
Exploring Local Delaunay Graph based Neural

Network for 3D Object Detection

BIVASH PANDEY

Submitted in partial fulfilment
of the requirements for the degree of

Bachelor of Science, Honours Computing Science

at

Saint Mary’s University
Halifax, Nova Scotia

© Copyright Bivash Pandey, 2022

Approved: Dr. Jiju Poovvancheri
Supervisor

Approved: Dr. Somayeh Kafaie
Reader

Approved: Dr. Somaye Arabi Naree
Reader

Date: April 26, 2022

Acknowledgments

I would like to thank Dr. Jiju Poovvancheri for his support, advice, and encourage-

ment throughout my undergraduate years. I find myself lucky to have such a great

mentor without whom this thesis would not have been possible. I am truly grateful

to Dr. Somaye Arabi Naree and Dr. Somayeh Kafaie for all the invaluable feedback

and suggestions. I am indebted to all the support of my parents that I would never

be able to repay back. Finally, I would like to thank everyone who helped me directly

or indirectly to make this journey possible.

Bivash Pandey

April 26, 2022

i

In loving memory of my grandmother.

ii

Abstract

Exploring Local Delaunay Graph based Neural Network

for 3D Object Detection

By

Bivash Pandey

Three-dimensional object detectors are essential components of the perception sys-

tems of autonomous robots. Most of the 3D object detection methods are point-based,

voxel-based, or point-voxel-based (uses both point-based and voxel-based approaches).

Recently, few works have used graph neural networks for 3D object detection and

achieved promising results. Representation of a point cloud as a graph preserves the

irregularity and removes the cost associated with the transformation into voxel grids

or projection into a bird’s eye view. In this thesis, we study the effects of point cloud

encoding using local Delaunay graphs by embedding it in an existing graph neural

network (Point-GNN). We perform experiments on the KITTI benchmark and find

that graph-based methods achieve higher or comparable accuracy. Our results are

comparable with most of the state-of-the-art methods. Further, our study indicates

that the selection of the right type of proximity graph representation is crucial for

real-time 3D object detection.

April 26, 2022

iii

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Challenges . 2

1.3 Contributions . 4

1.4 Organization . 4

2 Background 6

2.1 Object Detection . 6

2.2 Point Cloud . 7

2.3 Voxel . 7

2.4 Downsampling . 8

2.5 Graph . 8

2.6 Radius Neighbour Graph . 9

2.7 Delaunay Graph . 10

2.8 Graph Neural Network (GNN) . 11

3 Related Work 13

3.1 3D Object Detection . 13

3.2 Voxel-based methods . 13

3.3 Point-based methods . 14

3.4 Point-Voxel-based methods . 15

3.5 Graph-based methods . 15

iv

4 Local Delaunay Graph based Neural Network 17

4.1 Graph Construction . 17

4.2 Graph Neural Network for Object Detection 20

4.3 Loss Function . 21

4.4 Implementation . 22

4.5 Training . 23

5 Experimental Results 24

5.1 System . 24

5.2 Dataset . 24

5.3 Graph Visualization . 25

5.4 Results . 26

5.4.1 Quantitative Results . 26

5.4.2 Qualitative Results . 28

5.5 Ablation Study . 31

5.5.1 Number of Layers in GNN . 31

5.5.2 Inference Time . 31

5.5.3 Number of Edges . 32

5.5.4 Average Precision with Different Radii 33

6 Conclusion and Future Work 34

6.1 Conclusion . 34

6.2 Future Work . 35

Bibliography 36

v

Chapter 1

Introduction

1.1 Introduction

Object detection is a method to detect certain classes of objects in the input data. The

main goal is to identify objects and their locations in the input data (image, video,

point cloud, etc.). In the last decade, we have witnessed remarkable results using

Convolution Neural Network (CNN) based methods [1, 2, 3, 4, 5] for two-dimensional

(2D) object detection. However, the environment that we interact with on a daily

basis is three-dimensional (3D). 2D images lack depth information and are not a great

choice for perception in real-world applications like autonomous driving, robot vision,

etc. The convolution applied to the 2D images cannot be applied directly to 3D data

because, unlike images, points in 3D space do not have a regular grid-like structure.

Even placing a point cloud in a regular grid and applying convolution either causes

information loss or unnecessary computation in empty voxels [6]. The development

and affordability of 3D sensors (LiDAR sensor, RGB-D camera, etc.) as well as the

availability of 3D datasets (KITTI [7], Waymo [8], etc.) have gained the interest of

researchers in the field of computer vision, robotics, deep learning, and augmented

reality. The data from these 3D sensors usually contains the coordinates of the points

and additional properties like intensity, depth, RGB values, etc. Unlike the image

(Figure 1.1), the point cloud (Figure 1.2) is irregular and unstructured, and therefore

1

Chapter 1. Introduction

the point cloud needs to be processed before feeding into the object detector.

Point cloud detectors can be categorized into voxel-based [9, 10, 11, 12, 13], point-

based [14, 15, 16, 17], point-voxel-based [18, 19, 20, 21], and graph-based [6, 22,

23, 24, 25, 26]. There are fewer works that have looked into graph representation

of the point cloud for 3D object detection. Point-GNN [6] encodes the point cloud

as a radius-neighbour graph and SVGA-Net [25] constructs the complete graph for

each local node. In this thesis, we explore the possibilities of representing the point

cloud using proximity graphs. We consider the local Delaunay graph to capture

the features in the proximity; the term Delaunay triangulation and Delaunay graph

are used interchangeably, and it is described with examples in the next chapter. In

this work, we make use of an existing graph neural network, i.e., Point-GNN [6]

architecture to study the impact of the local Delaunay graph on the performance of

3D object detection in terms of accuracy and computation.

1.2 Challenges

There is a wide variety of challenges in extracting essential information with high

accuracy from the point clouds. Some of the properties of point clouds that make 3D

object detection a challenging problem are listed below.

1. Irregularity: Point cloud data in 3D space are not evenly distributed. Pixels

in the image are arranged in a particular order, whereas points in the point

cloud do not have any fixed ordering.

2. Sparsity: The volume occupied by the point cloud is sparse. Points near the

lidar sensor are dense whereas points away from the lidar sensor are sparse which

can be clearly seen in Figure 1.2. When such point clouds are transformed into

voxels grid, most of the grids are empty and the computation performed on

those empty voxels is wasted.

