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ABSTRACT

THE ORIGIN AND EVOLUTION OF COLD GASEOUS
STRUCTURES IN GALAXIES AND GALACTIC OUTFLOWS

by David John Williamson

December 12th, 2013

This thesis examines the formation and evolution of cold gaseous structures in galaxies
and galactic outflows in two distinct scenarios.

Previous analytic estimates of the viscous time-scale due to cloud-cloud
collisions in Milky Way-like discs have produced values on the order of tν ∼ 1000
Gyr, and hence it has been concluded that cloud-cloud collisions are not important
to the dynamical evolution of these galaxies. However, these estimates had not been
tested with full three dimensional hydrodynamic simulations, which we perform using
the smoothed particle hydrodynamics code HYDRA-OMP, making improvements to
its parallelism to do so. These simulations produce a viscous time-scale of tν ∼ 10 Gyr,
suggesting that while the effective viscosity is weak, it is not entirely insignificant.
The discrepancy between the analytic and the numerical results is traced to an error
in the analytic calculation.

Observations have revealed cold gas with large velocity dispersions (FWHM
∼ 300 km/s) within the hot outflows of Ultra-luminous Infrared Galaxies (ULIRGs).
This gas may trace its origin to the Rayleigh-Taylor (RT) fragmentation of a super-
bubble wall. We model this scenario at two scales to attempt to recreate this effect
in three-dimensional hydrodynamic simulations using FLASH. Although the models
are not well-converged with respect to resolution, we are able to produce cold gas in
outflows with large velocity dispersions (FWHM ∼ 200− 300 km/s). Our small-scale
models indeed produce this cold gas through RT fragmentation of the super-bubble
wall, but our large-scale models produce this cold gas by hot bubbles fragmenting
the disc’s gas into cold clumps which are then accelerated by thermal pressure, or
by cooling within the outflow. We also make use of a sub-grid turbulence model.
After several significant errors in a code supplied by a collaborator were corrected,
this model produces simulations that are better converged, at the cost of smoothing
away the cold gas.
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There is nothing stable in the world;

uproar’s your only music.

JOHN KEATS

The LORD said to Moses,

“I am going to come to you in a dense cloud...”

EXODUS 19:9
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Chapter 1

Introduction

This thesis details investigations into the origin and evolution of cold gaseous

structures in galaxies and galactic outflows. We have investigated two distinct scenar-

ios: firstly, the formation of giant molecular clouds in Milky-Way type disc galaxies

and how collisions between these clouds can generate an effective viscosity (Bell 2002;

Williamson & Thacker 2012); and secondly, the formation of cold gas in turbulent

outflows from Ultra-luminous Infrared Galaxies (ULIRGs) (for reviews, see Lonsdale

et al. 2006; Veilleux 2006), and how this cold gas can explain the broad line-widths

of NaI1 absorption in ULIRGs (as in Fujita et al. 2009). These investigations are

performed using hydrodynamic simulations.

Galactic hydrodynamics is an important and theoretically complex field (for

reviews see Baugh 2006; Benson 2010). Although by mass a galaxy mostly consists

of dark matter, and most of the baryonic matter in evolved discs consists of stars and

other compact objects, the diffuse gaseous components — the interstellar medium

(ISM) within a galaxy, as well as the intergalactic medium (IGM) that fills the space

between galaxies — are critical in determining most of the characteristics of a galaxy,

from morphology to star formation rates. Furthermore, although the circumgalactic

gas of a galaxy is diffuse, it can extend much further from the centre of a galaxy than

the stellar component and thus can still have a very large total mass.

Hydrodynamics models the evolution of the gas of a galaxy using sets of dif-

ferential equations (see section 1.1), such as the Navier-Stokes equations (Mihalas

& Weibel Mihalas 1984; Shu 1992). These equations predict the change in macro-

scopic quantities such as density, temperature and pressure over time, given some set

of initial conditions. Unfortunately, it is almost never possible to find an analytic

1In this work, NaI only refers to unionised atomic sodium, and not to sodium iodide.
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solution to these equations — indeed, one of the Clay Mathematics Institute’s “Mil-

lenium Problems” is to prove only the existence and smoothness of solutions to the

Navier-Stokes equations (Carlson et al. 2006). Instead, we must perform numerical

simulations to find approximate solutions to particular problems.

Two of the major formulations for solving the Navier Stokes (and other) equa-

tions over some region are the Lagrangian and the Eulerian approaches. The choice of

approach determines how the differential equations are formulated and implemented

numerically. In the Eulerian approach, fluid is interpreted as flowing through a fixed

coordinate system. The equations are formulated to follow the evolution of the rele-

vant hydrodynamic quantities (density, pressure, velocity etc.) at each point in this

fixed grid. In the discretised (i.e. numerical) form, the simulated volume is divided

into cells. The hydrodynamic quantities are assigned values at the centre or face of

each cell to give a grid of values, and the changes in these quantities are calculated

by discretised differential equations. Here, the discretised grid is stationary, and fluid

moves through it. One Eulerian method for solving the Navier Stokes equations is the

piecewise-parabolic method (PPM) (Colella & Woodward 1984; O’Shea et al. 2004).

PPM is used by popular adaptive-mesh-refinement codes such as FLASH (Fryxell

et al. 2000) and ENZO. By contrast, in the Lagrangian approach, the evolution equa-

tions follow infinitesimal parcels of mass, and not a fixed grid. The numerical form in

this case expands these infinitesimal parcels into finite-sized cells which move with the

fluid. These cells are often represented as particles, each containing a constant mass of

fluid. In astronomy, this is often implemented with the Smooth Particle Hydrodynam-

ics (SPH) algorithm, as in codes such as GADGET (Springel 2005), HYDRA (Thacker

& Couchman 2006), or Gasoline (Wadsley et al. 2004). Other Lagrangian algorithms

have also been implemented in astrophysics, including the AREPO code (Springel

2010). In addition, there are codes whose algorithms can not be completely cate-

gorized as entirely Lagrangian or entirely Eulerian. These include semi-Lagrangian

schemes (Staniforth & Côté 1991) and arbitrary Eulerian-Lagrangian schemes (Hirt

et al. 1974).
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Each approach has strengths and weaknesses, with different methods being

more useful in certain numerical applications. Eulerian methods allow a simple ge-

ometry — often a cartesian, spherical, or cylindrical mesh — which permits straight-

forward, stable, low-error calculations of quantities such as derivatives, and fluxes. In

the Lagrangian formulation, local quantities may be less accurate as the location of

fluid particles is non-uniform and the code may, depending upon the algorithm cho-

sen, be harder to code. However, Lagrangian methods allow a more direct calculation

of trajectories, which is particularly beneficial for a collisionless (i.e. pressureless)

fluid, or in a simulation which combines a collisionless component and a collisional

component, or in a simulation which requires a higher level of positional accuracy.

Lagrangian methods can also benefit from a sort of automatic “refining” of resolu-

tion — regions with a high concentration of mass will naturally contain a higher

concentration of fluid cells, and hence be better resolved, provided the specific im-

plementation takes advantage of this (for example, an SPH code with an adaptive

smoothing length). This concentration of resolution is beneficial if the high-density

regions are the regions of interest — such as in a simulation of cosmological galaxy

formation — but this also implies that low-density gas is poorly resolved. Hence an

Eulerian approach is often a better choice if low-density regions are important, as in

the case of shockwaves travelling into the intergalactic medium, for example. Low

density regions can be better resolved in Lagrangian codes by methods such as par-

ticle splitting (Kitsionas & Whitworth 2002) algorithms (at the cost of introducing

perturbations during the splitting procedure), or by using particles of lower mass in

lower density regions (but only if low and high density regions do not mix well). By

contrast, in Eulerian approaches it is trivial to maintain a fixed resolution across the

entire domain, regardless of density. Eulerian methods can be (and often are) greatly

improved by introducing adaptive refinements to increase the resolution in critical

areas, but this comes at the cost of additional complexity. This method is known as

Adaptive Mesh Refinement (AMR) (Berger & Oliger 1984).
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In a numerical scheme, it is always necessary to discretise the fluid, thereby

placing a limit on the smallest resolved length and mass scales. This discretisation

can remove many important physical processes below the length scale, which must

either be ruled-out as negligible, or must be included with some sort of sub-resolution

model (e.g. Leonard 1974). Critically in galactic simulations, the formation of stars

and their interactions with the interstellar medium (i.e. stellar feedback) are currently

unresolved in all full-scale galactic simulations, and despite increasing computational

power, are likely to remain unresolved for some time: to resolve both a 10 kpc radius

dwarf galaxy and a solar-radius star requires resolution that extends to 11 orders of

magnitude. As a result, the ongoing development of sub-grid models for star forma-

tion and feedback is one of the major contemporary sub-fields of galaxy modelling

(e.g. Katz 1992; Ceverino & Klypin 2009; Christensen et al. 2010; Murante et al.

2010; Durier & Dalla Vecchia 2012; Hopkins et al. 2012a; Agertz et al. 2012). Other

important sub-grid processes that must be modelled include turbulence, and chemical

or radiative processes such as cooling.

To properly understand the ramifications of discretisation, we must “smooth”

the Navier-Stokes equations, splitting the density and velocity fields into large-scale

and small-scale components. The mathematical details of this procedure are ex-

plained in more detail in Section 4.3.1. The non-linearity of the equations produces

an additional term in the smoothed Navier-Stokes equations (Lesieur et al. 2005;

Schmidt et al. 2006), which can be represented by an additional tensor that depends

on small-scale fluctuations of the fluid. Being analogous to the stress tensor, this can

be considered as a source of effective pressure and viscosity due to small-scale effects.

In this thesis, we focus on two interpretations of this effective stress tensor:

Firstly, it can be used to model sub-grid effects in numerical simulations, where

smoothing the Navier-Stokes equations is necessary due to resolution limits. As noted,

physics below the resolution limit is not explicitly captured in this situation, and this

can be alleviated by the modifying the effective stress tensor to at least approximately

provide the sub-grid terms, as a “sub-grid-scale stress tensor”. One major application
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of this is to include the effects of turbulence — which can be significant at small length-

scales — and hydrodynamic models that include sub-grid-turbulence are called Large

Eddy Simulations (LES) (Smagorinsky 1963; Lesieur et al. 2005; Garnier et al. 2009).

This is the approach we use in Chapter 4, where we make use of a sub-grid turbulence

model to investigate the development of small dense structures in ULIRG winds.

Secondly, we can use this tensor to interpret small-scale but resolved behaviour

in terms of bulk properties. By representing a complex but computationally resolved

small-scale phenomenon by a stress tensor, we can understand its large-scale effects

though simple quantities such as an effective pressure or effective viscosity term, thus

elucidating the significance of the small-scale process. This is the approach we use

in Chapter 3, where we resolve collisions between clouds in simulations a galactic

disc, and quantity the effects of these collisions by interpreting them as an effective

viscosity.

These two interpretations represent two separate but related research themes,

which — together with code development — compose the work performed for this

thesis. In this chapter, we introduce the background of these two projects, in addition

to general physics required for both. In section 1.1 we summarize the basic equations

of hydrodynamics. In section 1.2 we summarize the technique of Smooth Particle

Hydrodynamics, used by the simulation code HYDRA which was used to conduct our

simulations in chapter 3. In section 1.3 we summarize the Adaptive Mesh Refinement

technique used by the simulation code FLASH for our simulations in chapter 4. In

section 1.4, we give some background on ULIRGs and their outflows, and in section 1.5

we give background on the formation of molecular clouds in galaxies — the two

physical situations explored in our research projects. Finally in section 1.6 we give

an outline of the format of the remaining chapters.

1.1 Basic Equations of Hydrodynamics

The fluid approximation allows us to express the state of a substance through

large-scale quantities such as density, velocity, pressure, temperature, and internal
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energy. These quantities are not independent, and are related by an equation of

state. The equation of state reduces the degrees of freedom of the model, and so it

is only necessary to know the values for some of these quantities in order to derive

all of them. In hydrodynamics, a model is established by defining the fluid quantities

across the chosen domain, setting the initial conditions and boundary conditions

of these quantities, and applying the equations of hydrodynamics to determine the

evolution of these quantities. Perhaps the most fundamental of these equations is the

conservation equation.

