
 

wa · su · ek   (Gold Flower) 
USING GOLDENROD PLANTS AS A SCIENTIFIC AND ARTISTIC TOOL TO 

EXPLORE THE HISTORY AND IMPACTS OF LEGACY GOLD MINE TAILINGS IN 

NOVA SCOTIA 
  

  

  

  

By 

Brittany Hill 
  

  

A thesis submitted in fulfillment of the requirements of BEST 4599 

For the Degree of Bachelor of Environmental Studies (Honours) 

  

Bachelor of Environmental Studies Program 

Saint Mary’s University 

Halifax, Nova Scotia, Canada 

  

  

  

© Brittany Hill, 2019  

April 17th 2019 

  

Members of the Examining Committee: 

  

Dr. Linda Campbell (Supervisor) 

Department of Environmental Science 

Saint Mary’s University 

  

Dr. Emily Chapman 

Department of Environmental Science 

Saint Mary’s University 

  

Robin Metcalfe 

Curator 

Saint Mary’s University Art Gallery



i 
 

 

  

ABSTRACT 

 

Using Goldenrod Plants as a Scientific and Artistic Tool to Explore the History and 

Impacts of Legacy Gold Mine Tailings in Nova Scotia  

 

by  

 

Brittany Hill  

 

The purpose of this project is to use the concept of Etuaptmumk Two-Eyed Seeing to discuss the 

history and impacts legacy gold mine tailings have on the environment. This was done through a 

plant bioaccumulation study, the outputs of which was simultaneously woven into a bio-art work 

output. The outcome of the bioaccumulation plant study revealed that goldenrod plants 

consistently bioaccumulated mercury and arsenic in the treatments. The flower buds having the 

lowest concentrations.  By interweaving two seemingly separate fields of work, I am able to 

break down the barriers of Western thinking and show that incorporating different elements and 

views to a project is an important facilitator of conveying not only knowledge pertaining to an 

issue but also invoking a deeper understanding through visual outputs that can reach a larger 

audience and create a deeper connection to the topic. 
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CHAPTER 1 

Poqji Atugwei  
bock·gee·a·took·way  

(I am going to tell you a story) 

  

  

Gold mining in Nova Scotia has deep cultural and historical roots that spread all over the 

province, its remnants creating open toxic landscapes which should be home to flourishing flora 

and fauna. It is important to share the history of these activities in this province, as well as the 

negative side effects that came from them. By presenting this topic through bio-art, disciplinary 

lines are blurred through transdisciplinary research, as bio-art goes beyond the borders of the 

neat boxes that Western science has created for fields of study. 

To explain this concept of bio-art, I will introduce the idea of Etuaptmumk Two-Eyed 

Seeing, coined by Elders, Albert Marshall, and Murdena Marshall, and Cheryl Bartlett. Although 

this idea has been expressed elsewhere in the world and by different names, (Brodnig and 

Mayer‐Schönberger, 2000., Huntington, 2000., Colorado, 1998) this concept also defies the 

labelled boxes around knowledge systems of the Western world. While this concept is referred to 

by many different names and without one single definition, Marshall and colleagues explain it as 

“Etuaptmumk- Two-Eyed Seeing adamantly, respectfully, and passionately asks that we bring 

together our different ways of knowing to motivate people, Aboriginal and non-Aboriginal alike, 

to use all our understandings so we can leave the world a better place and not compromise the 

opportunities for our youth through our own inactions.” 

This project consists of two main components that are interconnected, with its final 

outcomes being a research paper and a bio-art work depicting the findings outlined within the 

research paper. 
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While this way of thinking has come naturally to Indigenous cultures around the world, 

the idea of a transdisciplinary approach to learning is becoming more integrated into post 

secondary education. By integrating art into learning, it opens new avenues of how we think 

about objective fields of study such as math and science. It allows for subjective thoughts with 

the integration of metaphorical communication, or visual representations outside of the usual 

scientific communication (Marshall, 2014). Barbara Clark introduces the concept of STEM: 

Sustainability Transdisciplinary Education Model. She believes that by exploring environmental 

issues through artistic lenses we can think more critically about our day to day sustainable 

choices. Art has the ability to close the gap between sustainability and scientific thinking (Clark, 

2011). 

Being a student within the Bachelor of Environmental Studies program, I have learned 

many components of the field of the environment, from core science classes to cultural 

geography. Throughout my academic career I have had a lot of interest in the Etuaptmumk Two-

Eyed Seeing concept, as it allows for the incorporation of different perspectives on a topic. I had 

never heard the term ‘bio-art’ before beginning this project, but once the concept was introduced 

to me, I knew it was something I wanted to pursue. Being surrounded by colleagues of a science 

background as well as new colleagues of the arts, this project fell together nicely and the 

incorporation of Etuaptmumk Two-Eyed Seeing came naturally. 

With any project, especially ones that relate to the natural environment, it is important to 

acknowledge the history of the landscape. Indigenous knowledge is a key component to 

understanding and appreciating the landscape. There have been many inputs and collaboration 

with people from many different backgrounds for this project, an important message to the future 

of study in the field of the environment, and beyond. 
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Overview 

It is important to note that while it seems as though there are two aspects to this project- a 

growth experiment and an art component- these two are not separate. Both elements grew and 

were shaped together. The plant growth experiment influenced the bio-art piece and the materials 

were interwoven. The bio-art shows the journey of this project, incorporating knowledge shared 

with me from key influencers, data directly taken from the plant growth experiment and 

knowledge I have learned about the land that has been directly influenced by legacy gold mines. 

