	0.36	0.00	8.34	1.09	55.02	I
l	1225	26.56	3.25	0.00	9.30	8.84	V.38 1.00	20.93	
	1402	25.92	1.50	0.20	(.49	0.40	1.02	407.21	
ł	1403	20.34	3.40	0.00	9.30	9.24	0.78	20.55	
ł	14(1	20.00	1.00	0.20	9.41	9.44	0.90	58.00	l
	1501	25.10	2 5 5	0.34	9.00	0.61	1.20	130 00	I
l	1501	25.94	3.00	0.10	5.30	5.01	2.10	10 50	
	1525	20.00	2.20	0.36	9.57	9,35	0.88	97 10	
	1540	25.86	1 70	0.10	7 39	8 98	1 64	174 93	
ľ	1549	25.00	1 70	0.40	8.95	9,01	1.48	16.90	I
	1551	26.54	1.85	0.36	9.78	9.65	1,17	52.38	
I	1572	25.99	1.50	0.56	5.93	9.06	3.16	54.98	
	1585	26:27	1.50	0.60	5.41	9.08	3,79	139.44	Į
	1590	26.06	1.70	0.24	8.84	9.30	0.90	40.53	ĺ
ľ	1593	25.52	1.50	0.52	10.30	10.28	1.81	190.75	١
	1647	25.44	1.70	0.16	8.84	9.30	0.91	35.85	
l	1676	25.94	1.70	0.16	8.95	9.12	0.70	10.85	
	1696	26.55	2.50	0.14	9.26	9.18	0.72	42.87	1
1	1699	26.53	2.80	0.42	5.20	9.07	4.09	98.81	ł
ľ	1739	25.04	2.95	0.12	9.78	9.86	1.39	9.93	Ì
1	1863	25.24	1.70	0.34	8.84	9.93	1.53	31.24	
	1881	25.15	2.55	0.16	10.30	9.85	1.37	31.16	ĺ
	1908	26.01	3.10	0.14	9.57	9.56	1.09	78.91	
	1915	26.55	2.70	0.04	10.30	8.87	0.40	70.67	
ľ	1926	25.69	2.55	0.36	9.36	10.32	1.87	5.85	1
l	1954	26.00	2.40	0.12	9.68	9.31	0.84	26.55	ĺ
	1960	26.23	2.40	0.46	6.45	9.08	2.64	32.88	
l	2021	26.47	2.50	0.42	6.56	8.82	2.27	209.02	I
	2025	25.67	1.50	0.66	6.56	9.27	2.73	218.28	
1	2030	25.66	3.15	0.02	8.53	9.09	0.82	2.17	Ì
	2052	26.18	2.85	0.12	6.56 .	8.00	1.46	9.20	
1	2071	25.56	2.90	0.16	8.95	9.75	1.33	4.51	

Table A.4: Best-fit parameters for this work's HDF-S catalog, 350 Myr e-folding exponential SFR.

ID	\mathcal{R}_{VI}	z_{phot}	E(B - V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
2188	26.09	2.55	0.32	7.70	9.22	1.59	152.01
2219	26.20	1.50	0.56	7.60	9.31	1.78	42.28
2257	26.39	1.55	0.52	9.78	10.02	1.55	176.48
2266	25.40	1.50	0.38	9.36	9.90	1.45	91.42
2300	25.78	2.50	0.48	6.45	9.36	2.91	164.60
2315	26.37	2.25	0.24	8.43	9.24	1.04	54.14
2329	26.11	2.65	0.14	9.16	9.41	0.95	48.55
2356	25.55	1.70	0.18	10.30	9.38	0.91	43.31
2427	26.22	3.00	0.34	6.04	8.96	2.95	14.37
2429	26.34	1.50	0.48	5.41	8.63	3.34	251.04
2529	26.08	1.50	0.58	5.41	9.07	3.78	119.19
2545	25.75	2.65	0.22	9.88	9.86	1.39	71.38
2553	26.47	2.65	0.22	7.08	8.33	1.28	56.55
2561	26.34	1.50	0.42	7.49	8.75	1.31	49.72
2568	26.04	2.15	0.32	7.08	8.70	1.65	13.18
2652	26.12	1.60	0.08	10.20	8.84	0.37	82.53
2684	26.55	2.85	0.38	6.35	8.85	2.51	113.19
2698	26.34	2.80	0.28	9.36	9.88	1.42	34.14
2722	25.81	2.80	0.04	9.99	9.20	0.73	282.84
2751	26.42	2.70	0.02	10.20	8.89	0.41	193.14
2754	26.45	1.50	0.42	6.66	8.32	1.67	141.11
2759	25.90	3.15	0.12	9.88	9.56	1.09	121.12
2854	25.54	1.55	0.68	6.56	9.49	2.95	30.98
2946	25.85	3.00	0.16	8.53	9.50	1.24	22.07
2955	25.05	2.30	0.24	9.57	10.08	1.61	8.50
2989	26.49	2.85	0.38	6.56	8.87	2.32	291.14
3145	25.38	2.30	0.22	8.01	9.33	1.44	10.88
3163	26.16	2.35	0.30	8.84	9.76	1.37	38.65
3258	26.31	3.25	0.00	9.57	8.94	0.47	128.77
3275	26.35	3.40	0.00	10.30	8.93	0.46	139.33
3294	25.37	1.65	0.54	8.64	10.36	2.04	33.93
3349	26.55	1.50	0.18	9.68	8.81	0.34	180.18
3399	26.48	1.50	0.54	6.66	8.59	1.94	194.57
3411	25.86	2.85	0.44	6.45	9.36	2.92	68.30
3420	25.98	2.45	0.30	6.76	8.63	1.88	74.73
3465	26.53	2.50	0.12	9.26	9.11	0.65	51.12
3480	26.33	1.85	0.18	8.74	9.06	0.70	133.72
3485	26.31	1.50	0.30	6.87	8.09	1.24	10.18
3491	26.01	1.80	0.16	7.91	8.59	0.78	49.27
3503	25.49	2.20	0.20	6.66	8.38	1.73	32.55
3511	25.57	2.45	0.20	7.80	9.09	1.38	9.96
3542	25.31	1.60	0.68	6.76	9.68	2.93	82.49
3548	25.80	3.10	0.34	6.56	9.09	2.54	78.65
3563	24.80	2.95	0.20	8.22	9.87	1.82	24.53
3578	26.16	1.50	0.62	6.56	8.94	2.40	164.29
3635	24.67	3.05	0.18	10.30	10.28	1.80	6.48
3641	26.09	1.70	0.34	9.57	9.66	1.19	116.68
3646	25.77	2.80	0.18	6.87	8.41	1.56	28.66
3687	26.32	2.95	0.12	8.84	9.28	0.88	10.14
3767	26.58	2.25	0.46	6.56	8.83	2.29	102.63
3779	26.44	3.15	0.10	9.47	9.28	0.82	85.75
3797	26.34	1.50	0.20	8.43	8.76	0.56	13.37
3867	25.76	2.45	0.20	8.12	9.25	1.27	16.94
3897	26.05	1.60	0.44	6.66	8.60	1.95	15.87

Table A.4: Best-fit parameters for this work's HDF-S catalog, 350 Myr e-folding exponential SFR.

III	D	~	F(D V)	log(Age/)	$\log(M_{M})$	log(SEP //M - /))	2 1
	DC 27	Z phot	$\frac{D(D-V)}{D10}$	rog(Age/yr)	<u>108(₩*/₩⊙)</u>	$O_{10}(O_{10}(O_{10}))$	X 77 70
3	26.37	1.50	0.16	1.39	7.93	0.59	11.12
147	23.02	2.80	0.94	10.30	nan	nan	nan
156	25.25	1.90	0.12	9.99	9.30	0.95	38.45
172	25.24	1.60	0.38	8.84	9.90	1.61	19.19
177	25.51	3.20	0.94	10.30	nan	nan	nan
201	26.40	1.50	0.22	7.49	8.16	0.73	27.51
356	24.38	1.90	0.76	10.30	nan	nan	nan
401	26.00	2.70	0.42	10.30	nan	nan	nan
428	25.90	3.05	0.24	6.56	8.64	2.09	105.80
430	26.08	2.60	0.08	7.60	8.34	0.81	134.05
447	25.71	1.50	0.20	6.76	8.03	1.28	50.88
462	25.99	1.50	0.50	6.04	8.85	2.84	64.11
472	26.15	1.50	0.58	6.66	8.91	2.26	115.11
475	26.29	1.50	0.56	6.66	8.78	2.13	111.06
481	25.90	1.50	0.26	6.76	8.13	1.38	100.85
650	26.27	2.60	0.08	10.20	9.00	0.65	111.25
715	24.29	2.95	0.20	8.22	10.04	2.02	19.38
720	26.20	1.70	0.14	8.12	8.53	0.58	15.64
726	24.92	2.80	0.78	10.30	nan	nan	nan
779	25.39	1.55	0.30	10.09	9.64	1.29	29.71
797	26.15	1.50	0.10	10.20	8.70	0.35	133.00
818	26.08	1.50	0.14	8.53	8.70	0.50	140.50
824	25.75	2.50 ·	0.16	9.57	9.50	1.16	117.71
876	26.10	1.90	0.00	8.53	8.43	0.24	20.48
878	24.94	2.95	0.34	6.76	9.37	2.62	56.46
901	25.05	2.20	0.56	10.30	nan	nan	nan
1029	25.66	2.00	0.16	9.99	9.33	0.98	10.65
1089	25.09	1.50	0.26	10.09	9.57	1.23	15.78
1102	24.70	2.70	0.58	10.30	nan	nan	nan
1159	26.32	1.60	0.04	10.20	8.51	0.16	42.26
1191	25.61	2.20	0.02	7.18	7.92	0.78	18.88
1195	25.49	2.30	0.24	6,66	8.54	1.90	9.42
1228	24.95	1.60	0.24	8.84	9.61	1.31	8.95
1239	26.58	1.50	0.28	7.49	8.25	0.82	91.53
1267	23.34	3.00	0.82	10.30	nan	nan	nan
1366	24.92	1.90	0.42	8.74	10.34	2.08	50.37
1441	25.66	1.85	0.38	10.30	nan	nan	nan
1451	25.45	1.75	0.28	7.80	9.09	1.39	6.07
1467	24.30	2.55	0.16	9.36	10.05	1.73	22.63
1478	25.90	1.70	0.42	8.01	9.44	1.57	23.52
1482	24.27	1.80	0.30	10.09	10.21	1.87	16.10
1484	25.12	2.10	0.58	10.30	nan	nan	nan
1498	23.49	1.85	0.28	9.99	10.48	2.13	24.72
1521	25.78	2.85	0.88	10.30	nan	nan	nan
1533	26.40	2.20	0.06	10.30	nan	nan	nan
1565	25.54	1.85	0.34	8.74	9.80	1.53	8.37
1576	26.02	1.50	0.10	7.91	8.26	0.47	19.63
1598	25.26	2.90	0.28	6.56	9.00	2.45	142.04
1604	26.05	2.85	0.70	10.30	nan	nan	nan
1634	25.04	2.85	0.98	10.30	nan	nan	nan
1695	26.23	1.70	0.16	9.78	8.97	0.62	90.51
1817	26.17	1.50	0.56	6.56	8.82	2.28	82.62
1933	24.50	2.35	0.24	8.84	10.15	1.86	11.69
1973	25.69	1.85	0.14	9.68	9.17	0.82	66.22
1985	26.55	2.80	0.00	9.68	8.64	0.29	36.03
2005	26.06	3.05	0.34	10.30	nan	nan	nan
2033	26.35	1.50	0.12	10.20	8.67	0.32	45.06
2042	26.06	1.50	0.22	7.80	8.55	0.84	52.50

Table A.5: Best-fit parameters for this work's HDF-S catalog, 250 Myr e-folding exponential SFR.

ID	\mathcal{R}_{VI}	Znhot	E(B-V)	$\log(Age/yr)$	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
2050	25.86	2.60	0.24	7.18	8.72	1.57	39.17
2192	26.46	2.70	0.00	9.68	8.66	0.31	37.94
2207	25.00	2.40	0.10	9.36	9.52	1.20	44.87
2306	25.77	2.65	0.12	8.53	9.23	1.03	66.43
2361	25.30	2.65	0.04	8.95	9.23	0.93	8.83
2367	25.71	2.50	0.08	8.64	9.10	0.86	19.11
2389	24.01	2.75	0.38	6.24	9.87	3.64	92.34
2560	26.08	1.50	0.26	6.97	8.11	1.16	6.17
2575	25.90	1.90	0.12	8.95	9.01	0.70	10.23
2597	26.56	2.85	0.08	5.10	7.79	2.99	7.89
2661	26.46	1.70	0.04	9.99	8.50	0.16	154.50
2728	24.56	1.70	0.18	9.88	9.67	1.32	16.70
2747	26.50	3.00	0.24	10.30	nan	nan	nan
2763	25.91	1.70	0.08	8.22	8.53	0.51	206.09
2765	26.36	1.50	0.24	6.97	7.93	0.99	14.53
2784	25.79	1.50	0.16	10.09	9.03	0.68	132.23
2799	26.59	1.50	0.10	9.26	8.44	0.12	384.33
2817	26.04	2.10	0.32	6.66	8.50	1.85	24.68
2837	25.41	1.60	0.30	6.97	8.55	1.60	7.41
2849	25.15	2.45	0.22	8.84	9.86	1.57	31.50
2889	25 21	2.50	0.20	6.87	8 65	1 79	6.04
2913	23 43	2.95	0.20	10.30	nan	nan	nan
2958	25.82	2.50	0.12	10.20	9.32	0.97	36.44
3043	23.09	2.55	0.02	10.30	nan	nan	nan
3098	25.83	1.60	0.40	5 20	8 74	3 75	2 20
3127	24 50	2.25	0.96	10.30	nan	nan	nan
3166	25.59	2.00	0.20	8.74	9.41	1.14	47.38
3169	26.52	1.80	0.28	6.97	8 14	1.19	45.73
3217	26.59	1.00	0.14	10.20	8 74	0.39	42.45
3321	26.30	2.55	0.36	6 56	8 74	2 20	10.88
3330	26.18	1.80	0.20	9.68	9.12	0.78	142.22
3397	26.57	1.85	0.10	9.57	8 69	0.34	23.89
3407	25:96	3.40	0.10	10.30	nan	nan	nan
3419	26.05	1.90	0.22	9.88	9.32	0.97	22.67
3554	26.47	2.05	0.06	8.64	8.59	0.35	63.39
3560	25.95	3.45	0.02	10.30	nan	nan	nan
3625	26.28	1.60	0.56	6.66	8.88	2.23	48.62
3639	25 13	2.60	0.30	8.95	10.16	1.85	94.42
3666	25.93	1.85	0.10	8.84	8.91	0.61	38.89
3689	26.16	2 45	0.10	10.20	9.07	0.73	102.34
3782	25 43	1.85	0.12	9.68	9.21	0.87	117.77
3789	26.42	2.10	0.30	6.76	8.35	1.60	123.41
3795	25.94	2.25	0.26	7.39	8.73	1.39	214.75
3808	24.78	2.95	0.26	8.74	10.32	2.05	8.11
8	25.68	1.50	0.64	6.56	9.18	2.64	230.07
59	25.81	2.95	0.16	6.87	8.39	1.54	13.72
69	25.82	1.50	0.34	6.76	8.36	1.61	112.44
73	26.47	1.50	0.14	7.39	7.83	0.49	8.13
100	25.97	2.25	0.40	6.56	8.86	2.31	105.67
190	25.76	2.85	0.12	10.30	nan	nan	nan
203	25.80	2.05	0.18	9.57	9.33	0.99	76.87
207	25.26	2.05	0.94	10.30	nan	nan	nan
242	25.91	2.05	0.38	6.87	8,78	1.93	111.79
288	25.09	2.45	0.40	6.76	9.35	2.60	2.89
296	25.59	2.85	0.44	10.30	nan	nan	nan
310	26.06	2.45	0.00	7.49	7.91	0.47	303.63
313	25.64	1.85	0.12	9,99	9.14	0.79	165.59
328	25.49	2.45	0.04	7.08	8.02	0.97	180.90
339	24.91	2.35	0.16	6.56	8.51	1.97	65.65
448	25.60	2.90	0.18	8.95	9.71	1.40	7.72

Table A.5: Best-fit parameters for this work's HDF-S catalog, 250 Myr e-folding exponential SFR.

.

ID	\mathcal{R}_{VI}	z_{phot}	E(B - V)	$\log(Age/yr)$	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
464	25.68	3.15	0.60	10.30	nan	nan	nan
470	25.97	2.75	0.38	6.24	9.09	2.87	24.77
480	26.11	2.75	0.24	10.30	nan	nan	nan
520	26.31	2.30	0.38	6.56	8.66	2.12	130.99
533	25.69	2.30	0.38	6.56	8.92	2.37	137.20
542	26.10	3.10	0.84	10.30	nan	nan	nan
544	26.46	1.50	0.40	6.66	8.25	1.60	136.38
570	26.25	2.35	0.32	6.56	8.51	1.96	170.21
572	25.78	1.50	0.42	6.66	8.60	1.95	165.92
579	25.66	1.65	0.46	6.66	8.85	2.20	198.35
590	26.47	2.95	0.06	10.30	nan	nan	nan
639	25.98	3.05	0.92	10.30	nan	nan	nan
649	26.58	2.45	0.28	7.70	8.88	1.26	63.44
665	25.50	2.90	0.46	6.35	9.60	3.27	12.81
673	25.59	2.90	0.42	6.56	9.37	2.82	9.35
692	25.18	2.45	0.72	10.30	nan	nan	nan
721	25.32	2.90	0.26	10.30	nan	nan	nan
746	26.07	2.85	0.44	6.45	9.27	2.83	19.21
848	25.57	2.30	0.82	10.30	nan	nan	nan
871	25.43	2.95	0.20	8.74	9.82	1.56	21.30
972	26.43	2.40	0.32	7.18	8.71	1.57	19.12
1047	26.19	3.05	0.58	10.30	nan	nan	nan
1106	26.05	2.75	0.62	10.30	nan	nan	nan
1108	24.77	3.15	0.14	9.36	9.97	1.65	21.56
1124	26.47	2.35	0.32	6.76	8.47	1.72	115.17
1140	26.52	1.85	0.36	6.66	8.34	1.69	127.84
1225	26.56	3.30	0.00	9.26	8.73	0.41	57.05
1273	25.92	1.50	0.26	7.49	8.46	1.02	467.03
1403	26.34	3.40	0.06	9.88	9.13	0.79	63.85
1471	26.50	2.80	0.76	10.30	nan	nan	nan
1473	25.78	2.00	0.20	10.30	nan	nan	nan
1501	25.94	2.60	0.94	10.30	nan	nan	nan
1523	25.86	2.20	0.38	6.56	8.82	2.28	49.52
1527	26.37	2.50	0.16	9.57	9.24	0.89	103.95
1540	25.86	1.50	0.44	7.08	8.77	1.72	174.47
1543	25.04	1.70	0.32	8.84	9.86	1.57	18.06
1551	26.54	1.85	0.38	9.68	9.60	1.25	57.80
1572	25.99	1.70	0.54	5.93	9.14	3.24	55.68
1585	26.27	1.50	0.60	5.10	9.08	4.28	139.47
1590	20.00	1.70	0.24	10.20	9.20	1.09	44.02
1647	25.52	1.00	0.04	10.20	10.32	1.98	203.70
1676	25.44	1.70	0.18	0.04	9.28	0.99	12.00
1070	20.94	1.70	0.10	0.04	9.00	0.79	12.99
1600	20.00	2.95	0.78	5 20	0.07	4 00	08.81
1720	20.00	2.80	0.42	0.68	9.07	1 45	11.05
1962	25.04	2.90	0.14	9.08	9.80	1.40	34.20
1003	20.24	2 10	0.30	10 30	5.00	1.01	04.20 nan
1002	26.10	3 10	0.10	10.30	nan	nan	nan
1015	26.55	2 70	0.10	9.57	8.84	0.49	74.11
1926	25.69	2.35	0.00	10.30		nan	nan
1054	26.00	2.00	0 14	10.20	9.27	0.92	35.66
1960	26.23	2.40	0.44	6.56	8.97	2.43	32.92
2021	26.25	3.10	0.20	10.30	nan	nan	nan
2025	25.67	1.55	0.66	6.56	9.31	2.76	223.55
2030	25.66	3.15	0.02	9.36	9,15	0.83	1.71
2052	26.18	2.85	0.12	6.56	8.00	1.46	9.20
2071	25.56	2.85	0.18	8.95	9.70	1.40	5.83

Table A.5: Best-fit parameters for this work's HDF-S catalog, 250 Myr e-folding exponential SFR.

ID	\mathcal{R}_{VI}	zphot	E(B - V)	$\log(Age/yr)$	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
2188	26.09	2.55	0.32	7.80	9.28	1.58	152.53
2219	26.20	2.05	0.78	10.30	nan	. nan	nan
2257	26.39	1.55	0.54	9.88	9.97	1.62	190.39
2266	25.40	1.50	0.40	9.36	9.85	1.53	91.69
2300	25.78	2.50	0.48	6.45	9.36	2.92	164.60
2315	26.37	2.25	0.24	8.53	9.25	1.05	54.38
2329	26.11	2.65	0.14	9.78	9.31	0.97	52.60
2356	25.55	1.65	0.20	9.47	9.30	0.96	45.96
2427	26.22	3.00	0.34	6.04	8.96	2.95	14.39
2429	26.34	3.05	0.08	10.30	nan	nan	nan
2529	26.08	1.50	0.58	5.83	9.07	3.28	119.19
2545	25.75	2.70	0.22	9.57	9.77	1.43	82.33
2553	26.47	2.70	0.98	10.30	nan	nan	nan
2561	26.34	1.50	0.42	7.49	8.75	1.32	49.45
2568	26.04	2.15	0.32	7.08	8.70	1.65	13.10
2652	26.12	1.60	0.10	9.68	8.79	0.44	91.79
2684	26.55	2.85	0.38	6.35	8.85	2.51	113.19
2698	26.34	2.75	0.30	9.26	9.81	1.49	38.38
2722	25.81	2.80	0.88	10.30	nan	nan	nan
2751	26.42	2.65	0.04	9.78	8.83	0.48	207.89
2754	26.45	1.50	0.42	6.66	8.32	1.67	141.39
2759	25.90	3.15	0.12	9.99	9.45	1.10	135.58
2854	25.54	1.55	0.68	6.56	9.49	2.95	31.11
2946	25.85	3.00	0.16	8.64	9.49	1.25	22.39
2955	25.05	2.30	0.26	10.20	10.04	1.69	12.73
2989	25.49	2.85	0.38	0.50	8.87	1.80	291.33
0140	20.00	2.10	0.32	10.20	0.94	1.89	13.13
20103	20.10	2.20	0.08	10.30	11an 9 02	0.58	142.20
2075	20.31	2.10	0.04	9.00	0.90	0.38	142.20
3210	20.33	1.60	0.54	9.66	10.33	2.01	38 74
3234	26.55	1.00	0.20	10.20	8 76	0.42	181 14
3300	26.00	1.50	0.20	6 66	8 59	1 95	194.52
3411	25.86	2.85	0.44	6.45	9.36	2.92	68 15
3420	25.98	2.65	0.58	10.30	nan	nan	nan
3465	26.53	2.50	0.12	9.88	9.01	0.66	52.91
3480	26.33	1.85	0.12	9.57	9.05	0.70	136.69
3485	26.31	2.90	0.96	10.30	nan	nan	nan
3491	26.01	1.50	0.14	8.12	8.49	0.54	49.75
3503	25.49	2.20	0.20	6.66	8.38	1.73	32.56
3511	25.57	2.45	0.20	7.80	9.09	1.38	10.22
3542	25.31	1.95	0.10	10.30	nan	nan	nan
3548	25.80	3.10	0.34	6.56	9.09	2.54	78.48
3563	24.80	2.80	0.74	10.30	nan	nan	nan
3578	26.16	1.55	0.62	6.56	8.98	2.44	165.75
3635	24.67	3.00	0.20	9.68	10.21	1.86	7.38
3641	26.09	2.20	0.12	10.30	nan	nan	nan
3646	25.77	2.80	0.18	6.87	8.41	1.56	28.70
3687	26.32	2.95	0.12	10.09	9.23	0.88	11.06
3767	.26.58	2.60	0.84	10.30	nan	nan	nan
3779	26.44	3.15	0.12	8.95	9.22	0.92	85.48
3797	26.34	1.60	0.18	10.20	8.90	0.55	14.34
3867	25.76	2.40	0.20	8.22	9.27	1.25	17.00
3897	26.05	1.60	0.44	6.66	8.60	1.96	75.91

Table A.5: Best-fit parameters for this work's HDF-S catalog, 250 Myr e-folding exponential SFR.