3. Large number of points: A point cloud usually contains a large number of

points. While inspecting a few of the point clouds randomly from the KITTI [7]

2

Chapter 1. Introduction

dataset, we have found more than 100K points in each point cloud. Therefore the

method operating on the point cloud should be able to process data efficiently.

Figure 1.1: Sample image from KITTI [7] dataset.

Figure 1.2: Sample point cloud from KITTI [7] dataset.

To overcome the above challenges, we investigate encoding the point cloud into the

local Delaunay graph. Representing the point cloud in a graph structure preserves the

irregularity of a point cloud. Moreover, it removes an overhead cost that comes into

play while converting irregular point clouds into a grid structure. To process the point

3

Chapter 1. Introduction

cloud efficiently, we initially downsample the point cloud using voxel downsample

[27].

1.3 Contributions

In this thesis, we analyze how local Delaunay graphs can affect the performance of

3D object detection from the point clouds. Our contributions can be summarized as

follows:

• We use a local Delaunay graph (LDG) based representation of input point clouds

to extract the structural information for 3D object detection.

• We investigate the possibilities of LDG representation by embedding it in the

existing Point-GNN architecture (Figure 3.1).

• We perform a thorough experimental study on the KITTI [7] dataset to analyze

the performance of the LDG based 3D object detection.

1.4 Organization

This thesis is organized into multiple sections as shown below:

• Introduction: This chapter introduces the studied problem, motivations, chal-

lenges, and our contributions.

• Background: This chapter includes the explanation and overview of differ-

ent concepts required to have an in-depth understanding of graph-based object

detection proposed in this thesis.

• Related Work: This chapter provides a literature review of the different meth-

ods and approaches for 3D object detection.

• Local Delaunay Graph based Neural Network: This chapter explains the

proposed approach used in this thesis. Furthermore, we explain in detail how

we use the local Delaunay graph to encode the point clouds.

4

Chapter 1. Introduction

• Experimental Results: This chapter demonstrates the results of the experi-

ments performed on the KITTI dataset.

• Conclusion and Future Work: This chapter concludes our work and dis-

cusses the potential future directions to improve the model accuracy.

5

Chapter 2

Background

In this section, we provide the readers with basic terminology, definitions, concepts,

and examples used in various discussions of this thesis.

2.1 Object Detection

We have defined object detection in the previous chapter. Let us look at an example

of object detection in Figure 2.1 that shows the detection of cars in the input data.

Our main focus in this thesis is 3D object detection from point clouds.

Figure 2.1: Object detection on the KITTI [7] dataset.

6

Chapter 2. Background

2.2 Point Cloud

Before diving into the point cloud, let us understand what a point is in 3D space. A

point can be simply defined as a position in the space with x, y, and z coordinates.

Further, the collection of such points in the space is known as point cloud. Let us

denote a point pi as a vector consisting of coordinates values xi, yi, and zi; therefore,

a point can be represented as a triple pi = (xi, yi, zi).

Along with the coordinate values, other features can be associated with a point like

reflectance, depth, RGB values, etc. Let ri be the reflectance value of ith point then,

we can rewrite the point vector as pi = (xi, yi, zi, ri). A point cloud consisting of N

points can be defined as: P = {pi|i = 1, 2, 3....n}, pi ∈ R4.

2.3 Voxel

Voxel is the smallest unit of volume on a discrete uniform grid in 3D space. A point

cloud can be divided into equally spaced voxels. Let the length, width, and height of

a point cloud boundary be represented by L, W , and H, and that of each voxel be

represented by l, w, and h. Then the size of the 3D voxel is : L′ = L/l, W ′ = W/w,

H ′ = H/h. An example of voxel partitioning is shown in Figure 2.2.

Figure 2.2: Division of 3D space into voxel grids. Figure clearly shows an uneven number of
points in different voxels. Source: [9].

7

Chapter 2. Background

2.4 Downsampling

A point cloud usually contains a large number of points. In the case of the KITTI

[7] dataset, there are more than 100K points in each point cloud. Constructing a

graph with such a large number of points is computationally expensive. Therefore,

before constructing the graph, the point cloud is downsampled to reduce the number

of points with minimal loss of information. Random downsampling initially groups

the point into voxels, and selects a point randomly within a voxel grid. Downsampling

still preserves the structure of the point cloud. In Figure 2.3(b), all the points inside a

voxel size of 0.1 are converted to a single point. Moreover, it can be clearly seen that

the downsampled point cloud looks similar to that of the original, albeit containing

much lesser points.

(a) Original point cloud.
(b) Downsampled point cloud with a
voxel size of 0.1 in Open3D [27].

Figure 2.3: Voxel downsampling.

2.5 Graph

A graph can be defined as a tuple G(V,E) where V represents the set of vertices and

E represents the set of edges. A graph shows the relationship between the vertices

8

Chapter 2. Background

and edges. A graph with n vertices can be represented as an adjacency matrix A of

size n× n. For the unweighted and undirected graph:

Aij =

1 : if there is an edge between vi and vj i.e. (vi, vj) ε E,

0 : otherwise.
(2.1)

Adjacency matrix of a Delaunay graph shown in Figure 2.6(a) is:

Table 2.1: Adjacency Matrix.

A B C D E F G H

A 0 1 0 0 0 0 0 1

B 1 0 1 0 0 0 0 1

C 0 1 0 1 0 1 1 1

D 0 0 1 0 1 1 0 0

E 0 0 0 1 0 1 1 1

F 0 0 1 1 1 0 1 0

G 0 0 1 0 1 1 0 1

H 1 1 1 0 1 0 1 0

2.6 Radius Neighbour Graph

Given a point cloud P = {pi|i = 1, 2, 3....n}, pi = (xi, yi, zi) ∈ R3 consisting of N

points, a radius neighbour graph is represented as G = (P,E), where pi ∈ P is the

set of vertices and E is the set of edges that connects vertices within a radius r.

E = {(pi, pj) | dij < r} (2.2)

where dij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2

9

Chapter 2. Background

2.7 Delaunay Graph

A Delaunay triangulation D(T) [28, 29] in 2D can be defined as the triangulation

of the set of points P such that no point lies inside the circumcircle (Figure 2.4)

of a triangle. Let us look at some of the examples in Figure 2.5 to understand

what constitutes Delaunay triangulation and what does not. Furthermore, the above

definition of 2D can be extended to 3D [30]. Delaunay triangulation in 3D can be

defined as the triangulation of the set of points P such that no point lies inside the

circumsphere of a tetrahedron. Delaunay triangulation of a few 2D points and 3D

points is shown in Figure 2.6. We define the Delaunay graph as Gd(Vd, Ed) where Vd

is the set of points in D(T) and Ed consists of the edges of triangles in D(T).