The conservation equation for any fluid quantity A (which can be a scalar,

vector, or tensor) is obtained from the Reynold’s Transport Theorem (Mihalas &

Weibel Mihalas 1984), which states that the rate of change of A integrated over some

region is equal to the sum of the fluxes of A into the volume, and the sources and

sinks within the volume. After some manipulation, this gives

∂A
∂t

+∇ · (vA)− S = 0, (1.1)

where S is the sum of all sources and sinks of A, and has the same rank (i.e. whether

the variable is a scalar, vector, or tensor) as A. The Navier-Stokes equations are the

conservation equations for momentum, found by setting A = ρv to produce

∂ρv

∂t
+∇ · (ρv ⊗ v)− S = 0, (1.2)

where ⊗ represents an outer product, i.e. [ρv ⊗ v]ij = ρvivj. The source term S

is now a vector, equal to the sum of the effects of inertial forces (the divergence of

the stress tensor σ, defined below) and any external forces f , which in astrophysical

hydrodynamics is frequently gravity. Many fluids can be described as Newtonian

fluids, defined by having a stress tensor σ equal to

σij = −Pδij + µ

(
∂vi
∂vj

+
∂vj
∂vi

)
, (1.3)
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where µ is the physical viscosity, and P is the pressure. This decomposition is further

discussed in section 4.3.1. For an inviscid fluid, µ = 0, and pressure is the only

internal force. The assumption of inviscidity can be a realistic approximation in

many astrophysical applications, as the physical viscosity of the ISM can be very

low, and the associated Reynold’s number, given by the ratio of the internal forces

to viscous forces is thus very high, perhaps exceeding 106 (e.g. Elmegreen & Scalo

2004). However, in many situations the viscosity can not be ignored, and the off-

diagonal components of σ can become significant. The net effect of viscosity is to

diffuse momentum while dissipating kinetic energy into heat.

Even for a non-Newtonian fluid (i.e. one where equation 1.3 is not applicable),

σ can be split into a traceless component denoted τ , and a pressure component −PI,

where I is the identity matrix. Hence,

S = f +∇ · σ = f +∇ · τ −∇P (1.4)

and so the Navier-Stokes equations can be written as

∂ρv

∂t
+∇ · (ρv ⊗ v) = f +∇ · τ −∇P. (1.5)

By using the conservation of mass equation, i.e. the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0, (1.6)

this can be rearranged to

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P +∇ · τ + f . (1.7)

This is often expressed in terms of the convective derivative (also called the material

derivative, the advective derivative, the Lagrangian derivative in addition to several
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other names), written as D/Dt, and defined by

D(x)

Dt
=
∂(x)

∂t
+ v · ∇(x). (1.8)

Hence the Navier-Stokes equations can be compactly written as

ρDv

Dt
= −∇P +∇ · τ + f . (1.9)

Similarly, the specific internal energy (ei) equation can be derived from taking the

basic energy conservation equation from equation 1.1 and subtracting the mechanical

energy equation — that is, the dot product of v and equation. 1.5. This rearrangement

gives

ρ
Dei
Dt

= (σ · ∇) · v −∇ · q + S, (1.10)

where q represents the effects of conductive or radiative flux, and S represents source

terms. In astrophysics, S can represent a number of processes such as energy feedback

from supernovae, radiative energy loss, or heat generated by chemical and nuclear

processes. The low densities of gas in the ISM and IGM do not generally permit effi-

cient conduction of heat (although this may be significant in the intracluster medium

(Bertschinger & Meiksin 1986; Narayan & Medvedev 2001; Zakamska & Narayan

2003; Voigt & Fabian 2004)), while the low optical depths of the ISM and IGM do

not permit efficient absorption of radiation (as well as forcing a numerical calculation

of radiative transfer to be a complex non-local calculation), so it is typically assumed

that q = 0.

One more equation is required to close this set of equations and allow solu-

tions to be found. This (as mentioned above) is the equation of state, which is often

given as a relationship between density, pressure and temperature. In astrophysical

fluid dynamics it is common to assume the ideal gas law. The ideal gas law assumes

that the components of a gas are point particles, and that interactions between par-

ticles are purely elastic collisions. This assumption is a good approximation at the
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low densities and high temperatures common in astrophysics (the ISM and IGM in

particular), where the distance between gas particles (atoms, ions, and molecules) is

large compared than the size of the particles themselves. This equation of state is

simply

P = nkT, (1.11)

where n is the number density of all free particles, T is the temperature of the gas,

and k = 1.38× 10−16 erg/K is the Boltzmann constant. We also require an equation

of state for the internal energy, which requires an additional approximation — that

the gas behaves as if monoatomic — and this is

ei = (3/2)nkT. (1.12)

More complex equations of state are also used in astrophysics, particularly in

stellar interiors where the high densities break the ideal gas assumptions. We assume

an ideal gas equation of state throughout this thesis, and hence have a compact and

complete set of hydrodynamic equations to solve in our simulations.

1.1.1 Cooling

Radiative cooling is an important process in many astrophysical processes.

When two particles collide inelastically, either or both particles will be excited into a

higher state. If an excited particle has sufficient time between collisions, it can decay

to its ground state, emitting one or more photons. Conduction and convection of

heat are not efficient in the interstellar medium, but this radiative process provides

an avenue for energy to escape a region of gas, and hence cool it. By volume, the

interstellar medium is almost entirely optically thin, and so we can often assume that

any photon that is emitted from a region of fluid is completely lost to the system. This

assumption is not accurate in dense optically thick regions such as molecular clouds,

but with current technologies a full treatment of radiative transfer is computationally

prohibitive. Approximate methods including absorption fractions and Hα regions
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have recently come under investigation (Hopkins et al. 2012b, for example), but these

models can be complex, and introduce additional model parameters, reducing the

universality of the model.

As this cooling is a collisional process, its rate should be proportional to the

square of n, the number density of collisional particles. Hence the rate at which

internal energy (ei) is lost due to radiative cooling is generally written as

Dei
Dt

= −Λ(T, z)n2, (1.13)

where the cooling function Λ(T, z) depends on the temperature, T , and the metal-

licity, z, of the gas. This is a complicated function incorporating the ionization and

transition energies of Hydrogen and Helium, as well as incorporating the effects of

metals. This function is often precalculated, and then interpolated from a table at

run-time. HYDRA makes use of the tables of Sutherland & Dopita (1993), which we

extend via an approximate method to lower temperatures using the values of Wada

& Norman (2001). Our FLASH simulations make use of the tables of Raymond et al.

(1976) and Sarazin (1986). Plots of Λ(T, z) are given in chapters where necessary.

1.2 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (Gingold & Monaghan 1977; Lucy 1977;

Monaghan 1992) is a Lagrangian method for solving the Navier-Stokes equations. In

this approach, the density of a particle is calculated by “smoothing” over the masses

of nearby particles. For a continuous medium, fluctuations of some field quantity

A(r) below some length scale (the smoothing length h) can be smoothed away by

convolving the density with a mass-weighted kernel function,

Asmooth(r) =

∫
A(r′)W (|r − r′|, h)dr′, (1.14)

or equivalently

Asmooth(r) =

∫
A(r′)

ρ
W (|r − r′|, h)ρdr′, (1.15)
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where the kernel function W (|r − r′|, h) must satisfy

lim
h→0

W (|r − r′|, h) = δ(r − r′) (1.16)

and a normalisation requirement

∫
W (|r − r′|, h)dr′ = 1. (1.17)

Applying this smoothing procedure to a discretised system of particles converts

the discretised distribution of fluid variables into a continuous function, allowing the

equations of hydrodynamics to be applied. This integral is then represented by its

discretised form, as a sum over the mass (mi) and density (ρi) of all particles i,

Asmooth(r) =
∑
i

miAi
ρi

W (|r − ri|, h). (1.18)

The discrete to continuous transition can be seen by comparing this to equation 1.15.

In practice, this operation is performed over a certain number of “neighbour” particles,

and while W can be a simple Gaussian function, it is often more convenient to use a

polynomial spline that vanishes to exactly zero after some distance (e.g. |r−r′| = 2h).

Using a kernel of finite extent reduces the computational load in calculating this

numerically, as contributions to the kernel need only be calculated for particles within

this region — the neighbouring particles. HYDRA uses the B2 spline (Monaghan &

Lattanzio 1985),

W (|r − ri|, h) =
Ws(r/h)

h3
, (1.19)

where if x = r/h,

Ws(x) =
1

4π


4− 6x2 + 3x3, 0 ≤ x ≤ 1;

(2− x)3, 1 < x ≤ 2;

0, x > 2.

(1.20)
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The gradient of the kernel used in HYDRA is not entirely consistent with equa-

tion 1.20, but is adjusted to give a small repulsive force for close particles (Thomas

& Couchman 1992) to avoid artifical clustering (Schuessler & Schmitt 1981),

dWs(x)

dx
= − 1

4π



4, 0 ≤ x ≤ 2/3;

3x(4− 3x), 2/3 < x ≤ 1;

3(2− x)2, 1 < x ≤ 2;

0, x > 2.

(1.21)

The choice of the smoothing length, h, has important consequences in both the

results and performance of an SPH code. If h is too small, then too few particles will

be smoothed over when calculating the smoothed quantities, causing (for example)

shot noise in the density field. If h is too large, then the impact of important small-

scale structure can be smoothed over, and the number of particles in the kernel sum

can also grow to be large, increasing the computational load. Some approaches try

to find a middle ground by varying h throughout time and space so the number of

neighbouring particles — HYDRA (Thacker & Couchman 2006), the SPH code used

in this thesis, attempts to maintain 52.

The kernel smoothing operation commutes with differentiation — e.g. we can

calculate the gradient of a quantity by

∇Asmooth(r) =
∑
i

miAi
ρi
∇W (|r − ri|, h), (1.22)

and so it is not necessary to explicitly calculate a numerical derivative across the

simulated domain. Making use of this feature, we can derive equations of motion for

gas particles. First, we construct a momentum conservation equation — i.e. a form

of dv/dt = ∇P . Symmetrizing the pressure gradient terms ensures the conservation

of momentum and energy, and so the simplest symmetrized momentum conservation

equation is
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dvi
dt

= −
∑
j

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
∇iWij, (1.23)

where Wij = W (|ri − rj|, h). Mass conservation is ensured identically by

ρi =
∑
j

mjWij, (1.24)

and thermal energy evolution by

dei
dt

=
∑
i

mi
Pj
ρ2
j

vij · ∇iWij. (1.25)

This, combined with an equation of state, provides us with a complete set

of equations for the evolution of a fluid. Unfortunately, while this is “complete”, in

practice this technique is extremely inefficient at capturing and resolving shocks (see

Monaghan 2005, for a discussion). Shocks can be better capturing by the inclusion

of an artificial viscosity to prevent gas particles incorrectly interpenetrating during a

converging flow (for instance). This is applied with the equations

dui
dt

= −
∑
i

mj
Πij

2
vij · ∇Wij, (1.26)

and
dvi
dt

= −
∑
i

mjΠij∇Wij, (1.27)

where the viscosity tensor is given by

Πij =


−αcijµij+βµ2ij

ρij
if vij · rij > 0,

0 otherwise,

(1.28)

where cij is the average sound speed of the two particles, µij is the artificial viscosity,

and α and β are model parameters. A typical choice for these is α = 1 and β = 2
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(Monaghan 2005). µij is given by

µij =
hijvij · rij
r2
ij + ηhij

, (1.29)

where hij is the average smoothing length, and η = 0.01 prevents µij from becoming

extremely large when rij is small. This formulation is also problematic, as the artificial

viscosity acts to dissipate shear flows in addition to capturing shocks. Hence µij is

usually replaced by µij,Balsara = fBalsaraµij (Balsara 1995), where fBalsara is defined as

fBalsara =
|∇ · v|i

|∇ · v|i + |∇ × v|i + ηBalsarahij
, (1.30)

and ηBalsara = 0.0001ci/hi prevents divide-by-zero errors. This equation is designed

such that µij,Balsara = µij for a purely compressive flow (i.e. |∇ · v| � |∇ × v|), and

µij,Balsara = 0 for a pure sheer flow (i.e. |∇ · v| � |∇ × v|).

1.2.1 Gravitational Softening

Particle simulations with pure Newtonian self-gravity can be subject to ex-

tremely poor conservation of energy. This is caused by the sharp gradient in accel-

eration caused by the F ∝ 1/r2 Newtonian law for the gravitational force between

particles. As particles are generally permitted to approach arbitrarily close to each

other, this force can become arbitrarily large, requiring an extremely small time-step

to ensure that particles conserve energy in a close encounter. For example, if a pair of

particles are very close to each other during the acceleration calculation of one time-

step, then both particles are provided with large accelerations and therefore large

velocities. If the time-step is too large, these large velocities will move the particles

to a large distance from each other on the next time-step. At these new positions,

the gravitational force is much weaker, and the particles only decelerate a little: the

particles have both had a net gain of kinetic energy, and the interaction has not

conserved energy.
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To help ensure conservation of energy, the gravitational force is “softened”

(Hockney & Eastwood 1988). The softening typically takes the form of Plummer

softening, where the gravitational potential between two particles of mass M and m

separated by a distance r is defined as

φ(r) = − GMm

(r2 + ε2)1/2
, (1.31)

where ε is the “softening length”. This is equivalent to representing each particle as

a distribution of mass with scale-length ε, and indeed this equation was first applied

to model the finite size of galaxies (Aarseth 1963), but it is now commonly used in

situations where the particles could be considered point objects (e.g. interactions

between individual stars) in order to preserve numerical accuracy. In simulations of

galaxies, this is a particularly apt approximation as the star, gas, and dark matter

particles do not represent individual objects, but large quantities of stars, gas, or dark

matter, and hence a finite distribution of mass is appropriate.