Table A.6: Best-fit parameters for this work's HDF-S catalog, -700 Myr e-folding exponential SFR.

χ^2	75.46	76.55	13.34	5.50	27.50	74.60	106.07	133.53	51.09	64.16	115.29	100 00	94.77	19.73	15.30	8.01	6.79 25 60	30.02 139.64	3.98	19.85	56.19	192.34	4.09 16.03	11.52	30.68	14.22	9.39	0.86	91.48 70.08	11.69	68.99	5.51	9.07 23.12	8.00	9.67	17.60	151.16	3.91	18.89	102.06	194.90 2.68	45.88	82.29	14.08	51.45 22 62	92.37	23.83	45.68 39.36
log(SFR/(M _☉ /yr))	$0.49^{+0.11}_{-0.00}$	$3.31_{-0.45}$	$0.79_{-0.08}$	$0.54^{+0.02}_{-0.02}$	0.74 ± 0.02	$3.22_{-0.00}^{+0.08}$	$2.09^{+0.06}_{-0.06}$	$0.77^{+0.11}_{-0.12}$	1.27 ± 0.20 -0.00	$2.96^{+0.82}_{-1.17}$	$2.26_{-0.02}^{+0.02}$	$2.13_{-0.24}$	0.32 ± 0.06	1.89 ± 0.07 1.89 ± 0.36	0.59 ± 0.40 0.24	$1.37^{+0.27}_{-0.11}$	$0.93^{+0.16}_{-0.17}$	0.38 ± 0.16	$0.46_{-0.02}^{+0.00}$	$0.21_{-0.12}^{+0.06}$	$2.61^{+0.14}_{-0.00}$	$2.70^{+0.00}_{-0.00}$	1.45 ± 0.12	1.27 ± 0.08	-0.04 + 0.05	$0.84_{-0.15}^{+0.17}$	$1.89^{+0.20}_{-2.18}$	0.90 ± 0.29	3.26 ± 0.02	1.21 + 0.45	1.28 ± 0.16 -0.16	1.44 ± 0.40	1.55 ± 0.34	$1.77_{-0.03}^{+0.31}$	1.44 ± 0.14	$2.01^{+0.23}_{-0.22}$	2.13 - 0.34 0.50 - 0.00	1.28 ± 0.24	$0.46^{+0.08}_{-0.11}$	$2.43_{-0.02}^{+0.02}$	1.71 ± 0.10 1.71 ± 0.13	$0.09^{+0.14}_{-0.00}$	$2.27 ^{+0.00}_{-0.08}$	1.82 ± 0.34 2.0 ± 0.12	$0.30_{-0.27}^{+0.02}$	0.59 ± 0.03	$0.21_{-0.04}^{+0.05}$	$0.27_{-0.46}^{+0.04}$ $1.56_{-2.06}^{-0.46}$
$\log(M_*/M_{\odot})$	7.95+0.00	9.86-0.13	9.33-0.09	9.23+0.02	$8.10^{+0.00}_{-0.12}$	$9.98^{+0.08}_{-0.00}$	8.64+0.06	8.34+0.10	$8.03_{-0.00}^{+0.10}$	8.86+0.17	8.91 -0.02 0.70+0.00	8.18-0.14 8 12+0.06	9.13 - 0.06 9.14 + 0.07	$10.10^{+0.27}_{-0.08}$	$8.58_{-0.12}^{+0.26}$	$9.93^{+0.19}_{-0.10}$	$10.08^{+0.03}_{-0.08}$	8 70+0.17	$9.80^{+0.05}_{-0.05}$	$8.42_{-0.15}^{+0.06}$	$9.37^{+0.04}_{-0.00}$	9.36 -0.00	9.40-0.10 9.33+0.03	9.96+0.24	8.52+0.05	$8.00^{+0.10}_{-0.16}$	8.54 ± 0.10 -0.32	9.58+0.03	8.19-0.15 9.81+0.02	$10.19^{+0.02}_{-0.02}$	$9.72_{-0.09}^{+0.07}$	$9.00^{+0.28}_{-0.17}$	$9.43^{+0.37}_{-0.04}$	$10.21_{-0.10}^{+0.16}$	$10.27_{-0.02}^{+0.04}$	$10.44^{+0.19}_{-0.10}$	$9.48_{-0.00}^{+0.12}$	9.84 ± 0.15 -0.08	8.23 ± 0.09	8.98-0.02 c 00+0.14	9.80+0.18	9.07 + 0.03	8.82 ± 0.00	$9.29^{+0.02}_{-0.89}$	9.13-0.05 9.77+0.11	8.26+0.09	$9.19_{-0.12}^{+0.02}$	$\begin{array}{c} 9.42\substack{+0.81\\-0.04\\8.72\substack{+0.12\\-0.32\\8.72\substack{+0.32\\-0.32\\0.32\end{array}}\end{array}$
log(Age/yr)	7.49 ± 0.00	6.56+0.00	8.33-0.10 2 64+0.21	8.64+0.00	$7.39_{-0.21}^{+0.00}$	$6.76_{-0.00}^{+0.00}$	6.56 ± 0.21	7.60 ± 0.21	$6.76_{-0.10}^{+0.00}$	$5.93^{+0.83}_{-0.62}$	6.66 ^{+0.10}	0.00-000 6 76+0.00	8.74+0.10	$8.22^{+0.62}_{-0.21}$	$8.01^{+0.31}_{-0.31}$	$8.53_{-0.10}^{+0.10}$	8.95+0.10	8.39+0.42	9.05 ± 0.00	$8.22_{-0.10}^{+0.10}$	$6.76_{-0.10}^{+0.00}$	6.66 ± 0.00	5.04-0.10 7 91+0.10	$8.64^{+0.52}_{-0.52}$	$8.53_{-0.00}^{-0.00}$	$7.18_{-0.31}^{+0.21}$	$6.66^{+1.56}_{-0.10}$	8.64 ^{+0.10}	6.56+0.31	8.84 ± 0.00	$8.43_{-0.21}^{+0.21}$	$7.60^{+0.42}_{-0.42}$	$8.74_{-0.00}$ $7.91^{+0.73}$	$8.43_{-0.21}^{-0.31}$	8.74 ± 0.00	8.43 ^{+0.21} 2 52+0.21	8.84_0.00	8.53 ± 0.10	$7.80^{+0.21}_{-0.10}$	6.56-0.00 e ro+0.21	8.12 ± 0.10	8.84 ± 0.00	6.56 + 0.00	$7.49^{+0.10}_{-1.14}$	8.74_0.00 e 52+0.10	7.70 ± 0.21	8.84+0.00	$8.95^{+1.04}_{-0.00}$ 7.18 $^{+1.66}_{-0.42}$
E(B-V)	$0.14^{+0.02}_{-0.00}$	$0.26_{-0.02}$	0.08-0.02	$0.00^{+0.06}_{-0.00}$	$0.22_{-0.00}^{+0.02}$	0.66 ± 0.00 0.66 ± 0.02	$0.16_{-0.02}^{+0.02}$	0.08+0.02	0.20 + 0.04	0.50 + 0.04	0.58+0.01	0.00-0.04	0.00+0.00	0.18 ± 0.04	$0.14_{-0.04}^{+0.06}$	$0.24_{-0.02}^{+0.02}$	$0.14^{+0.04}_{-0.04}$	0.10+0.04	0.00+0.00	0.00 + 0.00 - 0.02	$0.34_{-0.00}^{+0.02}$	0.60+0.00	0.10 - 0.04 0 30 + 0.04	$0.04^{+0.02}_{-0.02}$	0.00+0.00	$0.02_{-0.02}^{+0.02}$	$0.24_{-0.06}^{+0.04}$	0.16 ± 0.02	0.28 + 0.02	0.28+0.00	0.38 + 0.04	0.30 + 0.06	0.06 - 0.02 0.42 + 0.04	$0.28_{-0.00}^{+0.06}$	$0.34_{-0.00}^{+0.04}$	$0.26^{+0.04}_{-0.04}$	0.20 + 0.00	0.28 + 0.02	$0.10^{+0.02}_{-0.02}$	0.28+0.00	$0.22^{+0.04}$	0.04 ± 0.04	0.56 ± 0.02	$0.34^{+0.18}_{-0.02}$	$0.04^{+0.06}_{-0.06}$	0.14 ± 0.00	$0.02^{+0.02}_{-0.00}$	$0.00^{+0.00}_{-0.20}$ $0.24^{+0.04}_{-0.4}$
z_{phot}	1.50	3.05	1 50	2.35	1.50	1.60	1.70 3.05	2.55	1.50	1.50	1.50	1 50	2.75	2.95	1.80	1.85	2.05	1.50	2.50	1.95	2.95	1.50	2.15	3.25	1.60	2.45	2.30	1.50	1.5U 3.05	1.50	1.50	1.70	2.55	1.85	1.65	1.85	0.00 1.65	1.90	1.50	2.85	2.80 2.80	1.65	1.50	1.50	1.65	2.70	2.20	2.25 2.60
\mathcal{R}_{VI}	26.37	23.02	25.25	25.51	26.40	24.38	26.00	26.08	25.71	25.99	26.15	20.29	20.90	24.29	26.20	24.92	25.39	21.02 26.08	25.75	26.10	24.94	25.05	20.00	24.70	26.32	25.61	25.49	24.95	20.58	24.92	25.66	25.45	24.30 25.90	24.27	25.12	23.49 or 79	26.40	25.54	26.02	25.26	20.05 25.04	26.23	26.17	24.50	25.69	26.06	26.35	26.06 25.86
Ð	en j	147	170	177	201	356	401	430	447	462	472	67.5 781	401	715	720	726	622	191 818	824	876	878	901	1080	1102	1159	1191	1195	1228	1267	1366	1441	1451	1467 1478	1482	1484	1498	1533	1565	1576	1598	1634	1695	1817	1933	1973	2005	2033	2042 2050

88

===								_		_		_	_															_									_												_				
χ ²	37.01	63.78	6.43	17.81	86.48	6.02	6.52	7.12	132.17	11.77	49.41	204.26	14.32	91.01	371.86	24.58	7.77	22.39	0.01	00.0	00.6	2.20	4.59	42.05	45.24	42.03	10.85	133.86	19.94	38.49	8.02	13 58	48.78	17.53	27.53	103.28	106.32	104.12	212.10	0.10 13.55	112.34	8.09	105.65	60.70	62.90	53.57	111.69	2.71	302.64	302.04 136.67	180.92	65.57	3.39
$\log(SFR/(M_{\odot}/yr))$	$0.26_{-0.03}^{+0.03}$	0 92+0.15	$0.70^{+0.02}_{-0.02}$	$0.76^{+0.12}_{-0.17}$	$3.17^{+-0.01}_{-0.21}$	$1.15_{-0.16}^{+0.55}$	$0.55_{-0.06}^{+0.25}$	0.67 ± 0.20	-0.09 ^{+0.03}	$1.20^{+0.20}_{-0.14}$	1.78 ± 0.06	$0.30^{+0.25}_{-0.32}$	$0.98^{+0.34}_{-0.11}$	$0.32_{-0.10}^{+0.02}$	0.08 ± 0.02 0.02 ± 0.02	2.02-0.50	1.59 - 0.17	$1.20_{-0.14}^{+0.014}$	1.79 - 0.02	2.01-0.29	2.75 + 0.25	$3.31^{+1.97}_{-1.97}$	$1.73_{-0.28}^{-0.00}$	0.94+0.35	$1.19_{-0.36}^{+0.14}$	$0.28_{-0.17}^{+0.12}$	$2.19_{-1.97}^{+0.05}$	$0.40_{-0.38}^{+0.22}$	$0.22_{-0.10}^{+0.23}$	$1.15_{-0.02}^{+0.12}$	$0.40_{-0.19}^{-0.19}$	0.04 - 0.12 0.00 + 0.00	$2 23^{+0.06}$	$1.42^{+-0.00}$	$0.19^{+0.11}_{-0.15}$	0.60 ± 0.17	$0.58_{-0.10}^{+0.18}$	$1.40^{+0.06}_{-0.06}$	0.67_0.73	1.53 ± 0.36	$1.60^{+0.17}_{-0.17}$	0.47 ± 0.27	2.28 ± 0.04 -0.24	$0.91_{-0.22}^{+0.00}$	$0.72_{-0.08}^{+0.08}$	$1.59_{-0.18}^{+0.08}$	$1.92_{-0.17}^{+0.03}$	2.59-0.17	$1.96_{-0.23}$	0.40_0.00	$0.96^{+0.17}_{-0.02}$	$1.95_{-0.02}^{-0.16}$	1.51 ± 0.25 1.51 ± 0.25
$\log(M_*/M_{\odot})$	$8.70^{+0.12}_{-0.02}$	9.24+0.06	$9.26^{+0.08}_{-0.08}$	$9.07^{+0.11}_{-0.10}$	$9.71_{-0.11}^{+0.00}$	8.11 ± 0.01	$9.11^{+0.13}_{-0.07}$	7.43 ± 0.49	8.47 ± 0.09	9.63 ± 0.09	8.44+0.08	$8.62^{+0.17}_{-0.06}$	7.94+0.00	$9.46_{-0.10}^{+0.02}$	9.23 ± 0.02	8.57 -0.18	8.55 - 0.15	9.89-0.08	8.05-0.19	0.10-014	9.71 ± 0.03	8.74 ± 0.53	$10.29^{+0.16}$	9.38 0.15	$8.05^{+0.03}_{-0.17}$	8.84+0.35	$8.74_{-0.22}^{+0.05}$	$8.96_{-0.48}^{+0.04}$	8.65 + 0.09	8.31 -0.26	9.09 - 0.43 0.42 - 0.43	0.140 - 0.08 2 02 + 0.00	8 88+0.06	10.40 ± 0.10	$8.87_{-0.12}^{+0.05}$	9.04 ± 0.38 -0.16	$9.27_{-0.06}^{+0.12}$	8.16+0.06	9.50_0.14 10_40+0.23	8.39+0.08	8.36 +0.07	7.84 ± 0.12	$8.83_{-0.13}^{+0.04}$	8.38+0.09	$9.41_{-0.08}^{+0.07}$	$9.91^{+0.07}_{-0.10}$	8.78+0.03	9.35 -0.07	8.40 - 0.02 7 0.0 + 0.00	00000000000000000000000000000000000000	8.02+0.04	8.50 + 0.02	$9.49_{-0.11}^{+0.21}$
log(Age/yr)	$8.43^{+0.10}_{-0.00}$ $8.74^{-0.00}_{-0.10}$	8.32+0.10 8.32+0.10	8.53 ± 0.10	8.32+0.21	$6.56_{-0.00}$	$6.97_{-1.25}^{+0.10}$	$8.53_{-0.21}^{+0.10}$	6.76+1.00	8.53-0.00	$8.43_{-0.10}^{+0.10}$	0.66 ^{+0.10}	$8.32^{+0.42}_{-0.21}$	$6.97_{-1.25}$	8.95+0.00	8.95 -0.00	$6.56_{-0.10}$	$6.97_{-0.10}$	8.64 -0.10	0.87 -0.52	1.31+0.31 0 04+0.10	$6.97^{+1.87}$	5.52 ± 0.42	8.53 0.10	$8.43^{+1.56}$	$6.87_{-0.21}^{+0.21}$	$8.53_{-0.21}^{+0.42}$	6.56 ± 1.46	$8.53_{-0.21}^{+0.10}$	$8.43_{-0.21}^{+0.10}$	7.18 ± 0.31	8.64_0.21 0.10	0.40_0.10 2 24+0.00	6.66 ^{+0.00}	8.84+0.21	8.64-0.10	$8.43_{-0.21}^{+0.73}$	$8.64_{-0.10}^{+0.10}$	$6.76_{-0.00}^{+0.00}$	8.74-0.10	6.87+0.21	6.76 ± 0.10	$7.39^{+0.31}_{-1.04}$	$6.56_{-0.00}^{+0.10}$	$7.49_{-0.00}^{+0.31}$	$8.64_{-0.10}^{+0.10}$	$8.32_{-0.10}^{+0.10}$	6.87-0.00	$6.76_{-0.10}$	$6.45_{-0.10}$	6.43-0.00 2.74+0.00	7.08 ± 0.21	6.56 + 0.00	8.01+0.42
E(B-V)	0.00+0.00	0.10+0.04	0.00+0.00	0.06+0.02	$0.34_{-0.02}^{+0.00}$	$0.26_{-0.02}^{+0.16}$	$0.08^{+0.06}_{-0.02}$	0.00+0.00	0.00+0.00	$0.16_{-0.02}^{+0.02}$	$0.42_{-0.04}^{+0.00}$	$0.04^{+0.04}_{-0.06}$	$0.24_{-0.02}^{+0.10}$	0.00 + 0.02	0.00+0.00	0.3670.02	0.30 + 0.02	$0.14_{-0.04}$	0.20-0.00	0.00+0.00	0.24 ± 0.06	$0.40^{+0.14}$	0.30 + 0.02	$0.18^{+0.06}$	$0.32^{+0.06}_{-0.06}$	$0.10^{+0.04}_{-0.08}$	$0.36_{-0.04}^{+0.02}$	$0.16_{-0.02}^{+0.06}$	$0.08^{+0.04}_{-0.02}$	0.28 ± 0.00	$0.14_{-0.04}^{+0.04}$	0.00+0.02	0.56+0.00	0.14 ± 0.00	0.02+0.02	0.08 + 0.08	$0.06_{-0.02}^{+0.02}$	$0.34^{+0.02}_{-0.00}$	0.00 - 0.26	$0.16^{+0.12}$	0.34 ± 0.06	$0.14^{+0.14}$	$0.40^{+0.04}_{-0.00}$	$0.20_{-0.04}^{+0.00}$	$0.12_{-0.02}^{+0.02}$	$0.38_{-0.02}^{+0.02}$	0.38+0.00	0.40 ± 0.04	0.10+0.00		0.04 ± 0.02	$0.16^{+0.02}_{-0.00}$	$0.22_{-0.06}^{+0.06}$
Zphot	2.70	04.7	2.65	2.55	2.85	1.50	2.05	2.95	1.60	1.70	1.70	1.70	1.50	2.05	2.50	1.95	1.60	2.45	2.50	01.2	2.60	1.60	1.85	1.90	1.50	1.95	2.55	1.50	1.85	1.50	1.50	1 50	09 I	3.10	1.70	2.45	1.85	1.50	3.45	60.6 20.6	1.50	1.50	2.20	1.50	2.10	1.70	2.05	2.45	3.65 2.45	2.40	2.45	2.30	2.80
RVI	26.46 ar ao	77 26	25.30	25.71	24.01	26.08	25.90	26.56	26.46	24.56	26.50	25.91	26.36	25.79	26.59	26.04	25.41	25.15	25.21	23.43 PE 00	23.09	25.83	24.50	25.59	26.52	26.59	26.30	26.18	26.57	25.96	26.05	20.41 25 05	20.30	25.13	25.93	26.16	25.43	26.42	25.94	24.78 95.81	25.82	26.47	25.97	25.76	25.80	25.26	25.91	25.09	25.59 96.06	20.00	25.49	24.91	25.60
Ð	2192	2306	2361	2367	2389	2560	2575	2597	2661	2728	2747	2763	2765	2784	2799	2817	2837	2849	2889	0167	3043	3098	3127	3166	3169	3217	3321	3330	3397	3407	3419	2560	3695	3639	3666	3689	3782	3789	3795	50	69	73	100	190	203	207	242	288	296	312	328	339	448

Table A.6: Best-fit parameters for this work's HDF-S catalog, -700 Myr e-folding exponential SFR.

89

Table A.6: Best-fit parameters for this work's HDF-S catalog, -700 Myr e-folding exponential SFR.