Figure 2.4: Circumcircle of a triangle.

(a) Delaunay triangulation. (b) Non Delaunay triangulation.

Figure 2.5: Illustration of Delaunay and non-Delaunay triangulation. Red points in the Figure
2.5(b) do not statisfy the condition of Delaunay triangulation as they lie inside the circumcircle
of a triangle.

10

Chapter 2. Background

(a) Delaunay triangulation in 2D. (b) Delaunay triangulation in 3D.

Figure 2.6: Delaunay triangulation in 2D (a) and 3D (b).

2.8 Graph Neural Network (GNN)

GNN is a special type of neural network that processes graph-structured data. A

vertex in a graph can have any number of features. In our case, intensity is the feature

associated with each point. CNNs cannot be applied directly to graph-structured data

because of the irregular structure. However, GNNs are capable of handling graph

data and performing node level as well as graph level classification and detection. As

indicated in Equation 2.3, GNN iteratively updates the node features by aggregating

features from the neighbourhood [31].

htu = φt−1(ht−1u , λt−1({ht−1v ,∀ v εN(u)})) (2.3)

N(u) is the set of neighbours of node u. λ is the aggregation function that aggregates

the features from all the vertices vεN(u) whereas φ is the update function that updates

11

Chapter 2. Background

the feature of node u at the tth iteration by combining the aggregated features with

its own features from the previous step.

The simplest form of GNN can be viewed as a message-passing [31] and defined

as:

htu = σ(Wu h
t−1
u +

∑
vεN(u)

Wv h
t−1
v) (2.4)

Wu and Wv are trainable weight matrices. σ is the non-linear activation function

(Sigmoid, ReLU, Tanh, etc). The main goal of the activation function is to intro-

duce non-linearity and help the network learn the complex functions. htu denotes the

updated feature representation of node u at tth step.

In Figure 2.7, we illustrate how a node aggregates features from its neighbours.

C

E

A

B

D

(a) Input graph.

A Aggregate

B

C

A

C

D

A

B

E

C

C

B

A

C

D

B

B

B

C

A

E

(b) Feature aggregation.

Figure 2.7: Feature aggregation by node ’A’ from its neighbours. This is an example of three
layers feature aggregation.

12

Chapter 3

Related Work

In this chapter, we review different approaches for 3D object detection from the point

cloud.

3.1 3D Object Detection

3D object detection is an approach to detect objects in 3D data (e.g., LiDAR data)

with 3D bounding boxes and finding the category in which that particular object

belongs. Advancement in computer hardware and availability of datasets like KITTI

[7], Shapenet [32], ApolloScape [33], Waymo [8], Lyft [34], A2D2 [35], nuScenes [36],

and Objectron [37] has gained the interest of research community in the direction of

3D object detection. 3D object detection has many applications in real life such as

autonomous driving [38, 39], robot vision [40], and augmented reality [41]. We group

different 3D object detection methods into four categories: voxel-based, point-based,

point-voxel-based, and graph-based.

3.2 Voxel-based methods

Since the point cloud data obtained from the LiDAR sensor is irregular, convolution

cannot be applied directly to the irregular data. Therefore, voxel-based methods con-

13

Chapter 3. Related Work

vert the irregular data to regular data by placing the points in the voxel grids to

extract features using CNN in 3D. VoxelNet [9] is an end-to-end architecture that

removes the need for manual feature engineering by operating directly on the sparse

point cloud. PointPillars [10] places the point clouds in the vertical structure and

makes use of 2D convolutional layers in the pillars for 3D object detection. Using the

same voxel size might not be efficient to learn feature representation. To eliminate

this issue Voxel-FPN [11] uses multi-scale voxel partitioning and removes the need of

finding the perfect voxel size for a better result. Voxel R-CNN [12] achieves compara-

ble accuracy as the point-based methods using a two-stage approach which consists of

a 3D backbone network, a 2D bird-eye view Region Proposal Network, and a detection

head. Moreover, [12] illustrates that the precise positioning of raw points is not nec-

essary to achieve higher performance in 3D detection. The Triple Attention module

of the TANet [13] enhances the discriminative points whereas suppresses the unstable

points of the target. It uses a triple attention module (point-wise, channel-wise, and

voxel-wise) which are then stacked to achieve the multi-level feature attention.

3.3 Point-based methods

Unlike voxel-based methods, point-based methods directly process the point clouds

without converting them into a grid structure [9, 42] or other forms like bird’s eye

view (BEV) [43, 44, 45]. PointNet [14], the pioneering method to learn from points,

uses raw point clouds as input and generates class labels or per point segment labels

as output for the classification and segmentation task. It uses multi-layer perceptrons

(MLPs) to extract features from the point clouds and achieves a decent accuracy.

Later PointNet++ [46] improved PointNet [14] by capturing the local structures which

was one of the limitations of PointNet [14]. Moreover, PointNet++ has less error

rate with higher accuracy as compared to PointNet. These two methods handle the

irregular point cloud. PointRCNN [15] operates in 2 stages. First, it generates the

3D proposals from the raw point cloud by segmenting the point cloud into foreground

points and then learns local spatial features along with global semantic features for

3D bounding box refinement. 3DSSD [16] is a lightweight point-based single-stage 3D

14

Chapter 3. Related Work

object detector that reduces inference time by removing feature propagation layers

and refinement modules. LiDAR R-CNN [17], a second-stage detector that can be

plugged into any 3D object detector, solves the problem of proposal sizes being ignored

by learned features in the point-based methods. Point-based 3D detectors are high

performing as compared to voxel-based, however, that accuracy comes at the price of

higher computational cost [12].

