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An investigation of infrared spectral features related to the presence of lithium in micas, 

East Kemptville tin deposit, Nova Scotia 

 

by Travis G. Kendall 

 

Abstract  
 

     Lithium is an important commodity in the rapidly growing rechargeable battery industry 

and it is unclear whether future Li-demand will outgrow current supply. As such, it is 

important that the groundwork for exploration be ready in the event of a Li shortage. One 

possible source is within Li-micas in Sn-greisen deposits. The use of infrared spectroscopy, 

a cheap and portable technique, for Li-quantification within greisen-style mineralogy was 

explored. To do this, recreation of the 915 cm-1 signature, which was found to decrease in 

intensity as a function of octahedral Li occupancy after treatment of muscovite with molten 

LiNO3 (White et al., 1961) was explored. Recreation of this feature was unsuccessful, 

which is likely due to a lack of empty octahedral positions to accommodate Li+ cations pre-

treatment. The orientation of samples during analyses, both parallel and perpendicular to 

mica cleavage was found to have no effect on the wave number position of absorption 

features. Intensities o individual absorption features were found to vary as a function of 

sample thickness. In addition to this, the absorption features of 6 mica samples with varying 

Li concentration were compared. Absorption near 1411 and 2200 cm-1 were found to be 

shifted to higher wave numbers in samples with the highest Li, reflecting the replacement 

of octahedral Al by Li.  
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1.0 Introduction 

     Magmatic-hydrothermal greisens (a type of endoskarn) form during hydrothermal 

alteration of granitoid rocks by high temperature fluids that can be enriched in ore-forming 

metals and other elements exsolved from fluid-saturated felsic magmas. Several of these 

ore-forming elements concentrate in greisens producing economic deposits (Eugster, 

1985), such as at the East Kemptville Sn-Cu-Zn deposit, in SW Nova Scotia, Canada. Ore-

forming elements such as Zn, Cu, Sn, W, Mo, Nb, Ta and Li can concentrate in tri- and di-

octahedral micas through minor structural substitutions (e.g., biotite and muscovite, 

respectively)  and also in major concentrations in some end-member micas (e.g., 

polylithionite, trilithionite)  in greisenized granites and pegmatites (Eugster, 1985). For 

example, at the East Kemptville deposit, Nova Scotia, Li-bearing sheet silicates (Li-

muscovite, polylithionite and zinnwaldite; Sedge 2015) occur in abundance within the 

intrusive rocks and peripheral to the intrusions where they come into contact with 

metasediments.  

     Lithium has a wide range of industrial uses including ceramics and glass, continuous 

casting mold flux powders, air treatment, polymer production, and primary aluminum 

production (Jaskula, 2016). Figure 1 shows the relative importance of these industrial uses. 

Currently, the use of Li in rechargeable batteries for mobile devices, electric cars, electric 

tools and home power-grid storage accounts for the biggest portion of the demand. As 

rechargeable Li-batteries are becoming more common, there is an increase in Li demand 

(Jaskula, 2016). With the projected increase in Li-demand, it is unclear whether future Li-

demand will outgrow current supply (Gruber et al., 2011; Kesler et al., 2012). Furthermore, 

the majority of Li reserves are concentrated in just a few countries. With 78% of Li reserves 
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concentrated in China, Australia and Argentina, it is important for smaller contributors to 

secure more resources to meet future demand.   Figure 2 shows the global distribution of 

Li reserves. Due to this increase in Li demand, and the need for geographic diversification 

of Li resources, including the possibility of recovering Li from these micas rather than 

more traditional host phase (eg; spodumene) is being considered (Allen, 2015). 
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Figure 1: Global industrial consumption of Li as of 2015 showing its importance in 

rechargeable batteries, ceramic and glass production and other applications (Jaskula, 

2016). 
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Figure 2: Global distribution of lithium reserves. 78 % of reserves are concentrated in 

just 3 countries; China, Australia and Argentina (Jaskula, 2016). 
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     While Li-containing minerals exist in Sn-W deposits, analytical tools available to 

identify them through the detection and quantification of Li, or recognition of their 

characteristic spectral features, are limited.  Techniques that enable identification of Li-

bearing minerals include secondary ion mass spectrometry (SIMS; e.g., Henderson et al., 

1989), laser ablation inductively-coupled ion mass spectrometry (LA-ICP-MS;  e.g., Bea 

et al., 1994) and Raman spectroscopy (e.g., Robert et al., 1989). More traditional methods 

of mineral and bulk rock analysis are limited by a range of issues both fundamental to the 

measurement technique and also inherent to the element’s properties. For example, electron 

microprobe is a preferred method for geologists when analyzing minerals in-situ, but it 

cannot be used to quantify Li due to low yields for characteristic X-ray lines, uncertainties 

in mass absorption coefficients, limited available reference standards, and detector window 

composition restricting the minimum energy of characteristic X-rays emitted from the 

sample that can be analyzed (Tischendorf et al., 1999). Indirect methods of Li 

quantification via microprobe have been attempted by analyzing/quantifying elements that 

can be detected, and quantified, and that correlate (through structural associations) with Li 

abundance in micas (Tindle & Webb, 1990; Tischendorf et al., 1997).  Since LA-ICPMS, 

SIMS, Raman spectroscopy, and even electron microprobe analyses are relatively 

expensive to access (and in some cases not available widely),  and non portable they are 

impractical for many geologists who wish to get information about sample composition 

rapidly to inform exploration efforts, and/or during field campaigns (Tischendorf et al., 

1999).  

