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Molecular Aging of North Atlantic Right Whales 

(Eubalaena glacialis) 

 

By Amanda M. Lee 

Abstract 

 

 Knowing the age of individuals within a population provides a wealth of 

information that is important for understanding aspects of their biology, including 

many aspects that are important for conservation. Some of these include the 

relative rates of birth, survival, immigration, and emigration for each age class. 

This gives useful information for estimating trends over time and estimating 

extinction probabilities. Cetaceans (whales, dolphins, and porpoises) are 

challenging to study because they spend the vast majority of their lives below the 

surface of the water and their habitats are widespread across oceans. Current 

methods for estimating age in baleen whales are limited. Recent studies have 

found that methylation patterns associated with certain genes change 

consistently over time, and therefore provide a “molecular clock” that can be used 

to estimate the age of individuals. This study investigated whether the age-

related methylation patterns exist at CpG sites in the GRIA2, KLF14, and TET2 

genes in North Atlantic right whales (Eubalaena glacialis). Specifically, 

methylation patterns were examined for 40 known-age individuals, representing 

males and females from throughout the spectrum of known ages, to understand 

the relationship between CpG methylation and age at these age-related CpG 

sites. The results showed that the levels of methylation at these sites correspond 

with the age of the individuals, but that methylation patterns were also influenced 

by how long the tissue samples were in storage. Therefore, this approach can be 

used to molecularly estimate age in North Atlantic right whales, but the age of the 

samples must also be taken into account. Future studies should investigate how 

methylation patterns degrade and what storage solutions are best to prevent 

degradation.  

 

April 30, 2021 
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Introduction 

1.1 The Importance of Age Estimation 

Age Estimation within Conservation 

Understanding the age structure of a population provides information on the 

relative rates of birth, survival, immigration, and emigration for each age class. 

This provides useful information for estimating trends over time and estimating 

extinction probabilities, such as through population viability analyses (Morris & 

Doak, 2002). This is often performed using life tables, which help to visualize and 

understand a population's mortality rate and survival rate at various ages 

(Tanabe et al., 2020).  

      Often age structure and the trends it shows are used to predict future trends 

for many populations, including humans. The information gained through 

analyses of patterns in age structure is often a key component in estimating how 

the human population will change in the near future, which has vast implications 

for public policy (Cohen, 2003). One illustrative example of the utility of knowing 

the age-structure in wildlife populations involves the Steller sea lion (Eumetopias 

jubatus) in the North Pacific. From 1956 through to 1998 the numbers of Stellar 

sea lions declined by ~85% due to unknown factors (Sease & Loughlin, 1999). 

Through age structure analyses, it was discovered that the decline was due to 

two distinct factors at different periods: beginning in the 1980s the decline was 

due to a low rate of juvenile survival, whereas during the 1990s the decline was 

due to low fecundity (Holmes & York, 2003). Thus, despite the external patterns 

being the same (a decline) the underlying causes differed, with vastly different 
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implications for appropriate conservation/mitigation actions. Without having the 

age-related knowledge in this population, these differing factors causing their 

decline would have been missed. As such, having this information allowed for a 

better understanding of the factors driving the decline and provided crucial 

information for the appropriate placement of conservation efforts. 

Age Estimation in Whales 

Whales belong to a group called cetaceans; this group encompasses whales, 

dolphins, and porpoises. Cetaceans are divided into two suborders, odontocetes, 

referring to those with teeth, and mysticetes, referring to those with baleen (Beal 

et al., 2019; Lubetkin et al., 2008). Odontocetes include dolphins and larger 

toothed whales, such as killer whales (Orcinus orca) and sperm whales (Physeter 

macrocephalus). While mysticetes include whales that have baleen, such as 

humpback whales (Megaptera novaeangliae), fin whales (Balaenoptera 

physalus), and our study species North Atlantic right whales (Eubalaena 

glacialis). Baleen are keratin-based sheets that hang from the roof of their 

mouths and have inter-connecting bristles that act to strain food from the water. 

 Cetaceans are challenging to study because they spend the vast majority 

of their time below the surface and their habitats are widespread across oceans 

(Beal et al., 2019). Despite these challenges, much has been learned about 

many species of whales (Schick et al., 2013; Waldick et al., 2002). One of the 

most widely-used tools for studying cetaceans is photo-identification. This 

process takes advantage of the fact that, in most species, each individual has 

distinguishing physical features that differ from other individuals but are stable 
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throughout the life of each individual (Hamilton et al., 2007). Taking photographs 

of these features allows individuals to be identified throughout their life, an 

example is illustrated in Figure 1. This ability to track individuals throughout their 

lives provides a wealth of data for population monitoring and can be used for 

abundance estimation, ecological studies, and to better understand population 

demography (Hamilton et al., 2007).  

 Since individuals can be identified, the age of some individuals will also be 

known if they are identified in the year in which they are born. In this way, photo-

identification is currently the most widely-used method of age-estimation in 

cetaceans. However, the lifespan of many of the large whales is comparable to 

that of humans, or longer (Polanowski et al., 2014). This means that it will take 

decades before the age of most individuals within a population is known because 

most of the individuals alive now (or in the earlier decades of a study) will have 

been born before the study began, and therefore be of unknown age. Because of 

this problem, several other methods of age estimation have been developed and 

investigated. 

1.2 Other Methods for Age Estimation 

Growth Layers in Teeth 

The teeth in many mammals, including the toothed whales (odontocetes), grow at 

different rates throughout the year (Beal et al., 2019). These different growth 

rates leave rings in the dentin of odontocete teeth (also called “growth layer 

groups”). Growth-layer groups within the dentin of marine mammals have been a 

widely used aging method. This is performed by removing a tooth under 
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anesthesia or from a deceased individual (Beal et al., 2019). The tooth is then cut 

in half, and the quantification of dentin layers are used to estimate age, and the 

number of layers equals the number of years—much like counting the rings within 

a tree trunk (Beal et al., 2019). Although this method provides a means for age 

estimation, it is not possible for many toothed whale species, such as those that 

cannot be easily captured temporarily and/or that do not strand regularly (and 

therefore, there is not often access to dead individuals). Moreover, the extensive 

capturing and handling of an individual that is required is often not desirable for 

species that are of conservation concern (Beal et al., 2019). Additionally, this 

method is limited to the toothed whales, whereas many whales (mysticetes) do 

not have teeth. 

