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Abstract ii

Abstract

Modelling Dusty Planetary Disks 

Using Secular Perturbation Theory

By Christopher Capobianco

Optical coronagraphic imaging of the circumstellar dust disk around ,3 Pictoris reveals th a t the inner 

portion of the disk is warped, and this warp is typically attributed to  the presence of a planetary 

system. Mouillet et ol. (1997b) argue the warp is the result of a single planet on an inclined orbit, but 

the warp in their models are an artifact of their unphysical initial conditions. Using a more realistic 

set of initial conditions, a t least two planets on mutually inclined orbits are required to  produce the 

observed warp. The goal of this research is to  find the two-planet configuration th a t best describes 

the warp in ft Pictoris, using the more realistic set of initial conditions. This is accomplished via 

a  parameter survey, where it is found th a t a ~  7M j  planet a t 35 AU and a ~  3M j  planet a t 131 

AU, both on nearly circular orbits and inclined ~  2° to  the disk mid-plane are able to  accurately 

reproduce the observed warp in the (3 Pictoris disk.

Date: October, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements iii

Acknowledgements

I would like to  thank my supervisor Dr. Joeseph Hahn; this research would not have been possible if 

were not for all his help and support. 1 would also like to  thank Dr. Sara Heap for graciously sharing 

her H ST  data  on (3 Pictoris with us, and Dr. Ian Short for permitting the use of his computers to  

perform our param eter searches.

To my family and friends, thank you for all the support th a t you have given me. Finally to  Mina, 

thank you for all your love, understanding and patience.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents iv

Contents

A b s t r a c t ...........................................................................................................................................................  ii

A c k n o w le d g e m e n ts ................................................................................................................................  iii

C o n t e n t s .......................................................................................................................................................  iv

L is t o f  F i g u r e s ..........................................................................................................................................  vii

L ist o f  T a b le s .............................................................................................................................................  ix

1 In tro d u c tio n  ...........................................................................................................................................  1

2 B a c k g r o u n d ..............................................................................................................................................  4

2.1 Formation of Circumstellar D is k s ............................................................................................  4

2.2 Formation of P la n e te s im a ls ......................................................................................................  5

2.3 Previous Observations of 0  P ic to ris ...................    7

2.3.1 Stellar Parameters for 0  P ic to r i s .............................................................................. 7

2.3.2 The Gas Content Of 0  Pictoris’ Circumstellar D isk ............................................... 8

2.3.3 Dust P ro p erties ............................................................................................................... 9

2.3.4 Disk M orphology...........................................................................................................  11

2.3.5 The H ST  d a t a ............................................................................................................... 16

2.4 Previous Models of 0  P ic to r is ...................................................................................................  18

2.4.1 Close Stellar Encounter M o d e l .................................................................................  18

2.4.2 Single Planet M odels..................................................................................................... 19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents v

2.4.3 Model L im ita tio n s ..........................................................................................................  20

3 P h y sica l P ro c e sse s  in  C irc u m ste lla r  D is k s ............................................................................  22

3.1 G r a v i ty .........................................................................................................................................  22

3.2 Radiation F o rc e s .........................................................................................................................  23

3.3 C o llis io n s ......................................................................................................................................  24

3.4 O ther F o r c e s ...............................................................................................................................  25

3.4.1 Gas D r a g ...........................................................................................................................  26

3.4.2 Stellar W i n d ....................................................................................................................  26

3.5 S u m m a ry ......................................................................................................................................  26

4 S ecu lar P e r tu rb a tio n  T h e o r y ......................................................................................................  28

4.1 The Secular Equations of M o tio n ......................................................   30

4.2 The Secular Evolution of N  P l a n e t s ..................................................................................... 31

4.3 The Secular Evolution of a Massless Dust Grain .............................................................. 33

5 T h e  C irc u m s te lla r  D isk  M o d e l ................................................................................................... 36

5.1 The Model and Algorithm: r in g w o r ld .................................................................................  36

5.1.1 Monte Carlo S im u la tio n ................................................................................................. 37

5.1.2 Model G e n e ra t io n ..........................................................................................................  39

5.1.3 Param eter E s t im a tio n ....................................................................................................  41

5.1.4 Error A n a ly s is ................................................................................................................. 46

5.2 The Dust M o d e ls ......................................................................................................................... 47

5.2.1 A Simple Dust M o d e l .................................................................................................... 47

5.2.2 The Artymowicz Dust M o d e l ....................................................................................... 50

6  T h e  P a ra m e te r  S e a r c h ...................................................................................................................  51

6.1 Results for the Dust M o d e l .....................................................................................................  51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents vi

6.2 Results for the Two-Planet Model .........................................................................................  57

7 Conclusion ..................................................................................................................................  64

7.1 Future Work .................................................................................................................................  65

A Acceleration Due to a R in g .................................................................................................. 67

B The Secular Equations of M o t io n .........................................................................  74

C The Lifetime of Circumstellar D u s t ......................................................................  78

C .l Collision T im escale .......................................................................................................................  78

C.2 Poynting-Robertson Drag T im e s c a le ......................................................................................  79

C.3 Comparison of Collision and PR  T im escales.........................................................................  81

D The Inclination D is tr ib u t io n ..................................................................................  82

B ib lio g r a p h y .....................................................................................................................................  85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f Figures vii

List of Figures

1.1 H ST  image of j3 Pictoris from Heap et al. (2000) with each row normalized to  its peak 

value. This emphasizes the subtle ~  4.6° warp, which is indicated by the dotted line. 2

2.1 H ST  image of (3 Pictoris from Heap et al. (2000) on a linear intensity scale. The image 

was collected without any filters, so it represents the appearance of fi Pictoris from 

2,000A to  10,000A. The V-shaped gaps in the image are artifacts of the imperfect 

subtraction of the central stellar component........................................................................... 10

2.2 Isophotal contours of the H ST  image of fi Pictoris from Heap et al. (2000) on a 

logarithmic intensity scale. The circular and X-shaped gaps in the data  are due to

the software mask (see §2.3.5) and diffraction spikes, respectively..................................  13

2.3 The radial surface brightness of (3 Pictoris’ disk mid-plane, extracted from Figure 2.1,

for the NE extension (dotted line) and the SW extension (solid line). The dashed 

lines are visual fits to  the radial surface brightness for the inner and outer regions, 

with the radial dependence indicated adjacent to  each line. The vertical scale is in 

arbitrary units................................................................................................................................. 16

4.1 Orbital element definitions......................................................................................................... 31

5.1 The best-fitting two-planet model to  synthetic data, displayed with a vertical stretch.

The spines for both images are generated by computing the vertical and horizontal 

centre-of-brightness of 1 0 0  isophotes for each extension, spaced logarithmically in 

brightness..........................................................................    45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f Figures viii

5.2 The best-fitting simple dust model superimposed over the fi Pictoris data, displayed

with a vertical stretch. The spines for both images are generated by computing the 

vertical and horizontal centre-of-brightness of 1 0 0  isophotes for each extension, spaced 

logarithmically in brightness.......................................................................................................  49

6.1 The best-fitting Artymowicz dust model superimposed over the fi Pictoris data, dis­

played with a  vertical stretch ...................................................................................................... 54

6.2 Histogram of x l  variations for fixed dust model parameters. See text for details. . . 55

6.3 Plotted in each panel is a  simple linear model (thick red line), and a normalized 

histogram (thin black line) of N part random numbers drawn from the linear model.

The top left panel has N part =  103, and increases from left to  right, and from top to  

bottom  in powers of 10. The displayed value of x l  is computed between the normalized 

histogram and the linear model (see text for details)...........................................................  57

6.4 Histograms of x l  values computed using different random seeds for the corresponding

panels in Figure 6.3 ...................................................................................................................  58

6.5 The best-fitting two-planet model superimposed over the fi Pictoris data, displayed

with a vertical stretch...................................................................................................................  61

6 . 6  The spines of randomly perturbed best-fitting two-planet model, along with the best-

fitting two-planet spine and the fi Pictoris spine superimposed........................................  63

A.l The two-body configuration ....................................................................................................... 67

A.2 For circular, low inclination orbits: x  ~  r  cos 9, y  ~  r  sin 9 and z ~  r  sin I sin(# — Q). 71

B .l Projections of the angular momentum v e c t o r ...................................................................... 75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f Tables ix

List of Tables

2.1 Adopted Stellar Parameters for [3 P ic to r is ...........................................................................  7

5.1 Summary of Two-Planet Model F it to  Synthetic D a t a ....................................................  44

6.1 Comparison of the Dust Model P a r a m e te r s ........................................................................ 56

6.2 Summary of Two-Planet Model P a ra m e te rs ........................................................................ 62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1. Introduction 1

Chapter 1

Introduction

W ith the detection of cool dust by the Infrared Astronomical Satellite (IRAS) (Aumann, 1985), 

(3 Pictoris has emerged as the archetype for resolved circumstellar dust-disks around young Main 

Sequence stars. It has since been the subject of intensive monitoring campaigns at muitiple wave­

lengths (Pantin et al., 1997; Wahhaj et a l, 2003; Weinberger et al., 2003; Okamoto et al., 2004; 

Telesco et al., 2005), and modelled extensively (Artymowicz, 1988; Kalas &; Jewitt, 1995; Mouillet 

et a l, 1997b; Lecavelier des Etangs, 2000; Augereau et al., 2001; Novotny, 2003).

Coronagraphic1 imaging of fi Pictoris reveals an asymmetric, flared disk extending beyond

1,000 AU from the s tar viewed nearly edge-on (Smith & Terrile, 1984; Kalas & Jewitt, 1995; Mouillet 

et al., 1997a). High resolution Hubble Space Telescope (HST) images show th a t the inner portion 

of the disk (~  20-100 AU) is warped ~  4.6° with respect to  the mid-plane of the outer disk (see 

Figure 1.1). It has been suggested th a t this warp is maintained by a massive planet in a  similarly 

inclined orbit (Mouillet et al., 1997b; Heap et al., 2000). Spatially resolved mid-infrared images of 

the inner disk show emission clumps within 100 AU, which appear in pairs centred on either side of 

fi Pictoris. These clumps suggest the presence of dust in non-coplanar rings which could correspond 

to  locations of mean-motion resonances with a suspected planetary system (Wahhaj et al., 2003). 

However, only one of the clumps observed by Wahhaj et al. (2003) were detected in more recent 

high resolution mid-infrared observations by Telesco et al. (2005), and suggest th a t the remaining 

clumps in Wahhaj et al. (2003) are artifacts of noisy data.

1A coronagraph is a  telescopic attachment designed specifically to  obscure the light from a bright source, so that 

objects in the vicinity can be resolved without damaging the telescope’s optics or saturating the detector.
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Figure 1.1: H ST  image of 3  Pictoris from Heap et al. (2000) with each row normalized to  its peak 

value. This emphasizes the subtle ~  4.6° warp, which is indicated by the dotted line.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1. Introduction 3

Warps in circumstellar disks have been observed in both real disks and theoretical models (Kalas 

& Jewitt, 1995; Kalas et al, 2000; Heap et a l, 2000; Mouillet et a l, 1997b), and are generally 

attributed to  the presence of planets. One of the more thorough analyses (Mouillet et a l, 1997b) 

argues th a t the warp observed in the (3 Pictoris disk is the result of a single planet, having an 

orbit th a t is inclined to  the plane of the disk. In this scenario, gravitational torques due to  this 

planet cause the dust grains’ orbital planes to  oscillate about the planet’s orbital plane, with the 

dust grains nearer the planet oscillating faster than  the more distant dust grains. This results in 

a kinematic warp in the disk th a t propagates radially outwards and away from the planet, which 

implies th a t such a warp will be relatively short-lived. However, warps can persist in more evolved 

systems; an example being the dust bands in the solar system. Furthermore, recent high-resolution 

H ST  images of (i Pictoris have revealed th a t the /? Pictoris disk has multiple warp features, which 

are not explained by the single-planet model of Mouillet et a l (1997b). We show th a t the kinematic 

warp occurring in the single-planet model of Mouillet et a l (1997b) is an artifact of unlikely initial 

conditions for the disk. When we adopt more plausible initial conditions, we demonstrate th a t at 

least two planets are required to  account for the warp in the /? Pictoris’ disk.

This study is organized in the following manner. F irst we discuss some theoretical and observa­

tional background m aterial in Chap. 2, then in Chap. 3 we discuss the relevant physical processes 

th a t take place in circumstellar disks. Chapter 4 describes in greater detail the physics of our model 

of a  dusty planetary system, and Chap. 5 describes the algorithm we use to  generate and fit our 

model to  the H ST  image of f3 Pictoris. We report the results of the parameter searches in Chap. 6 , 

and finally concluding remarks and possible future endeavours are given in Chap. 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Background 4

Chapter 2

Background

Observational evidence suggests th a t gas and dust disks are ubiquitous around young protostars, 

which are a natural result of the star formation process (Beckwith, 1999). Over time, this material 

is subjected to  numerous physical processes which results in the almost complete destruction of 

observable structure in the disk. In the following sections we briefly review the current picture of 

circumstellar disk formation, and its subsequent evolution.

2.1 Formation of Circumstellar Disks

According to  the current paradigm of star formation, a  young protostar forms via the gravitational 

fragmentation and collapse of a  slowly rotating molecular cloud core (Shu et al., 1987). The collapse 

of the cloud core leads to  the formation of a  central protostar, and since the collapse must also 

conserve angular momentum, some of the residual cloud material must go into orbit about the 

protostar in the form of a flattened disk. The remaining material in the envelope is removed either 

through accretion onto the protostar or the disk, or ejected via the pro tostar’s radiation pressure or 

stellar winds.

There are three different types of circumstellar disks:

1. G as-rich  d isk s  -  Observed around young T  Tauri stars (e.g. the Solar Nebula, the gas and 

dust from which the Solar System formed).

2. P la n e te s im a l d isk s  -  The rocky or ice-rich solid bodies th a t are thought to  coagulate in a 

young circumstellar disk. Planetesimals are the roughly ~  1 km asteroids or comets th a t are 

the progenitors of planets.
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3. D u s t d isk s  -  Circumstellar dust th a t is probably generated by collisions among unseen plan- 

etesimals.

The gas-rich disks tend to  be quite massive e.g. M gas ~  10- 2 M* (where M* is the mass of the 

central star), bu t they tend to  last only a few Myrs as inferred from the lifetime of disks around 

young T  Tauri stars (Strom et al., 1993). Though gas-rich disks are predominately composed of 

hydrogen and helium gas from the protostellar nebula, they also contain small amounts of other 

gases e.g. CO, CS, HCO+, NH 3 , N 2 H+, etc. (Roberge et al., 2000; Walmsley et al., 2004) and dust 

(e.g. Mdust 1 0 - 2 M 9OS). The gas content of the disk is removed within a  few Myrs after the forma­

tion of the protostar by one of several different disk dispersal mechanisms: accretion onto the central 

star, wind stripping, and photoevaporation (Hollenbach et al., 2000), leaving behind a  planetesimal 

debris disk. While accretion onto the central s ta r and wind stripping are im portant removal mech­

anisms, pholoevaporalion is the dominant disk dispersal mechanism. Subsequent collisions between 

unseen planetesimals will generate large amounts of small dust particles, which will give rise to  a 

circumstellar dust disk.

2.2 Formation of Planetesim als

There are two distinct planetesimal formation schemes: gravitational instability (Goldreich & Ward, 

1973) and collisional accretion (Weidenschilling, 1980), though there is still no consensus which 

process actually forms planetesimals. Gravitational instability operates when the velocity dispersion

of the dust grains become too low, and the planetesimal disks becomes gravitationally unstable to
\

collapse, analogous to  the Jean’s instability. On the other hand, the collisional accretion model 

assumes th a t dust grains collide and stick together to  form larger particles. In both scenarios, 

these larger particles will eventually lead to  the formation of large planet-sized bodies (Alibert et 

al., 2005). Throughout this study, we will concentrate on the collisional accretion mechanism to 

describe planetesimal formation. In dust-dust collisions, there are two possible outcomes: accretion
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(the process of accumulation of dust into larger particles) or comminution (the pulverization of dust 

into smaller particles). The smallest of these particles will be blown away by radiation and stellar 

winds, while the larger particles will either accrete smaller particle or end up being pulverized into 

smaller dust particles through subsequent collisions.