     Whereas SIMS and LA-ICPMS yield isotope measurements and absolute 

concentrations of Li in minerals, Robert et al. (1989) used Raman spectroscopy to analyze 
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synthetic solid solutions of micas and related variations of spectral features to differences 

in the amount of Li present. Specifically, they analyzed mixtures including 

phlogopite[KMg3(Si3Al)O10(F,OH)2]-polylithionite[KLi2Al(Si4O10)(F,OH)2], 

phlogopite[KMg3(Si3Al)O10(F,OH)2]-trilithionite [K(Li1.5Al1.5)(AlSi3O10)(F,OH)2], and  

phlogopite[KMg3(Si3Al)O10(F,OH)2]-taeniolite[KLiMg2Si4O10F2] and attributed shifts in 

the absorption related to the OH-stretching region to the varying abundance of Li in the 

micas. They observed that OH groups bonded to Mg2Li or Li2Al produced a peak in the 

3755-3740 cm-1 range. Bonding of OH to Mg3 or AlMgLi produced a peak in the 3740 to 

3715 cm-1 range. Bonding with Mg2Al or Al2Li was linked to peaks produced in the < 3700 

cm-1 range. A peak at 3595 cm-1 was linked to the presence of 2Mg and a lack of Li.  So, 

while Raman spectroscopy provides spectral data that can aid in the positive identification 

of Li minerals as well as assist with structural interpretation of these species, it is still 

limited in that it is not-portable and therefore cannot be used for field work.  

     Infrared (IR) spectroscopy is unique in that it is a technology that allows for rapid 

analysis (i.e., 10 spectra per second) via a field-portable spectrometer that is comparatively 

inexpensive, allowing for in-situ mineral characterization in the field.  Characterization of 

Li-bearing micas has been attempted using IR in the past. Most work of this nature focused 

on the OH-stretching range (3550-3750 cm-1). For example, Jorgensen (1964) described 

the absorption bands for polylithionite, lepidolite, and zinnwaldite. Polythionite was 

characterized by the presence of a strong band (3535 cm-1), and two weaker bands (3730 

and 3710 cm-1). Lepidolite was characterized by one strong band (3588 cm-1) and two 

weaker bands (3485 and 3680 cm-1). Zinnwaldite was characterized by one strong band 
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(3575 cm-1), one intermediate strength band (3480 cm-1) and two weaker bands (3665 and 

3645 cm-1). These findings are summarized in Figure 3. 
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Figure 3: Summary of high-wave number absorption features in various Li-micas 

modified from Jørgensen (1964). Arrows identify the position of characteristic bands for 

each mineral.  
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     Unfortunately, many field spectrometers are limited to the mid-IR range, preventing 

their ability to detect Li-related features at >2500 cm-1. Furthermore, features attributed to 

Li in lower wave-numbers are not well understood. There is some evidence to suggest that 

the migration of Li into octahedral sites within muscovite decreases absorption at 915 cm-

1 (White et al., 1961). 

     This thesis attempts to characterize the IR spectral features of octahedrally-coordinated 

Li in micas containing variable amounts of Li. To do this, dioctahedral and trioctahedral 

mica species with varying Li abundance were been analyzed with an ASD (Analytical 

Spectral Devices) Terraspec® 4 IR spectrometer manufactured in Boulder, Colorado. The 

same samples were then analyzed for bulk Li content by LA-ICPMS.  By comparing the 

spectra of these samples to their Li content, the study attempted to define what spectral 

features, if any, differ as Li concentrations vary. Drill core from the East Kemptville 

deposit was also analyzed to see if any Li-related spectral features could be detected in 

natural samples. If a characteristic spectral feature (or features) could be recognized, it 

would allow for a field-based approach for the detection of high Li intervals in drill core, 

hand samples or mining faces in the East Kemptville deposit.  

     The study also investigated the role of mica grain orientation on the resulting IR spectra. 

Because these elements are contained within octahedral sites and, the study attempted to 

find IR signatures of these elements by comparing resultant spectra when the probe was 

oriented parallel, and perpendicular to the cleavage direction. another purpose of this was 

to increase the surface area of exposed octahedral layers, with the intent of detecting a 

signature related to octahedral cations. If there are absorption features unique to the mineral 

when viewed in the octahedral orientation, they may originate from octahedral cations.  
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     A final goal of the study was to reproduce the experimental work of White et al. (1961), 

who attributed an absorption feature at 915 cm-1 to the lack of Li in empty octahedral sites 

of muscovite. In their study, this feature was no longer present in samples after treatment 

of muscovite with molten LiNO3. If the feature loses intensity as a function of Li octahedral 

occupancy, it may be useful in quantification of Li in micas using IR spectroscopy.  