While I will speak to these elements separately, it is important to note that these elements are all 

one within a single project. 

For the first component of this project I conducted an ecotoxicology and contaminant 

bioaccumulation growth experiment using giant goldenrod (Solidago gigantea) in different 

treatments (fig. 1); one control group with regular garden soil, one control with garden soil and a 

sodium selenate additive. One experimental group with tailings from Montague, and one with the 

addition of the sodium selenate additive to the Montague tailings. One experimental group with 

tailings from Muddy Pond and one with the addition of the sodium selenate additive to the 

Muddy Pond tailings. This component’s intent was to build on Dr. Linda Campbell and Dr. 

Emily Chapman’s previous experiments which assessed plants grown in tailings treated with a 

selenium additive. Dr. Campbell and Dr. Chapman’s study shows us that the interactions 

between selenium, mercury, and arsenic are very complicated (Chapman et al, 2016). It has been 

hypothesized that selenium can counteract the toxic effect of mercury. (Yoneda and Suzuki, 

1997). Selenium has also been seen to modify the distribution of mercury within plants (Culvin 

& Furness, 1991). However, some studies suggest that one does not influence the other. This 
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could be due to the interaction between specific chemical forms (Cuvin-Aralar and Furness, 

1990). At very low doses of Se, this relationship may be difficult to monitor. It is known that 

there is a high binding affinity between mercury and selenoenzymes, giving selenium protective 

effects against mercury toxicity at a 1:1 ratio (Qiu, et al., 2019). Perhaps at higher 

concentrations, Se can be effective at governing Hg toxicity (Ralston, et al., 2012). 

Figure 1- Experimental design of plant growth experiment 
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   Selenium has also been noted to reduce arsenic toxicity in plants. Lower 

bioaccumulation of As with Se additions to the soil has been found for lower plants, but not 

much work has been done on the influence selenium has on arsenic in higher plants. Malik et al., 

(2012) concluded that at certain concentrations, selenium has the ability to reduce the uptake of 

arsenic in mung bean plants, thus lessening the arsenic toxicity (Malik et al, 2012).  

The purpose of this plant growth experiment was to determine if hardy native plant 

species such as goldenrod can be successfully transplanted directly into tailings and continue to 

grow and flourish with and without low dose sodium selenate additions. Bioaccumulation of 

contaminants will also be assessed to determine contaminant concentrations in different parts of 

the plant.  If goldenrod plants can grow well in tailings without accumulating high 

concentrations in above ground portions of the plant, this type of plant has the potential be used 

to revegetate gold mine tailing sites across Nova Scotia for the purpose of mitigating 

environmental risks associated with exposure to contaminants.  

The second component of this project takes the findings from the plant growth 

experiment, as well as the natural pigments of the goldenrod plants to create an interactive visual 

representation of the data collected from the plant-growth experiment as well as some of the 

materials used in the process, in the form of bio-art. 

By displaying this information through bio-art work, it allows the audience a broader 

understanding of the environmental issues at hand. It communicates and educates the impacts 

that century-old gold mines have left on the province, the damage they are causing to our 

environment, ecosystem health and the food chain. Touching on these issues through the creation 

of a bio-art work, will open up the conversation not only to a wider range of people but also to 

invoke different emotions and responses, and provoke critical questioning. 



6 
 

 
 

 

  

CHAPTER 2 

Literature Review 

 

  

Gold Mining History in Nova Scotia 

Gold mining in Nova Scotia began in the early 1860’s, came in waves and the major 

rushes ended in the 1980’s. The first discovery of gold which lead to the first gold mine district 

was in Mooseland, located on the Eastern Shore of the province. Gold continued to be 

discovered along the Eastern Shore and new districts popped up in many places in the 1860’s. By 

the end of the major rushes in Nova Scotia, the number of districts reached 64 (fig. 2) across the 

province (Bates, 1987). Gold was located in quartz veins and harvested through the crushing of 

ore in a stamp mill. The grainy, naturally high in arsenic (Parsons, et al., 2012) material that 

came from crushing the ore was then amalgamated with mercury. Through this process, it is 

estimated that for every 1 oz. of gold recovered, 1 oz. of mercury was used in the process (Bates, 

1987). This mixture was then heated, the mercury evaporated and collected for re-use. (Little, et 

al., 2015). Gold was then separated from the mixture and melted down into bars. (Bates, 1987). 

This process was replaced by a more efficient extraction method called cyanidation in some 

districts as early as 1898, at the beginning of the second rush. Gold was dissolved in lime and 

cyanide. With the addition of zinc to the liquid, the gold settles and can be extracted. 
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Cyanidation is currently the preferred gold extraction method globally (Bates, 1987). 

 

Figure 2- Map of Historical Gold Districts in Nova Scotia Photo retrieved from Nova Scotia Gold website: 
http://novascotiagold.ca/theme/exploitation_de_lor-mining/carte_dor-gold_map-eng.php 

         In the beginning, the waste or ‘tailings’ from these operations were dumped nearby or 

transported into larger tailings ponds. This dumping causing considerable impacts on the 

environment. In the 1970’s, studies began regarding the effects of gold mine remnants on human 

health following the death of a man living near a closed mining site. His death was due to arsenic 

intoxication from leaching in his well water. (Hindmarsh et al., 1977).  A study conducted by 

Brooks et al., (1982) in the Montague gold mine district, now an extensive tailings pond, 

investigated arsenic in sediments, streams, aquatic organisms and plants. The results showed that 

the degree of arsenic contamination was extensive. 

http://novascotiagold.ca/theme/exploitation_de_lor-mining/carte_dor-gold_map-eng.php
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In 2004, studies were 

conducted in intertidal zones along the 

Eastern Shore (fig. 3). Samples were 

taken from water, sediment, and 

mollusc tissue. These samples were 

tested for their arsenic and mercury 

content which were then compared to 

the Canadian Council of Ministers of 

the Environment (CCME) 

environmental quality guidelines. 