Growth Layers in Earplugs 

For baleen whales, one method of age estimation that has been developed is 

assessing ear-plug growth. Many large baleen whales are known to collect 

earwax within their ear canal (Trumble et al., 2013). This collection begins to 

accumulate in layers from birth; this accumulation occurs continuously, allowing 

for the age of these whales to be estimated from the growth layers. Specifically, 

this is performed by counting the growth layers that appear within the earplugs, 

similar to counting the growth rings in teeth. (Tanabe et al., 2020). Although this 

method appears to give reliable age estimates, it can only be performed on 

individuals that have died. As a result, it is not useful for monitoring the age 

structure of wild populations.   
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Telomere Length 

Telomeres are repetitive sequences of DNA that are found at either end of each 

chromosome (Shammas, 2011). They protect the genome from degradation and 

intrachromosomal fusion during replication. Chromosomal telomere length 

analyses have been used for several years as an aging technique. Over time, 

telomeres may lose repeat units with each cell division; and researchers have 

found that, in some cases, specific tissues lose a certain number of base pairs 

per year (Jiang et al., 2008). However, age is not the only factor that can cause 

telomeres to shorten; stress and environmental factors can also influence an 

individual's telomere length (Polanowski et al., 2014). Environmental factors and 

diet have strong influences on telomere length, thus causing wide variation in 

individuals of similar age. Additionally, telomere length tends to vary at birth, 

causing difficulty in understanding the changes to their length over time. As a 

result, telomere length does not seem to be a viable option for age estimation for 

many long-lived species.  

Current Methods have Limitations  

Estimating age can be quite challenging, especially in species that are large, 

mobile, and legally protected, such as cetaceans (Beal et al., 2019). Combined, 

the information above indicates that there is still a lack of viable methods for 

accurate age estimation for free-swimming cetaceans. However, methods for 

estimating age in some species have recently been developed based on 

epigenetic changes that occur over time: specifically changes associated with 

DNA methylation patterns, and these method looks promising for use in whales. 
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1.3 Age Estimation from Patterns in DNA Methylation 
 

DNA Methylation 

DNA methylation is an epigenetic change that occurs by the addition of a methyl 

group to the fifth carbon on a cytosine ring, resulting in a 5-methyl cytosine (5-

mc) (Polanowski et al., 2014). This methylation process occurs at CpG sites; 

where a guanine nucleotide follows a cytosine nucleotide in the linear DNA 

sequence. Interestingly, CpG sites occur much less frequently than expected 

throughout most of the genome, but are then concentrated in “CpG islands” in the 

promoter regions of genes (Jung & Pfeifer, 2015). The methylation patterns of 

CpG sites influences gene transcription, and is therefore a key mechanism by 

which transcription and gene expression can be controlled. Specifically, 

increased methylation is associated with reduced transcription factor binding and 

therefore a reduction in gene expression (Harris et al., 2020; Moore, Le, & Fan, 

2013). Indeed, the addition of a methyl group to a single CpG site within the 

promoter region can be enough to completely eliminate transcription factor 

binding for some genes (Harris et al., 2020).  However, it is thought that multiple 

CpG sites within promoter regions allows for more fine-scale control of gene 

expression than simple “on” and “off”.   

 Gene expression varies depending on a gene's function and the tissue that 

is being examined. For example, some gene products are essential for life, and 

therefore the expression of these genes (and their methylation patterns) remain 

constant throughout life and within tissue type (Horvath, 2013). On the other 

hand, the expression of some genes is known to change in response to stress or 
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other external factors (Bell et al., 2019). Therefore, there are changes in 

methylation patterns of these genes in response to stress. Some genes, 

however, are known to change in expression at a consistent rate throughout our 

lives. It is the methylation patterns of these genes that could be useful for 

molecular age estimation. Changes in methylation at specific CpG sites have 

been linked to age in mice and humans (Polanowski et al., 2014), where the 

degree of methylation is linearly correlated with chronological age (Huang et al., 

2015).  

DNA Methylation in Humans and Other Species 

One area where methylation-based molecular ageing is being aggressively 

developed is in human forensics. Currently, DNA from a crime scene is primarily 

used to obtain a genotype at multiple microsatellite loci that can be used for 

individual identification (Allen, 2010). However, it would be incredibly 

advantageous if that same DNA could also be used to identify the age of the 

perpetrator – greatly narrowing the range of suspects. Many studies have now 

demonstrated that DNA methylation patterns can provide fairly accurate and 

precise estimates of human age based on a range of bodily fluids (blood, saliva, 

semen, and vaginal secretions) (Lee et al., 2012; Park et al., 2014). 

        DNA methylation patterns have also been developed for a range of other 

species, such as mice and bats (Harris et al., 2020; Horvath, 2013; Wright et al., 

2018). These studies found that there was a consistent change in DNA 

methylation at a subset of genes as age progressed. Throughout many mouse 

studies, the focus was on DNA methylation within specific tissues, such as heart 
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or liver tissues (Harris et al., 2020; Horvath, 2013). Through this they evaluated 

methylation at specific genes within these varying tissues.  While within bats, the 

focus involved skin biopsy sampling, taking a small section of the wing to 

evaluate the methylation patterns at specific genes (Wright et al., 2018). This 

approach is what is currently performed in many methylation studies, particular of 

living individuals because skin represents the only tissue retrievable from many 

species of free-living organisms.    

 DNA methylation has also recently been used to estimate age in two 

whale species: humpback whales (Megaptera novaeangliae) and Antarctic minke 

whales (Balaenoptera bonaerensis). These studies examined loci that had been 

previously shown to have a linear correlation to age in humans and mice 

(Polanowski et al., 2014; Tanabe et al., 2020). They found that methylation within 

age-related CpG sites had a linear relationship with age within their study 

species, showing that this technique for age estimation is a viable option for 

whale species.  

1.4 North Atlantic Right Whales 

Aging in Whale Populations 

From the eleventh century through to the early twentieth century, North Atlantic 

right whales (Eubalaena glacialis) were hunted and killed at an extremely high 

rate (Kraus and Rolland, 2007). They were named right whales because they 

were the “right” whale to kill. Their thick layer of blubber, which caused them to 

float when dead – which made them easier to transport than other whales and 

resulted in high volumes of oil - was the primary reason for which they were 
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initially hunted (Kraus and Rolland, 2007). This, along with being slow swimmers 

and living close to coastal areas, made North Atlantic right whales prime targets 

for whalers. This high degree of exploitation caused populations to decline 

rapidly. North Atlantic right whales were given international protection by the 

League of Nations in 1935, which lead to right whale hunting being banned 

throughout the world by the International Whaling Commission (Kraus and 

Rolland, 2007). However, despite being a protected species since 1935, their 

population has not been recovering.  