2.0 Geological setting 

     2.1 Exploration history and deposit background 

     In the 1970s, the East Kemptville Sn-Cu-Zn deposit was discovered 55 km northeast of 

Yarmouth, Nova Scotia, and quickly became North America’s only primary tin deposit. 

The 56 Mt deposit was large enough and close enough to the surface for open pit mining 

(Halter, 1996). mining began in 1982 and continued for 10 years until the mine was forced 

to close due to declining Sn price. Before closure, the deposit was processing 9000 

tonne/day ore which produced 4000 tons Sn/year, making it a historically significant 

producer for Canada (Kontak & Dostal, 1992). 

     Though East Kemptville is historically significant, there has been recent interest in its 

current and future economic potential. Avalon Advanced Materials Inc. (formerly Avalon 

Rare Metals Inc.) has recently purchased mineral rights to the property in response to 

increasing and sustained Sn prices. The property still contains a large amount of stock-

piled ore which is available for processing and new drilling has delineated geological 

resources within 3-4 mineralized zones that were not known or exploited previously. 

Furthermore, the deposit is accessible by local roadways.  The accessibility of the deposit 

coupled with the presence of previously unprocessed ore stock pile, newly discovered 
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mineralized zones, and existing open pit infrastructure contribute to confidence in its 

economic viability in today’s Sn market. 

  2.2 Regional geology 

     From 405-390 Ma, the Meguma Terrane accreted onto North America by colliding into 

the Avalon terrane forming the Cobequid-Chedabucto fault system along the terrane 

junction (Muecke et al., 1988). This event positioned the southern half of what is now Nova 

Scotia onto the eastern North American margin. Of those rock types within that part of 

Nova Scotia, the South Mountain Batholith (SMB) largely consists of granitoid rocks, and 

is the largest intrusive sequence of such rocks in the entire Appalachians. The granitoids 

are hosted within metasedimentary rocks of the Meguma Terrane and formed at ~ 370 Ma 

by the emplacement of partial melts derived from Avalonia granulite facies rocks at depth 

(Kontak & Chatterjee, 1992). 

     2.3 Local geology 

     Many of the SMB granitoid rocks within the Meguma terrane host mineral deposits. 

The East Kemptville deposit is an example of a Sn-In-Cu-Zn vein-stockwork type deposit 

(Sinclair, 1996). The deposit is associated with the 360-370 Ma old granitic Davis Lake 

Pluton (DLP), emplaced during the latest stages of accretion of the Meguma terrane 

(Kontak & Chatterjee, 1992). The main mineralization occurs near the contact between the 

DLP and the surrounding Meguma metawackes (metaturbidites). The DLP is a 

leucogranite which formed via fractionation of the SMB and occurs at the SW termination 

of the SMB (Kontak & Chatterjee, 1992; Figure 4). Though hydrothermal alteration is most 

intense near the contact, it extends into both the Meguma metawackes and the DLP (Figure 
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5). Fluid-rock interaction has led to this alteration and is expressed as massive and layered 

greisens in the DLP-Meguma contact region (Kontak, 1990). A large NE-SW oriented 

concentration of faults and fractures comprises the East Kemptville-East Dalhousie fault 

zone, which runs through the DLP (Kontak et al., 1986). The alteration is spatially 

associated with these faults and fractures, which are thought to have acted as conduits for 

the hydrothermal fluids responsible for alteration and mineralization (Halter et al., 1996). 

It is around this fault zone that the open pit was constructed for mining of the Sn ore. 
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     2.4 Deposit scale characteristics 

        Kontak (1990) described the mineralogy and geochemistry of the East Kemptville 

leucomonzogranite in detail. The intrusive leucomonzogranite has been described as 

homogenous, medium-grained, and equigranular with a dome-like structure due to its 

doubly plunging attitude. Conversely, the host rocks have been described as hornfelsed, 

antiformal metasediments (Kontak, 1990).  

The study by Kontak (1990) showed that the granite has elevated concentrations of 

incompatible elements including Rb, Cs, Ga, Li, Sn and Nb and is depleted concentrations 

of compatible elements including Ba, Th, V, Sc, Hf, Cr, Ni. The study also showed the 

main minerals found within the leucomonzogranite include quartz, plagioclase, potassium-

feldspar, muscovite and topaz with accessory biotite, zircon, monazite, and that the main 

Sn ore mineral is cassiterite.  Sedge (2015) later described the Li mineralogy in the 

intrusion, the contact and the host metasediments. The main Li-minerals are zinnwaldite 

and muscovite with minor tourmaline in the intrusion, phlogopite, zinnwaldite, and 

muscovite in the metasedimentary rocks, and zinnwaldite, muscovite and tourmaline in the 

contact zone.  

     2.5 Fluid-rock interaction and alteration history 

     Greisenization is an essential process for the formation of Sn-W deposits (Sinclair, 

1996). In general, this style of mineralization requires hydrothermal alteration of granitic 

rocks by internally derived, acidic, saline, F-bearing magmatic fluid (Halter et al., 1996). 