While the gaseous component of the disk is still present, the solid particles will be affected by 

an aerodynamic gas drag. Due to  the radial pressure gradient of the gas in the circumstellar disk 

which competes with the protostar’s gravity, the gas will orbit a t velocities th a t are slightly sub- 

Keplerian. As a consequence, the dust grains th a t orbit at Keplerian velocities feel a ‘head-wind’ 

which extracts angular momentum from their orbit and will cause them  to  spiral inwards. This 

acceleration is proportional to  a grain’s cross-sectional area per unit mass i.e. area/m ass oc 1 /s  

where s is the radius of the dust grain, so smaller particles will spiral in faster. As a  result of this 

inward orbital decay, the frequency of collisions between particles will increase. This aerodynamic 

gas drag also causes grains to  settle to  the disk’s mid-plane, since the vertical component of the 

drag force tends to  damp out a dust grain’s vertical motions and its orbital inclinations. As the 

density of solids in the mid-plane increases, the process of growth by collisions also increases. The 

process is enhanced as the particles get larger since they present a  larger cross-sectional area, but 

they become less affected by gas drag. Bodies larger than  ~  1 km, which are generally referred 

to  as planetesimals, are largely immune to  the effects of gas drag. It is from this distribution of 

planetesimals th a t planets then grow via collisional accretion.

In contrast to  gaseous disks, the planetesimal debris is thought to  have a mass of order ~  100M® 

(where M® is the mass of the Earth); this is simply the mass needed to  form the solid cores of our 

own four giant planets (Hayashi, 1981). These debris disks probably persist much longer than  gas 

disks, for perhaps ~  10-100 Myrs, but are typically not detected due to  their low optical depth. 

These debris disks can also co-exist with a  planetary system, like the asteroid belt a t ~  3 AU and 

the Kuiper belt a t ~  40 AU, which are remnants of the Solar System’s original planetesimal disk. 

A circumstellar dust disk is thus suspected to  be a  product of collisions th a t occur in an unseen
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circumstellar planetesimal disk. As a result of this evolutionary sequence, we typically find gaseous 

disks around very young stars e.g. t age < 10 Myrs (Beckwith, 1999), and debris disks around older 

systems.

2.3 Previous Observations of (3 Pictoris

/3 Pictoris is one of the best-known examples of young Main Sequence stars with a resolved circum­

stellar dust-disk. It has been the subject of intensive studies ever since the discovery of infrared 

emissions from cool dust grains by IR A S  (Aumann, 1985). In the following sections, the fundamental 

stellar parameters adopted for this study are summarized, and the previous observations and models 

of the P Pictoris dust-disk are briefly reviewed.

2.3.1 Stellar Param eters for (3 P ictoris

Based on the data  collected by the Hipparcos Satellite, Crifo et al. (1997) was able to  determine 

several of the stellar parameters (e.g. mass, distance and luminosity) for fi Pictoris. More recently, 

Di Folco et al. (2004) determined an independent estimate of fi Pictoris’ radius using interferometric 

measurements from the Very Large Telescope Interferometer (VLTI), while the age of fi Pictoris was 

estimated by a  comparison of /? Pictoris’ location in the Herlzsprung-Russell Diagram with theoret­

ical stellar evolutionary models by Barrado y Navascues et al. (1999). The stellar param eters for 

fi Pictoris’ adopted for this study are summarized in Table 2.1.

2.3.2 The Gas C ontent O f (3 P ictoris’ Circum stellar D isk

Most young main sequence stars show the presence of massive gaseous disks, yet, despite (3 Pictoris’ 

relative youth, the amount of gas is very poorly constrained, typically below detection limits. The 

only strong detection of emission from a gaseous component has been the N a I doublet lines at 

5990A and 5996A, whose signal is observed from ~  30 AU out to  ~  140 AU (Olofsson et al., 2001).
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Table 2.1: Adopted Stellar Parameters for /? Pictoris

Parameter Value Reference

Spectral Type A5V Hoffleit & Warren (1994)

Effective Temperature (Te/ / ) 8200± 150 K Lanz et al. (1995)

Stellar Mass (M*) 1.75 ± 0 .1 0  M© Crifo et al. (1997)

Stellar Radius (fi*) 1.759 ±0.241 R & Di Folco et al. (2004)

Stellar Luminosity (L*) 8.91 ±  1.03 L q Crifo et al. (1997)

Distance {d) 19.28 ± 0 .19  pc Crifo et al. (1997)

Age (t age) 20 ±  10 Myrs Barrado y Navascues et al. (1999)

Gas has also been detected through absorption lines of several ionized species: Ca II, Fe II, Mg II, 

Mn II and Al II, and to  a lesser extent Na I and Fe I (Vidal-Madjar et al., 1986; Lagrange-Henri 

et al., 1998), but only in small quantities. Thebault & Augereau (2005) were able to  show th a t the 

number density of hydrogen gas could not exceed rm  ~  104  cm - 3  a t 117 AU based on (3 Pictoris’ 

scattered-light profile. The main result of their simulations is th a t high density gas disks always lead 

to  dust distributions whose scattered-light profiles are strongly incompatible with the observations 

in the outer regions of the disk {i.e. r  > 150 AU), while in the inner regions of the disk {i.e. r  < 150 

AU) the scattered-light profile is insensitive to  the effect of gas drag on the dust grains. Assuming 

the gas density profile of Brandeker et al. (2004), Thebault & Augereau (2005) are able to  rule out 

gas disks with a total mass above ~  0.4A/©.

fi Pictoris’ diminutive gaseous disk also exhibits an interesting peculiarity, it has three types of 

a b so rp tio n  line fea tu res: a  s ta b le  com ponen t; a  slow ly vary ing  com ponen t; an d  a  rap id ly  vary ing  

component. Since the detection of Ca II absorption lines are seen in all observations at the same 

radial velocity as (3 Pictoris a t 20 km /s, it is referred to  as the stable gas component. The slowly 

varying component is usually found red-shifted 10-30 km /s with respect to  the star, while the
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rapidly varying component is found red-shifted 300-400 km /s but only detected in ionized species. 

The almost complete absence of complementary blue-shifted lines points to  a mechanism th a t will 

preferentially direct the absorbing m aterial away from us along our line of sight. These features 

might be explained by a planet th a t perturbs icy cometary material into star-grazing orbits; this 

is known as the Falling Evaporating Body (FEB) scenario (Beust el al., 1990). The presence of 

ionized gas at large red-shifted velocities can be explained by the evaporation of the grains shed 

by the FEBs as they approach the star. A separate model by Levison et al. (1994) has suggested 

tha t secular planetary perturbations are another way of tossing planetesimals preferentially along 

a certain direction, so th a t an observer will usually see red-shifted events. However, there are 

discrepancies with both models so this phenomenon remains unexplained.

2.3.3 D ust Properties

The detection of infrared excess around nearby stars by IR A S  created an rush of interest in stars 

like (3 Pictoris. The infrared excess is thought to  be due to  cool circumstellar dust grains absorbing 

photons from the central star and re-radiating a t thermal infrared wavelengths (i.e. A ~20-100 pm). 

In j3 Pictoris th is infrared excess is usually modelled as a  blackbody with Tdust ~  85 K a t r  ~  45 AU, 

and from the IR A S  measurements j3 Pictoris appeared to  have a relatively substantial disk.

Zuckerman et al. (1993) was able to  estim ate the dust mass using sub-millimetre data. The 

disk’s thermal emission is optically thin a t sub-millimetre wavelengths, which allowed Zuckerman 

et al. (1993) to  infer a to tal dust mass of ~  0.17M® from his observations a t 850 pm, assuming 

dust grains sizes of s ~  300 pm. More recently, Dent et al. (2000) further refined this estimate by 

combining flux measurements from the mid-infrared to  millimetre wavelengths, reducing the total 

dust mass to  ~  0.04Af®.

The detection of the 10 pm  silicate emission feature by Telesco & Knacke (1991) also indicated 

th a t the dust in ft P ictoris’ circumstellar disk is similar to  the material found in the solar system. 

Knacke et al. (1993) reports th a t the silicate features of ft Pictoris are notably similar to  those of
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comets Hailey, Bradfield 1987s and Levy 1990 XX. Subsequently, Li & Greenberg (1998) was able to 

model successfully the disk’s continuum emission from the near-infrared to  millimetre wavelengths, 

including the 10 pm  silicate emission feature. Li & Greenberg assumed tha t the dust is continually 

replenished by comets orbiting in the vicinity of (3 Pictoris (i.e. 1 AU <  r  <  40 AU).

Optical Colours and D ust Sizes

At optical wavelengths, the appearance of a circumstellar dust-disk will depend on the size of the 

dominant dust grain population, as well as the chemical composition of the dust grains. In a 

circumstellar dust-disk comprising predominately dust grains with s 1  pm , the appearance of 

the disk will be optically neutral in colour. This is due to  dust grains whose size is much larger 

than optical photons (e.g. s »  A), which are efficient scatterers of such photons. This condition is 

the basis of previous assertions th a t the reported neutral colours of (3 Pictoris’ disk (see Figure 2.1) 

reflect a minimum grain size of several microns (Paresce & Burrows, 1987; Lecavelier des Etangs et 

al., 1993).

f (AU)

Figure 2.1: H ST  image of j3 Pictoris from Heap et al. (2000) on a linear intensity scale. The im­

age was collected without any filters, so it represents the appearance of /? Pictoris from 

2,000A to  10,000A. The V-shaped gaps in the image are artifacts of the imperfect sub­

traction of the central stellar component.
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Recent observations from the Advance Cam,era for Surveys (ACS) on H ST  by Golimowski et al. 

(2006) show th a t the optical colours of the disk are neutral within ~ 1 10 AU of the star, but redden 

considerably between 125 to  200 AU. This may reflect an increase in the minimum dust grain size 

with distance from ~  0.1 pm  to  perhaps ~  2 pm  a t 250 AU. The colour gradient appears to  level 

off again from ~200 to  250 AU, but the relatively large uncertainties this far from the star make it 

difficult to  say anything meaningful.

Constraints on the sizes of the dust grains observed in scattered-light have been based upon multi­

band (BVRI) imaging studies of the disk in both unpolarized (Paresce & Burrows, 1987; Lecavelier 

des Etangs et al., 1993) and polarized (Gledhill et al., 1991; Wolstencroft et al., 1995) light. The 

polarized images indicate th a t the disk is colourless (within 20-30% uncertainties) a t distances 100- 

300 AU from (3 Pictoris. Attempts to  reconcile the neutral colours of the disk with the 10-25% 

polarization of scattered-light from the disk have been problematic. Krivova et al. (2000) found 

that, although the polarization alone is best fitted with a  grain size distribution with a  lower limit 

of a  few microns, the observed neutral colours can only be replicated by including a small amount 

of submicron-sized grains. Moreover, because small grains likely dominate the size distribution of 

grains in the disk (Dohnanyi, 1969; Li & Greenberg, 1998), they more strongly influence the overall 

colour of the disk than  larger grains. Models of the spectral energy distribution for (3 Pictoris find 

th a t the typical dust grain size is s ~  1 0  pm , agreeing well with the available observational data 

(Krivov et al., 2000).

2.3.4 D isk M orphology

The first direct image of (3 Pictoris was obtained by Smith & Tcrrilc in 1984, which made use of 

a  coronagraph to  obscure the intense radiation from the central star. The image revealed a large 

(r  ~  50" ~  1,000 AU), nearly edge-on disk with a peculiar surface brightness distribution. Further 

observations revealed the almost triangular shape of the disk’s isophotes (see Figure 2.2), which 

shows a  striking similarity to  the zodiacal light distribution of the solar system. Also seen in these
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images are a number of asymmetries in the surface brightness distribution. Using a coronagraph in 

the R  band, Kalas & Jew itt (1995) obtained an image and identified five asymmetries: disk extent; 

brightness; disk width; the ‘wing-tilt’; and the ‘butterfly’ asymmetry. The first three asymmetries 

refer to  differences between the size, brightness and width of the northeast and southwest extensions 

of the disk. The northeast extension is both brighter and larger in extent than  the southwest 

extension, while the southwest extension is wider than  the northeast extension. The ‘wing-tilt’ 

asymmetry refers to  the ~  1.3° misalignment between the mid-planes of the northeast and southwest 

extensions of the disk. The vertical brightness distribution in each extension also have different 

gradients above (i.e. z  >  0 ) and below (i.e. z  <  0 ) the disk mid-plane, and the ‘butterfly’ asymmetry 

refers to  the steeper of these vertical brightness gradients in each extension are pointing in opposite 

directions. Specifically, the steeper vertical brightness gradient is above (i.e. z  > 0) and below 

(i.e. z  < 0 ) for the southwest and northeast extension, respectively.
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Figure 2.2: Isophotal contours of the H ST  image of i3 Pictoris from Heap et al. (2000) on a logarith­

mic intensity scale. The circular and X-shaped gaps in the data  are due to  the software 

mask (see §2.3.5) and diffraction spikes, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Background 14

Recent high resolution IIS T  observations by Heap et al. (2000) show th a t the inner portion 

(i.e. r <  100 AU) of the disk is warped ~  4.6° with respect to  the mid-plane of the outer disk (see 

Figure 2.2). Heap et al. point out th a t the observations could be modelled using two mutually 

inclined disks, with the brighter and fainter components dubbed the main and inclined disk. The 

vertical thickness of both disk extensions appear nearly constant within ~  120 AU of /? Pictoris, 

and increase almost linearly with distance beyond. The southwest extension also appears to  widen 

more rapidly than  the northeast extension beyond ~  160 AU, as noted by Kalas & Jewitt (1995).

More recent observations using the Advance Camera for Surveys (ACS) on H ST  by Golimowski 

et al. (2006) also note the brightness asymmetry above and below the mid-plane in the scattered- 

light image of (3 Pictoris, where the z <  0 portion is brighter than  the z  > 0 in Figure 2.2. Such a 

brightness asymmetry in optically thin disks is often attributed  to  the enhanced forward-scattering1 

by the dust, which implies th a t the nearer part of the /? Pictoris disk is tipped slightly northwest 

from the line of sight to  the star. This is consistent with the inclination determined by Kalas & 

Jewitt (1995) from single-scattering models of the surface brightness along the projected m ajor axis 

of the disk.

The new results reported by Golimowski et al. (2006) have also cast some doubt on the possibility 

that fi Pictoris harbours a  young planetary system. Golimowski et al. present results collected using 

the ACS  on HST, which has higher resolution than  the S T IS  used to  collect the data  for this study. 

Their analysis of the deconvolved images claims th a t there are two distinct, mutually inclined disks 

which could not be explained by the presence of multiple planets. However, Golimowski et al. (2006) 

did not resolve any separation between these two purported disks, which implies th a t the observed 

disk could also be a single warped disk. So there are two favourable interpretations -  two separate 

disks or a single warped disk -  th a t are in agreement with the observations, and we are simply 

investigating the consequences of the second scenario.

1 Forward-scattering is the tendency of a  grain to scatter a  photon preferentially in roughly the direction of its 

propagation, while back-scattering is the opposite.
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Wahhaj et al. (200.3) and Weinberger et al. (2003) later reported mid-infrared images of the 

disk th a t shows a distinct warp within 20 AU of the star (behind the occulting mask in Figure 2.2) 

tilted in the opposite direction from the more distant (r ~  100 AU) inclined disk seen in Figure 2.2. 

Wahhaj et al. (2003) also note clumps of infrared emission in both disk extensions within 100 AU 

of fi Pictoris th a t are arranged in pairs centred on either side on the star. They interpreted these 

clumps as a series of non-coplanar dust rings perhaps confined by gravitational interactions of the 

disk with a  planetary system. However, these rings are not seen in optical observations by Heap 

et al. (2000) and Golimowski et al. (2006) or in mid-infrared observations by Telesco et al. (2005). 

High spatial resolution, mid-infrared spectra of the disk by Okamoto et al. (2004) show regions 

of concentrated emission from 0.1 and 2 pm  silicate grains very close to  the star a t r  ~  6.4 AU 

and r < 3.2 AU, respectively. The presence of such concentrations of small grains in the face of 

strong radiation pressure suggests th a t the grains are created continuously by collisions between 

planetesimals.

Because (3 P ictoris’ disk is viewed nearly edge-on, its surface brightness has traditionally been 

parametrized with one or more power-laws («. e. S B  oc r~a ) fitted along the mid-planes of its opposing 

extensions (Smith & Terrile, 1984; Artymowicz et al., 1989; Lecavelier des Etangs et al., 1993; Kalas 

& Jewitt, 1995; Mouillet et al., 1997a; Heap et al., 2000). Surface brightness profiles in scattered- 

light images of (3 Pictoris clearly indicate a  prominent change in a  a t ~  115 AU (Artymowicz et 

al., 1990; Kalas & Jewitt, 1995; Heap et al., 2000), as is illustrated in Figure 2.3. Typical values 

for a  are 1.58 and 4.05 for the inner and outer portions of the disk [Table-3 from Golimowski et al. 

