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ABSTRACT

A rotating, two-dimensional stellar model is evolved to match the approximate conditions of α Oph. Both
axisymmetric and nonaxisymmetric oscillation frequencies are computed for two-dimensional rotating models
which approximate the properties of α Oph. These computed frequencies are compared to the observed frequencies.
Oscillation calculations are made assuming the eigenfunction can be fitted with six Legendre polynomials, but
comparison calculations with eight Legendre polynomials show the frequencies agree to within about 0.26% on
average. The surface horizontal shape of the eigenfunctions for the two sets of assumed number of Legendre
polynomials agrees less well, but all calculations show significant departures from that of a single Legendre
polynomial. It is still possible to determine the large separation, although the small separation is more complicated
to estimate. With the addition of the nonaxisymmetric modes with |m| � 4, the frequency space becomes sufficiently
dense that it is difficult to comment on the adequacy of the fit of the computed to the observed frequencies. While the
nonaxisymmetric frequency mode splitting is no longer uniform, the frequency difference between the frequencies
for positive and negative values of the same m remains 2m times the rotation rate.

Key words: stars: individual (alpha Ophiuchus) – stars: rotation – stars: variables: delta Scuti

1. INTRODUCTION

Significant progress has been made over the last century in un-
derstanding the internal structure of stars and how stars evolve.
Much of this knowledge is directly based on spherical stars,
however, and there is a substantial gap in knowledge between
spherical stars and stars which have significant nonspherical
component. Included in the latter are stars which rotate ap-
preciably. The difficulties are theoretical, computational, and
observational, the last arising from relating observed quantities
to physically relevant properties of the stars themselves. Before
substantial progress can be made comparing models of rotating
stars to observations, something must be done to restrict the
otherwise large degrees of freedom, including the latitudinal
variation of the surface properties, the inclination between the
rotation axis and the observer, and the internal angular momen-
tum distribution. It has been recognized that asteroseismology
plus optical interferometry might be the combination that allows
this to be done (Cunha et al. 2007). An early attempt to determine
the shape of the rapidly rotating star Achenar (Domiciano de
Souza et al. 2003) was clouded by the possibility that a circum-
stellar envelope was contributing to the oblateness measured
by the interferometry as well as the stellar surface (Vinicius
et al. 2006; Kanaan et al. 2008; Carcofi et al. 2008; Kervella
et al. 2009), but it did lead to some attempts which successfully
reproduced the observed shape (Jackson et al. 2004).

Both the structure and asteroseismology of rapidly rotating
stars present challenges from a theoretical point of view.
The calculation of multi-dimensional information for rotating
models with reasonable physical input is possible (e.g., Clement
1978, 1979; Deupree 1995; Jackson et al. 2005, Espinosa Lara
2010; Deupree 2011), although the numerical simulation of the
redistribution of composition and angular momentum inside
a rotating model during evolution is still incomplete (e.g.,
Tassoul & Tassoul 1982, 1995; Espinosa Lara & Rieutord
2007; Rieutord & Espinosa Lara 2009). Even with adequate

models of rotating stars, challenges remain in the computation
of oscillation mode frequencies. From an interpretation point
of view, the fact that frequency splitting for nonaxisymmetric
modes by rotation is nonuniform and exceeds the small and even
the large separation at relatively low rotational velocities (e.g.,
Suárez et al. 2010; Deupree & Beslin 2010) adds complexity to
mode identification. Also, the development of codes to compute
oscillation frequencies which do not require a given mode to be
defined by a single Legendre polynomial (e.g., Clement 1998;
Lignières et al. 2006; Reese et al. 2006, 2008; Lovekin et al.
2009) and their application with realistic models (e.g., Lovekin
& Deupree 2008; Reese et al. 2009) is a necessary step. While
perhaps not as well developed as one might like, the theoretical
basis appears sufficiently satisfactory for an attempt when a
suitable candidate becomes available.

Recently, α Oph (Rasalhague) has been observed interfero-
metrically with the CHARA array (Zhao et al. 2009) and aster-
oseismologically with the MOST satellite (Monnier et al. 2010).
The star has a Veq sin(i) of about 240 km s−1, sufficiently large
for the rotation to have appreciable effects on at least the sur-
face conditions. The interferometry revealed that α Oph is seen
nearly equator on, with a ratio of the polar radius to the equato-
rial radius of about 0.836. The observed luminosity and effective
temperature (i.e., those quantities deduced assuming that the ob-
served flux is produced by a spherical star) range from 7880 to
8050 K for the effective temperature and from 25.1 to 25.6 L�
for the luminosity (Blackwell & Lynas-Gray 1998; Malagnini
& Morossi 1990; Monnier et al. 2010). These values should be
quite accurate given the facts that the star has a well-determined
parallax (see discussion in Gatewood 2005) and there is virtu-
ally no reddening. The combination of the deduced luminos-
ity, effective temperature, and the observed oblateness, surface
equatorial velocity, and inclination thus appreciably limits the
possible models for this star. In particular, at least the surface ro-
tation profile is less wide open than usual. These results place the
star relatively close to the blue edge of the instability strip (e.g.,
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Breger 2000; Xu et al. 2002). However, the perceived effective
temperature and luminosity depend on the inclination between
the observer and the rotation axis, and the actual luminosity and
effective temperature for a rapidly rotating model seen equator
on will both be higher than perceived, placing α Oph even closer
to the blue edge. One desirable consequence of this is that at-
mospheric convection is not significant and can be ignored. To
determine the precise relationship between the observed proper-
ties and the actual ones requires the spectral energy distributions
from models of the surface effective temperature structure. The
most rigorous approach would be to integrate the weighted in-
tensity of the spectral energy distribution in the direction of the
observer over all the visible surface using the latitudinal varia-
tion of the radius and local effective temperature to obtain the
observed flux (e.g., Slettebak et al. 1980; Linnell & Hubeny
1994, Frémat et al. 2005; Gillich et al. 2008) rather than specific
assumptions being made about the limb and gravity darken-
ing (e.g., Claret 2003; Reiners 2003; Townsend et al. 2004;
Monnier et al. 2010). Rotating models whose properties match
the observed spectral energy distribution, the surface equatorial
velocity, and the oblateness would appreciably confine at least
the surface stellar rotation properties. Until this is done one must
be content with rotating models which match the approximate
perceived effective temperature and luminosity along with the
observed oblateness and surface equatorial velocity.