		_				•											•																					_								
χ,	67.49 34.14	52.41	131.13	137.39	131.79	136.67	165.40	198.01	306.33	6.47	63.20	12.88	19 10	88.87	19.21	14.63	2.39	144 41	35.88	3.06	115.06	127.63	60.48	400.9U 53.61	37.83	28.36	132.06	49.40	74.38	174.52	13.45 29.13	54.98	28.94	27.41	45.13	98.81	8.01	20.27	6.49	78.76	64.26	8.33 0 10	8.42 20 76	208.82	2.51	9.24 3.66
$\log(SFR/(M_{\odot}/yr))$	$1.22^{+0.06}_{-0.09}$	$0.63^{+0.04}_{-0.04}$	2.11 ± 0.03	2.37 ± 0.05	$1.78^{+0.00}_{-0.25}$	$1.60^{+-0.00}_{-2.24}$	$1.90_{-0.02}$	$2.20^{+0.00}_{-0.00}$	$-0.27_{-0.00}^{+0.00}$	$2.86_{-1.95}^{+0.23}$	$1.15^{+0.11}_{-0.21}$	$3.38_{-0.12}$	2.02-1.97 0 00+0.22	0.85 + 0.08	$2.82^{+0.21}_{-1.78}$	1.11 ± 0.03 -0.03	$1.13_{-0.09}$	1.48 ± 0.30 0.88 ± 0.36	2.52 ± 0.19	$1.28_{-0.02}^{+0.02}$	$1.72_{-0.16}^{+0.21}$	$1.68^{+0.24}_{-0.03}$	$0.34^{+0.01}_{-0.05}$	1.00-0.03 0.51+0.02	0.76 ± 0.13	$0.81^{+0.25}_{-0.25}$	$2.73^{+1.78}_{-1.78}$	2.27 ± 0.11 2.27 ± 0.48	$0.49^{+0.11}_{-0.02}$	$1.71^{+0.29}_{-0.07}$	0.61 ± 0.00	$3.63^{+1.53}_{-0.71}$	$0.28 ^{+-0.00}_{-0.32}$	$0.63^{+0.20}_{-0.08}$	0.43 ± 0.30 0.54 ± 0.17	3.78 + 1.48	$1.26^{+0.11}_{-0.07}$	$1.11_{-0.14}^{+0.08}$	$0.95^{+0.06}_{-0.12}$	$0.72^{+0.02}_{-0.94}$	0.20-0.03	1.8/-0.14	0.42-0.15	2.25 ± 0.00	$0.76_{-0.18}^{+0.03}$	1.45 ± 0.23 1.15 ± 0.15 1.15 ± 0.15
$\log(M_*/M_{\odot})$	9.78+0.04 0.78-0.07 0.05+0.05	9.61 + 0.10	8.66 + 0.03 8.66 + 0.03	8.92 ± 0.05	$8.44^{+0.00}_{-0.14}$	8.25+0.39	8.01-0.02 8.60+0.00	8.85+0.00	8.88+0.00	$9.41_{-0.20}^{+0.13}$	$8.92^{+0.12}_{-0.10}$	9.61-0.01	9.31-0.22	10.18 + 0.00	$9.27^{+0.11}_{-0.14}$	$10.45 \substack{+0.03\\-0.03}$	9.96+0.09	$8.74_{-0.32}$	9.27 ± 0.04	$10.11^{+0.09}_{-0.05}$	$8.47_{-0.05}^{+0.11}$	$8.34_{-0.03}^{+0.14}$	8.65 ± 0.13 -1.10	6.47 - 0.00	9.45 ± 0.02	$9.79^{+0.11}_{-0.03}$	$9.17_{-0.47}^{+0.11}$	$8.82_{-0.17}^{+0.11}$	$9.47_{-0.10}^{+0.04}$	8.77 ± 0.38	9.50-0.00	9.06 ± 0.19	$9.26_{-0.02}^{+0.07}$	$9.32^{+0.11}_{-0.05}$	9.12-0.08 0 10+0.09	$9.07^{+0.22}_{-0.14}$	$9.82^{+0.06}_{-0.04}$	9.80 ± 0.00	$9.93_{-0.13}^{+0.06}$	$9.70^{+0.08}_{-0.02}$	$9.03_{-0.02}$	01,0-01.01	9.40-0.08 2.07+0.24	8.80 + 0.00	$9.08^{+0.16}_{-0.05}$	$8.00^{+0.13}_{-0.28}$ $9.70^{+0.09}_{-0.09}$
log(Age/yr)	$8.53^{+0.10}_{-0.10}$ $6.56^{+1.46}_{-1.46}$	8.84+0.10	6.56-0.00	6.56+0.00	6.66 ± 0.10	6.66+1.30	6.00-00-00 6.66+0.00	6.66 + 0.00	8.95+0.00	$6.56_{-0.10}^{+1.46}$	$7.80^{+0.31}_{-0.21}$	6.24_0.31 e re+1.46	0.00-0.10 8.64+0.00	$9.05^{+0.00}_{-0.00}$	6.45 ± 0.10	9.05 + 0.00	8.74	6.87+0.10	6.76 ± 0.21	$8.74^{+0.10}_{-0.00}$	$6.76_{-0.10}^{+0.10}$	$6.66_{-0.10}^{+0.00}$	8.32+0.21	6.43-0.00 2 74+0.10	8.64+0.21	8.84+0.00	6.45 ± 1.35	$6.56_{-0.00}^{+0.31}$	$8.84^{+0.00}_{-0.10}$	7.08+0.00	8.43 8.44 8.44 8.44 10	5.52 + 0.42	8.84 ± 0.21	$8.64^{+0.10}_{-0.10}$	8.64-0.00 8.53+0.21	5.41 + 0.31	$8.53_{-0.10}^{-1.14}$	$8.64_{-0.10}^{+0.00}$	$8.84_{-0.10}^{+0.10}$	8.84+1.46	8.74_0.00	8.32-0.21 0 01+0.10	6.84-0.10 6 56+1.46	6.56 ^{+0.00}	8.32+0.31	$6.56_{-0.10}^{+1.46}$ $8.53_{+0.21}^{+0.21}$
E(B-V)	$0.16^{+0.02}_{-0.02}$	0.06+0.00	0.38+0.02	$0.38_{-0.00}^{+0.00}$	$0.42^{+0.00}_{-0.04}$	0.40+0.06	$0.32_{-0.02}$	$0.46^{+0.00}_{-0.00}$	0.00+0.00	$0.48_{-0.02}^{+0.04}$	$0.26^{+0.02}_{-0.04}$	0.46-0.00	0.42 - 0.04	$0.02^{+0.00}_{-0.02}$	$0.44^{+0.02}_{-0.02}$	0.18 + 0.00	0.10 ± 0.02	0.30-0.04	0.48 ± 0.02	$0.04^{+0.00}_{-0.00}$	0.32 ± 0.04	$0.36_{-0.02}^{+0.04}$	0.00+0.00	0.00+0.00	0.16 ± 0.02	$0.22^{+0.04}_{-0.04}$	0.38 ± 0.32	0.38 + 0.06	$0.06^{+0.02}_{-0.00}$	0.44+0.00	0.26+0.00	$0.56_{-0.00}^{+0.16}$	0.12 ± 0.00	$0.10^{+0.02}_{-0.02}$	0.10 - 0.06 0 10 + 0.04	$0.42^{+0.04}$	0.10+0.04	$0.28^{+0.02}_{-0.00}$	0.06 ± 0.04	$0.04^{+0.00}_{-0.24}$	0.00-0.00	0.050-0.04	0.02 - 0.04 0 11 + 0.12	0.42 ± 0.04	$0.02^{+0.02}_{-0.04}$	$0.12^{+0.04}_{-0.06}$ $0.12^{+0.04}_{-0.06}$
z_{phot}	2.95	2.75	2.30	2.30	1.50	1.50	2.30	1.65	1.50	2.80	2.45	2.90	1 50	3.15	2.85	2.35	3.05	2.45	2.60	3.40	2.35	1.85	3.20	1.3U	2.55	1.65	3.05	2.20	2.65	1.50	1.65	1.50	1.50	1.70	1.70 9.55	2.80	2.95	1.50	2.60	3.35	2.75	7.60	2.40 07 0	2.45	3.10	2.85 2.95
\mathcal{R}_{VI}	25.68	26.11	26.31	25.69	26.10	26.46	67.02 82.36	25.66	26.47	25.98	26.58	25.50	20.09	25.32	26.07	25.57	25.43	26.43 26.10	26.05	24.77	26.47	26.52	26.56	26.02	26.50	25.78	25.94	25.86	26.37	25.86	25.04 26.54	25.99	26.06	25.44	25.94 26 55	26.53	25.04	25.24	25.15	26.01	26.55	20.09	26.00	26.47	25.66	26.18 25.56
Ð	464	480	520	533	542	544	579	579	590	639	649	665	600	721	746	848	871	1047	1106	1108	1124	1140	1225	1403	1471	1473	1501	1523	1527	1540	1551	1572	1590	1647	1676	1699	1739	1863	1881	1908	1915	1926	1954	2021	2030	2052 2071

90

Table A.6: Best-fit parameters for this work's HDF-S catalog, -700 Myr e-folding exponential SFR.

_											•						_																											_						
χ^2	151.60	41.52	27.95	52.77	164.68	52.11	36.16	14.39	251.04	119.19	29.50	56.57	48.83	13.19	47.15	113.04	10.23	261.77	143.55	141.08	28.66	31.17	06.6T	60.2	11 50	00.11	108 08	36.041	24.48	178.23	194.23	68.15	74.53	51.04	115.32	10.06	40.19 30.67	10.34	82.36	78.65	24.12	164.60	3.52	68.31	28.80	8.70	102.63	85.77	12.80	75.83
$\log(SFR/(M_{\odot}/yr))$	$1.57_{-0.12}^{\pm 0.11}$	$1.76_{-0.04}^{+0.08}$	$0.39^{+-0.00}_{-0.30}$	$1.09^{+0.03}_{-0.11}$	2.91 ± 0.23	0.95 ± 0.19	0.00 - 0.10 0.45 + -0.00	2, 82+1.02	$3.83^{+1.40}_{-1.40}$	3.17 + -0.00	$0.98^{+0.04}_{-0.02}$	$1.73_{-0.50}^{+0.50}$	$1.33_{-0.00}^{+0.12}$	1.73 ± 0.49	$-0.00^{+0.03}_{-0.12}$	$2.36^{+0.24}_{-1.73}$	0.79 ± 0.02	$0.52_{-0.00}^{+0.03}$	$0.26_{-0.00}^{+0.00}$	1.67 ± 0.00	0.63 - 0.02	2.94 - 0.04	$1.06_{-0.15}$	1.42 - 0.08	2.29-0.24	$1.43_{-0.50}$	1.19 ± 0.20	0.11-0.00	1.83 ± 0.22	$0.29^{+0.30}_{-0.90}$	$1.94^{+-0.00}_{-0.19}$	$2.91_{-0.39}^{+0.21}$	1.85 ± 0.02	0.32 ± 0.17	$0.23_{-0.13}^{+0.14}$	$1.23_{-0.17}^{+0.43}$	0.60-0.25 1 72+0.33	1.33 ± 0.11	1.29 ± 0.04	2.54 ± 0.00	$1.79_{-0.75}^{+0.15}$	$2.39^{+0.00}_{-0.21}$	$1.59_{-0.15}^{+0.04}$	$0.49^{+-0.00}_{-0.00}$	1.56 ± 0.32	$0.69^{+0.22}_{-0.22}$	$2.28_{-0.03}$	$0.95^{+0.32}_{-0.16}$	0.44 - 0.34 1.05 + 0.28	1.40 - 0.32 1.95 + 0.07 1.95 - 0.18
$\log(M_*/M_{\odot})$	$9.24_{-0.12}^{+0.11}$	$9.33_{-0.02}^{+0.07}$	$10.52 \substack{+0.02\\-0.00}$	$10.43_{-0.11}^{+0.03}$	$9.36_{-0.11}^{+0.14}$	9.27	9.43_0.08 0.97+0.06	8 94+0.39	8.63+0.06	0.02+20.6	$9.96^{+0.04}_{-0.02}$	8.38+0.12	8.70 + 0.00	$8.69_{-0.37}^{+0.09}$	$8.98_{-0.12}^{+0.09}$	$8.81_{-0.09}^{+0.14}$	$10.13_{-0.10}^{+0.00}$	$9.21_{-0.11}^{+0.00}$	$9.24_{-0.00}$	8.32_0.32	9.97-0.02	9.49-0.04	9.50-0.06	10.11 - 0.05	$8.84_{-0.14}$	$9.31_{-0.17}$	9.73-0.10 2.07+0.02	0.31-0.10 0 76+0.11	$10.39^{+0.08}$	8.73 0.10	8.59-0.00	$9.36_{-0.07}^{+0.11}$	$8.61_{-0.12}^{+0.02}$	$9.15_{-0.10}^{+0.14}$	$9.06_{-0.03}$	8.09 ^{+0.63}	0.00-0.13 0.90+0.12	9.10 + 0.19	$10.12^{+0.48}$	$9.09^{+0.00}_{-0.05}$	9.88 ± 0.48	$8.94^{+0.00}_{-0.10}$	$10.28_{-0.00}^{+0.10}$	$9.63_{-0.00}^{+0.00}$	8.41 ± 0.35	9.25 ± 0.13	8.83+0.03 +0.03	9.05 ± 0.11	8.70_0.55	8.60 ^{+0.07}
log(Age/yr)	$7.70^{\pm 0.21}_{-0.21}$	$7.60_{-0.10}^{+0.10}$	$9.36^{+0.10}_{-0.00}$	9.05 + 0.00	6.45 ± 1.35	8.32+0.31	8.74+0.31	6 14 + 1.04	$5.10^{+0.00}$	5.93+0.83	8.84+0.00	6.66+0.21	7.39+0.00	6.97 ± 0.10	$8.84_{-0.00}^{+0.10}$	$6.45^{+1.35}_{-0.10}$	9.02 + 0.10	8.64+0.00	8.84_0.00	6.6671.00	9.05-0.00	6.56 - 0.00	8.43_0.10	8.04-0.21	0.00-0.00	6 50+0.21	8.33-0.10 8 53+0.00	0.00-0.10	8 53+0.10	$8.43^{+0.10}_{-0.10}$	$6.66^{+0.10}_{-0.00}$	6.45 ± 0.31	$6.76_{-0.00}^{+0.10}$	8.74+0.21	$8.74_{-0.10}^{+0.10}$	6.87 + 0.46	6.60-0.42	7.80 ± 0.42	8.74 ± 1.98	6.56+0.00	$8.12^{+1.25}_{-0.21}$	6.56 ± 0.10	$8.64_{-0.00}^{+0.21}$	8.95 + 0.00	6.87 ± 0.94	8.53+0.31	$6.56_{-0.00}$	8.12 ^{+0.21} 0.00 ^{+0.21}	8.32_0.42 0.01+0.62	$6.66^{+0.10}_{-0.00}$
E(B-V)	$0.32_{-0.02}^{+0.02}$	0.56+0.02	$0.12_{-0.08}^{+0.00}$	$0.18_{-0.02}^{+0.00}$	$0.48_{-0.02}^{+0.02}$	0.22 ± 0.04	0.10+0.00	0.34 ± 0.10	0.48 ± 0.02	0.58+0.00	$0.12^{+0.00}_{-0.00}$	0.28 + 0.06	$0.42_{-0.00}^{+0.02}$	$0.32_{-0.04}^{+0.08}$	$0.00^{+0.00}_{-0.02}$	$0.38_{-0.02}^{+0.04}$	0.10 ± 0.00	0.00+0.00	0.00+0.00	0.42 ± 0.06	0.00-0.00	0.68 0.00	$0.12_{-0.04}$	0.20 - 0.02	0.46-0.00	0.22-0.10	0.20 - 0.04	0.00-000	0.50+0.00	$0.18^{+0.08}_{-0.08}$	0.54 ± 0.00	$0.44^{+0.02}_{-0.02}$	$0.30_{-0.04}^{+0.00}$	$0.04^{+0.02}_{-0.04}$	$0.10^{+0.04}_{-0.02}$	0.30 + 0.02	0.10-01.0	0.20 + 0.02	0.32+0.00	0.34 ± 0.00	$0.20^{+0.04}_{-0.14}$	$0.62_{-0.02}^{+0.02}$	$0.14^{+0.02}_{-0.04}$	0.20 + 0.00	0.18+0.10	$0.08^{+0.06}_{-0.06}$	$0.46^{+0.02}_{-0.00}$	0.14 ± 0.03	0.18_0.04	$0.44^{+0.06}_{-0.04}$
Zphot	2.55	1.50	2.00	2.15	2.50	2.30	2.70	3 00	1.50	1.50	2.75	2.65	1.50	2.25	1.60	2.80	3.10	2.80	2.70	1.50	3.45	1.55	3.05	2.35	02.2	2.30	2.40	07.0	0.±0	1.50	1.50	2.85	2.40	2.60	1.65	1.50	00 C	2.40	1.65	3.10	2.95	1.50	3.05	1.50	2.80	3.00	2.25	3.10	1.50	09.1
\mathcal{R}_{VI}	26.09	26.20	26.39	25.40	25.78	26.37	20.11	26.22	26.34	26.08	25.75	26.47	26.34	26.04	26.12	26.55	26.34	25.81	26.42	26.45	25.90	25.54	25.85	c0.c2	26.49	85.0Z	01.02	10.02	25.37	26.55	26.48	25.86	25.98	26.53	26.33	26.31	20.01	25.57	25.31	25.80	24.80	26.16	24.67	26.09	25.77	26.32	26.58	26.44	26.34	26.05
Ð	2188	2219	2257	2266	2300	2315	2329	20002	2429	2529	2545	2553	2561	2568	2652	2684	2698	2722	2751	2754	2759	2854	2946	GG82	29892	3145	3103	20070	3294	3349	3399	3411	3420	3465	3480	3485	3491	3511	3542	3548	3563	3578	3635	3641	3646	3687	3767	3779	3797	3897

 91°

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.
92

Appendix B $z \sim 2$ Best-fit SEDfit Parameters

I	D	\mathcal{R}_{VI}	z_{phot}	E(B - V)	$\log(Age/yr)$	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
1 3	3 1	24.08	3.10	$0.26\substack{+0.16\\-0.10}$	$6.76^{+1.66}_{-1.98}$	$9.46^{+0.05}_{-0.82}$	$2.70^{+0.92}_{-2.36}$	28.45
1	2 1	25.14	2.95	$0.14^{+0.02}_{-0.08}$	$8.53^{+0.73}_{-1.77}$	$9.78^{+0.31}_{-0.32}$	$1.43^{+0.09}_{-0.33}$	0.93
6	0 :	26.55	2.10	$0.20^{+0.00}_{-0.02}$	$10.20^{+1.14}_{-0.10}$	$9.49^{+0.03}_{-0.09}$	$0.75^{+0.00}_{-0.09}$	21.26
8	8 3	26.28	3.20	$0.00^{+0.00}_{-0.00}$	$9.26^{+0.62}_{-1.04}$	$9.18^{+0.28}_{-0.03}$	$0.47^{+0.00}_{-0.02}$	27.52
9	6 :	26.99	2.45	$0.10^{+0.00}_{-0.00}$	$9.78^{+0.62}_{-0.52}$	$9.13^{+0.06}_{-0.02}$	$0.38^{+0.04}_{-0.02}$	31.31
9	7 :	27.58	2.50	$0.00^{+0.00}_{-0.00}$	$10.09^{+0.73}_{-0.10}$	$8.54^{+0.02}_{-0.00}$	$-0.21_{-0.00}^{+0.00}$	30.99
18	32 3	25.58	1.95	$0.28^{+0.00}_{-0.00}$	$9.36^{+0.42}_{-0.94}$	$10.06\substack{+0.14\\-0.09}$	$1.34^{+0.06}_{-0.09}$	1.00
19	96 :	26.32	2.80	$0.18^{+0.10}_{-0.08}$	$8.01^{+0.94}_{-2.29}$	$9.01^{+0.42}_{-0.55}$	$1.09^{+0.35}_{-0.45}$	0.28
21	10 :	27.51	1.90	$0.14^{+0.14}_{-0.20}$	$7.28^{+0.62}_{-1.56}$	$7.54^{+3.03}_{-0.59}$	$0.29^{+3.36}_{-0.53}$	0.07
21	15 3	27.05	2.10	$0.22_{-0.00}^{+0.00}$	$9.99^{+0.73}_{-0.31}$	$9.37_{-0.05}^{+0.03}$	$0.62_{-0.05}^{+0.00}$	28.74
24	12	26.71	2.55	$0.28_{-0.30}^{+0.10}$	$6.56^{+1.46}_{-0.62}$	$8.29^{+1.97}_{-0.28}$	$1.75^{+2.17}_{-2.03}$	0.91
24	18 :	26.28	2.50	$0.00^{+0.00}_{-0.00}$	$8.74_{-0.10}^{+0.10}$	$8.80^{+0.06}_{-0.09}$	$0.30_{-0.03}^{+0.00}$	32.84
28	34 3	26.80	2.85	$0.00^{+0.00}_{-0.04}$	$8.74_{-1.56}^{+0.62}$	$8.65_{-0.27}^{+0.33}$	$0.16^{+0.04}_{-0.15}$	122.68
31	17 :	25.96	2.70	$0.02^{+0.00}_{-0.00}$	$10.30^{+1.35}_{-0.00}$	$9.30^{+0.15}_{-0.02}$	$0.55^{+0.03}_{-0.02}$	27.94
32	23 :	26.73	2.20	$0.06^{+0.06}_{-0.24}$	$7.70^{+0.94}_{-0.52}$	$7.99^{+17.93}_{-0.28}$	$0.35^{+17.14}_{-0.57}$	0.71
32	25 :	26.11	3.05	$0.08^{+0.00}_{-0.02}$	$10.20^{+1.46}_{-0.10}$	$9.56^{+0.19}_{-0.05}$	$0.82^{+0.02}_{-0.06}$	14.88
33	36 3	27.28	2.40	$0.14_{-0.02}^{+0.04}$	$6.56^{+0.10}_{-0.10}$	$7.51^{+0.12}_{-0.13}$	$0.96^{+0.22}_{-0.23}$	62.87
33	38 3	26.99	2.50	$0.00^{+0.00}_{-0.02}$	$10.09^{+0.52}_{-0.21}$	$8.78_{-0.08}^{+0.00}$	$0.03^{+0.00}_{-0.08}$	30.89
36	64 :	27.90	2.40	$0.00^{+0.00}_{-0.08}$	$10.09^{+2.70}_{-0.21}$	$8.40^{+18.99}_{-0.03}$	$-0.34^{+17.73}_{-0.03}$	79.64
39	90 3	27.14	2.80	$0.04^{+0.00}_{-0.02}$	$9.88^{+1.25}_{-0.42}$	$8.94_{-0.06}^{+0.27}$	$0.19_{-0.07}^{+0.02}$	1.98
41	11 :	27.56	1.45	$0.10^{+0.04}_{-0.16}$	$8.43^{+1.56}_{-0.42}$	$7.99_{-0.20}^{+0.58}$	$-0.28^{+0.17}_{-0.87}$	69.46
42	25	26.37	1.85	$0.30^{+0.00}_{-0.02}$	$10.30^{+1.04}_{-0.00}$	$9.78^{+0.07}_{-0.12}$	$1.03^{+0.07}_{-0.12}$	9.29
44	12 3	24.00	2.90	$0.16^{+0.02}$	$8.95^{+0.31}_{-1.35}$	$10.53^{+0.13}_{-0.14}$	$1.93_{-0.06}^{+0.05}$	5.23
45	52 3	26.68	2.70	$0.14^{+0.02}_{-0.02}$	$9.05_{-1.25}^{+0.42}$	$9.37^{+0.18}_{-0.11}$	$0.72^{+0.06}_{-0.06}$	1.51
45	54 3	26.26	2.80	$0.12^{+0.02}_{-0.04}$	$8.74_{-1.56}^{+0.52}$	$9.33_{-0.21}^{+0.25}$	$0.84_{-0.16}^{+0.08}$	3.28
46	63 3	26.62	2.80	$0.00^{+0.00}$	$9.99^{+1.14}_{-0.31}$	$8.97^{+0.13}_{-0.06}$	$0.22_{-0.06}^{+0.02}$	53.59
47	70	26.23	2.50	$0.14_{-0.00}^{+0.00}$	$10.20^{+1.04}_{-0.10}$	9.58 ± 0.06	$0.83_{-0.04}^{+0.00}$	7.04
47	78 :	24.22	2.90	$0.26^{+0.02}_{-0.02}$	$8.84^{+0.31}_{-1.46}$	$10.77_{-0.17}^{+0.15}$	$2.22^{+0.05}_{-0.08}$	4.56
51	10 :	26.47	2.50	$0.04^{+0.00}_{-0.00}$	$9.88^{+0.31}_{-0.42}$	$9.15^{+0.04}_{-0.00}$	$0.40^{+0.04}_{-0.00}$	52.50
55	52	26.43	1.50	$0.18_{-0.10}^{+0.18}$	$7.39^{+0.42}_{-2.91}$	$7.98^{+2.51}_{-0.53}$	$0.63^{+3.32}_{-0.32}$	0.81
57	78 :	26.59	2.10	$0.08^{+0.00}_{-0.02}$	$9.99_{-0.31}^{+0.94}$	$9.08^{+0.06}_{-0.07}$	$0.34_{-0.07}^{+0.04}$	6.08
59	92 2	25.94	2.70	$0.08^{+0.00}_{-0.00}$	$9.99_{-0.31}^{+0.83}$	$9.52^{+0.06}_{-0.00}$	$0.77_{-0.00}^{+0.02}$	61.22
60)4 :	27.35	2.50	$0.04^{+0.00}_{-0.02}$	$10.20^{+1.35}_{-0.10}$	$8.77^{+0.16}_{-0.07}$	$0.03^{+0.05}_{-0.08}$	2.58
61	10 :	25.50	1.90	$0.36_{-0.12}^{+0.04}$	$8.43^{+0.94}_{-0.42}$	$9.88^{+0.90}_{-0.19}$	$1.61^{+0.29}_{-0.23}$	4.16
62	21 :	27.60	1.55	0.18 + 0.10	$6.76^{+1.66}_{-0.83}$	$7.21^{+17.47}_{-0.49}$	$0.45^{+17.57}_{-2.44}$	0.67
65	53 1	26.26	2.20	$0.32^{+0.04}_{-0.10}$	$8.32^{+0.83}_{-0.42}$	$9.54^{+1.78}_{-0.24}$	$1.35_{-0.17}^{+1.11}$	2.99
66	58. S	25.35	2.20	$0.12^{+0.00}_{-0.02}$	$10.20^{+1.35}_{-0.10}$	$9.76^{+0.14}_{-0.05}$	$1.01^{+0.05}_{-0.09}$	1.10
67	73 :	26.33	1.60	0.08+0.00	$9.99_{-0.31}^{+0.73}$	$8.99_{-0.03}^{+0.05}$	$0.24_{-0.03}^{+0.03}$	35.86
70	9 :	27.66	2.45	$0.08^{+0.02}_{-0.00}$	$9.88_{-0.42}^{+0.73}$	$8.79^{+0.06}_{-0.02}$	$0.04_{-0.02}^{+0.05}$	36.61
71	12	27.95	1.85	$0.00^{+0.00}_{-0.00}$	9.88 + 0.83	$8.20^{+0.20}_{-0.08}$	$-0.55^{+0.11}_{-0.08}$	13.57
75	51 :	26.75	1.60	$0.04^{+0.00}$	$9.78_{-0.52}^{+0.62}$	$8.69^{+0.06}_{-0.22}$	$-0.05^{+0.06}_{-0.23}$	17.99
76	62 3	25.92	1.85	0.30 + 0.00	$9.88^{+1.04}_{-0.42}$	$9.95_{-0.12}^{+0.12}$	$1.20^{+0.10}_{-0.16}$	2.69
1 76	6 56	27.48	1.55	$0.30^{+0.30}_{-0.10}$	$6.66^{+1.56}_{-3.64}$	$7.60^{+3.01}_{-0.44}$	0.95 + 3.71 = 2.20	2.55
1 78	39 3	26.76	2.50	$0.04^{+0.02}_{-0.02}$	$9.99_{-0.31}^{+0.73}$	$9.01^{+0.07}_{-0.00}$	0.26 + 0.07 = 0.00	30.22

Table B.1: Best-fit parameters for Sawicki et al. (2007) HDF catalog, 700 Myr e-folding exponential SFR.

