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Creating an Urban Heat Vulnerability Index (HVI) in the Face of Climate Change 

Employing Geospatial Technology in Halifax, Canada 

 

 

 

By Md Mehedi Hasan 

 

 

Abstract 

 

 

Heat waves are one of the most common weather events happening in recent decades, 

posing threats to public health especially in urban built-up environments. This study 

employs geospatial techniques to evaluate urban heat vulnerability in the city of Halifax, 

Nova Scotia, Canada. The Heat Vulnerability Index (HVI) was developed through the 

utilization of the Geographic Information System (GIS), integrating exposure, sensitivity, 

and adaptive capacity measures generated using Remote Sensing (GIS) and socio-

economic datasets for four years covering: 2006, 2011, 2016, 2021. The process applies 

an Equal Weight Approach (EWA) to assign equal importance to the 16 normalized 

variables considered in creating the comprehensive HVI. The overarching goal of this 

study was to assess heat vulnerability at a local level by offering a detailed analysis of 

these 16 proposed indicators in an urban setting. The results revealed that the HVI 

attained its peak in the year 2021, exhibiting a variable trajectory in its scores, with all 

years demonstrating a significant high-risk zone encompassing the regional center. 

Findings may enable multiple stakeholders to understand spatial variability of 

temperature anomalies at local level and may identify vulnerable populations at risks.    

 

March 25, 2024 
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Chapter 1: Introduction 

 

In response to changing climates, heat vulnerability indexing is increasingly important in 

fields of urban management and public health. A Heat Vulnerability Index (HVI) 

delineates neighborhoods in which inhabitants face an elevated risk of mortality during 

and in the immediate aftermath of extreme heat events. Employing a statistical model, the 

index synthesizes key social and environmental determinants contributing to the 

vulnerability of a given neighborhood to heat-related risks. 

 

The impact of heat stress varies across Canada due to local climate dynamics, population 

density, and social factors. This escalation in temperature heightens the risk of adverse 

effects on agriculture, water resources, droughts, and public health. Extreme high 

temperatures pose significant hazards to human health, with increased risks of illness and 

mortality, especially in tropical regions where higher temperatures and humidity levels 

coincide more frequently. Climate and weather factors such as temperature, humidity, 

precipitation, and wind speed significantly influence forest fire danger.  

 

Extreme high temperatures cause significant health risks, especially in densely populated 

areas. As temperatures rise, so does the frequency of dangerous heat levels, which can 

exacerbate existing health issues and strain public resources. In Canada, as in other 

regions, vulnerable populations, including the elderly and those with pre-existing health 

conditions, are at increased risk during heatwaves (Sun et al., 2019). Additionally, 

Indigenous communities, particularly those in remote regions, may face unique 

challenges in adapting to and mitigating the impacts of heat stress. Efforts to combat heat 
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stress in Canada must consider the spatial variability of climate impacts and prioritize 

measures to protect vulnerable populations. 

 

Between 1948 and 2016, there was an elevation of 0.7ºC in the annual mean temperature 

across Atlantic Canada, accompanied by an 11% augmentation in normalized annual 

precipitation (Cohen et al., 2019). In contrast to various other Canadian regions, the 

warming trend observed in Atlantic Canada is primarily attributable to heightened 

summer temperatures rather than an escalation in winter temperatures, (Cohen et al., 

2019) . The ramifications of climate change manifest not only through the gradual shifts 

in mean temperature and precipitation but also through alterations in climatic extremes. 

The geographical and climatic complexity of Atlantic Canada, coupled with the 

anticipated escalation of extreme weather events, poses multifaceted challenges to human 

health.(Cohen et al., 2019; Dietz & Arnold, 2021; Philippe Roy & David Huard, 2016). 

Notably, Atlantic Canada's demographic landscape is characterized by an aging 

population, with projections indicating that by the year 2038, an estimated 31.1% of the 

total population will be aged 65 years and above (Dietz & Arnold, 2021). This 

demographic characteristic underscores an augmented susceptibility among elderly 

individuals to health impacts associated with heightened temperatures. This proportion 

surpasses the national average of 25.5% (Dietz & Arnold, 2021; Statistics Canada, 2023). 

 

A considerable segment of the outdoor workforce, predominantly comprising males, is 

involved in the sectors of agriculture, fisheries, forestry, and mining, encompassing 14% 

of the regional labor force, according to Statistics Canada (2020b). Notably, the mortality 
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rate for males at the age of 65 is twice that of females, and their mortality rates 

progressively converge with those of females around the age of 97 (Robine et al., 2012). 

 

Factors contributing to heightened vulnerability in the region include increased built-up 

area, less canopy cover, high population density, a homeless population, inadequately 

insulated homes prevalent in older communities, and aging community infrastructure that 

is more prone to disruption or damage during extreme heat events. These issues are 

underscored in research by Comeau and Nunes (2019) and are further discussed in the 

Rural and Remote Communities chapter as well as the Cities and Towns chapter of the 

National Issues Report. 

 

Temperature, despite being an objective metric, is subjectively felt. Variables like 

humidity and wind chill are crucial in explaining why identical temperatures can evoke 

distinct sensations across different regions globally. In warmer areas like southern 

Ontario, a heat advisory is declared following at least two consecutive days with 

temperatures at or above 30°C and a humidex of 40°C or higher. In contrast, in Labrador, 

a heat advisory may be issued after just an hour of the humidex reaching 40°C (Canadian 

Red Cross, 2024). Whereas the UAE experiences a typical mean temperature range of 

32°C to 37°C during the summer months that is normal in that locality (World Bank, 

2024). Cultural influences also significantly impact thermal perceptions. As noted by 

Naheed and Shooshtarian (2021), one's cultural background contributes to variations in 

thermal tolerance, comfort preferences, clothing choices, environmental attitudes, and 

overall thermal expectations. Different cultural groups develop varying levels of 
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tolerance and comfort perceptions in response to thermal conditions(Naheed & 

Shooshtarian, 2021). 

 

Our bodies strive to maintain a steady internal temperature of 37°C under normal 

circumstances (CCOHS, 2024). When it's hot, we sweat to cool down through 

evaporation. However, higher humidity levels hinder evaporation, leading to a rise in 

body temperature and potential health risks, especially when relative humidity hits 

around 90 percent (CCOHS, 2024). Likewise, wind can swiftly steal our body's heat, 

creating a sensation of temperatures several degrees lower than the actual temperatures. 

Thermal comfort metrics are not universally standardized; different countries employ 

diverse methods of gauging how hot a day feels, influencing risk communication and 

comprehension. For example, Canada uses "Humidex" to quantify perceived heat 

(CCOHS, 2024), while the USA relies on "Heat Index" to assess the apparent 

temperature, considering both air temperature and relative humidity (NOAA, 2024). 

Additionally, there's the "WBGT" (wet bulb globe temperature) system that evaluates 

heat stress during outdoor activities, factoring in temperature, humidity, wind speed, sun 

angle, and cloud cover. This method is utilized by military agencies, the Occupational 

Safety and Health Administration, sports associations, and others to regulate workload or 

exertion levels (NOAA, 2024). Moreover, various entities have proprietary versions with 

undisclosed formulas, such as AccuWeather's "RealFeel," contributing further complexity 

to understanding and managing heat-related risks. 
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This study dealt with LST based heat vulnerability indexing. Producing an HVI is an 

essential tool as it demonstrates the spatial distribution of heat vulnerability across a 

region factoring in vulnerable communities in the analysis.  With a HVI in place, 

governments can identify areas of concern and target interventions to enhance public 

health infrastructure, implementing urban greening initiatives to mitigate the urban heat 

island effect, and improving emergency response systems to effectively address heat-

related emergencies. Moreover, investments in sustainable land management and climate-

resilient infrastructure can help mitigate the risk of wildfires and reduce their impact on 

communities and ecosystems. 

 

The principal aim of this research is to assess the prospective susceptibility to LST based 

heat-related challenges within the urbanized areas of the Halifax Regional Municipality 

(HRM), Nova Scotia. This was accomplished through the application of a rigorous 

methodological framework based on established practices in producing HVI and 

spanning four distinct census years, specifically 2006, 2011, 2016, and 2021. The study 

encompassed two primary procedures: (i) creating indexes on land-surface temperature, 

heat sensitivity, and adaptive capacity and (ii) merging these three vulnerability 

assessment methods to create a HVI. To enhance comprehension and corroborate the 

findings of the HVI, indices for Urban Heat Island (UHI) were generated. Once created, 

the UHI helped to identify areas within Halifax that experience higher temperatures due 

to urbanization and human activities, highlighting areas that experience significantly 

higher temperatures compared to their surroundings. Adding UHI mapping allows for a 

deeper understanding of which populations are most at risk and why, corroborating the 
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results of the original HVI, and ensuring targeted interventions and resources are suitably 

allocated.  

 

This research is structured into six chapters, commencing with an extensive literature 

review in chapter two that elucidates seminal investigations pertaining to Heat 

Vulnerability Indexing. Chapter three expounds upon the methodologies employed, 

encompassing both the delineation of the study area and the acquisition of datasets. The 

study confines its scope to the urban precinct of Halifax, Canada. Socioeconomic data 

boundary shapefiles utilized in this research were procured from the Statistics Canada 

website while spatial data, including Landsat 5 & 8 from the USGS website and 

Landcover Data from the Commission for Environmental Cooperation of North 

America’s website, were instrumental. The analysis is executed at the level of Census 

Dissemination Areas (DAs). Chapter four meticulously presents the outcomes derived 

from the analytical procedures. Subsequently, chapter five provides a comprehensive 

discussion, affording an opportunity to delve into the findings expounded in chapter four. 

The concluding chapter culminates the study by accentuating key insights gleaned from 

the research, proffering recommendations for future research trajectories, and deliberating 

on the ramifications of the research findings vis-à-vis practical policy enhancements.  
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Chapter 2: Literature Review 

 

Contemporary climate projections clearly indicate that the effects of greenhouse gas 

emissions are fueling climate change with escalating temperatures across many urbanized 

areas  throughout the 21st century (IPCC, 2013; Meehl & Tebaldi, 2004; Schär et al., 

2004). Numerous global and regional studies have underscored the heightened likelihood 

of heatwaves as an expected consequence(Beniston et al., 2007; Chauvin & Denvil, 2007; 

Huth et al., 2000; Vautard et al., 2007). In 2019, the average temperature has approached 

nearly 1 degree Celsius above the 20th-century average of 13.9°C, as reported by the 

National Oceanic and Atmospheric Administration (NOAA) (NOAA, 2023). 

Additionally, the years from 2015 to 2019 were characterized by some of the most lethal 

heatwaves, as documented by the World Meteorological Organization (WMO) (WMO, 

2019). Across the globe, cities are increasingly experiencing unpleasant and life-

threatening situations due to exceptionally high temperatures  (Brooke Anderson & Bell, 

2011; Geladi, 2018; Harlan et al., 2013; Loughnan et al., 2013; Sheridan et al., 2012). 

And there is a growing apprehension between both the public and institutional 

stakeholders regarding the increased vulnerability of urban areas to these occurrences 

(Lemonsu et al., 2015). 

 

The twenty-first century is expected to witness an escalation in the frequency, severity, 

and duration of the extreme heat events across North America and Europe with potential 

exacerbation due to elevated humidity and increased levels of air pollution (Kershaw & 

Millward, 2012). Extreme heat events currently stand as the leading cause of summer-

related fatalities in the United States, emphasizing the critical need for research in heat 
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risk assessment. According to the World Health Organization (WHO), heatwaves 

accounted for more than 166,000 fatalities between 2000 and 2017 (Karanja & Kiage, 

2021; United States Environmental Protection Agency Office of Atmospheric Programs, 

2006). The severe heatwaves of 2003, which claimed more than 15,000 lives in France 

and 30,000 across all of Europe (Karanja & Kiage, 2021; United States Environmental 

Protection Agency Office of Atmospheric Programs, 2006). Canadian cities have also 

experienced excessive mortality rates due to extreme heat events (Aminipouri et al., 

2016). From 1900 to 2009, Canada has documented six such extreme heat events, which 

collectively led to a little over 1,300 fatalities (as reported by Public Safety Canada in 

2013 and Health Canada in 2011) (Government of Canada, 2014; Health Canada, 2011). 

In Vancouver, the extreme heat event of the summer of 2009 was associated with an 

estimated excess mortality of 112 individuals (Aminipouri et al., 2016).  