(2006)], respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Background 16

10000
SW Ansa 
NE Ansa

000 ,-1.6

to
to
Q)
c

O)
m
CD
O
CO

100

10010
Radial Distance (AU)

Figure 2.3: The radial surface brightness of /? P ictoris’ disk mid-plane, extracted from Figure 2.1, for 

the NE extension (dotted line) and the SW extension (solid line). The dashed lines are 

visual fits to  the radial surface brightness for the inner and outer regions, with the radial 

dependence indicated adjacent to  each line. The vertical scale is in arbitrary units.

2.3.5 The H ST  data

Throughout this study of the /? Pictoris dust-disk, we make use of the surface brightness map 

provided by Sara Heap (see Figure 1.1 and Figures 2.1-2.2), which is also described in Heap et al. 

(2000). In the following, we summarize Heap’s observations and her image processing.
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The data  were obtained coronagraphically with the Space Telescope Imaging Spectrograph (STIS)  

on the Hubble Space Telescope (HST). The ST IS  employs an occulting mask and Lyot stop th a t work 

together to  block out direct and scattered starlight. Due to  its high angular resolution, 0.1" ~  2.0 AU 

at 19.28 pc for (3 Pictoris, it can accommodate small occulting masks allowing for examinations of 

the S  Pictoris disk to  within 0.5" ~  10 AU. However, to  minimize the possible contaminates in 

determining the brightness distribution of the disk, Heap et al. applied a software mask to  the 

diffraction spikes and the edges of the occulting mask. As a  consequence of the software mask, 

imaging of the disk is limited to  distances r  >  0.75" zz 15 AU. The H S T s  stable and narrow point- 

spread function (PSF), whose full width a t half maximum is 0.06" (in the V  band) makes it possible 

to  separate accurately the disk’s light from the stellar contribution. The detector is a  1024 x 1024 

pixel CCD, with each pixel subtending 0.0507".

For all the observations the aperture was left unfiltered, exposing the CCD to  a  wide band of 

light from 2,000A to  10,000A. Heap et al. collected two sets of observations, each using a different 

occulting mask and orientation to  minimize contamination from known hot pixels. A series of eight

5.0 s exposures were recorded in one configuration, while two series of eight 3.0 s exposures were 

recorded for the other. Bias correction, flat-fielding and cosmic ray removal were performed for each 

set of eight exposures.

The separation of the stellar and disk contributions was achieved by acquiring occulted images 

of the star HD60753, whose optical properties are similar to  ,6 Pictoris, but with no known circum- 

stellar structure. This image of HD60753 thus represents the PSF of a dust-free [3 Pictoris when 

observed behind an occulting mask. Heap et al. fitted the PSF to  the (3 Pictoris observations 

in uncontaminated regions far from the disk plane, then the PSF is subtracted from the image of 

/? Pictoris. Differencing these images, /? Pictoris — PSF, then provides a surface brightness m ap of 

the circumstellar disk th a t orbits f3 Pictoris (see Heap et al. (2000) for details). The final image was 

created by averaging each set of eight exposures (see Figure 2.1).

However, we were not provided the error map for the H ST  data, which is required for our planned
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parameter surveys. In lieu of the actual error map, an estimate is generated based on the image 

itself. For each pixel in the image, the error is estimated by computing the standard deviation of a 

3 x 3  box around th a t pixel. This estimate of the error m ap will be lower a limit on the real error 

map, since it does not take into account any instrum ental or photometric uncertainties.

2.4 Previous M odels of (3 Pictoris

The detection of several asymmetries from optical images of the circumstellar disk around /? Pic­

toris (Kalas & Jewitt, 1995) touched off a flurry of models to  describe these observed features. Some 

of these models have attem pted to  explain these features via a close stellar encounter, but the vast 

majority of these models are based on the existence of a  planet in an inclined orbit. However, no 

single unified model has been able to  explain all the observed asymmetries. In this section we review 

a few of these models and address their successes as well as their shortcomings.

2.4.1 Close Stellar Encounter M odel

After subtracting a  symmetric disk model from images of 8  Pictoris, Kalas et al. (2000) noticed

several brightness enhancements ~  750 AU from the star in the northeast extension of the disk.

Kalas el al. interpreted these brightness enhancements as a system of multiple rings seen edge-on.

However, since they did not see the same brightness enhancements in the southwest extension, it

was suggested th a t the rings were eccentric and only their apoapse2  is visible.

In an effort to  elucidate the nature of this ring system, numerical simulations of a  close stellar

encounter with a quiescent planetesimal disk were performed (Kalas et al., 2000; Larwood & Kalas,

2001). T h e  debris  d isk  w as m odelled  using  10® collisionless partic les, in itia lly  on  c ircu lar o rb its .

The perturbing star is assumed to  have a mass of ~  0.3 M* and would encounter the disk on a

parabolic, non-coplanar trajectory. The encounter scatters particles outwards, launching a  wake in

2 Apoapse is the position of furthest distance to  the central star along a  given orbit. An eccentric particle ring tend 

to be densest at apoapse, since that is where a particle’s orbital velocity is lowest.
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the planetesimal disk th a t resembles an eccentric ring th a t can persists for at least 1 0 5  yrs, while 

the orbits of particles inside of ~  500 AU have become disorganized.

Multiple simulations were performed, and it was found th a t the best-fitting model occurred for 

a stellar encounter distance of ~  700 AU. At this distance, the probability of such an encounter is 

estimated to  be ~  0.01% in 10® years (Kalas el al., 2000). Given th a t no suitable stellar candidate 

for such an encounter has been identified to  date, this scenario is effectively ruled out.

2.4.2 Single P lanet M odels

The Falling Evaporating Body (FEB) model was proposed by Beust et al. (1990) to  account, for the 

transient red-shifted absorption events observed in /? Pictoris. The absorption events come from 

ionized atomic species e.g. Ca II, Fe II and Mg II, which have large radial velocities with respect to  

the velocity of the /? Pictoris system. Beust et al. (1990) proposed th a t a  planet could perturb icy 

cometary material from the outer disk into star-grazing orbits, and as these comets approached the 

central star they would begin to  evaporate, shedding gas and dust in the process. As the gas and 

dust fall towards the star, they would produce the red-shifted absorption lines at large velocities as 

observed in (3 Pictoris. Lagrange-Henri et al. (1988) estimated th a t to  explain the frequency of these 

absorption events, ~100 FEBs a  year are required. However, Beust et al. (1990) does not provide 

any constraints on the mass, semi-major axis or eccentricity of the planet suspected to  deliver the 

required number of FEBs. The main issue with this model is the particular viewing geometry, which 

is required to  explain the almost complete absence of blue-shifted absorption events. Furthermore, 

the delivery mechanism requires the planet to  perturb the FEBs into orbits th a t are preferentially 

parallel to  our line of sight. Such requirements, therefore, make this model improbable.

Another model, championed by Mouillet et al. (1997b), attem pts to  explain high resolution 

scattered-light images from H ST  th a t show a slight warp of the inner portion of the disk, which is also 

the goal of this study. In their models, a quiescent planetesimal disk is subject to  the gravitational 

perturbations from a single planet on an inclined orbit with respect to  the disk. They accomplish
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their simulations using smooth particle hydrodynamics, but the pressure and viscosity are ignored. 

The disk is modelled using 1.5 x 104  particles, and they follow the evolution of these particles for 

several thousand orbital periods of the perturbing planet. The planetesimals are initially placed on 

circular orbits in a disk with an aspect ratio H / r  =  0.1, where H  is the vertical thickness of the 

disk. The planetesimals were also distributed radially using a  broken power-law to  mimic the surface 

brightness distribution observed in (3 Pictoris. To compare their simulations with observations, 

Mouillet et al. generate synthetic surface brightness maps based on the location of the planetesimals 

at the end of the simulation.

The basic idea behind their models is th a t the observed warp is produced by a planet torquing 

the dust grains, which will cause their inclinations to  oscillate about the planet’s orbital plane. 

The frequency of these oscillations will decrease with distance from the planet, since more time is 

required for the planet’s gravity to  tilt the orbits of more distant dust grains. Thus the model of 

Mouillet et al. describes the warp as a kinematical wave propagating outwards as the dust grains 

are torqued by the planet. FVom their simple model, Mouillet et al. are able to  derive the location 

of the warp as a function of time: r  oc (m o2!)2/ 7, where m  and a are the mass and semi-major 

axis of the planet. To place constraints on the mass and semi-major axis of the planet from the 

observed location of the warp, Mouillet et al. assume th a t the planet forms rapidly so th a t the 

propagation time of the warp is close to  the age of the f3 Pictoris system. Combining their model 

with collected radial velocity measurements they are able to  place the constraints on the mass of the 

planet (10 - 5  <  ro/M* <  10-2 ) and the corresponding semi-major axis of the planet (20 AU < a < 1 

AU).

2.4.3 M odel Lim itations

In the previous sub-section, two separate single planet models were discussed, each attem pting to  

explain a different observed phenomenon in (3 Pictoris. In the FEB model of Beust et al. (1990), 

we noted th a t the specific viewing geometry requirement was problematic. Now we address the
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issues in the models of Mouillet et al. (1997b), which are used to explain the observed warp in the 

(3 Pictoris disk.

First, it should be noted th a t the progenitors of the dust grains (e.g. the unseen planetesimals) 

are expected to  be distributed about the system’s Laplace plane. The Laplace plane is the plane 

in which a particle’s orbit will precess due to  perturbations from massive bodies (Burns ei al., 

1979b). Initially, planetesimals will not be distributed about the system’s Laplace plane because 

they will possess nascent vertical and horizontal velocity dispersions. However, collisions between 

planetesimals will tend to  drive their orbits towards the system’s Laplace plane since these collisions 

will damp their nascent inclinations. The Laplace plane is actually a misnomer, since it is not a 

plane in general. The Laplace plane represents a surface determined by the orbits and masses of the 

planets, specifically through Eqns 4.11, which are discussed in greater detail in §4.3. In the case of a 

single planet, the Laplace plane is just the planet’s orbital plane. However, for a system comprising 

N  > 2 planets with mutual inclinations, the Laplace plane will be warped.

The main issue with the models of Mouillet et al. (1997b) are the initial conditions for the 

circumstellar disk. In their models, it  is assumed the disk particles have an inclination I  ~  0.0° 

on average, and the planet’s orbit is inclined to  1/ =  3.0°. Under the assumption th a t these 

disk particles (e.g. planetesimals) are distributed about the system’s Laplace plane (i.e. the planet’s 

orbital plane), the inclination of the particles will contain two components: a proper component, and 

a forced component (i.e. I  ~  Jp + J / j. The forced component is gravitationally induced by the planet, 

and the proper component represents the nascent inclination in the absence of any perturbations. 

The initial conditions used in Mouillet et al. (1997b) are equivalent to  having the proper inclination of 

each disk particle conspire to  cancel the inclination of the planet (i.e. I p ~  — I f ) ,  which is unphysical. 

While such artificial initial conditions are not impossible, they are highly improbable, so it is our 

claim th a t the initial conditions in Mouillet et al. (1997b) does not represent real circumstellar disks.

Now since we do expect the planetesimals and their dust grains in a disk to  trace the system’s 

Laplace plane, it will not be feasible to  produce a warp with only a single planet. The minimum
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requirement to  produce the warp detected in the scattered-light image of Q Pictoris, is a t least two 

planets on non-coplanar orbits. While the models from Mouillet et al. (1997b) do reproduce the warp 

seen around ~80-100 AU in 0  Pictoris, this is just an artifact of their unrealistic initial conditions.
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Chapter 3

Physical Processes in Circumstellar 
Disks

There are several physical processes th a t can occur in circumstellar disks; of these, only a few are

by gravitational perturbations from planets, radiation forces from the central star, and dust-dust 

collisions. For each process there is an associated timescale based on the environmental conditions 

within the disk. A comparison of these various timescales will reveal the dominant process in the 

disk, where the process operating on the shortest timescale will have the greatest effect on the 

dynamics within the disk. This section briefly reviews each of these processes, and discusses their 

relative importance.

The dominant influence in the circumstellar environment is the gravity of the central star. However, 

gravitational perturbations can also come from other massive bodies (e.g. planets) within the system. 

The timescale associated with the influence from the central star is simply the Keplerian orbital 

period which comes from Kepler’s third law:

where Port, is the orbital period, o and m  are the semi-major axis and mass of an orbiting body, M* 

is the mass of the central star, and G  is the gravitational constant. Alternatively, this can also be 

written as the mean orbital frequency

relevant to  dust grains in the f) Pictoris disk. Specifically, the dynamics of dust grains will be affected

3.1 Gravity

(3.1)

(3.2)
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We will discuss the role of gravity further in the next chapter.

3.2 Radiation Forces

All particles in a  circumstellar disk interact with radiation from the central star. The magnitude of 

the radiation effects is proportional to  a particle’s cross-section per unit mass i.e. area/m ass oc 1 / s  

where s is the radius of the dust grain. For larger particles the central s ta r’s gravity will be the 

dominant force, while sufficiently small particles can be blown away by radiation pressure. The 

relative importance of radiation forces to  the stellar gravity is governed by their ratio 13 (Burns et 

d.,  1979a):

a  _  P r a d  __  3L + Q  P R  . .

=  F ^ v  ~  WirGM+pcs 1 ' }

where p and s are the density and radius of the particle, L* is the luminosity of the central star, 

and c is the speed of light. Q p r  is the radiation pressure efficiency factor which takes into account 

both the absorption and scattering efficiencies of the particle [i.e. Q p r  = Qabs f  ( 1  — g)Qsca> where 

g is the scattering asymmetry parameter]. Q p r  is typically a  complicated function of size, structure 

and composition of the particle as well as the wavelength of the incident radiation. For a  typical 

silicate grain of size s ~  10 pm  a t optical wavelengths (i.e. X ~  0.6 pm), Q p r  is on the order unity 

(Wolf & Voshchinnikov, 2004).

The radiation force has two distinct components, known as radiation pressure and Poynting- 

Robertson drag. Radiation pressure is the name given to  the radial component of the radiation 

force. Since each photon carries momentum, this momentum can be transferred to  a particle as 

it absorbs or scatters stellar photons, and the rate at which this momentum transfer occurs per 

cross-sectional area of a  particle constitutes a pressure. Since radiation pressure is directly radially 

outward and varies as r~2, it therefore counters the effect of gravity. Thus a  particle behaves as if 

it were orbiting a star with an effective mass th a t is reduced by a factor 1  — 8. In [3 Pictoris with 

M* =  1.75M@ and L* =  8.91 L0 , for a  typical dust grain size of s ~  10 pm  and dust grain density
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of p ~  2 . 0  g /cm 3  gives (3 ~  0.15, where we have assumed Q p r  =  1. Since fit is inversely proportional 

to the radius of the particle, smaller particles will have larger /? values, and those with fi > 0.5 

are quickly ejected from the system on hyperbolic orbits. Thus the relevant timescale for radiation 

pressure acting on small grains having f3 >  0.5 will be on the order of an orbital period.

The Poynting-Robertson force results from the component of the radiation force th a t is tangential 

to  the particle’s orbit. Since this force is velocity dependent, it acts as a  dynamic drag. We can 

understand this effect if we make an analogy with driving in the rain on a  windless day. While 

the vehicle (i.e. the dust grain) is at rest, the raindrops (i.e. photons) will simply fall vertically. 

However, once the vehicle is in motion, the same raindrops strike the vehicle from the forward 

direction when viewed from the vehicle’s frame of reference. This also transfers momentum from the 

vehicle to  the rain, so the rain exerts a slight drag on the vehicle. It is also worth noting th a t this 

same phenomenon results in the aberration of starlight, which is the angular displacement of a  star 

due to  the E arth ’s orbital motion and the finite speed of light. Thus from the frame of reference 

of a dust grain, the Poynting-Robertson force will appear to  oppose the dust grain’s motion. As a 

result, these interactions will remove angular momentum from the dust grain’s orbit and will cause 

the dust grain to  spiral towards the central star on a  timescale th a t is inversely proportional to  [3 

(Bums et al., 1979a):

Porb(r)c ro ^
tFHir} = (3-4)

where Porb(r ) is the Keplerian orbital period at r. Using typical values for ,6 ~  0.15, r  ~  1 0 0  AU 

and Porb(j') ~  800 yrs gives a  Poynting-Robertson drag timescale of tpp(r)  ~15 Myrs in (3 Pictoris.