In SPH, it is desirable for the softening length to be similar to the smoothing

length (Bate & Burkert 1997). If ε is too large, then at small scales pressure unreal-

istically dominates over gravity, suppressing collapse, while if ε is too small, then at

small scales gravity unrealistically dominates over pressure, inducing unphysical col-

lapse. Hence the choice of ε is crucial. In our SPH simulations, we vary the softening

length to investigate its effects on our results.

1.3 Adaptive Mesh Refinment

The Adaptive Mesh Refinement (AMR) technique is a popular method for

reducing the additional computational load caused by increasing the resolution of

an Eulerian simulation. It is most commonly used in hydrodynamic simulations to

solve the Navier-Stokes equations. In an Eulerian code a numerical solution can be

found by converting the important equations (Navier-Stokes) into a discretised form

— for example, exchanging every ∂f/∂x term with a ∆f/∆x term — and solving the
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equations at discrete times until the simulation is complete. The computational load

of this method increases on the number of cells in the domain, while the resolution

increases as the cells decrease in size. Hence the goal is to have as few cells as possible,

while having cells as small as possible — two contrary demands. However, it is

possible to improve performance by noting that in many applications, high resolution

is not necessary everywhere, but only in key areas of interest — for example, at the

discontinuity between two constant density regions. Taking advantage of this, an

irregular mesh can be produced where resolution varies in space, with the smallest

high-resolution cells only in the regions where they are needed.

However, a static mesh can cause problems as it is difficult to predict which

regions require high resolution, and these regions can change over time. This unpre-

dictability is particularly a problem in simulations of turbulence. AMR attempts to

resolve this problem by providing a mesh that adapts. Regions can be refined when

they are insufficiently resolved by placing a high-resolution sub-grid in the region.

To regain computational performance, regions that do not require high resolution —

e.g. regions with low velocity variance — can be derefined, with the high-resolution

sub-grid replaced by a lower resolution mesh.

The first implementations of AMR (Berger & Oliger 1984; Berger & Colella

1989) allowed a complex hierarchy of nested grids, where sub-grids can be rotated

and combined to optimize their positions, at the cost of code complexity — indeed,

this method has proven difficult to adapt into a modern parallel multiprocessor form.

Khokhlov (1998) introduced a more straight-forward tree-based structure, where in-

dividual “parent” cells can be refined into a sub-grid of “child” cells who share the

orientation of their parent. The simplest process here is (in three-dimensions) to re-

fine a cell in a 2×2×2 “octet” of cells, by bisecting the parent cell in each dimension.

This refinement algorithm produces an oct-tree structure in the code, which is easier

to maintain and parallelise. The performance of this method can be improved by re-

fining blocks of cells instead of individual cells. The block-tree refinement method is

popular, being implemented in the particle hydrodynamics code RAMSES (Teyssier
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2002), as well as the library PARAMESH (MacNeice et al. 2000), which is used by

FLASH (Fryxell et al. 2000).

1.3.1 PARAMESH AMR in FLASH

The PARAMESH package is an open-source package of Fortran subroutines

for implementing parallel AMR. The “block oct-tree” structure allows this package

to be easily applied to refine and parallelise an existing fixed-mesh serial code. Here,

the domain of the simulation is decomposed into blocks of ldim cells, where by default

l = 8. Refinement is performed by placing an octet of these blocks within a parent

block. By making use of this package, an application designer need only tackle the

problem of solving the relevant equations across a single block on one processor.

FLASH makes use of the PARAMESH package, solving the hydrodynamic

equations using the Piecewise Parabolic Method (Colella & Woodward 1984; Wood-

ward & Colella 1984). PARAMESH also requires the refinement criteria to be set by

the application designer. The default criterion in FLASH is based on Lohner (1987).

An error term Ei is calculated and used as a basis for the refinement criterion. If

Ei is above some value (0.8 by default), the block is refined, while Ei is below some

value (0.2 by default), the block is derefined. This error term is essentially the 2nd

derivative of some quantity A, normalised by the gradient of that quantity. When

discretised, an extra term is included in the denominator to ensure that Ei does not

become extremely large when small ripples pass through a region with low ∂A/∂x.

In one-dimension, the discretised form looks like

Ei =
|Ai+1 − 2Ai + 2Ai−1|

|Ai+1 − Ai|+ |Ai − Ai−1|+ ε(|Ai+1|+ 2|Ai|+ |Ai−1|)
(1.32)

where the constant ε = 0.01. As this is a dimensionless quantity, A can be any

variable that is defined for each cell. FLASH allows up to four refinement variables

to be specified, refining if this criterion is met for any of these variables. We have

selected density, pressure, and temperature as our refinement variables.
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1.4 Ultraluminous Infrared Galaxies (ULIRGs)

Since we model ULIRG outflows, we briefly review salient issues in their dis-

covery and properties.

1.4.1 Discovery and properies

ULIRGs (for further reviews, see Lonsdale et al. 2006; Veilleux 2006) are gen-

erally believed to be merger-induced dust-obscured starbursts supported by an active

galactic nucleus (AGN) component. The first galaxies to fit the modern criteria of a

ULIRG — that is, galaxies with L8−1000µm > 1012L� were discovered in a 1985 sur-

vey of Infrared Astronomical Satellite (IRAS) sources (Houck et al. 1985). However,

galaxies with strikingly large relative infrared to optical luminosities had been ob-

served for some 10-15 years before the IRAS mission. Rieke & Low (1972) discussed

the infrared-dominated emission from nuclear regions in some galaxies, and by 1979

(Lebofsky & Rieke 1979) it had been determined that the infrared emission was due

to re-radiation of starlight by dust, and that these objects are associated with galaxy

interactions.

While rare in the local universe, with a space density many orders of magnitude

lower than “normal” galaxies (but possibly a few times the space density of QSOs),

ULIRGs moved further into the spotlight when they were discovered to be at least

two orders of magnitude more numerous at higher redshift. This makes ULIRGs sig-

nificant, and perhaps the dominant population in infrared wavelengths at these early

epochs. The study of these objects is thus important for probing galaxy formation

and evolution in the early universe.

Many observations have focused on determining what powers the immense

luminosities of these objects. These investigations have shown that most if not all

ULIRGs are either in the process of merging, or have recently merged (Armus et al.

1987; Melnick & Mirabel 1990; Hutchings & Neff 1991; Clements et al. 1996; Surace

et al. 1998). N-body simulations (Barnes & Hernquist 1992; Hopkins et al. 2006) have

shown that during a merger, a large quantity of gas and dust is channelled into the
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nucleus of the new galaxy. This concentration of gas can trigger a starburst — a region

with an extremely high star formation rate, e.g. 100−1000M�/yr — or power an AGN

— a violent accretion region around a super-massive black hole (SMBH). Regardless

of the source of luminosity, it is almost certainly triggered by galactic interactions.

Dust obscures both luminosity sources and reprocesses the emission into the infrared,

giving the observed large infrared luminosities, but making it difficult to distinguish

between a starburst and an AGN.

As a result, much emphasis has been placed on determining which of the

powering mechanisms – AGNs or starbursts – is dominant, and how they relate to

each other. Observations across many wavelengths (de Grijp et al. 1985; Genzel et al.

1998; Laurent et al. 2000; Farrah et al. 2005; Pérez-Torres et al. 2008) show evidence

of both sources, with AGNs being more dominant in “warmer” ULIRGs. However

the general consensus is that most ULIRGs are powered primarily by starbursts, and

that AGNs only fulfil a secondary role.

It has also been proposed that ULIRGs are related to the super-luminous

AGNs known as quasars. The most popular picture is an evolutionary sequence

(Sanders et al. 1988; Hopkins et al. 2006): As two galaxies begin to merge, a massive

cool starburst is initiated: a cool ULIRG. Next, the AGN is switched on, and starts

heating the dust around it: a warm ULIRG. Eventually, the dust is blown away, and

the galaxy becomes a “naked” quasar. Another scenario is that the dust around the

nucleus of a quasar is toroidal (or asymmetric in some way) and so the AGN can only

been seen from certain angles — a quasar is a ULIRG seen face-on, and a ULIRG is

a QSO seen side-on (Lonsdale et al. 2006).

As already noted, the dominance of infrared galaxies appears to increase with

redshift — the comoving density of infrared light due to 15µm sources is at least forty

times higher at z ∼ 1 than in the local universe (Lonsdale et al. 2006). Surveys have

found a huge population of high-redshift sub-millimetre-bright optically-faint sources

(Sub-millimetre Galaxies or SMGs), which taken together with reasonable extrap-

olation can account for the entire cosmic infrared background (Barger et al. 1999;
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Blain et al. 1999). Simple photometric redshift estimates (Bertoldi et al. 2000; Fox

et al. 2002; Webb et al. 2003; Borys et al. 2005) place most of these sources at z > 2

and almost all of them beyond z ∼ 1, so these SMGs are probably ULIRGs of im-

mense luminosity, with star formation rates of over 1000M�/yr. These galaxies have

disturbed morphologies (Smail et al. 1998; Conselice et al. 2003), indicative of ongo-

ing interactions, consistent with their identification as ULIRGs. CO surveys (Genzel

et al. 2003; Neri et al. 2003; Greve et al. 2005) show evidence for enormous masses

of molecular gas within these galaxies, often in excess of 1011M�, much greater than

local ULIRGs and more comparable to high redshift radio galaxies — and so while

SMGs appear to be closely related to local ULIRGs, they are indeed two physically

distinct populations.

1.4.2 Cold gas in ULIRG outflows

There is also significant evidence that nuclear and galactic scale outflows are

common in ULIRGs, and that these outflows are dominated by star formation. These

have been detected in X-Ray (Heckman et al. 1996; McDowell et al. 2003; Ptak et al.

2003; Teng et al. 2009) and Hα (Colina et al. 2004) emission as hot lobes extending

10− 15 kpc beyond the infrared portion of the galaxy. Evidence of outflows has been

detected in ∼ 75% of ULIRGs, which is consistent with 100% when projection effects

are taken into account. These “super-winds” are driven by the energy of supernovae

from the starburst, with outflow rates comparable to the host’s star formation rate

(∼ 10 − 1000M�/yr), and correspondingly high luminosities (1041 − 1044 erg/s) and

projected velocities (300− 400 km/s, with one example of 1100 km/s). They may in

fact be the principal polluters of metal and dust in the IGM.

Several observations (e.g. Phillips 1993; Heckman et al. 2000; Martin 2005,

2006) have demonstrated the existence of cold gas with large velocity dispersions in

these outflows. The presence of this gas provides a challenge to theoretical models

which must explain how such a cold component (NaI and KI lines, with ionization

potentials of 5.1 and 4.3 eV (Martin 2005)) can exist within a flow of very hot winds.
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T ∼ 106 K would be typical for a v ∼ 300 km/s — we can estimate this with the

equation T = (13.6 K s/km)v2, which comes from simple arguments for the post-shock

temperature after an adiabatic Sedov-Taylor expansion (Shu 1992; Scannapieco & Oh

2004). These models must also explain the large velocity dispersion of this gas —

i.e. the large non-thermal broadening of the NaI lines. A number of works have

investigated explanations for the presence of the cold component, often supported by

numerical calculations (Tomisaka & Ikeuchi 1986; Murray et al. 2005; Scannapieco

& Brüggen 2010; Everett & Churchwell 2010). In these models, cold gas is either

produced in the disc and then advected by ram-pressure, or produced by gas rapidly

cooling within the wind through radiative processes.

In the simulations of Fujita et al. (2009), cold gas is produced by turbulence in

the wind, which produces dense condensations that rapidly cool. Specifically, these

condensations trace their origin to a super-bubble wall. A super-bubble is inflated by

the outflow, driving a “snowplow” which builds up a dense bubble wall. The density

of this bubble wall allows it to cool efficiently, due to the ρ2 dependency in radiative

cooling. This cold bubble wall is supported against gravity by the pressure of the hot

low-density gas within the bubble cavity.

This situation is extremely susceptible to Rayleigh-Taylor (RT) (Taylor 1950;

Sharp 1984) and Richtmyer-Meshkov (RM) (Richtmyer 1960; Meshkov 1969) insta-

bilities. The RT instability occurs when a dense fluid is suspended above a lighter

fluid in a gravitational field (or equivalently, when a light gas is accelerated into a

dense gas). This instability causes the two fluids to penetrate each other with fingers

or “mushroom-caps” of gas, mixing the fluids and breaking up the interface. The

RM instability similarly produces the breakup of an interface between dense and less

dense fluids, but in this case the fluids are accelerated by a sudden impulse such as a

passing shock, instead of a constant acceleration from gravity.