Analysis of the MOST data for α Oph revealed 57 oscillation
frequencies which clearly must include both p and g modes. The
combination of the comparatively large number of oscillation
modes and the relatively detailed knowledge about the stellar
properties makes α Oph a good candidate to explore specific
problems that might be encountered when trying to match
the entire collection of data. To this end, I have performed
both two-dimensional stellar evolution simulations and linear,
adiabatic, nonradial oscillation calculations of α Oph. There
are several objectives in this study. A major one is to learn what
problems are associated with comparing observed and computed
frequencies for moderately rapidly rotating stars for which
the approximations made for small rotation are inadequate. A
second objective is to determine how the oscillation frequencies
are changed when the model parameters available, such as the
rotation rate, mass, and composition profile, are changed. In
particular, the nature of scaling between models with only small
differences in these parameters is examined. Supplemental to
this is the determination of what, if any, useful role can be
played by the often used asteroseismological parameters of the
large separation and the rotational splitting. In particular, mode
identification becomes a challenge for rotational velocities such
as that of α Oph, and these and other tools may be helpful in
this. Finally, some attempt is made to determine if the number of
Legendre polynomials included in the computation of the linear,
adiabatic eigenfrequencies is sufficient.

2. ROTATING STELLAR MODEL CALCULATIONS

The structure of rotating stellar models is computed with
the two-dimensional stellar evolution and hydrodynamics code
ROTORC (Deupree 1990, 1995). This code solves the conser-
vation laws of mass, three components of momentum (there
is an azimuthal momentum equation even though axial sym-
metry is imposed), energy, and hydrogen composition, as well
as Poisson’s equation. The independent variables are time, the
fractional surface equatorial radius, and the colatitude. The sur-
face equatorial radius is determined by requiring the integral
of the density over the volume to be the desired mass. This

Table 1
Properties of Models Considered

Model ID Veq Mass Luminosity Teff Req Rpole/Req Tpole/Teq

(km s−1) (M�) (L�) (K) (R�)

V221 221. 2.25 33.95 8776. 2.669 0.8687 1.143
V225 225. 2.25 34.31 8747. 2.707 0.8640 1.149
V230 230. 2.25 34.84 8708. 2.763 0.8567 1.153
V235 235. 2.25 35.45 8668. 2.825 0.8463 1.170
V240 240. 2.25 36.19 8624. 2.897 0.8380 1.181
V245 245. 2.25 37.05 8579. 2.977 0.8293 1.191
M1 241.5 2.18 33.31 8371. 2.965 0.8293 1.191
C1 227.5 2.25 33.28 8778. 2.648 0.8640 1.149
C2 251. 2.25 34.36 8639. 2.827 0.8293 1.191
D1 230. 2.25 35.96 8606. 2.891 0.8380 1.183

integral and the computation of the gravitational potential just
outside the stellar surface as a boundary condition at each lat-
itude in the two-dimensional computational mesh are included
as part of the linearization in the Henyey technique. In these
calculations equatorial symmetry is imposed.

To obtain the structure of a rotating model, one must spec-
ify the distribution of the composition and the distribution of
the angular momentum. I evolved a 2.25 M� from the ZAMS
through most of core hydrogen burning with local angular mo-
mentum conservation to determine the hydrogen composition
profile. The ZAMS surface equatorial velocity was 281 km s−1.
A model with Xc = 0.372, Mcc = 0.28 M�, L = 32.6 L�, Teff =
8905 K, and Veq = 221 km s−1 was moderately close to the ap-
propriate conditions and provides the base composition profile.
Of course, there is no need for this profile to be the profile asso-
ciated with α Oph, so the composition profile needs to be varied
to examine its effects on the oscillation frequencies. The rotation
profile of this model is neither conservative nor as smooth as one
might like for computing oscillation frequencies. The latter is
true because the material migrates through the non-Lagrangian
mesh, and the numerically unstable centered advective terms
are just barely stabilized to keep the numerical diffusion low
but numerically accurate. For these reasons, a rotation distribu-
tion was imposed on this model and the structure reconverged.
Uniform rotation with the same value of the surface equatorial
velocity was assumed for simplicity and as a plausible place to
start, although the structure was also computed for a modestly
differentially rotating model.