 

According to Health Canada, common high-risk demographics encompass seniors, young 

children, individuals with chronic illnesses, and those who are socially disadvantaged, 

while the outcomes may differ based on specific locations and events (Harlan et al., 2013; 

Health Canada, 2011; Hondula et al., 2015). In late July and early August 2009, 

Vancouver International Airport has recorded a maximum and minimum temperatures of 

30.9°C (19.6°C) on July 28, 34.0°C (20.2°C) on July 29, and 34.4°C (22.4°C) on July 30, 

all under clear skies with an average relative humidity of 57% (Baccini et al., 2011). 

Shortly after the onset of the heatwave, BC's rapid mortality surveillance system has 

revealed a 40% increase in deaths among greater Vancouver residents through August 

2009 (Baccini et al., 2011). The stagnant atmospheric conditions and the unrelenting solar 
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radiation have also contributed to the accumulation of high ground-level ozone 

concentrations, prompting the region to be placed under an air quality advisory for most 

of the heat dome's duration in 2021 in BC (Henderson et al., 2021). According to (Health 

Canada, 2023), Nova Scotia has been identified as one of the regions expected to 

experience a rise in extreme heat events, which pose significant risks to the health and 

well-being of the local communities (Health Canada & Government of Canada, 2023). 

The forecast indicates that Nova Scotia is likely to witness an annual increase in the 

number of hot days, with some areas, such as Annapolis County, possibly encountering 6-

10 days where temperatures exceed 30°C by the year 2050 (Health Canada & 

Government of Canada, 2023). Health Canada has also recognized that extreme 

temperatures pose a heightened risk, especially for young children, pregnant women, 

older adults, individuals with chronic health conditions, and those who engage in outdoor 

work or exercise (Health Canada & Government of Canada, 2023). To address these 

concerns, a collaborative effort involving Environment and Climate Change Canada, 

Health Canada, and the Nova Scotia Department of Health and Wellness has been 

established to implement a heat alert system in 2023 (Health Canada & Government of 

Canada, 2023). 

 

In light of these temperature increases, the concept of Urban Heat Island (UHI) has 

become a critical area of research in the recent urban climate literature and significantly 

impacting the urban built environment(Leya et al., 2022). UHI relies on several factors 

related to spatial dimensions, configuration, composition, landscapes, and layout of city’s 

neighborhoods while delineating the surface temperature. The UHI effect is a heat 
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accumulation phenomenon that occurs within urban areas because of urban development 

and human activities (Yang et al., 2016). 

 

The HVI enables a more comprehensive examination of heat-related risk factors, aiding 

multiple stakeholders in making efficient decisions for areas with comparatively greater 

heat vulnerability(Mallen et al., 2019). Heat-related morbidity and mortality among 

vulnerable populations may rise with the projected increase in frequency, intensity, and 

the duration of extreme heat events worldwide(Nayak et al., 2018). Implementing HVI 

assessments at the neighborhood level may empower public health professionals and 

emergency responders to assist populations facing elevated risks of heat-related stress. 

The capacity to visually represent the spatial distribution of heat vulnerability at 

neighborhood scale is in demand and can enable local authorities to allocate resources 

efficiently and provide aid to the most vulnerable areas. Findings from this research may 

enable local government organizations to concentrate their emergency response and 

services and aid the existing climate-adaptation strategies in neighborhoods where the 

risk of heat-related illnesses and fatalities is evident(Chuang & Gober, 2015). 

HVIs serve as a methodology for evaluating heat vulnerability by focusing on three risk 

components (i.e., Sensitivity, Exposure and Adaptive Capacity). Physical exposure refers 

to the proximity of a location to environmental hazards like heatwaves or natural 

disasters. Sensitivity pertains to the inherent characteristics of a population that affect its 

vulnerability to these hazards. Adaptive capacity represents the community's ability to 

effectively manage and respond to the consequences and aftermath of hazardous events 

(Chuang & Gober, 2015). 
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In the body of literature, several methods have been identified to delineate HVI around 

the world.  Principal Component Analysis (PCA) (Harlan et al., 2013; Hondula et al., 

2015; Johnson et al., 2012; Maier et al., 2014; Nayak et al., 2018; Reid et al., 2009; Wolf 

& McGregor, 2013) is commonly used to reduce multiple heat-related indicators to a 

smaller set of uncorrelated principal components, which capture most of the variation in 

the data. EWA (Aubrecht & Özceylan, 2013; W. T. L. L. Chow et al., 2013; X. Liu et al., 

2020; Tomlinson et al., 2011a; Vescovi et al., 2005) is used to assign the same proportion 

to each vulnerability indicator and aggregate them to derive the HVI. Geographic 

Information System (GIS) (Bradford et al., 2015; Inostroza et al., 2016; Yuan & Bauer, 

2007) is used to integrate spatially explicit indicators for exposure, sensitivity, and 

adaptive capacity within a GIS environment to calculate the HVI. Furthermore, Local 

Indicators of Spatial Association (LISA) (Corbin, 2015) is used to identify hotspots, cold 

spots, and outliers in vulnerability within specific geographic regions. Nayak et al., 

(2018) have conducted a univariate analysis and have evaluated the correlations among 

the variables using Spearman's correlation coefficients (Nayak et al., 2018). Where the 

correlation has helped to identify a pattern among the variables. In this method, PCA is 

used additionally to provide weight to the variables and then reduce the number of 

variables to a smaller set of principal components. These normalized scores are then 

divided into six groups based on their mean and standard deviations. Each group is 

assigned a score ranging from 1 to 6, where a score of 1 represents the least vulnerability, 

and a score of 6 indicates the highest vulnerability. The HVI is then formulated by 

summing the scores across the components for every census tract. Mallen et al., (2019) 

have compared heat vulnerability scores through a PCA to estimate the HVI (Mallen et 
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al., 2019). Afterwards, they have integrated these obtained scores with heat-related 

mortality. These analyses have been carried out specifically for the City of Dallas, Texas, 

USA, utilizing  high-resolution land cover datasets (produced based on classified aerial 

imageries) generously provided by the City of Dallas and the Texas Trees Foundation 

(Mallen et al., 2019). Liu et al., (2020) have used both (i) EWA and (ii) PCA to identify 

and summarize indicators for obtaining the HVI (X. Liu et al., 2020). In this study, the 

authors have used Google Earth Engine (GEE) to retrieve satellite data, which is from 

Landsat 8 (provided by USGS). While the thermal infrared band of Landsat 8 originally 

have a spatial resolution of 100 meters, the USGS resamples all its products to 30 meters 

using a cubic convolution resampling technique. They have employed GEE, and used 

Landsat 8 surface reflectance tier 1 dataset, which allowed them to compute the average 

Land Surface Temperature (LST) during the period spanning June to August in 2013 (X. 

Liu et al., 2020). 

 

In EWA, they have assumed that all nine indicators held equal influence on heat 

vulnerability. Consequently, they aggregated these indicators with equal weighting to 

derive the final heat vulnerability metric, denoted as HVIEWA.  

In PCA, they have utilized varimax rotation to ensure orthogonality among the reduced 

indicators, thereby enhancing their ability to transform correlated indicators into linearly 

uncorrelated components (X. Liu et al., 2020). 

 

Inostroza et al., (2016) have developed the HVI utilizing a Geographic Information 

System (GIS) to integrate spatially explicit indicators for exposure, sensitivity, and 
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adaptive capacity. These indicators are derived from both remote sensing data and socio-

economic information, are processed through PCA (Inostroza et al., 2016). The HVI is 

formulated as a function of component impacts and adaptive capacity, which were 

themselves characterized by exposure and sensitivity. This disaggregated approach allows 

them to better understand variations in vulnerability levels, compared to a bulk 

assessment, making it more valuable for informing policy decisions. They conducted a 

PCA, which statistical technique have transformed the original variables into a smaller 

number of principal components that capture most of the variance in the observed data. 

They also used a variance-weighted approach to assign weights to the variables by 

aggregating the variance explained by each component. They further have enhanced their 

interpretations and have dispersed loadings across the principal components by applying 

an orthogonal (Varimax) rotation of eigenvectors. This has resulted in interpretable 

factors that revealed a simpler structure. The resulting z-score matrix represents a new set 

of uncorrelated variables, enabling further mathematical analysis (Inostroza et al., 2016). 

To facilitate this analysis, they have standardized all datasets, transforming them into 

ratios ranging between zero and one and have created four distinct data matrices, each 

corresponding to a specific urban type, and accounting for various land type classes. 

Parallel analysis is conducted on each matrix, suggesting the optimal number of factors 

required to adequately represent the covariance structure among observed variables. To 

analyze the spatial distribution of vulnerability across different urban classes in Nebraska, 

(Corbin, 2015) has employed the Local Indicators of Spatial Association (LISA) 

methodology. This technique helps identify hotspots, cold spots, and outlier census tracts 

based on total vulnerability. LISA compares the difference in the desired variable for each 
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tract with that of its neighboring tracts, using a distribution of permutations with 

randomly assigned values to the tracts.  

 

Several existing studies focus on the United States and various European cities, with 

limited research conducted in Canada. Notably, only a few provinces, such as BC and 

Ontario, have received significant attention from researchers, while others, like Nova 

Scotia, have added little to no research articles and scientific evidence.  Halifax makes for 

an obvious case for producing a HVI as it serves as the primary city in Nova Scotia and 

the largest city in Canada’s Maritime region.  Previous literature highlights the 

importance of categorizing variables for the development of the HVI; however, most 

variables used in previous studies are not suitable for this specific study area. Extensive 

background research determined the appropriate variables for developing the HVI within 

three major categories: Exposure, Sensitivity, and Adaptive Capacity. Exposure consists 

of Land Surface Temperature (LST), impervious surfaces, tree cover, population density 

and daytime population density to identify areas with the greatest exposure to heat stress. 

Sensitivity considered variables such as the proportion of people over the age of 65, 

individuals living alone, low-income households, and those with lower levels of 

education to assess sensitivity.  Finally, adaptive capacity considered income, education 

levels, and access to air conditioning as factors in calculating the adaptive capacity of the 

population. Each of the variables in the index was assigned an equal weighting (Aubrecht 

& Özceylan, 2013; W. T. L. Chow et al., 2012; Dong et al., 2014; Tomlinson et al., 

2011b).  Google Earth Engine (GEE), and data from Landsat 5 and 8 were employed to 

determine the Land Surface Temperature (LST). 
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Chapter 3: Methods 

 

3.1 Study Area 

Halifax is the primary urban center of Canada’s Maritime region and is also the provincial 

capital of Nova Scotia. The city is situated at 44°52′00′′N and 63°42′58′′W with an area of 

approximately 5,475.57 km2 (i.e., Regional Municipality) (Hasan et al., 2023; Statistics 

Canada, 2023). A significant consolidation took place in 1996, leading to the formation of 

HRM by merging the city of Halifax, the city of Dartmouth, the town of Bedford, and 

Halifax County Municipality(McGillivray, 2019). 

      

Figure 3.1, (a) Map of Canada showing the location of the province of Nova Scotia. (b) 

Map of Nova Scotia showing study area location (red box). (c) Study area map showing 

land cover classes in urban and suburban areas of Halifax. Data Source: Halifax Open 

Data Portal, World Cover 2021 v200 and GeoNova: Geographic Data Directory. 
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Halifax experiences a humid continental climate characterized by warm summers and 

relatively mild winters. January stands as the coldest month, with August being the 

warmest (Halifax Regional Municipality, n.d.). The highest temperature ever recorded 

was 37.2 degree Celsius in 1912, while the lowest temperature recorded was -29.4 ˚C in 

1922 (Halifax Regional Municipality, n.d.; Kennedy, 2021). The average annual 

temperature in the HRM area is approximately 7.5˚C, dropping to -5.9 ˚C in the coldest 

winters and reaching 18.8 ˚C during the warmest summers (Hasan et al., 2023). 

Precipitation remains high throughout the year (1468.1 mm), and winters see a mix of 

rain, freezing rain, and snow (154.2 cm). Notably, 2014-15 has been marked as one of the 

coldest, snowiest, and stormiest periods in the city (Environment and Climate Change 

Canada., 2023). 

 

In addition to being the provincial capital, Halifax holds the distinction of being the 

largest municipality and the economic hub of the Atlantic Canada. It hosts over 40% of 

Nova Scotia’s residents, serves as the primary hub for finance, commerce, and industry in 

both the province and Atlantic Canada (Halifax Regional Municipality, n.d.). The city 

boasts a wide-ranging manufacturing sector encompassing food processing, furniture 

production, shipbuilding, clothing manufacturing, and contributions to the aerospace and 

defense industries (Halifax Regional Municipality, n.d.). It holds the top position in 

provincial rankings and is the 13th most populous city in the country (Statistics Canada, 

2023). From 403,131population in 2016, it has grown by 9.1% to reach 439,819 in 2021. 