3.3 Collisions

Collisions play an im portant role in circumstellar disks since they provide a mechanism for both the 

creation and destruction of dust particles. Theoretical models predict a very steep size distribution 

for particles th a t are in collisional equilibrium, where there are many more smaller particles than
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larger particles. Thus, the disk’s optical depth tends to  be dominated by these smaller particles (Wy­

a tt et al., 1999). However, these smaller grains will also experience radiation effects (e.g. radiation 

pressure and Poynting-Robertson drag) th a t can quickly remove them  from the system. Therefore if 

small particles are present in a circumstellar disk then there must be a source of dust, likely colliding 

planetesimals.

The collision timescale depends on the cross-sectional area of the particle, as well as the dis­

tribution of cross-sectional area from the particle population. However, as already mentioned, the 

predominance of smaller particles allows us to  simplify by only considering a  single particle size. 

The collisional timescale is

<3-5>

where r ( r)  is the normal optical depth a t the radial distance r  from the central star [see Eqn (C.3) 

in Appendix C]. The normal optical depth represents the fraction of the disk th a t is occupied by 

dust particles. If t con(r) <C tpR(r),  then we can ignore Poynting-Robertson drag in our modelling 

since grains will be destroyed before drifting very far. This is a key assumption in our models, one 

tha t is supported by observations of the /? Pictoris dust-disk (see Appendix C). Using the same 

typical values for r  ~  100 AU and P0rb(r) ~  800 yrs, and r ( r )  ~  5 x 10~ 3  from Artymowicz (1997) 

gives a  collisional timescale of t cou(r) ~  0.1 Myrs in /? Pictoris. Since tcou(r) -C tpp(r) ,  this justifies 

our neglect of Poynting-Robertson drag.

3.4 Other Forces

The circumstellar environment is very complex, and there are many other forces th a t can affect the 

dynamics of dust particles. While these forces should not be ignored in general, we justify why we 

can safely neglect them  in this study of the /? Pictoris disk.
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3.4.1 Gas Drag

For very young main sequence stars, massive gaseous disks are ubiquitous. In such systems, the 

effects of gas drag must be taken into consideration when describing the dynamics of dust grains. 

As discussed in §2.3.2, the current estimates place the mass of gas in fi Pictoris a t ~  0.4M®, which 

is comparable to  estimates of the dust mass (Dent et al., 2000). Thebault & Augereau (2005) were 

able to  show th a t for such small amounts of gas, the dynamics of dust inwards of ~150 AU are 

insensitive to  gas drag. They also noted th a t while the effects of gas drag may still be im portant 

a t larger distances (e.g. r 150 AU), gas drag is negligible for the regions of interest in this study 

(e.g. r  <  150 AU), and we shall ignore its effects.

3.4.2 Stellar W ind

The stellar wind is a  flux of charged particles th a t escapes a s ta r’s atmosphere. The dust particles 

can interact with the stellar wind in two ways: directly through collisions and through a  Lorentz 

force. The Lorentz force arises from the fact th a t the dust particles tend to  be charged, and the 

stellar wind particles carry with them  a  magnetic field. The stellar wind is a  result of coronal and 

chromospheric activity, and is typically associated with stars tha t have a  deep convective envelope. 

However, A-type stars like ,6 Pictoris do not possess deep convective envelopes. As a  result, we do 

not expect th a t stellar winds will be im portant in the case of (3 Pictoris.

3.5 Summary

IYom our analysis of the circumstellar environment, we recognize th a t a number of the physical 

processes in circumstellar disks outlined in the chapter can be safely ignored. Though we wish to  

stress th a t our analysis is not comprehensive, and should not be applied blindly to  other systems. 

We note th a t from the subset of relevant physical processes, all the forces (except gravity) have 

a preferred particle scale. For the smallest particles (e.g. s < 1 pm), radiation pressure is the
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most dominant process and will quickly remove them from the system. Intermediate size particles 

(e.g. s ~  1  yam) are removed by spiralling towards the central star through Poynting-Robertson 

drag, over a timescale of ~15 Myrs in 3  Pictoris. Larger particles (e.g. s >  10 pm)  will get 

collisionally destroyed over a  timescale of ~0.1 Myrs in 3  Pictoris, while the largest particles (i.e. the 

planetesimals) will only be affected by gravity.

All these processes (except gravity, again) tend to  deplete the circumstellar disk of dust grains 

rapidly on timescales much shorter than  ,3 Pictoris’ ~20 Myrs lifetime, however observations of 

its circumstellar disk reveals the presence of dust despite the age of fi Pictoris. This implies th a t 

the dust grain populations are being replenished (Li & Greenberg, 1998), and the main source of 

such dust grains is likely collisions among unseen planetesimals. As outlined earlier, the aim of this 

chapter is to  shed some light on the relevant physical processes by comparing their corresponding 

timescales. From estimates of the normal optical depth r ( r )  ~  5 x 10- 3  a t r ~  100 AU (Artymowicz, 

1997), we were able to  demonstrate th a t the (3 Pictoris circumstellar disk is collisionally dominated 

[i.e. tcoii(r) <  tpR(r )]. This is convenient, since this allows us to  model the orbits of the dust grains 

as if they were static (i.e. they don’t  drift radially due to  Poynting-Robertson drag or radiation 

pressure), which makes the modelling effort described in Chapter 4 considerably easier.
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Chapter 4

Secular Perturbation Theory

In the previous chapter we discussed the relevant physical processes in circumstellar disks, and it was 

shown th a t (3 P ictoris’ circumstellar disk is in the collisionally dominated regime {i.e. t cou <C tpn)- 

However, until now we have not discussed the effects of gravity in circumstellar disks. There are 

three distinct ways th a t a  planet can gravitationally perturb a  dust grain, though not all are relevant:

1. Gravitational Scattering -  Repeated scattering usually results in the dust grain either 

getting ejected from the system, or suffering a  collision with a planet or the central star. This 

scattering happens on a short timescale {i.e. the orbital period), thus dust grains th a t are apt 

to  get scattered are quickly removed from the system and can be ignored in our modelling 

effort.

2. Resonant Perturbations -  Each planet has an infinite suite of such mean-motion resonances, 

which are sites where the dust to  planet orbital periods are in ratios of whole numbers, such 

as the 2:1, 3:2, 4:3, etc.1 However, the fractional width of a mean-motion resonance is A a/a  ~  

1.6/r2 / 3  where p  is the planet to  s ta r mass ratio (Wisdom, 1980). Thus the fractional resonance 

width for a Jupiter-mass planet having p  =  10- 3  is only A a /a  ~  0.01. Of course, there are an 

infinite number of such resonances, bu t most of those lay very near the planet’s orbit, and dust 

orbits a t those resonances are also apt to  get scattered and removed. Thus if mean-motion 

resonances play any role, only the outermost will be relevant {e.g. the 2:1, 3:2 and maybe the 

4:3 mean-motion resonances), and they will only perturb a tiny portion (~  a  few %) of the dust 

disk due to  their tiny width. In most cases, these resonances will have little or no influence on

* hi the language of galactic dynamics these are called Lindblad resonances, i.e. the m  =  1 Lindblad resonance is 

the 2:1 mean-motion resonance; the m  =  2 Lindblad resonance is the 3:2 mean-motion resonance, etc.
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the observed appearance of a circumstellar disk, and we are justified in ignoring them  here.

3. Secular Perturbations -  Nonetheless, dust grains orbiting everywhere else (e.g. in between 

and beyond the mean-motion resonances) will still be perturbed by the planets secular per­

turbations. Loosely speaking, a planet’s secular perturbations are the parts of a  planet’s 

gravitational potential that, when Fourier decomposed, do not have any explicit time depen­

dence; those forces correspond to  planets th a t have had their masses smeared out about their 

orbital ellipse. So when studying the secular evolution of a dusty planetary system, we are 

examining it in the time-averaged sense. It should also be noted th a t these secular pertur­

bations do not alter the semi-major axis of planets or the dust grains (Brouwer & Clemence, 

1961). The great advantage of considering the system’s evolution due to  secular perturbations 

is th a t the motion is completely analytic -  one can readily compute the orbital elements of 

all the planets and dust grains at any instant in time, so one can rapidly compute the surface 

brightness of a perturbed dust disk.

In the following sections, we outline the modelling scheme using secular perturbation theory to  

calculate the disk’s appearance, which is presumably disturbed by a system of embedded planets. 

This approach is, of course, valid only if the mean-motion resonances of those planets do not play 

a m ajor role in determining the disk’s structure. This appears to  be the case for most perturbed 

dust-disks th a t have been observed to  date: fJ Pictoris (Mouillet et al., 1997a), HR4796A (Schneider 

et al., 1999) and Fomalhaut (Kalas et al., 2005). One notable exception to  this rule is the dust 

ring a t e Eridani, whose lumpy appearance has been successfully modelled as dust trapped at a 

3:2 mean-motion resonance with a Neptune-mass (p =  10-4 ) planet (Quillen & Thorndike, 2002). 

However, all other perturbed dust-disks are either broadly eccentric or warped, which suggests th a t 

secular planetary perturbations are the m ajor operative. In the following we describe in greater 

detail the secular perturbation theory we use to  simulate a  circumstellar dust-disk th a t is perturbed 

by a system of embedded planets.
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4.1 The Secular Equations of M otion

Before we begin, we first need to  define all the relevant orbital elements used in this study. The 

mean orbital distance between an object and the central star, a, is referred to  as the semi-major 

axis of the orbital ellipse. The measure of how much the shape of the orbit deviates from a circle, 

e is referred to  as the eccentricity. For circular orbits e =  0, while in general for elliptical orbits 

0 <  e <  1. The angle between the orbital plane and the x-y  reference plane of Figure 4.1 is the 

inclination I .  The angle between the positive x-axis and the location where orbit ‘ascends’ through 

the reference plane, 0 , is referred to  as the longitude of the ascending node. The angle between the 

ascending node and the the position of closest approach to  the central star (pericentre), w, is referred 

to  as the argument of periapse. A more common angle used in celestial mechanics is m  = uj +  12, 

which is the sum of non-coplanar angles and is referred to  as the longitude of periapse (as measured 

from the positive x-axis). See Figure 4.1 for an illustration of these quantities.

It is convenient to  transform body j ' s  orbital elements Bj, Wj, I j  and Hj  into vertical and 

horizontal components of eccentricity and inclination “vectors” whose Cartesian coordinates are 

ej  =  (k j , h j ) and Ij  =  (qj , Pj ). Their magnitudes are simply the body’s eccentricity and inclination, 

and these vectors point in the direction of periapse and the ascending node, respectively. These 

vectors have Cartesian coordinates:

hj — ej sin Wj kj — e,j cos Wj (4.1a)

Pj =  I j  sin Hj qj — I j  cos 0 j  (4. lb)

where pj and qj can be interpreted as projections of a grain’s angular momentum vector L  onto the 

equatorial plane (see Figure B .l). We also note th a t e.j is the the Laplace-Runge-Lenz vector from 

classical mechanics, and both e‘j  and Lj  are conserved in the absence of any perturbations.
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Figure 4.1: Orbital element definitions

4.2 The Secular Evolution of N  P lanets

Now th a t the quantities h j , kj, pj and qj have been defined, it just remains to  obtain the secular 

equations of motion to  describe their evolution. The secular equations of motion can be found in 

Murray & Dermott (1999), but for a derivation of the secular equations of motion for pj and qj from 

first principles, we refer the readers to  Appendix B. At this point we will simply quote the general
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iV-body secular equations of motion for a  body of mass m-j given by Eqns (B.9) and Eqns (B .ll):

N  N

hj =  A jjk j  +  y  'A j jk j  kj = —A jjh j  — y  ' Ajihi  (4.2a)
4= 1 4= 1

N  N

Pj = B jjq j  +  Y Bjiqi Qj = ~B jjP j  — y  Bjjpj (4.2b)

where

j= l i= 1
i^ j  **3

N

^  ~  ~  4 ^ 2  m  +  m a ji^ i /2 (a ji) (4.3a)
3 i= 1 * 3

i^ j
N

Bji — +  4  ^_r n nj a j^>3/2^a 3i) B j j  — ni  ̂  ^ 2  M  _|_ m a j ih /2 (a 3i) (4.3b)
* 3 1 * 3

i ^ j

where nj  is the mean orbital frequency (mean motion) of planet j  whose mass is -rrij, oiji =  di/d j  

is the semi-major axis ratio between rrij and to*, while M* is the mass of the central star. The 

quantities b ^ 2(aji) a n < 4  ^3 / 2  (‘To) are the Laplace coefficients as defined in (A.14). The quantities 

Aji  and Bji  can be thought of as the constant elements of two N  x  N  matrices A and B whose 

entries describe the magnitude of the mutual gravitational interactions th a t are exerted among the 

N  planets (Murray & Dermott, 1999; Hahn, 2003).

Equations (4.2) form two sets of Ar-coupled linear differential equations with constant coefficients, 

and the solution for such a  system can be formed from the eigenvalues and eigenvectors of the A

and B matrices (Boyce & DiPrima, 1997):

N  N

hj(t') Y  e3i sin(4 if +  A ) kj{t) = Y  eji cos (git +  Pi) (4.4a)
4=1 4=1
N  N

P j( t )  =  Y  I 3i s in ( / ^  +  7 i )  Q jtt) =  ^ 2  I3i COS( / i*  +  (4 -4 b )
4=1 4=1

where the frequencies cji are the eigenvalues of A, f i  are the eigenvalues of B, while and Iji are 

the elements of the N  eigenvectors of A and B. The phases fh and 7 ,, as well as the magnitude of 

the eigenvectors, are determined from the initial conditions using the prescription given in M urray 

& Dermott (1999). Also, we note th a t the solutions (4.4) are identical to  th a t given in M urray & 

Dermott (1999), albeit derived using different methods.
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4.3 The Secular Evolution o f a M assless D ust Grain

Now th a t we can obtain the orbital elements foo each of the N  planets as a function of time, we can 

study the motion of an additional body of negligible mass, moving under the influence of the central 

star and perturbed by these other massive bodies. The equations of motion for a massless particle 

are Eqns (4.2), and are also solved in Murray & Derm ott (1999):

N  N

h = A k  + Y ^  A jk j  k  =  - A h  -  A i hi  (4-5a)
4=i 4=i

N  N

P =  B 1 +  ^ =  ~ B p  -  Y 2  B iPi (4 5 b )
4=1 4=1

where the A  and B  coefficients are

A j  =  ~  \ ^ n a J by 2 ( a i )  A  =  + n \  J f a i by 2 ^ a i )  (4 -6 a )
* 4=1 *

B j  =  +  7  ~M~ n a i  ̂ 3/2 (a 3 ) B  =  ~ n \ n  J ^ a i bV 2 ( a i )  (4 -6 b )
* 4=1 *

where n  is the mean motion of the massless particle and ay =  a/oy is the ratio of the semi-major axis 

of the massless particle to  planet j .  However, the quantities hj, kj, pj and qj are known functions

of time, Eqns (4.4), and they describe the motions of the planets. Substituting Eqns (4.4) into Eqns

(4.5) yields four coupled, first-order differential equations

N  N
h =  + A k  +  eji cos(git +  /?j) (4.7a)

4=1 1=1
1V  N

k = —A h — eji sin(pjf -f /%) (4 -7b)
4=1 *=i
N  N

p = + B q  +  I > j £  Tji cos(/jt-(- qj) (4.7c)
j=1 * = 1

N  N

q = - B p  J4 i sin { fit  A  7i) (4 -7d)
4 = 1  1=1

If we take another time derivative of each equation and substitute back (4.7), then after a little
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manipulation we get four second-order differential equations th a t are now uncoupled

N
h =  - A 2h — '^Ti/i (A + gt) sin (git +  /?») (4.8a)

i= 1 
N

k = —A 2k -  2 2  V%{A +  9i) cos(c?jt +  /?») (4.8b)

N

P = —B 2p  -  '22 * i(B  + f i)  s in (/jf +  7i) (4.8c)
4=1
N

q = - B 2q ~ 2 2 Ki(B  + fi)  cos ( f i t  +  7 *) (4.8d)

where

i= l

N  N

Vi ~  ^  K* ~  y  I B j l j i  (4-9)
j = l  3 = 1

Eqns (4.8) resemble the equations of motion for a forced simple harmonic oscillator, so the 

solutions to  these differential equations are simply

h(t) = ep sin(At + vap) +  hf( t)  k(t) = ep cos (At + tup) +  k/(t)  (4.10a)

p(t) — Ip sin(B t  +  ilp) + p /( t )  q(t) = Ip cos{Bt +  Qp) +  qj(t) (4.10b)

where ep, Ip , w p and Qp are constants determined from the initial conditions and

N

4=1

N

N

i= l

N

Vi
A ~ 9 i

Vi
A ~ 9 i

K%
B ~ f i

Ki

B ~  fi

(4.11a)

kf ( i )  = ~  2 2  a - n -  cos(git +  &) (4.11b)

J i t  + n )  (4.11c)

(4.11d)

The frequencies gi and f i  are the orbital precession frequencies for planet m*, while the frequencies 

A  and B  are the so-called proper precession rates. The forced contributions h j ,  k j ,  etc., are the 

forced motions th a t are excited by the perturbing planets, while ep and Ip are the proper orbital 

elements and are unrelated to  planetary perturbations, thus represent the grain’s nascent radial
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and horizontal velocity dispersion. Where we note th a t Eqns (4.10) can be used to  determine the 

shape of the system’s Laplace plane by setting both ep and Ip to zero, and converting to  Cartesian 

coordinates. Since Eqns (4.10) are a function of time, the Laplace plane will also be a function of 

time and the relevant timescale for the Laplace plane to  change is the nodal precession frequency

We also note th a t from these equations, one can see the artificiality of the initial conditions 

utilized in the models by Mouillet et al. (1997b). To produce the initial condition I  ~  0.0° for all 

the dust grains, Ip must conspire to  exactly cancel the forced component of the inclination induced 

by a single planet (i.e. Ip ~  —If)-  While this scenario is not impossible, as already mentioned, it is 

highly improbable.