Many of the water, sediment and mollusc samples reported Hg concentrations below the CCME 

guidelines while the arsenic content was found to be extremely elevated (Doe, 2017). 

It is clear that the tailings from century-old gold mines in Nova Scotia are causing 

significant negative impacts to the areas where they were deposited and beyond through transfer 

of contaminated water and air, bioaccumulation in primary producers and possibly throughout 

the food chain. Earlier this year a request for proposals was sent out by Nova Scotia Lands 

looking for a closure plan for two historic gold mine sites in Nova Scotia, the Montague gold 

mine and the Goldenville gold mine. Both sites are located in areas close to communities and see 

a lot of human activities, as both sites are used recreationally. Until this point, risk management 

strategies have been limited to signage (NS Lands, 2018). 

  

 

 

Figure 3- Tailings located in an intertidal zone in Nova Scotia. Photo 
retrieved from Atlantic Geology: 

https://journals.lib.unb.ca/index.php/ag/article/view/22930/28102 
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Remediation Strategies 

Due to its toxicity and potential risks, the remediation of contaminated soil and sediment 

high in As and Hg is not a new concept. Currently, the most common method for contaminated 

soil or sediment remediation is excavation or dredging of the contaminated material. This 

ensures that contaminants are removed from the site, but it comes at a high cost, is disruptive to 

existing ecosystems, and can sometimes lead to remobilization of contaminants when they are 

disturbed.  Other options for remediation includes solidification and stabilization (s/s). This 

method solidifies the waste material and then stabilizes it with a binding agent, inducing a 

chemical change of As and Hg, making them less likely to leach and have a toxic effect. There 

are a range of binding agents that can be used, such as cement, or a mixture of combustion 

products (fly ash) and stone (Wilk, 2018). This method can be done in-situ and has been seen to 

lessen the potential impact to plants and animals. While lessening potential impacts, the risk of 

leaching is still very high (Alam, et al., 2001). 

Geopolymerization, which is the activation of alkali chemicals within certain raw 

materials which can generate inorganic polymers (geopolymers), has been another technique put 

forward in the stabilization of potentially toxic metalloids due to its low cost and ability to be 

done in-situ. For the purpose of remediating gold mine tailings, this method does not seem to be 

a viable option as studies have shown that this method does not effectively immobilize arsenic 

(Kiventera, et al., 2018). 

Selenium has an affinity to mercury and arsenic and the ability to lessen the 

bioavailability of these contaminants to plants. We have seen this through a study conducted by 

Wang et al. (2014). In this study it was found that with Se additions, lower levels of mercury 

accumulated in brown rice, while enriching the crop with selenium, a micronutrient, necessary in 
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our diet (Wang et al., 2014). Selenium has also been found to limit the uptake of arsenic in 

plants. When Mung bean plants were grown in As rich soil with 5µM of Se l, selenium restricted 

the uptake of As while allowing the plant to absorb small amounts of selenium (Malik et al., 

2011). 

Because tailing ponds are composed of potentially toxic elements, have poor nutrient 

status and poor organic carbon content, it is not the ideal home for plants (Young, et al., 2012). 

This is why some tailing ponds to this day are still open, empty pits. At some sites, limited plant 

growth is present. This life usually comes from years of plant debris falling and slowly building 

up on top of the tailings (Young, et al., 2012). If selenium has the ability to limit the toxicity of 

Hg and As in the environment, could Se be used as a way to reduce the environmental risks of 

old gold mine tailings? This was a question proposed by Chapman et al (2016) at Saint Mary’s 

University. In this study, researchers grew a grass seed mix in tailings. Tailings were divided into 

six treatments with varying amounts of selenium for a total plant exposure time of 28 days. The 

outcome was a positive correlation between the added selenium at concentrations up to 3 mg/kg 

and biomass, root length and number of emerging plants. Less chlorosis was also observed in 

plants exposed to 3 mg Se/kg tailings, compared with plants growing in untreated tailings. 

  

Goldenrod in Contaminated Soils 

Although wild goldenrod and other plants tend to grow around the tailing sites rather than 

within them, it is possible for plants to grow within the toxicant rich tailings as we have seen 

with the Chapman et al (2016) study. A study conducted by Zhang et al, at Zhejiang University 

compared two plant species grown in Pb-contaminated soil; Solidago canadensis, a native plant 

to Nova Scotia (Keen, et al., 2004), but invasive to Asia, and Kummerowia striata, which is a 
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native plant Zhejiang, China. S. canadensis was able to grow virtually unaffected by higher 

concentrations of Pb. It was theorized that S. canadensis has the ability to be selective in what it 

absorbs. This raises the question if S. canadensis, or a closely related sub-species has the ability 

to flourish at sites that have been contaminated by other toxic elements, such as the unproductive 

tailings ponds left from century old gold mines in Nova Scotia. 