This increase has resulted in a population density of 80.3 people per square kilometer. 

Between the 2016 and 2021 censuses, Halifax’s urban expanse has recorded a 3.57 km2 

increase, transitioning from 234.72 km2 to 238.29 km2. Urban expanse occupies a meager 
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5 percent or less of the municipality’s land area (Statistics Canada, 2023). The urban 

environment is dominated by a few exceptions such as parks and green spaces. 

 

3.2 Variable Selection and Data Requirements: 

Extreme heat vulnerability is not uniform across all populations; it varies due to 

differences in neighborhood socio-economic status, environmental conditions, and 

infrastructure. Numerous studies have identified a spectrum of factors that impact an 

individual's or a community's susceptibility to extreme heat events. These factors 

encompass but are not limited to, local climatic conditions, age, income levels, housing 

quality, health status, access to cooling facilities, and social support networks (Bélanger 

et al., 2015; Coates et al., 2014; Gronlund et al., 2015; Harlan et al., 2013; Hondula et al., 

2015; Onozuka & Hagihara, 2015; Student et al., 2011). 

Table 3.1, Variables identified in previous research. 

Title Author Sources Variables 

A Heat Vulnerability Index: 

Spatial Patterns of Exposure, 

Sensitivity and Adaptive 

Capacity for Santiago de Chile. 

(Inostroza et al., 

2016) 

Exposure: Land Surface Temperature (LST) 

Sensitivity: 

i) Elderly population 

ii) Very young population 

iii) Disabled population 

iv) Family structure 

v) Education level 

vi) Unemployment 

Adaptive Capacity: 

i) Access to communication technologies 

ii) Access to water supply 

iii) Material Index 

iv) Access to medical services 

v) Normalized Difference Vegetation Index 

(NDVI) 

vi) Roads 

 

Development of a heat 

vulnerability index for New 

York State. 

(Nayak et al., 

2018) 

i) Social/language vulnerability 

ii) Socioeconomic vulnerability 

iii) Environmental/urban vulnerability and 
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iv) Elderly/ social isolation. 

 

A methodological assessment of 

extreme heat mortality modeling 

and heat vulnerability mapping 

in Dallas, Texas. 

(Mallen et al., 

2019) 

Exposure: No green space 

Sensitivity: 

i) Over age 65 

ii) Living alone 

iii) Over age 65 and living alone 

iv) Race other than white. 

Adaptive capacity: 

i) Living below poverty line 

ii) Less than high school education 

iii) No AC access. 

iv) Diabetes prevalence No full AC access 

 

Mapping Urban Heat 

Vulnerability of Extreme Heat in 

Hangzhou via Comparing Two 

Approaches. 

(X. Liu et al., 

2020) 

Demographic and socioeconomic data: 

Total population, population aged 65+, living alone, less 

education, unhealthy population over 60. 

Cooling facilities data: 

Public access to cooling facilities (e.g., supermarkets, 

shopping plazas and libraries) 

Green space data: 

Deciduous forest, evergreen forest, mixed forest, shrub, 

grassland, parks, and wetlands 

Health related death data: 

Cardiovascular diseases, respiratory diseases, heat 

stroke, dehydration, and hyperpyrexia were related to 

heatwaves. 

Vulnerability dimensions: 

i) Age and health status 

ii) Social isolation 

iii) Low-educated members 

iv) Economic factors 

v) Environmental exposure. 

 

Mapping Heat Vulnerability 

Index Based on Different 

Urbanization Levels in 

Nebraska, USA. 

(Jalalzadeh Fard 

et al., 2021) 

i) Age over 60 

ii) Age over 60 living alone 

iii) Below poverty line 

iv) Race other than white. 

v) English language barrier 

vi) Between 18 and 64 with disability, and 

vii) Education of less than high school diploma. 

 

Socio-spatial Modeling for 

Climate-Based Emergencies: 

Extreme Heat Vulnerability 

Index. 

(Stanforth et al., 

2016) 

i) Age 65 and older, female 

ii) Age 65 and older, male 

iii) Age 65 and older: female socially isolated 

iv) White race population 

v) Age 65 and older: male socially isolated 

vi) Mean family income. 
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vii) Per capita income 

viii) Mean household income. 

ix) Adult population without high school diploma 

x) Asian race population 

xi) Age 65 and older. group living. 

xii) Hispanic race population 

xiii) Adult population with high school diploma 

xiv) NDBI 

xv) NDVI 

xvi) Black race population 

xvii) Land surface temperature. 

 

Delineation of Spatial Variability 

in the Temperature–Mortality 

Relationship on Extremely Hot 

Days in Greater Vancouver, 

Canada 

(Ho et al., 2017) 

i) Average (range) deaths per day. 

ii) Percent male 

iii) Mean (SD) age at death (years) 

iv) Mean (SD) land surface temperature (°C) 

v) Mean (SD) air temperature (°C) 

vi) Mean (SD) humidex (°C) 

vii) Mean (SD) VANDIX 

viii) Mean (SD) percent not graduated from high 

school. 

ix) Mean (SD) unemployment rate (%) 

x) Mean (SD) percent with no university degree. 

xi) Mean (SD) percent of single parent families. 

xii) Mean (SD) average income ratio. 

xiii) Mean (SD) percent of homes rented. 

xiv) Mean (SD) labor nonparticipation rate. 

xv) Mean (SD) density of population ≥ 55 years 

(per km2) 

xvi) Mean (SD) density of persons living alone (per 

km2) 

xvii) Mean (SD) density of housing built before 

1970. 

 

2023 Heat Vulnerability Index 

Released by Multnomah County 

Health Department 

(Office of 

Sustainability, 

2023) 

Exposure: 

i) People per Square Mile. 

ii) Housing Units per Square Mile. 

iii) Percent Tree Canopy Cover. 

iv) Percent Vegetative Cover. 

v) Percent Impervious Surfaces. 

vi) Annual Average Surface Temperature. 

Sensitivity: 

i) Population Under 18 Years of Age. 

ii) Population Over 65 Years of Age. 

iii) Population Over 65, Living Alone. 

iv) Male Population. 

v) Prevalence of Coronary Heart Disease. 

vi) Prevalence of Adults with Diabetes. 
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vii) Prevalence of Adults in Poor Physical Health. 

Adaptive capacity: 

i) Population with Less than a bachelor’s degree. 

ii) Population in Rental Housing. 

iii) Population with Cognitive Difficulty. 

iv) Foreign-Born Population. 

v) Population Speaking English "Not Well". 

vi) Black, Indigenous, and People of Color. 

 

After an in-depth literature review and careful consideration, we selected vulnerability 

indicators (both exogenous and endogenous) and utilized a wide range of open data sources 

to complete this study. Utilization of open data has enabled rapid and convenient access to 

the required data and aided the completion of the study. Table 3.2 summarizes the data 

required for this study along with the appropriate sources where land surface temperature, 

no canopy cover and built-up area are Endogenous variables while the rest are Exogenous 

variables.  

Table 3.2, Synopsis of the data sources for the variables employed in the analysis. 

Index  Variable Variable Description Data & Year Data Source 

Exposure 

1 

Land Surface 

Temperature (LST) 

Temperature of the Earth's 

Surface 

Landsat 5 

USGS 
2006 2011 

Land Surface 

Temperature (LST) 

Temperature of the Earth's 

Surface 

Landsat 8 

2016 2021 

2 No Canopy Cover 
Area Lacking Canopy 

Cover 

Landcover North 

American 

Environmental 

Atlas 

2005 2010 

2015 2020 
3 Built-up area Built-up surfaces 

4 Population density 
Population density  

(per sq. km) 

Census Data 
Statistics 

Canada 
2006 2011 

2016 2021 

Sensitivity 

1 Male population 
Proportion of male 

population in each DA 

Census Data 

2006 2011 

2016 2021 
 

Statistics 

Canada 
2 

Very young 

population 

Population per sq. km 

under 4 years old in each 

DA 

3 Elderly population 

Population per sq. km 

over 65 years old in each 

DA 

https://earthexplorer.usgs.gov/
http://www.cec.org/north-american-environmental-atlas/
http://www.cec.org/north-american-environmental-atlas/
http://www.cec.org/north-american-environmental-atlas/
http://www.cec.org/north-american-environmental-atlas/
https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-eng.cfm
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Adaptive 

Capacity 

1 Low income HH 
Proportion of households 

with low-income status 

Census Data 

2006 2011 

2016 2021 
 

Statistics 

Canada 

2 Living alone 
Proportion of living alone 

population 

3 

Population with No 

knowledge of official 

language 

Proportion of residents 

who are not acquainted 

with the official language 

4 Private HHs rented 

Proportion of private 

dwellings under rental 

contracts 

5 Ethnicity 
Proportion of ethnic 

/minor population 

6 

Population over 15 

years old without 

high school degree 

Proportion of 15 years and 

older population with no 

high school degree 

7 

Population over 15 

years old with no 

fixed workplace 

Proportion of 15 and 

above aged population 

without a permanent 

workplace 

8 

Population over 15 

years old with no 

private car 

Proportion of the 15 and 

above aged population 

without access to a private 

car 

9 

Non-Canadian 

population living in 

private HHs 

Proportion of non-

Canadian residents 

residing in private HHs 

Other Datasets 

Serial No Data File Type Year Data Source 

1 Dissemination Area Shapefile (.shp) 
2006 2011 

Statistics 

Canada 

2016 2021 

2 Tax Designated Area Shapefile (.shp) N/A 

3 
Country and Provincial 

Boundary 
Shapefile (.shp) N/A 

4 Population Center Shapefile (.shp) 
2011 

2016 2021 

5 Regional Core Shapefile (.shp) N/A HRM Open 

Data  6 Heritage Conservation Districts Shapefile (.shp) N/A 

 

3.3 Methods Overview: 

Different combinations of exposure, sensitivity and adaptive capacity have been widely 

used by scholars to calculate HVI (Aminipouri et al., 2016; Conlon et al., 2020; Mallen et 

al., 2019; Sabrin et al., 2020). This study opted to identify the vulnerability indicators 

(summarized in table 3.2) and calculated the HVI for the urban area of HRM in 2006, 

2011, 2016, and 2021 for this study. All the selected variables were prepared and 

https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-eng.cfm
https://data-hrm.hub.arcgis.com/pages/open-data-catalogue
https://data-hrm.hub.arcgis.com/pages/open-data-catalogue
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statistically analyzed before generating the model. Calculations were completed upon 

combining socio-economic data and remotely sensed satellite imagery. By adding 

exposure (E), sensitivity (S), and the adaptive capacity (A) scores, we then computed the 

HVI, which finally stands as: 

HVI = E+ S + A 

In doing so, this study conducted five major steps, such as: (1) identification of data types 

and sources; (2) data acquisition and preprocessing; (3) Statistical analyses; (4) 

Calculations and Preparation of the HVI; and (5) Generating HVI to the dissemination 

area level. Figure 3.2 illustrates the diagram of methodological approach adopted in this 

study. 
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 Figure 3.2, Schematic diagram of the adopted method of the study.  
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3.4 Identification of Data Types and Sources 

Initially, this study identified a combination of different datasets and formats [i.e., Raster 

Data (e.g., Landsat 5 & 8 imageries; landcover data 2005, 2010, 2015, 2020); Census Data 

(e.g., population density, young population, population age over 65, minority status, 

education level etc.); Vector data (i.e., GIS Shapefiles)] in order to progress the study.  

Remote sensing data was captured from reliable sources (e.g., USGS, CEC North American 

Atlas and GEE) while vector data (e.g., dissemination area, tax designated area, and 

geographical boundaries etc.) were freely accessible from both Statistics Canada, and 

Halifax Open Data website.  

3.5 Data Acquisition and Preprocessing 

GIS datasets were mainly downloaded from Statistics Canada and Halifax Open Data 

website. Census data were obtained from Statistics Canada. The Canadian census is a 

valuable source of demographic and socio-economic data that provides insights into the 

country's population trends, characteristics, and distribution. One key aspect that varies 

between census years is the survey methodology and sample percentage. For instance, the 

2006 and 2011 censuses were conducted using a mandatory long-form census 

questionnaire that was sent to a sample of households. However, in 2011, there was a 

shift to a voluntary National Household Survey (NHS) for the long-form questions, 

which led to concerns about data accuracy and representativeness due to a lower response 

rate. 