3.4 Point-Voxel-based methods

Point-Voxel CNN [18] leverages the power of the point-based and the voxel-based

methods. It is memory-efficient because input data are represented in points, and are

less irregular as convolutions are performed on voxels. Unlike PVCNN [18], Fast Point

R-CNN [19] initially uses voxel representation to get the initial results and then uses

light-weight PointNet to improve the predictions from the first step. Furthermore,

to make each point aware of its context information, Fast Point R-CNN [19] uses an

attention mechanism which in turn improves the accuracy. PV-RCNN [20] benefits

from 3D voxel CNN for multi-scale feature representations and 3D proposals, whereas

from a PointNet-based network for location information. Unlike others, HVPR [21]

exploits voxel-based and point-based features to acquire 3D representation as a pseudo

image. Moreover, HVPR [21] introduces a memory module to augment point-based

features and an Attentive Multi-Scale Feature module to generate scale-aware features

of the irregular point clouds. However, there is a possibility that these kinds of hybrid

methods might face the drawback of both representations [6].

3.5 Graph-based methods

In 2017, Simonovsky et al. [22] proposed a new approach where a graph is constructed

from the point cloud. Each point is treated as a vertex and each directed edge (j, i)

is formed by connecting vertices i to all the vertices j in a neighbourhood. Later,

[23, 24] used k-nearest neighbour (k-NN) graph for the point cloud classification and

part segmentation task. There are a few methods that encode the point cloud as a

15

Chapter 3. Related Work

Figure 3.1: Point-GNN architecture. Source: [6].

graph for 3D object detection. Point-GNN [6] is one of the earliest methods to use a

graph-based approach for 3D object detection. It requires more time and memory to

construct graphs using all the points in a point cloud as vertices. Therefore, Point-

GNN (Figure 3.1) initially downsamples the point cloud and encodes it as a fixed

radius-neighbour graph which eliminates the need of making a point cloud regular.

Point-GNN [6] updates the node features by repeatedly extracting features from its

neighbours and predicts the category and bounding box by using vertex feature values

after T iterations. Furthermore, it introduces an auto-registration mechanism to

minimize translation invariance. SVGA-Net [25] constructs a local complete graph

among the points within a certain radius r and a global k-NN graph between voxels. It

uses an attention mechanism to enhance the features with the help of a local complete

graph and a global k-NN graph. Thakur et al. [26] use graph representation to encode

the point cloud and masked attention for feature aggregation by assigning variable

weights to the nodes.

Graph-based methods have higher accuracy, however they are not the fastest when

it comes to inference time. Inference time of SVGA-Net [25] is 62 ms and that of

Point-GNN [6] is 643 ms. PointPillars [10], a voxel-based method has an inference

time of 16.2 ms which is almost real-time. Therefore, there is still room to improve

inference time of graph-based approaches.

16

Chapter 4

Local Delaunay Graph based

Neural Network

Previously, the Delaunay graph has been used in clustering, segmentation [47], and

classification [48]. To the best of our knowledge, there exists no graph-based method

for 3D object detection that makes use of the Delaunay graph to encode the point

clouds. Our work makes use of the existing Point-GNN [6] architecture (Figure 3.1)

and modifies the graph representation to test the performance of the local Delaunay

graph for 3D object detection tasks. Our major contribution is the graph construc-

tion step and the experimental study; other steps are similar to that of Point-GNN

[6].

4.1 Graph Construction

Let X = {xi|i = 1, 2, 3....n}, xi ∈ R3 be N points and F = {fi|i = 1, 2, 3....n}, fi ∈ Rk

be the features associated with corresponding points in a point cloud P . Then a

point cloud can be denoted as P = {pi|i = 1, 2, 3....n}, where pi = (xi, fi). Each point

has both 3D coordinates and k features. In the case of the KITTI [7] dataset, the

reflectance value is the feature associated with each point.

17

Chapter 4. Local Delaunay Graph based Neural Network

Since the point cloud contains a large number of points, constructing the graph

straight out of those points by considering each point as a vertex is computation-

ally expensive. Therefore, the input point cloud is initially downsampled using the

voxel downsampling method [27]. Let P ′ be the downsampled point cloud. For each

point pj in P ′, we find the neighbours of pj within radius r in the original point cloud

P . Let Pn be the neighbours of pj, pj ∈ P ′. Finally, we construct the Delaunay graph

from the vertices of Pn.

Instead of constructing the Delaunay graph locally, there is a possibility to construct

the Delaunay graph of a point cloud globally without finding the neighbours within a

certain radius. It will obviously be faster than the local Delaunay graph. However, we

then get longer edges in the graph which do not contribute to the feature aggregation

for 3D object detection. To preserve the local features by aggregating features from

nearby neighbours we used the local Delaunay graph. For five or more points in Pn,

we construct a local Delaunay graph; however, when there are less than five points

in Pn, we form a graph by connecting the center point with other points in Pn rather

than neglecting those points.

After the construction of the Delaunay graph using points in Pn, we keep only those

edges that are connected to pj (vertex used for finding the neighbours). Therefore the

number of edges in this local Delaunay graph are less than in the radius neighbour

graph. However, constructing the local Delaunay graph takes a longer time than

the radius neighbour graph. The number of vertices, edges, and time to construct the

graph are shown in Table 5.4. Once we finish the local Delaunay graph representation,

we pass the graph to GNN. We have shown the local Delaunay graph construction

steps in Figure 4.1 and the architecture of our approach in Figure 4.3. Figure 4.2

shows the visualization of the local radius neighbour graph and the local Delaunay

graph.

Delaunay graph in 3D forms the tetrahedra. Unlike other graphs, there is an oppor-

tunity to exploit additional feature information from the Delaunay graph like the area

of triangles and the volume of tetrahedra. These extra features might help to improve

the accuracy of the model.

18

Chapter 4. Local Delaunay Graph based Neural Network

(a) Input point cloud in blue and downsampled
in red.

(b) Local Delaunay graph construction.

(c) Only edges connected to the downsampled
key points.

Figure 4.1: Graph construction steps. Orange lines in (b) and (c) represent the edges. Graph
from step (c) is passed to GNN.

19

Chapter 4. Local Delaunay Graph based Neural Network

(a) Radius Neighbour graph. (b) Local Delaunay graph. (c) Local Delaunay graph with
edges connected to center vertex.

Figure 4.2: Local radius neighbour graph vs local Delaunay graph. Point cloud [49].

MLP

MLP

MLP

MLP λ φ
Classification

Localization

Prediction

φλ = Aggregation = Concatenation

Local Delaunay
Graph Construction

Point cloud
Downsampling

Graph Neural Network

Point cloud 3D detection

Figure 4.3: The architecture of the proposed approach. This approach uses a local Delaunay
graph for the point cloud representation.