 North Atlantic right whales have continued to have a high mortality rate 

and low reproductive rate since the end of their exploitation, leading to this lack of 

recovery (Kraus et al. 2007). In recent years, instead of intentionally killing them, 

their high mortality rate stems from their interactions with industrial activities of 

humans within the ocean, mainly through entanglement in fishing gear and ship 

strikes (Knowlton et al. 2012; Kraus et al. 2005). Their reproductive rate is also 

three-times lower than their known potential (Frasier et al. 2007). This 

reproductive problem manifests itself in two ways. First, there is extremely large 

variation in the number of calves produced each year, much more so than is 

expected due to stochasticity. Second, this wide variation exists on top of an 

overall mean rate that is three-times lower than their known potential. The large 

year-to-year variation in calf production has been linked, at least in part, to 

environmental conditions and food availability (Kraus et al. 2007). The factors 

limiting the overall reduced mean rate are not known, but the main hypothesis is 

inbreeding, due to that fact that reproductive rates are very stable within 
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individual females, whereas they differ vastly across females, suggesting that 

there is an intrinsic component influencing each female’s reproductive capacity 

(Kraus et al. 2007).   

 Understanding the population dynamics of right whales is becoming 

increasingly important as the number of whales within the wild continues to 

diminish (Fujiwara & Caswell, 2001). Conservation efforts for the protection of 

right whales depend on understanding the age distribution within these 

populations. Aging in whale populations became extremely important when 

whales were first subject to commercial fisheries to monitor their population 

status (Polanowski et al., 2014). The importance of understanding the age 

distribution has not changed; it continues to be essential for monitoring the 

recovery of whale populations from past disturbances. 

           Currently, photo-identification is the most widely used and best technique 

for the age estimation of North Atlantic right whales. However, the use of this 

technique causes limitations in understanding the age distributions of these 

populations. North Atlantic right whales have been a focus of research for 40 

years. This is quite a long time for a continuous wildlife study; however, they are 

a long-lived species, and in comparison to their assumed lifespan, this is a short 

time frame. The use of photo-identification requires a calf to be seen within its 

first year and re-identified throughout its life. Since the most prominent way to 

age right whales is through photo-identification, the lifespan of North Atlantic right 

whales is largely unknown.  
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1.5 Objectives 
 

This study aims to develop a molecular method for age estimation in North 

Atlantic right whales by determining the relationship between the percentage of 

methylation in the promotor region of age-related genes and known age of North 

Atlantic right whales. To estimate this relationship, I examined four loci previously 

identified to have methylation patterns that correlated well with age across other 

species. Methylation patterns at these loci were quantified across 40 known-age 

whales, where the age of these individuals ranged from <1 to 33 years old.  

 I hypothesize that methylation patterns on age-related CpG sites within the 

promoter regions of these genes will change consistently with age. Recent 

studies have shown that age-related CpG methylation correlated significantly with 

age in humpback and minke whales (Jarman et al., 2015; Polanowski et al., 

2014). Therefore, this study aims to identify if such a relationship is also present 

in North Atlantic right whales. This study is part of a larger project that aims to 

establish a new method of aging via DNA methylation across all cetaceans.  

Methods 

2.1 Sample Collection 

Estimating the relationship between age and percent of DNA methylation requires 

the analyses of whales of known age. The sample-set consisted of DNA from 40 

known-age North Atlantic right whales. These samples were collected over more 

than a thirty-year period by various research groups associated with the North 

Atlantic Right Whale Consortium and the New England Aquarium. Samples were 

chosen in an attempt to represent an even distribution of age across the known-
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age individuals. The ranged from less than one-year-old to thirty-three years old. 

There were 18 samples from males and 22 samples from females. The 

characteristics of the samples used are shown in Table 1. DNA from these 

samples had previously been extracted, using standard phenol:chloroform 

procedures (Sambrook & Russell, 2001) as part of routine genetic analyses that 

our laboratory conducts on this species. 

2.2 Selection of Age-Responsive Loci 

Other members of the laboratory had previously conducted a literature review to 

identify candidate loci, as part of a study to develop an epigenetic method to 

estimate age in another whale species: bottlenose whales (Hyperoodon 

ampullatus). These analyses identified four candidate loci for pursuing in whales: 

GRIA2, ITGA2B, KLF14, and TET2 (Table 2).  

2.3 Sodium Bisulfite Conversion 

To age individuals based on the methylation patterns within their DNA, these 

patterns must be evaluated, and the percentage of DNA methylation must be 

quantified. To do this a sodium bisulfite conversion is performed. This technique 

converts all unmethylated cytosines into uracil which then become thymine after 

amplification. This allows methylation patterns to be converted into differences in 

DNA sequences, which can be detected using sequencing procedures. Thus, 

allowing the methylated cytosines to be quantified and for a percentage of 

methylation to be determined. This percentage of DNA methylation in known-age 

individuals is then used to estimate age.  
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 Prior to PCR amplification, sodium bisulfite conversions were conducted 

on the 40 known-age North Atlantic right whale samples. For this process, 

Qiagen Epitect ® 96 Bisulfite Kits were used (Qiagen, 2020). It is important to 

note that sodium bisulfite conversions only work with single-stranded DNA. This 

reaction does not occur for methylated cytosine or any other bases (A, G, or T). 