I have computed a number of uniformly rotating models
whose fundamental properties are listed in Table 1. All models
have 581 radial zones and 10 angular zones. The effective tem-
perature given in Table 1 is computed by dividing the luminosity
by the total surface area; the effective temperature and luminos-
ity one would observe depend on the observer’s inclination to
the rotation axis and the pole to equator temperature variation in
a reasonably well-determined way (e.g., Collins 1966; Collins
& Harrington 1966; Maeder & Peytremann 1970; Linnell &
Hubeny 1994; Reiners 2003; Townsend et al. 2004; Frémat
et al. 2005; Gillich et al. 2008). The “V” sequence of models
was obtained from the first one by imposing uniform rotation
with a higher surface equatorial velocity while keeping the total
mass fixed and the internal composition profile the same as a
function of radial zone number. Because these two-dimensional
calculations are non-Lagrangian, the composition profile does
change slightly as a function of interior mass from one model
to the next. Increasing the rotation rate leads to slightly higher
central temperatures and the composition being uniform a few
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hundredths of a pressure scale height beyond the formal bound-
ary of the convective core for the new model. These effects,
particularly the implicit introduction of convective core over-
shooting which increases the luminosity on the main sequence
(e.g., Maeder & Mermillod 1981; Stothers & Chin 1981; Doom
1985; Bertelli et al. 1985; Maeder & Meynet 1989), allow the
luminosity to increase as the rotation rate increases instead of
decreasing with increasing rotation as it does on the ZAMS.
Model M1 is obtained from model V245 by decreasing the to-
tal mass and then changing the surface equatorial velocity until
the surface shape of M1 is the same as that of V245. The sur-
face equatorial velocity required to do this is 241.5 km s−1.
I have found (Deupree 2011) that keeping the surface shape
the same when changing other parameters allows many ratios,
such as the effective temperature ratios at any two latitudes, to
remain the same. Model C1 was obtained from model V225
by moving the composition profile inward one radial zone and
then adjusting the surface equatorial velocity until the surface
shape for the two models is the same. Model C2 was similarly
produced from model V245 by a two radial zone shift inward.
The surface equatorial velocities required were 227.5 km s−1 for
model C1 and 251 km s−1 for model C2, respectively. Model D1
was computed from model V230 by imposing differential rota-
tion with an algorithm generalized from one used by Jackson
et al. (2004):

Ω = Ω0

1 + α�β
,

where Ω0, α, and β are constants, and � is the distance from
the polar axis in units of the surface equatorial radius. Note that
this equation has the rotation rate decreasing with increasing
distance from the rotation axis. The variable used in ROTORC is
the rotation velocity, which is obtained from the above equation
to be

Vφ (r, θ ) = Veq� (1 + α)

1 + α�β
.

Model D1 has α = 2 and β = 0.2. Interestingly, Table 1 shows
that both the equatorial radius and the polar radius for models
D1 and V240 are very close to the same. It should be noted
that there are differences in the radii for the two models at mid
latitudes so the shapes are not quite the same. Nevertheless, it
will be interesting to see how the oscillation frequencies of the
two models relate.

The “V” sequence was computed to obtain rotating mod-
els with the approximate α Oph v sin i and oblateness. Mod-
els V235, V240, and V245 all match these two parameters to
within quoted errors (Monnier et al. 2010). Models M1, C2, and
D1 test the effects of varying the mass and composition profile
and the effect of differential rotation, respectively, while still
matching these two properties. The equatorial effective temper-
atures, expected to be lower than the deduced effective tempera-
tures for a star seen equator on, range from 7949 K to 8111 K for
this set of models except for model M1, which has an effective
temperature of 7757 K.

3. AXISYMMETRIC MODE OSCILLATIONS

I have computed the axisymmetric mode oscillation frequen-
cies for all pulsation modes with frequencies between 15 and
50 cycles day−1 using the linear, adiabatic, nonradial oscillation
code of Clement (1998), as modified by Lovekin et al. (2009).
Higher frequencies were computed for some models as needed.
This code is suitable for rapidly rotating stars because it allows
each mode to be represented by the sum of several spherical

Table 2
Frequency Ratio between Models

A B ω(A)/ω(B) σ

V221 V225 1.0181 0.0019
V225 V230 1.0247 0.0028
V230 V235 1.0232 0.0030
V235 V240 1.0305 0.0035
V240 V245 1.0310 0.0030
V240(8) V245(8) 1.0336 0.0020
V245 M1 1.0091 0.00057
C1 V225 1.0339 0.00047
C2 V245 1.0796 0.00058
D1 V240 1.0019 0.0021

harmonics rather than just one. While this is a requirement for
rapidly rotating models, it does make mode identification more
complex because the usual latitudinal mode identifier, 
, is no
longer a valid quantum number. Increasing the number of spher-
ical harmonics, or “basis functions,” increases the accuracy of
the frequencies, but it also adds many more modes that must be
computed and makes the identification of specific modes harder.
Here I shall use six basis functions most often, but will use eight
basis functions to test how reliable the frequencies are.

Axisymmetric modes in most of this frequency range are
expected to be p modes, although some of the observed modes
could be either avoided crossing g modes or nonaxisymmetric g
modes shifted into at least the low-frequency part of this region
if −m, which remains a valid quantum number, is sufficiently
high. It should be pointed out that the usefulness of the radial
quantum number, n, is significantly degraded through unknown
amounts of avoided crossings and through there being different
numbers of nodes in the equatorial and polar directions in these
rapidly rotating models (e.g., Clement 1998).

The relationship between the frequencies computed for the
different models is examined in Table 2. This table may be
understood in the following way. The same pulsation mode is
identified for two models, listed as A and B in the table. The ratio
between the frequencies for the same mode in the two models
is computed. This is repeated for about 30 other modes. The
frequency ratio, averaged over all these modes, is presented as
ω(A)/ω(B) in the table. The standard deviation of this ratio from
the average is also given. Table 2 shows that the frequencies do
scale to some extent from one model to another, at least at the
higher frequencies where there is less ambiguity about mode
identification. The designation “V240(8)” and “V245(8)” refer
to computing the frequency ratio for these two models using
eight basis functions instead of six. Table 2 shows that there is
some difference in the ratio produced by including more basis
functions but at this point it does not overwhelm the effects we
are examining. The existence of scaling between two models,
even if they cannot differ in properties very much, is important
because it would allow one to change the properties of a model
which fairly closely matches observed frequencies to obtain a
model which would match the observed frequencies even better.