Indeed, Fujita et al. (2009) found that the bubble wall fragments into dense

clumps, which may well correspond to the cold gas observed in ULIRG outflows.
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Originating as wind gas, these clumps have high outflow velocities and velocity dis-

persions (330 ± 110km/s and 170 ± 60km/s Martin (2005)), and can travel large

distances into the outflow – if they are not destroyed by radiation or ram-pressure.

While two dimensional simulations have probed this scenario, in chapter 4 we discuss

the first three dimensional simulations to investigate this model.

1.5 Molecular Clouds in Galaxy Simulations

Since collisions between molecular clouds form one of the key themes in this

thesis, we briefly review their properties.

1.5.1 Molecular Clouds

Giant molecular clouds (GMCs) are arguably the most important component

of the interstellar medium and contain most of of the mass of the gaseous component

of the disc, while having a small volume filling factor (McKee & Ostriker 1977). The

molecules that make up these clouds are primarily H2, which is difficult to directly ob-

serve. This difficulty is because molecular H2 gas tends to only exist at temperatures

too cold for strong black-body emission, and its neutrality reduces the cross-section

for interactions that could excite the molecules and produce emission. Instead, trac-

ers such as NaI or CO are used, as, for instance, the density of n(H2) ∼ 100 cm−3

required to excite the J = 1→ 0 rotational line of CO matches the densities of giant

molecular clouds (Solomon et al. 1987). Molecular clouds are stellar nurseries, where

turbulence combined with the Jeans instability causes the cold dense gas to collapse

into stars. The association of HII regions with molecular clouds (Scoville et al. 1987)

is strong evidence of molecular clouds’ key role in star formation.

While it is tempting to think of molecular clouds as well-constrained distinct

objects as they appear to have sharp edges, these edges represent the transition be-

tween molecular and atomic gas (Larson 1994), and not a sharp cut-off in density;

indeed, a molecular cloud can be contained in an extended atomic envelope of similar

mass (Blitz 1988, 1991). Molecular clouds are also transient objects, with life-times
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of ∼ 107 yr (Blitz & Shu 1980; Larson 1981). Their irregular structures (as shown in

IRAS (Scalo 1990) and Spitzer maps Flagey et al. (2009)) show that GMCs have not

reached equilibrium configurations. Molecular clouds are also chemically unevolved,

with lower dust depletion ratios than would be expected from long-lived objects (Lar-

son 1994). The scarcity of molecular clouds without signs of star formation (Blitz

1991) shows that star formation starts very soon after a molecular cloud forms. Star

formation gives a mechanism for the short life-times of molecular clouds as winds, ra-

diation pressure, outflows, and supernovae from these newly formed stars will rapidly

dissipate the cloud.

In fact, rather than discrete long-lasting structures, the consensus is that

molecular clouds are highly turbulent (Schneider et al. 2011). Larson (1981) discov-

ered that the power-law relationship between the velocity dispersion of a cloud and its

luminosity matches that predicted by Kolmogorov’s laws, that σ ∝ Lε where ε = 1/3

for a self-similar “fractal” spatial structure. Later analysis (Solomon et al. 1987) of

CO data from the Massachusetts-Stony Brook Galactic Survey (Clemens et al. 1997)

found ε ∼ 0.5, which was originally interpreted as resulting from the virial theorem,

but has more recently been shown to be equivalent to supersonic isothermal turbu-

lence (e.g. Schmidt et al. 2009). This turbulence is driven on large-scales by spiral

density waves, supernova explosions, and expanding HII regions, and on small scales

by stellar winds and outflows.

Although it is generally agreed that molecular clouds are governed primarily

by turbulence and not by self-gravity, the effects of self-gravity are still important.

Clearly, at small scales gravitational collapse must be dominant in order for star

formation to proceed. It has also been proposed that the line-width/size relation of

molecular clouds can be explained if they consist of a hierachy of gravitational collapse

(Goldreich & Kwan 1974), although this unfettered collapse results in unrealistically

high star-formation rates (Zuckerman & Palmer 1974). Feedback from winds and

outflows in the densest regions of a cloud could reduce the star formation rate and
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alleviate this problem (Ballesteros-Paredes et al. 2011; Murray 2011). While turbu-

lence is likely still the dominant factor in determining molecular cloud properties,

feedback and self-gravity induce deviations from this “pure” turbulence.

The molecular cloud line-width/size relation is one of what is known as Lar-

son’s Laws, along with a density/size relation, that the surface density of molecular

clouds is constant between clouds. However, this result is likely not an intrinsic char-

acteristic, but instead is an effect caused by an intensity cutoff giving a comparatively

small dynamic range.

Molecular clouds appear to be associated with spiral arms, with a longi-

tude/velocity plot of molecular cloud phase-space density in the Milky Way showing

several peaks (Scoville et al. 1987), including a peak in population at the 4 − 7 kpc

ring. Spiral density perturbations may encourage molecular cloud formation (Dobbs

et al. 2006). These clouds are confined to a fairly thin disc, with a vertical position

dispersion (i.e. perpendicular to the disc) of ∼ 30−50 pc for Mvirial ∼ 5−20×105M�

GMCs. Lower mass GMCs have a larger vertical position dispersion, consistent with

a cloud-cloud velocity dispersion that decreases as M
−1/2
virial , as would be expected by

equipartition of kinetic energy — this suggests that interactions between clouds are

common, or that clouds live long enough to survive several interactions. To support

these observations, we can perform simulations of a disc galaxy to observe the for-

mation of molecular clouds, their interactions, and their effect on the galaxy as a

whole.

1.5.2 Galaxy Simulations

Early multi-dimensional simulations of galactic discs and galaxy formation

were two-dimensional collisionless models of secular discs (Hohl & Hockney 1969, for

example) , i.e. discs of stars without a gas component, or a cosmological environment.

While the environment was believed to be important for processes such as stripping

gas (Fall & Efstathiou 1980), a secular disc model permits a smaller computational

domain, and can help to disentangle secular disc evolution from environmental effects.
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It was soon discovered that a cold, balanced disc would quickly break apart (Hockney

& Hohl 1969) due to the Toomre instability (Toomre 1964), and that velocity disper-

sion between the star particles is required to stabilize the disc. These simulations shed

light on the formation of large scale structures such as bars (Hohl 1976), although

the formation of a stable barred galaxy also requires significant velocity dispersion.

The inclusion of hydrodynamics incorporated a new array of physics into these

two-dimensional simulations, even at resolutions as low as 60x60 (Sanders & Huntley

1976). Early particle-based fluid simulations helped explain the origin of spiral density

waves (Sanders 1977). At the same time, the formation of galaxies was also explored in

a cosmological context, although at very low resolutions (e.g. particle numbers of N =

100 (Peebles 1971), N = 300 (Peebles 1970), N=1000 (Efstathiou & Jones 1979)),

compared to modern simulations, such as the famous Millennium Run (Springel et al.

2005)) which contained more than 1010 particles, and more recent simulations that

contain over 1011 particles (Angulo et al. 2012; Kim et al. 2011).

More recently, three dimensional high resolution (i.e. N > 106 particles) hy-

drodynamic simulations of galaxies have become routine. Many of these use realistic

initial conditions from cosmological simulations (Guedes et al. 2011; Naab et al. 2007,

for example), while others draw from analytic density distributions (Dobbs & Bonnell

2008; Wada & Norman 2001, for example) to better disentangle the various interact-

ing processes in galactic evolution. These high resolution simulations are reaching a

resolution where it is possible to resolve the formation of molecular clouds (Dobbs

et al. 2006; Robertson & Kravtsov 2008; Dobbs & Bonnell 2008; Tasker & Tan 2009;

Agertz et al. 2009, for example). This resolution allows us to investigate in detail the

role of large-scale evolution on molecular clouds, and vice versa. In chapter 3 we per-

form hydrodynamic simulations of molecular clouds in an isolated disc to investigate

molecular clouds as a source of effective viscosity.
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1.6 Thesis Outline

This thesis is divided into six chapters. In this first introductory chapter, we

have presented background information on ULIRGs and their outflows, on molecu-

lar clouds in a galactic context, and on our approach to performing simulations of

these situations. In Chapter 2, we discuss the simulation codes we utilized, and the

modifications that were made to conduct the research in this thesis. Chapter 3 de-

tails our investigation into the effective viscosity due to collisions between molecular

clouds within a Milky Way-like galaxy, while Chapter 4 explains our simulations of

ULIRG outflows and our sub-grid turbulence algorithm. These are followed by a brief

conclusion in Chapter 5.
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Chapter 2

Code Modifications

2.1 Introduction

The simulation work in this thesis utilizes a number of pre-existing analysis and

parallel simulation codes. Some of the existing codes are publicly available, others

were provided upon request. These codes were modified to adjust their physical

assumptions and implementations to be more appropriate for the physical models

we consider. In some cases it was also necessary to correct significant programming

errors. In addition, a number of post-simulation analysis programs were written

by the author. In this chapter we describe the modifications made to pre-existing

codes, and briefly summarize the properties of FLASH and HYDRA-OMP, the two

pre-existing codes used to perform our main simulations.

FLASH (Fryxell et al. 2000) is a commonly used Adaptive Mesh Refinement

(AMR) code, maintained by the Flash Center for Computational Science based at

the University of Chicago, originally funded by the US Department of Energy’s Ac-

celerated Strategic Computing Initiative. While FLASH is not an open-source code

— users must request access, and are not permitted to distribute the code — it is

nevertheless one of the most popular AMR codes in astrophysics1. The popularity of

the code ensures that it is well tested, and provides a community of users to help new

users. FLASH is designed in a modular fashion, allowing “modules” in sub-directories

to override built-in subroutines in a manner similar to overriding in object-orientated

languages (these “modules” should not be confused with the Fortran-90 language

1a list of papers making using of FLASH can be found at http://flash.uchicago.edu/site/

publications/flash_pubs.shtml
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“module” construct, even though FLASH is written in Fortran). Many of the in-

cluded “modular” subroutines are place-holders for various source terms, such as

heating from turbulence or feedback, or radiative cooling. FLASH is also designed

such that it is trivial to add a new scalar field, and to use FLASH’s standard routines

to advect and diffuse this field over the simulation. FLASH is parallelized with MPI.

HYDRA-OMP is a parallel SPH code developed by Thacker & Couchman

(2006). HYDRA-OMP differs from most SPH codes in that it uses an adaptive

particle-mesh for long-range gravity, instead of a “tree code” as in the more popular

SPH code GADGET-2 (Springel 2005), and other popular codes such as Gasoline

(Wadsley et al. 2004). When modelling self-gravity, it is usually too computationally

intensive to perform a direct sum of all Newtonian gravitational forces, and approx-

imate methods are used instead. However, at short distances, these approximate

methods are inadequate, and the 1/r2 calculation must be performed directly. As

a result, most models that include self-gravity use a fast approximate method for

gravitational forces between particles greater than some distance apart, and perform

a direct sum of Newtonian forces for particles that are closer than this distance.

The particle-mesh method maps particles to a low resolution mesh and makes use of

the convolution theorem to calculate the graviational forces in this mesh. HYDRA’s

adaptive particle-mesh improves this by placing additional meshes in regions that

require higher resolution. The more popular tree-code method used by GADGET-2

and Gasoline models gravity with a hierarchy of multipole expansions that follow the

density distribution of the simulated region.

HYDRA is parallelized with Open-MP, a shared memory parallelization scheme,

while GADGET uses MPI, a distributed memory parallelization scheme. As a shared-

memory implementation, Open-MP is more efficient than a distributed memory method

such as MPI for the same number of processors, as shared data does not need to be

duplicated, and message passing is much more efficient. Open-MP is also concep-

tually simpler, and hence easier to implement and maintain. However, large shared

memory machines are more expensive per processor than large distributed memory
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machines, and there can be a “bandwidth bottleneck” when a large number of pro-

cessors attempt to access memory simultaneously (Wulf & McKee 1995), and so most

large applications are preferably developed in MPI.

The SMU Computational Astrophysics Laboratory Cerberus consists of shared-

memory nodes of 16 or 32 processors each, totalling 304 processors, so an Open-MP

implementation can use at most 32 processors, while an MPI implementation can use

all 304. We have tested our SPH galaxy model with both GADGET-2 and HYDRA,

and have found that our problem does not scale well with very large numbers of

processors in GADGET-2, and that a shared-memory approach using only 16 or 32

processors allows us to retain the simplicity of Open-MP without a large reduction

in performance. Our AMR ULIRG models in FLASH parallelize more efficiently,

particularly as an external potential is used for gravity, so cells only need to know

information about their immediate neighbours for hydrodynamics. In these models,

MPI is efficient, and we use up to 192 processors per simulation.

2.2 HYDRA

2.2.1 Parallelization

HYDRA parallelizes in two ways. The larger refinements (including the full

simulation box) are distributed across the entire machine, while the smaller refine-

ments are farmed out to individual processors. The particle mesh (PM) calculation

for each refinement is efficient, but the particle-particle (PP) calculation can be ex-

pensive, as it is an O(n2) algorithm. This cost amplifies the the load-balance problem

caused by an uneven distribution of particles between cells within a refinement, and

without a good parallelization scheme the entire machine can be left waiting for one

processor to finish.