     The sodium bisulfite reactions were prepared in 200 µl PCR tubes containing; 

up to 20 µl of DNA solution, RNase-Free water to bring the DNA volume up to 20 

µl, 85 µl of Bisulfite mix which contains high bisulfite salt concentrations to 

perform the conversion, and 35 µl of DNA Protect Buffer which helps to prevent 

fragmentation of the DNA during the conversion. This gave an overall volume of 

140 µl. These tubes were then placed in the VeritiPro Thermal Cycler and run 

through a series of denaturing and incubation steps. First the samples were 

denatured for 5 minutes at 95℃, then incubated for 25 minutes at 60℃, the 

denaturing step was repeated, incubation was then repeated for 85 minutes, the 

samples were once again denatured, and lastly, they were incubated for 175 

minutes. These thermal cycling conditions provide an optimized series of 

incubation steps that are necessary for DNA denaturing and sulfonation. Sodium 

bisulfite conversions must be performed on single stranded DNA; thus, the 

multiple denaturing steps ensure the DNA remains singled stranded throughout 

the process. These conditions are designed to enable high cytosine conversion 

rates (Qiagen, 2020). When single-stranded DNA is exposed to sodium bisulfite 

(NaHSO3) at high concentrations, the bisulfite will attack the double bond 

between the 5’ and 6’ carbon atoms, adding a sulfite molecule to the 6’ carbon 
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atom (Hayatsu et al., 1970; Shapiro et al., 1973), producing cytosine sulphonate 

(Figure 2A).  

           After 5 hours in the thermal cycler, the samples were transferred to new 

1.5 ml tubes. 560 µl of Buffer BL was added to each sample and spun on the 

centrifuge at 15,000xg for one minute. This solution caused the NH2 attached to 

the 4’ carbon atom to deaminate and replaces it with double-bonded oxygen; this 

produces uracil sulphonate (Figure 2B). The mixture was then transferred into 

Epitect spin columns; these columns were then spun on the centrifuge at 

15,000xg for one minute. The flow-through was discarded, and the columns were 

placed back into the collection tubes. Then a wash step was conducted by adding 

500 µl of Buffer BW to each column, which were then spun on the centrifuge at 

15,000xg for one minute.  

           Once again, the flow-through was discarded, and the columns were 

placed back into the collection tubes. Next, 500 µl of Buffer BD was added to 

each column, which desulphonated each molecule, resulting in uracil (Figure 

2C). The samples were then spun on the centrifuge at 15,000xg for one minute. 

The flow-through was discarded, and the columns were placed back into the 

collection tubes. Two more wash steps were conducted by adding 500 µl of 

Buffer BW to each column, which were then spun on the centrifuge at 15,000xg 

for one minute. The flow-through was discarded, and the columns were placed 

back into the collection tubes. To remove and residual liquid, the columns were 

placed into 2 ml collection tubes and then spun on the centrifuge at 15,000xg for 

one minute. Then the columns were placed in new 1.5 ml tubes and incubated at 
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room temperature for 5 minutes, to evaporate off any residual ethanol. Lastly an 

elution buffer was added, 20 µl of Buffer EB was added to the center of each 

column to remove the DNA from the column, and then the columns were spun on 

the centrifuge at 15,000xg for one minute. The collection tubes were closed and 

placed in the freezer at -20.   

2.4 Sample Amplification 

Previous work conducted in our laboratory had developed primers for the 

amplification of the promoter region of four genes for use in molecular aging of 

bottlenose whales.  The same four loci were used in this study, they are indicated 

in Table 2. After the North Atlantic right whale samples had undergone a sodium 

bisulfite conversion, the primers for these four loci were tested for amplification in 

this species. This was performed by amplifying four test samples from each 

locus. To ensure that the bisulfite conversion and amplification were successful, 

the test samples were separated by gel electrophoresis in order to view their 

band sizes (Figure 3). The remaining samples were then amplified and run 

through gel electrophoresis to view their band sizes as well.  

 This bisulfite-treated DNA was used as a template polymerase chain 

reaction (PCR) to amplify each of the four target loci using forward and reverse 

primers. This reaction uses KAPA HotStart Uracil+ ReadyMix (Roche 

Sequencing), it is a ready-to-use cocktail containing all components required for 

PCR, such as dNTPs, MgCl2, as well as a KAPA polymerase that is designed 

specifically to amplify Uracil. Each amplification reaction had a volume of 30 µl. 

The desired components for the amplification reactions consisted of 1x KAPA 
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reagent mix, 0.2 µM forward primer and 0.2 µM reverse primer, 2 µl of bisulfite-

treated template DNA, and water was added to volume. The VeritiPro Thermal 

Cycler was then used for the amplification. Thermocycling conditions were 

dependent on which locus was being amplified; conditions for each are shown in 

Table 3.  

2.5 Bead Clean-up 

After amplification, the samples must go through a bead clean-up. Excess 

primers, nucleotides, salts, and enzymes are removed during this step, leaving 

purified PCR product. This process used AMPure XP beads to clean the PCR 

product prior to sequencing (Ampure, 2016). AMPure XP are polystyrene-

magnetic beads that are coated in a layer of negatively charged carboxyl groups. 

Under strict conditions, DNA will bind to the carboxyl groups on the beads. Since 

the beads are magnetic, placing them on a magnetic stand (ThermoFisher) pulls 

the beads ̶ with the DNA attached ̶ to the magnetic posts. This allows for the 

remaining PCR cocktail to be removed.  

 First, 25 µl of the amplified DNA is transferred to a 96-well plate. The 

AMPure XP beads are brought to room temperature and then vortexed for 30 

seconds. AMPure XP beads preferentially bind to larger fragments, due to this a 

bead to sample-volume ratio must be chosen that is best suited for each locus. 

Each locus had a different bead to sample ratio. For GRIA2 and TET2 the ratio 

was 0.8:1, meaning 20 µl of beads were added to each sample. For KLF14 the 

desired ratio was 1:1, 25 µl of beads were added to each sample. The sequences 

of GRIA2 and TET2 are larger than those of KLF14, therefore, a larger bead to 
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sample ratio is needed to properly purify the PCR product of the KLF14 samples. 

The desired ratio of beads was then added to each sample, mixed, and left to 

incubate for 5 minutes to allow the DNA fragments to bind to the paramagnetic 

beads.   

 The 96-well plate was then placed on a magnetic stand, once the 

supernatant was clear, it was removed and discarded. The beads were then 

washed with 200 µl of 80% ethanol, which is incubated for 30 seconds and then 

removed. This step was repeated. The ethanol removes any contaminates that 

are bound to the beads or DNA. The plate was then left to dry for 10 minutes to 

ensure that the remaining ethanol had been evaporated. The beads were then 

washed with the desired volume of Tris-HCl, which has a pH of 8.5, breaking the 

bonds between the DNA and carboxyl groups, thus allowing for the cleaned PCR 

product to be eluted. The desired volume varied for each sample; the elusion 

volumes were chosen based on the band-size of the sample prior to the bead 

clean-up.  If the band size was greater than or equal to 400 bp then 52.5 µl of 

Tris-HCl was added, if the band-size was between 100 bp to 400 bp 27.5 µl was 

added, and lastly if the band-size was less than 100 bp then 17.5 µl was added.  