While goldenrod (Solidago spp.) is a native species to Nova Scotia, it is widely viewed as 

invasive because goldenrod species can grow and flourish very rapidly, suffocating surrounding 

plants (Keen et al., 2004). Solidago spp. is a very versatile species that has the ability to grow in 

both moist and dry climates, depending on the subspecies (Tilford, 1997). The whole plant is 

edible and has many different medicinal purposes. Goldenrod flowers used to be ground and 

used to cover wounds as a styptic on the battlefield in Europe.  Tea made from flowers has been 

used as a remedy for the symptoms associated with the common cold and used as a tonic for the 

kidneys (Tilford, 1997). On a related medical note, the common misconception about goldenrod 

flowers being associated with fall hay fever allergies is a myth. Most hay fever sufferers are 

actually allergic to pollen from ragweed (Ambrosia) genus which blooms around the same time 

and has much less showy flowers compared to goldenrod (Leitner et al 2012).   

  

Goldenrods Natural use in Art 

Goldenrod can also be used to create a beautiful golden dye that can change to various 

shades of yellow, brown and green depending on how the fabric is treated and what the plant dye 

is being transferred to. An issue with natural plant dye is that a large amount of the plant material 

must be used to dye fabric (Leitner et al., 2012). We do not see natural plant dyes used in modern 

dye houses due to the unpredictability of the colour outcome.  
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Within the flower of the goldenrod there are two different types of natural dyes, quercetin 

and kaempferol (Casselman, 1993). As goldenrod extracts are flavonoids the use of a mordant to 

“fix” the dyeing extracts are necessary to allow the dye to hold on to the cloth fibres. Mordants 

are usually metallic or mineral salts, and depending on the type of mordant you use you can 

adjust the shade of the outcome colour (Casselman, 1993). 

The goldenrod plant with its golden flowers and naturally golden dye acts as a metaphor 

for the land it has the potential to revegetate after the damage created by the extraction of gold. It 

is important to convey these environmental issues outside of text to reach a greater audience and 

evoke emotion around the subject. This can be accomplished through bio-art.   

  

Examples of Bio-art 

Bio-art is a transdisciplinary practice that breaks the barriers between the subjects of art 

and science (Yetisen et al., 2012). The materials used for bio-art are those of a living source, this 

can be done with plants and animals or on a microscopic scale to bacteria or DNA (Stracey, 

2009). We can trace the origins of bio-art back to the discovery of penicillin. Alexander Fleming 

was a bio-artist who enjoyed creating bacterial paintings on paper. Through this process he 

discovered that bacteria were being killed by fungi on the paper, leading to the unearthing of our 

much relied on antibiotic (Yetisen et al., 2012). Since then, bio-art has shaped and evolved into 

an array of bio-art forms. 

Dan Barber, a farmer and food chemist at Blue Hill Farms, took to modifying the eggs of 

chicken by feeding them hot peppers. Chickens have very few taste buds, allowing them to eat 

the peppers with ease. The chickens would then lay eggs with a vibrant red and spicy yolk: 

beautiful bio art creation with which chefs can create interesting dishes. Bio-art does not always 
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have to be in the form of a physical piece. In 1970, Hans Haacke bought a group of endangered 

turtles and released them into the wild as a form of a performance piece to bring awareness to the 

illegal pet trade happening globally (Yetisen et al., 2012). 

What makes bio-art such an interesting form of expression is that it brings forth a form of 

Etuaptmumk Two-Eyed Seeing that we do not typically use in the western world, although this 

concept is beginning to obtain the recognition it deserves, as we are starting to see this concept 

and similar concepts used in science and education. Bio-art allows another avenue of expression 

through scientific research. Having this extra output allows a deeper connection and 

understanding of the information it is attempting to convey.  
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CHAPTER 3 

Amaltaqawi’gas’g 

a·mal·ta·hka·wii·ga·sek 

(Mixed designs) 

  

 As much as this project required independent learning and working, much of it also 

required interaction with people and the environment. These aspects are all part of the journey 

that comes with working through a project. The interactions along this journey are a key 

component to understanding the importance of the work that is being contributed to society and 

to the betterment of the landscape. Conducting a project that takes into consideration many 

different perspectives and disciplines, allows for a greater understanding of the information, and 

allows the communication of that information in a currently unconventional way. Perhaps with 

this communication, soon it will not seem so unconventional. 

My guides for this journey came in the form of a professor of environmental science 

whose knowledge and passion towards the land is communicated in every interaction and her 

ecological health research group, who, hand picked, follow her moral compass. One of those 

members, a meticulous scientist, became my objective voice of reason.  An artist who doesn’t 

allow titles or boundaries to define her. A museum curator, whose connections to the land extend 

further than the artifacts he handles, and the spaces we have travelled to, in order to exchange 

knowledge.  
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Plant Growth Experiment 

Solidago canadensis was chosen for this project as it is native to Nova Scotia, is naturally 

occurring at both of the selected mining sites, and carries beautiful, golden flowers that bloom in 

the later months of the summer reflecting the traces of gold that could be present in the soil it 

grows in. Yet, it holds another purpose. This project assessed the potential of goldenrod plants 

for revegetation of tailings to manage risks of contaminants left in the century-old gold mine 

districts scattered across the province. 

Goldenrod has many species and a wide 

global distribution that has been 

illustrated in Fig. 4. S. canadensis can 

only be found on the eastern side of 

North America, and is abundant in all of 

the Maritime Provinces. 