This fluid transports a variety of incompatible trace elements including ore metals that are 

derived from exsolved volatiles from the magmas, and in some cases, elements derived 
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through interaction of fluids with country rocks. These metals are transported to the 

depositional site and will precipitate out of solution to form ore minerals like cassiterite 

content (Eugster, 1985), and accessory minerals including hydrothermal micas that may 

contain elevated Li.  

     At the East Kemptville deposit, the alteration history has been deconstructed using the 

major and trace element chemistry determined at set distances from the most heavily 

altered rocks outward (Halter et al., 1996). In the zones proximal to the heaviest zones of 

alteration, muscovite converted to topaz and quartz by the reaction: 

4.50 𝐾𝐴𝑙2(𝐴𝑙𝑆𝑖3𝑂10)(𝐹, 𝑂𝐻)2 + 5.99𝐴𝑙(𝑂𝐻)3 + 1.92𝐹𝑒𝐶𝑙+ + 1.07𝑍𝑛𝐶𝑙2 +

17.07𝐻𝐹 + 3.30𝐻𝐶𝑙 + 10.78𝐻2𝑆 + 3.59𝑂2 + 1.29𝐶𝑙− ⇌ 16.09𝑆𝑖𝑂2 +

14.59𝐴𝑙2𝑆𝑖𝑂4(𝐹, 𝑂𝐻)2 + 4.86𝐹𝑒𝑆2 + 1.07(𝑍𝑛, 𝐹𝑒)𝑆 + 9.12𝐾𝐶𝐿 + .14𝑁𝑎𝐶𝑙 +

33.10𝐻2𝑂   (1) 

In the areas distal from the heaviest zones of alteration albite was replaced by muscovite 

in the greisenization reaction: 

8.42 𝑁𝑎𝐴𝑙𝑆𝑖3𝑂8 + 2.36 𝐾𝐶𝑙𝑎𝑞 +  .96 𝐹𝑒𝐶𝑙+ + .6 𝑍𝑛𝐶𝑙2 + 1.5𝐻𝐹 + 1.22 𝐻𝐶𝑙 +

 .99 𝐻2𝑆 + 1.47 𝐻2𝑂 +  .19𝑂2 +  .96𝐶𝑙− ⇌ 1.75 𝑆𝑖𝑂2 + .27𝐴𝑙2𝑆𝑖𝑂4(𝐹, 𝑂𝐻)2 +

1.2𝐾𝐴𝑙2(𝐴𝑙𝑆𝑖3𝑂10)(𝐹, 𝑂𝐻)2 + .6(𝑍𝑛, 𝐹𝑒)𝑆 + .2𝐹𝑒𝑆2 + 2.52𝐴𝑙(𝑂𝐻)3 + 6.70𝑁𝑎𝑐𝑙𝑎𝑞 (2) 

     Halter et al. (1996) explains that fluids entered complex fractures in the host rock 

leading to the first reaction, and later travelled distally through microfractures to participate 

in the second reaction. This multi-stage process created the complex vein-stockwork 

structure of the ore zones depicted in Figure 5.  
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  2.6 Lithium as a possible secondary commodity 

     The East Kemptville deposit is considered a primary Sn deposit.  However, there has 

recently been interest in Li as a secondary commodity (Allen, 2015) that occurs within the 

waste Meguma rock adjacent to mineralization and in the DLP-Meguma contact region. 

Interestingly, these Li enrichments do not correlate with Sn enrichment and so were formed 

by some other process, or Li was decoupled from Sn in terms of transport and precipitation 

mechanisms (Sedge, 2015). The source of Li may also have been be different than the Sn 

(Sedge, 2015).  

3.0 Analytical Methods 

     Five standard samples from the muscovite-lepidolite group were obtained from the 

Royal Ontario Museum. An additional muscovite standard from an unknown location was 

also used (Table 1). The samples were chosen based on their varying mineral classification 

and Li concentrations from sample to sample. To observe IR spectroscopic changes related 

Li content, two drill core samples of increasing Li content from the contact between the 

Davis Lake pluton and the Meguma metwackes were also analyzed.  
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Table 1: Table of samples used for infrared studies of micas containing Li. Samples were 

chosen based on their varying species from the tri and dioctahedral family of micas and 

therefore, the expectation that their Li contents are different from sample to sample. 

Label Mass (g) Mineral Class Locality

m10000 25 muscovite unknown

m6317 0.42 muscovite Auburn, Maine

m55285 0.11 polylithionite Narsaq, Greenland 

m31893 0.65 lepidolite Tordal, Norway

m29059 4.99 lepidolite Minas Gerais, Brazil

m23374 1.65 lepidolite Brown Derby Pegmatite,  Colorado
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            3.1 Infrared spectroscopy (IR) 

     Samples were analyzed on a Terraspec 4 Hi-Res mineral spectrometer equipped with a 

6.5 W, 10mm ASD Hi-bright contact probe. This was used to create spectrograms for each 

of the 6 standards as well as 2 selected core samples from the SD14129800 drill hole. All 

readings were taken at room temperature. Spectra in the VNIR (350-1000 cm-1), SWIR1 

(1000-1800 cm-1), and SWIR2 (1800-2500 cm-1) ranges were analyzed. Spectra were 

analyzed using ASD RS3 software that comes with the spectrometer. Specifications of the 

instrument are shown in Table 2.  
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Table 2: Summary of specifications of and analytical conditions for the Terraspec® 4 

infrared spectrometer. 