Appendix B. $z\sim2$ Best-fit SEDfit Parameters

χ^{2}	4.72 6.03	24.05	17.72	73.64	47.76	17.07	50.62	115.15	10.88	14.13	0.41	1.42	5.10	11.49	62:05	14.52	25.05	4.14	13.03	39.86	9.36	32.89	113.73	1.25	46.11	74.36	67.14	43.36	63.76	7.83	6.76	52.56	34.42	19.52	0.87	118.15	13.96	81.47	19.05	0.36	143.55	00.00	0.24	27.49	21.43	40.24	0.34	16.69	43.23	92.30	18.95
$\log(SFR/(M_{\odot}/yr))$	$1.95_{-0.52}^{+0.52}$	-0.71 + 0.03	$-0.21^{+0.05}_{-0.05}$	$0.07_{-0.26}^{+0.10}$	$-0.75_{-0.00}^{+0.06}$	$0.39^{+-0.00}_{-0.00}$	0.67 ± 0.00	$0.25_{-0.07}^{+0.00}$	$0.41_{-0.17}^{+0.10}$	2.47 ± 0.19	$-0.06^{+0.13}_{-0.13}$	$0.54^{+0.10}_{-0.04}$	-0.04	0.18 ± 2.91	$1.62_{-0.06}$	0.88-0.01	$1.24_{-2.41}^{+0.09}$	0.09 - 0.24 0.47 + 0.07	0.41 - 0.24 0.61 + 0.07	$-0.19^{+0.03}_{-0.19}$	$0.16^{+0.02}_{-0.31}$	-0.28	$0.08^{+0.09}_{-0.09}$	$0.99^{+0.05}_{-0.10}$	$0.26_{-0.00}^{+0.02}$	0.45 ± 0.02	0.08 ± 0.04	$0.59_{-0.05}^{+0.05}$	$-0.11_{-0.07}^{+0.07}$	1.50 ± 0.25	1.01 ± 0.04	$0.32_{-0.07}^{+0.02}$	-0.0-61.0- 00.04-00 0	0.28-0.00	0.20 ± 0.21	$0.12^{+-0.00}_{-0.00}$	$2.30^{+2.63}_{-0.37}$	$0.35 _{-0.39}^{+inf}$	$0.26^{+0.04}_{-0.09}$	$0.82^{+0.12}_{-0.12}$	$2.94_{-0.54}$	1.30_0.82	0.77 ± 1.99	$0.77_{-0.00}^{-0.42}$	0.07 ± 0.04	$0.25_{-0.00}^{+0.04}$	$0.62 + \overline{1.30} \\ - 0.20$	$1.00^{+0.02}_{-0.00}$	$0.23^{+0.13}_{-0.26}$	0.74 ± 0.00	0.35 ± 0.00 0.35 ± 0.06
$\log(M_*/M_{\odot})$	$10.69^{+0.12}_{-0.38}$	7.98+0.13	8.54+0.20	$7.22_{-0.21}^{+0.18}$	8.00+0.00	$9.14_{-0.00}^{+0.06}$	$9.42_{-0.00}^{+0.07}$	8.99+0.03	$9.16_{-0.12}^{+0.17}$	$9.02^{+0.21}_{-0.25}$	8.55+0.34	$9.22^{+0.14}_{-0.07}$	8.69 0.06	$7.92_{-0.70}^{+1.13}$	$10.37_{-0.05}^{+0.05}$	9.63 ± 0.00	7.99 ± 0.30	8.91-0.21 0 66+0.30	0.00-0.10 0 35+0.07	8.52 ^{+0.23}	8.08 0.03	$8.44^{+0.23}$	8.83+0.11	$9.74^{+0.17}_{-0.07}$	9.01+0.13	$9.19^{+0.03}_{-0.07}$	8.83+0.06	$9.34_{-0.05}^{+0.06}$	8.63+0.07	$8.25^{+0.11}_{-0.15}$	$9.76_{-0.04}$	9.07_0.07 0.50+0.13	8.39-0.00 0.0+0.07	8.83-0.17	8.81+0.20 8.81+0.20	8.85_0.00	$9.25_{-0.24}^{+0.96}$	$9.10^{+inf}_{-0.10}$	8.95 ± 0.08	9.57 - 0.06	$8.08_{-0.20}$	0.70+0.03	8.70+2.17	9.52 + 0.00	8.81+0.08	$9.00^{+0.04}_{-0.00}$	$8.89_{-0.25}^{+2.13}$	$9.75_{-0.00}^{+0.04}$	8.50+0.23	9.48_0.00 0.0e+0.07	$9.09^{+0.21}_{-0.05}$
log(Age/yr)	$9.47^{+0.52}_{-0.83}$	$9.16^{+0.31}_{-1.10}$	$10.09^{+1.25}_{-0.21}$	$7.18_{-0.31}^{+0.42}$	$10.09^{+0.83}_{-0.21}$	$10.20^{+1.04}_{-0.10}$	9.88+0.52	9.88 ± 0.62	9.78 ± 0.52	$6.56_{-0.83}^{+1.40}$	8.95+0.35	$9.16^{+0.31}$	$9.36_{-0.94}$	$7.80^{+2.10}_{-2.50}$	9.99-0.31	9.88 ^{+1.02}	$6.76_{-2.29}^{+1.62}$	8.43-0.42 0.20+0.52	0.78+0.62	9.26 ± 0.52	$8.01^{+1.25}_{-1.25}$	$9.36^{+0.62}$	$10.09^{+0.94}_{-0.94}$	$9.99^{+1.25}_{0.31}$	9.68 0 63	$9.78^{+0.42}_{-0.52}$	9.68 ± 0.52	$10.09^{+0.83}_{-0.21}$	$10.20^{+0.94}_{-0.10}$	$6.76_{-0.10}^{+0.10}$	9.090+00-00	9.78+0.52 0.70+0.53	9.78-0.52	8.84_0.52 10.00+0.94	$8.95^{+0.31}$	$9.36_{-0.00}^{-0.00}$	$6.97_{-3.33}^{+0.31}$	$9.57^{+4.47}_{-0.73}$	$9.16^{+0.62}_{-1.14}$	$9.68_{-0.62}$	5.31-4.99 r ro+0.42	0.12+0.31	8.10-1.14 8.01+0.94	$10.20^{+0.62}$	9.88+0.73	9.68 ± 0.42	$8.43_{-0.52}^{+1.04}$	9.78 + 0.52	8.43 ^{+0.52}	9.68-0.62	$10.20^{+1.46}_{-0.10}$
E(B-V)	0.58	0.00+0.00	0.00+0.00	$0.00^{+0.00}_{-0.02}$	$0.02_{-0.00}^{+0.02}$	$0.08^{+0.00}_{-0.00}$	$0.14_{-0.00}^{+0.02}$	$0.04^{+0.00}_{-0.02}$	$0.14_{-0.02}^{+0.00}$	$0.34^{+0.10}_{-0.04}$	$0.10^{+0.02}_{-0.04}$	$0.04^{+0.02}_{-0.00}$	0.06 - 0.16	0.10 ± 0.18	0.58-0.00	$0.14_{-0.00}$	$0.22_{-0.12}$	0.00+0.00	0.16+0.00	0.00+0.00	0.08+0.08	0.00+0.00	$0.10^{+0.02}_{-0.02}$	0.20+0.00	0.00+0.00	0.04 + 0.00	0.08 ± 0.02 -0.02	$0.34_{-0.00}^{+0.00}$	$0.04^{+0.00}_{-0.02}$	$0.40^{+0.02}_{-0.04}$	0.1670.00	0.02+0.02	0.00-0.00	0.00-0.00	0.08 ± 0.00	0.00+0000	$0.36^{+0.18}_{-0.06}$	$0.12_{-0.86}^{+0.12}$	$0.04^{+0.00}_{-0.02}$	$0.12_{-0.02}$	$0.40_{-0.58}$	0.10-0.82	0.20 - 0.02 0 10 + 0.08	$0.14^{+0.00}_{-0.00}$	$0.02^{+0.00}_{-0.00}$	0.08 ± 0.00	$0.18_{-0.10}^{+0.04}$	$0.08^{+0.00}_{-0.00}$	$0.16_{-0.06}^{+0.02}$	0.16-0.00	$0.08^{+0.00}_{-0.02}$
Zphot	1.40 9.65	2.00 1.45	2.50	2.60	1.30	2.50	2.40	2.20	1.95	2.95	2.10	2.40	2.40	2.70	1.40	2.80	2.95	2.8.2 7 2 5	2 2 C	2.75	2.70	2.50	2.40	2.15	2.75	2.70	2.20	1.35	2.40	1.45	2.65	2.50	2.50	2.50	2.05	2.50	2.60	2.75	2.75	2.25	1.60	21.15	01.1 2.45	2.05	2.10	2.50	2.25	2.50	1.55	2.50	2.80
\mathcal{R}_{VI}	25.23	27.91	27.58	27.40	27.94	26.81	26.59	26.64	26.75	25.77	27.75	26.01	27.62	27.81	26.13	26.33	27.26	C/. CZ	20.02	27.66	27.62	27.77	27.73	26.02	26.50	26.41	27.37	26.91	27.67	26.47	26.09	26.44	24.72	26.39	26.90	26.75	25.32	27.45	26.91	25.86	27.51	71.12	26.10	26.00	26.79	27.17	26.91	25.30	26.87	26.67	27.10
ID	202	801	879	880	891	892	893	896	921	933	954	994	1006	1007	1026	1048	1062	1074	1083	1095	1099	1106	1112	1129	1131	1158	1190	1191	1226	1236	1241	1264	1004	1294	1296	1328	1352	1362	1437	1474	1499	1001	1516	1519	1525	1528	1531	1535	1539	1556	1592

Table B.1: Best-fit parameters for Sawicki et al. (2007) HDF catalog, 700 Myr e-folding exponential SFR.

93

ID	\mathcal{R}_{VI}	z_{phot}	E(B - V)	$\log(Age/yr)$	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
1606	26.80	2.50	$0.06^{+0.00}_{-0.00}$	$10.20^{+1.04}_{-0.10}$	$9.08^{+0.06}_{-0.00}$	$0.33^{+0.02}_{-0.00}$	56.62
1610	26.39	2.35	$0.16^{+0.02}_{-0.00}$	$9.68^{+0.42}_{-0.62}$	$9.55_{-0.02}^{+0.10}$	$0.80^{+0.09}_{-0.02}$	44.53
1611	26.41	1.85	$0.12^{+0.00}_{-0.02}$	$9.68^{+0.52}_{-0.62}$	$9.20^{+0.13}_{-0.14}$	$0.45^{+0.13}_{-0.13}$	23.80
1621	24.88	1.25	$0.12^{+0.02}_{-0.04}$	$9.05^{+0.42}_{-1.25}$	$9.34^{+0.09}_{-0.11}$	$0.68^{+0.10}_{-0.21}$	5.20
1654	25.27	2.05	$0.30^{+0.02}_{-0.00}$	$9.05^{+0.21}_{-1.25}$	$10.22\substack{+0.06\\-0.11}$	$1.57^{+0.07}_{-0.06}$	8.43
1662	26.19	2.45	$0.02^{+0.02}_{-0.10}$	$8.32^{+1.14}_{-0.31}$	$8.61^{+1.99}_{-0.18}$	$0.42^{+1.38}_{-0.16}$	0.66
1700	27.17	1.40	$0.00^{+0.00}_{-0.02}$	$10.30^{+1.14}_{-0.00}$	$8.30^{+0.06}_{-0.09}$	$-0.45_{-0.09}^{+0.03}$	12.79
1709	26.40	2.50	$0.04^{+0.02}_{-0.00}$	$9.36^{+0.42}_{-0.94}$	$9.14_{-0.02}^{+0.12}$	$0.41^{+0.07}_{-0.00}$	7.56
1734	27.50	2.70	$0.02^{+0.00}_{-0.04}$	$9.99^{+0.83}_{-0.31}$	$8.69_{-0.09}^{+0.06}$	$-0.06^{+0.03}_{-0.09}$	174.95
1747	27.05	2.45	$0.06^{+0.06}_{-0.24}$	$8.43^{+1.46}_{-1.87}$	$8.49^{+3.86}_{-0.42}$	$0.22^{+3.78}_{-0.36}$	0.45
1777	25.01	2.65	$0.14^{+0.00}_{-0.00}$	$10.30^{+1.35}_{-0.00}$	$10.11_{-0.02}^{+0.15}$	$1.37_{-0.02}^{+0.04}$	7.44
1903	26.74	2.65	$0.46^{+0.26}$	$6.14^{+1.04}_{-3.12}$	$9.04^{+2.16}_{-0.07}$	$2.92^{+4.11}_{-1.40}$	0.31
2006	26.89	1.90	$0.20^{+0.02}$	$9.36^{+0.62}$	$9.26^{+0.20}_{-0.17}$	0.53 + 0.17	21.63
2060	27.76	2.85	$0.12^{+0.06}_{-0.10}$	$8.43^{+1.35}$	$8.54^{+0.66}$	$0.27^{+0.23}_{-0.56}$	3.80
2066	27.12	2.65	$0.06^{+0.02}$	$10.30^{+1.25}_{-0.00}$	$8.97^{+0.11}_{-0.02}$	$0.23^{+0.08}_{-0.02}$	59.29
2073	27.80	2.05	$0.00^{+0.00}$	$10.20^{+0.83}_{-0.10}$	$8.32^{+0.04}$	$-0.42^{+0.02}$	14.09
2079	26.98	2.45	$0.14^{+0.02}$	$9.05^{+1.66}$	$9.17^{+1.97}_{-0.11}$	$0.52^{+0.78}_{-0.08}$	8.25
2095	26.55	2.65	$0.02^{+0.00}$	$10.20^{+1.56}_{-1.0}$	$9.05^{+0.11}_{-0.00}$	$0.30^{+0.02}_{-0.10}$	13.89
2106	25.88	2.55	$0.04^{+0.00}$	$10.09^{\pm1.14}$	$9.38^{+0.08}_{-0.04}$	$0.63^{+0.02}_{-0.02}$	4.52
2111	26.57	2.40	$0.02^{+0.02}$	$10.09^{+0.83}$	$9.02^{+0.07}_{-0.02}$	$0.27^{+0.07}_{-0.02}$	141.35
2169	27.89	2.70	$0.10^{+0.10}$	$6.76^{+1.66}$	$7.21^{\pm 1.13}_{-0.05}$	$0.45^{+1.13}_{-2.41}$	31.35
2171	25.55	2.50	$0.04^{+0.02}$	$9.78^{+0.73}$	$9.48^{+0.09}_{-0.03}$	$0.74^{+0.03}_{-0.04}$	20.45
2188	27.32	2.20	0.00+0.00	$9.78^{+0.73}$	$8.58^{+0.09}_{-0.09}$	$-0.17^{+0.06}$	37.00
2206	26.56	2.50	$0.02^{+0.00}$	$9.88^{+0.10}$	$9.03^{+0.00}_{-0.00}$	$0.28^{+0.00}_{-0.00}$	78.10
2208	26.58	2.45	$0.12^{+0.00}$	$10.20^{+1.25}$	$9.35^{+0.11}$	$0.61^{+0.04}$	5.23
2221	27.94	1.85	$0.12^{+0.12}$	$7.60^{+2.50}$	$7.50^{+17.98}$	$-0.04^{+17.39}$	0.10
2228	25.75	1.80	$0.30^{+0.02}$	$9.05^{+0.31}$	$9.90^{+0.19}$	$1.25^{+0.27}_{-0.07}$	10.73
2255	27.25	1.40	$0.16^{+0.02}$	$9.88^{+0.62}$	$8.75^{+0.09}$	$0.00^{+0.09}$	95.88
2260	26.10	2.75	$0.22^{+0.02}$	$9.05^{+0.21}$	$9.90^{+0.09}_{-0.09}$	$1.25^{+0.05}_{-0.05}$	13.48
2282	24.63	2.50	$0.06^{+0.00}$	$10.20^{+1.14}$	$9.93^{+0.09}$	$1.19^{+-0.00}$	4.01
2300	26.66	2.65	$0.16^{+0.02}$	$9.05^{+0.21}$	$9.44^{+0.11}$	$0.79^{+0.03}$	1.29
2306	25.42	2.60	$0.14^{+0.00}$	$9.78^{+0.94}$	$9.93^{+0.16}$	$1.19^{+0.04}$	1.24
2342	27.85	1.60	$0.12^{+0.02}$	$9.88^{+0.73}$	$8.50^{+0.27}$	$-0.25^{+0.26}$	31.77
2366	26.44	2.20	$0.38^{+0.00}$	$9.99^{+0.83}$	$10.23^{+0.10}$	$1.48^{+0.10}$	27.13
2404	27.76	2.00	$0.12^{+0.02}$	$9.16^{+0.62}$	$8.65^{+0.36}_{-0.10}$	$-0.04^{+0.19}$	5.84
2409	26.90	2.05	$0.18^{+0.02}$	$10.20^{+0.94}$	$9.28^{+0.07}$	$0.54^{+0.06}$	14.55
2490	27.03	2.40	$0.04^{+0.02}$	$10.09^{\pm0.52}$	$8.90^{+0.07}$	$0.15^{+0.07}_{-0.07}$	106.20
2501	25.98	2.45	$0.08^{+0.00}$	$10.09^{\pm 1.14}$	$9.46^{+0.09}$	$0.71^{+0.06}$	3.00
2560	26.37	2.05	$0.14^{+0.00}$	$9.36^{+0.62}$	$9.34^{+0.21}$	$0.61^{+0.13}_{-0.13}$	0.31
2616	25.58	2.75	$0.20^{+0.02}$	$8.84^{+0.31}$	$9.95^{+0.14}$	$1.40^{+0.05}$	1.04
2625	26.65	2.25	$0.12^{+0.02}$	$8.32^{+1.14}$	$8.71^{+2.34}$	$0.52^{\pm 1.71}$	0.51
2702	25.73	2,65	$0.10^{+0.02}$	$9.36^{+0.52}$	$9.66^{+0.19}$	$0.93^{+0.05}$	5.45
2710	25.05	2.40	$0.12^{+0.02}$	$10.20^{+1.14}$	$9.96^{+0.09}$	$1.21^{+0.09}$	14.76
2808	27 75	2.70	$0.12_{-0.00}$ $0.28^{+0.14}$	$6.66^{+1.56}$	$7.92^{+1.47}$	$1.27^{+1.58}$	5.79
2832	26.69	2 70	$0.10^{+0.00}$	$9.78^{+0.42}$	$9.30^{+0.02}$	$0.55^{+0.02}$	66.72
2835	27.68	2.75	$0.08^{+0.02}$	$9.88^{+1.14}$	$8.86^{+0.25}$	$0.11^{+0.08}$	11.95
2848	27.80	2.05	$0.00^{+0.00}$	$9.36^{+1.98}$	$8.31^{+4.18}$	$-0.42^{+2.92}$	17.22
2849	25.59	2.60	$0.14^{+0.00}$	$10.30^{+1.14}$	$9.86^{+0.06}$	$1.12^{+0.06}$	14.87
2853	25.22	2.50	$0.08^{+0.02}$	$9.05^{+0.21}$	$9.67^{+0.09}$	$1.02^{+0.05}$	0.72
2876	25.81	2.30	0.00-0.00	$9.36^{+0.31}$	$9.21^{+0.07}$	$0.48^{+0.02}$	12.03
2804	27.17	2.75	0.00 ± 0.00 0.04 ± 0.02	$9.36^{+2.18}$	$8.91^{+2.78}$	$0.18^{+1.71}$	5.85
2054	26.80	1.55	$0.03_{-0.18}$ $0.18^{+0.00}$	$9.68^{+0.94}$	$9.05^{+0.04}_{-0.07}$	$0.30^{+0.03}$	16.88
3025	26.07	2.90	$0.04^{+0.02}$	$9.26^{+0.83}$	$9.00^{+0.31}$	$-0.28^{+0.06}$	5.70
3020	20.91	2.30	$0.03_{-0.04}$ $0.02^{+0.02}$	0.20 - 1.04 0.00 + 1.14	8.67 ^{+0.20}	$-0.08^{+0.08}$	8.64
1. 3030	21.00	2.70	0.02-0.00	<u>5.55</u> <u>-0.31</u>	0.01-0.02	-0.00-0.02	0.04

Table B.1:	Best-fit parameters f	or Sawicki et al.	(2007) HDF cata	alog, 700 Myr e-fol	ding exponential
	SFR.				