These cells are placed by the refinement algorithm. An initial grid of L3 cells

is placed over the entire simulated region, where a typical value of L is L = 128. Here

the value of L is selected to achieve the most efficient balance of the PM and PP parts

of the code. Areas of high density are refined, and an additional L3 grid is placed in

29



each refinement. Direct N2 particle-particle calculations are only performed between

adjacent cells.

HYDRA was originally used as a code for cosmological simulations conducted

using cubic periodic boxes. In a cosmological simulation, an initially near-uniform

distribution of gas and dark matter collapses into a large number of density peaks

which merge, producing galaxies in a hierarchical structure. In a large-scale simula-

tion, there are many density peaks of similar magnitude. HYDRA has been optimized

for this situation by parallelizing over cells, assigning groups of cells to each proces-

sor. This method works well if there are many more density peaks than processors,

assuming both that the algorithm begins calculating the most time-consuming cells

first, and that these peaks have broadly similar magnitude. A small number of very

strong density peaks would cause a large number of particles to be in a small number

of boxes, and this can cause severe load balance problems.

Unfortunately, this is indeed the case for an isolated simulation of a galaxy

— in this case a large fraction of the particles of interest end up in a small number

of cells. Here, even if a refinement is distributed across the entire machine, some

processors may receive cells that are far more computationally expensive than others.

We resolved this problem by modifying the distribution of cells across processors. If

a cell contains a large number of particles, we found it is more efficient to split that

individual cell across all processors — this is analogous to how the larger refinements

were already treated in the code. We split a cell over all processors if it contains more

than a threshold number of particles. The cells with few particles are distributed one

cell at a time to a processor, and then once all of these “sparse” cells are complete,

the PP calculation for each of the dense cells are parallelized over the whole machine.

As shown in Fig. 2.1, in some cases this reduced the wall-clock time per time-step by

a factor of 7. We found that setting the threshold to 2048 particles per cell produced

optimal results — only for quite small numbers of particles was it efficient to assign

a single processor to a cell.
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Figure 2.1: The elapsed wall-clock time per time-step in the advanced stages of a 16-thread
OpenMP simulation – the initial conditions are the final output of LowSoftMW, described in
chapter 3. Speed is greatly increased by splitting boxes, but the best results are when only
moderately dense boxes are split.
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Figure 2.2: The cooling curve used in our models. Values below 104 K are from Wada &
Norman (2001), while those above 104 K are from Sutherland & Dopita (1993).

2.2.2 Cooling

In HYDRA, the cooling function Λ (see equation 1.13) is interpolated from a

table. As received, HYDRA makes use of the cooling function of Sutherland & Dopita

(1993), which we have extended down to 10 K using the cooling function from Wada

& Norman (2001), under the assumption of a constant metallicity of Z = 0.1Z�.

However, we generally set our temperature floor to 300 K to make our results more

comparable with Tasker & Tan (2009), except in cases where we explicitly investigate

the effect of a lower floor. The combined cooling curve is plotted in Fig. 2.2. At

high remperatures (T � 104 K), free-free interactions dominate and Λ ∝ T 1/2. At

intermediate temperatures (T � 104 K), collisional line exication of Hydrogen and

Helium produce two additional peaks. At lower temperatures (T < 104 K), molecular-

line cooling decomes dominant, and the effects of metallicity become more critical.
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2.2.3 Dynamic Temperature Floor

We use a method similar to Robertson & Kravtsov (2008) to ensure that the

Jean’s mass is resolved in our simulations. This is to satisfy the Truelove et al. (1997)

criterion and avoid artificial fragmentation – crucial in simulations of cloud formation.

The method is in the form of a dynamic pressure floor. The Jeans mass is defined as

mJeans =
π5/2c3

s

6G3/2ρ1/2
(2.1)

(Jeans 1902). Bate & Burkert (1997) noted that for SPH simulations each particle

should satisfy 2Nneighmgas < mJeans (where Nneigh is the number of SPH neighbours

for the particle and mgas is the gas particle mass) to avoid artificial fragmentation.

This requirement is equivalent to the statement that

hJeans =
π5/2c3

s

6G3/2Nneighmgasρ1/2
< NJeans (2.2)

with NJeans set to 2. In an ideal gas cs ∝
√
e, so we can fulfil this criterion by applying

e→ e×
(
NJeans

hJeans

)2/3

(2.3)

whenever hJeans < NJeans.

We found spurious string-like structures forming within clouds even for mod-

erately high values of NJeans, and found that NJeans = 50 removed these structures

and resulted in a more homogeneous interior for clouds.

2.3 FLASH

The major additions to the standard FLASH code were the inclusion of the

source term subroutines such as sub-grid turbulence, and galaxy initial condition gen-

eration subroutines by Scannapieco & Brüggen (2008). We made some modifications

to the initial conditions and feedback routines to produce our models in Chapter 4,

but we did not significantly modify the general algorithm for sub-grid turbulence.
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However, the version of the code received by the author contained a number of unin-

tended features, which took significant time and effort to unearth and correct.

2.3.1 Correcting Code Errors

We solved the following errors:

1. The order of subroutine within the SourceTerms routine was incorrect, causing

guard cells (defined below) to be inconsistently updated

2. The turbulent diffusion subroutine did not loop over all the required cells in a

block

3. The numerical error in the turbulent diffusion subroutine was directionally de-

pendent

4. The calculation of temperature was sensitive to numerical error because it was

not correctly accounted for when determining the time-step

5. The positions of feedback bubbles in the simulation were incorrect due to a

typographical error

6. Some other minor typographical errors that we do not document here

2.3.1.1 Guard Cells & Diffusion: Order of Physics Steps

As mentioned in section 1.3.1, the PARAMESH library used by FLASH de-

composes the domain of the simulation into small blocks of fixed size (e.g. 8× 8× 8),

which are distributed between processors. To model certain physical processes such as

diffusion, cells within a block must have information on their neighbours, and so each

PARAMESH block contains a 4-cell thick “wall” of guard cells — cells copied from

neighbouring blocks (see Fig.2.3). If these guard cells are not appropriately updated

before a diffusion step, then cells near the border of a block will calculate incorrect

fluxes. In the SourceTerms subroutine of FLASH, both the heating and cooling sub-

routines were called before the new turbulence subroutine, neither of which updates
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Figure 2.3: Guard cells in FLASH. At least one layer of guard cells must be up-to-date for a
diffusion step.
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the guard cells. This incorrect ordering caused a clearly visible grid effect in bubbles,

as heat in the form of both thermal and turbulent energy was applied to all cells

except guard cells, and so any cell bordering a guard cell will spuriously diffuse tur-

bulent energy into the cooler guard cell — energy which is lost to the system when

the guard cells are overwritten. This error is present in several publications that make

use of this code (Scannapieco & Brüggen 2008; Scannapieco et al. 2009; Gray & Scan-

napieco 2011). The error was corrected by placing the turbulence subroutine before

the heating and cooling subroutines. Our implementations of heating and cooling do

not require updated information in guard cells, and so are not adversely affected by

being placed after other subroutines, even if the guard cells are not updated to be

consistent after those subroutines.

2.3.1.2 Guard cells & Diffusion: Domain of Physics Steps

The turbulence sub-grid model is implemented in two steps: the turbulent

diffusion subroutine, and the turbulence source-terms subroutine. These track the

production, diffusion and effects of turbulence generated by the Richtmyer-Meshkov

(RM) and Rayleigh-Taylor (RT) instabilities. This model describes turbulence with

two parameters defined across the domain: the turbulent length scale (L), and the

turbulent kinetic energy (K).

However, in the code received by the author, the turbulent diffusion subroutine

did not loop over the correct subset of cells. The corners of the non-guard-cell cells are

given by (LowX, LowY, LowZ) and (HighX, HighY, HighZ). The turbulent diffusion

step looped from (LowX+1, LowY+1, LowZ+1) to (HighX+1, HighY+1, HighZ+1),

neglecting three entire faces of grid cells per block. This subroutine was corrected to

loop from (LowX-1, LowY-1, LowZ-1) to (HighX+1, HighY+1, HighZ+1). A one-cell

thick layer of guard cells is also updated in this step, as the pressure in guard cells is

needed to calculate the RT and RM turbulent source terms.

The turbulent viscosity µt = CµL
√

2K was also not updated before the tur-

bulent diffusion step, even though L and K are altered by the heating, cooling, and
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hydrodynamics routines, and so these quantities can be unsynchronized. This er-

ror was fixed by altering the subroutine Turbulence update so that it updates µt in

addition to its normal function.

2.3.1.3 Guard cells & Diffusion: Direction-dependent error

The turbulent diffusion was previously performed in a directionally split solver

that could cause direction-dependent error. The turbulent diffusion equation for a

quantity A is

DA

Dt
= ∇ ·

(
µt
NA

∇ · A
)
, (2.4)

where NA is an order 1 constant that depends on the particular quantity A. This

equation was discretised in the steps:

Ai,j,k 7→Ai,j,k + ∆t

(
Ai+1,j,k − Ai,j,k

∆x

µi+1,j,k + µi,j,k
2

− Ai,j,k − Ai−1,j,k

∆x

µi,j,k + µi−1,j,k

2

)
,

Ai,j,k 7→Ai,j,k + ∆t

(
Ai,j+1,k − Ai,j,k

∆y

µi,j+1,k + µi,j,k
2

− Ai,j,k − Ai,j−1,k

∆y

µi,j,k + µi,j−1,k

2

)
,

Ai,j,k 7→Ai,j,k + ∆t

(
Ai,j,k+1 − Ai,j,k

∆z

µi,j,k+1 + µi,j,k
2

− Ai,j,k − Ai,j,k−1

∆z

µi,j,k + µi,j,k−1

2

)
.

(2.5)

To prevent this error, we altered the routine to calculate fluxes in all directions

simultaneously. This modification makes it necessary to reduce the turbulent time-

step. When diffusion in all directions is performed simultaneously, this is discretised

as

∆A

∆t
=

Ai+1,j,k − Ai,j,k
∆x

µi+1,j,k + µi,j,k
2

− Ai,j,k − Ai−1,j,k

∆x

µi,j,k + µi−1,j,k

2

+
Ai,j+1,k − Ai,j,k

∆y

µi,j+1,k + µi,j,k
2

− Ai,j,k − Ai,j−1,k

∆y

µi,j,k + µi,j−1,k

2

+
Ai,j,k+1 − Ai,j,k

∆z

µi,j,k+1 + µi,j,k
2

− Ai,j,k − Ai,j,k−1

∆z

µi,j,k + µi,j,k−1

2

. (2.6)
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This discretisation can cause 0 to change sign if |∆A| > |A|, and so a simple criterion

for a minimum time-step is that it will always prevent this. Even in the case of

velocity (where negative values are permitted), a numerical instability can build when

velocities can flip signs within a single time-step, although in practice we only apply

this to scalars.

The maximum value of ∆A for each cell is found when Ai±1,j±1,k±1 = 0 and

Ai,j,k 6= 0 (or vice versa). Assuming µ is constant, and ∆x ∼ ∆y ∼ ∆z this gives

∆A

∆t
= −6

µA

∆x2
(2.7)

which for the criterion of A = |∆A| gives a minimum time-step of

∆t =
1

6

∆x2

µ
. (2.8)

This is the minimum required time-step to prevent negative values. While this time-

step is three times smaller than the minimum time-step for an approach that sweeps

through each directions in turn, the simultaneous approach does not have any direc-

tion dependent error. In practice, this prefactor of 1/6 is slightly too large to prevent

numerical instabilities (an “oscillating checkerboard” effect), and after some tests we

found a value of 1/20 maintained stability.

2.3.1.4 Temperature calculation

We also fixed an error that produced negative temperatures in situations with

large Kturb/ei. In the equation of state subroutine, temperature was calculated from

the thermal component of the internal energy by

T =
(γ − 1)(ei −Kturb)

kB
, (2.9)

where kB is the Boltzmann constant, γ is the adiabatic index, and µ is the molecular

mass of the gas. This formulation can cause major errors in temperature if Kturb is

not updated consistently with ei, as this is true in the hydrodynamic step. FLASH
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can automatically advect any new grid variable specified in a module’s Config file.

Hence the advection of Kturb was performed correctly, and consistently with the

internal energy ei. However, the pdV work term is neglected for Kturb, and so in

expanding regions ei will decrease by a greater factor than Kturb. This omission can

cause particularly large errors because the sound speed for the Courant condition is

calculated from the total internal energy, and so it is possible when fturb = Kturb/ei is

large (i.e. close to 1) for a cell to lose more thermal energy than it contains, producing

negative temperatures. To remedy this, we instead calculate the temperature from

the turbulent energy fraction fturb = Kturb/ei, which was also advected in FLASH.