4.2 Graph Neural Network for Object Detection

A GNN updates the vertex features by aggregating features from its neighbours as

shown in Equation 2.3 and Figure 2.7. Our work uses the Point-GNN architecture

20

Chapter 4. Local Delaunay Graph based Neural Network

(Figure 3.1), therefore the GNN used in this thesis is exactly the same as described in

the Point-GNN [6]. We reproduce the relevant details of Point-GNN in the subsequent

paragraphs. For object detection, we modify the GNN from Equation 2.3 to Equation

4.1.

htu = φt−1(ht−1u , λ({f t−1(xuv, ht−1v)})), (u, v) εE (4.1)

where, xuv = xv−xu, is the difference between relative coordinates of the neighbours.

f t−1, λ, and, φ are the differentiable functions. f t−1 computes the edge features

between two vertices xv and xu by using relative coordinates of the neighbours. A

relative coordinate is used to achieve the translation invariance. λ is the aggregation

function that aggregates the edge features. φ updates the feature of node u at tth

iteration by combining the aggregated edge features with its own node features from

the previous step (t− 1).

Translation invariance achieved with the relative coordinates was not desirable. There-

fore, [6] introduces an auto-registration mechanism for the better translation invari-

ance.

htu = φt−1(ht−1u , λ({f t−1(xuv + ∆xt−1u , ht−1v)})) (4.2)

where, ∆xt−1u = ct−1(ht−1u) is the coordinate offset of the vertex and ct−1 computes

the offset with the help of the center vertex. φt−1, f t−1, and ct−1 are represented

using multi-layered perceptrons. Finally, after the completion of GNN iterations, the

refined feature values of a vertex are used to predict the class and the bounding box

of the object.

4.3 Loss Function

In this thesis, we have used the same loss functions as Point-GNN [6]. Total loss is

the combination of classification loss, localization loss, and regularization loss. For

the classification loss, average cross-entropy loss is used. Let M be the total number

of classes and {ρj|j = 1, 2, 3,,M} be their probabilities. Then the average cross-

21

Chapter 4. Local Delaunay Graph based Neural Network

entropy loss is given as in Equation 4.3.

Lcls =
−1

N

N∑
i=1

M∑
j=1

yij log(ρij) (4.3)

where yi is the class label and ρi is the predicted probability of the node i. We

parameterize a 3D bounding box as (x, y, z, l, h, w, θ), where (x, y, z) is the center of

a bounding box, (l, h, w) is the dimension of the box (length, height, and width), and

θ is the yaw angle. Let bp = (xp, yp, zp, lp, hp, wp, θp) be the predicted bounding box

and bt = (xt, yt, zt, lt, ht, wt, θt) be the ground truth of a bounding box. Then the

localization loss is the difference between the predicted bounding box and its ground

truth. For a vertex inside the bounding box, the average localization loss is computed

using Huber loss [50] as shown in Equation 4.4.

Lloc =
1

N

N∑
i=1

∑
b∈(x,y,z,l,h,w,θ)

Lhuber(bp − bt) (4.4)

Finally, L1 regularization is added for reducing the over-fitting of the model. Then

the total loss becomes:

Ltotal = αLcls + βLloc + γLreg (4.5)

where, α, β, and γ are constants. We have not modified the parameters and hyper-

parameters other than the training steps to compare the experimental results with

consistency.

4.4 Implementation

We used Point-GNN [6] code which is available on GitHub [51]. We have used Python

3.7.7, Numpy [52], Scipy [53], Scikit Learn [54], Tensorflow [55], Open3D [27], Mesh-

Lab [56] for the representation of point clouds using local Delaunay graph. Although

the original code was written with Tensorflow 1.15, we were unable to run the pro-

gram with the same version because of the conflicts with other packages in the Linux

22

Chapter 4. Local Delaunay Graph based Neural Network

server. Therefore, we installed Tensorflow 2.6 and used its backward compatibility

feature to run the program.

4.5 Training

We have trained different models (T1, T2, T3) to detect cars in the LiDAR data using

the local Delaunay graph. T1, T2, and T3 refer to a model with 1, 2, and 3 GNN

layers respectively. Most of the parameters are kept the same as that of Point-GNN

[6]. We trained T1 with a batch size of 4 whereas T2 and T3 were trained with a

batch size of 2. The initial learning rate was set to 0.125 with a decay rate of 0.1

every 400K steps. Moreover, we trained the proposed network up to 1250K steps

with loss weights α = 0.1, β = 10, γ = 5e− 07. The Delaunay graph was constructed

locally with a neighbourhood of r = 4m. While training, the maximum number of

neighbours per vertex was set to 256 and the point cloud was downsampled with a

voxel size of 0.8m. Whereas during inference, all the neighbours were considered and

the point cloud was downsampled with a voxel size of 0.4m. It took around 20-22

days to train a model on the Cedar server.

23

Chapter 5

Experimental Results

5.1 System

We have used Compute Canada (www.computecanada.ca) resources to train all the

models used in this thesis. A model trained in ACENET (https://ace-net.ca/) cluster

has used 2 RTX 6000 GPUs of 16 GB each with a batch size of 4 whereas models

trained in Cedar (https://www.westgrid.ca/) cluster have used 1 Volta GPU of 32

GB with a batch size of 2.

5.2 Dataset

We used KITTI [7] dataset to test the performance of the local Delaunay based 3D

object detection model. It contains 7481 training data and 7518 testing data. A

sample of point cloud data visualization from the KITTI dataset is shown in Figure

1.2.

24

Chapter 5. Experimental Results

5.3 Graph Visualization

(a) Point cloud. (b) Local Delaunay graph. (c) Edges connected to the center
vertex.

Figure 5.1: Graph construction steps.

(a) Point cloud. (b) Local Delaunay graph. (c) Edges connected to the center
vertex.

Figure 5.2: Graph construction steps.

In Figure 5.1 and Figure 5.2, we have shown the steps involved in graph construction.

Step (a) shows the initial point cloud in blue and the downsampled point cloud in red.

Step (b) represents the graph construction using the local Delaunay graph. Finally,

step (c) shows only edges of the local Delaunay graph that are connected to the

center vertex. The point clouds used in Figure 5.1 and Figure 5.2 are downloaded

from [57].