In contrast, the 2016 and 2021 censuses reverted to a mandatory long-form questionnaire, 

ensuring a more comprehensive and reliable data collection process. This change allowed 

for a more detailed analysis of socio-economic characteristics such as income, education, 
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employment, housing conditions, and language spoken at home. Consequently, the raster 

data (e.g., Landsat 5 & 8 imageries) was acquired from USGS and Landcover datasets 

were extracted from the North American Environmental ATLAS website. This study 

utilized Landsat imagery from two satellites: Landsat 5 (1984-2013) and Landsat 8 

(2013-present). Specifically, Landsat 5 imagery was chosen for the years 2006 and 2011, 

while Landsat 8 imagery was used for 2016 and 2021. Landsat 7 data was excluded due 

to known scan line errors, ensuring the highest quality data analysis. Afterwards, the 

preprocessing steps were conducted to make the data available for the model in an 

appropriate format. This procedure involved stages such as: reading meta files, checking 

and cleaning data, normalizing the information in an appropriate scale, ensuring 

unidirectionality of the information, filling the missing values, and converting the raw 

data into the required format, among various other technical steps. 

3.5.1 Selection of Exposure Variables 

 

Firstly, collections of Top of Atmosphere (TOA) brightness temperatures (BT), and 

Surface Reflectance (SR) for the study area were downloaded in GEE platform. 

Following that, a cloud mask was applied to both using the quality assessment bands. The 

SR data are, in turn, used to compute NDVI, which is then converted to FVC values 

using the subsequent formula. 

𝐹𝑉𝐶 =  (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑏𝑎𝑟𝑒

𝑁𝐷𝑉𝐼𝑣𝑒𝑔− 𝑁𝐷𝑉𝐼𝑏𝑎𝑟𝑒
)

2

                                          (1) 

Here, 𝑁𝐷𝑉𝐼𝑏𝑎𝑟𝑒 = NDVI estimates of completely bare pixels and 𝑁𝐷𝑉𝐼𝑣𝑒𝑔 = NDVI 

estimates of fully vegetated pixels. In accordance with earlier examinations  (Jiménez-

Muñoz et al., 2009; Prihodko & Goward, 1997; Ren et al., 2017; Tang et al., 2010; F. 
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Wang et al., 2015) , these two threshold values are set to 𝑁𝐷𝑉𝐼𝑏𝑎𝑟𝑒  = 0.2 and 𝑁𝐷𝑉𝐼𝑣𝑒𝑔  = 

0.86. FVC values are then used together with previously computed ASTER emissivity 

values for bare ground to obtain the corresponding Landsat emissivity. The subsequent 

formula was employed for this purpose. 

 𝜀𝑏=𝐹𝑉𝐶𝜀𝑏, veg+(1−𝐹𝑉𝐶) 𝜀𝑏, bare (2) 

Here, prescribed value of 𝜀𝑏, veg = 0.99. 𝜀𝑏, veg and 𝜀𝑏, bare is the emissivity of 

vegetation and b = bare ground for a given spectral band. Finally, the SMW algorithm (3) 

is applied to the TOA TB of the Landsat TIR band.  

 LST=Xi
𝑇𝑏

Ɛ
 + Yi

1

Ɛ
 + Zi (3) 

Here, Tb is the TOA brightness temperature in the TIR Channel, and Ɛ is the surface 

emissivity for the similar channel. The algorithm coefficients Xi, Yi and Zi are molded 

from linear regression of radiative transfer simulations performed for 10 classes of 

TCWV (I = 1,…,10) and are mapped onto the Landsat image The code and the look up 

table containing the coefficients are available to the users in the indicated repository 

shared by Ermida et al. (2020). 

Table 3.3, Outlining the properties of the spectral bands sourced in this study for each 

Landsat satellite imagery. 

Name of the 

Satellite 
Bands Used 

Wavelength 

(µm) 
Dataset 

Spatial 

Resolution 
Image Dates 

Landsat 5 

(TM) 

Red: B3 

NIR: B4 

TIR: B6 

0.63–0.69 

0.76–0.90 

10.4–12.5 

C01/T1_SR 

C01/T1_SR 

C01/T1_TOA 

30 m 

30 m 

1202 m 

3 July 2006 

and 

21 August 2011 

Landsat 8 

(OLI; TIRS) 

Red: B4 

NIR: B5 

TIR: B10 

0.64–0.67 

0.85–0.88 

10.6–11.19 

C01/T1_SR 

C01/T1_SR 

C01/T1_TOA 

30 m 

30 m 

1002 m 

21 August 2016 

and 

16 August 2021 
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Also, the built-up area and the canopy covered area were extracted from the Land Cover 

Data provided by North American Environmental Atlas. As the canopy cover was 

considered as an exposure variable, to ensure unidirectionality of the data it was 

subtracted from 100 to get the area lacking canopy cover or simply to get the extent of 

exposed ground. So, the final variable was calculated as: 

No Canopy Cover = 100 – (Canopy Cover) 

Zonal statistics for each dissemination area (2006,2011,2016,2021) were calculated 

(averaged) using ArcGIS Pro 3.2.1. 

3.5.2 Sensitivity Variables 

 

To qualify for sensitivity, this study chooses three variables from the census database, as 

specified in table 3.2: 1) male population, 2) very young population and 3) elderly 

population.  Children included those four years or younger. For elderly population 

variable proportion of 65 years of age or older individuals were included. 

 

3.5.3 Adaptive Capacity Variables 

 

Quantifying adaptive capacity employed nine variables (Table 3.2)  : 1) low-income 

households variable includes proportion of households with low-income status after tax, 

2) Living alone variable includes proportion of living alone population in private 

households, 3) Population with no knowledge of official language variable includes the 

proportion of residents who are not acquainted with the official language( 

English/French), 4) Private HHs rented variable includes the proportion of private 

dwellings under rental contracts, 5) Minor population variable includes the proportion of 

minority population in the community, 6) Population over 15 years old without high 
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school degree variable includes the proportion of 15 years and older population with no 

high school degree, 7) Population over 15 years old with no fixed workplace variable 

includes the proportion of 15 and above aged population without a permanent workplace, 

8) Population over 15 years old with no private car variable includes the proportion of the 

15 and above aged population without access to a private car, and 9) Non-Canadian 

population living in private HHs variable includes the proportion of non-Canadian 

residents residing in private households. 

3.6 Statistical analysis 

Statistical analyses were performed using MS Excel and then incorporated into the spatial 

datasets. This study excluded all the census dissemination areas where the population is 

zero. Beforehand, this study normalized all the variables by dividing the numerator 

(intervention population) by denominator (total eligible population). The following 

scoring mechanism was applied to each component: 

Z-Score = 
[𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒− 𝑀𝑒𝑎𝑛𝑥]

𝑆𝑡𝑑.  𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

To accomplish the final Z-score this study adopted the scoring scheme from Reid et al., 

2009. It is presented on table 3.4 (Reid et al., 2009). An example of the Z-score is 

included in the appendix section. 

Table 3.4, HVI scores assigned to each component in this study. 

Range of Z-Score Assigned HVI Component Score 

-2 or lower 1 

-2 to -1 2 

-1 to 0 3 

0 to 1 4 

1 to 2 5 

2 or higher 6 
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3.7 Calculations and Preparation of the HVI 

Employing a succession of "nested if statements", the ultimate score was obtained and 

subsequently this process was iterated for each indicator. The EWA was employed for the 

weighting of all indicators in the construction of the HVIEWA. The ultimate 

representation of the HVIEWA is outlined below: 

HVIEWA = 𝐸 + 𝑆 + 𝐴 

Here, E = Average of all Exposure Variable, S = Average of all Sensitivity Variables, A = 

Average of all Adaptive Capacity Variable 

 

3.8 Mapping HVI to the Dissemination Area Level: 

In this stage, weighted HVIEWA scores were added to the dissemination area shapefiles 

(2006, 2011, 2016, 2021) in ArcGIS Pro and HVIEWA maps were produced to 

demonstrate the findings for different periods. These maps were prepared at 

dissemination areas (DA), to demonstrate local units of a census district. 

 

3.9 Estimating UHI index, UTFVI and UHS: 

3.9.1 Urban Heat Island (UHI) Index: 

 

Heat islands are urbanized areas that experience higher temperatures than outlying areas. 

The heat island effect can result in significant temperature differences between rural and 

urban areas(EPA - U.S. Environmental Protection Agency, 2012; Yang et al., 2016). This 

study classified LST maps into five temperature classes using means and standard 

deviation to create a UHI index (Amindin et al., 2021; Xu et al., 2013) (Table 3.5). 
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Table 3.5, UHI scores assigned to each component in this study. 

Class range Class name 

T ≤ T Mean − 1.5std Very cold temperature 

T Mean − 1.5std < T ≤ T Mean + std Cold temperature 

T Mean + std < T ≤ T Mean – std Moderate temperature 

T Mean − std < T ≤ T Mean + 1.5std Hot temperature 

T > T Mean + 1.5std Very hot temperature 

 

3.9.2 Urban Thermal Field Variance Index (UTFVI): 

 

UTFVI serves as a commonly employed index for a more precise characterization of the 

Surface Urban Heat Island (SUHI) effect (Naim & Kafy, 2021; Tomlinson et al., 2011a). 

Areas exhibiting a significantly higher temperature than the adjacent rural areas 

correspond to elevated concentrations of UTFVI (Naim & Kafy, 2021; H. Wang et al., 

2017). The consequential impacts of UTFVI are extensive, encompassing adverse effects 

on local wind patterns, humidity levels, air quality, decreased comfort, increased 

mortality rates, and indirect economic losses, among other factors (Sejati et al., 2019). 

This study utilized UTFVI to systematically quantify the impact of the UHI and is 

calculated using the subsequent formula. (Amindin et al., 2021; L. Liu & Zhang, 2011; 

Zhang et al., 2006): 

𝑈𝑇𝐹𝑉𝐼 =
∆𝑇

𝑇𝑆
=

𝑇𝑆 − 𝑇𝑀

𝑇𝑆
 

Where, TS is the land surface temperature (LST), and TM is the average temperature of 

the entire study area. To prepare an UTFVI map, each of the six classes created for the 

UTFVI classification map was assigned excellent, good, normal, bad, worse, and worst 

according to the values (Table 3.6) (Amindin et al., 2021; Renard et al., 2019; Zhang et 

al., 2006). 
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Table 3.6, UTFVI scores assigned to each component in this study. 

UFTVI Urban heat island phenomenon Ecological evolution index 

<0.00 None Best 

0.00–0.005 Very cold temperature Better 

0.005–0.010 Cold temperature Normal 

0.010–0.015 Moderate temperature Bad 

0.015–0.020 Hot temperature Worse 

>0.020 Very hot temperature Worst 

 

 

3.9.3 Urban Heat Hotspot Mapping: 

 

A localized region exhibiting notably elevated temperatures within an urban setting is 

termed an urban heat hotspot. To enhance comprehension of the UHI effect, mapping of 

these urban heat hotspots was conducted. The identification of UHS (Urban Heat spots) 

and Non-UHS areas involved the application of the following mechanism (Guha et al., 

2017): 

𝑈𝐻𝑆 = 𝐿𝑆𝑇 >  µ + 2𝛼 

𝑁𝑜𝑛 − 𝑈𝐻𝑆 = 𝐿𝑆𝑇 <  µ + 2𝛼 

Here, µ and α are the mean and standard deviation of LST in the study area, respectively. 
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Chapter 4: Result 

 

4.1 Exposure: 

In generating the heat exposure map of the study area, LST maps were created (Fig.4.1). 

After this, the heat exposure map is summarized in Fig 4.2. 

 

Figure 4.1, Summarizes the weighted exposure of land surface temperature in the study 

area. 
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Land Surface Temperature (LST) distribution followed a non-uniform pattern over the 

years considered, with LST of 2016 (August) and 2021 (August) are relatively higher on 

the same day in comparison with 2006 and 2011. Highly developed built-up areas on the 

Halifax peninsula and Dartmouth area show higher daily average LST while comparing 

with the suburbs (e.g., Bedford, Sackville, etc. areas). It is worthwhile to mention that the 

images depict only the average surface temperature of the ground on specific days (see 

table 3.3 3 for details) during the summer months (i.e., July and August only). 

Additionally, the ground surface captured in these images comprises various types, such 

as vegetation, water bodies, urban areas, etc., each with its own thermal properties. 