With the addition of a selenium 

additive as a treatment to tailings that 

meet the CCME agricultural guidelines, we predict the selenium will lessen the uptake of As and 

Hg to the goldenrod plants. If this outcome is successful, goldenrod could be used as a 

revegetation technique of century-old gold mine tailing sites. By revegetating tailings with 

goldenrod, this also has the potential to lessen the spread of potentially toxic elements by wind 

and other environmental factors. Over time, the accumulation of plant material will superimpose 

the tailings.  

Solidago canadensis plants (100) were ordered from Peel’s Nursery in Mission, British 

Columbia. The plants came individually in 10 cm pots containing 3-5 stems per pot. Where 

Figure 4- Global distribution of goldenrod. Photo retrieved from University of 
Waterloo: https://uwaterloo.ca/astereae-lab/research/goldenrods 
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Solidago canadensis is a perennial plant that does not flower in its first year, it was important to 

obtain plants that had already been growing for over a year (Pors & Werner, 1989). These plants 

were expected to first flower between August and October, 2018. The plants arrived on May 

30th 2018 in very poor condition. They were transported by truck, packed sideways and layered 

into two boxes. Due to this treatment during transport, the plants were damaged, sun-deprived 

and with many soggy, rotting leaves. 

The plants were transplanted on June 1st into Miracle Grow soil in larger pots and 

damaged stems were tied to support poles. A few days’ post-transplant, many of the plants 

recovered and looked as though they might be able to be used in the experiment, or at the very 

least they would be suitable as extra flowers for dyeing with. With these plants arriving in such a 

poor state, it was deemed risky and impractical to transplant them into the tailings material as 

they would most likely not survive. 

Back-up options for obtaining plants that were discussed included finding a group of the 

same species of Solidago spp. in the wild and transplanting them into the treatments. One of the 

drawbacks of this method is that the success rate of transplanted wild plants versus plants grown 

in a nursery may be different. It could also be difficult to be certain that all of the plants collected 

are of the same species. Another option would be to find a different species of goldenrod at a 

local nursery that can be ordered in bulk. Unfortunately, it is likely that the species available at 

local nurseries would not be found in the natural environment in Nova Scotia, which would put 

flaws in the data. A third option would be to find a completely new species that is easily 

obtainable and present in the wild in Nova Scotia and around tailings areas. Possibilities include 

lupines or knapweed, which are abundant in Nova Scotia. However, neither is native to Nova 

Scotia, nor would be an environmentally friendly option. 
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We decided that the first option was the most attainable. Two locations were found to 

have an abundance of Solidago gigantea a close relative to Solidago canadensis. Plants (100) of 

roughly the same size and health were collected from the perimeter of Bisset Park, in Cole 

Harbour (fig. 5). 

Figure 5- Experimental plant collection site Bisset Park (Cole Harbour) 
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Gold mine tailings were collected from two areas in Nova Scotia, the first being 

Montague gold mines, located in Dartmouth and the second being Muddy Pond, located in 

Waverley (fig. 6). A total of approximately 10 gallons of tailing material from the top 30 cm of 

tailings was collected from each site by shovel. Once the material was collected it was 

transferred onto a tarp, on site, where the tailings were mixed and homogenized by hand. To 

minimize exposure to the toxic waste we chose a day for sampling when the wind was low. 

Respirators were worn as well as full coverage clothing and gloves. Once mixed, the tailings 

were transferred into tightly sealed buckets and transported to the lab. The control soil for the 

experiment was Miracle Gro® potting soil, which is a mix of sphagnum peat, aged bark fines, 

perlite, coconut coir and plant food. 

We had two treatments for each 5-gallon bucket of tailings; untreated with no additivities 

and treated with a low-dose selenium additive. Tailings and the control soil were tested for their 

water holding capacity as well as their moisture content (see appendix). Based on this 

Figure 6- Tailings collection sites: Montagues (Dartmouth) and Muddy Pond (Waverley) 
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information, the amount of sodium selenite to be added to each soil type to reach 1 mg Se/kg 

(dry weight) was calculated. This concentration of selenium was selected as it is also the CCME 

soil guideline value. 

Tailing material and control soil were each inserted into fabric growing pots. Each 

treatment group was separated into its own containment tray to ensure no cross contamination. 

Within each of these containment trays three fabric pots were placed, containing 3-5 juvenile 

goldenrod plants each with 3-5 stems per plant. Tailings in pots were covered using a geotextile 

fabric and rocks to prevent tailings blowing outside of the pots. A hole was cut in the fabric big 

enough for the plant stems to fit through. All excess water was collected regularly from the trays 

for disposal. Water was collected at the end of the test (4 weeks) from each tray for analysis of 

total and dissolved Hg to determine if the leaching of Hg changed with the Se additive. A portion 

of each water sample (for dissolved Hg analysis) was filtered through a 0.45um filter. This 

filtered sample, as well as the unfiltered samples were preserved with 1% v/v ultrapure nitric 

acid. As the plants grew within each treatment, they were monitored and data was collected 

regarding their growth rate and colour. Data was collected in the form of written observations, 

photos and videos (see appendix). 

The plants were removed from their respective pots on August 21st 2018.  Plants in 

control soil were removed first to make sure there was no cross contamination between plants or 

treatments. The plants were carefully cleaned with tap water and separated into roots, stems and 

buds and rinsed again with RO water. Plant samples were then dried at 50°C overnight and 

ground to a fine powder using a Retsch mixing mill. Tailing and soil samples were also obtained 

from each treatment, dried at the same temperature and ground by means of mortar and pestle 
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within a fume hood to limit exposure. The prepared samples were sent to Bureau Veritas Mineral 

Laboratory in Vancouver, BC for total metal(loid) analysis (ICP-MS).  