2.6 Illumina Sequencing 

Next-generation sequencing (NGS) techniques obtain a sequence for every 

molecule of DNA in a sample. This differs from Sanger sequencing, where the 

results are one consensus sequence for each sample (Behjati & Tarpey, 2013). 

However, with Next Generation Sequencing technologies, you get one sequence 

per molecule, which will allow you to detect the percent methylation of each site 
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across a range of cells. The percent methylation found at each age-related site is 

then used to estimate age.  

 Additionally, NGS can capture a much broader spectrum of mutations than 

Sanger sequencing. The increased sensitivity of NGS allows for the detection of 

small variants, which are only present in a few percent of cells. At the moment, 

the most widely used approach for NGS is that based on technology developed 

by the company Illumina, and this is the approach that I used.  

Library Preparation 

To prepare the samples for sequencing, a library must be created. This is a 

preparation step for sending the PCR product for Illumina Sequencing. There are 

three steps to this process: adding the oligonucleotide adapter sequences, 

adding the overhang adapters, and adding a barcode to identify each sample 

(Illumina, 2018).  These steps are illustrated in Figure 4. The library was added 

using the Nextera XT Index Kit v2 Set A (Illumina, 2018).  

 Each of the primers used in the amplification step were specifically 

designed for Next-Generation Sequencing. They have overhangs that allow the 

library adapters to be attached to the DNA strand (Figure 5). The overhang 

adapter sections of the library are complementary to those of the sequencing 

primer overhangs. This allows for the attachment of the barcode and adapter 

sequences.  

 First, 5 µl of PCR product for each sample was transferred to a new 96-

well plate. Then for both Nextera XT Index Primer 1 (N1XX) and Nextera XT 
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Index Primer 2 (S5XX), 5 µl was added to each well. These index primers contain 

the adapters that are added to each strand, as well an individual barcode is 

attached that is indicated by the ‘N’ or ‘S’ number. Barcodes are short 8 bp 

sequences that can be combined into many unique combinations. Each sample 

has two barcodes, one on either side of the strand. This ensures that each 

sample has a unique pair of barcodes.   

  Next, 25 µl of KAPA and 10 µl of water were added to each well. KAPA 

HotStart Uracil+ ReadyMix (Roche Sequencing), it is a ready-to-use cocktail 

containing all components required for PCR, such as dNTPs, MgCl2, as well as a 

KAPA polymerase that is designed specifically to amplify Uracil. The mixtures 

within the wells were mixed and the plate was sealed. The plate was then put into 

the centrifuge at 1000xg for 1 minute. Lastly, the samples were amplified to 

attach the adapters onto the PCR products. First the samples were heated to 

95℃ for 3 minutes. Then they were denatured for 30 seconds at 95℃, annealed 

for 30 seconds at 55℃, and elongated for 30 seconds at 72℃, these steps were 

repeated for 8 cycles. Lastly, the final elongation step was at 72℃ for 5 minutes.  

  Next, a bead clean-up was performed following the same protocol as 

detailed above. This ensured that the samples were purified and that there was a 

clean template for sequencing. Next-Generation Sequencing is very sensitive, 

therefore, it is important that the template is clean, so the unincorporated reaction 

mixture does not interfere with the results. After the bead clean-up, a subset of 

samples for each locus were run on an agarose gel to ensure that these were 

added properly (Figure 6). For each locus, the band size should be 
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approximately 100 bp larger than the band size previously viewed after the 

amplification, due to the addition of the library.  

 The samples were then sent to BRC-Seq Sequencing Core at the 

University of British Columbia (UBC) to be quantified, pooled, and sequenced on 

an Illumina MiSeq (Illumina, 2018). 

2.7 Bioinformatic Analyses 

Organizing the Sequences by Locus 

The BRC-Seq Sequencing Core returned fastq files where the reads had been 

organized based on their barcodes (where each pair of barcodes represented a 

different sample). Fastq files are text files that contain the sequence data from 

the Illumina Sequencing. Each file contains the sequence identifier, the reads for 

each sample, and the quality scores.  

 Each individual sample had the same barcode at the different loci; 

therefore, I first had to separate the reads for each sample based on which locus 

they were from. This is performed by using the program cutadapt (Martin, 

2011). This is a Python-based program designed to identify sequences 

containing particular primer or adapter sequences to separate the identified 

sequences into a different folder. The primer sequences for each locus are 

illustrated in Table 4.  

Quality Filtering and Paired Reads 

I then filtered the reads for each sample at each locus based on their quality 

scores. The criteria used were as follows. First, any read where the 5’-end had a 
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quality score lower than 20 was removed. Next a sliding window was used, the 

window size was 5 bases and a required average quality score for that window of 

20. Then reads where the average quality score across as bases was less than 

30 were removed. Lastly, the minimum length of the read was set to 36 bases, 

those that did not meet this requirement were also removed. This was performed 

using the trimmomatic program (Bolger et al., 2014). 

 After the reads had been filter by quality the next step was to identify the 

reads that had a complimentary read that was sequenced in the other direction, 

and therefore that represented “paired reads”. This step was also performed 

using the trimmomatic program (Bolger et al., 2014). Once the paired reads 

have been identified, the program FLASH was used to generate consensus 

sequences from the paired reads (Magoč & Salzberg, 2011). This tool extends 

the length of short reads by finding the correct overlap between paired-end reads 

and stitching them together.  

Alignment with BWA and SAMtools 

The paired sequences were then aligned with the reference sequence for each 

locus. The reference sequences first needed to be indexed so that each position 

on the reference sequence has a call location and can be mapped. This ensures 

that the reads will be aligned properly, and the same positions will be called for 

each read. The alignment was then conducted. Each read was aligned against 

the reference sequence so that each CpG sites was assigned the same position 

across reads. These alignments were performed with the program BWA (Li & 
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Durbin, 2009). The data were then converted to BAM files using samtools (Li 

et al., 2009).  