Specification Value

3nm at 700 nm

6nm at 1400 nm

6nm at 2100 nm

1.4nm from 350-1000nm

2nm from 1000-2500nm

Scan time 30s

Scans/second 10

Sampling interval

Spectral Resolution
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     Calibration was done in accordance with the ASD Terraspec® user manual for each 

sample reading. First, the instrument was set to do a 10-spectrum averaging and the 

instrument was optimized to the “Spectralon” white reference. This allows the software to 

create a reference line for which all spectral responses of samples can be compared. The 

spectrum averaging during referencing was set to 60 readings for white reference and dark 

current. To reduce noise (background energy from the instrument itself) in spectra, all 

actual unknown sample measurements were collected with 100 spectrums averaged.  

     To reduce contamination during calibration, the Spectralon standard was cleaned with 

compressed air before each calibration. To control contamination during sample 

measurements, samples were placed on clean paper before each reading and samples were 

stored in separate plastic bags between readings.  

     To produce clean, readable spectrographs, raw data was processed using viewspecpro 

software. To ensure continuity in relative reflectance between the different wave-ranges of 

the probes, a splice correction was performed for each spectrograph using the viewspecpro 

software. 

          3.1.2 Orientation  

     To determine the influence of mica grain orientation on spectra, readings were taken of 

sample m10000 at multiple orientations. First, spectra were collected from the flat lying 

tetrahedral orientation. Then, the sample was cut into strips and stacked together to produce 

enough surface area for the probe to measure. Finally, a second reading was taken of the 

stacked samples from the octahedral orientation (Figure 3). Spectra for both orientations 

were used to create a spectrograph for later comparison. 
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Figure 6 (previous page): Experimental procedure to determine the effect of orientation 

on infrared spectra.  1) readings are taken from the flat-lying tetrahedral orientation 2) 

sections are cut to increase surface area of the octahedral layers 3) readings are taken 

from the stacked muscovite sections in order to focus on the octahedral layers.   

 

          3.1.3 Treatment with lithium nitrate (LiNO3) 

     To investigate the findings of White et al. (1961), a similar protocol from the original 

paper was followed (Figure 7). Two pieces of sample m10000 were placed in separate 

alumina crucibles. Powdered LiNO3 was packed into one crucible, labeled “treated”, while 

the other, labeled “control”, was not filled with LiNO3. Both the treated and control 

crucibles were put into a muffle furnace (KSL-1700X; MTI Corporation, California) and 

heated to 300C (2 hour ramp) and held at that temperature for specific durations (72 and 

240 hours). After each run duration, the samples were quenched in air to ambient conditions 

within 20 minutes by removing the crucibles from the furnace. They were then rinsed with 

tap water for 15 minutes. Infrared spectroscopic measurements were then taken from the 

treated and control sample. 
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Figure 7: Model infrared spectra of A) untreated muscovite and B) the same muscovite 

after being bathed with molten LiNO3 at 300C for 480 hours. Modified from White et al. 

(1961). 
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     3.2 Scanning electron microscopy (SEM) 

     A TESCAN MIRA 3 LMU Variable Pressure Schottky Field Emission Scanning 

Electron Microscope (FESEM) at Saint Mary’s University was used for Al2O3 

determination to be used as an internal standard for LA-ICP-MS calibration. A tungsten 

filament was used to bombard the sample with electrons, creating a back scattered image 

(BSE). This required a small fragment of each mica which was coated in an ultrathin 

carbon-polish and mounted on a thin section before analysis. The SEM also uses energy 

dispersive spectrometry (EDS) to allow chemical analysis of each spot selected, with data 

output in element and oxide percent. The SEM has a best resolution of 1.2 nm at 30kV. 

This study used an accelerating voltage of 20kV for all measurements. It is equipped with 

an INCA X-max 80 mm2 silicon-drift detector (SDD) EDS system and INCA software was 

used for data collection.  

     3.3 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) 

    The 6 standard samples were analyzed for selected major and trace elements including 

Li by a Resonetics S-155-LR 193nm Excimer laser ablation system coupled to an Agilent 

7700x quadrupole ICP-MS at the University of New Brunswick in Fredericton, New 

Brunswick. Spots were analyzed on individual grains with a 33 micron laser. Data were 

quantified using the Iolite Software with the Al2O3 weight % from SEM-EDS analyses for 

internal standardization. 