Two modes being the “same” perhaps require some definition.
The individual frequencies used for computing the frequency
ratio between two models were selected based both on the
similar nature of the surface horizontal shape of the radial
perturbation eigenfunction between the two frequencies and on
the frequencies being members of a set in which the surface
horizontal shape changes in the same way from one frequency
to the next in the two models. The differences between the
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Table 3
Large Separation for Rotating Models

Model Large Separation Standard Deviation
(cycles day−1) (cycles day−1)

V221 4.1216 0.1499
V225 4.1052 0.1612
V230 4.1102 0.1637
V235 3.9805 0.1599
V240 3.8873 0.1448
V240(8) 3.9264 0.1373
V245 3.8042 0.1020
V245(8) 3.8735 0.0617
M1 3.7690 0.1373
C1 4.1807 0.1990
C2 4.0901 0.1335
D1 3.8370 0.1650

individual models used for the ratios in Table 2 are sufficiently
small that this comparison is relatively easy, and it did not
seem to matter whether we used six or eight basis functions. It
becomes progressively more difficult as the differences between
the properties of the two models increase.

This table presents several interesting features. The frequen-
cies decrease by about 2%–3% for every 5 km s−1 increase in
the surface equatorial velocity at these velocities with a standard
deviation about 10% of the decrease. Note that the standard de-
viation is about five times smaller where the two models in a
comparison have the same surface shape, indicating that scal-
ing is not as exact when the shape of the surface changes. This
is possibly another reason for using the surface shape to indi-
cate the degree of rotation. For the comparison of models with
the same surface shape, it is reasonable to ask if they follow
the period—root-mean-density scaling law because the surface
radii at all latitudes change by the same scale factor. The fre-
quency ratio deduced from this scaling law when the mass is
changed is 1.0098, somewhat higher than the 1.0091 frequency
ratio found. The difference is outside the standard deviation,
but there is some possible variation produced by the fact that
the surface radius at each latitude is quantized by the radial
zoning of the model. Similarly, the period–root-mean-density
relation gives frequency ratios of 1.0336 and 1.0806 for the two
cases where the composition changes, to be compared with the
computed frequency ratios of 1.0339 and 1.0796, respectively.

It is interesting to compare the differentially rotating model
not with the model from which it was derived and with which it
shares the same surface equatorial velocity (V230), but with
the model which has nearly the same equatorial and polar
radius (V240). The frequencies for models D1 and V240 are
nearly the same, suggesting it would be exceedingly difficult to
distinguish between a slightly differentially rotating model and
a model uniformly rotating at a slightly higher surface equatorial
velocity. It may be that the nonaxisymmetric modes resolve the
issue, although those modes present challenges of their own.
This frequency ratio result is also consistent with the result of
Lovekin et al. (2009) that differential rotation laws of this form
essentially produce frequencies similar to those of a slightly
more rapid uniformly rotating model.

Another frequency comparison among the different models is
the large separation. The determination of the large separation
requires modes with higher values of n than are present in all but
two or three of the observed modes in α Oph. Nevertheless, the
large separation can still be useful in identifying the sequence
of modes that corresponds to some particular value of 
 in a
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Figure 1. Echelle diagram for the six 
 sequences for six basis function
frequency oscillation calculations of model V240. A given sequence, identified
by an alphabetic character, is defined by the surface horizontal variation of
the radial displacement. The approximately vertical nature of the curves means
that the large separation is reasonably well defined. Sequences C and D do
appear to cross in that the shape of the surface horizontal variation of the radial
displacement follows the individual modes as shown.

nonrotating model. This does not imply that one knows what
the value of 
 is, merely that one can identify the particular
members that have the property of having the same effective 
.
This identification becomes more difficult at lower frequencies
because the evolution of the shape of the eigenfunction appears
to change more quickly with n at lower n. However, knowing
the value of the large separation does allow the determination
of at least some member of the same sequence at lower n, and
it is thus useful to determine the value of the large separation.
Thus, I have identified modes over some frequency interval
whose horizontal surface shape seems to evolve in a sufficiently
slow and recognizable way to allow computation of the large
separation. These results are presented in Table 3, along with
the standard deviation over about 15 frequency pairs for each
model. Generally speaking, the large separation decreases as
the rotation rate (and the stellar volume) increases. Similarly,
shifting the composition profile inward decreases the model
volume and makes the large separation larger. Decreasing the
mass also decreases the volume, but the net effect is to decrease
the frequencies as well because the mass enters into the scaling
relation. Making the model rotate differentially decreases the
large separation from that of the uniformly rotating model from
which it was created (V230), but the large separation is very
close to that of the model which has nearly the same surface
equatorial and polar radii (V240). This agrees with the result
of Lovekin et al. (2009) that differential rotation does not have
an appreciable effect on the large separation except at extreme
differential rotation.

An echelle diagram of the higher frequency modes is shown
for model V240 in Figure 1. In this figure I have labeled
six curves with a designation “A” to “F,” representing the six
latitudinal mode configurations for the six basis functions. Note
that the modes between two sequences occasionally get close
together, at which point each of the eigenfunctions of the two
modes appears to have attributes of both of the sequences
as determined from the frequencies above and below those
which are close together. The surface horizontal eigenfunction
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Figure 2. Echelle diagram for the eight 
 sequences for eight basis function
frequency oscillation calculations of model V240. A given sequence is defined
by the surface horizontal variation of the radial displacement. The large
separation and the scale are the same as shown in Figure 1. The identification
of sequences A through F is based on the commonality of frequencies with
those same sequences in Figure 1. It should be noted that the surface horizontal
variation of the radial displacement of a given sequence in Figure 1 does not
much resemble that of the same sequence in this figure.

properties of sequences C and D do appear to cross where
the frequencies of the two sequences become very close, but
the properties of both sequences A and B appear to change
going through the frequencies where the two sequences come
close together, and neither looks quite like it did at lower
frequencies than that at which the frequencies became close.
Without prejudicing the issue of whether these represent true
crossings or avoided crossings, these will be referred to as
“interactions.”