Total Hg concentrations for each plant sample was determined at Saint Mary’s University 

using DMA 80.3 in a HEPA-filtered cleanroom laboratory. The samples were run through the 

direct mercury analyzer by placing ~250g of material in quartz boats. Quality assurance was 

conducted through the use of blanks between samples to eliminate cross contamination as well as 

through the use of liquid mercury standards followed by in-house and certified reference 

materials. Between sample runs, the quartz boats were thoroughly cleaned through a 5% acid 

bath as well as a boat burn through the DMA. Plant samples were also prepared and sent to 

Analytical Services Unit (ASU) at Queens University for the analysis of As and Se 

concentrations (ICP-MS).  

  

Bio-Art Work 

Components 

The bio-art work component takes into consideration materials and outcomes from the 

plant growth experiment and creates an interactive output based on this information gathered. It 

also incorporates artifacts and history pertaining to Nova Scotia and the gold mining industry and 

the effects it has had on the environment, water systems and Indigenous peoples. I created all of 

the components of the piece, except for the incorporation of photos retrieved from the Nova 

Scotia Museum. 

The piece begins with 2 framed full-size giant goldenrods that were harvested from the 

Muddy Pond tailings site. These two plants were first cleaned, vacuum sealed and stored in a 
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cool room. They were checked regularly for punctures until they were ready to be preserved. The 

plants were released from their vacuum sealed bags and left to air for a few hours. The leaves 

and roots were removed from each plant. The stems were stapled to the frame and the buds were 

glued down using Loctite© general purpose quick set rubber instant adhesive. The structure was 

then sprayed with several coats of Varathane Clear Matte© Polyurethane Spray and left to set. 

While the structure was drying, the removed leaves were place in a water bath to regain 

some of their moisture and structural integrity. The roots were picked apart, discarding the main 

root and saving the lateral and root hair structures. These were left to dry. The leaves were taken 

out of their bath and patted dry. They were then carefully placed along the stem of the plant, 

mimicking their natural placement. The leaves were glued down and sprayed with Varathane© 

every 30 minutes for 3 hours to ensure preservation. 

This section connects at a 90-degree angle to a flat piece of plywood. This piece has an 

enlarged map of the historic Sipekne’katik Shubenacadie canal system stemming from 

Sipekne’katik Shubenacadie Grand Lake to Halifax Harbour, along with the surrounding lakes. 

The two tailing sites that were used in the plant-growth experiment are outlined on this map, 

including enlargements of the areas with materials embedded into them which allude to the 

activities carried out in each area. 

Most aspects of this piece is represented through the use of clay and paint, but where 

possible, goldenrod that I had grown was incorporated. It was used to represent trees within the 

enlarged tailing sites. Pieces of goldenrod buds along with red beads were used as well to show 

data points of As concentrations in the treated and untreated tailings pots. This sections also 

displayed the CCME As soil guidelines. In nature, many reds and yellows are used as a warning 

sign to other species that they can be harmful if bothered. These species do not need the safety of 
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camouflage to stay safe from prey, thus the reasoning for the red beads showing the elevated As 

concentrations. More neutral colours such as greens and browns show the data points that are 

below the CCME guidelines. 

 Cement and wood ash was mixed together to mimic the look of the tailings at the 

Montague site. The tailings from the Muddy Pond site were created by mixing cement, paint and 

Mod Podge® to create a paste. Beside each mounted plant three swinging infographics can be 

pulled out to show the data collected from the experiment plants displaying the uptake of Hg for 

each section of the plant.  

 

Dye Extraction 

According to Karen Leigh Casselman in her book Craft of the Dyer, the best method for 

dye extraction from plants is conducting the extraction as soon as the plants are harvested, just 

before the plants are in full bloom and/or after a morning dew. This way, the colours extracted 

will be more vibrant. When plants are frozen prior to extraction, the dye will be darker, and if the 

plants are dried prior to dye extraction, the colours will be paler. Because the first half of this 

project involves testing the content and uptake of the plants, it was necessary to freeze the plants 

prior to dye extraction. Since there will be backup plants for dyeing purposes, dyes extracted 

from these plants could be added to the dyes extracted from the experimental plants, for a truer 

dye colour. 

A large amount of material is needed for natural dyeing, as the actual dye stuff within a 

plant is a very low percentage (Leitner, P., et al. 2012). For every ounce of textile to be dyed, the 

same amount of dyestuff is required, even more-so if the plants are first dried. Where goldenrod 

is classified as adjective dye stuff (meaning it requires the use of a mordant to help the flavonoid 
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dyes attach to the material being dyed), iron or aluminum salt mordants would be a necessary 

component of the dyebath (Casselman, 1989). The specific flavonoid dyes that are found in the 

goldenrod flowers are quercetin (C.I. Natural Yellow 10) and kaempferol (C.I. Natural Yellow 

13,10) (Bechtold, et al, 2007). 

Upon harvesting the experimental plants, there was not enough budding to test the 

contents of the buds as well as use them for dyeing. Instead, the back-up plants that were 

continually harvested throughout the growing season were used in the dyeing process. These 

plants were vacuum sealed and frozen to ensure freshness, and thawed for 24 hours prior to 

dyeing. 