4.0 Results 

     4.1 Infrared spectroscopy (IR) 

     To identify IR absorption features caused by Li in micas, 6 mica samples and 2  drill 

core samples of from the contact of the East Kemptville deposit were analyzed with a 

Terraspec® 4 infrared spectrometer. Figure 8 shows the position and relative intensity of 
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absorption features for each of the 6 standard samples. All absorption features for the 6 

mica samples are summarized in Table 3. Figure 9 shows the position and relative intensity 

of absorption features for the two drill core samples. There are 5 main observations: 

1)  An absorption band is observed from 1411-1418cm-1 in all standards. This feature 

is less pronounced in samples m1000, m55285 and to some extent, m295059. This 

feature occurs at a higher wave number (1436 cm-1) in M55285. 

2) In natural samples, an absorption band near 1411-1418 cm-1 occurs at higher wave 

number (1420 cm-1) in the sample with the highest Li content (r334063) 

3) An absorption band is observed from 2193 to 2202cm-1 in all standards with the 

exception of m55285. This feature occurs at higher wave-numbers (2210cm-1) in 

m55285. 

4) An absorption band from 563 to 584cm-1 was observed in all samples apart from 

M55285. 

5) An absorption band is observed from 404 to 405 cm-1 in m6317 and m295059. None 

of the other samples show absorption near this range.  
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Table 3: Summary of IR absorption features of 6 Li-micas. 

Sample Feature # Wavelength (cm
-1

) Intensity Description Description Mineral Mean Li (ppm)

1 1195 2676 SiO2  stretching Beran, 2002

2 1366 624 - -

3 1438 1375 OH bending Clark 1999

4 1720 1403 - -

5 1916 1915 - -

6 2094 1059 - -

7 2266 1857 - -

8 2304 1863 OH vibration Clark 1999

1 405 1478 SiO2 bending Beran, 2002

2 563 2647 SiO2 bending Beran, 2002

3 836 1340 SiO2  stretching Beran, 2002

4 1411 4769 OH bending Clark 1999

5 1477 1844 - -

6 1923 2128 - -

7 2106 1557 - -

8 2202 4127 Al-OH vibration Duke 1994

9 2350 1629 OH vibration Clark 1999

1 572 1034 SiO2 bending Beran, 2002

2 1415 1046 OH bending Clark 1999

3 2209 3442 Al-OH vibration Duke 1994

4 2289 1240 OH vibration Clark 1999

5 2336-2362 1623 OH vibration Clark 1999

1 564 1241 SiO2 bending Beran, 2002

2 1418 1265 OH bending Clark 1999

3 1926 1515 - -

4 2094 682 - -

5 2209 1251 Al-OH vibration Duke 1994

1 567 1240 SiO2 bending Beran, 2002

2 965 - SiO2  stretching Beran, 2002

3 1410 4586 OH bending Clark 1999

4 1721 1400 - -

5 1914 1284 - -

6 2196 3802 Al-OH vibration Duke 1994

7 2341-2440 1676 OH vibration Clark 1999

1 404 2205 SiO2 bending Beran, 2002

2 584 -

3 910 2181 SiO2  stretching Beran, 2002

4 963 2086 SiO2  stretching Beran, 2002

5 1193-1199 1680 SiO2  stretching Beran, 2002

6 1411 6571 OH bending Clark 1999

7 2193 4305 Al-OH vibration Duke 1994

8 2336 1810 OH vibration Clark 1999

muscovite 26837

m55285 polylithionite 32375

m6317 muscovite 1958

54muscovitem10000

lepidolite 28447m23374

m295059 lepidolite 28158

m31893
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Figure 8: Infrared spectra of 6 standard samples of increasing Li concentration: A) low 

Li-Muscovite B) Li-muscovite C) 26837 lepidolite D) 28158 ppm lepidolite E) 28447 

ppm lepidolite F) polylithionite (previous page). 
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 4.1.2 Orientation 

     To determine whether grain orientation effects the infrared spectra of sheet silicates, 

infrared spectra were collected from the tetrahedral orientation (where the probe was 

oriented perpendicular to cleavage), and octahedral orientation (where the probe was 

oriented parallel to cleavage), of the same sample of muscovite.  The position of absorption 

features for these two orientations of sample m10000 are depicted in Figure 10. There were 

3 main observations: 

1) A hull was observed in the spectrum from the octahedral orientation around 

350-850 cm-1. This is replaced a broad band in readings from the tetrahedral orientation. 

2) The absorption features observed at 970 and 1411 cm-1 in the spectrum from 

the tetrahedral orientation are deeper than in the spectrum from the octahedral orientation. 

3) Apart from the 970 and 1411 cm-1 features, absorption bands are consistent 

in position and intensity between the two orientations. 
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Figure 10: Orientation investigation of muscovite sample m10000 (explained in Figure 

6) showing the spectral response of A) the octahedral layers stacked together, and B) the 

flat-lying tetrahedral layer.Absorption at 941cm-1 is observed in the tetrahedral 

orientation. This feature is not observed in the octahedral layers. 
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          4.1.3 Treatment with molten lithium nitrate (LiNO3) bath 

     To determine the effect of added Li to muscovite on the infrared response, spectra were 

collected at intervals of 72 and 240 hours of treatment with molten LiNO3. For each time 

interval, a control sample of the same muscovite material was heated in a separate crucible 

at the same temperature in the absence of molten LiNO3. Figure 11 shows the evolution of 

the spectra for the control and treated sample after each interval of treatment. To determine 

instrumental precision, multiple readings were taken for the 240 hour sample. Figure 12 

shows the instrumental precision of readings on the sample after 240 hours of treatment. 