Table B.1: Best-fit parameters for Sawicki et al. (2007) HDF catalog, 700 Myr e-folding exponential SFR.

ID	\mathcal{R}_{VI}	zphot	E(B - V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
3042	27.21	1.25	$0.24^{+0.22}_{-0.04}$	$6.87^{+0.10}_{-1.77}$	$7.39^{+0.17}_{-0.44}$	$0.54^{+1.16}_{-0.24}$	10.71
3048	24.74	2.20	$0.18^{+0.02}_{-0.00}$	$9.05^{+0.21}_{-1.25}$	$10.11^{+0.09}_{-0.13}$	$1.46^{+0.07}_{-0.07}$	1.44
3083	25.65	2.05	$0.16\substack{+0.02\\-0.00}$	$9.26^{+0.21}_{-1.04}$	$9.68^{+0.11}_{-0.03}$	$0.97\substack{+0.14\\-0.03}$	5.08
3087	26.46	2.80	$0.06^{+0.06}_{-0.06}$	$8.32^{+0.62}_{-1.98}$	$8.74^{+0.30}_{-0.42}$	$0.55^{+0.20}_{-0.28}$	1.32
3111	24.61	2.35	$0.04\substack{+0.00\\-0.02}$	$10.20^{+1.35}_{-0.10}$	$9.83^{+0.13}_{-0.07}$	$1.08\substack{+0.06\\-0.11}$	2.68
3115	25.41	2.10	$0.20^{+0.02}_{-0.02}$	$8.43^{+0.21}_{-0.31}$	$9.49^{+0.11}_{-0.13}$	$1.22_{-0.09}^{+0.16}$	13.07
3134	25.09	2.35	$0.18^{+0.02}_{-0.00}$	$8.95^{+0.10}_{-1.35}$	$9.98^{+0.07}_{-0.15}$	$1.37^{+0.09}_{-0.04}$	8.36
3176	25.86	2.20	$0.12^{+0.02}_{-0.02}$	$8.84^{+0.21}_{-1.46}$	$9.36^{+0.08}_{-0.23}$	$0.81^{+0.10}_{-0.14}$	5.89
3189	26.24	2.00	$0.04^{+0.00}_{-0.02}$	$9.78^{+0.62}_{-0.52}$	$9.05_{-0.06}^{+0.10}$	$0.30^{+0.06}_{-0.06}$	38.80
3201	27.16	1.55	$0.32^{+0.10}_{-0.06}$	$7.60^{+0.52}_{-0.83}$	$8.27^{+2.26}_{-0.61}$	$0.73^{+2.31}_{-0.33}$	3.86
3222	27.89	0.00	$0.02\substack{+0.02\\-0.08}$	$7.49^{+0.31}_{-1.25}$	$-10.55^{+0.09}_{-18.25}$	$-18.00^{+0.20}_{-17.23}$	3.33
3250	27.14	2.70	$0.02^{+0.02}_{-0.06}$	$8.32^{+0.62}_{-0.42}$	$8.29^{+0.34}_{-0.24}$	$0.10^{+0.11}_{-0.27}$	0.73
3255	26.74	2.75	$0.12\substack{+0.00\\-0.00}$	$9.88^{+0.94}_{-0.42}$	$9.34^{+0.13}_{-0.02}$	$0.60\substack{+0.02\\-0.02}$	75.41
3256	26.90	2.05	$0.36^{+0.36}_{-0.26}$	$6.56^{+1.46}_{-3.74}$	$8.29^{+18.00}_{-0.29}$	$1.74^{+18.31}_{-2.04}$	0.21
3263	27.57	2.10	$0.24^{+0.02}_{-0.04}$	$8.95^{+0.42}_{-1.35}$	$9.09^{+0.19}_{-0.16}$	$0.48^{+0.10}_{-0.12}$	11.91
3264	23.66	2.35	$0.20^{+0.02}_{-0.14}$	$8.74^{+1.35}_{-1.56}$	$10.52^{+1.92}_{-0.18}$	$2.03^{+0.87}_{-0.16}$	7.89
3269	26.81	2.60	$0.02\substack{+0.02\\-0.04}$	$8.74^{+0.42}_{-1.56}$	$8.69^{+0.24}_{-0.23}$	$0.20^{+0.08}_{-0.13}$	0.21
3373	24.31	2.15	$0.18\substack{+0.04\\-0.10}$	$8.43^{+1.04}_{-0.42}$	$9.90^{+1.88}_{-0.14}$	$1.63^{+1.11}_{-0.17}$	2.35

ID	\mathcal{R}_{VI}	z_{phot}	E(B-V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
3	24.08	2.90	0.38	6.24	9.85	3.62	39.80
12	25.14	2.90	0.16	8.43	9.73	1.49	0.63
60	26.55	2.10	0.22	9.68	9.44	0.83	24.38
88	26.28	2.90	0.26	5.83	8.57	2.78	64.82
96	26.99	2.40	0.12	9.99	9.06	0.45	38.73
97	27.58	2.50	0.00	9.99	8.41 ·	-0.20	34.44
182	25.58	1.95	0.30	9.36	10.02	1.42	3.67
196	26.32	2.85	0.16	8.22	· 9.10	1.02	0.15
210	27.51	1.95	0.14	7.28	7.56	0.31	0.07
215	27.05	2.10	0.24	10.20	9.31	0.70	36.55
242	26.71	2.55	0.28	6.56	8.29	1.75	0.88
248	26.28	2.50	0.00	8.95	8.84	0.31	32.09
284	26.80	2.90	. 0:00	8.84	8.67	0.18	122.56
317	25.96	2.65	0.02	9.78	9.16	0.54	31.20
323	26.73	2.20	0.06	7.70	7.98	0.35	0.64
325	26.11	2.90	0.12	8.74	9.35	0.91	22.35
336	27.28	2.40	0.14	6.56	7.51	0.96	62.87
338	26.99	2.50	0.02	9.57	8.73	0.12	35.30
364	27.90	2.40	0.00	9.88	8.28	-0.34	83.85
390	27.14	2.75	0.06	9.36	8.86	0.26	2.34
411	27.56	1.50	0.10	8.43	8.00	-0.24	69.49
425	26.37	1.85	0.32	10.09	9.72	1.11	14.81
442	24.00	2.90	0.16	9.68	10.54	1.93	6.20
452	26.68	2.75	• 0.14	9.57	9.36	0.75	2.60
454	26.26	2.80	0.12	8.95	9.37	0.85	3.41
463	26.62	2.75	0.02	10.30	8.90	0.29	54.88
470	26.23	2.50	0.16	9.78	9.52	0.91	10.68
478	24.22	2.90	0.26	10.30	10.83	2.22	4.80
510	26.47	2.40	0.06	9.99	9.06	0.45	64.12
552	26.43	1.50	0.18	7.39	7.98	0.63	0.78
578	26.59	2.05	0.10	9.68	9.00	0.39	8.50
592	25.94	2.70	0.08	9.68	9.40	0.79	68.04
604	27.35	2.40	0.06	9.99	8.69	0.07	3.93
610	25.50	1.85	0.36	8.43	9.83	1.59	4.36
621	27.60	1.55	0.18	6.76	7.21	0.45	0.67
653	26.26	2.25	0.30	8.53	9.62	1.30	3.31
668	25.35	2.20	0.14	10.20	9.70	1.09	2.49
673	26.33	1.55	0.10	9.57	8.90	0.29	45.00
709	27.66	2.45	0.08	10.30	8.66	0.05	42.37
1 712	27.95	1.60	0.00	9.36	(.96	-0.64	14.79
751	20.75	1.55	0.06	9.68	10.6	-0.01	22.70
762	20.92	1.85	0.32	10.09	9.89	1.28	4.70
766	21.48	1.55	0.30	0.00	1.00	0.95	2.31
789	20.70	2.50	0.04	9.78	0.00	0.27	35.10
190	25.23	1.00	0.60	9.30	10.83	2.23	4.40
797	20.27	2.05	0.08	9.08	9.00	1.05	9.20
801	27.50	1.40	0.00	9.30	1.91 8 /1	-0.09	10.45
0/9	27.40	2.00	0.00	9.10 7.18	7 99	-0.20	73.68
000	27.40	2.00	0.00	0.10	7 03	0.07	54 55
800	26.94	2.20	0.04	9.00	0.01	-0.00	23 62
092	20.01	2.30	0.08	9.00	9.01	0.40	61 70
093	20.09	2.40	0.14	10.09	9.49 8.03	0.00	130.66
021	20.04	2.20	0.00	5.00	9.55	0.32	11.83
921	20.13	2 00	0.10	6.04	9.10	9.95	14 75
955	20.11	2.90	0.30	0.24	8.56	-0.05	0.50
004	26.01	2.10	0.10	9.10	9.00 9.14	-0.00	3 40
394	20.01	2.00	0.04	5.00	J.17	0.00	0.40

Table B.2: Best-fit parameters for Sawicki et al. (2007) HDF catalog, 500 Myr e-folding exponential SFR.

ID	RVI	Znhot	E(B-V)	$\log(Age/vr)$	$\log(M_{\star}/M_{\odot})$	$\log(SFR/(M_{\odot}/vr))$	γ^2
1006	27.62	2.40	0.06	9.68	8.58	-0.03	6.10
1007	27.81	2 70	0.10	7.80	7.91	0.18	11.46
1026	26.13	1.40	0.60	9.68	10 31	1 70	69.43
1048	26.13	2.80	0.00	0.78	9.50	0.80	16 51
1040	20.33	2.00	0.14	5.10	8.00	1.27	25.66
1002	21.20	2.90	0.24	0.00	8.02	0.70	4.26
1073	20.70	2.65	0.02	0.40	0.94	0.70	4.20
1074	20.02	2.05	0.00	0.32	0.04	0.48	10.20
1085	20.07	2.20	0.18	10.09	9.23	0.02	19.01
1095	27.00	2.75	0.00	9.88	8.43	-0.18	40.58
1099	27.62	2.70	0.08	8.01	8.07	0.16	9.32
1106	21.11	2.50	0.00	9.99	8.33	-0.28	33.09
1112	27.73	2.40	0.10	9.99	8.70	0.09	120.86
1129	26.02	2.15	0.22	9.99	9.68	1.07	2.32
1131	26.50	2.75	0.00	9.88	8.88	0.27	48.88
1158	26.41	2.65	0.06	10.30	9.12	0.51	82.23
1190	27.37	2.20	0.10	9.88	8.77	0.16	74.64
1191	26.91	1.35	0.36	10.20	9.28	0.67	49.88
1226	27.67	2.20	0.06	9.68	8.51	-0.10	70.70
1236	26.47	1.45	0.40	6.76	8.25	1.50	7.83
1241	26.09	2.60	0.18	9.78	9.68	1.07	9.57
1264	26.44	2.50	0.04	9.78	9.01	0.40	60.33
1290	27.42	2.50	0.00	9.47	8.46	-0.15	95.55
1294	26.39	2.50	0.00	9.36	8.88	0.28	18.29
1295	26.12	1.60	0.32	10.20	9.67	1.06	20.00
1296	26.90	2.05	0.08	9.68	8.82	0.21	0.86
1328	26.75	2.50	0.00	9.36	8.73	0.13	119.29
1352	25.32	2.60	0.36	6.97	9.25	2.30	13.88
1362	27.45	1.75	0.28	7.80	8.28	0.56	113.30
1437	26.91	2.70	0.06	8.74	8.77	0.33	19.23
1474	25.86	2.20	0.14	9.78	9.49	0.88	0.64
1499	27.51	1.35	0.42	5.41	7.98	2.69	143.09
1501	27.77	1.55	0.22	5.93	7.39	1.49	59.30
1503	26.68	1.25	0.22	9.99	8.87	0.26	31.53
1516	26.10	2.25	0.12	7.91	8.61	0.79	0.27
1519	26.00	2.05	0.14	9.88	9.40	0.78	36.47
1525	26.79	2.10	0.04	9.68	8.76	0.15	26.58
1528	27.17	2.50	0.08	9.78	8.87	0.26	46.41
1531	26.91	2.30	0.18	8.43	8.89	0.65	0.38
1535	25.30	2.50	0.10	9.88	9.69	1.08	26.33
1539	26.87	1.55	0.16	8.43	8.48	0.24	43.23
1556	26.67	2.50	0.18	10.20	9.43	0.82	66.73
1561	26.78	2.50	0.06	9.68	8.93	0.32	117.89
1592	27.10	2.75	0.10	9.68	9.02	0.41	19.87
1606	26.80	2.50	0.08	9.78	9.02	0.41	66.08
1610	26.39	2.20	0.16	9.99	9.36	0.75	55.92
1611	26.41	1.85	0.14	10.09	9.14	0.53	31.75
1621	24.88	1.30	0.14	9.05	9.36	0.80	6.24
1654	25.27	2.10	0.30	10.20	10.22	1.61	9.73
1662	26.19	2.40	0.02	8.43	8.65	0.40	0.72
1700	27.17	1.40	0.02	10.20	8.24	-0.38	15.95
1709	26.40	2.50	0.04	9.78	9.03	0.42	9.56
1734	27.50	2.70	0.02	9.99	8.56	-0.05	182.30
1747	27.05	2.45	0.06	8.53	8.54	0.22	0.34
1777	25.01	2.65	0.14	10.20	9.99	1.38	12.35
1903	26.74	2.65	0.46	6.14	9.04	2.92	0.32
2006	26.89	1.85	0.22	9.26	9.17	0.58	23.57
2060	27.76	2.90	0.10	8.74	8.65	0.21	3.69
2066	27.12	2.65	0.06	10.30	8.85	0.23	64.37
2073	27.80	2.05	0.00	9.78	8.20	-0.42	15.96
2079	26.98	2.45	0.14	10.09	9.14	0.53	8.89
2095	26.55	2.60	0.04	9.26	8.97	0.37	14.57

Table B.2: Best-fit parameters for Sawicki et al. (2007) HDF catalog, 500 Myr e-folding exponential SFR.

m				r			
ID	\mathcal{R}_{VI}	z_{phot}	E(B - V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
2106	25.88	2.50	0.06	9.99	9.31	0.70	5.88
2111	26.57	2.40	0.04	9.99	8.96	0.35	159.61
2169	27.89	2.70	0.10	6.76	7.21	0.46	31.43
2171	25.55	2.50	0.04	10.20	9.36	0.75	27.32
2188	27.32	2.20	0.00	10.09	8.45	-0.16	42.85
2206	26.56	2.50	0.04	10.20	8.97	0.36	91.41
2208	26.58	2.40 .	0.14	9.26	9.26	0.67	9.44
2221	27.94	1.70	0.14	7.39	7.35	0.01	0.09
2228	25.75	1.70	0.30	10.30	9.81	1.20	12.38
2255	27.25	1.40	0.18	10.30	8.69	0.08	106.91
2260	26.10	2.75	0.22	9.68	9.87	1.26	14.75
2282	24.63	2.50	0.08	9.47	9.87	1.27	8.23
2300	26.66	2.70	0.16	10.20	9.43	0.81	2.36
2306	25.42	2.50	0.16	9.78	9.84	1.23	3.70
2342	27.85	1.35	0.12	10.20	8.21	-0.40	36.25
2366	26.44	2.10	0.40	9.68	10.11	1.50	35.53
2404	27.76	2.00	0.14	8.95	8.57	0.04	6.32
2409	26.90	2.05	0.18	9.88	9.16	0.55	20.36
2490	27.03	2.40	0.04	9.99	8.78	0.17	121.66
2501	25.98	2.40	0.10	9.99	9.38	0.77	5.48
2560	26.37	1.95	0.16	9.26	9.24	0.64	1.68
2616	25.58	2 75	0.20	10.30	10.01	1.40	1.21
2625	26.65	2.30	0.12	8.32	8.72	0.55	0.40
2702	25 73	2.65	0.10	10.30	9.56	0.95	8.36
2710	25.05	2.00	0.12	9.99	9.84	1 22	21.88
2808	27 75	2.40	0.28	6.66	7.92	1 27	5.86
2832	26.69	2.65	0.12	10.30	9.23	0.62	75.51
2835	27.68	2.00	0.08	9.78	8 73	0.12	13.38
2848	27.80	2.10	0.00	10.20	8 20	-0.41	18.33
2849	25.59	2.50	0.16	9.78	9 77	1 16	20.95
2853	25.00	2.55	0.10	10.30	9.66	1.05	212
2876	25.81	2.00	0.00	10.00	9.10	0.49	15.30
2894	27 17	2.75	0.04	9.68	8.79	0.18	6.88
2001	26.80	1 55	0.04	9.88	8 99	0.38	19.56
3025	26.97	2.00	0.04	10.30	8 90	0.29	6.83
3036	27.56	2.50	0.02	9.99	8.54	-0.07	10.57
3042	27.21	1 25	0.24	6.87	7.39	0.54	10.66
3048	24 74	2 20	0.18	10.09	10.08	1 47	3.72
3083	25.65	1.20	0.16	10.09	9.55	0.94	8 79
3087	26.00	2.80	0.06	8.32	8.72	0.56	1.47
3111	24 61	2.35	0.06	9.78	9.77	1 16	3 93
3115	25 41	2.10	0.20	8.53	9.54	1.22	13.08
3134	25.00	2.35	0.18	9.78	9.99	1.38	9,11
3176	25.86	2.00	0.12	9.68	9.42	0.81	5.64
3180	26.00	2.20	0.12	9.00	8 99	0.38	44.95
3201	27 16	1 55	0.32	7 60	8 27	0.73	3.85
3250	27.10	2 70	0.02	8.32	8.28	0.11	0.68
3255	26 74	2.75	0.14	9.68	9.29	0.68	80.23
3256	26.00	2.10	0.36	6.56	8 29	1 74	0.21
3263	20.50	2.00	0.30	8.95	9.06	0.53	12.16
3264	23.66	2.00	0.20	8 84	10.50	2.01	7.56
3269	26.00	2.50	0.20	8.95	8 75	0.22	0.20
3203	20.01	2.00	0.02	8 43	9.88	1.64	274

Table B.2: Best-fit parameters for Sawicki et al. (2007) HDF catalog, 500 Myr e-folding exponential SFR.

ī	TD	<i>D</i>	~	F(P, V)	log(Age/up)	$\log(M_{\rm M})$	$\log(\text{SEP}/(M_{\odot}/\text{rm}))$	2	1
ļ		κ_{VI}	Zphot	E(D-V)	log(Age/yr)	log(M _* /M _☉)	log(SFR/(M _O /yr))	<u>X</u>	-
Ì	3	24.08	2.90	0.38	6.24	9.85	3.62	39.80	L
	12	25.14	2.90	0.16	8.53	9.76	1.50	0.79	
	60	26.55	2.10	0.24	9.78	9.38	0.91	29.63	l
	88	26.28	2.90	0.26	5.31	8.57	3.42	64.82	L
	96	26.99	2.40	. 0.14	10.20	9.00	0.53	48.42	L
	97	27.58	2.50	0.02	9.88	8.36	-0.11	40.09	
	182	25.58	1.95	0.32	9.26	9.96	1.50	8.01	l
1	196	26.32	2.85	0.16	8.22	9.08	1.02	0.16	L
	210	27.51	1.95	0.14	7.28	7.56	0.31	0.07	L
	215	27.05	2.10	0.26	10.09	9.25	0.78	46.15	L
	242	26.71	2.55	0.28	6.56	8.29	1.75	0.91	ł
	248	26.28	2.50	0.00	10.09	8.79	0.32	33.03	ł
ļ	284	26.80	2.90	0.00	9.05	8.63	0.19	122 50	ł
	317	25.06	2.50	0.00	10.30	9.10	0.63	34.92	L
1	222	26.30	2.00	0.04	7 70	7 08	0.35	0.60	
	225	20.15	2.20	0.00	0.78	0.30	0.00	22 77	l
	320	20.11	2.90	0.12	5.10	7 29	0.92	65.26	l
	220	21.20	2.00	0.00	10.00	0.64	0.42	41.07	L
	330	20.99	2.40	0.04	10.09	0.04	0.17	41.07	ì
1	304	27.90	2.40	0.00	10.09	0.14	-0.33	00.00	ł
	390	27.14	2.75	0.06	9.99	8.74	0.27	3.99	l
	411	27.56	1.50	0.10	8.53	8.03	-0.23	69.72	L
	425	26.37	1.85	0.34	9.57	9.66	1.19	21.88	L
1	442	24.00	2.90	0.18	9.26	10.48	2.02	7.09	l
Ì	452	26.68	2.65	0.16	9.88	9.27	0.79	3.51	l
	454	26.26	2.75	0.14	8.74	9.28	0.91	3.56	L
	463	26.62	2.75	0.04	9.26	8.84	0.38	59.15	l
	470	26.23	2.50	0.18	9.26	9.46	1.00	17.35	l
	478	24.22	2.90	0.28	9.26	10.77	2.31	6.01	Ł
	510	26.47	2.40	0.08	10.09	9.00	0.53	78.43	Ł
	552	26.43	1.50	0.18	7.39	7.98	0.63	0.80	l
	578	26.59	2.05	0.12	10.30	8.95	0.47	12.58	l
	592	25.94	2.65	0.10	9.57	9.32	0.85	78.04	ł
	604	27.35	2.35	0.08	10.20	8.61	0.14	6.21	
	610	25.50	1.85	0.36	8.53	9.86	1.60	4.05	l
1	621	27.60	1.55	0.18	6.76	7.21	0.45	0.67	
	653	26.26	2.20	0.32	8.43	9.56	1.36	2.92	
	668	25.35	2.10	0.16	9.88	9.60	1.13	6.44	l
	673	26.33	1.55	0.12	10.30	8.84	0.36	54.80	L
	709	27.66	2.40	0.10	9.88	8.59	0.12	48.29	l
ļ	712	27.95	1.55	0.00	9.78	7.82	-0.65	17.15	
	751	26.75	1.55	0.08	10.30	8.54	0.07	28.21	l
	762	25.92	1.85	0.34	9.57	9.83	1.36	8.14	l
	766	27.48	1.55	0.30	6.66	7.60	0.96	2.51	L
	789	26.76	2.50	0.06	9.57	8.83	0.36	42.48	
	790	25.23	1.60	0.62	10.09	10.78	2.31	4.91	ł
	797	25.27	2.60	0.10	10.20	9.59	1.12	13.37 .	L
	801	27.91	1.40	0.00	9.57	7.76	-0.71	26.16	l
	879	27.58	2.45	0.02	10.09	8.34	-0.13	21.67	
	880	27.40	2.60	0.00	7.28	7.29	0.05	73.71	l
	891	27.94	1.30	0.06	9.68	7.87	-0.60	61.79	
	892	26.81	2.50	0.10	9.68	8.96	0.49	29.84	l
1	893	26.59	2.35	0.16	10.09	9.21	0.74	74.96	l
	896	26.64	2.20	0.08	9.99	8.88	0.40	148.48	Į
	921	26.75	1.95	0.18	9.78	9.04	0.57	14.28	
	933	25.77	2.90	0.38	6.24	9.20	2.97	14.75	
	954	27.75	2.05	0.12	10.30	8.48	0.01	0.83	
1	994	26.01	2.35	0.06	9.88	9.08	0.61	6.56	1

Table B.3: Best-fit parameters for Sawicki et al. (2007) HDF catalog, 350 Myr e-folding exponential SFR.