The individual latitudinal mode configurations show enough
curvature that only modest estimates of the small separation
can be made. Even these are only general because we have no
indication how the different latitudinal configurations relate to
each other. For example, it is not obvious that there is any way
to determine which configurations would have the equivalent of
Δ
 = 2 (or even if such a distinction makes any sense) without
computing a full sequence of models and modes from slow
rotation to the current rotation rate. About the only concrete
statement that can be made is that, with certain exceptions, the
small separation is consistent with the average value of about
0.63 cycles day−1.

I have computed frequencies with eight basis functions for
models V240 and V245. An echelle diagram for these modes of
model V240 is presented in Figure 2. Of course there are two
more latitudinal mode configurations. The mode configurations
are labeled “A” through “H”, with the relationship between the
same alphabetic designation being determined by the matching
of the highest frequencies. The large separations differ by a little
more than 1%. There are several more mode interactions in the
larger basis function data. Neglecting the division into 
 series
and just comparing the closest frequencies, the mean difference
between the frequencies with six and eight basis functions is
about 0.11 cycles day−1. The largest difference between the
two frequency sets is about four times larger than the mean,
and it occurs where one frequency set shows an interaction
and the other does not. In fractional terms the mean difference
is about 0.26%, with the highest difference slightly less than
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Figure 3. Comparison of the surface horizontal variation of the radial displace-
ment for one mode of 
 sequence C for six basis functions (solid) and eight
basis functions (dashed). It is possible to see how the addition of higher-order
spherical harmonics affects the horizontal behavior of this mode whose radial
motion is largely at the pole.

0.9%. Comparing the frequencies of a specific 
 series for
the two sets of basis functions, the largest difference is about
1.7% and occurs at low frequency. Above 52 cycles day−1 all
differences are less than 0.6%. This suggests that the association
of frequencies with 
 series may not be entirely straightforward
at lower frequencies. Clearly, the calculation of the frequencies
for models rotating this rapidly has nothing like the accuracy of
the observations themselves.

While the frequencies computed with the two numbers
of basis functions are within a percent of each other, such
agreement cannot be expected between the eigenfunctions
themselves. After all, the fact that fairly marginal eigenfunctions
give fairly decent frequencies is what made the variational
technique (e.g., Chandrasekhar & Lebovitz 1968) useful. Here, I
will focus on the horizontal variation of the radial component of
the displacement at the model surface because it should be useful
in determining what modes can be observed if the inclination is
known, as it is here. All of these results are for model V240. A
comparison of this component for six and eight basis functions
as a function of the colatitude is presented in Figure 3. Recall
that the scaling is arbitrary in these linear calculations. These
modes are from the 
 = C set. From the eight basis function
plot it is clear that this component of the eigenfunction is
appreciably larger near the polar axis than elsewhere. Clearly,
the higher-order Legendre polynomials are required to produce
the approximately constant, low amplitude seen at mid latitudes
and, to a lesser extent, near the equator. The two frequencies
agree to within 0.005%.

It could be argued that this is not the best case because the
coefficient of P10 in the six basis function case is relatively
large compared to the other coefficients. However, this does not
appear to be a significant factor. In Figure 4, I compare the same
component of the eigenfunction for an 
 = A mode in which the
two largest coefficients in both the six and eight basis function
cases are for Legendre polynomials of order eight or less. It is
clear that this eigenfunction does not appear to be any closer
to being determined than the one in Figure 3. While this many
basis functions may be close to providing reasonably reliable
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Figure 4. Comparison of the surface horizontal variation of the radial displace-
ment for one mode of 
 sequence A for six basis functions (solid) and eight
basis functions (dash). Unlike the comparison in Figure 3, it is not clear in this
case what the horizontal variation with a large number of spherical harmonics
would be even though neither curve plotted is dominated by the highest spherical
harmonic allowed.

frequencies, more basis functions are required to obtain (at least
this part of) the eigenfunction.

With these estimates of the dependence of the frequency
variation with the number of basis functions providing some
estimate of their reliability, I wish to examine how the computed
modes compare to the observed mode frequencies. The object
at this stage is to see if the axisymmetric modes of any one
model provide a better match to the observed data than those of
the other models. I included models V225, V230, V235, V240,
and V245. The answer is effectively negative. Model V225 was
substantially less successful, but all the others matched about 15
of the 35 observed modes to within the 0.11 cycles day−1 mean

difference between the six and eight basis function calculations.
It is also true that the agreement was not significantly changed
for either models V240 or V245 if I used the eight basis function
calculations instead of the six basis function calculations. This
cannot be considered great agreement, but then there is no reason
to believe that all of the observed modes are axisymmetric. I shall
now turn to the calculation of nonaxisymmetric modes for one
of these models.

4. NONAXISYMMETRIC MODE OSCILLATIONS

Rapid rotation introduces complexities into nonaxisymmetric
modes as well. One complication of rapid rotation is that
the frequency spacing between adjacent members of a given
multiplet becomes nonuniform (e.g., Espinosa et al. 2004; Reese
et al. 2006). Furthermore, as the rotation increases the frequency
difference between adjacent m values will become larger than
the frequency difference first between adjacent 
 values and then
between adjacent n values (e.g., Suárez et al. 2010; Deupree &
Beslin 2010). One can expect both issues to significantly affect
the frequency spectrum of models rotating as rapidly as α Oph.