There were 5 main observations. 

1) For all heated samples, intensity increases sharply around 500 cm-1. This increase 

in intensity does not appear in the sample before heating. 

2) After 72 hours of treatment, strong absorption was observed around 1931 cm-1. 

However, this feature was no longer observed after 240 hours of treatment.  

3) After 72 hours the relative absorptions at 2204 and 1414 cm-1 are deeper than the 

same features in the other samples. 

4) Instrumental precision for the 240 hour sample is such that the position of all 

absorption features are reproducible from reading to reading. The intensity of absorption 

features however, vary slightly from reading to reading. 

5) Absorption near 915cm-1 was not observed in any of the m10000 samples before 

or after treatment.  

 



41 
 

 

Figure 11: Infrared spectra of muscovite sample M10000 from the Li salt treatment 

experiments. A) before treatment and at room temperature, B) 72 and C) 240 hours of 

treatment with LiNO3 at 300°C and finally, D) 240 hours at 300°C in the absence of 

molten LiNO3 (control). 
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4.2 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 

     To determine the trace element composition of the 6 standard samples, they were 

analyzed with LA-ICP-MS. The major and trace element composition of the 6 standard 

samples is shown in Table 4. The sample of polylithionite, m55285, shows the highest Li 

concentration, as well as the lowest Al concentration.  

4.3 Scanning electron microscopy  

     To quantify data from the LA-ICP-MS analysis, true Al2O3 values were determined 

using the scanning electron microscope.  

 

 

 

 

Figure 12: Duplicate of infrared readings of sample m10000 after 240 hours of treatment 

with molten LiNO3 at 300°C to illustrate instrumental precision. 
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Table 4: Summary of Li contents for 6 standard mica compositions determined by LA-

ICP-MS. All values are averages of 10 analyses per sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sample number mean Li ppm s.d. (1 sigma)

M23374 28447 1780

M55285 32375 372

M29059 28158 905

M6317 1958 305

M31893 26837 1267

M10000 54 3
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5.0 Discussion 

     The infrared absorption features of micas can be grouped into bands related to the OH 

stretching region (3550-3750 cm-1) and the lattice vibration (<3550 cm-1). In the lattice 

vibration region, features attributed to interlayer cations are found in the 50-400 cm-1 range.  

Cations in the octahedral layers influence absorption features in the 300-600 cm-1 range. 

Cations within the Si(Al)O4 tetrahedra influence absorption features in the 700-1200 cm-1 

range (Beran, 2002). Hydroxyl bending produces absorption near 1300cm-1 (Clark, 1999). 

Duke (1994), attributed absorption near 2200 to Al-OH bending, allowing for Al 

quantification in micas using IR spectroscopy. Most field spectrometers however, are 

limited to wave numbers in the lattice vibration region. This study used a spectrometer 

limited to the 350-2500 cm-1 range. Therefore, we limit our study to cations, mainly 

lithium, occupying octahedral positions, and those influencing the Si(Al)O4 tetrahedra.  

5.1 Li-mica standard spectra. 

     For the assignment of absorption bands to specific structural behaviors (e.g. stretching, 

vibration etc.), this study adheres to the recommendations of previous authors: “A reliable 

approach for discerning the origin of particular IR absorption bands is to combine 

theoretical considerations with empirical observations of phases having the same structure 

but differing in composition.” (Beran, 2002). 
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5.1.1 Al-OH vibration region 

 The Al-OH band near 2200 cm-1 has been used in the past for Al quantification in 

micas (Duke, 1994). Their study attributed the decrease in wave-number from 2217 to 2199 

cm-1 to Al replacement by Mg in muscovite. The Al-OH feature appears at a high frequency 

(2266cm-1) in polylithionite sample m55285, reflecting its low Al concentration. M55285 

also contains the highest concentration of Li. These results suggest that the high 

wavenumber of this Al-OH absorption band is related to the replacement of Al by Li.  

     5.1.2 SiO2 bending region and tetrahedral cations 

 Bending of the SiO2 bond in micas has been assigned to the 300-600 cm-1 region, 

and is known to be influenced by the cations occupying the octahedral positions of the mica 

structure (Beran, 2002).  Cations able to occupy this position include Fe, Mg, Li, Mn, Zn, 

Al, Cr and Ti (Bishop et al., 2008). All samples analyzed, apart from m55285 show 

absorption from 563-584 cm-1. These results suggest that the absorption bands seen in each 

sample are reflecting the presence of octahedral Al. Conversely, the lack of this feature in 

M55285 reflects its low Al concentration. The lack of absorption in in the SiO2 region is 

further evidence to support the replacement of Al by Li in m55285.  
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5.2 Treatment with LiNO3 

     With the exception of the 72 hour sample, absorption features in the spectrum of the 

muscovite sample before treatment with heat or molten LiNO3 are consistent in terms of 

position and similar in terms of intensity. The large absorption feature near 1931 cm-1 in 

the 72 hour sample is likely an exaggeration of the small drop in intensity also seen in this 

position in the other samples. Similarly, the relatively high absorption at 2204 and 1414 

cm-1 are also exaggerations of features found in the other samples. This exaggeration of 

intensity may be the result of improper calibration or more likely, sample thickness.  