From this point we can recover the traditional orbit elements via Eqns (4.1):

e =  s /h 2 + k2 w = t a n ~ 1(h/k)  (4.12a)

I  =  \ /p 2  +  q2 Cl = t&n'~1(p/q) (4.12b)

Chapter 5 then shows how we use these orbit elements to  calculate a  synthetic surface brightness

map of a hypothetical dusty disk whose planetary parameters can be varied as the model image is

fitted to  the H S T  scattered-light image of fj Pictoris.
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Chapter 5

The Circumstellar Disk Model

As we saw in the previous chapter, it is possible to  describe analytically the orbital evolution of a 

massless particle in the presence N  massive bodies. This approach permits the rapid computation 

of the orbital position of millions particles, whereas other numerical methods (e.g. direct A-body 

methods) are limited to  thousands of particles due to  the large computational demands. Thus, our 

fast algorithm allows us to  search efficiently a  rather large param eter space for the orbits and masses 

of the planets th a t might be warping the fi Pictoris disk. However, finding the set of parameters 

th a t best describe /? Pictoris is non-trivial. This chapter will discuss our simulation process, as well 

as the method of determining the set of best-fitting model parameters.

5.1 The M odel and Algorithm: ringworld

Dynamical modelling of dust clouds, such as the zodiacal cloud in the solar system, has been studied 

for years. As a result, many tools have been developed to  facilitate this research [e.g. SIMUL by 

Dermott et al. (1989) and Xu et al. (1993)]. Since the aim of this study differs from others, we set 

out to  write our own code: ringw orld . This name was chosen to  reflect the nature of our code, and 

the algorithm employed. Our code models the appearance of circumstellar disks in the presence of 

embedded planets (i.e. worlds), and we employ secular perturbation theory to  describe the evolution 

o f  th e  s y s te m , w h ic h  t r e a t s  p a r t ic le s  a s  n a rro w  rings. T h e  c o d e  is  d e s ig n e d  t o  g e n e r a te  a  sy n th e t ic  

scattered-light image of a  circumstellar disk, and search for the set of parameters th a t best describes 

the H ST  image of fi Pictoris (Figure 2.1) provided by Heap et al. (2000).

To generate a synthetic scattered-light image, we first need to  know how the dust grains are
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spatially distributed. In our models, we assume the dust grains are randomly drawn from a radial 

power-law distribution. To populate the dust grains uniformly in a radial power-law distribution, we 

employ Monte Carlo simulation methods (Press et al., 1992). In particular we use the transformation 

method, which relates a uniformly distributed random number to the desired probability function. 

This is accomplished by finding the inverse of the probability function’s cumulative distribution 

function. To illustrate, we demonstrate this procedure for three different probability functions 

utilized in ringw orld . We then describe how we generate a synthetic surface brightness map, search 

through param eter space and estimate param eter uncertainties.

5.1.1 M onte Carlo Simulation

We begin by deriving the generating function for the surface number density of dust grains. In the 

case of a  single power-law distribution:

o(a) =  tr0  (5.1)

where a is the radial distance from the central star, and <7 o is the surface number density of dust 

grains at some fiducial distance a =  ao.

For a  surface number density cr(a), the number of dust grains in an annulus of radius a and 

width da will simply be dN(a) = 2nao(a)da.  Thus the fractional number of dust grains interior to  

a is given by:

/ “ , dN(af)
“  f° 'max d.ZV(a') 5̂ '2^

where a TO*„ and amax are the minimum and maximum radial distance from the central star.

If we let £ be a random number th a t is uniformly distributed over (0,1), then we can interpret £ as 

the probability th a t a  given dust grain orbits interior to  a. Solving £ =  E(a) for a (i.e. a =  E 1(£)) 

yields the generating function for Eqn (5.1):

a(0 =

lf a - 2 ,

t e + e ( « 2ma“ - « ^ ) ] 1/(2^ ) if a  ^ 2 .
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A more appropriate surface density distribution for the dust grains would be a broken power-law 

distribution, with at least two components. Justification for such a  distribution comes from observa­

tions of the surface brightness profile of /? Pictoris’ mid-plane (see Figure 2.3). The above derivation 

can be extended to  such a  distribution, but we shall omit the result here.

Next we consider the nascent eccentricity and inclinations distribution (i.e. ep and I p), but 

for brevity we will only quote their respective probability and generating functions. According to

Burns et al. (1979a), the proper eccentricity of the dust grains in the solar system follow a Rayleigh

distribution:

f ( ep) = Z L e - # 2*  (5.4)

where oe is the dispersion of the distribution. Following the procedure outlined above, the generating 

function for a  Rayleigh distribution is given by:

ep( £ ) = < W - 2 1 n  [{F( 6min) F (emax )}£ F (emin)] (5-5)

where F(ep) =  —e “ ep/2CT«, while emin = 0 and emax — 1 are the minimum and maximum values of

€p.

The proper inclination distribution utilized by r in g w o rld  is a slightly more complicated function, 

which has been adapted from the projected vertical distribution described by Artymowicz et al. 

(1989) to  the projected latitude distribution:

h(r, 6) = exp ■ (5.6)

where 7  controls the latitude distribution of the dust (e.g. 7  =  1  for an exponential distribution and 

7  =  2 for a  Gaussian distribution) and w(r) is the latitudinal scale height

6

Kr0
w(r) =  wo ( — j (5.7)

where 6 controls the flaring of the disk, and vjq is the latitudinal scale height of the disk a t r = ro. 

To obtain the proper inclination distribution H(r, I p) from the projected latitude distribution
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h(r,6), it was necessary to  solve the integral equation (Brown, 2001):

2  H (r , Ip)dIp
(5.8)

sin Ip2 — sin 62

However, an exact solution was not possible, but it was possible to  compute an approximate 

solution to  the proper inclination distribution (see Appendix D for details):

and following the procedure outlined above, the generating function is approximately given by:

where it is assumed th a t w(r) <c 1  for all our models.

5.1.2 M odel Generation

To generate synthetic image of a circumstellar disk, rin g w o rld  requires several pieces of information, 

including: the radial dust distribution and the nascent eccentricity and inclination distributions of 

the dust grains (i.e. ep and Ip). If massive bodies are present, then the masses and orbital elements 

of each body are also required. The procedure used by rin g w o rld  to  generate a synthetic image 

is briefly summarized by the following nine steps th a t are implemented for each dust grain th a t is 

generated by this Monte Carlo model:

1. Use the Monte Carlo method of Eqn (5.15) to  generate the dust grain’s semi-major axis, a.

2. Calculate the dust grain’s forced orbit elements: h j ,  k j , p j  and qj, due to  the planets’ secular 

perturbations [see Eqns (4,11)].

3. Use Monte Carlo methods to  determine the dust grain’s proper eccentricity ep and inclination 

Ip via Eqn (5.5) and Eqn (5.10), respectively.

4. Assume the dust grain’s mean anomaly M  is uniformly distributed over 0 <  M  < 2n, where 

M. = nt, n  is the dust grain’s mean motion, and t  is the time since the dust grain’s most

i
(5.9)

IP(r ,0  -  w(r)[-ln(£)]1/7 (5.10)
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recent periapse passage. This is justified since the dust grains are assumed to  be randomly 

distributed about their orbit, so t  is arbitrary and hence the quantity M  should be uniformly 

distributed about 2n. This same argument also applies to  the the angular quantities A t  +  vjv 

and B t  +  Op th a t appear in Eqns (4.10), so these angles are also randomized over 2-?r.

5. Calculate the dust grain’s (h, k ,p , q) orbit elements via Eqns (4.10), and convert to  the familiar 

orbit elements (e, I ,  w , Q) via Eqns (4.12).

6 . All of the grain’s six orbit elements are now in hand: a, e, I , zu, it, M .  These are then used to 

calculate the dust grain’s Cartesian (x, y, z) position with respect to  the central star, which is 

obtained by solving Kepler’s equation numerically via the method described in Danby (1992).

7. Two angles are used to  describe the orientation of the disk in 3-D space: I tm , the angle 

between the observer’s line-of-sight and the disk mid-plane, and P A , the position angle of the 

disk’s long axis relative to  the H S T image’s CCD column. To account for the disk’s orientation, 

we ro tate the disk about the observer’s line-of-sight by angle P A , and then tilt (i.e. rotate) 

the disk’s mid-plane by angle I tm . This then yields each dust grain’s new (x ,y , z) coordinates 

in the observer’s coordinate system, with the x-axis pointing towards the observer, and the 

y-z  plane being the plane of the sky.

8 . Calculate the scattering angle <j>, which is the star-grain-observer angle. Then use the Henyey- 

Greenstein phase function to  calculate the relative amount of light th a t the dust grain scatters 

to  the observer:

^  =  4 7 r(l — 2p cos<(> +  <?2 ) 3 / 2  (5' U )

where g is the asymmetry parameter, where g =  — 1  corresponds to perfect back-scattering, 

g — 0 for isotropic scattering, and g = 1 for perfect forward-scattering (Henyey & Greenstein, 

1941). This particular phase function is used widely in studies of the zodiacal light (Hong, 

1985), as well as for models of circumstellar disks (Kalas & Jewitt, 1995).
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9. Add the scattered-light contributed by the dust grain, to  the synthetic image of the

model disk. The scattered-light contribution F'k((p) is the relative amount of starlight th a t 

the grain scatters towards the observer, where F  — L*/4 7 rr 2  and r is the distance from the 

star. This is accomplished by finding the pixel in the synthetic image th a t subtends the dust 

grain’s coordinates (y ,z)  in the plane of the sky, and increment th a t pixel by F'k(4>).

5.1.3 Param eter Estim ation

The minimization procedure employed here is the downhill simplex algorithm (Nelder & Mead, 1965; 

Press el n,L, 1992). This algorithm requires M 4-1 =  23 distinct trial solution vectors as input, and the 

simplex refers to  the vertices of the geometrical figure defined by these vectors in this M-dimensional 

parameter space. The elements of each vector are simply the M  param eter values being considered 

for the trial solution vector (i.e. a , fi, rrh S, 7 , wq, ae, g, I tm ,  P A  and n i j , aj, ej, I j ,  Wj,  fij for 

j  = 1,2). The downhill simplex algorithm samples the y 2 topography as it iteratively adjusts the 

simplex vertices and travels through the M-dimensional parameter space. The algorithm expands 

the simplex if it encounters a relatively flat y 2  landscape, crawls downhill if it encounters a slope or 

a descending valley, and eventually contracts the simplex vertices about the deepest y 2  minima it 

encounters. The downhill simplex method requires only function evaluations (e.g. y 2), and not the 

calculation of derivatives. Due to  this approach, the downhill simplex is not very efficient in term s 

of the number of function evaluations it requires to  find a  minima, but the computational burden is 

small and it is simple to  implement. As a result of its nature, the downhill simplex method tends 

to  get trapped in local minima. Performing numerous random restarts of the optimization process 

can alleviate this issue, which allows the simplex to  sample more of the M-dimcnsional parameter 

space. Furthermore, these numerous restarts of the optimization process can also provide a crude 

statistical estimate of the parameter uncertainties.

To find the optimal param eter configuration, we carried out our Monte Carlo simulations m ak­

ing use of an adapted version of the well-known downhill simplex method in multi-dimensions
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(AMOEBA) as described in Numerical Recipes in C (Press et al., 1992). Specifically, we make 

use of the adaptation for the IDL programming environment which contains a few embellishments.

where Oi is the standard deviation for the data  point f{ x i) ,  while F {xp  p) is the model and p  is the 

vector of M  model parameters. The above sum is computed over all good H S T  pixels used in the 

fit (i.e. outside the masked region).

The AMOEBA algorithm stops when a  given number of iterations is reached, or when the 

fractional deviation of the minimizing function drops below a given threshold. The starting points 

are randomly selected from a  range of values for each of the dust and planetary parameters, where the 

ranges are determined using either physical arguments {e.g. a >  0  and e >  0 ) or external constraints 

{e.g. mass limits from radial velocity measurements). Since the result of one optimization depends 

greatly on the number of iterations and the values of the starting points, it becomes a non-trivial 

problem to  find the right combination of starting values and iteration number, especially when 

each optimization takes a  non-negligible amount of time. To provide an estimate of the number of 

iterations, we kept track of the value of x l  throughout the optimization process. It was found th a t 

after ~ 2 0 0  iterations, the minimizing function did not change appreciable, so we fixed the number 

of iterations per optimization to  2 0 0 .

To verify our two-planet hypothesis, we test both our planetless dust model (see §5.2) and two- 

planet model. The premise is th a t if the presence of planets improves the fit {i.e. decreases %r)> 

then we can claim th a t our two-planet hypothesis is viable. The procedural steps outlined in the 

previous section are performed for 1 0 7  dust particles, but due to  the nature of our image generation 

it is not necessary to  compute all the orbits a t once. We find th a t co-adding ten  sets of 106  dust 

particles is near optimal, and does not place excessive demands on computer memory. The reason 

for such a large number of particles comes from the Monte Carlo nature of our image generation.

The function we chose to  minimize is the reduced x 2  between the H ST  image of (3 Pictoris and our

simulated image:

(5.12)
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Though Monte Carlo methods are easy to  implement, they are notoriously inefficient since they 

converge as l / y /N  where N  is the number of random numbers. This rate of convergence comes from 

the error estimate for Monte Carlo integration [see Eqn (7.6.1) in Press et al. (1992)]. However, we 

were limited to  performing only 50 optimizations for both the dust and two-planet models. Even 

with the analytical nature of the solutions, the computational demand is sufficiently high th a t time 

constraints became an issue. To improve the convergence of the dust model and the two-planet 

model, we perform two passes with AMOEBA. In the second pass, the initial simplex is seeded 

using the top M  + 1  =  23 solutions returned from the first pass. In addition, the two-planet model is 

tempered by seeding the initial simplex with the best-fitting dust model parameters, which are then 

held fixed. Fixing the dust parameters increases the chances th a t AMOEBA will find an optimal 

solution, since the 200 iterations will now only try  to  improve the planetary parameters. For these 

secondary optimization runs we typically found th a t x l  decreased, but not more than  ~3.

Now th a t the image generation and param eter estimation components of rin g w o rld  have been 

discussed, a test of its capabilities was designed. Since the warp feature in the /? Pictoris disk is 

quite subtle, there was concern th a t AMOEBA would not be sensitive enough to  find a solution. So 

a synthetic image of a circumstellar disk with a large warp was created, in the hopes th a t AMOEBA 

would be able to  find the solution. The synthetic images makes use of the dust model described in 

§5.2.2, with the addition of two massive planets to  produce the large warp. Since our concern was 

whether AMOEBA could recover the model parameters, a full param eter survey was not performed. 

Instead, only a single pass with ten optimizations were made, and where the initial simplex for 

each optimization was constructed by randomly perturbing the parameters for the synthetic data 

by 75%. To improve the probabilty of AMOEBA finding the correct solution, a  number of the 

model param eters were held fixed (i.e. e \, e2 , h ,  and O2  as well as all the dust parameters).