R-Analysis 

These aligned sequences were then imported into R (R Core Team, 2020), 

where the C/T ratio for each methylated site (CpG sites) was counted for each 

read of each individual at each locus. A multiple regression analysis was 

performed where the age of each individual was the predicted variable and the 

percent methylation at each site were the predictor variables. Based on these 

analyses, we then used the estimate coefficients from the regression to predict 

the age of each whale based on the percent methylation of each site. These 

predicted ages were compared to the true ages to evaluate the performance of 

our approach. 

Results 

3.1 Sample Amplification 

Originally, I attempted to amplify all four of the loci previously used in bottlenose 

whales. However, one locus did not amplify well in North Atlantic right whales and 

therefore had to be dropped. Moving forward, three loci were included; they are 

underlined in Table 2. These loci were GRIA2, KLF14, and TET2. The primer 

sequences for these loci are indicated in Table 4.   

3.2 Read Depth 

We obtained approximately 350,000 reads per sample from the Illumina 

sequencing, this includes all three loci. When divided by locus there were 
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approximately 100,000 reads/sample for GRIA2, 100,000 for TET2, and 120,000 

for KLF14. After filtering based on quality the number of reads/sample were 

approximately 20,000 for GRIA2, 80,000 for TET2, and 90,000 for KLF14.  

3.3 Correlation Between Methylation and Chronological Age 

Based on my original multiple regression analysis, there was not a strong 

relationship between predicted age (based on percent methylation) and actual 

age of North Atlantic right whales (Figure 7A). Specifically, all samples showed a 

mean predicted age of ~10 years old regardless of their true age. This was 

unexpected because these genes showed a relationship between percentage of 

methylation and age in other organisms. These results suggested that 

methylation in these genes did not correlate with age in North Atlantic right 

whales.  

3.4 The Effect of Time in Storage on Methylation 

The original analyses using multiple linear regression showed that the results did 

not follow the expected trend. Due to this discrepancy, we tried to think of other 

factors that may have interfered with the signal between methylation patterns and 

age. We began by reviewing every step throughout the process and methods to 

ensure that controls worked properly, and we did not miss any discrepancies 

between expected and observed outcomes of each step. Through this process, it 

was possible to determine that each step in the techniques used had performed 

as expected, with the appropriate results being obtained. Since the results were 

unexpected and did not correlate to what is found in the literature, we began to 
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troubleshoot possible issues. Through this, it was noticed that many of the 

samples used had been in storage for quite a few years, some dating back to 

1989. This is more than a 30-year period; therefore, it was thought that the length 

of time that the samples had been in storage might affect methylation patterns. 

Although the samples are stored in a solution known to prevent DNA degradation 

over time, it is not known if, or how, methylation patterns degrade over time in 

different storage conditions. Therefore, we thought it might be possible that 

methylation may degrade over time under these storage conditions, and therefore 

that the amount of time a sample has been in storage may impact the relationship 

between percent methylation and age. This was tested by adding the "time in 

storage" to the model as another predictor variable. After this, it became clear 

that there was an association between percent methylation and age in North 

Atlantic right whales (Figure 7B).  

 Multiple linear regression was then performed comparing the actual age of 

each whale to their estimated age, while considering methylation patterns at each 

site, as well as how long each sample has been in storage (Figure 7B). When 

“time in storage” was added to the model, the results changed and showed that 

percent methylation at all sites was now strongly informative of whale age 

(Figure 7B). Moreover, with this new model it was possible to estimate whale 

age based on methylation patterns fairly accurately (± 5 years). Additionally, this 

model shows that younger individuals will tend to be below the expected 1:1 

relationship while older individuals will often be over the expected relationship 

(Figure 7B). This suggests that younger individuals will tend to have their age 
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overestimated, while older individuals are more likely to have their age 

underestimated.  

 The contribution of sex to the regression model is shown in Figure 8. 

There was no difference shown in data points for females and males when 

comparing age and predicted age. The distribution of males and females across 

the regression is quite similar; this suggests that the relationship between percent 

methylation and age is not affected by sex. 

3.5 CpG Methylation at Age-Responsive Genes 

Overall, a total of thirty-two CpG sites were sequenced over three loci (TET2, n = 

13; KLF14, n = 2; GR1A2, n = 17). All of these CpG sites were assayed for 

correspondence between methylation levels and age (Figure 9). All CpG sites 

showed a strong relationship between methylation and age.  

Discussion 

4.1 Aging-Responsive CpG Sites Display a Relationship Between 

Levels of Methylation and Age 

Initially, we did not find a relationship between percent methylation and age in 

North Atlantic right whales (Figure 7A). This was rather surprising because other 

studies that used similar techniques found a relationship between methylation 

and age at these same sites in other organisms. Since the results were 

unexpected and did not correlate to what is found in the literature, we began to 

troubleshoot possible issues. Through this, it was noticed that many of the 

samples used had been in storage for quite a few years, some dating back to 
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1989. This is more than a 30-year period; therefore, it was thought that the length 

of time that the samples had been in storage might affect methylation patterns. 

Multiple linear regression was then performed comparing the actual age of each 

whale to their estimated age, while considering methylation patterns at each site, 

as well as how long each sample has been in storage 

 These results showed that age could be predicted in North Atlantic right 

whales using this model with an estimated precision of ± 5 years (Figure 7B). 

While this range is much larger than expected, it is still a great approximation 

from what current aging methods can estimate. Additionally, a study using similar 

techniques in humpback whales found that their model can estimate age with a 

precision of approximately ± 3 years (Polanowski et al., 2014). However, within 

our data set there were few samples available in the older age range. Since this 

data set only encompasses a small window of possible ages, the regression is 

only based on the percent methylation at those ages. This means it can be 

expected that a model can be evaluated in right whales that is more precise if a 

more extensive age range is used.  

           Thirty-two CpG sites were found to have a relationship between 

methylation levels and age (Figure 9). Most of which were strong relationships. 

This means that these sites can be used as predictors of age in North Atlantic 

right whales. Three of these CpG sites, one from each locus, were plotted 

separately (Figure 8). Each site showed a very similar trend, a high correlation 

between methylation and age, once the age of the sample was taken into 

consideration.  
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4.2 Sex-Specific Differences and the Effect of Over/Under Estimation 

In previous studies, it has been suggested that sex-specific traits may contribute 

to a difference in methylation as organisms reach sexual maturity (Beal et al., 

2019). Mammals display many critical differences in gene regulation between 

males and females (Horvath et al., 2016). Due to the potential increasing 

contribution of sex-specific traits as age increases, this is thought to cause a 

wider spread of data points around the regression line in older individuals.  