ID	\mathcal{R}_{VI} ·	zphot	E(B - V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
1006	27.62	2.20	0.08	9.68	8.45	-0.02	7.02
1007	27.81	2.70	0.10	7.80	7.90	0.19	11.48
1026	26.13	1.40	0.62	9.78	10.25	1.78	77.76
1048	26.33	2.75	0.16	9.68	9.43	0.96	18.79
1062	27.26	2.90	0.24	6.66	8.02	1.37	25.66
1073	25.75	2.80	0.04	8.32	· 8.90	0.77	4.03
1074	26.02	2.65	0.00	8.43	8.68	0.48	0.31
1083	26.87	2.20	0.18	9.99	9.11	0.64	26.37
1095	27.66	2.70	0.02	9.57	8.36	-0.11	42.36
1099	27.62	2.70	0.08	8.01	8.06	0.17	9.34
1106	27.77	2.50	0.00	10.09	8.20	-0.27	34.45
1112	27.73	2.40	0.12	9.57	8.64	0.17	128.80
1129	26.02	2.10	0.24	9.88	9.60	1.13	4.81
1131	26.50	2.70	0.02	10.20	8.82	0.34	51.93
1158	26.41	2.60	0.08	10.20	9.05	0.58	93.58
1190	27.37	2 20	0.10	9.78	8.65	0.17	82.93
1191	26.91	1.35	0.38	9.78	9.22	0 74	58 01
1226	27.67	2 20	0.08	9.68	8 45	-0.02	77.99
1226	26.47	1 45	0.00	6.76	8 25	1.50	7.80
1241	26.09	2 50	0.40	10.20	9.58	1.00	14.09
1241	20.03	2.50	0.20	0.88	8.88	0.41	60.30
1204	20.44	2.50	0.04	0.88	8 33	-0.14	07.52
1290	26.30	2.50	0.00	0.88	877	0.14	21 50
1294	20.39	1.60	0.00	10.00	0.61	1 14	21.00
1295	20.12	1.00	0.04	0.68	9.01	0.24	21.04
1290	20.90	1.90	0.10	9.00	0.71	0.24	102.00
1320	20.70	2.00	0.00	6.07	0.01	2 20	123.19
1304	20.32	2.00	0.30	0.97	9.20	2.30	13.00
1497	27.40	2.05	0.10	9.10	0.34	0.49	10.24
1437	20.91	2.70	0.00	9.76	0.01	0.55	19.34
1474	25.80	2.20	0.10	10.20	9.43	0.90	2.65
1499	27.51	2.20	0.12	9.20 5.60	8.03	1.84	50.07
1501	21.11	1.00	0.22	5.62	1.39	1.84	39.27
1503	20.08	1.25	0.24	10.09	8.81	0.34	34.73
1510	26.10	2.30	0.12	7.91	8.02	0.81	0.23
1519	26.00	2.05	0.16	9.57	9.34	0.86	47.50
1525	26.79	2.10	0.04	10.09	8.63	0.16	32.03
1528	27.17	2.40	0.10	10.09	8.78	0.31	53.80
1531	26.91	2.30	0.18	8.53	8.91	0.65	0.31
1535	25.30	2.50	0.10	9.68	9.57	1.10	37.29
1539	26.87	1.55	0.18	8.32	8.45	0.32	43.27
1550	26.67	2.50	0.18	10.30	9.31	0.83	81.10
1561	20.78	2.50	0.08	9.57	8.88	0.41	128.73
1592	27.10	2.70	0.12	9.20	8.94	0.48	23.11
1606	26.80	2.50	0.08	10.20	8.90	0.42	76.95
1610	26.39	2.20	0.18	9.78	9.30	0.83	66.92
1611	26.41	1.60	0.16	10.20	8.95	0.47	40.73
1621	24.88	1.30	0.16	9.16	9.33	0.88	7.66
1654	25.27	2.05	0.32	9.88	10.14	1.66	12.93
1662	26.19	2.45	0.02	8.43	8.63	0.43	0.66
1700	27.17	1.35	0.04	10.20	8.14	-0.33	20.06
1709	26.40	2.50	0.06	9.57	8.97	0.50	13.48
1734	27.50	2.70	0.04	10.20	8.51	0.04	189.66
1747	27.05	2.45	0.06	8.64	8.55	0.23	0.32
1777	25.01	2.60	0.16	9.78	9.92	1.44	17.43
1903	26.74	2.65	0.46	6.14	9.04	2.92	0.31
2006	26.89	1.85	0.24	9.26	9.12	0.66	26.44
2060	27.76	2.90	0.10	9.26	8.67	0.22	3.62
2066	27.12	2.60	0.08	10.20	8.77	0.30	69.80
2073	27.80	1.95	0.00	9.99	8.03	-0.44	18.83
2079	26.98	2.40	0.16	10.09	9.06	0.59	9.54

Table B.3: Best-fit parameters for Sawicki et al. (2007) HDF catalog, 350 Myr e-folding exponential SFR.

ID	\mathcal{R}_{VI}	zphot	E(B - V)	$\log(Age/yr)$	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
2095	26.55	2.65	0.04	10.30	8.87	0.40	16.07
2106	25.88	2.50	0.08	10.20	9.25	0.78	11.04
2111	26.57	2.40	0.04	10.09	8.83	0.36	177.62
2169	27.89	2.70	0.10	6.76	7.21	0.46	31.42
2171	25.55	2.50	0.06	9.57	9.30	0.83	34.68
2188	27.32	2.10	0.02	9.68	8.36	-0.11	49.64
2206	26.56	2.50	0.04	9.88	8.84	0.37	104.71
2208	26.58	2.45	0.14	10.30	9.17	0.70	14.82
2221	27.94	1.80	0.14	7.39	7.40	0.05	0.09
2228	25.75	1.60	0.32 .	9.57	9.68	1.21	14.96
2255	27.25	1.35	0.20	9.68	8.59	0.12	118.37
2260	26.10	2.75	0.24	9.57	9.81	1.34	17.39
2282	24.63	2.50	0.08	10.20	9.75	1.28	14.71
2300	26.66	2.60	0.18	10.20	9.33	0.86	4.13
2306	25.42	2.50	0.18	9.26	9.77	1.32	6.64
2342	27.85	1.35	0.14	10.20	8.15	-0.32	40.27
2366	26.44	2.10	0.42	9.88	10.05	1.58	44.86
2404	27 76	2.00	0.14	9.78	8.52	0.05	7 74
2409	26.90	2.00	0.20	9.57	9.10	0.63	27.37
2400	27.03	2.35	0.06	9.88	8 70	0.23	139.30
2501	25.08	2.00	0.00	9.57	9.33	0.85	10.84
2560	26.30	1 95	0.12	9.26	9.18	0.73	4 4 3
2616	25.58	2 70	0.10	9.20	9.10	1 46	2.50
2610	26.65	2.10	0.22	8 43	873	0.53	0.68
2020	20.00	2.20	0.12	0.57	0.19	1.01	11 73
2702	25.75	2.00	0.12	0.69	0.76	1.01	20.21
22110	20.00	2.33	0.14	6.66	7 02	1.25	5.86
2800	26.60	2.70	0.28	10.00	0.10	0.63	85 34
2032	20.09	2.00	0.12	0.57	8.68	0.03	14 02
2033	27.00	2.15	0.10	0.00	8.00	0.21	21.00
2040	21.00	2.05	0.00	9.99	0.71	1.24	21.00
2045	20.09	2.50	0.10	9.68	0.50	1.24	3 66
2800	25.22	2.00	0.10	10.30	0.05	0.58	22 70
2870	20.01	2.40	0.02	864	9.00	0.00	7.23
2094	21.11	1.55	0.10	0.57	8.07	0.20	22.05
2907	20.00	1.00	0.22	10.20	0.90	0.40	23.50
2020	20.97	2.65	0.00	10.30	8.65	0.00	12.00
3030	27.00	2.05	0.04	5.00	7 20	0.00	10.50
3042	21.21	1.20	0.24	10.20	1.09	1 55	6.27
3040	24.74	2.20	0.20	0.79	0.03	1.00	12 70
3083	20.00	1.95	0.10	9.10	9.49	0.56	13.79
308/	20.40	2.00	0.00	0.40	0.70	1.05	1.30
0111	24.01	2.30	0.08	10.30	9.72	1.20	0.23
3115	25.41	2.10	0.20	8.04	9.55	1.25	13.04
3134	25.09	2.30	0.20	10.30	9.91	1.44	13.00
3176	25.86	2.20	0.14	10.20	9.37	0.89	0.04
3189	26.24	1.65	0.06	10.20	8.71	0.24	52.84
3201	27.16	1.55	0.32	7.60	8.27	0.73	3.94
3250	27.14	2.70	0.02	8.43	8.31	0.11	0.72
3255	26.74	2.75	0.14	9.57	9.16	0.69	84.70
3256	26.90	2.05	0.36	6.56	8.29	1.74	0.23
3263	27.57	2.05	0.26	10.09	9.01	0.54	13.19
3264	23.66	2.35	0.22	8.74	10.48	2.12	7.74
3269	26.81	2.65	0.02	9.99	8.70	0.23	0.67
3373	24.31	2.15	0.18	8.53	9.90	1.64	2.42

Table B.3: Best-fit parameters for Sawicki et al. (2007) HDF catalog, 350 Myr e-folding exponential SFR.

.

ſ	ID	\mathcal{R}_{VI}	z_{phot}	E(B - V)	$\log(Age/yr)$	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2]
ľ	3	24.08	2.90	0.38	5.62	9.89	4.34	41.06	1
l	12	25.14	2.35	0.36	6.76	9.11	2.36	21.35	
l	60	26.55	2.10	0.26	9.88	9.33	0.99	36.12	
l	88	26.28	2.85	0.26	6.14	8.52	2.40	70.19	
l	96	26.99	2.40	0.14	10.20	8.89	0.54	56.10	
l	97	27.58	2.50	0.02	10.09	8.25	-0.10	44.44	
l	182	25.58	1.60	0.06	10.30	nan	nan	nan	
ł	196	26.32	2.35	0.78	10.30	nan	nan	nan	
l	210	27.51	1.95	0.14	7.28	7.55	0.31	0.07	
l	215	27.05	2.25	0.30	10.30	nan	nan	nan	
I	242	26.71	2.55	0.28	6.56	8.29	1.75	0.91	
l	248	26.28	2.65	0.06	10.30	nan	nan	nan	Į.
l	284	26.80	2.90	0.00	10.20	8.54	0.20	123.16	1
l	317	25.96	2.65	0.04	9.68	8.99	0.64	40.56	
l	323	26.73	2.15	0.08	7.49	7.88	0.45	0.69	
l	325	26.11	2.50	0.62	10.30	nan	nan	nan	
l	336	27.28	1.10	0.30	5.93	7.53	1.63	67.56	ł
l	338	26.99	2.40	0.04	10.20	8.53	0.18	46.39	ł
ł	364	27.90	1.10	0.00	9.36	7.42	-0.90	92.58	
l	390	27.14	2.40	0.04	10.30	nan	nan	nan	
l	411	27.56	2.50	0.70	10.30	nan	nan	nan	
l	425	26.37	1.75	0.36	9.78	9.55	1.20	29.82	
l	442	24.00	2.85	0.20	8.95	10.39	2.09	8.78	
l	452	26.68	2.25	0.22	10.30	nan	nan	nan	ł.
l	454	26.26	2.30	0.50	10.30	nan	nan	nan	
l	463	26.62	2.75	0.04	9.57	8.73	0.39	61.67	
ł	470	26.23	2.15	0.34	10.30	nan	nan	nan	Ì.
l	478	24.22	2.35	0.94	10.30	nan	nan	nan	
ł	510	26.47	2.40	0.08	9.57	8.89	0.54	90.29	
l	552	26.43	2.60	0.60	10.30	nan	nan	nan	
l	578	26.59	2.35	0.78	10.30	nan	nan	nan	
l	592	25.94	2.65	0.10	9.88	9.21	0.86	88.50	
ł	604	27.35	2.20	0.10	9.78	8.52	0.17	9.03	1
l	610	25.50	1.55	0.82	10.30	nan	nan	nan	
l	621	27.60	1.55	0.18	6.76	7.21	0.46	0.67	
l	653	26.26	2.15	0.98	10.30	nan	nan	nan.	
l	668	25.35	2.10	0.18	10.09	9.55	1.21	11.24	
l	673	26.33	1.55	0.14	9.68	8.79	0.44	64.82	
l	709	27.66	2.40	0.12	9.57	8.55	0.20	54.93	
ł	712	27.95	1.55	0.02	9.88	7.77	-0.57	21.05	ł
۱	751	26.75	1.55	0.10	10.20	8.50	0.15	33.43	
ł	762	25.92	2.10	0.36	9.57	9.94	1.59	19.10	
l	766	27.48	2.30	0.78	10.30	nan	nan	nan	
l	789	26.76	2.35	0.40	10.30	nan '	nan	nan	
l	790	25.23	1.50	0.64	9.68	10.64	2.29	6.47	
l	797	25.27	2.50	0.12	9.88	9.51	1.16	17.91	
l	801	27.91	2.15	0.24	10.30	nan	nan	nan	
	879	27.58	2.45	0.02	10.09	8.22	-0.12	23.50	1
l	880	27.40	2.60	0.00	7.28	7.29	0.05	73.77	1
l	891	27.94	1.30	0.08	9.68	7.82	-0.53	68.48	F
	892	26.81	2.45	0.12	10.20	8.90	0.55	37.81	
	893	26.59	2.45	0.08	10.30	nan	nan	nan	1
	896	26.64	2.55	0.14	10.30	nan	nan	nan	
	921	26.75	1.85	0.20	9.57	8.94	0.60	17.36	1
l	933	25.77	2.15	0.84	10.30	nan	nan	nan	ł
	954	27.75	1.95	0.14	9.68	8.39	0.04	1.92	1
L	004	26.01	2 20	0.08	9.68	899	0.64	10.98	1

Table B.4: Best-fit parameters for Sawicki et al. (2007) HDF catalog, 250 Myr e-folding exponential SFR.

	ID	\mathcal{R}_{VI}	Zphot	E(B - V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
	1006	27.62	1.15	0.20	7.60	7.45	-0.07	8.67
	1007	27.81	2.65	0.14	7.18	7.60	0.45	11.55
	1026	26.13	1.40	0.64	9.99	10.20	1.86	85.72
	1048	26.33	2.70	0.18	10.20	9.37	1.02	22.98
ļ	1062	27.26	2.60	0.66	10.30	nan	nan	nan
	1073	25.75	2.80	0.04	8.43	8.92	0.78	3.97
	1074	26.02	2.70	0.00	8.53	8.70	0.50	0.29
	1083	26.87	2.30	0.80	10.30	nan	nan	nan
	1095	27.66	2.70	0.02	9.68	8.24	-0.10	43.50
	1099	27.62	2.80	0.04	9.78	8.36	0.01	9.77
	1106	27.77	2.50	0.00	10.20	8.09	-0.26	36.46
	1112	27.73	2.30	0.12	10.09	8.49	0.14	136.96
	1129	26.02	2.05	0.26	10.20	9.53	1.18	8.79
	1131	26.50	2.15	0.38	10.30	nan	nan	nan
	1158	26.41	2.60	0.08	10.09	8.94	0.59	103.49
	1190	27.37	2.10	0.12	10.20	8.56	0.21	90.09
	1191	26.91	1.35	0.42	9.57	9.22	0.87	65.02
Ì	1226	27.67	2.35	0.72	10.30	nan	nan	nan
	1236	26.47	1.45	0.40	6.76	8.25	1.50	7.90
	1241	26.09	2.50	0.22	9.26	9.52	1.20	18.80
1	1264	26.44	2.35	0.56	10.30	nan	nan	nan
	1290	27.42	2.50	0.00	9.57	8.22	-0.13	100.18
	1294	26.39	2.45	0.02	10.09	8.71	0.36	29.11
	1295	26.12	1.55	0.36	10.20	9.52	1.18	34.97
	1296	26.90	1.95	0.12	9.68	8.67	0.32	4.24
	1328	26.75	2.35	0.10	10.30	nan	nan	nan
	1352	25.32	2.60	0.36	6.97	9.25	2.30	13.80
ļ	1362	27.45	2.70	0.16	9.16	8.84	0.52	90.03
	1437	26.91	2.65	0.08	9.26	8.74	0.41	20.49
	1474	25.86	2.20	0.18	9.88	9.39	1.04	7.05
	1499	27.51	1.60	0.40	5.72	8.08	2.41	143.55
	1501	27.77	2.40	0.12	5.41	7.35	2.06	60.20
	1503	26.68	1.25	0.26	9.88	8.76	0.41	38.21
	1516	26.10	2.30	0.12	7.91	8.61	0.82	0.24
	1519	26.00	<u>`</u> 2.05	0.18	9.99	9.29	0.94	58.38
	1525	26.79	2.05	0.06	9.68	8.57	0.22	37.53
	1528	27.17	2.40	0.38	10.30	nan	nan	nan
	1531	26.91	2.30	0.18	8.84	8.95	0.66	0.33
	1535	25.30	2.40	0.12	9.57	9.48	1.14	47.29
	1539	26.87	2.10	0.16	10.30	nan	nan	nan
	1556	26.67	2.50	0.20	9.57	9.26	0.91	95.75
1	1561	26.78	2.50	0.08	10.20	8.76	0.42	137.75
l	1592	27.10	2.70	0.12	9.88	8.84	0.49	25.15
	1606	26.80	2.50	0.90	10.30	nan	nan	nan
	1610	26.39	2.20	0.20	10.09	9.26	0.91	78.36
	1611	26.41	2.50	0.14	10.30	' nan	nan	nan
	1621	24.88	1.30	0.18	9.88	9.29	0.95	9.71
	1654	25.27	1.85	0.34	9.78	9.97	1.62	21.87
	1662	26.19	2.45	0.02	8.64	8.67	0.44	0.75
	1700	27.17	1.35	0.06	10.09	8.09	-0.25	23.98
	1709	26.40	2.35	0.62	10.30	nan	nan	nan
	1734	27.50	2.70	0.04	10.20	8.39	0.04	196.39
[1747	27.05	2.45	0.06	10.20	8.58	0.23	0.33
J	1777	25.01	2.40	0.18	10.30	nan	nan	nan
	1903	26.74	2.75	0.42	6.56	8.87	2.32	0.46
	2006	26.89	1.80	0.26	9.36	9.04	0.72	30.15
J	2060	27.76	2.85	0.12	9.05	8.60	0.29	3.68
	2066	27.12	2.50	0.10	9.68	8.70	0.35	74.83
	2073	27.80	2.35	0.46	10.30	nan	nan	nan
- 1	2070	96.00	9.45	0.00	10.20	non	nan	non

Table B.4: Best-fit parameters for Sawicki et al. (2007) HDF catalog, 250 Myr e-folding exponential SFR.

ID	\mathcal{R}_{VI}	zphot	E(B - V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
2095	26.55	2.55	0.06	9.99	8.80	0.45	17.20
2106	5 25.88	2.50	0.08	10.09	9.14	0.79	18.82
2111	26.57	2.40	0.06	10.09	8.79	0.44	195.34
2169	27.89	2.40	0.48	10.30	nan	nan	nan
2171	25.55	2.50	0.08	10.09	9.26	0.91	44.61
2188	3 27.32	2.25	0.34	10.30	nan	nan	nan
2206	6 26.56	2.40	0.70	10.30	nan	nan	nan
2208	26.58	2.50	0.52	10.30	nan	nan	nan
2221	27.94	1.90	0.12	7.60	7.51	-0.01	0.10
2228	25.75	1.60	0.34	9.99	9.64	1.29	17.48
2255	27.25	1:35	0.22	9.57	8.54	0.19	127.74
2260	26.10	2.70	0.26	9.57	9.75	1.40	22.89
2282	24.63	2.50	0.10	10.20	9.71	1.36	20.16
2300	26.66	2.55	0.20	10.09	9.27	0.92	7.26
2306	25.42	2.30	0.24	10.30	nan	nan	nan
2342	27.85	1.35	0.16	9.99	8.10	-0.25	44.03
2366	26.44	2.05	0.44	10.09	9.97	1.62	54.47
2404	27.76	1.65	0.16	10.09	8.30	-0.04	8.46
2409	26.90	1.95	0.22	9.68	9.01	0.66	34.14
2490	27.03	2.20	0.06	9.57	8.54	0.19	155.16
2501	25.98	2.40	0.12	9.57	9.22	0.87	17.65
2560	26.37	2.45	0.16	10.30	nan	nan	nan
2616	25.58	2.70	0.24	9.36	9.88	1.56	5.31
2625	26.65	2.25	0.14	8.22	8.65	0.63	0.56
2702	25.73	2.50	0.14	9.99	9.40	1.05	16.01
2710	25.05	2.30	0.16	10.20	9.69	1.35	40.78
2808	27.75	2.70	0.28	6.66	7.92	1.27	5.79
2832	26.69	2.65	0.14	10.20	9.06	0.71	94.92
2835	27.68	2.45	0.88	10.30	nan	nan	nan
. 2848	27.80	2.35	0.74	10.30	nan	nan	nan
2849	25.59	2.50	0.18	9.78	9.60	1.25	36.90
2853	25.22	2.50	0.12	9.88	9.54	1.20	8.16
2876	25.81	2.20	0.04	9.99	8.94	0.59	31.07
2894	27.17	2.25	0.10	9.88	8.60	0.25	7.29
2967	26.80	1.55	0.24	9.78	8.88	0.53	28.53
3025	26.97	2.85	0.08	9.68	8.79	0.45	9.57
3036	27.56	2.35	0.88	10.30	nan	nan	nan
3042	27.21	1.25	0.26	6.76	7.43	0.68	12.05
3048	24.74	2.25	0.22	9.68	10.01	1.66	12.62

Table B.4: Best-fit parameters for Sawicki et al. (2007) HDF catalog, 250 Myr e-folding exponential SFR.