25

Chapter 5. Experimental Results

5.4 Results

In this section we present both the quantitative and qualitative results and compare

our results with other 3D object detection methods. We have used KITTI validation

split to generate the results. In our experiments, we have trained our network using

a train split of 3260 samples and evaluated the results in the validation split of 3769

samples. The split files (train car.txt, val.txt) are downloaded from [51].

5.4.1 Quantitative Results

To obtain the average precision results, we have used code from [58]. We have evalu-

ated the average precision result on Easy, Moderate, and Hard levels of difficulty using

the KITTI [7] dataset. In the Easy level, the size of each bounding box is higher and

objects are fully visible. In the Moderate level, objects are partially occluded with

smaller bounding boxes. In the Hard level, objects are difficult to see.

Precision and Recall is defined mathematically as [59]:

Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

where,

TP = True Positive, denotes object was detected when it was supposed to be.

FP = False Positive, denotes object was detected when it was not supposed to be.

FN = False Negative, denotes object was not detected when it was supposed to be.

Average Precision (AP) is the area under the precision-recall curve [59].

AP =

∫ 1

0

p(r) dr (5.3)

26

Chapter 5. Experimental Results

Table 5.1: The Average Precision (AP%) comparison of car detection on the KITTI validation
split.

Method Car 3D AP% Car BEV AP%

Easy Moderate Hard Easy Moderate Hard

VoxelNet [9] 81.97 65.46 62.85 89.60 84.81 78.57

Voxel-FPN [11] 88.27 77.86 75.84 90.20 87.92 86.27

Voxel R-CNN [12] 89.41 84.52 78.93 - - -

TANet [13] 87.52 76.64 73.86 - - -

PointRCNN [15] 88.88 78.63 77.38 - - -

3DSSD [16] 89.71 79.45 78.67 - - -

F-PVCNN [18] 85.25 72.12 64.24 - - -

Fast Point R-CNN [19] 89.12 79.00 77.48 90.12 88.10 86.24

HVPR [21] 91.14 82.05 79.49 - - -

PointGNN [6] 87.89 78.34 77.38 89.82 88.31 87.16

SVGA-Net [25] 90.59 80.23 79.15 90.27 89.16 88.11

Thakur et al. [26] 83.54 74.47 63.84 90.12 87.05 75.48

Ours 87.65 77.67 76.27 89.91 87.69 86.38

Table 5.1 shows the comparison of our proposed approach with other existing methods

in the car category using validation split. Unlike most other methods, we train it on

the subset of train split in which samples without a car are excluded. The accuracies

of other methods reported in Table 5.1 are extracted from the respective paper. Our

graph-based approach sits in the middle for all the difficulty levels. And our results

are almost close to the state-of-the-art methods. Our method performs better than

voxel-based methods (like VoxelNet [9], TANet [13]), Point-voxel-based methods (like

F-PVCNN [18]), and graph-based methods (like Thakur et.al. [26]). On the easy

difficulty level of BEV (Bird’s Eye View), our method surpasses Point-GNN [6].

27

Chapter 5. Experimental Results

In this study, we still have not utilized the full potential of the local Delaunay graph

by removing the edges not connected to the center vertex. We tried to incorporate

those edges as well, but we got an unexpected error while integrating our graph in

the Point-GNN code [51]. Therefore, we planned to drop the edges not connected to

the center vertex.

5.4.2 Qualitative Results

To create the visualization of our prediction results, we used code from [60] and visu-

alized point clouds in MeshLab [56]. We demonstrate our prediction results in Figure

5.3 where we visualize 3D bounding boxes both on point clouds and images. We can

clearly see our method can detect in varying lighting conditions as well as in occluded

conditions. In Figure 5.3(c, right) and in Figure 5.3(d, left), our model is capable

of detecting cars that are not clearly visible in the images. These detection results

show that cars at a distant are also detected, not just in the proximity. Moreover,

Figure 5.3(c) illustrates that even the occluded cars are detected perfectly. Not only

the numeric results, but the visualization also displays a great detection result.

28

Chapter 5. Experimental Results

(a)

(b)

29

Chapter 5. Experimental Results

(c)

(d)

Figure 5.3: Qualitative analysis on the KITTI validation set.

30

Chapter 5. Experimental Results

5.5 Ablation Study

Further, we studied how the number of layers in GNN affects the performance. We

even performed the comparison of total inference time between Point-GNN and our

approach. Moreover, we looked into the number of edges and time taken to generate

the edges in the radius neighbour graph and the local Delaunay graph. Finally, we

explored the effect of different radii on accuracy.

5.5.1 Number of Layers in GNN

Here, we study the relationship between the number of layers in GNN and the Average

Precision (AP) value both in 3D and BEV. We have shown our results in Table 5.2.

We have found that increasing the number of layers from 1 to 3 increases the accuracy

both in 3D as well as in BEV.

Table 5.2: The Average Precision (AP%) comparison on different number of GNN layers.

Number of layers Car 3D AP% Car BEV AP%

Easy Moderate Hard Easy Moderate Hard

1 83.31 73.65 67.10 88.93 85.50 82.99

2 85.28 75.91 73.44 89.53 87.29 85.30

3 87.65 77.67 76.27 89.91 87.69 86.38

5.5.2 Inference Time

Using our approach, the average processing time for one sample in the validation set

takes about 9.94 seconds which is pretty high as compared to 643 ms of Point-GNN.

In our case, most of the time is spent on creating the Delaunay graph representation

of the point cloud. It takes almost 98.5% (9.79 seconds) of the total time. This

illustrates the construction of the local Delaunay graph is expensive.

If we compare the time without the graph generation step, our approach performs

faster than Point-GNN. Point-GNN takes 522 ms whereas ours take 150 ms. Less

31

Chapter 5. Experimental Results

number of edges generated by our graph representation might be the reason for faster

inference time in the later stage. Taking graph representation time into account, we

can say that this approach would not be practical for applications like autonomous

vehicles where it requires lower inference time.

5.5.3 Number of Edges

We have tested the number of edges generated by a local radius-neighbour graph and

a local Delaunay graph. The time to construct those graphs is measured locally in

an 8 GB MacBook air without any GPU. This time does not necessarily align with

the graph generation time during inference performed with GPUs and higher RAM.

The time and the number of edges shown in Table 5.3 and Table 5.4 are based on the

average of 10 tests. For this test, the radius is set to 1m and the maximum number

of neighbours to 256. We performed the experiment on 3 different sub-samples of the

point cloud [7].

Table 5.3: Number of edges in a graph using local radius neighbour graph.