Specifically, the temperature is calculated by applying the following equation,

T =
(γ − 1)(fturbei)

kB
, (2.10)

To maintain accuracy (i.e. prevent fturb > 1), we also advected the variable fthermal =

(1−Kturb)/ei, and used the normalization feature in FLASH to force fturb +fthermal =

1. The normalization feature applies the steps

fnorm 7→ fturb + fthermal

fturb 7→ fturb/fnorm

fthermal 7→ fthermal/fnorm

(2.11)

every time-step. This procedure completely prevents negative temperatures.

2.3.1.5 Bubble positions

The feedback routine produces bubbles with random radial and azimuthal

coordinates r and φ. To produce these coordinates, two pseudo-random numbers

ξ1, ξ2 are generated from an even distribution between 0 and 1. The required radial

coordinate r is selected from a ρ3/2 weighted distribution. For an exponential disc with

scale-length h, this can be produced by iteratively solving the equation r = log((1 +

r)/(1−ξ2)) – i.e. simply setting r0 = log((1)/(1−ξ2)) and ri+1 = log((1+ri)/(1−ξ2)),
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and then finding a sufficiently high i such that the sequence has converged (we use

r13). However, parentheses were missing in the code so that while the first three

iterations were correct, the final ten iterations were incorrectly written as ri+1 =

log(1 + ri/(1− ξ2)), i.e. neglecting a pair of parentheses. This process did not result

in the desired distribution for r, and was corrected.
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Chapter 3

Effective Viscosity due to Cloud Collisions in Galax-

ies

3.1 Introduction

Arguably,1 the most successful model for the formation of disc galaxies is

the ΛCDM model, in which galaxies are formed from the dissipational collapse of

baryonic gas within a dark matter halo (White & Rees 1978; Blumenthal et al. 1984;

Davis et al. 1985; White & Frenk 1991; Kauffmann et al. 1993; Cole et al. 1994;

Baugh 2006; Benson 2010). While the physical viscosity of the baryonic gas is not

anticipated to have a strong influence on gas evolution except in magnetized or hot

environments such as a galaxy cluster (e.g Sijacki & Springel 2006), effective kinematic

viscosities could in principle impact disc evolution. One-dimensional simulations by

Lin & Pringle (1987) with a viscous time-scale close to the star-formation time-scale

showed that viscous evolution with infall can reproduce the ubiquitous exponential

density profile from a range of initial conditions. In our work the viscosity was

assumed to be caused by large-scale turbulent motions dissipating kinetic energy and

transporting angular momentum.

Feedback from supernovae can be a source of viscosity by feeding this tur-

bulence (Vollmer & Beckert 2003). Additionally, the self-gravity of the gaseous disc

can provide an effective viscosity (Vollmer & Beckert 2002). This viscosity can take

the form of large-scale instabilities (Gammie 2001; Rafikov 2009), or of interactions

between giant molecular clouds (Vollmer & Beckert 2002). These cloud interactions

potentially generate viscosity through two different mechanisms. Firstly, gravitational

1This chapter is adapted from Williamson & Thacker (2012), but includes additional results from
simulations with feedback that were not included in the published paper
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scattering can increase the velocity dispersion of the cloud population, converting or-

bital energy into large-scale turbulence (Gammie et al. 1991; Fukunaga & Tosa 1989;

Agertz et al. 2009). Secondly, during inelastic collisions between clouds, shocks con-

vert orbital energy into turbulence and heat within the colliding clouds (e.g. Gittins

et al. 2003; Kitsionas & Whitworth 2007; Anathpindika 2009). Radiative processes

contribute to the dissipation of kinetic energy during these collisions, and are also

important for dissipating turbulent energy that has cascaded into thermal energy.

These processes are significant even in the absence of star-formation: the observa-

tions compiled by Dib et al. (2006) show that the velocity dispersion of HI gas does not

strongly depend on the star-formation rate below a certain threshold, and the AMR

simulations of Agertz et al. (2009) suggest that a ‘baseline’ turbulence is caused by in-

teractions between clouds, and that this is only supplemented by supernova feedback

at high star-formation rates.

It has been argued (Vollmer & Beckert 2002; Bell 2002, hereafter B02) that

cloud-collisions are not an efficient source of viscosity. In particular, in B02 the time-

scales for viscosity due to cloud collisions are estimated to be on the order of tν ∼ 1000

Gyr in most local spiral galaxies, although the time-scales might be considerably lower

in earlier gas-rich galaxies or in galaxies where the velocity distribution of GMCs has

been stirred up by some mechanism (such as galaxy interaction e.g. Hernquist & Mihos

1995). Vollmer & Beckert (2002) argue that because molecular clouds evaporate at

an age of ∼ 107 yr, and this is less than the time between collisions (∼ 108 yr), cloud

collisions are very rare. However, cloud formation times, assuming that collapse and

formation of H2 are the dominant factors in forming a cloud, appear to be equally

short (Glover & Mac Low 2007). The combination of these effects leads to a scenario

in which the number density of clouds is roughly constant, although the short life-

time may affect the velocity dispersions of molecular clouds as they have less time to

build up a large deviation from circular velocity through scattering events with other

clouds. In this steady state, the effective collision time-scale should remain similar.
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It has also been argued that physical collisions between clouds have a smaller

effect than gravitational scattering (Jog & Ostriker 1988), particularly if magnetic

fields are taken into account, cloud interaction cross-sections may be underestimated

(Ozernoy et al. 1998). On the other hand, Das & Jog (1996) modelled a system of

cloud particles, finding that cloud collisions rather than local gravitational interac-

tions (scattering events) dominate the mass distribution and velocity dispersion of

molecular clouds, suggesting that cloud collisions may indeed be important. How-

ever, as far as we are aware, the effective viscosity of direct cloud-cloud collisions has

not yet been examined in global three dimensional numerical hydrodynamic models.

Many simulations of cloud formation and the associated disc dynamics have

been performed in two dimensions and/or on a small scale using shearing-box stud-

ies (e.g. Kim & Ostriker 2007). However, as mentioned above, increased computing

power and the availability of locally adaptive algorithms have recently enabled galaxy-

scale simulations with sufficiently high resolution to resolve cloud-formation in discs.

Numerical experiments have been performed using both AMR (Tasker & Tan 2009;

Tasker 2011; Agertz et al. 2009) and SPH (Robertson & Kravtsov 2008) with reso-

lutions as fine as 6 pc. The non-trivial cooling processes and chemistry make these

simulations a significant technical challenge. Agertz et al. (2009) and Tasker & Tan

(2009) ran suites of high resolution AMR simulations of Milky-Way and M33-like

disc galaxies, and reported on the properties of the clouds generated by their models,

including cloud-cloud velocity dispersion. However, neither study has provided an

estimate of the viscous time-scale due to cloud-cloud collisions. Furthermore, the

discs of Tasker & Tan (2009) are more uniform than the Milky Way, with a den-

sity distribution chosen to give a constant value of the Toomre Q parameter (Toomre

1964), and a static dark matter and stellar component, which may inhibit some of the

instabilities important to cloud formation. In this thesis we revisit the calculations

of B02 with full three dimensional SPH models.

Note that the analysis of processes related to clouds in hydrodynamic simu-

lations is not entirely trivial since there is no universally agreed upon cloud finding
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process. However, the use of a particle method enables the Friends-of-Friends (Davis

et al. 1985) group finding methodology and we adapt that to our simulations. Hence

given our cloud population our primary goal is to see whether the analytical calcu-

lations are supported, and if not what the implications are. It is important to note

that the results of such simulations could highlight non-physical evolution in numeri-

cal schemes with artificial viscosities, of which SPH is a notable example (Valdarnini

2011). We also investigate the issue of numerical artefacts in our calculated results.

Numerical artefacts are a key issue since structure formed within simulations starting

from smooth initial conditions is inevitably the result of amplification of noise in the

initial conditions.

While a full calculation in the cosmological context (e.g. Katz 1992; Thacker

& Couchman 2001; Governato et al. 2007; Brook et al. 2008; Scannapieco et al. 2009;

Stinson et al. 2010) is beyond the scope of this work, primarily due to resolution

limitations, we instead consider two classes of isolated models. We examine an equi-

librium system with similar parameters to the Milky Way consisting of a gas disc, a

stellar disc and bulge, and a dark matter halo. Here the gas disc is stabilized by the

other components which dominate the system’s mass. We also consider the dissipa-

tional collapse problem that has been used extensively elsewhere (e.g. Gott & Thuan

1976; Carlberg 1984; Katz & Gunn 1991; Brook et al. 2004; Kaufmann et al. 2006). In

contrast with the Milky Way model, this collapse produces a very unstable disc, and

so we investigate both high-stability gas-poor systems and low-stability gas-rich sys-

tems. These models include hydrodynamics, gravitational interactions, cooling with

a dynamic temperature floor, and in some cases feedback and star formation. The

development of a fully self-consistent feedback algorithm with molecular cloud forma-

tion, so for most of our models we remove the numerous unknowns associated with

star-formation and feedback (as discussed in numerous places e.g. Thacker & Couch-

man 2000; Ceverino & Klypin 2009; Christensen et al. 2010) we hope to to isolate the

impact of cloud-cloud interactions and place lower bounds on the viscous time-scale.
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For comparison we also perform simulations that include convential feedback and star

formation, noting that this process is not entirely self-consistent.

3.2 Simulation

3.2.1 Simulation Code

These simulations were performed with HYDRA (Thacker & Couchman 2006),

which we described in chapter 2, including the modifications made by the author.

Here we describe the star formation and feedback algorithms (section 3.2.2) which we

made use of, as well as our initial conditions for both of our scenarios (section 3.2.3).

3.2.2 Star formation and feedback

Feedback is the input of energy into the ISM, usually from stars and AGNs

(for a general review see Baugh 2006). Outflows and radiation from these objects can

inject mass, metals, heat, and momentum into the ISM. We do not consider AGN

feedback in this work, as the Milky Way is not considered to have an AGN (although

it is possible that the Milky Way harboured some AGN-type activity in the past (Guo

& Mathews 2012)). However, stellar feedback has an important effect on gas in any

galaxy.

Stellar feedback models typically assume that the dominant feedback mecha-

nism is supernovae (Katz 1992, for example). Most of the supernovae in the galaxy

are produced by bright young stars (Katz 1992), within ∼ 8 Myr of their formation.

Hence supernova feedback is often assumed to be simultaneous with star formation, or

the properties that are resolved are considered “averaged”. The star formation rate in

a particle or cell is then taken as Ṁ∗ = Mg/tsf , where Ṁ∗ is the rate of change of the

stellar mass, Mg is the gas mass, the star formation time-scale tsf = Mg/Ṁ∗ ∝ tff ,

and the free-fall time-scale tff is proportional to ρ−1/2, specifically

tff =
1

4

√
3π

2Gρ
. (3.1)
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This results in a star formation rate that is proportional to ρ3/2, which under the

assumption that ρ ∝ Σ agrees with the well-known Keniccutt Schmidt law (Kennicutt

1998), Σsf ∝ Σα
gas, where Σsf is the star formation rate per unit area, Σgas is the gas

surface density, and α ∼ 1.5 (Kennicutt 1997).

In our implementation (as in Thacker & Couchman 2000), this feedback is

input by increasing the internal energy of the neighbour particles. To avoid the

well-known problem of short cooling times causing all the inputted energy to be lost

before the feedback region can have any dynamic impact on its surroundings, we

turn off cooling for a fixed period of time for particles that have received feedback

energy (as justified in Mori et al. 1997). Other approaches to mitigate this problem

can involve inputting some fraction of the feedback energy directly into the velocity

of the neighbouring particles, or, as in Chapter. 4, into sub-grid turbulent kinetic

energy. We analyse two simulations with feedback, and vary this cooling shut-off

period between them, setting it to 0.5 Myr in one and 1 Myr in the other. This

parameter effectively sets the strength of the feedback, with a longer shut-off period

producing stronger feedback.

This approach is best suited for lower resolution and becomes a progressively

less accurate approximation as spatial and temporal resolutions increase. If the time-

step is much shorter than 8 Myr, then forcing simultaneity between star formation

and supernova feedback is not an accurate approximation, as gas can dynamically

evolve within this time. Furthermore, observations have given evidence that small

molecular clouds are disrupted before a supernova event (Murray 2011), suggesting

that stellar winds and radiative pressure on dust can have a significant effect.

The discretisation required for particle and grid simulations produces further

complications. Stars are typically modelled by particles even if gas is modelled by a

grid, as an Eulerian approach is the most computationally straightforward method

for simulating a collisionless system. However, if every cell or particle undergoing

star formation produced a star particle of mass ∆tMg/tsf at every time-step, the

number of particles will increase far too rapidly for computation within a reasonable
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time. Instead, many models maintain a star-formation count for gas cells or particles,

which produces a star particle once it reaches a certain threshold. This threshold may

be stochastic (e.g. Stinson et al. 2006), or may be set to some constant value (e.g.