ID	\mathcal{R}_{VI}	z_{phot}	E(B - V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(\overline{SFR}/(M_{\odot}/yr))$	χ^2
3	24.08	2.90	$0.38^{+0.00}_{-0.00}$	$6.24^{+0.21}_{-0.10}$	$9.85_{-0.03}^{+0.01}$	$3.62^{+0.12}_{-0.25}$	39.80
12	25.14	2.90	$0.16^{+0.02}_{-0.06}$	$8.22_{-0.21}^{+0.42}$	$9.67_{-0.13}^{+0.19}$	$1.47_{-0.24}^{+0.10}$	0.65
60	26.55	2.25	$0.14^{+0.02}$	8.84+0.10	$9.52^{+0.09}$	$0.54^{+0.08}_{-0.15}$	14.71
88	26.28	2.90	$0.26^{+0.16}$	$5.52^{+0.42}$	$8.57^{+0.39}$	$3.14^{+2.38}$	64.82
96	26.99	2.60	$0.00^{+0.00}$	$9.05^{+0.00}$	$9.33^{+0.04}$	$-0.01^{+0.04}$	5.86
97	27.58	2.50	$0.00^{+0.00}$	$8.64^{+0.00}$	$8.44^{+0.00}$	$-0.25^{+0.00}$	35.36
182	25.58	2.05	$0.24^{+0.04}$	$8.74^{+0.10}$	$10.03^{\pm0.15}$	$1.20^{+0.20}$	0.74
196	26.32	2.85	$0.16^{+0.06}$	$8.12^{+0.83}$	$9.09^{+0.41}$	$1.00^{+0.26}$	0.37
210	27.51	1 90	$0.14^{\pm 0.14}$	$728^{+2.18}$	$7.54^{+0.39}$	$0.28^{\pm 0.42}$	0.04
210	27.01	2 30	$0.12^{+0.18}_{-0.18}$	8 95+0.00	9 44 ^{+0.05}	0.20 - 2.71 $0.29^{\pm 0.11}$	11.04
242	26.71	2.55	0.12 - 0.02 $0.28^{+0.10}$	$6.56^{+1.46}$	$829^{\pm0.21}$	$1.74^{\pm 0.59}$	0.91
248	26.28	2.50	$0.00^{+0.00}$	$843^{+0.10}$	$871^{+0.10}$	$0.28^{+-0.00}$	35.85
240	26.80	2.00	0.00 ± 0.00	8 43 ^{+0.42}	8 55+0.26	$0.12^{\pm 0.03}$	122.92
317	25.96	2.00	0.00 - 0.04 $0.00^{+0.00}$	$8.64^{+0.00}$	$9.12^{+0.13}$	$0.12_{-0.19}$ $0.44^{+0.03}$	25.75
303	26.73	2.10	$0.06^{+0.06}$	$7.60^{+0.10}$	702 - 0.13 702 + 0.65	$0.36^{+0.29}$	0.61
325	20.75	2.20	$0.00_{-0.10}$	8 53+0.21	0.32 - 0.32 0.35 + 0.14	$0.30_{-0.57}$ $0.70^{+-0.00}$	21.06
326	20.11	1 10	0.10 - 0.02 0.30 + 0.30	5.00 - 0.00 5.72 + 0.62	752+inf	1.86^{+inf}	67.54
220	21.20	2.50	0.00 - 0.68 0.00 + 0.00	9.72 - 4.58 9.74 + 0.00	0.03-1.20 0.03+0.03	$0.01^{+0.03}$	07.04
330	20.99	2.00	$0.00_{-0.00}$	$0.74_{-0.00}$	0.02 - 0.00 0 = 0 + 0.16	$-0.01_{-0.00}$	79.14
200	27.30	2.40	$0.00_{-0.00}$	0.04 - 0.10 0.74 + 0.31	0.00 - 0.18 0.04 + 0.21	-0.40 - 0.03	1 /1
411	27.14	2.00	$0.00_{-0.06}$	0.74 - 0.10 0.22 + 1.46	0.04 - 0.14 7 05 $+ 0.52$	0.01 - 0.20 0.27 + 0.24	60.62
411	21.00	1.40	$0.03_{-0.18}$	8.32 - 0.31 8 84+0.00	0.80+0.06	-0.37 - 0.96 0.82 $+0.21$	1 60
420	20.37	2.00	0.24 - 0.00 0.14 + 0.00	8.64 ± 0.10 8.64 \pm 0.21	$9.00_{-0.14}$ 10.40 $^{+0.15}$	$0.82_{-0.09}$ 1.91+-0.00	6 10
442	24.00	2.90	$0.14_{-0.02}$ 0.10 ^{+0.06}	$8.04_{-0.00}$ $8.74^{+0.21}$	$0.49_{-0.00}$ $0.30^{+0.20}$	$0.56^{+0.20}$	1.01
452	20.00	2.00	0.10 - 0.04 0.10 + 0.06	0.74 - 0.21 9.52 + 0.42	0.03 - 0.19 0.20 + 0.25	0.00 - 0.13 0.73 + 0.21	3 56
404	20.20	2.80	$0.10_{-0.06}$	$8.03_{-0.31}$ $8.64^{+0.10}$	9.29 - 0.21 8 85+0.12	$0.73_{-0.26}$ $0.16^{+-0.00}$	51.00
403	20.02	2.70	$0.00_{-0.00}$	8.04_0.00 8.84+0.10	0.00 - 0.02 0.61 + 0.13	$0.10_{-0.02}$ $0.63^{+0.13}$	063
470	20.23	2.10	$0.03_{-0.02}$ $0.26^{+0.02}$	8 43 ^{+0.10}	$10.63^{+0.06}$	$2.10^{\pm0.10}$	5 31
510	24.22	2.90	$0.20_{-0.02}$	8.43_0.21 8.84+0.00	$0.03_{-0.15}$	$2.19_{-0.06}$ 0.10 ^{+-0.00}	24.43
550	20.47	2.50	$0.00_{-0.00}$ 0.18 $^{+0.08}$	$\frac{0.04-0.00}{7.20+0.42}$	$\frac{5.17}{7.08}$ - 0.00	$0.19_{-0.00}$ 0.62 ^{+0.37}	0.83
570	20.43	1.50	0.10 - 0.06 0.02 + 0.02	0.09 - 0.62	$0.10^{+0.13}$	$0.02_{\pm 0.33}$ 0.12 $^{\pm 0.08}$	2.22
502	20.09	2.20	$0.02_{-0.04}$	8.04 - 0.10 8.05 + 0.00	$9.10_{-0.10}$ 0.50 $+0.02$	$0.12_{-0.13}$ $0.44^{+0.02}$	40.61
604	20.94	2.60	$0.00_{-0.00}$	8.50 - 0.00 8.74 + 0.10	$9.09_{-0.00}$ 8.60 ± 0.09	$0.44_{-0.00}$ 0.14 ^{+0.03}	40.01
610	27.00	1.00	$0.00_{-0.04}$	$8.14_{-0.10}$ $8.10^{+0.73}$	$0.09_{-0.18}$	$-0.14_{-0.11}$ 1.65 $+0.36$	5.64
621	20.00	1.60	0.38 - 0.10 0.18 + 0.08	6.12 - 0.31 6.76+1.66	$\frac{9.73-0.24}{7.01+0.16}$	$0.45^{+0.17}$	0.69
652	21.00	1.00	0.10 - 0.12 0.20 ± 0.04	$0.70_{-0.42}$	0.56 ± 0.47	$0.40_{-2.42}$ 1.04 $^{+0.17}$	2.14
669	20.20	2.20	$0.30_{-0.06}$	8.32_0.21 8.74+0.10	$9.50_{-0.16}$ $9.67^{+0.10}$	1.24 - 0.28 0.84 ± 0.08	1.62
672	20.00	2.20	$0.08_{-0.04}$ $0.00^{+0.00}$	$8.74_{-0.10}$ $8.05^{+0.00}$	9.07 - 0.07 0.02+0.04	0.04 - 0.17 0.08 + 0.04	8.80
700	20.33	2.00	$0.00_{-0.00}$	8.50_0.00 8.05 ^{+0.00}	9.23_0.00 9.95+0.00	$0.08_{-0.00}$	20.74
709	27.00	2.00	$0.00_{-0.00}$	8.50_0.00 8.64+0.21	0.00 - 0.02 8 16 $+0.42$	-0.50 - 0.02 0 52 $+0.18$	18.95
712	27.90	2.00	$0.00_{-0.00}$	8.04 - 0.00 8.05 + 0.10	$0.10_{-0.02}$	$-0.03_{-0.03}$	5.89
760	20.75	1.05	$0.00_{-0.00}$	$8.90_{-0.00}$ $8.74^{+0.10}$	$9.03_{-0.02}$	1.07 ± 0.02	3.15
766	20.92	1.90	$0.20_{-0.04}$	$6.66^{+1.56}$	$\frac{9.90-0.13}{7.60+0.22}$	0.05 ± 0.51	2 50
700	21.40	1.00	$0.30_{-0.08}$	8 74+0.00	$^{1.00}_{-0.42}$	$0.93_{-2.27}$ 0.07 $^{+0.00}$	2.00
709	20.70	2.50	$0.00_{-0.00}$	0.74 - 0.00 0.19 + 0.10	0.09 - 0.05 10 70 $+ 0.20$	$0.07_{-0.05}$	6 11
790	20.20	1.00	$0.02_{-0.02}$	$0.43_{-0.31}$ $9.74^{+0.10}$	$0.60^{\pm 0.09}$	$2.20_{-0.22}$ 0.86 $^{+0.13}$	3.82
201	20.21	2.70	$0.04_{-0.02}$	0.14 - 0.21 $9 \pm 2 + 0.00$	$\frac{3.03-0.23}{7.90+0.03}$	$0.80_{-0.08}$ 0.74 $^{+0.03}$	05.79
870	21.91	1.40	$0.00_{-0.00}$	8.64 ^{+0.10}	$^{1.02}_{-0.17}_{-0.16}$	$-0.74_{-0.05}$ 0.25 $+^{0.03}$	10 78
0/9	27.56	2.50	$0.00_{-0.00}$	$\frac{0.04}{7.18+0.42}$	$7.22^{+0.19}$	$-0.23_{-0.01}$	19.70
801	27.40	2.00 1.25	$0.00_{-0.02}$	8 74+0.00	7.23 - 0.20 7.98 + 0.00	0.07 - 0.26 $0.85^{+0.00}$	10.49
091	27.94	1.55	$0.00_{-0.00}$	$8.74_{-0.00}$	0.30 - 0.03	$-0.03_{-0.03}$	91.92
092	20.01	2.00	0.00 - 0.04 0.00 + 0.00	0.50 - 0.00 0.16 + 0.10	0.20 - 0.03 0.70 + 0.19	0.00 - 0.12 $0.17^{+0.02}$	2.13
093	20.59	2.00	$0.00_{-0.02}$	805+0.00	0.12 - 0.02 0.28 + 0.02	$0.17_{-0.05}$ $0.13^{+0.02}$	2.90 65 71
090	20.04	2.50	$0.00_{-0.00}$	0.50 - 0.00 0.74 + 0.21	9.20 - 0.00 0.14 + 0.25	$0.13_{-0.00}$ 0.21 $^{+0.14}$	10 20
921	20.73	2.10	0.10 - 0.06 0.28 + 0.00	6.14 - 0.10 6.24 + 1.14	$0.20^{+0.09}$	$0.01_{-0.20}$	14.09
933	20.77	2.90	0.30 ± 0.00 0.10 \pm 0.08	0.24 - 0.10 8 52+0.31	$9.20_{-0.04}$	2.97 - 1.47 0.12 $+0.21$	14.70
954	27.75	2.05	$0.10_{-0.04}$	$0.03_{-0.31}$	$0.44_{-0.25}$ 0.11 $^{+0.06}$	$-0.12_{-0.19}$	0.79
994	26.01	2.40	$0.02_{-0.02}$	0.04-0.10	9.11_0.11	0.42-0.08	0.89

Table B.5: Best-fit parameters for Sawicki et al. (2007) HDF catalog, -700 Myr e-folding exponential SFR.

ID	\mathcal{R}_{VI}	z_{phot}	E(B - V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
1006	27.62	2.45	$0.02^{+0.02}_{-0.18}$	$8.74^{+1.25}_{-0.10}$	$8.61^{+1.25}_{-0.12}$	$-0.22^{+0.13}_{-0.21}$	5.29
1007	27.81	2.70	$0.10^{+0.10}_{-0.18}$	$7.80^{+2.70}_{-0.83}$	$7.94^{+0.55}_{-0.50}$	$0.16^{+0.43}_{-2.93}$	11.48
1026	26.13	.1.50	$0.18^{+0.12}_{-0.02}$	$9.36^{+0.00}_{-0.10}$	$10.44_{-0.05}^{+0.10}$	$0.30^{+0.43}_{-0.05}$	14.58
1048	26.33	2.90	$0.06^{+0.00}_{-0.02}$	$8.95^{+0.10}_{-0.00}$	$9.70^{+0.16}_{-0.00}$	$0.56^{+0.00}_{-0.09}$	7.57
1062	27.26	2.90	$0.24^{+0.04}$	$6.66^{+1.56}_{-0.42}$	$8.02^{+0.05}$	$1.37_{-2.24}^{+0.39}$	25.71
1073	25.75	2.80	$0.04^{+0.04}$	$8.12^{+0.31}$	$8.85^{+0.17}_{-0.17}$	$0.75^{+0.19}$	4.42
1074	26.02	2.60	$0.00^{+0.00}$	$8.22^{+0.42}$	$8.64^{+0.27}$	$0.43^{+0.05}$	0.41
1083	26.87	2.40	$0.10^{+0.06}$	8.84 ^{+0.00}	$9.33^{+0.05}$	$0.35^{+0.16}$	4.22
1095	27.66	2 70	0.00+0.00	8.53 ^{+0.10}	$8.32^{+0.13}$	$-0.24^{+0.01}$	40.67
1099	27.62	2.70	$0.06^{+0.00}$	$8 12^{+1.35}$	$8.14^{+0.66}$	$0.04^{+0.25}$	9.36
1106	27.77	2.10	0.00 ± 0.12 0.00 ± 0.00	$853^{+0.21}$	$8.24^{+0.24}$	$-0.32^{+0.03}$	36.62
1112	27.73	2.50	0.00 - 0.00	$9.16^{+0.00}$	9.23+0.00	$-0.33^{+0.00}$	64.61
1129	26.02	2.00	$0.18^{+0.02}$	$8.64^{+0.10}$	9 59 ^{+0.10}	$0.90^{\pm 0.13}$	1.82
1123	26.50	2.20	0.10 - 0.04 0.00 + 0.00	8 53 ^{+0.00}	8 78 ^{+0.02}	$0.00_{-0.11}$ $0.22^{+0.02}$	47.62
1158	20.00	2.10	0.00 - 0.00	8.84 ^{+0.00}	0.70 -0.02 0.22 +0.00	$0.22_{-0.02}$	19.46
1100	20.41	2.10	0.00 - 0.00	9.05 ^{+0.10}	$9.16^{+0.20}$	$-0.18^{+0.02}$	36.46
1101	26.01	1.25	0.00 - 0.00 $0.12^{\pm 0.08}$	$0.16^{\pm0.00}$	$0.34^{\pm 0.05}$	0.10 - 0.00 $0.22^{+0.31}$	12 02
1226	20.91	2.50	$0.12_{-0.06}$	$9.10_{-0.10}$ $9.05^{+0.00}$	9.04 9.06+0.05	-0.22 - 0.21 0.20 $+0.05$	10.02
1220	27.07	2.50	$0.00_{-0.00}$	6.90 - 0.00 6.76 + 0.10	8.80_0.00 8.25 ^{+0.11}	$1.40^{+0.22}$	774
1230	20.47	1.40	$0.40_{-0.04}$	$0.70_{-0.10}$	$0.20_{-0.15}$	1.49 - 0.25 0.92 + 0.17	1.14
1241	20.09	2.70	$0.12_{-0.02}$	0.74 - 0.31 0.74 + 0.00	$9.00_{-0.34}$	$0.03_{-0.11}$ 0.10 ^{+-0.00}	4.44
1204	20.44	2.50	$0.00_{-0.00}$	$0.74_{-0.00}$	$9.02_{-0.03}$	$0.19_{-0.03}$	44.09
1290	27.42	2.50	$0.00_{-0.00}$	$8.03_{-0.10}$	$0.37_{-0.12}$	$-0.19_{-0.01}$	99.07
1294	26.39	2.50	$0.00_{-0.00}$	$8.43_{-0.00}$	$8.09_{-0.00}$	$0.25_{-0.00}$	25.24
1295	26.12	1.80	0.20 - 0.04	$8.95_{-0.10}$	$9.85_{-0.07}$	$0.70_{-0.17}$ 0.1 $c^{+0.27}$	1.00
1296	26.90	2.05	$0.08_{-0.02}$	$8.53_{-0.21}$	$8.72_{-0.19}$	$0.10_{-0.10}$	1.75
1328	26.75	2.50	$0.00_{-0.00}$	$8.53_{-0.00}$	$8.04_{-0.00}$	$0.09_{-0.01}$	128.10
1352	25.32	2.60	$0.36_{-0.06}$	$6.97_{-0.52}$	$9.25_{-0.25}$	$2.29_{-0.40}$	13.81
1362	27.45	2.90	$0.02_{-0.06}$	$9.05_{-0.00}$	$9.30_{-0.08}$	$-0.04_{-0.22}$	75.31
1437	26.91	2.75	$0.02_{-0.06}$	$8.64_{-0.10}$	$8.83_{-0.13}$	$0.14_{-0.24}$	18.69
1474	25.86	2.30	0.10 - 0.04	$8.64_{-0.10}$	$9.42_{-0.10}$	$0.73^{+0.15}_{-0.15}$	1.14
1499	27.51	1.35	$0.42_{-0.56}$	$6.04_{-4.26}$	$7.97_{-0.27}$	$1.96_{-0.35}$	143.24
1501	27.77	1.75	$0.08^{+0.00}_{-0.90}$	$7.18^{+2.00}_{-3.12}$	$7.12_{-0.16}^{+0.05}$	$-0.05^{+0.07}_{-0.17}$	57.46
1503	26.68	1.20	$0.08^{+0.06}_{-0.04}$	$8.95^{+0.10}_{-0.10}$	$8.83_{-0.04}^{+0.05}$	$-0.32^{+0.24}_{-0.18}$	17.13
1516	26.10	2.35	$0.10^{+0.00}_{-0.10}$	$8.01^{+0.34}_{-0.31}$	$8.70^{+0.04}_{-0.21}$	$0.71^{+0.19}_{-0.48}$	0.30
1519	26.00	2.15	$0.00^{+0.00}_{-0.04}$	$9.05_{-0.00}^{+0.10}$	$9.58^{+0.00}_{-0.04}$	$0.24^{+0.04}_{-0.17}$	1.77
1525	26.79	2.20	0.00 -0.00	$8.74_{-0.10}^{+0.00}$	$8.81^{+0.04}_{-0.21}$	$-0.02^{+0.04}_{-0.07}$	17.29
1528	27.17	2.60	0.00+0.00	$8.95^{+0.00}_{-0.00}$	$9.07_{-0.03}^{+0.04}$	-0.08 ± 0.03	18.81
1531	26.91	2.30	0.18 ± 0.06	$8.22^{+0.31}_{-0.31}$	8.83_0.20	$0.63^{+0.13}_{-0.17}$	0.98
1535	25.30	2.60	$0.00^{+0.00}_{-0.02}$	8.95+0.10	$9.82^{+0.12}_{-0.02}$	$0.67^{+0.04}_{-0.05}$	1.10
1539	26.87	1.55	$0.16^{+0.04}_{-0.04}$	$8.22^{+0.21}_{-0.21}$	$8.42^{+0.12}_{-0.13}$	$0.22^{+0.23}_{-0.16}$	43.78
1556	26.67	2.75	$0.02^{+0.02}_{-0.00}$	$9.16^{+0.00}_{-0.10}$	$9.79^{+0.02}_{-0.23}$	$0.23^{+0.05}_{-0.02}$	2.67
1592	27.10	2.90	$0.02^{+0.02}_{-0.02}$	$8.84^{+0.10}_{-0.10}$	$9.08^{+0.09}_{-0.16}$	$0.10^{+0.09}_{-0.06}$	14.24
1606	26.80	2.50	$0.00^{+0.00}_{-0.00}$	$8.95^{+0.00}_{-0.00}$	$9.19^{+0.00}_{-0.03}$	$0.04^{+-0.00}_{-0.03}$	27.28
1610	26.39	2.65	$0.02^{+0.02}_{-0.02}$	$9.16^{+0.10}_{-0.00}$	$9.88^{+0.21}_{-0.04}$	$0.32^{+0.11}_{-0.05}$	1.01
1611	26.41	2.15	$0.00^{+0.00}_{-0.04}$	$9.05^{+0.10}_{-0.00}$	$9.43^{+0.11}_{-0.04}$	$0.09^{+0.11}_{-0.15}$	0.88
1621	24.88	1.30	$0.10^{+0.10}_{-0.04}$	$8.64^{+0.10}_{-0.31}$	$9.30^{+0.04}_{-0.13}$	$0.61^{+0.40}_{-0.17}$	3.17
1654	25.27	2.10	$0.28^{+0.06}_{-0.02}$	$8.64^{+0.10}_{-0.21}$	$10.17\substack{+0.08\\-0.09}$	$1.48^{+0.20}_{-0.08}$	7.61
1662	26.19	2.40	$0.02^{+0.02}_{-0.04}$	$8.22^{+0.31}_{-0.10}$	$8.59^{+0.20}_{-0.12}$	$0.38^{+0.13}_{-0.18}$	0.54
1700	27.17	1.45	$0.00^{+0.00}_{-0.00}$	$8.64^{+0.00}_{-0.10}$	$8.22^{+0.03}_{-0.15}$	$-0.47^{+0.03}_{-0.06}$	12.12
1709	26.40	2.50	$0.00^{+0.00}_{-0.02}$	$8.74_{-0.00}^{+0.10}$	$9.04^{+0.06}_{-0.07}$	$0.21\substack{+0.02 \\ -0.08}$	4.91
1734	27.50	2.70	$0.00^{+0.00}_{-0.00}$	$9.05\substack{+0.00\\-0.10}$	$9.15^{+0.03}_{-0.23}$	$-0.19^{+0.03}_{-0.02}$	137.18
1747	27.05	2.40	$0.06^{+0.06}_{-0.14}$	$8.32^{+1.04}_{-0.31}$	$8.49^{+0.79}_{-0.24}$	$0.17^{+0.24}_{-0.40}$	0.45
1777	25.01	2.75	$0.08^{+0.04}_{-0.04}$	$8.84^{+0.21}_{-0.21}$	$10.11\substack{+0.16 \\ -0.25}$	$1.13_{-0.13}^{+0.11}$	1.46
1903	26.74	2.65	$0.46^{+0.12}_{-0.02}$	$6.24_{-0.62}^{+1.14}$	$9.03^{+0.36}_{-0.09}$	$2.80^{+0.99}_{-1.52}$	0.32
2006	26.89	1.95	$0.16^{+0.04}_{-0.06}$	$8.74_{-0.10}^{+0.21}$	$9.19_{-0.20}^{+0.22}$	$0.36\substack{+0.25\\-0.27}$	23.46
2060	27.76	2.90	$0.08\substack{+0.04\\-0.12}$	$8.53_{-0.21}^{+1.14}$	$8.65_{-0.18}^{+0.62}$	$0.09^{+0.17}_{-0.57}$	3.82

Table B.5: Best-fit parameters for Sawicki et al. (2007) HDF catalog, -700 Myr e-folding exponential SFR.