Therefore, the depicted temperature values are influenced by this mix of surface types 

within each pixel, contributing to variations in temperature across the image. 
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Figure 4.2, Weighted heat exposure index calculated for the study area. 

Figure 4.2 shows the average weighted value of heat exposure in the study area upon 

considering values of LST, built-up area, canopy coverage and population density per 

square kilometer as exposure variables. The highest exposure values are found in the 
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peninsula across all the considered years. Heat exposure values have been consistently 

intensifying throughout the study area from 2006 until 2021. Note that the regional center 

has been experiencing an influx of population density that may have contributed to a 

growing surface temperature. The highest value of exposure is observed in the urban core 

that indicates a higher presence of impervious surfaces and buildings, coupled with 

reduced green vegetation and open spaces (e.g., bare soil, construction area, road surface, 

etc.). In contrast, the exposure values decrease when someone move away from the city 

center area. Areas like Cow Bay, Herring Cove, Hammonds Plains, and Timberlea on the 

outskirts of the city exhibit lower exposure values attributed to the cooling effects of 

abundant open parks and green spaces. The average exposure scores span between 7 to 

11, where 7 means the lowest, 9-10 means moderate, and 11 indicates the highest 

probable exposure. 

 

4.2 Mapping the Heat Sensitivity 

The key variables for heat sensitivity analysis in this study are the male population, very 

young population, and elderly population. The findings indicate a that 2006 had the 

largest area of high sensitivity, measuring 237.77 sq. km, in the year 2006. This 

observation may be attributed to the presence of both very young (under 4 years) and 

elderly (over 65 years) populations situated in the suburban or rural areas and outside the 

regional core of the city.  Population growth since then may have added more middle-

aged and young people, thereby reducing the sensitivity as these groups are better able to 

handle excessive heat. 
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Figure 4.3, Summarizes the weighted heat sensitivity map of the study area. 

Figure 4.3 reveals that there is a discernible increase in high sensitivity values (ranging 

from 3.39 to 3.86) in 2016 (233.58 sq. km) and 2021 (286.22 sq. km), compared to the 

2006 scenario where the high-sensitivity area has been pointed 141.49 sq. km (refer to 
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table 4.1 for details). This suggests a constant increase in the numbers of elderly 

populations over time across the study area that contributes to upsurge the sensitivity 

index values. Notably, for the year 2011, 2016, and 2021 the sensitivity index value in the 

study area changed from very high (>3.86) to high (3.39-3.86) in comparison to other 

classes. It is worth highlighting that sensitivity does not exhibit a clear trend of change 

over the years (see table 4.1 for details), emphasizing the complexity and variability of 

demographic dynamics in the study area. 

4.3 Mapping the Adaptive Capacity of the Study Area: 

Based on previous literature outlined above, individuals with higher income, those living 

with their families, owning houses and cars, having higher education, having a fixed 

workplace and being Canadian citizens exhibit greater adaptability. The average adaptive 

capacity scores span between ≤ 2.6 to > 4.4, where 2.6 means the greatest capacity for 

managing heat stress, 3.2 – 3.8 exemplifies moderate, and > 4.4 indicates the lowest 

probable adaptability. In 2006, the regional core emerges as having less adaptive capacity 

than other places within the study area. The majority (52.02%) fell within the 2.60 – 3.20 

range, which depicts a high value of adaptive capacity in other surrounding areas. A 

similar pattern persists in 2011, with a majority of areas in the outer region (suburban 

area) displaying moderate and high adaptive capacity. However, adaptive capacity 

increases in the subsequent years, where both 2016 and 2021 show average values of 

adaptive capacity across most of the areas. Additionally, suburbs (i.e. North Preston) 

stands out with the lowest value of adaptive capacity, suggesting that people in this area 

possess a lower income, highest rate of tenancy status, and have a lower level of 

education. In summary, the study indicates a positive trend of adaptive capacity in the  
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Figure 4.4, Summarizes the weighted Adaptive Capacity in the study area. 

study area over the past decade. In 2006, the proportion of areas demonstrating very high 

adaptability stood at 0.38%, and by 2021, this figure had surged to 11.51%. A similar 

pattern was noted for regions characterized by very low adaptability, with specific details 
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available in Table 3.5. The key factors contributing to adaptability include higher income, 

family living, homeownership, car ownership, higher education, stable workplaces, and 

Canadian citizenship. 

4.4 Mapping the Heat Vulnerability Index (HVI) for the Study Area 

The HVI combines exposure, sensitivity, and adaptive capacity. The study establishes a 

positive relationship between exposure and HVI. The majority of areas characterized by 

Very High and High Index values for Exposure and HVI are found within the regional 

center. The HVI categorizes areas divided into five classes: very low (≤7.14), low (8-9), 

moderate (9-10), high (10-11), and very high (>11). In 2006, the peninsula and 

Dartmouth area exhibited the highest HVI values, surpassing 11. Concentrations of high 

and very high HVI values are predominantly observed in the population center (i.e. 

Dartmouth, Herring Cove, and Lower Sackville) ranging between 10 to 11. Areas with 

very low HVI index values are characterized by values of 7.14 or lower. By 2011, the 

percentage of moderate values increases, especially in the peninsula and its surrounding 

areas (Burnside, Cole Harbor, Hammonds Plain), where the values range between 9 and 

11. In 2016, the study area exhibited predominantly moderate to high HVI values, 

suggesting heightened exposure and sensitivity concomitant with diminished adaptive 

capacity. Subsequently, upon scrutinizing the suburban areas (i.e. North Preston and 

Spryfield), a consistent erosion in adaptive capacity from low to very low levels was 

observed. Consequently, by 2021, some of the suburban areas (i.e. North Preston and 

Spryfield) underwent a transition from a state of moderate heat vulnerability to one 

characterized as highly heat vulnerable. 
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Figure 4.5, Summarizes the weighted HVI of exposure, adaptive capacity, and sensitivity 

in the study area. 

In 2021, a distinct pattern emerges while explaining the HVI index. The highest HVI 

values are concentrated in the urban core areas (i.e. peninsula Halifax, Clayton Park Area, 

Dartmouth, Herring Cove, Eastern Passage) and sporadically distributed in and around 
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Lower Sackville and Lakeview. Because of moderate to very low adaptive capacity in the 

regional center of Halifax these areas exhibit very high HVI index values (area 58.41 sq. 

km). Elevated exposure and sensitivity stemming from high population density, increased 

land surface temperature, and limited canopy coverages is observed. Very low HVI 

values mainly exist in the north-east part of the study area. This is because both 

sensitivity and exposure index values are comparatively lower in this part of the study 

area. They also received a low score for adaptive capacity variables. Although this study 

didn’t consider building/infrastructure age/condition during the calculation of HVI, upon 

examination it was observed that 90% of the heritage conservation district fell within the 

high and very high HVI classes. 
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4.5 Summarizing the Analyzed Information: 

Here the percentages of areas exposed to HVI and other considered indicators were 

summarized. Note that approximately 45% of areas (i.e., 254.99 sq. km) demonstrate 

moderate values of HVI. Interestingly, very high HVI (10.39%) and very low HVI 

(11.42%) areas are almost similar. However, concentration of high HVI areas is found in 

and around the downtown of both Halifax and Dartmouth region (Fig 4.3 for details). 

Table 4.1, Provides a summary of the total area, delineated by class, measured in square 

kilometers, for each study year and across all 3 variables (Exposure, Sensitivity, Adaptive 

Capacity) and HVI. 

 Variables 
2006 2011 2016 2021 

Area Area Area Area 

 Exposure Sq. Km % Sq. Km % Sq. Km % Sq. Km % 

C
la

ss
 

Very High 4.89 0.86 6.93 1.23 4.19 0.74 16.82 2.99 

High 45.56 8.07 42.94 7.61 46.35 8.21 47.18 8.39 

Moderate 31.43 5.57 35.96 6.37 68.79 12.18 58.29 10.37 

Low 45.89 8.13 67.04 11.87 118.18 20.93 75.37 13.40 

Very Low 436.72 77.36 411.69 72.92 327.05 57.93 364.61 64.85 

 Sensitivity         

C
la

ss
 

Very High 237.77 42.12 154.9 27.44 156.3 27.68 106.4 18.92 

High 141.49 25.06 233.58 41.38 223.85 39.65 286.22 50.90 

Moderate 179.03 31.72 173.23 30.68 181.81 32.20 120.21 21.38 

Low 3.79 0.67 2.14 0.37 2.09 0.37 46.75 8.31 

Very Low 2.41 0.43 0.65 0.11 0.51 0.09 2.69 0.48 

Adaptive Capacity         

C
la

ss
 

Very High 2.16 0.38 0.26 0.05 3.24 0.57 11.51 2.05 

High 293.67 52.02 240.43 42.59 208.44 36.92 239.37 42.57 

Moderate 219.53 38.88 271.45 48.08 301.82 53.46 264.82 47.09 

Low 43.55 7.71 47.57 8.43 44.46 7.87 31.83 5.66 

Very Low 5.59 0.99 4.79 0.85 6.59 1.17 14.75 2.62 

 HVI         

C
la

ss
 

Very High 26.16 4.63 28.48 5.04 24.1 4.27 58.41 10.39 

High 83.77 14.84 95.42 16.90 124.02 21.97 96.27 17.12 

Moderate 224.05 39.69 188.7 33.42 298.37 52.857 254.99 45.35 

Low 218.31 38.67 231.96 41.09 101.36 17.96 88.41 15.72 

Very Low 12.19 2.16 19.96 3.53 16.71 2.96 64.19 11.42 
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Figure 4.6, Exhibits the changes of overall HVI area (Sq. Km), categorized by class, 

across each year considered in the study. 

Conversely, North Preston and the outer regions of HRM and Dartmouth showcase very 

low adaptive capacity and are indexed as high HVI. This is attributed to a high number of 

low-education and low-income individuals in these areas. Figure 4.4 illustrates a notable 

increase in both very high (58.41 sq. km) and very low (64.19 sq. km) heat-vulnerable 

areas in 2021 when contrasted with the corresponding values for the remaining three 

years. According to Figure 6, a majority of the areas in the study area are demonstrating 

moderate HVI values for 2006, 2011 and 2016. However, 2021 shows the highest 

percentage of HVI value while comparing with other years. This certainly demonstrates 

the potential impacts of climate change, population increase, and more vulnerable people 

living in the communities. Interestingly, very low heat vulnerable areas have increased in 

2021. This may be one of the reasons for having more young population in the society 

along with opportunities to more jobs in the regional center. 
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Table 4.2, Provides a breakdown of the total number of people in each HVI class, along 

with their corresponding percentages. 

HVI 

2006 2011 2016 2021 

Total 

Population 
% 

Total 

Population 
% 

Total 

Population 
% 

Total 

Population 
% 

C
la

ss
 

Very High 86342 26.97 91909 27.41 77475 22.22 119595 31.25 

High 123189 38.49 126052 37.59 154984 44.46 125156 32.70 

Moderate 75054 23.45 76145 22.71 99234 28.46 105360 27.53 

Low 34394 10.75 37469 11.17 14931 4.28 23169 6.05 

Very Low 1106 0.35 3782 1.13 2006 0.58 9454 2.47 

 

 

Figure 4.7, Exhibits total number of people in the HVI, categorized by class, across each 

year considered in the study. 

The number of people in the ‘Very High’ HVI class has increased over the four study 

years with more people in the ‘Very High’ class than in any other class across all four 

years (Figure 4.7). In all four years, the most common HVI class is High. The number of 
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people in the Very High index class has increased over time. The number of people in the 

Low and Very Low HIV index classes have decreased over time. 

4.6 Mapping Urban Heat Hotspots in the study area 

 

Figure 4.8, Exhibits the distribution of Urban Heat Hotspot in the study area. 
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Heat hotspots areas are mostly within population centers for all study years. Hotspots are 

dense in the regional core areas, specifically in the peninsula it is highest. Hotspots are 

quite scarce in suburban and outlying regions away from population centers. 
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4.7 Mapping Urban Heat Island in the Study Area 

Figure 4.8 exhibits UHI map for the study area where red color represents very hot 

temperature areas and deep blue color represents very cold temperature areas. 

 

Figure 4.9, exhibiting spatial distribution of Urban Heat Island in the study area. 
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Please consult table 4.2 for a breakdown of UHI categories and their respective area 

percentages in Halifax for the years 2006, 2011, 2016, and 2021. 