      In the present study, there were no large differences between males and 

females with respect to percent methylation and age (Figure 8). This finding was 

expected as the genes used in this study were specifically chosen because their 

methylation patterns do not change with sex, they are only known to change with 

age (Polanowski et al., 2014; Weidner et al., 2014). 

           The change in methylation patterns due to age has been found to have 

some limiting factors when it comes to the underlying relationship between 

chronological age and the proxy markers for age (Polanowski et al., 2014). 

Meaning that there is a limit to how predictive proxy markers, such as 

methylation, can be. In a study by Hannum et al. (2013), using 70,387 age-

related CpG sites in humans, the results had a standard deviation in age 

prediction that was approximately 5% of the human life span. When compared to 

the current study, which used 32 CpG sites, this is large number of sites. 

Therefore, this study shows that even with an extensive array of CpG sites, the 

estimation of age could only be so accurate. This indicates that the ability of the 
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regression used in this study to predict age is comparable to those found in other 

studies.  

      This underlying relationship between chronological age and the proxy 

markers for age means that it is likely that those on the extremes will have their 

age overestimated and underestimated. This is what was found in the current 

study. The model used shows that individuals below the age of 12 are likely to 

have their age overestimated. This is shown as the younger individuals tend to 

reside below the expected 1:1 relationship in the model, while individuals over the 

age of 12 will likely have their age underestimated (Figure 7B). This is shown 

from the older individuals residing above the expected relationship. However, 

much like with sex, this relationship may be difficult to see on this data set. Since 

the age range is quite small, the distinction between younger and older 

individuals is not as clear as it would be if the samples encompassed a larger 

age-range. Therefore, while this phenomenon can be seen within this model, its 

effects on aging are not quite as clear as they are in other studies. 

4.3 Methylation Patterns Degrade Over Time 

The model within this study differs from previous research because it includes the 

length of time that each sample is in storage as a predictor variable. The addition 

of this variable and how it changed the age predictions gave some great insight 

into the factors influencing methylation patterns. These results indicate that 

methylation patterns degrade over time. This finding could have massive 

implications for epigenetic studies that involve the use of DNA methylation: any 
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models that include samples that could have degraded methylation patterns 

would be affected.  

           The mechanisms behind the degradation of methylation patterns could be 

very similar to those that cause DNA to degrade. DNA degradation and how to 

prevent it was the focal point of many research groups for several years (Dahm, 

2007). Understanding this process was a huge finding and allowed for proper 

storage conditions to be used. DNA is subject to hydrolytic attack and oxidative 

damage that causes bonds within the structure to be broken (Lindahl, 1993). It 

was found by Lindahl (1993) that in mammalian cells, cytosines that are 

methylated make up 10% of the cytosines that undergo hydrolytic deamination. 

Since this was found to be a factor in DNA degradation, this may also be an issue 

in the degradation of methylation patterns.   

4.4 Implications 

There are a few implications of the results found. Most are directly caused by the 

impact that “time in storage” had on the model. Firstly, while this approach did 

show that molecular age can be estimated in North Atlantic right whales using 

this technique, it also suggested that this technique will perform best on fresh 

samples. This will make this approach less useful for studies trying to estimate 

the age of individuals based on archived samples. For many species, tissue 

banks have been collected through decades of collaborative research by a large 

number of groups. The requirements of “fresh” samples will make this approach 

less useful for many of these studies.  
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 Second, these results show that methylation patterns degrade over time, 

even when in a storage solution designed to prevent DNA degradation. This 

result is extremely important because this issue has not been discussed in 

epigenetic studies. Therefore, the length of time that samples are in storage will 

impact analyses of methylation patterns and are relevant for a wide range of 

epigenetic studies. This situation is fascinating because a vast amount of 

research has been conducted on what storage solutions and conditions are best 

for preserving DNA. However, such studies are now needed to assess what 

conditions and solutions are best for preserving methylation patterns.  

4.5 Limitations and Recommendations 

Determining the age of individual North Atlantic right whales is incredibly difficult 

if the date of birth is not known. Since researchers have been studying right 

whales for 40 years, the only known-aged individuals in this species are those 

that have been born within this time frame. Thus, the oldest known-aged 

individual in our study was approximately 40 years old (Kraus and Rolland, 

2007). Given that right whales are thought to live for ~70 years (Corkeron et al., 

2018), our current data set only captures a small window of possible ages. 

Therefore, it will be important to continue to test and improve this approach over 

time, as a larger number of known-aged individuals become older.  

           Additionally, future research needs to focus on methylation patterns and 

how they degrade over time. Discovering the best storage solutions to prevent 

the degradation of methylation patterns is essential for future epigenetic work. 
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This would be useful for future work on museum specimens and many archival 

tissues, which have not been kept in conditions to preserve methylation.  

4.6 Conclusion 

Like many other marine mammals, North Atlantic right whales show very few 

visible signs of aging (Beal et al., 2019). Therefore, alternative methods for aging 

are required. Currently, the methods that are used to estimate age do not 

encompass the entire age range of cetaceans and have many limitations. Many 

can only be performed on those that are deceased, and those that can be used 

on live individuals have not been proven useful for population studies (Dunshea 

et al., 2011). 

           Currently, there is ongoing research to create more effective molecular 

aging tools. This study investigates the relationship between percent methylation 

and age at thirty-two age-related CpG sites in North Atlantic right whales. We 

identified that CpG sites on GRIA2, TET2, and KLF14 genes could be used to 

predict age in this species. However, the length of time that the skin samples 

have been in storage must be added to the model as a predictor variable. This 

suggests that methylation patterns degrade over time, and therefore future 

research should focus on the degradation of methylation patterns and finding 

ways to prevent this.  
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Figures and Tables  
 

 

Figure 1: Shipboard photo of male whale 1227. The callosity and its unique 

pattern are visible in white. Photograph by Moira W. Brown and used with 

permission by the New England Aquarium.  
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Table 1: Characteristics of known-age samples used from North Atlantic right 

whales for method development. Samples were collected by research groups 

associated with the New England Aquarium and the North Atlantic Right Whale 

Consortium. The samples used were retrieved through skin-biopsy sampling. 