$ \begin{array}{c} 2066 & 27.12 & 2.76 & 0.00^{+0.05} & 6.95^{+0.05} & 9.12^{+0.05} & 0.03^{+0.07} & 0.03^{$		ID	\mathcal{R}_{VI}	z_{phot}	E(B - V)	log(Age/yr)	$\log(M_*/M_{\odot})$	$\log(SFR/(M_{\odot}/yr))$	χ^2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2066	27.12	2.75	$0.00^{+0.00}_{-0.00}$	$8.95^{+0.10}_{-0.00}$	$9.12^{+0.18}_{-0.00}$	-0.03+0.02	45.08
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2073	27.80	2.05	$0.00^{+0.00}_{-0.00}$	$8.64^{+0.10}_{-0.00}$	$8.22^{+0.16}_{-0.02}$	$-0.47^{+0.04}_{-0.02}$	15.68
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2079	26.98	2.45	$0.12\substack{+0.02\\-0.04}$	$8.64^{+0.21}_{-0.10}$	$9.09^{+0.16}_{-0.10}$	$0.40^{+0.10}_{-0.17}$	9.43
		2095	26.55	2.65	$0.00^{+0.00}_{-0.04}$	$8.64^{+0.21}_{-0.10}$	$8.88^{+0.13}_{-0.14}$	$0.19_{-0.17}^{+0.02}$	14.12
	ł	2106	25.88	2.60	$0.00^{+0.00}$	$8.74^{+0.10}_{-0.10}$	$9.28^{+0.07}_{-0.17}$	$0.45^{+0.03}_{-0.12}$	2.28
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2111	26.57	2.50	$0.00^{+0.00}_{-0.00}$	$8.84^{+0.00}$	$9.15^{+0.02}$	$0.17^{+0.02}_{-0.00}$	107.16
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2169	27.89	2.70	$0.10^{+0.10}$	$6.76^{+1.66}$	$7.21^{+0.16}$	$0.45^{+0.78}_{-0.78}$	31.38
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2171	25.55	2.65	$0.00^{+0.00}$	$8.74^{+0.00}$	$9.42^{+0.05}$	$0.59^{+0.05}$	11.30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2188	27.32	2 20	$0.00^{\pm 0.00}$	$8.64^{+0.00}$	$8.47^{+0.04}$	$-0.22^{+0.04}$	43 15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2206	26.56	2.20	0.00 - 0.00	$874^{+0.00}$	8 98 ^{+0.00}	$0.15^{\pm 0.02}$	63 78
		2200	26.58	2.00	0.00 - 0.00 0.08 + 0.06	$874^{+0.10}$	$9.26^{+0.14}$	$0.43^{\pm 0.18}$	1 71
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2200	20.00	1 70	0.00 - 0.02 0.14 $+ 0.14$	$720^{+2.29}$	726+0.23	0.40 - 0.08 0.00 $^{+0.40}$	0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2221	21.94	1.70	0.14 - 0.18 0.08 + 0.06	$^{1.39}_{-1.04}$	0.80 - 0.71	$-0.00_{-2.83}$ 1 12 $+0.25$	11 70
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2220	20.70	1.60	$0.28_{-0.02}$	$0.04_{-0.21}$	$9.82_{-0.13}$	1.13 - 0.14 0.20 ± 0.00	25 50
		2200	21.20	1.60	$0.00_{-0.00}$	$9.10_{-0.00}$	$9.10_{-0.00}$	$-0.39_{-0.00}$	20.09
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2260	26.10	2.90	$0.14_{-0.02}$	$8.84_{-0.10}$	$9.94_{-0.08}$	0.90 - 0.08	0.20
		2282	24.63	2.60	$0.02_{-0.00}$	$8.74_{-0.10}$	$9.85_{-0.12}$	$1.03_{-0.03}$	1.73
	Ì	2300	26.66	2.75	$0.12_{-0.04}$	$8.74_{-0.21}$	$9.45_{-0.19}$	$0.62_{-0.13}$	1.04
		2306	25.42	2.70	$0.10_{-0.04}$	$8.74_{-0.21}$	$9.86_{-0.21}$	$1.03_{-0.15}$	0.54
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2342	27.85	1.85	0.00 - 0.02	$9.05_{-0.10}$	$8.72^{+0.00}_{-0.46}$	$-0.62_{-0.29}$	17.82
		2366	26.44	2.30	$0.26^{+0.00}_{-0.04}$	$9.05_{-0.00}^{+0.10}$	$10.36^{+0.10}_{-0.05}$	$1.03^{+0.00}_{-0.18}$	8.42
		2404	27.76	2.00	$0.10^{+0.02}_{-0.04}$	$8.64_{-0.10}^{+0.21}$	$8.54_{-0.15}^{+0.30}$	$-0.15^{+0.20}_{-0.21}$	5.23
		2409	26.90	2.20	0.08+0.04	$8.95_{-0.10}^{+0.10}$	$9.34_{-0.17}^{+0.13}$	$0.19^{+0.20}_{-0.06}$	0.65
		2490	27.03	2.50	$0.00^{+0.00}_{-0.00}$	$8.84^{+0.00}_{-0.00}$	$8.96^{+0.04}_{-0.00}$	$-0.02^{+0.04}_{-0.00}$	69.66
	li	2501	25.98	2.45	$0.04^{+0.02}_{-0.04}$	$8.74_{-0.10}^{+0.10}$	$9.34_{-0.10}^{+0.09}$	$0.51^{+0.10}_{-0.13}$	2.40
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2560	26.37	2.05	$0.12^{+0.02}_{-0.04}$	$8.64^{+0.10}_{-0.10}$	$9.19_{-0.15}^{+0.15}$	$0.50^{+0.18}_{-0.15}$	0.64
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2616	25.58	2.85	$0.14^{+0.02}_{-0.06}$	$8.74_{-0.10}^{+0.31}$	$10.00^{+0.21}_{-0.09}$	$1.17^{+0.09}_{-0.21}$	1.27
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ľ	2625	26.65	2.25	$0.12^{+0.04}_{-0.08}$	$8.22^{+0.02}_{-0.21}$	$8.71^{+0.37}_{-0.14}$	$0.50^{+0.13}_{-0.31}$	0.76
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ĺ	2702	25.73	2.70	$0.06^{+0.04}_{-0.02}$	$8.74_{-0.21}^{+0.10}$	$9.58^{+0.09}_{-0.23}$	$0.75^{+0.13}_{-0.10}$	3.07
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2710	25.05	2.40	$0.06^{+0.04}_{-0.00}$	$8.84_{-0.10}^{+0.00}$	$9.91^{+0.08}_{-0.08}$	$0.93^{+0.17}_{-0.04}$	5.68
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2808	27.75	2.70	$0.28^{+0.12}_{-0.10}$	$6.66^{+1.56}_{-1.14}$	$7.92^{+0.17}_{-0.39}$	$1.26^{+0.80}_{-2.25}$	5.83
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2832	26.69	2.90	$0.00^{+0.00}_{-0.02}$	$9.05^{+0.00}_{-0.00}$	$9.52^{+0.04}_{-0.05}$	$0.18^{+0.04}_{-0.05}$	40.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2835	27.68	2.90	$0.00^{+0.00}_{-0.04}$	$8.95^{+0.21}_{-0.10}$	$8.95^{+0.19}_{-0.18}$	$-0.20^{+0.02}_{-0.13}$	7.80
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2848	27.80	2.05	$0.00^{+0.00}_{-0.00}$	$8.53^{+0.21}_{-0.10}$	$8.10^{+0.56}_{-0.18}$	$-0.45_{-0.06}^{+0.32}$	21.17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2849	25.59	2.80	$0.06\substack{+0.02\\-0.02}$	$8.95^{+0.10}_{-0.10}$	$9.98^{+0.14}_{-0.15}$	$0.83^{+0.09}_{-0.06}$	2.39
$ \begin{vmatrix} 2876 & 25.81 & 2.40 & 0.00^{+0.00} & 8.53^{+0.00} & 9.01^{+0.05} & 0.45^{+0.06} & 18.22 \\ 2894 & 27.17 & 2.80 & 0.00^{+0.00} & 8.74^{+0.42} & 8.82^{+0.36} & -0.01^{+0.05} & 4.62 \\ 2967 & 26.80 & 1.65 & 0.12^{+0.04} & 8.84^{+0.10} & 9.07^{+0.13} & 0.09^{+0.17} & 13.05 \\ 3025 & 26.97 & 2.90 & 0.02^{+0.02} & 8.64^{+0.10} & 8.85^{+0.13} & 0.17^{+0.03} & 4.88 \\ 3036 & 27.56 & 2.70 & 0.00^{+0.00} & 8.74^{+0.10} & 8.63^{+0.02} & -0.20^{+0.02} & 7.32 \\ 3042 & 27.21 & 1.25 & 0.24^{+0.04} & 6.87^{+1.10} & 7.39^{+0.14} & 0.53^{+0.21} & 10.62 \\ 3048 & 24.74 & 2.20 & 0.16^{+0.02} & 8.64^{+0.10} & 9.07^{+0.14} & 0.53^{+0.21} & 1.62 \\ 3083 & 25.65 & 2.05 & 0.12^{+0.04} & 8.74^{+0.10} & 9.06^{+0.11} & 0.77^{+0.19} & 3.85 \\ 3087 & 26.46 & 2.80 & 0.06^{+0.06} & 8.22^{+0.62} & 8.74^{+0.23} & 0.53^{-0.31} & 1.41 \\ 3111 & 24.61 & 2.35 & 0.00^{+0.06} & 8.22^{+0.62} & 8.74^{+0.23} & 0.53^{-0.31} & 1.41 \\ 3111 & 24.61 & 2.35 & 0.00^{+0.06} & 8.24^{+0.10} & 9.07^{+0.16} & 3.88 \\ 3115 & 25.41 & 2.10 & 0.20^{+0.04} & 8.32^{+0.21} & 9.1^{+0.14} & 1.9^{+0.14} & 1.9^{+0.14} \\ 3116 & 25.86 & 2.30 & 0.10^{+0.02} & 8.74^{+0.10} & 9.30^{+0.04} & 0.74^{+0.12} & 7.99 \\ 3189 & 26.24 & 2.05 & 0.00^{+0.00} & 8.74^{+0.10} & 9.30^{+0.04} & 0.74^{+0.12} & 7.99 \\ 3189 & 26.24 & 2.05 & 0.00^{+0.00} & 8.74^{+0.10} & 9.30^{+0.04} & 0.74^{+0.12} & 7.99 \\ 3189 & 26.24 & 2.05 & 0.00^{+0.00} & 8.74^{+0.10} & 9.30^{+0.04} & 0.74^{+0.12} & 7.99 \\ 3189 & 26.24 & 2.05 & 0.00^{+0.00} & 8.74^{+0.10} & 9.10^{+0.05} & 0.22^{+0.05} & 0.88^{+0.04} \\ 3255 & 26.74 & 2.90 & 0.04^{+0.02} & 8.84^{+0.10} & 9.10^{+0.02} & 0.12^{+0.04} & 8.84^{+0.10} \\ 3256 & 26.90 & 2.05 & 0.38^{+0.04} & 8.39^{+0.04} & 0.74^{+0.12} & 7.99 \\ 3163 & 3255 & 26.74 & 2.90 & 0.04^{+0.02} & 8.95^{+0.10} & 9.44^{+0.08} & 0.29^{+0.03} & 0.84 \\ 3256 & 26.90 & 2.05 & 0.38^{+0.04} & 8.35^{+0.10} & 9.44^{+0.06} & 0.29^{+0.03} & 0.84 \\ 3256 & 26.90 & 2.05 & 0.38^{+0.04} & 8.35^{+0.10} & 9.44^{+0.06} & 0.29^{+0.03} & 0.74^{+0.12} & 0.88 \\ 3256 & 26.90 & 2.05 & 0.38^{+0.04} & 8.35^{+0.10} & 9.44^{+0.06} $		2853	25.22	2.50	$0.06^{+0.04}_{-0.02}$	$8.64^{+0.10}_{-0.10}$	$9.59^{+0.10}_{-0.13}$	$0.90^{+0.12}_{-0.10}$	1.45
$ \begin{vmatrix} 2894 & 27.17 & 2.80 & 0.00^{+0.00}_{-0.10} & 8.74^{+0.10}_{-0.10} & 8.82^{+0.36}_{-0.16} & -0.01^{+0.02}_{-0.22} & 4.62 \\ 2967 & 26.80 & 1.65 & 0.12^{+0.04}_{-0.04} & 8.84^{+0.10}_{-0.10} & 9.07^{+0.13}_{-0.14} & 0.09^{+0.17}_{-0.22} & 13.05 \\ 3025 & 26.97 & 2.90 & 0.02^{+0.02}_{-0.04} & 8.64^{+0.21}_{-0.10} & 8.85^{+0.12}_{-0.13} & 0.17^{+0.09}_{-0.16} & 4.88 \\ 3036 & 27.56 & 2.70 & 0.00^{+0.00}_{-0.00} & 8.74^{+0.10}_{-0.00} & 8.63^{+0.15}_{-0.02} & -0.20^{+0.03}_{-0.02} & 7.32 \\ 3042 & 27.21 & 1.25 & 0.24^{+0.24}_{-0.04} & 6.87^{+0.10}_{-0.16} & 7.39^{+0.14}_{-0.14} & 0.53^{+1.26}_{-122} & 10.62 \\ 3048 & 24.74 & 2.20 & 0.16^{+0.04}_{-0.04} & 8.64^{+0.10}_{-0.10} & 10.03^{+0.07}_{-0.22} & 1.34^{+0.12}_{-0.12} & 1.76 \\ 3083 & 25.65 & 2.05 & 0.12^{+0.02}_{-0.04} & 8.74^{+0.10}_{-0.10} & 9.60^{+0.01}_{-0.15} & 0.77^{+0.13}_{-0.13} & 1.76 \\ 3083 & 25.65 & 2.05 & 0.12^{+0.02}_{-0.04} & 8.74^{+0.10}_{-0.10} & 9.60^{+0.01}_{-0.12} & 0.89^{+0.04}_{-0.14} & 3.85 \\ 3087 & 26.46 & 2.80 & 0.66^{+0.06}_{-0.06} & 8.22^{+0.62}_{-0.42} & 8.74^{+0.033}_{-0.72} & 0.53^{+0.24}_{-0.14} & 1.41 \\ 3111 & 24.61 & 2.35 & 0.00^{+0.04}_{-0.04} & 8.74^{+0.10}_{-0.11} & 9.60^{+0.16}_{-0.11} & 1.9^{+0.14}_{-0.14} & 1.38 \\ 3115 & 25.41 & 2.10 & 0.20^{+0.02}_{-0.02} & 8.32^{+0.21}_{-0.11} & 9.51^{+0.14}_{-0.11} & 1.9^{+0.11}_{-0.11} & 7.63 \\ 3176 & 25.86 & 2.30 & 0.10^{+0.04}_{-0.02} & 8.53^{+0.10}_{-0.10} & 9.30^{+0.04}_{-0.16} & 0.74^{+0.12}_{-0.11} & 7.99 \\ 3189 & 26.24 & 2.05 & 0.00^{+0.06}_{-0.06} & 8.22^{+0.62}_{-0.22} & 8.27^{+0.35}_{-0.72} & 0.12^{+0.04}_{-0.22} & 2.872 \\ 3201 & 27.16 & 1.55 & 0.32^{+0.10}_{-0.06} & 8.22^{+0.62}_{-0.22} & 8.27^{+0.35}_{-0.72} & 0.28^{+0.28}_{-0.72} & 0.28^{+0.28}_{-0.72} & 0.28^{+0.28}_{-0.72} & 0.28^{+0.28}_{-0.72} & 0.28^{+0.28}_{-0.72} & 0.28^{+0.28}_{-0.72} & 0.21 \\ 3263 & 27.57 & 2.05 & 0.24^{+0.04}_{-0.02} & 8.53^{+0.10}_{-0.16} & 9.44^{+0.03}_{-0.09} & 58.64 \\ 3256 & 26.90 & 2.05 & 0.36^{+0.01}_{-0.6} & 8.53^{+0.10}_{-0.16} & 9.44^{+0.03}_{-0.09} & 0.29^{+0.04}_{-0.09} & 0.29^{+0.04}_{-0$		2876	25.81	2.40	$0.00^{+0.00}_{-0.00}$	$8.53^{+0.00}_{-0.00}$	$9.01\substack{+0.05\\-0.03}$	$0.45^{+0.05}_{-0.03}$	18.22
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2894	27.17	2.80	$0.00^{+0.00}_{-0.10}$	$8.74^{+0.42}_{-0.10}$	$8.82^{+0.36}_{-0.16}$	$-0.01^{+0.05}_{-0.22}$	4.62
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2967	26.80	1.65	$0.12^{+0.04}_{-0.04}$	$8.84^{+0.10}_{-0.10}$	$9.07^{+0.13}_{-0.14}$	$0.09^{+0.17}_{-0.25}$	13.05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3025	26.97	2.90	$0.02^{+0.02}_{-0.04}$	$8.64^{+0.21}_{-0.10}$	$8.85^{+0.12}_{-0.13}$	$0.17\substack{+0.09\\-0.13}$	4.88
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3036	27.56	2.70	$0.00^{+0.00}_{-0.00}$	$8.74_{-0.00}^{+0.10}$	$8.63^{+0.15}_{-0.02}$	$-0.20^{+0.03}_{-0.02}$	7.32
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3042	27.21	1.25	$0.24_{-0.04}^{+0.24}$	$6.87^{+0.10}_{-1.56}$	$7.39^{+0.14}_{-0.41}$	$0.53^{+1.26}_{-0.21}$	10.62
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3048	24.74	2.20	$0.16\substack{+0.04\\-0.02}$	$8.64^{+0.10}_{-0.10}$	$10.03\substack{+0.07\\-0.12}$	$1.34^{+0.12}_{-0.13}$	1.76
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ļ	3083	25.65	2.05	$0.12^{+0.04}_{-0.02}$	$8.74_{-0.10}^{+0.10}$	$9.60^{+0.11}_{-0.05}$	$0.77^{+0.19}_{-0.11}$	3.85
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3087	26.46	2.80	$0.06^{+0.06}_{-0.06}$	$8.22_{-0.42}^{+0.62}$	$8.74_{-0.25}^{+0.33}$	$0.53_{-0.31}^{+0.24}$	1.41
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	3111	24.61	2.35	$0.00^{+0.00}_{-0.04}$	$8.74_{-0.00}^{+0.10}$	$9.72^{+0.07}_{-0.08}$	$0.89^{+0.04}_{-0.18}$	3.98
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3115	25.41	2.10	$0.20^{+0.04}_{-0.02}$	$8.32^{+0.21}_{-0.21}$	$9.51_{-0.11}^{+0.14}$	$1.19_{-0.11}^{+0.19}$	13.38
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3134	25.09	2.55	$0.12^{+0.00}_{-0.06}$	$8.74_{-0.00}^{+0.21}$	$10.02^{+0.16}_{-0.04}$	$1.19^{+0.11}_{-0.14}$	7.63
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3176	25.86	2.30	$0.10^{+0.02}_{-0.04}$	$8.53_{-0.10}^{+0.10}$	$9.30^{+0.04}_{-0.15}$	$0.74_{-0.11}^{+0.12}$	7.99
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3189	26.24	2.05	0.00+0.00	$8.84_{-0.00}^{+0.10}$	$9.10^{+0.07}_{-0.02}$	$0.12_{-0.08}^{+0.04}$	28.72
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3201	27.16	1.55	$0.32_{-0.06}^{+0.10}$	$7.60^{+0.52}_{-0.73}$	$8.28_{-0.57}^{+0.28}$	$0.72_{-0.34}^{+0.32}$	3.84
$ \begin{vmatrix} 3255 & 26.74 & 2.90 & 0.04 + 0.02 & 8.95 + 0.00 & 9.44 + 0.08 & 0.29 + -0.00 & 58.64 \\ 3256 & 26.90 & 2.05 & 0.36 + 0.18 & 6.56 + 1.46 & 8.29 + 0.23 & 1.74 + 0.82 & 0.21 \\ 3263 & 27.57 & 2.05 & 0.24 + 0.04 & 8.53 + 0.11 & 8.97 + 0.10 & 0.41 + 0.16 & 11.23 \\ 3264 & 23.66 & 2.35 & 0.20 + 0.04 & 8.43 + 0.21 & 10.44 + 0.13 & 2.00 + 0.15 & 7.82 \\ 3269 & 26.81 & 2.65 & 0.00 + 0.06 & 8.53 + 0.01 & 8.66 + 0.21 & 0.10 + 0.05 & 3.66 \\ 3373 & 24.31 & 2.10 & 0.18 + 0.06 & 8.32 + 0.10 & 9.89 + 0.34 & 1.57 + 0.16 & 0.88 \\ \hline \end{aligned}$		3250	27.14	2.65	$0.02^{+0.02}_{-0.08}$	8.22 + 0.62	$8.27_{-0.16}^{+0.35}$	$0.07_{-0.31}^{+0.12}$	0.88
$ \begin{vmatrix} 3256 & 26.90 \\ 3263 & 27.57 \\ 3264 & 23.66 \\ 3264 & 23.66 \\ 3373 & 24.31 \\ 2.10 \\ \end{vmatrix} \begin{pmatrix} 2.05 & 0.36 + 0.18 \\ 0.08 \\ 0.08 \\ 0.01 \\ 0.08 \\ 0.01 \\ 0.$		3255	26.74	2.90	$0.04_{-0.02}^{+0.00}$	8.95 ± 0.10	$9.44_{-0.00}^{+0.08}$	$0.29^{+-0.00}_{-0.09}$	58.64
$ \begin{vmatrix} 3263 & 27.57 & 2.05 & 0.24 \overset{+0.70}{-0.02} & 8.53 \overset{+0.70}{-0.16} & 8.97 \overset{+0.70}{-0.16} & 0.41 \overset{+0.716}{-0.14} & 11:23 \\ 3264 & 23.66 & 2.35 & 0.20 \overset{+0.04}{-0.04} & 8.43 \overset{+0.21}{-0.21} & 10.44 \overset{+0.13}{-0.09} & 2.00 \overset{+0.17}{-0.15} & 7.82 \\ 3269 & 26.81 & 2.65 & 0.00 \overset{+0.00}{-0.06} & 8.53 \overset{+0.31}{-0.00} & 8.66 \overset{+0.21}{-0.04} & 0.10 \overset{+0.01}{-0.21} & 0.08 \\ 3373 & 24.31 & 2.10 & 0.18 \overset{+0.04}{-0.06} & 8.32 \overset{+0.42}{-0.10} & 9.89 \overset{+0.34}{-0.10} & 1.57 \overset{+0.16}{-0.16} & 3.81 \\ \end{vmatrix}$		3256	26.90	2.05	$0.36_{-0.08}^{+0.18}$	$6.56^{+1.46}_{-0.04}$	$8.29_{-0.29}^{+0.23}$	$1.74_{-2.04}^{+0.82}$	0.21
$ \begin{vmatrix} 3264 \\ 3269 \\ 3269 \\ 3373 \\ 24.31 \\ 2.10 \\ 0.18\pm0.06 \\ 0.01\pm0.06 \\ 0.18\pm0.06 \\ 0.18\pm0$		3263	27.57	2.05	$0.24^{+0.04}_{-0.02}$	8.53-0.21	$8.97^{+0.10}_{-0.16}$	$0.41_{-0.14}^{+0.16}$	11.23
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		3264	23.66	2.35	$0.20^{+0.04}_{-0.04}$	8.43+0.21	$10.44^{+0.13}$	2.00 + 0.17	7.82
$ \begin{array}{ $		3269	26.81	2.65	0.00+0.00	8.53	8.66+0.21	$0.10^{+0.05}_{-0.21}$	0.08
	Ì	3373	24.31	2.10	$0.18_{-0.06}^{+0.04}$	$8.32^{+0.42}_{-0.10}$	$9.89_{-0.10}^{+0.34}$	$1.57_{-0.25}^{+0.16}$	3.81

Table B.5: Best-fit parameters for Sawicki et al. (2007) HDF catalog, -700 Myr e-folding exponential SFR.