 

Table 4.3, Showing classification of urban heat island index (UHI) and their percentage 

of area in Halifax during 2006, 2011, 2016 and 2021. 

Year 

UHI categories with corresponding percentage of area (%) 

Very cold 

temperature 

Cold 

temperature 

Moderate 

temperature 

Hot 

temperature 

Very hot 

temperature 

2006 31.64 33.67 16.53 12.17 5.99 

2011 34.99 29.75 16.02 13.93 5.31 

2016 30.88 35.42 14.39 13.63 5.68 

2021 34.71 30.93 14.3 14.71 5.34 

 

Furthermore, to quantitatively analyze the UHI effect, the Urban Thermal Field Variance 

Index (UTFVI) was calculated (figure 4.9) for all study year. This index was derived 

from LST, and it determines the severity of UHI. It can be used to quantitatively analyze 

the UHI effect and be divided into six levels (best, better, normal, bad, worse, worst) in 

line with six specific ecological evaluation indices (table 3.6, 4.3 and figure 4.9). 

Table 4.4, Showing classification of ecological evolution index UTFVI and their 

percentage of area in Halifax during 2006, 2011, 2016 and 2021. 

Year 

UTFVI categories with corresponding percentage of area (%) 

Best 

<0.00 

Better 

0.00–0.005 

Normal 

0.005–0.010 

Bad 

0.010–0.015 

Worse 

0.015–0.020 

Worst 

>0.020 

2006 63.39 1.25 0.95 0.93 0.84 32.65 

2011 62.44 1.66 1.01 1.03 1.04 32.82 

2016 64.17 1.72 1.33 1.23 1.17 30.38 

2021 63.74 1.25 0.95 0.91 0.86 32.28 
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4.8 Mapping Urban Thermal Field Variance Index (UTFVI) in the Study Area 

 

Figure 4.10, demonstrating Urban Thermal Field Variance Index (UTFVI) Map  
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Chapter 5: Discussion 

 

Existing studies (Brooks et al., 2005; Cardona et al., 2012; Downing et al., 2005; 

Gaillard, 2010; Rathi et al., 2022) delineates the association between adaptive capacity 

and vulnerability through three distinct lenses. Firstly, previous research underscores the 

non-mutually exclusive nature of vulnerability and adaptive capacity. Secondly, 

vulnerability is posited as an outcome stemming from deficient adaptive capacity, 

alongside various other contributing factors. Thirdly, a reciprocal inverse relationship 

characterizes both, implying that heightened adaptive capacity corresponds to diminished 

vulnerability, and vice versa. In the context of this study, it has been observed that 

vulnerability exhibits a direct proportionality to the absence of adaptive capacity. These 

findings underscore that despite elevated levels of exposure and sensitivity, the overall 

susceptibility to extreme heat can be mitigated by enhancing adaptive capacity. 

This study identified that the proportion of the area of high sensitivity index class within 

this study region was approximately 19% in 2021, whereas the figures observed in 2011 

and 2016, were 27.44% and 27.68%, respectively. Particularly, in 2006, the prevalence of 

the area of very high sensitivity index class was considerably higher at 42.12%. 

Examining the dissemination area block size towards suburban and rural areas, farther 

from the regional core, reveals a comparatively larger block size, contributing to 

heightened percentage of sensitivity areas in the outer regions in 2006 (refer to Figure 4.1 

for details). Additionally, when comparing the population centers of 2006 and 2011 to 

those of 2016 and 2021, a discernible shift is evident. In 2006 and 2011, the population 

distribution was dispersed, while in 2016 and 2021, it is notably concentrated toward the 

urban core. The size of the population center in 2006 and 2011 was 295 sq.km, while in 
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2016, it reduced to 248.57 sq.km, and in 2021, it measured 250 sq.km towards the urban 

core (see figure 4.7 for details).  In the years following, a significant shift became 

apparent. By the year 2021, there was a notable increase in the elderly population, those 

aged 65 and above. Despite this rise in the proportion of elderly individuals within the 

population, their inclination towards residing in the regional core, combined with the 

smaller sizes of dissemination area blocks within this core area, led to a reduced 

percentage of the area classified under the heat-sensitivity index compared to data from 

2006 and 2011. This transition suggests several key points: 

a) The aging population, characterized by those aged 65 and above, experienced a 

noticeable increase over the years. This demographic trend is indicative of 

societal changes such as improved healthcare and increased life expectancy. 

b) Elderly individuals showed a preference for living in the regional core. This could 

be due to factors such as access to amenities, healthcare facilities, social services, 

and transportation options which are typically more abundant in urban or regional 

core areas. 

c) Within the regional core, the geographical units used for data analysis, known as 

dissemination area blocks, are smaller in size compared to other areas. This 

suggests a higher concentration of people in a smaller geographic area. Despite 

the increase in the elderly population and their concentration in the regional core, 

the proportion of the area classified as being sensitive to heat, as indicated by the 

heat-sensitivity index, has decreased when comparing the current data to data 

from earlier years, specifically 2006 and 2011. In 2006 and 2011, population 

concentration was more pronounced in the outer regions of the city, including 
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suburbs, and was more dispersed. In these areas, dissemination area blocks tended 

to be larger in size and occupied more extensive areas compared to those in the 

regional core. This dispersion and larger block sizes in the outer regions 

contributed to a higher percentage of the area being classified under the heat-

sensitivity index during those years. 

While the percentage of the area of very high sensitivity index class decreased, there was 

a concurrent twofold increase in the percentage of the area of high sensitivity index class, 

reaching 50.90% in 2021 compared to 25.06% in 2006. This shift is attributed to the 

effects of the influx of new elderly residents. 

Surface temperature pertains to the actual temperature of the Earth's surface while air 

temperature denotes the temperature of the air approximately two meters above the 

ground. Land surfaces exhibit significant spatial variability, possess lower heat capacity, 

and have limited moisture content. In contrast, oceans exhibit homogeneity over vast 

scales, maintain nearly constant albedos, possess high heat capacity, and have an 

abundant moisture supply. On a sunny day, the temperature of the ground surface can 

exceed that of the air by more than 10 degrees Celsius (Utah State University, 2024). 

Additional research has shown temperature disparities ranging from 9 to 38 degrees 

Celsius (Naserikia et al., 2023).  

Among the factors contributing to the calculation of UHI index values, albedo 

consistently exerts the most significant impact. Albedo denotes the portion of incoming 

sunlight (solar radiation) that a surface reflects. Urban elements like sidewalks, roads, 

buildings, and parking lots showcase low albedo, indicating their propensity to absorb 

more sunlight and emit it as heat into the urban environment. According to the global 
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map of local climate zones (LCZ) by (Demuzere et al., 2022), classes 1-10 correspond to 

the built environment. Investigation revealed that the population center (see figure 4.7 for 

reference) of Halifax is primarily characterized by built-up areas, predominantly falling 

into LCZ 5, 6, and 8 classes. LCZ 5 and LCZ 6 represent open midrise and open low rise, 

while LCZ 8 represents large low-rise classes, signifying a substantial presence of built 

environment (low albedo) and exhibits a notable deficiency in canopy cover in the 

population center. Previous research (Amindin et al., 2021; Schatz & Kucharik, 2014) 

highlighted that the built-up environment is a key factor contributing to the spatial 

changes in temperature patterns in urban areas. The presence of canopy cover has the 

potential to mitigate peak summer temperatures by 2-9°C in urban areas (Climate 

Central, 2023). Through a phenomenon known as evapotranspiration, plants play a role in 

cooling the air. A decrease in canopy cover corresponds to a reduction in evaporative 

cooling. Consequently, the population center, especially the regional core exhibits 

elevated values for LST, HVI and UHI. Conversely, suburbs areas mainly comprise of 

LCZ 11A, 12B, 13C, and LCZ 14D classes. Where LCZ 11 (A) is associated with dense 

trees, LCZ 12 (B) with scattered trees, LCZ 13 (C) with bush and scrub, and LCZ 14 (D) 

with low plants. Plants generally have higher albedo, resulting in lower HVI index values 

for suburban and rural areas. 

To substantiate these findings, additional investigations was conducted and generated a 

distribution map of urban heat hotspots (Figure 4.7). As anticipated, this study observed 

that these hotspots are clustered exclusively within the population centers (refer to Figure 

4.7 for more details), particularly concentrated in the urban core and exhibits very high 

density within the confines of the peninsula Halifax. 
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Even though the city is surrounded by coastal open water bodies, it is noteworthy that the 

regional core (i.e. peninsula, downtown Halifax, and Dartmouth) exhibits the highest 

UHI and HVI, UTFVI values, particularly in areas adjacent to water bodies (refer to 

figure 4.3, 4.8 and 4.9 for details). Notably, despite the presence of dense urban forests in 

certain areas (such as Point Pleasant Park, Africville Lookoff Park, Admiral Cove Park) 

surrounded by or adjacent to open water bodies, they fall within UHI classes 

characterized by very cold or cold temperatures. These findings reaffirm two crucial 

observations. Firstly, coastal, or open water bodies can notably contribute to the 

heightened UHI effect in urbanized areas. Secondly, regions with a dense urban forest or 

canopy cover can counteract the elevated UHI effect induced by coastal or open water 

bodies. In addition, insights from other studies (Steeneveld et al., 2014; van Hove et al., 

2015) highlight that water bodies have a prolonged cooling process, potentially leading to 

warmer water bodies and amplifying Urban Heat Island effects.  

From Table 4.3 and figure 4.9, it is evident that the highest percentages in the study area 

for all study years were categorized as either best (UTFVI <0) or worst (UTFVI > 0.020). 

Notably, Table 4.3 reveals that the intermediate categories had minimal percentages. The 

areas with the best thermal conditions (UTFVI < 0) were predominantly characterized by 

abundant canopy cover, primarily situated within suburban regions. These areas 

corresponded to LCZ 11 (A), associated with dense trees, LCZ 12 (B) with scattered trees, 

LCZ 13 (C) with bush and scrub, and LCZ 14 (D) with low plants. Previous research has 

indicated that these land uses typically fall within the best thermal zone (UTFVI <0) 

(Amindin et al., 2021; Portela et al., 2020). Conversely, the vast regions classified as the 

worst category mainly encompassed areas with scarce vegetation and built-up structures 
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(Amindin et al., 2021; Guha et al., 2018; Portela et al., 2020). This observation corresponds 

to results reported in previous studies conducted in two cities in Italy(Guha et al., 2018) 

and one city in Iran (Amindin et al., 2021), where it was noted that areas not affected by 

the UHI phenomenon showed little to no alteration in temperature, whereas regions 

affected by UHI experienced significant increases in heat stress. It is also observed that the 

regions exhibiting the worst (UTFVI) classifications correspondingly align with locales 

categorized as having very hot, hot, or temperate UHI conditions. None of the areas 

characterized by the worst UTFVI ratings were designated as cold or very cold. These 

findings are consistent with the literature (Amindin et al., 2021). When comparing with 

suburban areas the augmentation of impermeable surfaces and reduction of vegetation 

within urban settings has led to a heightened heat capacity and elevated thermal 

conductivity rates (Amindin et al., 2021; Oke, 1995; Song & Wang, 2015; Weng, 2001).  

The HVI values reveal a discernible trend of elevated values within the inner urban core, 

including the downtown areas of both Halifax and Dartmouth, with a subsequent 

decrease extending towards suburban regions. Figure 4.10 illustrates the urban heat island 

surface profile, oriented from West to East (refer to figure 4.8) for all four study years, 

where the X and Y axes represent temperature (°C) and horizontal distance (meters), 

respectively. The regional center is situated within the range of 6000m to 15000m. 
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Figure 5.1, Temperature profile over the study area, with the formation of the UHI. 

 

The figure clearly illustrates that moving away from the regional center (e.g., from 

16000m to 26000m or 6000m to 0m) towards suburban areas is associated with a decline 

in temperature values. Notably, a substantial temperature drop is observed between 

10000m and 12000m, attributed to the presence of the harbor between the peninsula and 

Darthmouth area. 

The area characterized by elevated HVI exhibited an increase over time, with a constant 

dominance of very high heat exposure in the urban core of the study area from 2006 to 
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2016. In 2021, Very high heat exposed area was not limited to the urban core but also a 

substantial portion of the peninsula and Dartmouth transitioned from a high exposure 

class to a very high exposure class. Population density is crucial to explain this finding. 