Ultimately, AMOEBA was able to  obtain a best-fitting model with a Xr =  2.81. Figure 5.1 clearly 

show the excellent agreement between the synthetic data  and the model, as well as the significantly 

warped spine of disk for the synthetic data. The best-fitting model parameters are listed below
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Table 5.1: Summary of Two-Planet Model F it to Synthetic D ata

Param eter Synthetic D ata Best-Fit

m i {Mj Y 15 16

Ul2 (M j)a 7.0 7.0

at (AU) 50 6 6

a 2  (AU) 166 155

Cl 0 .0 b 0 .0 b

e 2 0 .0 b 0 .0 b

h  n 5.0 2.9

h  (°) 0 .0 b 0 .0 b

m  (°) 0 .0 b 0 .0 b

(°) 0 .0 b 0 .0 b

« 1  (°) 225 217

^ 2  (°) 180b 180b

aM j is the mass of Jupiter. 

b Parameter is held fixed.

in Table 5.1, along with the parameters used to  create the synthetic data. Upon comparison of 

the model param eters in Table 5.1, one can see th a t AMOEBA was able to  recover the majority 

of the fitted parameters. Had more optimizations been used or a second pass been performed, the 

agreement could improve.
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1otn

Figure 5.1: The best-fitting two-planet model to  synthetic data, displayed with a vertical stretch.

The spines for both images are generated by computing the vertical and horizontal centre- 

of-brightness of 1 0 0  isophotes for each extension, spaced logarithmically in brightness.
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5.1.4 Error Analysis

As already indicated in the previous section, performing numerous optimizations can be used to  

estimate statistically the parameter uncertainties. This is accomplished by making a  correlation 

between the range of x (  values and the range of parameter values returned by AMOEBA, in other 

words determine the param eter dispersion o(p) th a t satisfies the relation:

Xr(p) < Xr,min +  ^r(p) (5-13)

where Xr,m in ' s the minimum x l  returned by AMOEBA, and oy(p) is the dispersion of x l  values. 

This statistical approach requires th a t a  large number of optimizations be performed (e.g. N opt > 

103). However, time constraints limited our number of optimizations to  50 for both the dust model 

and the two-planet model. Statistical analysis on such a small dataset would yield very unreliable 

parameter uncertainties, so more optimizations are needed to  make use of this statistical approach.

However, we can still estimate the param eter uncertainties by noting how far each parameter 

must be perturbed to  increase x l  by a certain amount, i.e.

Xr(P') =  X2r,crit M 4)

where p ' is the perturbed solution vector, and Xr,crit the x l  threshold. We find th a t searching for 

parameters th a t double the minimum x l  is a reasonable criterion, so we set x l^ r u  =  2 x?,m*n-

It is worth noting th a t while the x l  crit = - x l  m%n criterion is completely arbitrary, there is a 

justification for this choice. In our investigation, it was quickly realized th a t x l  varied considerably 

even when the param eters did not change appreciably or when they were held fixed (see Figure 6.2).

It was observed th a t these x l  variations could be as large as ~  1.2x^min, but they could extend

out to  ~  l*5Xr miw We identified the culprit as the random seed used in our Monte Carlo image 

generation, which is initialized with the com puter’s system time each time an image is generated. 

To ensure we can distinguish between these intrinsic x l  variations and any variation due to  changes 

to a model param eter, the threshold x l  Crit = min was chosen. Furthermore, since it was not
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possible to  derive a direct relation between Xr uncertainties with param eter uncertainties, we have 

opted for this approximate approach.

W ith this criteria in place, we searched for the value of p ' using the bisection method which 

guarantees finding a solution, so long as the two starting points bracket p '. Searching about each 

best-fitting parameter, we estimated the uncertainty in the i th parameter pi to  be ofpf) — \pi,max — 

P%,min1/2, where pi,max and Pi,min are the two possible roots of Eqn (5.14). In the event th a t only 

Pi,max or Pi,min could be found, we then estimated the param eter uncertainty as a {pi) =  \pi,max —p*\ 

or o(pi) =  |p% — Pi,mini; where p* is the best-fitting value for the parameter pi.

5.2 The Dust M odels

5.2.1 A Sim ple D ust M odel

As a starting point, we attem pted to  fit the simplest possible planetless dust-disk model to  the H ST  

observations of /? Pictoris (see Figure 2.1). For this simple model, we assume the radial distribution 

of dust grains follow a  single power-law distribution as described by Eqn (5.1). For the proper 

eccentricity and inclination distributions, we assume th a t they both follow a Rayleigh distribution 

as described by Eqn (5.4). Finally, for the light scattering distribution, we use the Henyey-Greenstein 

phase function as described in Eqn (5.11).

We performed a preliminary param eter search using AMOEBA, and the model did not show 

good agreement with the H ST  data as evidenced by the large value of x t ,min =  19.81. This simple 

dust model failed to  replicate accurately the appearance of /? Pictoris in scattered-light, and the 

inadequacy of this model is also evident from visual inspection of Figure 5.2. The isophotes of 

fi Pictoris are angular in shape, whereas the isophotes for the simple dust model are more rounded. 

Furthermore, the steep decline in surface brightness beyond ~100 AU is also not accurately mod­

elled. Also plotted are the spines of the disk for fi Pictoris and our model, which are generated by 

computing the vertical and horizontal centre-of-brightness of 1 0 0  isophotes for each extension, spaced
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logarithmically in brightness. As we can see as well, the spine for (3 Pictoris and the model also do 

not agree. The poor agreement with this model can be attributed to its simplistic parameterization, 

which is inadequate to  describe some of the more salient features of /3 Pictoris’ disk. This motivates 

us to  find a more appropriate dust model th a t can satisfactorily characterize the (3 Pictoris disk.
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Figure 5.2: The best-fitting simple dust model superimposed over the /? Pictoris data, displayed 

with a  vertical stretch. The spines for both images are generated by computing the 

vertical a,nd horizontal centre-of-brightness of 1 0 0  isophotes for each extension, spaced 

logarithmically in brightness.
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5.2.2 T he Artym owicz D ust M odel

Since the single power-law disk provides a  poor fit to  the observed surface brightness map, we will 

now adopt a broken power-law with two different exponents for the radial dust distribution. This 

radial surface density is now governed by three parameters, a, 13 and ro:

o(r) — o0 <
(r0/ r ) a rmin < r  <  r 0

(5.15)

(ro /r)^  ro <  r  < max

where ro is the transition radius, while rmin =  20 AU and rmax =  250 AU are the inner and outer 

edge of the disk. These values are set by the physical scale of the image a t the distance of /? Pictoris, 

and the size of the software mask for the inner edge and the maximum extent of the H ST  image for 

the outer edge.

The main difference between this model and the simple dust model lays in the description of the 

proper inclination distribution, which we adapt from Artymowicz et al. (1989). In §5.1.1 we reported 

the generation function for the proper inclination distribution in Eqn (5.10), which is derived in detail 

in Appendix D. For the lack of a better description, we shall continue to  use Eqn (5.5) and Eqn 

(5.11) for the proper eccentricity and light scattering distributions, respectively. This dust model 

has more adjustable parameters than  the simple dust model, which allows it to  describe the general 

features in the H ST  image of j3 Pictorismore accurately. As we will see in §6.1, this dust model 

indeed does a better job since it significantly decreases the Xr °f the fit-
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Chapter 6

The Parameter Search

In this chapter we report the results of our param eter surveys for both the planetless Artymowicz 

dust model, and the two-planet model. The param eter uncertainties reported are computed using 

the prescription outlined in §5.1.4, and represent a  crude estimate of a model’s sensitivity to  its 

parameters.

6.1 Results for the D ust M odel

Using the Artymowicz dust model, we performed a param eter search to  fit the large-scale features 

in the H ST  image of /3 Pictoris. For the AMOEBA routine, an initial simplex is required to  provide 

a  starting point for the param eter search. The initial simplex for each optimization is constructed 

by randomly drawing each param eter from some uniform distribution. Since a priori knowledge of 

the possible param eter ranges arc not available for all the parameters, those param eter ranges were 

given a wide girth to  circumvent our ignorance.

To refine our results further and ensure th a t we have converged to  the best solution, a second 

parameter search was performed using the results of the first search to  seed each initial simplex 

for this second pass. From results of this second optimization pass, we find the best-fitting dust 

model has a Xr =  10-4, which would be smaller using the real error map. The dust model in Figure

6.1 shows modest agreement with the H ST  data, but displays significant improvement over the 

simple dust model. While the Artymowicz dust model is able to better characterize the brightness 

distribution of (3 Pictoris, it is not able to  reproduce the warp as seen in the spine of the H ST  

image. The best-fitting model parameters are listed in Table 6.1, along with the model parameters
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determined by Kalas & Jew itt (1995) for a similar dust model. The two sets of model parameters in 

Table 6.1 show reasonable agreement, except for two notable exceptions: a  and /?. The discrepancy 

in fS is because the model is not very sensitive to  the value of 8, which is the power-law exponent 

in the outer disk (i.e. r  > 100 AU). Figure 6.1 suggests the model is only fitting to  data  out to  a 

projected distance of r  ~  150 AU, and at th a t distance, the disk’s surface brightness has only just 

started to  steepen. Thus the model recovered the wrong value for /?, one th a t is too shallow. Perhaps 

if the data  covered a wider range of project distances, the model would be more sensitive to  the 

value of fi. The discrepancy in a  is the more vexing of the two, and the source of its discrepancy is 

not exactly known. Extensive testing of rin g w o rld  reveals th a t for special cases, the code produces 

the expected results. In the case where the latitudinal scale height wq — 0, the radial dependence of 

the synthetic images agreed with analytical models. However, when wq ^  0  the radial dependence 

of the synthetic models were steeper than  expected. Changes to  8 or 7  did not appreciably alter the 

results.

It was noticed th a t through the course of our investigation, th a t the xl varied considerably even 

when the parameters did not change appreciably or were held fixed. To illustrate this phenomenon, 

103  x l  values were computed using the same set of dust parameters. The result can be seen in Figure 

6.2, which shows a histogram of the xl values. The distribution spans almost ~1 in xl, and has a 

standard deviation of ~ 0 . 2  about the median value. After ruling out all other possible sources, we 

arrived at the conclusion th a t these variations are due to  our Monte Carlo image generation. This is 

quite problematic, since it introduces an uncertainty in the determination of the best-fitting model 

parameters. An obvious remedy to  this problem would be to  use more particles in the simulation or 

more iterations per optimization, but this is not a  practical solution for reasons already mentioned. 

Another possible solution would involve fixing the random seed used in the model image generation, 

so th a t all the models will use the same set of random numbers. However, a t the time of the 

discovery of this problem, a large fraction of our results had already been completed. Furthermore, 

time constraints did not permit us to  perform our param eter searches again using a fixed random
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seed.

To illustrate this phenomenon further, we draw a large set of random numbers are from a simple 

linear model [i.e. x  =  \/£ , where £ is a uniformly distributed random number on (0,1)]. Displayed 

in each panel of Figure 6.3 is a  normalized histogram (the thin black line) for increasing values of 

the number of particles N part, and the linear model (the thick red line). Each histogram has 100 

equally spaced bins, and Npart =  103  for the top left panel and increases from left to  right, and top 

to  bottom in powers of 10. The xl is computed between each normalized histogram and the linear 

model with a  constant uncertainty of a  — 0.0075, and is displayed on the top left corner of each 

panel. Figure 6.3 shows the rate of convergence of Monte Carlo simulations, and illustrates why 

such a large number of particles are required in our simulated images. In each panel of Figure 6.4 is 

a histogram of x l  values for the corresponding values of N part in Figure 6.3, and each histogram is 

computed for 103  iterations each using a different random seed. Figure 6.4 shows how the dispersion 

of these distributions decreases with increasing N part, and illustrates th a t for fixed model parameters 

the xl values have a  range of values. The lack of a priori knowledge of the mean (xl(p)), and the 

dispersion aT (p) of these distributions as a function of p  and N part are what makes the issue of x l  

variations so vexing. By fixing the random seed would select only one value of x l  from the histograms 

in Figure 6.4, and thus provide a  one-to-one correspondence between p  and xl f°r a given value of 

NPart■ While our results should not depend on the random seed, the analysis illustrates th a t only 

in the limit of extremely large N part is this truly the case. So while fixing the random seed should 

be avoided, it does circumvent the issue of xl variations for smaller values of N part-
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Figure 6.1: The best-fitting Artymowicz dust model superimposed over the /? Pictoris data, displayed 

with a vertical stretch.
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Table 6.1: Comparison of the Dust Model Parameters

Param eter Kalas & Jewitt (1995) Best-Fit

a 0.45 ±  0.3a -1 .0 7  ±0 .23

P 1.75 ±  0.3a 0.60 ±  0.80

r0 (AU) 116b 95 ±  13

<SC 0.35 ±  0.25 0.05 ±  0.37

7 1.35 ±  0.65 1.5 ±  0.36

te0d 0.08 ±  0.02 0.13 ±  0.03

<7e 0  0 1  + 0  0 7  u ,u i-0.00

9 0.4 ±  0.1 0.43 ±  0.08

h u t  (°) 3.5 ±  1.5 1.60 ±  0.02

P A  (°) -0 .44  ±  1.15

aTo compare the radial power-law exponents, we integrate the 

volume number density n(r, z ) of Kalas & Jewitt (1995) over z  to 

obtain a surface number density i.e. <r(r) =  2 n(r ,z)dz .  This 

decreases both exponents reported in Kalas & Jewitt (1995) by 

5 =  1.35.

1:1 The transition radius is fixed at 6" ~  116 AU.

°Our flare index 5 differs from the index /?' used in Kalas & 

Jewitt (1995) by one i.e. S = /?' — 1.

d Our latitudinal scale height wo =  Co/Vo, where Co is the ver­

tical scale height from Kalas & Jewitt (1995).
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Figure 6.3: P lotted in each panel is a simple linear model (thick red line), and a  normalized histogram 

(thin black line) of N part random numbers drawn from the linear model. The top left 

panel has Npart =  103, and increases from left to  right, and from top to  bottom in 

powers of 10. The displayed value of \ r  is computed between the normalized histogram 

and the linear model (see text for details).

6.2 Results for the Two-Planet M odel

W ith the best-fitting dust model in hand, we now attem pt to  fit the H ST  image of p  Pictoris by 

including two planets. We follow the same procedure outlined in the previous section on generating 

the initial simplex for AMOEBA, but we fix all the dust parameters to  the best-fitting model reported 

in Table 6.1. We also had the same issue with the possible param eter ranges used to  create the initial
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Figure 6.4: Histograms of x l  values computed using different random seeds for the corresponding 

panels in Figure 6.3

simplex, so we similarly gave each param eter a  wide range. The x l  variations are still an issue, and 

we will discuss some simple remedies in §7.1.

We refined our results by performing two optimization passes, seeding the initial simplex of the 

second pass with the best results of the first. From results of this second optimization pass, we 

find the best-fitting two-model has a x l  =  9.84. In Figure 6.5, we can see the agreement is much 

better than  the simple dust model, and there is even some improvement over the Artymowicz dust 

model. The contours show good agreement, and the spines almost completely overlap except beyond 

~140 AU where they diverge. A possible reason for this disagreement could be the small number 

of particles available at these large distances from the star. As a result, the calculation of the 

centre-of-brightness based on these small number of particles will be increasingly susceptible to  any
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pixel-to-pixel variations. The best-fitting model parameters are listed in Table 6.2, along with a  set 

of model parameters rotated to a reference plane perpendicular to  the plane of the sky. The model 

parameters are measured with respect to  the reference plane th a t lies in the disk’s mid-plane, far 

from the planets (i.e. r  »  200 AU). The disk mid-plane is not oriented perpendicular to  the plane 

of the sky since Itm  7  ̂ 0 , which means the x-axis in the system’s reference frame does not point 

exactly along the observer’s line-of-sight. In the rotated reference frame, the y '-z ' plane is parallel 

to  the plane of the sky and the cc'-axis now points along the line-of-sight. To write the parameters 

to  the rotated reference frame, they were first converted to  the Cartesian coordinates assuming the 

mean anomaly is M  =  0 for each planet. Then they were rotated about the system’s x- and y -axes 

by —P A  and —Itm , respectively. Then they were converted back to  orbital elements. Since I tm  

and P A  are both small, the majority of the planetary parameters did not change very much. Based 

on best-fitting two-planet configuration, the Laplace plane responsible for this warp is stable over 

271"/1/ 2 1 — 7.9 Myrs, where is the nodal precession frequency of the outer planet.