The material to be dyed was 100% organic wool yarn (fig. 7) It is vital that the material 

being dyed be very clean. Any excess oil or dirt on the material and the dye may not stick. The 

yarn was brought to a boil in a mixture of water and Palmolive dish soap and left to simmer for 

an hour. It was then strained and rinsed. The pot was refilled and the dyestuff was added as well 

as an alum mordant (Casselman, 1980). The ratio of plant material to water was 1:10. It is 

important that the dyebath have a neutral pH so that the colours are not affected (Casselman, 

1989). In order to ensure this, tap water was used and the pH levels were tested to ensure 

neutrality. The water in the dye bath was heated to 95°C; once to a boil the heat was reduced to a 

simmer and the plant was occasionally stirred for two hours. Upon extraction, the mixtures were 

filtered through a cloth to eradicate the extracted plant material. 
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Figure 7- Wool dyed with goldenrod buds that were grown on the green roof at Saint Mary's University 
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CHAPTER 4 

Na’mset 
Nah·um·set 

(person is finished) 

 

An interesting aspect of this paper is that due to its collaborative nature, the language 

used throughout, weaves between storytelling from the humanities perspective and scientific 

report writing. This is important to acknowledge, as it is actively showing the relationship 

between the different elemental outputs. The creators of the Etuaptmumk Two-Eyed Seeing 

concept, over the years developed a list of “Lessons Learned” which “facilitate the talking, and 

walking togetherness of indigenous knowledge and western science” (Bartlett, et al., 2012). 

These lessons are: 

1. Acknowledge that we need each other and must engage in a co-learning journey; 

2. Be guided by Etuaptmumk Two-Eyed Seeing; 

3. View “science” in an inclusive way; 

4. Do things (rather than “just talk”) in a creative, grow forward way; 

5. Become able to put our values and actions and knowledges in front of us, like an object, for 

examination and discussion; 

6. Use visuals; 

7. Weave back and forth between our worldviews; 

8. Develop an advisory council of willing, knowledgeable stakeholders, drawing upon 

individuals both from within the educational institution(s) and within Aboriginal communities 

The outputs of this project and the weaving of knowledge, in my opinion successfully facilitated 

many of these lessons learned.   
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Goldenrod Bioaccumulation 

In regards to the plant growth experiment, the outcome was not consistent with the 

predictions of reduced mercury and arsenic bioaccumulation for goldenrods planted in Se-treated 

soils. Due to the CCME guidelines for agricultural use, the acceptable limit for selenium in soil 

is 1 mg/kg. Where tailings material is a waste product from mining operations, it is not 

considered soil, but over the past few decades due to accumulation of organic material from 

surrounding plants, has become a growing matrix where terrestrial plants and invertebrates have 

established themselves, thus justifying the soil guidelines. Where this experiment was meant as a 

possible remediation strategy for legacy gold mine tailings, it was important to not exceed those 

guidelines as selenium can become toxic at higher concentrations. 

The plants from the Montague tailings material and control soil treated with the selenium 

additive had lower Hg concentrations in the buds and roots of the plants (fig. 8), but increase in 

concentrations the stems compared to those from untreated Montague tailing material and control 

soil treatments. The plants sampled within the Se-treated Muddy Pond tailing treatments all had 

slightly higher Hg concentrations in all plant parts compared to those plants from Muddy Pond 

tailings materials not treated with selenium.  
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Figure 8- Hg concentrations separated by treatment, site, and plant part in logarithmic scale 
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Many of the values indicating the uptake of As in different parts of the plant had levels 

below instrumental detection limits, as indicated by <0.5 values in Table 1. However, plants 

appear to accumulate lower As concentrations in the Se-treated tailings than in the Untreated 

tailings. All Se treated pots had a reduction in As uptake compared with their untreated 

counterparts. These roots also had a significant increase in the concentrations of Se compared 

with their untreated counterparts. 

Table 1- Relationship between Se and As concentrations in roots 
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A tailing/soil sample was taken from each pot per treatment, at the end of the experiment. 

It was analyzed and tested for the amount of Hg, As and Se (Table 2). Where 1 mg of Se per kg 

was added to each treatment, the only significant change that can be observed was the difference 

in the amount of selenium between the Montague values and the Montague plus selenium values. 

The selenium treated Montague tailings had double the amount of selenium in the tailings of the 

untreated Montague tailings. All other outcomes between the selenium treated and non-treated 

pots had no significant differences.  

Table 2- concentrations of Hg, As and Se within soil/ tailing 
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Please Do Touch the Art Work 

 Because the bio-art output incorporates living material from the plant growth experiment, 

it allows for it to have a lifespan (fig. 9). I encourage those who are viewing the piece to interact 

with it. Play with the clay pieces, swing the graphs around, touch the plants. Doing this also aids 

in the degradation of the piece. All things must come to an end. I wanted this bio-art piece to 

reflect that, further mimicking the birth and decline of the gold mining industry in Nova Scotia. 