Thacker & Couchman 2001). While this method reduces the computational load, it

also forces the gas and stars to be dynamically coupled until the particle is produced,

which has a distinct impact on dynamical evolution as early creation of stars will

spread mass out over a larger volume.

Overcoming these problems involves developing a more detailed feedback model,

and such investigations are in progress (e.g. Hopkins et al. 2012b). The key factor

is that sites of star formation (i.e. GMCs) are resolved and hence directly modelled.

The details of these advanced models and their effects on cloud formation and inter-

action are sufficiently complex that they are beyond the scope of our work. Instead,

we do not use a feedback algorithm for most of our models, and investigate the effect

of the classical approach implemented by Thacker & Couchman (2000, 2001). The

feedback simulations used in this thesis were run by James Wurster, and analysed by

the author.

3.2.3 Inital Conditions

3.2.3.1 Milky Way Model

We produce our Milky Way model using the GALACTICS package (Kuijken &

Dubinski 1995; Widrow & Dubinski 2005; Widrow et al. 2008) with the parameters in

Table 2 of Widrow et al. (2008). Through an iterative process, this package produces

an equilibrium system consisting of an exponential stellar disc, a stellar bulge and a

dark matter halo. The stellar disc is exponential radially, follows sech2 vertically, and

has a radial dispersion profile of

σ2
R(R) = σ2

R0
exp(−R/Rσ), (3.2)
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Name ah (kpc) rh (kpc) δrh (kpc) γ σh (km s−1) Mhalo

Collapse haloes 25.75 300 50 1.0 351 1.1× 1012

MW haloes 13.6 275 25 0.81 330 7.3× 1011

Table 3.1: Halo parameters. As in Eq. 3.3, ah is the halo scale parameter, rh is the truncation
radius, δrh is the scale length for this truncation, γ is the cuspiness parameter, and σh is a
velocity parameter that sets the halo mass, Mhalo.

where R is the radial coordinate, σR is the radial velocity disperion, σR0 is the radial

velocity dispersion at R = R0 = 0, and Rσ is the scale length for radial velocity

dispersion. We set Rσ = Rd, the scale length of the disc, for simplicity. We generate

the gas disc by copying the disc star particle positions and flipping the coordinates

across the x = y plane to prevent particles having coincident positions. Bulge particles

are not copied. The masses of the gas and star particles are scaled to give the

appropriate mass ratio. The gas disc is given a dispersionless velocity profile output

by GALACTICS and is initially isothermal at 104K. The disc scale length is 2.81 kpc,

truncated at 30 kpc by the complementary error-function with a scale-length of 0.1

kpc. The scale height is initially 0.36 kpc, and the total disc mass is 5.2 × 1010M�.

The halo density profile is

ρ =
22−γσ2

h

4πa2
h

1

(r/ah)γ(1 + r/ah)3−γ
1

2
erfc

(
r − rh√

2δrh

)
, (3.3)

where ah is the halo scale parameter, rh is the cutoff radius, δrh is the scale length

for the truncation, γ is the ‘cuspiness’ parameter (equal to unity for an NFW profile

(Navarro et al. 1996)), and σh is a velocity parameter that sets the mass of the halo.

Halo parameters are given in Table 3.1. In addition to having an active dy-

namic n-body halo we also ran a test with a static analytic halo potential, to explore

if the discretization of the halo has any effect on cloud formation.

The bulge density profile, ρb(r) is

ρb(r) = ρb0

(
r

Re

)−p
e−b(r/Re)1/n , (3.4)
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where p = 1 − 0.6097/n + 0.05/n2 gives a Sérsic profile with n the Sérsic index. Re

is the radial scale parameter, and ρb0 is a parameter defined by velocity parameter

σb ≡ {4πnbn(p−2)Γ[n(2 − p)]R2
eρb0}1/2, where Γ(x) =

∫∞
0
e−ttx−1dt is the standard

extension of the factorial function to all real numbers. We set the parameters in this

equation to n = 1.32, σb = 272 km s−1, and Re = 0.64 kpc, again following the Milky

Way model of Widrow et al. (2008).
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Name lsoft (pc) Tfoor (K) n∗ ng nDM mg/m∗ tend (Gyr) hdisc (kpc) α, β t∗ (Myr)
LowSoftMW 60 300 5× 105 4× 105 5× 105 0.1 1.116 0.36 1, 2 N/A
MedSoftMW 100 300 5× 105 4× 105 5× 105 0.1 1.146 0.36 1, 2 N/A
HighSoftMW 500 300 5× 105 4× 105 5× 105 0.1 1.542 0.36 1, 2 N/A
LowResMW 60 300 1× 105 8× 104 1× 105 0.1 1.959 0.36 1, 2 N/A

LowFloorMW 60 10 5× 105 4× 105 5× 105 0.1 1.004 0.36 1, 2 N/A
LowViscMW 60 300 5× 105 4× 105 5× 105 0.1 1.002 0.36 0.5, 1 N/A
MedGasMW 60 300 5× 105 4× 105 5× 105 0.2 0.485 0.36 1, 2 N/A
HighGasMW 60 300 5× 105 4× 105 5× 105 0.5 0.434 0.36 1, 2 N/A

FlatMW 60 300 5× 105 4× 105 5× 105 0.1 0.790 0.036 1, 2 N/A
HighResFlatMW 45 300 1.25× 106 1× 106 1.25× 106 0.1 0.318 0.036 1, 2 N/A
WeakFeedMW 60 300 5× 105 4× 105 5× 105 0.1 0.954 0.36 1, 2 0.5
StrongFeedMW 60 300 5× 105 4× 105 5× 105 0.1 1.137 0.36 1, 2 1.0

Table 3.2: Summary of Milky Way runs. lsoft is the minimum softening length, Tfloor is the temperature floor, n∗, ng, and nDM are the
numbers of star, gas and dark matter particles, mg/m∗ is the gas/star mass ratio for the disc, tend is the total simulation time, hdisc is the
scale height of the disc, α and β are the artificial viscosity parameters, and t∗ is the cooling shut-off time.
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We have named our fiducial run LowSoftMW. To test the effects of chang-

ing the resolution, softening length, temperature floor, gas mass fraction, and arti-

ficial viscosity we investigate a total of ten different runs, summarized in Table 3.2.

Both MidSoftMW and HighSoftMW have higher gravitational softening lengths, while

MedGasMW and HighGasMW have higher gas mass fractions, LowFloorMW has a

lower temperature floor, LowViscMW has lower artificial viscosity parameters (α, β),

and LowResMW has a lower resolution.

In addition, as a convergence check, we ran a higher resolution simulation

(HighResFlatMW) with a total of 3.5 × 106 particles and a softening length of 45

pc, although we do not consider this our fiducial run as the simulation was too slow

to evolve to 1 Gyr within a reasonable wall-clock time. We found when running

a simulation of this high resolution with identical initial conditions to LowSoftMW

that the disc was initially dominated by a strong ring-shaped shock propagating

outwards. This shock is caused by a combination of the rapid vertical collapse of the

disc as radiative cooling is turned on, and the rotation curve not being quite precise

enough because GALACTICS is intended for collisionless mechanics and does not

take into account gravitational softening or the pressure gradient of the gaseous disc.

At the lower resolutions this shock is poorly captured, and the disc quickly returns

to equilibrium, so this is only a problem at our highest resolution.

To prevent the shock becoming a problem it is necessary to start the simula-

tion from an initially flattened state akin to the later evolution of the cooled disks.

We therefore flattened the gas disc to a similar scale height as the cooled disks, which

is a factor of 10 smaller. Circular velocities (vcirc) were then set up using radial accel-

erations (arad) generated from a single iteration of the HYDRA code, and explicitly

setting arad = v2
circ/R for each gas particle, where R is the radial coordinate of the

particle. We also performed a simulation (FlatMW) with these initial conditions but

at our fiducial (moderate) resolution, for a fair comparison of the effects of resolution.
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3.2.3.2 Monolithic Collapse Model

This model consists of a spherically symmetric distribution of gas within an

equilibrium NFW dark matter halo. We generate the halo using GALACTICS ac-

cording to the parameters in Table 3.1, giving a halo with M = 1.1× 1012M�.

For the gas we use the ‘high-entropy’ (high-S) profile of Kaufmann et al. (2009),

which was produced from equation 1 of Kazantzidis et al. (2004),

ρ(r) =
ρs

(r/rs)γ[1 + (r/rs)α](β−γ)/α
, (3.5)

setting c = 1, α = 1, β = 3, and γ = 0. Kaufmann et al noted that a gas density

profile that is shallower than the NFW profile (as expected in models with pre-heating

feedback e.g. Mo & Mao 2002) produces an angular momentum distribution in the

final object that better fits observations. In this model, the gas collapses into clumps

which combine to form an unstable disc.

As in Kaufmann et al. (2007), the initial temperature profile is calculated to

provide hydrostatic equilibrium according to

T (r) =
µ

kB

1

ρG(r)

∫ ∞
r

ρG(r)
GMtot(r)

r2
dr, (3.6)

where µ is the mean molecular weight of the gas (taken as its primordial value,

µ ≈ 0.59mH), kB is the Boltzmann constant, ρG is the initial gas density, and Mtot(r)

is the total mass (gas and dark matter) within a sphere of radius r. We give the

gas a flat velocity profile. The positions of the gas particles in our initial conditions

are simply the generated positions of the dark matter particles flipped as in section

3.2.3.1.

To set up a rotating halo, GALACTICS swaps a fraction of the dark matter

particles’ velocities over the radial axis to increase the number of particles rotating

in the same direction. We assume the gas and the dark matter have the same specific

rotational momentum, i.e.
|LG|
MG

=
|LDM|
MDM

, (3.7)
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Name lsoft (pc) Tfoor (K) ng nDM mg/mDM tend(Gyr)
HighSoftC 514 3× 104 5× 105 1× 105 0.148 4.5
MidSoftC 200 3× 104 5× 105 1× 105 0.148 3.9
LowSoftC 60 3× 104 5× 105 1× 105 0.148 3.3

LowSoftFloorC 60 300 5× 105 1× 105 0.148 3.7
LowResC 60 300 1× 105 1× 105 0.148 4.6

LowMassC 512 3× 104 5× 105 1× 105 0.030 7.8

Table 3.3: Summary of collapse runs. lsoft is the minimum softening length, Tfloor is the
temperature floor, ng and nDM are the numbers of gas and dark matter particles, mg/mDM is
the gas/dark matter mass ratio, and tend is the total simulation time.

so that the spin parameter (Binney & Tremaine 2008) of the gas is equal to the spin

parameter of the halo,

λG =
|LG|
MG

√
|EDM|

GM
3/2
DM

=
|LDM|
MDM

√
|EDM|

GM
3/2
DM

= λDM. (3.8)

We used a spin parameter of λG = 0.038, close to the median value observed in

simulations (Bullock et al. 2001; Barnes & Efstathiou 1987). After each gas/DM

halo is produced, it is evolved for 0.5 Gyr with cooling switched off to ensure the

initial conditions are stable. Our first model (HighSoftC) was run with the softening

equal to Kaufmann et al. (2009)’s and the temperature floor equal to Kaufmann

et al. (2009)’s cooling floor. We also investigated models with lower softening lengths

and temperature floors to see if smaller clouds were resolved. A low resolution run

was performed as a convergence check, and finally we performed a model with a

low gas fraction to see the effect of increasing the disc’s stability. These models are

summarized in Table 3.3.

3.3 Analysis Code

3.3.1 Cloud tracking and identification

We measured the effects of cloud collisions in our models with a post-processing

code. The basic principle of the algorithm is to examine every interaction between
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clouds to determine the amount of kinetic energy lost through interactions, and hence

determine viscous time-scales for the simulation.

Clouds are first identified with a friends-of-friends algorithm (Davis et al.

1985). In this algorithm, a particle that is within a certain distance of another

particle – the linking length – is considered linked. This linking is transitive (hence

“friends of friends”). That is, if particle A is linked to particle B, and particle B

is linked to particle C, then particle A is also linked to particle C. This approach

builds up groups of linked particles, where each group is separated from all other

groups by gaps of at least the linking length in size. We make use of the University

of Washington code FOF (U. Washington 2012) implementation.

In simulations with constant or near-constant particle mass, the linking length

approximately corresponds to a density threshold. It can be used to select clumps of

cool, dense, molecular gas. We considered any linked group of 30 or more particles to

be a “cloud”. However, we found in practice that the unmodified friends-of-friends

algorithm was not sufficiently robust, as the distance to outer sections of clouds

would often slip just above or below the linking length, which would be identified as

the cloud splitting into two clouds and then recombining. This problem is exactly

analogous to the “string of pearls” issue noted in collisionless simulations (Elahi 2009).

Furthermore, it was difficult to avoid selecting the thin filaments produced by galactic

shear or cloud collisions.