A note about the lack of error estimates for the three parameters: m i, m 2 and O2 • In the case 

of mi and 0 7 2 , it was not possible to  satisfy the x l  crit chosen for our error analysis because of the 

small eccentricity of each planet i.e. c.\ =  0.04 and e-2 =  0.04. For a circular or nearly circular 

orbits, the periapse direction m  becomes indeterminate. Similarly, fi becomes indeterminate when 

I  gets very small. In both cases, this indeterminacy translates into the two-planet model becoming 

insensitive to  the variation of m lt m 2 and f i 2 - The only exception here is f i i .  Both I \  and I 2 are 

< 3 ° ,  and yet it was possible to  provide an error estimate for f i i .  The reason for this discrepancy 

comes from the larger mass for the inner planet, which will have a larger influence as a consequence, 

so the two-planet model will still be sensitive to  any variations in f i i .

To illustrate our confidence in the two-planet model, we generate 100 models randomly perturbed 

by the errors reported in Table 6.2 about the best-fitting two-planet model. We plot just the spines 

of the perturbed models in Figure 6.6, along with the spine of the best-fitting two-planet model and 

the spine of p  Pictoris. Upon inspection of Figure 6.6, we note th a t the majority of the perturbed
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spines are localized in a  narrow band about both the spine of the best-fitting two-planet model and 

the spine of /? Pictoris. From this visual inspection of the perturbed spines, we can conclude th a t 

the parameter error estimates provide a reasonable estimate of our model uncertainties.
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Figure 6.5: The best-fitting two-planet model superimposed over the /3 Pictoris data, displayed with 

a vertical stretch.
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Table 6.2: Summary of Two-Planet Model Parameters

Param eter Best-Fit (System)a Best-Fit (Rotated)b

m i (M j)c 6 . 8  ±  4.3 6 . 8  ±  4.3

m 2 (M j)c 3.3 ±  0.8 3.3 ±  0.8

at (AU) 35 ±  11 35 ±  11

a2 (AU) 131 ±  41 131 ±  41

ei n 0 4 + 0 -2 3  u-U4 -o.oo 0 0 4 +0,23 u-U4 -o.oo

6 2 0  0 4 d'0,28 U.U4_ 0  0 0 0  0 4 d~°’28 U.U4_ 0  oo

h  n 9 6 + 5 -4 1.9 ±  1.5

h n q+5.0 3.8 ±  3.6

Wi (° ) 184d 186d

W2  (°) 178d 178d

n i  ( ° ) 140 ±  55 178 ±  75

« 2  (°) 24 l d 252d

aThe reference frame adopted here has its x -y  plane in the disk’s 

midplane, far from the planets (i.e. r  200 AU).

bThis reference frame has its x'-y'  plane perpendicular to the 

plane of the sky.

c M j is the mass of Jupiter.

dNo error estim ate possible.
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Figure 6 .6 : The spines of randomly perturbed best-fitting two-planet model, along with the best- 

fitting two-planet spine and the /? Pictoris spine superimposed.
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Chapter 7 

Conclusion

The results of this study presented in §6 show good agreement with the H ST  image of 0  Pictoris, 

both for the dust model and the two-planet model. The addition of two planets to  the dust model 

was able to  decrease the x l  from 10.40 to  9.84, but whether this change is significant enough to 

conclusively claim th a t our two-planet model correctly describes the data  is debatable. However, the 

warped spine of the 0  Pictoris disk is more accurately described when the two planets are included. 

So while the inclusion of two planets did not result in a substantial decrease in Xr> our two-planet 

model is able to  reproduce the warp seen in the H ST  image of 0  Pictoris.

There are several possible reasons why x l  did not decrease significantly with the two-planet 

model, and chief among them  is the limited number of optimizations. W ith our small number of 

optimizations, there is a very real possibility th a t our results represents only a local minimum in 

the Xr topography. Other possible reasons include the x l  variations, and the number of particles 

used to  simulate the disk. Increasing the number of particles would obviously be desirable, but time 

constraints and computational resources placed hard limits on the number of particles th a t can be 

used in our simulations.

If we are ultimately able to  claim the two-planet model correctly describes the data, then our 

approach would provide a  litmus test for the presence of embedded planets in circumstellar dust- 

disks. Such a tool could then be used to  study other systems with a  known circumstellar dust-disk 

(e.g. HR4796A, Fomalhaut, AU Microscopii, etc.) for the presence of planets.
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7.1 Future Work

There are several different possibilities for future work on the (i Pictoris system. The next logical 

step would be to  fit simultaneously multiple wavelength data  (e.g. optical, infrared, sub-mm, etc.). 

Observing at various wavelengths means th a t one is viewing different-sized dust grains; because one 

would be observing the most abundant dust grains visible at a given wavelength. According to  

scattering theory (Taylor, 1972), the dominant scattering particles in a population will be those th a t 

have sizes comparable to  the wavelength of observation (particles much smaller than  the wavelength 

will be largely invisible to  the observer). Thus a multi-wavelength observations will be sensitive to  

the dust size distribution. While modelling of the dust size distribution would add more parameters 

to  the model, the possibility of placing more constraints on other parameters (e.g. the planetary 

parameters) would out-weigh any issues dealing with a  dust grain size distribution. In particular, 

potential follow-up work could make use of recent mid-infrared observations made by Telesco et 

ol. (2005), which could help provide additional constraints on the masses, semi-major axis and 

eccentricity of any planets.

However, large improvements can be made without new data; increasing the speed and efficiency 

of rin g w o rld  would be the largest single improvement. A significant speed increase would permit 

the computation of more models, thereby increasing the statistical significance of any solution. 

One could also increase the number of particles used to  generate the synthetic images, and avoid 

placing large fractions of the particles behind the image mask. A crude estimate gives the current 

percentage of particles laying behind the mask at ~50%-60%, so any effort to  construct an image tha t 

lowers this fraction will ultim ately increase the signal-to-noise of the synthetic image outside of the 

mask. Furthermore, the Monte Carlo simulation in rin g w o rld  uses a different random seed for each 

synthetic image, which introduces x l  variations even when the model parameters are held fixed (see 

Figure 6.2). A simple remedy would be to  use the same random seed for each synthetic image, so th a t 

all the models can be compared on the same footing and eliminating a source of uncertainty. While
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the x l  variations would not prevent finding a solution, they would only frustrate the AMOEBA 

simplex algorithm. Increasing the number of iterations per optimization could alleviate this issue as 

well, but since it takes a  non-trivial amount of time to  generate a model image we have the same 

issue with time and computational constraints.

Another avenue being explored by the author is the combination of two different parameter 

searching algorithms, a  genetic algorithm and simplex method as proposed by Charbonneau (1995). 

Genetic algorithms search for the set of best parameters using the principles of evolutionary biology: 

natural selection, genetic m utation and large populations. The advantage of genetic algorithms is 

their ability to  find the global minima, unlike the simplex method which is essentially a local searching 

algorithm. A drawback of genetic algorithms is their slow rate of convergence to  a solution, while the 

simplex method enjoys a comparatively rapid ra te of convergence. A hybrid approach would make 

the best use of both methods: the global searching capability of genetic algorithms and the rapid 

convergence of the simplex method. Specifically, the genetic algorithm would be used first to  survey 

the parameter space to  assess its global structure. Then a subset of the best solutions returned by 

the genetic algorithm would be used to  seed the simplex, which would then  rapidly convergence to  

a solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A. Acceleration Due to  a Ring 68

Appendix A

Acceleration Due to a Ring

In this section we derive the acceleration th a t a particle of mass to' exerts on another particle of 

mass to.
A

Z

m

x

Figure A .l: The two-body configuration 

We begin by writing the gravitational potential th a t m  experiences due to  the perturbing particle

Gm!
*(*) = — (A-1)

where the separation vector A — i — i '  points from to ' to  to, and A =  |A|.
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Since the separation between m  and m ' is A =  \ / A q +  (z — z ')2, we can write (A.l)

Gm'
$ ( * )  =  -

z — z
1+ -

, \  2 - ,- 1 / 2

(A.2)
A o

where Ao =  \ / r 2  — 2 rr' cos(0 — 6') + r ' 2  is the separation between m  and m! projected onto the x-y  

plane.

We can linearize our equations of motion by assuming th a t the bodies vertical separations are 

small compared to  their horizontal separations i.e. \z — z'\ <C A o ,  so

$ (r ,8 ,z , t )  (r,8,t) + $ z (r ,0 ,z , t)  (A.3)

where <3>o and <f>2  are

T /  ̂ x Gm'$o (r,8,t) =  — -r— (A.4a)
A o

9, *,*) =  § £ ( * -  * '?  +  0 { z  -  z ')4 (AAb)

where the # o  potential is the zeroth-order term  th a t tells us about the radial and tangential forces 

exerted on m, while the d>2  potential is the lowest-order term th a t carries information about any

vertical forces. The Cartesian components of the acceleration due to  m 1 are derivatives of <f>o and

ax -  (A.5a)

d $ 0

dz

(A.5b) 

(A.5c)

Next, Fourier expand <f>o and d>2:

1  0 0
$ o (r,6,t) = ~4>o{r) + ^ 2  4>k(r) cos[k(9 -  n't)] (A.6 a)

k= 1

1  °°
$ z (r ,8 ,z , t )  = z) + y2<j>z,h(r, z) cos[k(6 -  n ’t)} (A.6 b)

fc=i

where n' — G (M* + m ' ) / a ' 3  is the average angular velocity of m '  about the primary M*, while

4>k{r) and <j>z,k(r,z) are the amplitude of the k th Fourier component of <3?o and $ 2, respectively.
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In the above Fourier expansions, the k > 1 time dependent terms describe the evolution of the 

gravitational perturbation experienced by to due to  m '. Since m  and m ' orbit the central star a t the 

average angular rates n  and n' respectively, the gravitational perturbation th a t m  will experience will 

vary with a period T  = 2iv/\n -  n'\. If the mean angular velocities of m and to ' are commensurable 

(i.e. n /n f  is a ratio of whole numbers), then the two bodies reside in a mean-motion resonance. In 

the language of galactic dynamics the time dependent terms in (A.6 a) will correspond to  Lindblad 

resonances, while in (A.6 b) they will correspond to  vertical resonances. However the k =  0 terms 

in (A.6 ), which are time independent represent the potentials tha t are due to  the perturber’s time- 

averaged forcings. It is worth noting th a t if to ' were smeared out into an inclined ring, the perturbing 

ring’s potential would simply be [<fo(r) +  <f>Zto(r,z)\/2.

Since we are only interested in the global structure of our circumstellar dust-disk, we will ignore 

all the resonant term s in the above Fourier expansions. We can justify discarding these resonant 

terms since, as Chapter 4 notes, each resonance occupies a very narrow radial extent. Thus these 

resonances usually do not affect the global structure of a  circumstellar dust-disk. So for our subse­

quent analysis we shall ignore all but the k = 0 term s in (A.6 ), which is equivalent to  to experiencing 

the gravitational attraction from an inclined ring of material with mass to '.

To obtain the coefficients 4>k(r ) and cf>Ztk(r,z)  we substitute (A.4) into (A.6 ), then multiply both 

sides by cos(k'0) and integrate over all 0:

/n C(Y*(k'0\ 1 f*
—   d# = ------------ -—<f>k(r) I cos[k(0 — n't)]cos(k'0)d0 (A.7a)

-ir A 0 “  1 +  dfeo J - k

C m '  C  (z — z'S1 00 1 f %
——  / — T-g— cos(k'0)d0 =  "S""'  ------— (j>z,k(c, z) I cos[k(0 — n't)]cos(k'O)d0 (A.7b)

2 J —7T A o  ^  1 +  CfeO J - 7T

where k' is and arbitrary integer and dij is the Kronecker delta.

Utilizing the orthogonality relation for cosine:

f  cos (k'0) cos (k0)d0 =  7r(l +  6ka)dkk'
J —7r

where the 6ko accounts for the case when k — k' — 0 .
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The integrals on the right hand side of (A.7) can then be evaluated

, f w cos(k'6)
f  = x ' y ] skk'4lk(r)cos(kn,t) (A.8 a)

• '-7r 0  k=o

/ /*7T / / \ 2

m - /  3 — cos(k'6)d0 — Tr'^2Skk,<f>z,k(r, z) cos(fcn't) (A.8 b)
V -7 T  ^ 0  i,__nft=0

Since is only non-zero when k = k ' , then the sums in (A.8 ) reduce to a single term. Isolating 

(j>k{r) and <j>z,k{r,z) in (A.8 ) yields the desired Fourier amplitudes

, , . Gm' f n cos(kd) „ .

* - ‘ (r-2, = 2^ ^ B ^ / , i£ i r " C0S(M,'i6 < A -9 b )

Since we are only interested in the k =  0 terms, this reduces to

Gm' r7r
7r /:j

G m  f  zz - 2 z z + z  2 
<t>z,o{r,z) =  y  --------^ 3 --------(A.10b)

Since we can write Ao =  r ' y / l  —2f3 cos(0 — 6') +  (32 with ,6 = r / r ' ,  then

<Mf> =  ~ ^ r  fnr' J
d.0

(A .lla)
y ' l  - 2 /3 c o s ( 0 - 0 ' )  I /?2

, , v _  G W  r  ________z 2  -  2 zz '________
^ ,o (n  2 ) -  27rr,3 J  ^  ^  _  2 /? co g ^  _  0 ,) +  ^ 2 ]3 / 2  (A .llb )

where we have dropped the z '2 term  in (A .llb ) since it does not contribute to  the vertical acceleration 

az = - d $ z /dz .

If we note th a t z '  ~  r' sin I '  sin(0' — O') for circular, low inclination orbits (see Figure A.2) where 

O' is the longitude of ascending node which corresponds to  the longitude where the orbit plane 

“ascends” through the x-y  reference plane. Thus

G m ’ f*  <hl>
4>o (r) = -------- /  . . .  (A. 12a)

n r  yT  — 2/3cos^»+ (32

. Gm' f*  z2 — 2zr' sin I '  sin(0 — SI' — ip) .
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Figure A.2: For circular, low inclination orbits: x  ~  r  cos 9, y  ~  r  sin 0 and z  — r  s in /s in  (d — f2).

where we have changed variables to  ip =  6 — 9'.

We can simplify (A.12b) by utilizing the sine sum formula sin(d — Cl1 -  ip) — cos ip sin(6* — Q') — 

sin •>/> cos(0 — H') and noting:

f*  sin ipdip
(1 -  2/3 cos ip + /32 ) 3 / 2

since the integrand is an odd function of ip. Thus we can replace sin(<9 — Cl' —ip) with cos ip sin(d — Cl') 

in (A.12b) since sin ip cos(9 — Cl') does not contribute to  the integral.

Thus (A. 12) can be written

. , . Gm' [* dip / ,  \
<Po(r) =  7- I — 7 ..........................................  (A. 13a)

nr' J_„ G l - 2/3cosip+ /32 K ’!—7r \ / l  -  2(3 cos 'Ip +  ,32 

G m ’ [ *  z 2 - 2 z r ' s i n  I 1 s in ( 6 — Cl') cosip , .
M r .  *) =  s p j  - w w ^ d*  <A 13b>
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At this point we find it convenient to  write the above in terms of Laplace coefficients:

b ( i )  ( 8 )  = I f  ____________   (A 14)

S O

C ( A . 1 5 a )  

$ z (r ,6 ,z , t)  ~  ^ 75- [ ^ 2 & | / 2 (Z5) — 2zr'  sin I '  sin(0 -  Cl')b^2(p)]. (A.15b)

The secular accelerations (A.5) can be written using the chain rule

dp
dp  dx  

d $ 0 dp  
dy dx

d $ z
dz

where /? =  r / r '  with r = \ J x 2  + y 2, so

d p  x  
dx rr

d p = V_
dx rr'

Substituting (A.15) into (A.16) and using (A.17)

(A.16a) 

(A.16b) 

(A.16c)

(A.17a) 

(A.17b)

G m ' d b f / 2(P)

a x ^ 2 ^ d p ~ COS ( }

Gm! dh\J2{P) a  u
av = ~2r>2 dp ( }

G  *
az =  [sin 1' sin(d — 0,')b^2(P) — /3sin /sin(0  — f2)&3 / 2 (/3 )] (A.18c)

where x  ~  r  cos 0, y ~  r  sin 0 and z ~  r  sin I  sin(<9 -  0) to  lowest-order in the small inclination I.