While all components of the piece will not degrade naturally, some needing human influence to 

dispose or recycle, so too, will we have to interfere with aspects of gold mining that could not 

degrade themselves, such as the tailings left behind.    
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Figure 9- Completed bio-art piece. A) Framed goldenrod plants obtained from Muddy Pond tailing site. B) Graphs depicting the 
Hg concentrations beside the part of the plant the graph is representing. C) False roots made from dyed goldenrod. The red 
beads depict the As concentrations within the roots of the plants. D). The different landscape colours represent the different rock 
formations within this part of Nova Scotia. E) Two enlargements of the sampled tailing sites, Montague (below), Muddy Pond 
(above). The sculptures scattered throughout the landscape piece represent landmarks of those areas.  
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Future Work 

 

 

Plant Bioaccumulation Experiments  

  

A similar study could be conducted with adding additional Se treatment concentrations to 

the experimental design to allow for a more in depth analysis of how Se treatments to tailings 

can affect the uptake of metal(loids) to plants. Chapman et al. (2016), found that 3 mg Se/kg, 

while higher than the CCME guidelines, allowed for improvement in plant growth within the 

tailings. Having a larger design model, with more replicates, would allow for more data to be 

collected and analysed. In this study, the minimum amount of replicates (3) required for 

statistical purposes were used. 

By starting the plants from seeds rather than transplanting would allow the plants’ total 

exposure to be limited to the experimental environments. Starting from seeds would also allow a 

longer exposure time, as goldenrod plants do not flower until their second year of growth. With a 

longer exposure time and the ability to monitor the plants full growth cycle, more physical 

differences and outcomes could be monitored. 

Creating a similar experiment with goldenrod, and including other native plant species 

that may be found in areas near gold mine tailings could show different results. Different species 

interaction could show an interesting outcome as different species require different nutrients. 

This experiment, conducted with different amounts of selenium could be a great starting point 

for finding a reclamation strategy for legacy gold mine tailings, using native species.  
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Bio-Art Work  

The bio-art piece I created for this project was quite big, needed to be installed in parts, 

and could not be easily moved. I think it is a great stepping stone to something bigger. By 

creating something physical that people can interact with, allows the person experiencing the 

piece to create a deeper emotional connection to the message being conveyed. It may not be 

feasible to bring many people to the tailing sites as permission is needed and exposure can be 

dangerous. Instead, it may be interesting to create a walk-through installation that explores 

components outlined in my bio-art piece, at all full-room level.  

Onsite visits could be possible, if permission was granted and proper PPE was worn. I 

think this could be an effective tool. By bringing key stakeholders to the tailings sites to share 

knowledge and stories, exposing them to the open mostly lifeless sites, this could create a deeper 

connection to the environmental damage tailing ponds have created.  

There can never be too much collaboration, especially when it comes to the environment. 

We only have one home, and it is home to all of us. We must speak for those who cannot speak 

for themselves. The more collaboration and the more out reach you create, the greater the 

knowledge you incorporate and share with the community.   
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APPENDIX 

 

Height of Goldenrod during Bioaccumulation Experiment 

 

Figure A. 1: Goldenrod maximum plant height on day one of bioaccumulation experiment 

 

 

 

Figure A. 2: Goldenrod maximum plant height per pot at the end of the bioaccumulation experiment 
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Sodium Selenate Calculations 

 

Figure A. 3: Calculations for Se additive based upon the water holding capacity of each tailing/soil 

 

Wet-Dry / Dry *100 
Montague moisture % = 6.914-5.397=1.517/5.397=0.281*100=28.108% 
Muddy Pond moisture % = 13.434-10.901=2.533/10.901=0.232*100=23.236% 
Control moisture % = 2.629-0.782=1.847/0.782=2.362*100=236.189% 
 Figure A. 4: Moisture content for each group 

 

 
pH levels 

  pH Temperature 

Montague 6.39 21.3C 

Muddy Pond 6.87 21C 

Control 4.51 20C 

c w. added CaCO3 6.25   

*CaCO3 added to soil to make less acidic  

Figure A. 5: pH levels for each soil/tailings 
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Water Holding Capacity 
 
 
Water holding capacity 

                  Dry   weight soil           Wet filter paper           Dry filter paper + soil           water holding capacity 

             Control (1)            1.512g               7.746g            16.168g              457.01 

            Control (2)            1.901g              7.584g            20.749g             592.53 

            Control (3)            1.594g               7.788g            18.332g            561.48 

            averages            1.669g              7.703g            18.416g            537.01 

  

            Dry weight soil           Wet filter paper              Dry filter paper + 
soil 

Water holding capacity 

          Montague (1)            15.657g              8.163g           30.358g            41.76 

          Montague (2)            17.435g             7.835g           34.234g            51.41 

          Montague (3)            18.560g            8.081g            36.420g 52.69 

          averages            17.217g            8.026g            33.671g 48.62 

  

             Dry weight 
soil 

           Wet filter 
paper 

           Dry filter paper + soil            water holding capacity 

          Muddy pond 
1(1) 

            16.497g             7.808g           30.189g           183.00 

          Muddy Pond 
(2) 

            16.162g             8.052g           28.816g            178.29 

          Muddy Pond 
(3) 

           16.819g             7.967g           30.100g            178.96 

          averages             16.493g            7.942g           29.716g             180.08 

  
Figure A. 6: Water holding capacity for each group pot 
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Weight of Soil/Tailings 

 

Empty fabric pot: 0.06 kg 
Montague + pot= 3.48 – pot = 3.42 kg 
Muddy Pond + pot= 3.03 kg – pot = 2.97 kg 
Control + pot = 0.78 kg – pot = 0.72 kg 
Figure A. 7: Weight of soil/tailings in pot  
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Figure A. 8: Each bead represents a data point for the As concentrations within the roots. The left is plants living within the 
Montague tailings and the right is the plants living within the Muddy Pond tailings. The green and brown beads at the bottom 
represent the CCME guidelines for As soil concentrations. 

 