The rise in population density and the expansion of residential land use intensifies urban 

heating (Amindin et al., 2021). In the context of a summer heat wave, the air conditioning 

systems in urban buildings can contribute an additional 20% of heat to the surrounding 

outdoor air (Climate Central, 2023). Data from Statistics Canada reveals the percentage 

change in population in Nova Scotia during the intervals 2006-2011, 2011-2016, and 

2016-2021 to be 0.9%, 0.2%, and 5.0%, respectively (Statistics Canada, 2023). The 

marked 5% increase in population during the period from 2016 to 2021 emerges as a 

significant factor contributing to the elevated very high exposure index values observed 

in 2021. This provides clear evidence that population density plays a crucial role in 

influencing the obtained HVI. In conclusion, the very high heat vulnerable area in 2021 

increased to 10.39% from 4.27% when compared to 2016. 

Future growth areas (i.e., Future Growth Nodes) and special planning areas (i.e., SPAs) 

may have strong correlation with higher HVI. Core urban areas (e.g. Spryfield, Sackville, 

Port Wallace, Bedford) are exhibiting a trend of increasing HVI. This may have strong 

relationship with the future growth and development of the city as HRM and the province 

of NS has designated some areas as FGN and SPA (i.e. Bedford West 10, 12 and 1, Port 

Wallace, Dartmouth Crossing, former Penhorn Mall lands, Sandy Lake) (Halifax 

Regional Municipality, 2024). Since increased development will likely lead to higher 

LST, planners and other municipal agents should consider HVI in their reviews of 

development permits. 
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Government documents have been explaining several mitigation and adaptation 

measures. This study may assist decision makers to take decisions for future adaptation 

and mitigation plans. Among these endeavors, HalifACT stands out as one of the most 

ambitious climate action movements (Halifax Regional Municipalty, 2024). The 

unanimous adoption of HalifACT by the Halifax Regional Council on June 23, 2020, 

signifies a collaborative response to the climate crisis, with a specific focus on fostering 

resilience and improving the well-being of Atlantic Canada. This initiative is strategically 

oriented to address current climate challenges while proactively preparing for impending 

impacts. The overarching objective is to establish a robust and healthy trajectory for the 

region's sustainable development. 

Chapter 5 of HalifACT provides a detailed overview of strategies focused on three main 

areas: creating sustainable and resilient infrastructure, fostering prepared and connected 

communities, and enhancing governance and leadership. These efforts are designed to 

meet climate targets from the present day to 2050. The chapter outlines various key 

actions, such as advocating for renewable energy, implementing eco-friendly government 

practices, preserving natural areas and green infrastructure, enhancing community 

readiness, conducting carbon assessments, and embedding climate considerations into 

municipal operations (Halifax Regional Municipalty, 2024). 

Halifax Regional Municipality has taken proactive steps to promote climate-resilient 

construction practices, making both new and existing buildings more resilient to severe 

weather, flooding, and rising temperatures. The municipality aims to reduce greenhouse 

gas emissions by retrofitting existing structures and ensuring all new municipal buildings 

achieve net-zero emissions by 2030. Additionally, it is prioritizing the protection of water 



65 
 

resources against extreme weather events and refining wastewater management to reduce 

emissions. 

In response to increasing heatwaves, the municipality has initiated a wide-ranging tree 

planting and greening program across the region. Naturalization efforts in parks and 

public areas not only combat urban heat islands but also improve water absorption. 

Climate considerations are being integrated into land use planning to enhance resilience 

and sustainability. Looking forward, the municipality is committed to engaging residents, 

raising awareness, and encouraging community participation in climate-resilient practices 

and responsibilities. 

These identified actions align with the study findings, which underscore the significance 

of factors such as insufficient natural area, limited canopy cover, and diminished adaptive 

capacity as primary contributors to heightened heat vulnerability. The HalifACT initiative 

thus reinforces and complements the empirical outcomes of this study. 
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Chapter 6: Conclusions 

 

This study identified a non-uniform pattern in the scores of the HVI between 2006 and 

2021, indicating fluctuations rather than uniform growth. The HVI experienced periods of 

increase and decrease during this time frame, suggesting a dynamic pattern rather than a 

consistent upward trajectory. Nevertheless, a significant trend observed is the substantial 

increase seen in both the Very High and Very Low categories within the HVI for 2021. In 

the same year, Nova Scotia's population aged 65 years and older accounted for 22.2%, 

marking a 2.3 percentage point rise from 2016 (Statistics Canada, 2023). Furthermore, 

the 5% population surge between 2016 and 2021 collectively contributed significantly to 

the elevated very High HVI index values observed in 2021. 

 

Throughout the preparation of the HVI, this study encountered several challenges. Firstly, 

the absence of health data prevented this study from measuring health-related sensitivity, 

resulted in to omit this aspect from this analysis. Additionally, due to the Landsat-8 

satellite's 16-day repeat cycle, this study could only obtain two observations within any 

given one-month period. Obtaining cloud-free data for calculating Land Surface 

Temperature (LST) proved challenging, particularly this study focused on only two 

summer months (July and August). To address this issue, cloud masking techniques were 

applied to filter out cloudy pixels from the LST calculations. Furthermore, the 

unavailability of certain variables for all study years meant that this study was unable to 

include some useful variables in the analysis. 



67 
 

It's important to note that this study focused solely on land surface temperature-based 

heat vulnerability indexing. Factors such as air temperature, humidity levels, sunlight 

direction, and wind speed, which are typically crucial in measuring or indexing the 

disparity between actual and perceived temperatures, were not considered. This decision 

was made because our study aimed specifically at identifying heat-vulnerable areas 

resulting from land surface temperature in conjunction with socioeconomic and 

demographic factors. 

 

A refined HVI would incorporate healthcare access, social isolation indicators, proximity 

to waterbodies, building age, building and road density among others to enhance its 

accuracy and effectiveness. Performing a more detailed spatial analysis like 

neighborhood level HVI would better serve the objective and will provide better insights 

to target interventions. Comparative analyses with other cities or regions would help to 

assess the transferability of the methodology and will be able to find out unique 

contextual factors influencing heat vulnerability. By addressing these future research 

opportunities, the study can contribute to advancing knowledge on urban heat 

vulnerability and resilience planning in Halifax. Finally, consideration of multiple years 

for heat vulnerability mapping to gain a comprehensive understanding of the trend and 

extent of vulnerable regions.  

 

The concept of Heat Vulnerability Indexing (HVI) holds significant relevance for various 

stakeholders. Its utility extends to municipal governments where it serves as a crucial tool 

for decision-makers and urban planners. The framework employed in this study 
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represents a stride towards integrating the diverse factors influencing vulnerability across 

different scales. By incorporating these drivers of vulnerability, the HVI framework has 

the potential to empower communities and stakeholders to proactively develop mitigation 

strategies and effectively respond to heat-related emergencies. This contribution 

underscores the importance of adopting proactive measures to address heat vulnerability 

and underscores the significance of interdisciplinary collaboration in tackling this 

pressing issue. 
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0.284 0.023 0.665 0.517 0.070 0.260 0.827 0.001 0.381 0.186 1.805 0.743 0.888 0.777 0.761 0.127 

0.284 0.409 0.665 0.517 0.294 1.201 0.456 1.223 1.115 0.186 0.603 1.632 0.319 0.035 0.760 0.644 

0.012 0.303 0.665 0.517 0.070 0.681 0.473 0.659 0.604 0.186 0.603 0.536 0.699 0.574 0.665 0.644 

0.433 0.826 0.665 0.517 0.740 1.622 0.659 0.659 1.115 0.186 0.603 1.632 1.363 0.979 0.191 0.644 

0.266 0.265 0.436 0.226 0.153 0.260 0.473 1.035 1.115 0.186 1.324 1.084 1.078 0.137 0.190 0.313 

0.044 0.007 0.665 0.517 0.070 0.681 0.270 0.093 0.161 0.186 0.603 0.926 0.509 0.137 0.096 0.238 

0.412 0.260 0.511 0.405 1.046 0.210 0.473 0.753 0.668 0.186 0.362 0.012 0.983 0.371 0.380 0.644 

0.440 0.376 0.665 0.517 0.740 0.210 0.270 0.282 0.254 0.186 0.362 0.536 0.060 0.066 0.475 0.423 

0.469 0.635 0.530 0.517 0.153 0.260 3.056 0.471 0.289 0.186 0.603 0.536 1.078 0.979 0.760 0.238 

0.463 0.465 0.665 0.517 0.740 0.681 0.845 0.095 0.030 0.186 0.603 0.012 0.414 0.543 0.570 1.009 

0.401 0.514 0.659 0.517 0.376 0.260 0.845 0.847 1.115 0.186 0.360 1.632 0.983 0.675 0.095 0.644 

0.728 1.843 1.887 2.510 0.823 0.731 1.030 0.753 1.115 0.186 0.119 1.084 0.841 0.574 0.285 0.644 

0.373 0.322 0.074 0.227 1.046 0.260 0.270 1.129 0.987 0.186 0.603 0.353 0.888 0.777 0.475 0.423 

0.426 0.303 0.665 0.517 0.740 0.681 0.641 0.565 0.317 0.186 0.603 0.743 0.487 0.574 0.380 0.017 

0.674 1.292 0.639 0.995 0.153 0.210 0.102 0.753 0.445 0.186 0.121 0.170 0.604 0.777 0.286 0.534 

0.633 1.533 0.838 0.528 0.376 0.210 0.084 0.847 1.115 0.186 0.603 0.012 0.983 0.878 0.475 0.644 

0.713 1.818 1.481 1.375 0.376 1.622 0.084 0.941 0.732 0.186 0.119 0.170 0.983 0.574 0.001 0.313 

0.170 0.752 0.097 0.118 0.600 1.151 0.287 1.129 1.115 0.186 0.603 0.901 0.651 0.777 0.285 0.644 

0.716 1.116 0.665 0.517 0.963 0.210 1.402 0.376 0.923 0.186 0.119 0.901 0.793 0.777 0.760 0.644 

0.085 0.615 0.665 0.517 0.070 0.260 0.102 0.847 1.115 0.186 0.603 0.170 0.556 0.168 0.190 0.423 

0.130 0.301 0.514 0.264 0.823 0.260 0.102 0.941 0.987 0.186 0.603 0.719 0.699 0.878 0.760 0.644 

0.020 0.220 0.555 1.528 0.740 2.093 0.270 0.095 1.054 0.186 0.603 0.353 0.298 1.456 1.332 0.348 

0.182 0.447 0.649 0.491 0.376 0.260 1.013 1.223 1.115 0.186 0.603 1.632 0.461 0.777 0.571 0.644 

0.235 0.776 0.665 0.517 0.070 0.260 1.570 0.282 0.955 0.186 0.603 0.378 0.556 0.066 0.095 0.644 

0.447 0.685 0.665 0.517 0.070 0.260 0.827 0.093 0.030 0.186 0.360 0.353 0.556 0.066 0.380 0.093 



Year 2011: Z – Score 

P
o

p
u

la
ti

o
n

 D
en

si
ty

 

L
S

T
 

B
u

il
t-

u
p

 a
re

a 

C
an

o
p

y
 C

o
v

er
 

M
al

e 
P

o
p

u
la

ti
o

n
 

V
er

y
 Y

o
u

n
g
 P

o
p

u
la

ti
o

n
 

E
ld

er
ly

 P
o

p
u

la
ti

o
n

 

L
iv

in
g

 a
lo

n
e 

P
ri

v
at

e 
H

H
s 

re
n

te
d

 

P
o

p
u

la
ti

o
n

 w
it

h
 N

o
 

k
n

o
w

le
d

g
e 

o
f 

o
ff

ic
ia

l 

la
n

g
u

ag
e 

N
o

n
-C

an
ad

ia
n

 P
o

p
u

la
ti

o
n

 

li
v

in
g

 i
n

 p
ri

v
at

e 
H

H
s 

P
o

p
u

la
ti

o
n

 o
v

er
 1

5
 y

ea
rs

 o
ld

 

w
it

h
 n

o
 f

ix
ed

 w
o

rk
p

la
ce

 

P
o

p
u

la
ti

o
n

 o
v

er
 1

5
 y

ea
rs

 o
ld

 

w
it

h
 n

o
 p

ri
v

at
e 

ca
r 

P
o

p
u

la
ti

o
n

 o
v

er
 1

5
 y

ea
rs

 o
ld

 

w
it

h
o

u
t 

h
ig

h
 s

ch
o

o
l 

d
eg

re
e 

E
th

n
ic

it
y

 