Whales were aged by the North Atlantic Right Whale Consortium through photo-

identification.  

 

Age (years) Sex of Individual 

0 0 female, 1 male 
1 1 female, 1 male 
2 1 female, 1 male 
3 1 female, 0 male 
4 1 female, 1 male 
5 1 female, 1 male 
6 1 female, 1 male 
7 1 female, 1 male 
8 1 female, 1 male 
9 1 female, 1 male 
10 1 female, 1 male 
11 1 female, 1 male 
12 1 female, 1 male 
14 1 female, 1 male 
15 1 female, 1 male 
16 0 female, 1 male 
17 1 female, 0 male 
18 1 female, 0 male 

19 1 female, 0 male 
20 1 female, 0 male 
21 1 female, 0 male 
27 1 female, 0 male 
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Table 2: Candidate loci identified via a literature review. The samples that 

amplified after bisulfite treatment in North Atlantic right whales are underlined.  

Locus Species Tested References 

GRIA2 Humpback whales, 
Minke whales, 
Bechstein’s bats 

Polanowski et al. (2014); Tanabe et al. 
(2019); Wright et al. (2018) 

 
 

ITGA2B Humans Freire-Aradas et al. (2016); Huang et al. 
(2015); Weidner et al. (2014) 
 

KLF14 Humans Cho et al. (2017); Jung et al. (2019); 
Zbiec-Piekarska et al. (2015) 
 

TET2 Humans, humpback 
whales, Bechstein’s 
bats 

Gronniger et al. (2010); Polanowski et 
al. (2014); Tanabe et al. (2019); Wright 
et al. (2018) 
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A) 

 

B) 

 

C) 

 

Figure 2: Illustration of the Sodium Bisulfite Conversion reaction. A) Sodium 

bisulfite reacting with cytosine to create cytosine sulphonate. The sodium bisulfite 

attacks the double bone between the 5’ and 6’ carbon to add a sulfite molecule to 

the 6’ carbon atom. B) Reaction of cytosine sulphonate to uracil sulphonate 

through deamination. The NH2 attached to the 4’ carbon atom is then replaced 

with double-bonded oxygen. C) Complete reaction of converting cytosine to uracil 

through a bisulfite treatment by placing it in Buffer BD, a basic solution, to 

desulphonate the molecule. Image from (FFPE Bisulfite Conversion, 2016) 
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Figure 3: 1.5% Agarose gel showing the sodium bisulfite treated samples for 

each locus after the amplification step. The ladder fragment sizes are shown on 

each gel in white. The arrows point to where there should be bands on each gel. 

A) ITGA2B band size should be ~310 bp. B) TET2 band size is ~340 bp.                    

C) GRIA2 band size is ~365 bp. D) KLF14 band size is ~195 bp 
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Table 3: Thermocycling conditions for bisulfite treated DNA for each locus.  

Locus 
 

GRIA2 ITGA2B KLF14 TET2 

 5 min @ 
94℃ 

5 min @ 
94℃ 

5 min @ 
94℃ 

5 min @ 
94℃ 

 1 min @ 
94℃ 

1 min @ 
94℃ 

1 min @ 
94℃ 

1 min @ 
94℃ 

Conditions 30 sec @ 
60℃ 

30 sec @ 
50℃ 

30 sec @ 
55℃ 

30 sec @ 
55℃ 

 1 min @ 
72℃ 

 
X 40 cycles 

 

1 min @ 
72℃ 

 
X 40 cycles 

1 min @ 
72℃ 

 
X 35 cycles 

1 min @ 
72℃ 

 
X40 cycles 

 10 min @ 
72℃ 

10 min @ 
72℃ 

10 min @ 
72℃ 

10 min @ 
72℃ 
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Figure 4: The general components required for sequencing, the addition of which 

takes place during library preparation. The overhang adapters are 

complementary to the overhangs that were added on to the fragments by 

primers. The barcodes are 8 bp sequences, each sample has a unique pair of 

barcodes. Oligos adapters are complementary to the sequences that are on the 

flow cell, they attach the fragments onto the flow cell for sequencing. 
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Figure 5: Known sequences that are added to each fragment as primer 

overhangs that can be used for downstream index and adapter sequence 

addition   
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Figure 6: 1.5% Agarose gel showing the samples for each locus after the library 

indexes have been added to the DNA strands. The ladder fragment sizes are 

indicated in white. A) TET2 B) GRIA2 C) KLF14 
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Table 4: Forward primer sequence and the reverse complement of the reverse 

primer sequence for each locus.  

Locus Forward/Reverse Primer Sequence 

GRIA2 Forward 5’-GTG TGT GAG TGT ATG GG-3’ 

GRIA2 Reverse 5’-TAA AAC ATC CAC AAA ATA CCC-3’ 

KLF14 Forward 5’-AAG TYG GTA GGT TGT TTA GAA GTT A-3’ 

KLF14 Reverse 5’-CCC ACC GAA CTA AAT CAT TTT TAA C-3’ 

TET2 Forward 5’-TAA ATT TAA GTA TTT GAA AGT GTA G-3’ 

TET2 Reverse 5’-TCA TCT CAC TCA ACA AAA ACA C-3’ 
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Figure 7: Multiple linear regression plot of the predicted age of each individual 

based on the methylation patterns across all sites, compared with the actual 

ages. The red dashed line represents the expected 1:1 between true age and 

estimated age. A) Plot of initial analysis of North Atlantic right whales showing the 

mean predicted age of each individual relative to their actual age. Variation 

around each mean predicted age (error bars) are not shown because they are so 

wide, they would span the whole plot and make it difficult to see. B) The same 

relationships, but now how long each sample has been in storage has been 

included in the model. The error bars indicated the estimated precision of the 

regression, the standard deviation is ± 5 years.  
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Figure 8: Linear regression model of the mean predicted age of each individual 

based on the methylation patterns at specific CpG sites compared with the actual 

ages. The red dashed line represents the expected 1:1 between true age and 

estimated age. This model compares the female and male samples.  
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Figure 9: Effects of percent methylation of each site on whale age. It can be 

seen that some sites have a positive relationship between percent methylation 

and age, whereas others have a negative relationship. The Y-axis shows each 

CpG site, and the X-axis shows how percent methylation affects each site. The 

error bars for each site indicates the predicted error.  
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