     The reported (White et el., 1996) absorption feature near 915cm-1 was not observed in 

any of the m10000 samples before or after treatment. However, absorption near 970cm-1 

was observed in all samples. Absorption near the 915 cm-1 region has been assigned to O-

H… X3+ bending (Serratosa & Bradley, 1958) where X is any cation interacting with the 

O-H bond. Elimination of this feature after treatment with LiNO3 has been assigned to Li 

entering empty octahedral sites reducing the bending frequency of O-H… X3+ (White et 

al., 1961). The study was unable to reproduce these findings. It is possible that the 

oxtahedral positions in the sample were already occupied prior to treatment, and therefore 

the bending of O-H… X3+ was already reduced, producing no absorption in the first spectra 

of the untreated sample.  

     5.3: Limitations 

               5.3.1 Limitations: calibration 

     To explain the difference in intensity of certain features it is necessary to understand the 

calibration process of the instrument. During IR measurements, the spectral response of 
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the sample is normalized to the spectral response of a reference material used during 

calibration. It is assumed that the standard used during calibration produce close to 100% 

reflectance. In this study a Spectralon puck attained from ASD was used as a reference 

during calibration. To reduce the effect of contamination during calibration, the Spectralon 

reference material was cleaned with compressed air before each calibration. Unfortunately, 

the Spectralon standard was lightly stained throughout the study in various physical 

locations. If the standard is slightly contaminated, the standard will produce less than 100% 

reflection, causing the spectral response of the sample to appear higher than the true value. 

The staining of the Spectralon standard may account for the difference of intensity of 

features at the same wavelength from sample to sample. This may also account for 

differences in intensity of some absorption features at the same wavelength for readings of 

the same sample, such as those in the instrumental precision portion of this study.   

               5.3.2 Limitations: sample thickness 

Another explanation for these reflection/absorption intensity variations relates to 

sample thickness. Calculations of muscovite sample thickness have been attempted using 

the intensity of absorption features and the Beer–Lambert law. These studies rely on the 

fact that the intensity of an absorption feature for a given bond is directly proportional to 

the thickness of the sample (Busigny et al., 2003). At the 72 and 240 hour time increment, 

sheets were removed for infrared analysis and the remainder of the material was placed 

back into the furnace. The treated 72 hour sample, being only one muscovite sheet in 

thickness, was by far the thinnest sample. Therefore it is feasible that strong absorption 

band near 1931cm-1, and the relatively less strong absorption bands near 2204 and 1414cm-

1 are exaggerated due to sample thickness. 
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5.4 Orientation 

 It is generally understood that the orientation of samples during measurements does 

not effect the resultant spectra.  For example, in a study quantifying NH4 content in 

muscovite, infrared readings were taken at various angles perpendicular to the cleavage 

direction (Busigny et al., 2003). Absorption bands observed at different angles for the 

sample were consistent within instrumental error. Differences in intensity between the 

octahedral and tetrahedral orientation at 970 and 1411 cm-1 are likely due to the calibration 

error described in the previous section rather than orientation.  

6.0 Conclusion 

 6.1 Main findings 

     1) Orientation does not effect the position of diagnostic features in micas. The relative 

intensity of features are explained by differences in calibration and sample thickness. 

     2) White reference quality and sample thickness influence the relative absorption, but 

not the position of features.  

     3) Al-OH absorption bands will shift to higher wave number as Al in octahedral sites is 

replaced. This relationship was seen in drill core samples from the East Kemptville deposit. 

Because Li replaces Al in lithium-micas such as polylithionite, Al-OH absorption at higher 

wave numbers may be used to infer higher end member polylithionite content, and 

therefore higher Li content.  
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     4) No relationship was found between Li concentration and lack ofabsorption near 

915cm-1.  

 

     6.2 Recommendations 

1)  If the 915cm-1 feature does shrink in response to octahedral cations such as 

Li, it may be an important feature in Li-quantification using IR spectroscopy. For this 

reason, more work focusing on absorption in this region is recommended. Future 

experiments treating micas with Li salts should be conducted, ensuring that samples start 

with sufficient octahedral vacancies. At different and increasing duration of Li salt 

treatment, infrared and compositional data should be measured without removing sheets of 

mica from the book. This will ensure that changes in spectra are reflecting changes only in 

Li concentration. 

 2)  The Al-OH absorption feature should be considered as a possible 

exploration indicator of Li in Lithium micas in which Al has been replaced by Li.  
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