I have computed the oscillation frequencies for model V230
assuming six basis functions and latitudinal modes symmetric
about the equator for |m| � 4. The echelle diagram for this
collection together with the axisymmetric mode frequencies and
the observed frequencies are shown in Figure 5. The observed
modes have been artificially offset vertically to identify them.
Clearly, the large number of modes decreases the “open space”
in frequency so that most observed modes have modes with
very similar computed frequencies. Perhaps a more useful way
to examine this is Figure 6, which shows, as a function of the
observed frequency, the magnitude of the frequency difference
between the observed frequency and the closest computed
frequency, regardless of any property the computed frequency
may have. About 19 of the 35 observed modes in this frequency
window are matched within the observational error, and another
nine within twice the observational error. Four of the remaining
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Figure 5. Echelle diagram of the α Oph observed frequencies (circles) and the calculated frequencies for model V230 for |m| � 4. The computed frequency symbols
are given by squares (m = 0), diamonds (|m| = 1), inverted triangles (|m| = 2), triangles (|m| = 3), and right-facing triangles (|m| = 4). The observational data
have been artificially offset vertically to highlight them. The profusion of computed modes produces so many matches to the observed frequencies that distinguishing
between models may be difficult.
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Figure 6. Comparison between the minimum frequency difference between an
observed frequency and a computed frequency for the computed frequencies
of model V230 (|m| � 4). The observed frequency uncertainty and twice the
uncertainty quoted by Monnier et al. (2010) are shown by the two horizontal
dashed lines.

Table 4
Nonaxisymmetric Mode Frequency Separation Dm as a Function of m

m Dm σ

(cycles day−1) (cycles day−1)

1 1.604 0.043
2 1.596 0.028
3 1.612 0.011
4 1.614 0.013

seven are more than three times the observational error, but all
the computed modes can still have their frequencies shifted by
amounts large compared to this by adding more basis functions.
These results do not mean that this is a good model, but rather
that more information will be required to eliminate or constrain
many of these computed modes before meaningful comparisons
between observations and theory can be made.

I reexamined the issue of patterns in the nonaxisymmetric
mode frequency spectrum. It turns out that while the frequency
difference between adjacent members of a multiplet is not uni-
form, it is constant between specific members of the multiplet.
I find that the quantity

Dm ≡ ω−m − ωm

2m

is very nearly constant as a function of both n and m. Table 4
lists the value of Dm and its standard deviation, both converted
to cycles day−1, based on 20–30 values of Dm for each m. The
values are close to the rotation frequency for this model of
1.636 cycles day−1. This result prompted me to reexamine the
modes computed by Deupree & Beslin (2010), and they show
that Dm is approximately constant there as well.

The constancy of Dm does not mean that the members of the
multiplet are uniformly spaced. This can be seen in Table 5,
for which I present the average frequency, ωam, again converted
to cycles day−1, given by

ωam = ω−m + ωm

2

for a specific multiplet as a function of m. For m = 0, I present
the three computed modes which cover the range of ωam for

Table 5
Average Frequencies for a Given Multiplet

m ωam

(rad day−1)

0 42.295, 42.997, 43.427
1 42.483
2 43.119
3 42.870
4 42.191, 43.441

the various values of m. There are two possible mode pairs for
m = 4, and the average frequency is included for both. If all the
modes in the multiplet were uniformly spaced, ωam would be
the same for all m. The fact that ωam is not constant means that
the modes for different m are shifted with respect to each other,
even though Dm is effectively constant for all m. This does mean
that a frequency very close to the rotation rate should appear
in the Fourier transform of the frequency spectrum, although
sophisticated methods may be required to extract it from this
information.

It is worth examining whether there is any evidence of Dm
in the α Oph oscillation data. Taking the Fourier transform of
the oscillation data yields no useful information, as might be
expected from the results of Deupree & Beslin (2010). Looking
at the 35 frequencies above 16 cycles day−1 individually, I find
14 cases in which the frequency difference between two modes
is a multiple of the rotation frequency of 1.65 cycles day−1

(Monnier et al. 2010). However, five of these frequency differ-
ences are odd multiples of the rotation frequency, whereas the
definition of Dm requires the frequency difference to be an even
integer multiple of the rotation rate. All nine of the allowed
(i.e., even integer multiples) frequency differences yield a ro-
tation rate of 1.6472 with less than 1% variation. Six of these
correspond to m = 2, two to m = 1, and one to m = 4. I repeated
the exercise assuming a rotation frequency of 2.518 and 1.259
cycles day−1 for a comparison. The higher frequency case
yielded 10 cases in which the frequency interval was a multiple
of this assumed rotation rate, but 5 of these were odd integer
multiples. The equivalence of the number of odd and even mul-
tiple cases suggests that this looks like chance. However, the
lower frequency choice produced 15 cases with multiples of
the assumed frequency, 5 of which were odd multiples, again
with a total variation of one percent for the remaining 10. This
suggests that knowledge of the rotation rate may help identify
members of a multiplet, but that using the observed frequency
separations for rapidly rotating stars to determine the rotation
rate will require more sophisticated analysis.

5. DISCUSSION

I have computed the structure and oscillation frequencies
for several two-dimensional rotating stellar models which may
approximate the properties of α Oph. Stars which rotate this
rapidly require several spherical harmonics to calculate accurate
oscillation frequencies; my comparison between six and eight
spherical harmonics provides agreement in the frequencies to
0.25% on average and about 0.9% in the worst case, assuming
that the closest frequencies between the two sets match the same
mode. However, a comparison of the horizontal surface variation
of the radial displacement reveals that, in most cases, the six
spherical harmonic and eight spherical harmonic eigenfunctions
do not resemble each other very closely.
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A comparison between the 35 observed and computed fre-
quencies for all |m| � 4 for frequencies above 15 cycles day−1

looks impressive at face value—the largest percentage differ-
ence in frequency between an observed mode and a computed
mode is less than 0.3%. This becomes less impressive with the
realization that there are 589 computed modes in the frequency
interval, so that the frequency difference between a computed
and observed mode for three cases is larger than the mean spac-
ing between computed modes. For two observed frequencies,
the computed mode with the closest frequency has |m| = 4.
These are the only cases where |m| = 4 significantly improves
the frequency difference, so it does not appear that limiting con-
sideration to 
 � 3 and hence |m| � 3 notably improves the
situation.