Subsample # Number of vertices Number of Edges Time (seconds)

1 18739 94307 0.027

2 18988 90897 0.033

3 19946 96555 0.028

Table 5.4: Number of edges in a graph using local Delaunay graph.

Subsample # Number of vertices Number of Edges Time (seconds)

1 18739 13645 2.082

2 18988 17215 2.223

3 19946 16666 2.293

32

Chapter 5. Experimental Results

5.5.4 Average Precision with Different Radii

We have compared the accuracy of the two LDG based models with 2 GNN layers

trained up to 65200 steps. One of the models uses a radius of 2m whereas another

uses a radius of 4m. The result in Table 5.5 shows that a smaller radius leads to lower

accuracy. It might be because of the fact that a node aggregates features from the

less number of points in the smaller neighbourhood.

Table 5.5: The Average Precision (AP%) comparison on different radii.

Radius Car 3D AP% Car BEV AP%

Easy Moderate Hard Easy Moderate Hard

2m 70.82 61.84 55.13 87.45 77.42 75.02

4m 83.53 67.60 64.30 88.90 82.96 77.26

33

Chapter 6

Conclusion and Future Work

In this study, we have used the local Delaunay graph for the representation of point

clouds and analyzed its performance for 3D object detection. We have clearly seen

that its accuracy on validation split of KITTI benchmark is close to Point-GNN [6]

and higher than some other point-based and voxel-based methods as shown in Table

5.1. For the BEV easy category, the proposed method performs better than Point-

GNN in terms of accuracy. However, the accuracy of our approach comes at a price

of higher computational time due to the Delaunay construction algorithm.

6.1 Conclusion

This study shows the accuracy of our method is higher than few other methods as il-

lustrated in Table 5.1. While comparing it with Point-GNN [6], accuracy has not been

improved for 3D detection. However, in the Easy difficulty level of BEV, the proposed

model showed better accuracy. One possible reason for slightly lower accuracy of our

model could be the exclusion of edges not connected to the center vertex. Moreover,

we found that the local Delaunay graph representation is a lot slower as compared to

a radius-neighbour graph representation. This is because the local Delaunay graph

construction is computationally expensive. Although our graph-based approach yields

higher accuracy, speed could be an issue when implemented in real-life applications

34

Chapter 6. Conclusion and Future Work

like autonomous vision. Further optimizations could be possible to enhance the speed

of the local Delaunay construction method.

6.2 Future Work

In this work, we have not exploited the full potential of the local Delaunay graph.

Firstly, all the edges of the local Delaunay graphs can be used to find the true accuracy

of this architecture. By using Delaunay graph representation of the point clouds, we

have access to additional properties like the volume of tetrahedra as well as the area

of triangles. Therefore, the possibility of exploiting volume and area features can be

explored further. Moreover, this same representation can be experimented with dif-

ferent tasks like classification and segmentation. The model can be tested on different

datasets like Waymo [8] and nuScenes [36]. Additionally, further optimizations can

be considered to reduce the inference time without compromising the accuracy.

35

Bibliography

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks,” Advances in neural information
processing systems, vol. 28, 2015.

[2] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in European conference on computer vision.
Springer, 2016, pp. 21–37.

[3] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[4] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 2117–2125.

[5] B. B. Traore, B. Kamsu-Foguem, and F. Tangara, “Deep convolution neural
network for image recognition,” Ecological Informatics, vol. 48, pp. 257–268,
2018.

[6] W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d object detec-
tion in a point cloud,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 1711–1719.

[7] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the
kitti vision benchmark suite,” in 2012 IEEE conference on computer vision and
pattern recognition. IEEE, 2012, pp. 3354–3361.

[8] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo,
Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception for autonomous
driving: Waymo open dataset,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 2446–2454.

36

Bibliography

[9] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d
object detection,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 4490–4499.

[10] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpil-
lars: Fast encoders for object detection from point clouds,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
12 697–12 705.

[11] H. Kuang, B. Wang, J. An, M. Zhang, and Z. Zhang, “Voxel-fpn: Multi-scale
voxel feature aggregation for 3d object detection from lidar point clouds,” Sen-
sors, vol. 20, no. 3, p. 704, 2020.

[12] J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang, and H. Li, “Voxel r-cnn: Towards
high performance voxel-based 3d object detection,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 2, 2021, pp. 1201–1209.

[13] Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou, and X. Bai, “Tanet: Robust 3d object
detection from point clouds with triple attention,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 11 677–11 684.

[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets
for 3d classification and segmentation,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 652–660.

[15] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation and
detection from point cloud,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 770–779.

[16] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3dssd: Point-based 3d single stage object
detector,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 11 040–11 048.

[17] Z. Li, F. Wang, and N. Wang, “Lidar r-cnn: An efficient and universal 3d object
detector,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 7546–7555.

[18] Z. Liu, H. Tang, Y. Lin, and S. Han, “Point-voxel cnn for efficient 3d deep
learning,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[19] Y. Chen, S. Liu, X. Shen, and J. Jia, “Fast point r-cnn,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 9775–9784.

[20] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-rcnn:

37

Bibliography

Point-voxel feature set abstraction for 3d object detection,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 10 529–10 538.

[21] J. Noh, S. Lee, and B. Ham, “Hvpr: Hybrid voxel-point representation for single-
stage 3d object detection,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2021, pp. 14 605–14 614.

[22] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in convo-
lutional neural networks on graphs,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 3693–3702.

[23] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dy-
namic graph cnn for learning on point clouds,” Acm Transactions On Graphics
(tog), vol. 38, no. 5, pp. 1–12, 2019.

[24] Y. Li, H. Chen, Z. Cui, R. Timofte, M. Pollefeys, G. S. Chirikjian, and
L. Van Gool, “Towards efficient graph convolutional networks for point cloud
handling,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2021, pp. 3752–3762.

[25] Q. He, Z. Wang, H. Zeng, Y. Zeng, S. Liu, and B. Zeng, “Svga-net: Sparse
voxel-graph attention network for 3d object detection from point clouds,” arXiv
preprint arXiv:2006.04043, 2020.

[26] S. Thakur and J. Peethambaran, “Dynamic edge weights in graph neural net-
works for 3d object detection,” arXiv preprint arXiv:2009.08253, 2020.

[27] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3d: A modern library for 3d data
processing,” arXiv preprint arXiv:1801.09847, 2018.