L
o

w
 I

n
co

m
e 

H
H

s 

 
0.206 0.867 0.154 0.664 0.112 0.058 0.284 0.151 0.330 0.426 0.484 0.448 0.294 1.039 0.509 0.337 

0.419 0.444 0.880 0.664 0.062 1.396 0.627 0.619 0.152 2.477 0.484 0.160 1.283 0.765 0.027 0.207 

0.732 1.942 1.633 1.907 0.412 0.950 0.106 0.785 1.053 0.426 0.484 1.298 0.944 0.673 0.751 0.989 

0.616 1.473 1.650 2.975 0.412 0.388 0.236 0.878 1.053 0.426 0.271 1.177 1.268 0.151 0.590 0.793 

0.133 0.847 1.161 2.346 0.062 1.396 0.367 0.504 1.053 0.426 0.484 1.420 0.897 1.616 0.751 0.184 

0.251 0.784 0.136 0.001 0.112 1.842 0.497 0.245 1.958 0.426 0.120 0.326 1.005 3.081 2.145 3.117 

0.032 1.666 2.212 1.675 0.412 2.288 1.018 0.878 0.782 0.426 0.484 0.205 1.315 0.673 0.751 0.467 

0.434 0.174 0.415 0.419 1.112 0.950 0.887 0.713 1.356 3.929 0.484 1.055 0.726 1.799 0.778 0.640 

0.551 0.904 0.880 0.664 0.062 3.180 0.887 0.317 1.838 0.426 0.484 1.011 0.031 2.073 2.467 2.726 

0.004 0.888 0.880 0.664 0.587 0.058 0.367 0.806 0.694 0.426 0.484 0.326 0.170 0.242 0.268 0.510 

0.483 0.692 0.967 1.443 0.237 0.058 0.154 0.410 1.477 0.426 0.182 0.281 0.851 1.223 0.027 0.836 

0.203 0.291 0.646 0.643 8.330 2.173 1.668 1.253 0.511 0.426 0.484 1.011 2.164 1.406 0.751 0.402 

0.039 0.229 0.332 0.041 0.462 0.388 0.935 0.619 0.481 0.426 0.484 0.205 0.665 0.059 0.751 0.532 

1.189 0.022 0.859 0.425 0.287 0.388 0.887 0.245 0.752 0.426 0.484 1.011 0.619 0.399 0.348 0.989 

0.135 0.248 0.535 0.209 0.587 0.504 0.414 0.785 0.932 0.426 0.484 0.083 1.129 0.948 0.188 0.728 

0.748 0.107 0.585 0.349 0.762 2.288 0.154 0.597 1.687 2.477 1.478 0.812 2.211 1.406 0.134 0.337 

0.187 0.821 1.186 2.004 0.412 0.058 0.757 0.878 0.212 0.426 2.987 0.448 0.897 1.039 1.743 0.207 

0.466 1.109 1.390 0.740 0.637 1.727 4.190 0.058 0.302 0.426 0.031 0.160 0.341 0.673 0.268 0.728 

2.453 1.696 0.744 0.664 0.412 1.281 0.887 1.649 1.326 0.426 2.383 0.524 2.257 1.039 1.421 2.530 

0.030 0.594 0.579 0.664 0.062 0.388 0.887 1.065 1.053 0.426 0.484 0.326 0.897 0.582 0.375 0.142 

0.778 0.761 0.717 0.655 0.412 1.842 1.408 0.785 1.053 0.426 0.484 1.011 0.758 0.242 0.751 0.989 

0.237 1.607 2.135 1.393 0.637 0.058 1.326 0.151 1.053 0.426 1.025 0.403 1.036 0.673 0.456 0.207 

0.480 0.768 0.753 0.632 0.287 0.058 0.675 0.806 0.332 5.381 0.182 0.524 0.016 1.406 0.348 0.402 

0.661 0.263 0.254 0.135 1.686 0.834 3.279 1.836 0.182 0.426 0.484 0.569 0.355 1.406 0.134 0.272 

0.892 0.551 0.197 0.561 0.462 0.834 0.154 1.555 1.868 0.426 2.383 0.569 0.201 1.158 1.663 1.422 

0.604 1.236 0.535 0.549 0.462 0.834 1.456 0.713 1.838 0.426 0.422 0.160 0.170 0.215 0.027 0.575 



Year 2016: Z – Score 
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0.38 1.16 0.58 0.51 0.25 0.20 0.93 0.46 0.91 0.31 1.27 1.48 0.75 0.06 0.08 0.49 

0.21 0.46 0.58 0.51 0.28 0.20 0.68 1.56 1.23 0.31 0.19 0.83 1.06 0.30 0.25 1.01 

0.75 2.14 2.51 0.51 0.52 0.20 0.19 1.04 0.94 0.31 0.55 0.90 0.24 0.55 0.77 0.78 

0.35 0.20 0.58 0.51 0.02 0.76 0.06 1.69 0.97 0.31 0.44 0.25 0.65 1.04 0.10 1.01 

0.72 0.77 0.58 0.39 1.05 0.68 0.80 1.93 1.80 0.28 1.27 3.21 0.67 2.75 0.71 3.50 

0.70 1.48 0.73 0.51 0.28 0.28 0.06 0.65 0.46 0.31 0.08 0.64 1.00 0.43 0.86 0.71 

0.49 0.48 0.56 0.19 0.55 1.65 0.06 0.52 0.24 0.31 0.17 0.45 0.95 0.80 0.51 0.04 

0.66 1.45 2.20 0.51 1.05 0.76 0.06 0.98 1.07 0.31 0.64 0.64 0.65 1.04 0.77 0.49 

0.01 0.31 0.58 0.51 0.78 1.65 0.18 0.77 1.80 5.65 1.33 0.83 0.87 1.04 3.49 2.84 

0.41 1.24 0.58 0.51 0.02 0.20 0.68 1.54 1.96 0.31 0.19 1.29 0.16 0.43 0.36 1.14 

0.11 0.02 0.58 0.51 0.52 1.24 0.31 0.65 0.46 0.31 1.42 1.22 1.48 1.04 0.42 0.56 

0.10 0.27 0.58 2.85 0.25 0.76 0.31 0.72 0.91 0.31 0.62 0.06 0.04 0.79 0.86 0.78 

0.28 1.09 0.58 0.41 0.25 0.28 0.06 0.57 1.16 0.31 0.62 1.41 1.07 1.04 0.71 0.10 

0.07 0.76 0.58 0.51 0.25 0.28 0.18 1.23 1.23 0.31 0.91 1.22 0.85 1.16 0.77 0.78 

0.13 0.54 0.58 1.23 0.82 0.68 0.19 0.46 0.43 0.31 0.82 1.22 0.85 0.06 0.77 0.41 

0.43 0.43 0.04 0.18 0.25 0.76 1.17 0.65 1.00 0.31 1.18 0.32 0.40 0.06 1.03 0.71 

0.81 1.81 2.54 2.67 0.52 0.76 0.19 0.98 1.07 0.31 0.26 0.71 1.00 0.18 0.51 0.86 

0.37 0.97 0.58 0.51 0.55 1.17 0.19 0.32 0.34 0.28 1.09 0.13 0.04 1.16 0.01 0.92 

0.05 0.31 0.58 0.51 0.25 0.68 0.18 0.25 0.11 0.31 1.33 0.06 1.28 1.16 0.77 0.27 

0.88 1.02 0.58 0.51 0.28 0.28 0.68 0.14 0.30 0.31 0.26 0.25 1.58 0.06 0.68 0.27 

0.33 1.33 1.42 0.51 0.25 0.20 0.92 1.36 1.07 0.31 0.37 1.09 1.16 0.55 0.16 0.93 

0.20 0.23 0.58 0.64 1.05 0.20 0.31 0.57 0.08 0.31 1.36 0.71 0.04 1.16 0.10 0.47 

0.50 0.70 0.58 0.51 0.78 0.28 0.31 0.20 0.30 0.31 0.35 1.02 0.45 1.04 0.16 0.56 

0.18 0.24 0.58 0.51 0.55 0.68 0.31 0.59 0.05 0.28 0.17 2.25 0.95 0.18 0.19 0.19 

0.22 0.63 0.58 0.33 0.52 0.76 0.31 0.90 0.34 0.31 1.06 0.25 0.11 0.55 0.68 0.49 

0.63 1.35 0.58 0.51 0.25 1.24 0.06 1.29 1.20 0.31 1.51 1.22 1.73 1.53 0.53 0.40 
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0.30 0.11 0.01 0.64 0.37 0.39 0.95 0.29 0.39 0.44 1.04 0.80 1.14 1.11 0.66 0.57 

0.25 0.06 0.61 1.06 0.34 1.50 0.29 1.19 1.28 0.44 0.53 1.84 0.89 0.72 1.15 1.29 

0.11 0.09 0.36 1.00 0.14 0.39 0.05 0.84 0.70 0.44 1.00 0.14 0.95 0.85 0.80 0.57 

0.45 0.52 1.09 0.35 1.08 1.50 1.27 0.91 1.28 2.99 2.10 1.84 1.45 0.72 0.52 0.25 

0.29 0.53 0.56 0.51 0.34 0.39 0.27 1.67 1.28 0.44 0.53 1.84 2.08 0.72 0.10 0.62 

0.08 0.24 0.79 1.43 0.19 0.39 0.38 0.67 0.22 0.42 0.73 0.47 0.51 0.33 0.59 0.04 

0.30 0.32 0.37 0.79 0.20 0.95 0.38 0.84 0.48 0.44 0.37 0.52 0.95 0.33 0.10 0.33 

0.43 0.27 0.24 0.18 0.30 0.17 0.51 0.40 0.13 0.44 0.06 0.69 0.95 0.58 0.38 0.06 

0.49 0.68 0.55 0.88 0.48 1.28 1.73 0.67 0.04 0.42 0.89 0.52 0.39 0.07 1.15 0.33 

0.42 0.68 0.98 1.38 0.54 0.17 0.51 0.57 0.16 0.44 0.10 0.96 0.51 0.46 0.94 0.49 

0.43 0.80 0.88 1.37 0.53 0.17 0.73 0.91 1.12 0.42 1.00 0.36 0.51 0.46 0.17 0.42 

0.70 1.62 1.22 1.32 0.79 0.72 0.27 0.91 1.28 0.44 0.84 0.03 2.08 0.46 0.31 0.42 

0.42 0.48 0.49 1.05 0.60 1.28 0.05 1.32 0.93 0.44 0.06 1.84 1.33 0.59 0.80 0.81 

0.42 0.16 0.42 0.13 0.47 0.39 0.38 0.12 0.03 0.44 0.84 1.45 0.33 0.20 0.73 0.33 

0.66 0.59 0.34 0.26 0.29 0.95 0.38 0.64 0.51 0.42 0.69 0.19 0.45 0.46 0.04 0.38 

0.58 1.28 1.08 0.02 0.34 0.72 0.17 0.84 1.21 0.42 0.10 0.36 0.64 0.07 0.73 0.91 

0.68 1.70 1.26 0.93 0.29 0.39 0.60 1.12 0.93 0.44 0.10 1.02 0.70 0.72 0.38 0.42 

0.22 0.46 0.11 0.48 0.32 0.39 0.16 1.53 1.28 0.42 0.53 0.52 1.01 0.07 0.52 0.95 

0.48 0.96 1.65 0.88 1.18 0.17 0.16 0.81 0.51 0.44 0.69 0.30 0.83 0.46 0.31 0.47 

0.04 0.32 0.04 0.22 0.02 0.95 0.27 0.98 1.15 0.42 0.69 0.69 0.45 0.20 0.73 0.57 

0.18 0.05 0.23 0.86 0.57 0.17 0.29 0.98 1.15 0.44 0.37 0.14 0.70 0.59 0.31 0.57 

0.04 0.20 0.23 0.15 0.52 0.17 0.83 0.15 0.92 0.44 0.73 0.47 1.61 0.45 1.50 0.73 

0.25 0.27 0.30 0.58 0.07 0.17 0.62 0.77 1.28 0.44 1.52 1.84 1.58 0.46 0.04 1.10 

0.24 0.55 0.54 0.03 0.58 1.28 0.40 0.08 1.28 0.44 4.35 0.96 0.05 0.58 0.31 0.66 

0.38 0.57 0.65 0.54 0.41 0.72 0.29 0.33 0.03 0.44 0.37 1.29 0.61 0.71 0.38 0.42 

0.45 0.49 0.29 0.79 0.03 1.28 0.95 0.15 0.42 0.44 0.41 0.63 0.33 1.89 0.73 0.71 
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