If we note the following the property of the Laplace coefficients

=  I r  =  0 “ bM(P) (A 19)
s  ^  } 7T J _ v  ( 1  — 2 P c o s ,tp  +  P 2 ) s  P  s  KP}  K }

and if we define a  =  / ? _ 1  = r ' /r ,  then  we can write

[Q4 /2 ( a ) ~  b f / 2  (“ )]cos 6 (A.20a)
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G m ' '

G m ’
az =

au =  -^-s-1* 6 3 / 2 (a) “ 6 3 / 2 (0 :)] ski 0 (A.20b)

f O ( _ /-i/cin T c\n{

y ~  2r2

^ 2 [Sin/'sin(^ -  n 'jfeg/^o) — o s in ls in (0  — 0 )6 3 / 2 (0 )] (A.20c)

where the above also employed

dbl / \ ( a ) (i) / x L(Q) / ^

da  =  6 3 / 2  (“ ) -  ^  3 / 2  (®)»

which can be obtained by differentiating (A.14).

Eqns (A.20) thus provide the secular part of the acceleration th a t the perturbing particle to ' 

exerts on particle to.
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Appendix B

The Secular Equations of Motion

In the following section we derive the equations for the secular evolution of a particle of mass to 

due to  the perturbation of a  particle of mass to '. The secular evolution of a particle is a result of 

considering only the k =  0 terms in Eqn (A.6 ), which are independent of time. This is equivalent 

to  time-averaging the equations of motion, which effectively smears the perturbing mass to ' over a 

ring. To obtain the secular equations of motion for to, we consider the torque th a t to experiences 

due to  a  ring of mass to'.

First let us assume th a t to and a ring of mass to' are on circular, mutually inclined orbits. The 

torque on to due to  the ring to' is given by:

T  = m(& x a) (B-l)

where is to ’s position vector and a is the acceleration th a t to experiences due to  to '. In Cartesian

—t
coordinates, the x  and y  components of T  are:

Tx = m{yaz -  zay) (B.2 a)

Ty = m (zax — xaz ) (B.2b)

where the Cartesian components of the acceleration th a t to experiences from a ring of mass to' are 

Eqn (A.20).

So Tx and Ty are

Tx — js n̂ / '  sjn ( 0  _  Q'j _  sjn /  sin(0 — sin 9 (B.3a)

Ty =  [sin / gin(i9  — Cl) — sin / '  sin(0 — il')\ab^J2(cc) cos9 (B.3b)
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where we have made use of x  ~  r  cos 9, y  ~  rs in d  and z ~  r s in i  sin 9 for circular, low inclination 

orbits. I  and 0  are m ’s inclination and longitude of ascending node, while I '  and 0 ' are the orbital

elements for the ring of mass m '. The b ^ \ a )  are the Laplace coefficients (A.14) with a  = r ' /r ,  and

9 is m ’s longitude (see Figure A .l).

Since we are only concerned with the evolution of our system over timeseales much longer than  

a  single orbital period, we calculate the time-averaged torques (Tx) and {Ty},

{Tx ) =  [sjn j '  cos ft' _  sjn j  cos ft]aby^Qi)  (B .4a)

(Ty) — — [sin I '  sin O' — sin I  sin 0] a b ^ 2(a) (B.4b)

where the angled brackets denote a time-average of these quantities over a  single orbit of m.

A

Z

m

Figure B .l: Projections of the angular momentum vector
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At this point we find it convenient to  define two new quantities, p  and q:

p  = sinIsinCl = ~  (B.5a)
Li

q = s in lc o s f i  =  — ~ y  (B.5b)
L

with corresponding definitions for q' and p'\ the p ’s and q’s are the projections of a  particle’s angular 

momentum vector L  onto the x-y  plane (see Figure B .l).

W ith the above definitions, we can write Eqn (B.4) in the more convenient form

(Tx) =  ^ p 'm n 2r 2a b ^ 2(a)(q' -  q) (B.6 a)

{Ty) =  i  p! m n 2 r 2  otb^J2 (a) (p1 —p) (B.6 b)

where we have made use of u 2 r 3  =  G(M* +  to) with n  being to ’s mean motion (i.e. average angular 

velocity), p! = m ' / ( M * +  to) C  1  is essentially the mass of the perturbing planet in units of the 

central s ta r’s mass M*.

Since the Cartesian components of to ’s angular momentum vector projected onto the x-y  plane 

are: Lx = L s in /c o s ( | — fi) =  L  sin I  sin Q and L y =  —L s in I  s in ( |; — Q) =  — L s in /  cosfl, these can 

be written in terms of p  and q:

L x = pm na2 (B.7a)

L y = —qmna2 (B.7b)

where we have made use of the magnitude of the angular momentum vector \L\ = m v r  = m n a 2 for 

a  body in a circular orbit.

Next differentiate the components of to ’s angular momentum in (B.7), and note th a t the rate of 

change of angular momentum is equal to  the torque. If we time-average Lx and Ly , we can equate 

them with the orbit averaged torques (B.6 ) and solve for (p) and (q):

(p) =  \ h ' naby 2{a ) W  ~  <i) (B.8 a)

(q) = jp !n a b (z]2{a)(p -  p') (B.8 b)
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While the above solutions for (p) and (q) apply strictly to  the ease with two bodies (excluding 

the central star), it is simple to  extend these results to  the more general case with N  bodies:

N

(Pj) — Bjjq j  +  'y  ̂Bjiqi (B.9a)
i= i 

N

(iqj) = —BjjPj  — y  ' BjiPi (B.9b)
4 = 1

where

1  1  N 
B ji  =  +  — rijpjioijih^y j ( otji) B j j  =  —rij — 'y '' f i j j a j j ( a j i ) (B.'lOa)

i= 1

where rij is the mean motion of rrij, a j i  = a i /a j  is the semi-major axis ratio between rrij and rrii, 

while fiji = r m / ( M ic +  m 3j  and M* is the mass of the central star.

A similar derivation for the time-averaged equations of motion for the two other secularly varying 

orbital elements, h = e s in w  and k =  eco sw ,  can be found in Murray & Dermott (1999), where the 

k  and h are the x  and y  components of m ’s Laplace-Runge-Lenz vector, respectively. The Laplace- 

Runge-Lenz vector is constant for any motion generated by an inverse-squared force law {i.e. gravity 

and electrostatics). For brevity we shall omit the derivation here and simply quote the final results:

N

(hj) = A j jk j  +  y  ( Ajiki  (B .lla )
4 = 1

N

(kj) = —A jjh j  — y  ' Ajih{ (B .llb )
4— 1

where

1 1 N
Aj i  = — -^njPjiCKjib^^iaji) A j j  y  ] (B .1 2 a )

4 =  1

i^j

where the quantities Aji  and Bji  can be thought of as the constant elements of two N  x N  matrices 

A  and B  whose entries describe the magnitude of the mutual gravitational interactions th a t are 

exerted among the N  planets (Murray & Dermott, 1999; Hahn, 2003).
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Appendix C

The Lifetime of Circumstellar Dust

In the following section we look at the lifetime of dust grains in a circumstellar environment by 

comparing the collision timescale { t c o i i )  between dust grains, and the Poynting-Robertson (PR) 

drag timescale (t p R ). If t c o u  3> t p R  the dust grains will spiral in towards the central star due to  

P R  drag, but if t c o u  -C t p n  then the dust grains will not drift very far before they get destroyed by 

a collision. In the derivation of secular perturbation theory in §4, it is tacitly assumed th a t bodies 

do not experience any significant radial drift, which requires th a t t c o u  C  t p R .

C .l Collision Timescale

We begin by considering a  circumstellar disk occupied by dust grains, and a  single dust grain on an 

inclined orbit with respect to  the disk. To simplify m atters, we shall assume th a t all the dust grains 

arc on circular orbits and all have the same size. This is admittedly a crude approximation, since dust 

generally have a  range of sizes, bu t this approximation is good enough for our order-of-magnitude 

assessment of collisions and P R  drag.

If Vcoii(r) is the probability per unit time th a t the dust grain will collide with another dust grain 

during its orbit, then we can write:

r . M r )  =  g f e  ( c .i )

where r ( r )  is the dust-disk’s normal optical depth th a t physically represents the fraction of the disk 

occupied by dust grains, with the factor of two accounting for the inclined dust grain penetrating 

the mid-plane of the disk twice per orbit.
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A collision with another dust grain is certain to  occur after a time t cou , which satisfies

'Pcou(r)tcoii(r) =  1, (C.2)

so

« < • >  =  <C31

is the collision timescale.

It is worth noting th a t the above derivation of t cou{r) is by no means comprehensive, a more 

general treatm ent would need to  take into account: the size distribution and the spatial distribution 

of the dust grains. Since the information on these distributions are largely unknown, incorporating 

them would only introduce more uncertainties. So for our proposes, the expression (C.3) provides

an adequate estimate of the collision timescale. For completeness, the reader is directed toward a

paper by W yatt et al. (2002) for a more exhaustive analysis of collisional processes.

C.2 Poynting-Robertson Drag Timescale

Burns et al. (1979a) describes in detail the physics of radiation forces on small particles, and derived 

the acceleration of the grain’s position vector r(t) due to radiation forces as the sum of two parts:

f  =  a  rad +  &p r  (C.4)

where a rad = aradf is the acceleration due to  radiation pressure, and

/ 2 f  rf) A
a  PR =  - a rad ( —-f  +  — 9 \  (C.5)

is the acceleration due to  PoyntingRobertson drag, where arad =  /3GM */r2  is the magnitude of the 

radiation pressure and /? =  Frad /F grav is the ratio of the radiation force to  the gravitational force, 

and where r  and 9 are the dust grain’s radial and angular velocity, respectively. In the above, f  and 

9 are the radial and tangential unit vectors, and c is the speed of light.

The velocity independent term  of the radiation force, arad, is referred to  as the radiation pressure, 

and it does not cause any radial drift. The quantity fi is independent of r  since Frad and Fgrav both
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have the same radial dependence (i .e .  both vary as r  2). Though ft is independent of r , it does have

an inverse size dependence: ft =  (0.5739QppJps)(L i, / L Q) (M 0 /M *), where p  is measured in g /cm 3 

and s  in p m  (Burns e t  al., 1979a). Q p r  is the radiation pressure efficiency factor which takes into 

account both the absorption and scattering efficiencies of a particle. In this study, we assume th a t 

Q p r  =  1 since a typical silicate grain of size s ~  10 pm  a t optical wavelengths (i .e .  A ~  0.6 pm) 

has a  Q p r  ^  1 (Wolf & Voshchinnikov, 2004). The inverse size dependence in the radiation force 

preferentially affects smaller, rather than  larger dust grains.

The velocity dependent terms of the radiation force, Eqn (C.5), are collectively known as 

Poynting-Robertson (PR) drag. This component results in the loss of angular momentum from 

a particle’s orbit1, and causes the particle to  spiral in toward the star. If we assume th a t a particle 

is initially in a  circular orbit, it can then be shown th a t it will drift inwards with a  radial velocity

where a  = f t ( n r / c )  =  3.8 x 10_ 5 (/rm /s)(g cm 3 /p) ( 1 0 0  A U /r ) 1 / 2  is the dimensionless drag coefficient 

(Burns e t  al., 1979a) evaluated at r  — 100 AU for the ft Pictoris system, which is the typical distance 

tha t is of interest here.

The orbit-decay timescale due to  P R  drag is defined through:

where we have substituted a  — f t ( n r / c )  and n 2r 3  =  GM* in Eqn (C.6 ).

This integrates to  give

c r 2

V ( r )  =  4GM7 ft

and if we substitute for GM* =  n 2 r 3, n  =  2 i r /P orb and write Eqn (C.8 ) in terms of a ,  then

f  =  —2 a n r (C.6 )

2 GM*/3
(C.7)

(C.9)

where P orb(r)  is the the mean orbital period at a distance r  from the star.

1 That angular momentum is carried away by stellar photons that are scattered by the dust grain.
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C.3 Comparison of Collision and P R  Timescales

At this point, we make a comparison of the collision and PR  timescales as derived in the previous two 

sections. As mentioned, the application of secular perturbation theory stipulates th a t the particles 

do not experience any radial drift. This requires t cou(r)  <C fp/?(r) which requires the disk’s optical 

depth to  be sufficiently high, i. e.

t (v) »  Tcrit(r) =  47ra (C.10)

where Tcrit(r)  is the optical depth when t cou(r)  =  tp p (r) .

Before we can proceed, we need the typical dust grain size a t 3  Pictoris. We expect a  dust 

grain density of p ~  2.0 g /cm 3, which is typical of silicate dust grains. The dust grain size can be 

inferred from the neutral optical colours of the circumstellar disk around (3 Pictoris, which implies 

that the dust grains are much larger than  optical wavelength photons (i.e.  s »  1  ~  0 . 6  pm).  

Theoretical models and observational evidence for 3  Pictoris indicate th a t a  typical dust grain size 

is s  ~  10.0 pm  (Krivov et al ,  2000). Utilizing these fiducial values for the dust grain size and density 

gives: Tcrit(r) =  2.4 x 10~~5(100 A U /r)1/2.

Artymowicz was able to  determine the functional form of the normal optical depth by inverting 

the scattered-light images of ,6 Pictoris (Artymowicz et a l ,  1989; Artymowicz, 1997), who reports 

r(r)  =  4.8 x 10- 3  a t r  =  100 AU which gives r ( r ) / Tcrit(r)  ~  200. This implies th a t t con(r)  fp p (r), 

thus we can conclude th a t the circumstellar disk around /? Pictoris is a collisionally dominated disk, 

and we can safely apply secular perturbation theory to  this system.
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Appendix D

The Inclination Distribution

In this appendix we derive the form of the inclination distribution utilized in ringw orld . The 

relationship between the projected latitude distribution h(r,0) and its corresponding inclination 

distribution H(r, 1) is given by Brown (2001):

A 1 H ir  V I
Je \/sin  12 — sin 02

where we note th a t an isotropic distribution of particles has an inclination distribution H(r, I) = 

(2 / 7r) sin I ,  which results in a  latitude distribution h(r, 9) = 1.

In general, Eqn (D .l) is a Volterra integral equation of the first kind:

f ( x ) =  f  _ y M ^ = =  (d.2)
Jx V g ( x ) - 9 ( t ) 2 

which has the solution (Polyanin & Manzhirov, 1998)

_ 1  d r  m m *  (D3)
K d x J ,  V a W 2 - ^ ) 2

where it is assumed th a t g'(t) > 0 .

Thus the solution to  Eqn (D .l) is given by

=  ( D .4 )

where

G (r, I) = - 1  [ ' 12 '■(■;■*)8ln * cos m  (D.5)
7T J i  y s in # 2  — sin / 2

We now turn  our attention to  the projected vertical distribution from Artymowicz et al. (1989):

h(r,z)  - e x p j -  ~  j  (D.6 )
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where 7  controls the latitude distribution of the dust (e.g. 7  =  1  for an exponential distribution and 

7  =  2  for a Gaussian distribution) and £(r) is the vertical scale height

« r ) = C o ( ^ ) '  (D.7)

where S' controls the flaring of the disk, and £ 0  is the vertical thickness of the disk at r  =  rg.

Transforming Eqn (D.6 ) to  a projected latitude distribution we replace z = r s i n #  ~  rd in the 

small angle approximation

A ( r , 0 ) = e x p j -  } (D.8 )

and w(r) is the latitudinal scale height

w(r) =  w0 (D.9)

where S = S' — 1 and wq — Co/ro-

Unfortunately, Eqn (D.4) is not easily solvable for the latitude distribution (D.8 ), due to  the 

singular nature of the integrand as 9 approaches I.  However, if we assume th a t the dominant 

contribution to  the integral will occur when 9 ~  I  we can replace e A e/ wir)\'1 _► e - [ i /u'(*,)F ) So

C ( r , J ) ~ - V f " '1 (d .10)
n J i  \/sin  9'2 — sin I 2  w

As long as w(r) -C 1, then we can assume th a t cos I  ~  1 and G (r,I)  ~  — (2 / n ) e ^ ^ i w(r')\'  ̂which 

gives the inclination distribution

H (r ,I )  ~  ( J L Y  l e -U /M r)r  (D11)
Trw(r) \w (r )  J

To make use of this inclination distribution in our Monte Carlo image generation, we utilize the 

procedure outlined in §5.1 and we find:

l p( r , 0  ~  ^ ( r ) [ - ln [ l  + C (e -t2/™ (r)]7 -  l)]]1̂  (D.12)

where £ is a random number uniformly distributed over (0 , 1 ).
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However, if w{r) -C 1, then e l2 / 7r“ ( r ) ] 7  ~  o and we finally arrive at the generating function for 

the proper inclination distribution used in ringw orld :

l p( r , 0 - w ( r ) [ - \ n m l h  (D.13)
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