[28] B. Delaunay et al., “Sur la sphere vide,” Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk, vol. 7, no. 793-800, pp. 1–2, 1934.

[29] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for
convex hulls,” ACM Transactions on Mathematical Software (TOMS), vol. 22,
no. 4, pp. 469–483, 1996.

[30] P. Maur, “Delaunay triangulation in 3d,” Technical Report, Departmen. of Com-
puter Science and Engineering, 2002.

[31] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Artifical
Intelligence and Machine Learning, vol. 14, no. 3, pp. 51–55, 2020.

38

Bibliography

[32] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-rich
3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

[33] X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The apolloscape
open dataset for autonomous driving and its application,” IEEE transactions on
pattern analysis and machine intelligence, vol. 42, no. 10, pp. 2702–2719, 2019.

[34] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov,
and P. Ondruska, “One thousand and one hours: Self-driving motion prediction
dataset,” https://level-5.global/level5/data/, 2020.

[35] J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S. Chung,
L. Hauswald, V. H. Pham, M. Mühlegg, S. Dorn et al., “A2d2: Audi autonomous
driving dataset,” arXiv preprint arXiv:2004.06320, 2020.

[36] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for au-
tonomous driving,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 11 621–11 631.

[37] A. Ahmadyan, L. Zhang, A. Ablavatski, J. Wei, and M. Grundmann, “Objectron:
A large scale dataset of object-centric videos in the wild with pose annotations,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 7822–7831.

[38] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection net-
work for autonomous driving,” in Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition, 2017, pp. 1907–1915.

[39] J. Zhang, H. Liu, and J. Lu, “A semi-supervised 3d object detection method for
autonomous driving,” Displays, vol. 71, p. 102117, 2022.

[40] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based robotic grasping from ob-
ject localization, object pose estimation to grasp estimation for parallel grippers:
a review,” Artificial Intelligence Review, vol. 54, no. 3, pp. 1677–1734, 2021.

[41] M. Ortega, E. Ivorra, A. Juan, P. Venegas, J. Mart́ınez, and M. Alcañiz, “Mantra:
An effective system based on augmented reality and infrared thermography for
industrial maintenance,” Applied Sciences, vol. 11, no. 1, p. 385, 2021.

[42] J. Sun, Y.-M. Ji, F. Wu, C. Zhang, and Y. Sun, “Semantic-aware 3d-voxel cen-
ternet for point cloud object detection,” Computers & Electrical Engineering,
vol. 98, p. 107677, 2022.

39

https://level-5.global/level5/data/

Bibliography

[43] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object detection from
point clouds,” in Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, 2018, pp. 7652–7660.

[44] S. Casas, W. Luo, and R. Urtasun, “Intentnet: Learning to predict intention
from raw sensor data,” in Conference on Robot Learning. PMLR, 2018, pp.
947–956.

[45] A. Sagar, “Aa3dnet: Attention augmented real time 3d object detection,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2022, pp. 628–635.

[46] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space,” Advances in neural information
processing systems, vol. 30, 2017.

[47] J. Kim and J. Cho, “Delaunay triangulation-based spatial clustering technique
for enhanced adjacent boundary detection and segmentation of lidar 3d point
clouds,” Sensors, vol. 19, no. 18, p. 3926, 2019.

[48] H. Wang, Y. Zhang, W. Liu, X. Gu, X. Jing, and Z. Liu, “A novel gcn-based
point cloud classification model robust to pose variances,” Pattern Recognition,
vol. 121, p. 108251, 2022.

[49] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets:
A deep representation for volumetric shapes,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2015, pp. 1912–1920.

[50] P. J. Huber, “Robust Estimation of a Location Parameter,” The Annals of Math-
ematical Statistics, vol. 35, no. 1, pp. 73 – 101, 1964.

[51] WeijingShi, “Point-gnn,” GitHub, (accessed on 2021-12-20). [Online]. Available:
https://github.com/WeijingShi/Point-GNN

[52] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe,
P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Ab-
basi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020.

[53] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,

40

https://github.com/WeijingShi/Point-GNN

Bibliography

R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,
A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[54] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

[55] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[56] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia
et al., “Meshlab: an open-source mesh processing tool.” in Eurographics Italian
chapter conference, vol. 2008. Salerno, Italy, 2008, pp. 129–136.

[57] jijup, “Shapehull3d,” GitHub, (accessed on 2022-04-15). [Online]. Available:
https://github.com/jijup/Shapehull3D/

[58] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint 3d
proposal generation and object detection from view aggregation,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1–8. [Online]. Available: https://github.com/asharakeh/
kitti native evaluation/tree/f2f70059e643556bb825166fdc4dfaf7d1a798a0

[59] J. Hui, “map (mean average precision) for object detection,” Mar 2018,
(accessed on 2022-04-16). [Online]. Available: https://jonathan-hui.medium.
com/map-mean-average-precision-for-object-detection-45c121a31173

[60] yeyang1021, “Kitti viz 3d,” GitHub, (accessed on 2022-04-10). [Online].
Available: https://github.com/yeyang1021/KITTI VIZ 3D

41

https://www.tensorflow.org/
https://github.com/jijup/Shapehull3D/
https://github.com/asharakeh/kitti_native_evaluation/tree/f2f70059e643556bb825166fdc4dfaf7d1a798a0
https://github.com/asharakeh/kitti_native_evaluation/tree/f2f70059e643556bb825166fdc4dfaf7d1a798a0
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://github.com/yeyang1021/KITTI_VIZ_3D

	Titlepage
	Acknowledgments
	Abstract
	Contents
	Introduction
	Introduction
	Challenges
	Contributions
	Organization

	Background
	Object Detection
	Point Cloud
	Voxel
	Downsampling
	Graph
	Radius Neighbour Graph
	Delaunay Graph
	Graph Neural Network (GNN)

	Related Work
	3D Object Detection
	Voxel-based methods
	Point-based methods
	Point-Voxel-based methods
	Graph-based methods

	Local Delaunay Graph based Neural Network
	Graph Construction
	Graph Neural Network for Object Detection
	Loss Function
	Implementation
	Training

	Experimental Results
	System
	Dataset
	Graph Visualization
	Results
	Quantitative Results
	Qualitative Results

	Ablation Study
	Number of Layers in GNN
	Inference Time
	Number of Edges
	Average Precision with Different Radii

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