These modes have been used without regard to their surface
properties, so that some modes could potentially be removed
from consideration because their horizontal properties at the
surface might make them unlikely to be seen via photometry.
However, as we have seen, these surface properties are not as
settled as the frequencies themselves, and it may take several
more spherical harmonics in the sum before they settle down.
Of course, each new spherical harmonic adds more frequencies
to the computed frequency total count.

This comparison between observed and computed frequen-
cies for a moderately rapidly rotating star indicates that there are
several issues that must be resolved before one can comfortably
conclude that any computed model of a rotating star is an ade-
quate and constraining fit to an individual star if it is sufficiently
rapidly rotating.

There are a few areas in which further research could refine
the range of acceptable conditions. Probably the most important
of these is computing the spectral energy distribution for these
rotating models and comparing it with that observed. Such a
comparison may place further constraints on the range of surface
temperature conditions allowed and perhaps on the shape of
the rotation profile as a function of latitude. Further work on
the surface horizontal shape of the surface displacement may
reduce the number of possible theoretical modes that could
produce observable amplitudes. The problem of comparing
observed and theoretical modes for rapidly rotating stars is
complex, but it may become tractable if the stellar conditions
can be suitably constrained.
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Suárez, J. C., Goupil, M. J., Reese, D. R., et al. 2010, ApJ, 721, 537
Tassoul, J. L., & Tassoul, M. 1982, ApJS, 49, 317
Tassoul, M., & Tassoul, J. L. 1995, ApJ, 440, 789
Townsend, R. H. D., Owocki, S. P., & Howarth, I. D. 2004, MNRAS, 350,

189
Vinicius, M. M. F., Zorec, J., Leister, N. V., & Leverhagen, R. S. 2006, A&A,

446, 643
Xu, Y., Li, Z.-P., Deng, L.-C., & Xiong, D.-R. 2002, Chin. J. Astron. Astrophys.,

2, 441
Zhao, M., Monnier, J. D., Pedretti, E., et al. 2009, ApJ, 701, 209

8

http://adsabs.harvard.edu/abs/1985A&A...150...33B
http://adsabs.harvard.edu/abs/1985A&A...150...33B
http://dx.doi.org/10.1051/aas:1998202
http://adsabs.harvard.edu/abs/1998A&AS..129..505B
http://adsabs.harvard.edu/abs/1998A&AS..129..505B
http://adsabs.harvard.edu/abs/2000ASPC..210....3B
http://dx.doi.org/10.1086/586895
http://adsabs.harvard.edu/abs/2008ApJ...676L..41C
http://adsabs.harvard.edu/abs/2008ApJ...676L..41C
http://dx.doi.org/10.1086/149544
http://adsabs.harvard.edu/abs/1968ApJ...152..267C
http://adsabs.harvard.edu/abs/1968ApJ...152..267C
http://dx.doi.org/10.1051/0004-6361:20030690
http://adsabs.harvard.edu/abs/2003A&A...406..623C
http://adsabs.harvard.edu/abs/2003A&A...406..623C
http://dx.doi.org/10.1086/156215
http://adsabs.harvard.edu/abs/1978ApJ...222..967C
http://adsabs.harvard.edu/abs/1978ApJ...222..967C
http://dx.doi.org/10.1086/157079
http://adsabs.harvard.edu/abs/1979ApJ...230..230C
http://adsabs.harvard.edu/abs/1979ApJ...230..230C
http://dx.doi.org/10.1086/313097
http://adsabs.harvard.edu/abs/1998ApJS..116...57C
http://adsabs.harvard.edu/abs/1998ApJS..116...57C
http://dx.doi.org/10.1086/148964
http://adsabs.harvard.edu/abs/1966ApJ...146..914C
http://adsabs.harvard.edu/abs/1966ApJ...146..914C
http://dx.doi.org/10.1086/148866
http://adsabs.harvard.edu/abs/1966ApJ...146..152C
http://adsabs.harvard.edu/abs/1966ApJ...146..152C
http://adsabs.harvard.edu/abs/2007A&ARv..14..217C
http://adsabs.harvard.edu/abs/2007A&ARv..14..217C
http://dx.doi.org/10.1086/168903
http://adsabs.harvard.edu/abs/1990ApJ...357..175D
http://adsabs.harvard.edu/abs/1990ApJ...357..175D
http://dx.doi.org/10.1086/175179
http://adsabs.harvard.edu/abs/1995ApJ...439..357D
http://adsabs.harvard.edu/abs/1995ApJ...439..357D
http://dx.doi.org/10.1088/0004-637X/735/2/69
http://adsabs.harvard.edu/abs/2011ApJ...735...69D
http://adsabs.harvard.edu/abs/2011ApJ...735...69D
http://dx.doi.org/10.1088/0004-637X/721/2/1900
http://adsabs.harvard.edu/abs/2010ApJ...721.1900D
http://adsabs.harvard.edu/abs/2010ApJ...721.1900D
http://dx.doi.org/10.1051/0004-6361:20030786
http://adsabs.harvard.edu/abs/2003A&A...407L..47D
http://adsabs.harvard.edu/abs/2003A&A...407L..47D
http://adsabs.harvard.edu/abs/1985A&A...142..143D
http://adsabs.harvard.edu/abs/1985A&A...142..143D
http://adsabs.harvard.edu/abs/2004ESASP.559..424E
http://dx.doi.org/10.1007/s10509-010-0305-2
http://adsabs.harvard.edu/abs/2010Ap&SS.328..291E
http://adsabs.harvard.edu/abs/2010Ap&SS.328..291E
http://dx.doi.org/10.1051/0004-6361:20077263
http://adsabs.harvard.edu/abs/2007A&A...470.1013E
http://adsabs.harvard.edu/abs/2007A&A...470.1013E
http://dx.doi.org/10.1051/0004-6361:20042229
http://adsabs.harvard.edu/abs/2005A&A...440..305F
http://adsabs.harvard.edu/abs/2005A&A...440..305F
http://dx.doi.org/10.1086/431723
http://adsabs.harvard.edu/abs/2005AJ....130..809G
http://adsabs.harvard.edu/abs/2005AJ....130..809G
http://dx.doi.org/10.1086/589323
http://adsabs.harvard.edu/abs/2008ApJ...683..441G
http://adsabs.harvard.edu/abs/2008ApJ...683..441G
http://dx.doi.org/10.1086/383197
http://adsabs.harvard.edu/abs/2004ApJ...606.1196J
http://adsabs.harvard.edu/abs/2004ApJ...606.1196J
http://dx.doi.org/10.1086/426587
http://adsabs.harvard.edu/abs/2005ApJS..156..245J
http://adsabs.harvard.edu/abs/2005ApJS..156..245J
http://dx.doi.org/10.1051/0004-6361:20078868
http://adsabs.harvard.edu/abs/2008A&A...486..785K
http://adsabs.harvard.edu/abs/2008A&A...486..785K
http://dx.doi.org/10.1051/0004-6361:200810980
http://adsabs.harvard.edu/abs/2009A&A...493L..53K
http://adsabs.harvard.edu/abs/2009A&A...493L..53K
http://dx.doi.org/10.1051/0004-6361:20065015
http://adsabs.harvard.edu/abs/2006A&A...455..607L
http://adsabs.harvard.edu/abs/2006A&A...455..607L
http://dx.doi.org/10.1086/174776
http://adsabs.harvard.edu/abs/1994ApJ...434..738L
http://adsabs.harvard.edu/abs/1994ApJ...434..738L
http://dx.doi.org/10.1086/587615
http://adsabs.harvard.edu/abs/2008ApJ...679.1499L
http://adsabs.harvard.edu/abs/2008ApJ...679.1499L
http://dx.doi.org/10.1088/0004-637X/693/1/677
http://adsabs.harvard.edu/abs/2009ApJ...693..677L
http://adsabs.harvard.edu/abs/2009ApJ...693..677L
http://adsabs.harvard.edu/abs/1981A&A....93..136M
http://adsabs.harvard.edu/abs/1981A&A....93..136M
http://adsabs.harvard.edu/abs/1989A&A...210..155M
http://adsabs.harvard.edu/abs/1989A&A...210..155M
http://adsabs.harvard.edu/abs/1970A&A.....7..120M
http://adsabs.harvard.edu/abs/1970A&A.....7..120M
http://adsabs.harvard.edu/abs/1990A&AS...85.1015M
http://adsabs.harvard.edu/abs/1990A&AS...85.1015M
http://dx.doi.org/10.1088/0004-637X/725/1/1192
http://adsabs.harvard.edu/abs/2010ApJ...725.1192M
http://adsabs.harvard.edu/abs/2010ApJ...725.1192M
http://dx.doi.org/10.1051/0004-6361:20065269
http://adsabs.harvard.edu/abs/2006A&A...455..621R
http://adsabs.harvard.edu/abs/2006A&A...455..621R
http://dx.doi.org/10.1051/0004-6361:20078075
http://adsabs.harvard.edu/abs/2008A&A...481..449R
http://adsabs.harvard.edu/abs/2008A&A...481..449R
http://dx.doi.org/10.1051/0004-6361/200911914
http://adsabs.harvard.edu/abs/2009A&A...506..183R
http://adsabs.harvard.edu/abs/2009A&A...506..183R
http://dx.doi.org/10.1051/0004-6361:20030966
http://adsabs.harvard.edu/abs/2003A&A...408..707R
http://adsabs.harvard.edu/abs/2003A&A...408..707R
http://adsabs.harvard.edu/abs/2009CoAst.158...99R
http://adsabs.harvard.edu/abs/2009CoAst.158...99R
http://dx.doi.org/10.1086/158453
http://adsabs.harvard.edu/abs/1980ApJ...242..171S
http://adsabs.harvard.edu/abs/1980ApJ...242..171S
http://dx.doi.org/10.1086/159115
http://adsabs.harvard.edu/abs/1981ApJ...247.1063S
http://adsabs.harvard.edu/abs/1981ApJ...247.1063S
http://dx.doi.org/10.1088/0004-637X/721/1/537
http://adsabs.harvard.edu/abs/2010ApJ...721..537S
http://adsabs.harvard.edu/abs/2010ApJ...721..537S
http://dx.doi.org/10.1086/190801
http://adsabs.harvard.edu/abs/1982ApJS...49..317T
http://adsabs.harvard.edu/abs/1982ApJS...49..317T
http://dx.doi.org/10.1086/175314
http://adsabs.harvard.edu/abs/1995ApJ...440..789T
http://adsabs.harvard.edu/abs/1995ApJ...440..789T
http://dx.doi.org/10.1111/j.1365-2966.2004.07627.x
http://adsabs.harvard.edu/abs/2004MNRAS.350..189T
http://adsabs.harvard.edu/abs/2004MNRAS.350..189T
http://dx.doi.org/10.1051/0004-6361:20053029
http://adsabs.harvard.edu/abs/2006A&A...446..643V
http://adsabs.harvard.edu/abs/2006A&A...446..643V
http://dx.doi.org/10.1088/1009-9271/2/5/441
http://adsabs.harvard.edu/abs/2002ChJAA...2..441X
http://adsabs.harvard.edu/abs/2002ChJAA...2..441X
http://dx.doi.org/10.1088/0004-637X/701/1/209
http://adsabs.harvard.edu/abs/2009ApJ...701..209Z
http://adsabs.harvard.edu/abs/2009ApJ...701..209Z

	1. INTRODUCTION
	2. ROTATING STELLAR MODEL CALCULATIONS
	3. AXISYMMETRIC MODE OSCILLATIONS
	4. NONAXISYMMETRIC MODE OSCILLATIONS
	5. DISCUSSION
	REFERENCES