To resolve this, we modified the algorithm to only consider particles above

an explicit density threshold, ρ = 7 M� pc −3, corresponding to the denser parts

of a molecular cloud, and set the linking length to 50 pc. This linking represents a

lower density that is geometry and resolution dependent. For a close-packed three-

dimensional arrangement such as face-centred-cubic, this corresponds to a density of

ρ = 0.06 − 0.7M� pc −3, depending on resolution. For other arrangements (e.g. a

thin string of particles) this effective threshold density from the linking length can

be lower, but may also strongly depend on the smoothing length. The explicit high

density cutoff ensured that only dense molecular gas was considered (excluding thin
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filaments), while the high linking length makes the algorithm more stable. This

algorithm is applied to each simulation dump, and a list of clouds and their particles

is produced.

To follow the evolution of an individual cloud, clouds must be tracked between

dumps. Tracking clouds is comparatively easy in an SPH code, as we can identify

clouds and their interactions by following the individual particles between dumps,

which are dumped every 20 time-steps. If the cloud A at time ti contains at least half

of the particles contained by cloud B at the time of the following dump ti+1, then A

is a parent of B. If B contains at least half of the particles contained by cloud A,

then B is a child of A. If B has several parents, then a merger has occurred. If A has

several children, then a separation has occurred. If A is the only parent of B, and

B is the only child of A, then B is identified as the same cloud as A. The factor of

one-half gives the largest possible lee-way in redistributing particles between clouds,

while still forcing clouds to be uniquely identified. This approach is illustrated in

Fig. 3.1.

This categorization also allows for multiple parents to join in a merger and it

is also possible for a parent to split into into multiple children. During simulations

we observed that mergers can be complex with clouds merging and separating several

times before settling into a single cloud, or in some cases while no longer interacting

— that is, our interaction detecting algorithm is too sensitive. However, this does not

produce a large error in the viscous time-scale, because the sum of energy lost over

all of these detected interactions should be equal to the actual energy lost in a full

merger, which also means our statistics are perhaps better thought of as recording

‘interaction’ rates (including ‘self-interaction’) rather than cloud collision rates.

3.3.1.1 Energy analysis

From the cloud energy budget we can obtain an estimate for the total time-

scale for dissipation of kinetic energy from cloud-cloud interactions. We define this

by analogy with the star-formation time-scale, which is typically defined as tSFR =
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Clouds are identified with each other if 

one contains >50% of the other’s 

particles 

If a cloud contains >50% of the particles 

from each of two or more clouds from the 

previous step, then a collision has 

occurred 

If a cloud contains >50% of the particles 

from each of two clouds from the 

following step, then a split has occurred 

Figure 3.1: Our approach for determining if clouds have merged or split. Blue clouds are
clouds from the previous simulation dumps, green clouds are clouds from the current dump.

Σgas/(dΣ∗/dt), where Σgas is the surface density of gas, and dΣ∗/dt = −Σgas is the

rate at which this is converted into a stellar surface density. Hence we define the

viscous time-scale due to cloud-cloud collisions to be the dissipative time-scale,

tνcol =
K

−dKC/dt
, (3.9)

where K is the total orbital kinetic energy of the gas, and −dKC/dt is the rate at

which this kinetic energy is dissipated due to collisions. This dissipation rate can be

written as

−dKC

dt
= C∆Kcol, (3.10)

where C is the interaction rate (determined by counting the number of interactions

that occur within a time period) and ∆Kcol is the energy lost per interaction. In

practice, we average over ncol interactions so that
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tνcol =
∆t

ncol

∑ncol

i=1 K(ti)∑ncol

i=1 ∆Ki

. (3.11)

where ∆t is the time period that the ncol interactions occurred over (and hence C =

ncol

∆t
), ∆Ki is the kinetic energy lost in a particular interaction i and K(ti) is the total

kinetic energy in gas at the time of that interaction.

It is important that we connect this method of measuring the dissipative time-

scale in our models with definitions used elsewhere. It is commonly argued (e.g. B02)

that the form of the viscous time-scale is

tν ≈
R2

ν
, (3.12)

where R is the radial coordinate and ν the (effective) viscosity.

To see how this form arises in our measurements, consider the following ar-

gument: If we neglect radial velocity, then the kinetic energy per unit volume of a

component of fluid in a rotating disc is k = ρ(RΩ)2/2, where Ω is the angular velocity

at this radius. We can convert the rate of viscous dissipation for a generic fluid (Φ,

the energy lost per unit volume per unit time) from Mihalas & Weibel Mihalas (1984)

into cylindrical coordinates and again assume angular velocity dominates, simplifying

it to:

Φ = ρν(RΩ′)2, (3.13)

where the prime indicates a radial derivative. We can substitute these values into our

definition for tνcol because Φ = −dkC/dt, so

tνcol =
ρ(RΩ)2/2

ρν(RΩ′)2
=

Ω2

2ν(Ω′)2
. (3.14)

If we then take a power law for rotation Ω ∝ R−α then

tνcol =
1

2α2

R2

ν
, (3.15)
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which agrees with R2/ν within a factor of 1/2α2. For a flat rotation curve, α = 1

and this factor is merely 1/2 — hence the dissipative time-scale is of the order of the

traditional viscous time-scale. Note, Lin & Pringle (1987) give a different prefactor —

(2− α)/(α). However, these values all agree within an order of magnitude, provided

α is not extremely large or small. Although our viscous time-scales are calculated

over the whole disc to ensure sufficient numbers of interactions are measured, and the

analytical R2/ν is a local value at a specific radius, we should not expect this to have

an effect beyond an order of magnitude, assuming analytical viscous time-scales have

been calculated at a representative radius.

3.4 Results

3.4.1 Milky Way Model

3.4.1.1 General Evolution

The evolution of all models excluding HighSoftMW are similar1. In these

models the initial state of the gaseous disc is close to a hydrodynamic equilibrium.

However, the gas rapidly cools and becomes unstable, collapsing vertically (except

in FlatMW and HighResFlatMW, which are produced from already-collapsed initial

conditions), and forming spiral instabilities which fragment into large number of small

(m ∼ 106–107M�, R ∼ 100 pc) clouds.

After this epoch of rapid cloud formation, the clouds merge and continue to

accrete material. The number of clouds drops, as illustrated in Fig. 3.2, while the total

mass within clouds continues to increase until both reach a less dramatic stage from

around 0.8–1.0 Gyr, where the number of clouds decays only gradually as the mass

within clouds gradually increases. A face-on view of the evolution of LowSoftMW

is shown in Fig. 3.3, and a snapshot of HighResFlatMW is shown in Fig. 3.4. In

HighSoftMW cloud collapse was quenched by the high softening length, and instead

the disc was dominated by large scale instabilities (Fig. 3.5). The higher gas mass

1Animations for some models presented here are available at
http://ap.smu.ca/~thacker/williams/cloudcols.html
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in HighGasMW and MedGasMW reduced the hydrodynamic time-step and so these

simulations could only be run for ∼ 0.45 Gyr, while the increased computational load

of the high resolution run HighResFlatMW also made a full simulation of 1.0 Gyr

unfeasible, and so this simulation was evolved for ∼ 0.3 Gyr.

The gas disc separates into two phases: diffuse gas which retains a moderate

temperature (∼ 103 to ∼ 104 K) though shock heating and a low cooling time, and

dense gas whose temperature is tightly controlled by the Robertson-Kravstov dynamic

temperature floor. It should be noted that while most of our models lack direct stellar

feedback, the dynamic floor can heat the dense gas to temperatures as high as 3×104

K. This temperature is equivalent to a sound speed of ∼ 26 km s−1, which is on the

order of the velocity dispersion generated by various feedback mechanisms (Thacker

& Couchman 2000; Governato et al. 2007; Ostriker & Shetty 2011). Hence while (as

we observe) implementing feedback changes our results, the difference is not large.

This conclusion is further supported by the findings of Shetty & Ostriker (2008), who

found that the properties of large clouds are not strongly sensitive to feedback.

Tests were also performed with a higher cooling floor of 3 × 104 K, and no

clouds were formed. These tests demonstrate that a static cooling floor is a poor

approximation to feedback as it inputs energy into any cool region of gas regardless

of density, impeding any collapse that would have actually formed stars, in contrast

with a dynamic temperature floor which inputs energy only into dense star-forming

gas.

3.4.1.2 Cloud formation & numerical issues

We now draw attention to the differences between the simulations illustrated

in Fig. 3.2. While LowResMW produces clouds at the same time as LowSoftMW (top

left), it produces fewer of them as the mass spectrum is truncated. Similarly, FlatMW

produces clouds at the same time as HighResFlatMW, but in smaller numbers (bot-

tom right). Hence there is a trend of producing more clouds with increasing resolu-

tion. The total mass in clouds does not strongly vary between these two resolutions
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Figure 3.2: Number of clouds in Milky Way models. To smooth the data, each plotted point
is an average of the 29 data points centred on it. The number peaks when many clouds are
rapidly formed as the gas temperature drops below the Toomre instability threshold. It drops
as these clouds merge.

60



Figure 3.3: Evolution of LowSoftMW. A featureless disc (top-left) rapidly collapses into a
larger number of clouds (top-right) after around 200 Myr of evolution. These clouds interact
with each other and accrete material from 400 Myr (bottom-left) until the simulation ends after
1.1 Gyr (bottom-right).
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Figure 3.4: HighResFlatMW after 300 Myr of evolution.

Figure 3.5: HighSoftMW after ∼ 1.5 Gyr of evolution. Because of the large softening length,
the disc does not undergo local fragmentation into clouds, and is instead dominated by bar and
spiral instabilities.
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Figure 3.6: Resolution dependence of the total mass fraction of clouds.

(Fig. 3.6) — this demonstrates that any difference in viscous time-scale between these

resolutions are due to the specific mass spectrum of the clouds, and not to the total

mass of clouds. Overall, the flat initial conditions of FlatMW and HighResFlatMW

produced clouds earlier and in greater numbers than in LowSoftMW. LowViscMW

appears identical to LowSoftMW, suggesting that numerical artefacts due to artificial

viscosity are not a significant effect (top right). LowFloorMW produced more clouds

than LowSoftMW as the lower cooling floor allows the disc to become more unsta-

ble to cloud formation from Toomre instabilities. We also found that clouds formed

earlier and were more numerous with increasing gas fraction, as demonstrated by

HighGasMW and MedGasMW (bottom left).

We found that replacing the halo with a static potential did not have a sig-

nificant effect — the mass spectra and number of clouds formed over 430 Myr of

evolution were almost identical (Fig. 3.7). This agreement demonstrates that the

large mass of the dark matter particles compared to gas particles did not significantly

affect cloud formation by heating the disc or by single dark matter particles seeding

over-densities. In both implementations, the halo’s main role is to set the rotation

curve for the gas and stars — it does not have a significant effect on the details of

cloud formation beyond this.

63



 0.01

 0.1

 1

105 106 107 108 109

N
(m

>
M

)/
N

to
t

Mass (Solar masses)

Static Potential
Dynamic Potential (LowSoftMW)

 0

 50

 100

 150

 200

 250

 300

 350

 0  0.1  0.2  0.3  0.4  0.5

N
um

be
r 

of
 C

lo
ud

s

Time (Gyr)

Static Potential
Dynamic Potential (LowSoftMW)

Figure 3.7: Mass spectra at 430 Myr (left) and cloud counts (right) for the fiducial model
(LowSoftMW) and a test run with a static analytic potential.

As expected, the gravitational softening parameter has a significant effect on

cloud formation. With a softening of 60 pc (LowSoftMW), a maximum of ∼ 300

clouds were formed at a time of 0.02 Gyr, while with a softening of 200 pc (Mid-

SoftMW), half as many were formed (∼ 150), and the peak number was achieved

later (0.04 Gyr). It should be noted though, that both models have a similar fraction

of mass in clouds (∼ 80%). Increasing the softening yet further to 500 pc (High-

SoftMW), leads to almost no clouds forming other than a few clouds in the centre of

the galaxy after about a Gyr of evolution (not shown in Fig. 3.2). These results match

what would be expected on theoretical grounds. Increasing the softening length delays

cloud formation and produces fewer, more massive clouds, unless the softening length

is increased above a certain threshold, beyond which cloud formation is prevented.

The lack of cloud formation could potentially be a source of error in cosmological

simulations, where a low resolution (i.e. large softening length) is necessary due to

the immense size of the simulated domain. At low resolutions, smooth cloudless discs

are formed, but as computational power increases and the softening length decreases

below the thresholds for cloud formation, galaxies will become unstable to the forma-

tion of a small number of large clouds, who will have a larger impact on the dynamics

of the galaxy than is realistic. Hence, this cloud formation must be suppressed by

64



setting a minimum softening length or by heating the discs, or cloud formation must

be properly modelled by sufficient resolution, or this error must be accounted for in

later analysis.

It seems most likely that this threshold softening length is related to the wave-

length of the unstable mode that causes cloud formation. We can calculate this using

the two-fluid (gas/star) Qgs stability parameter from Jog & Solomon (1984), Rafikov

(2001), and Li et al. (2005). The individual Q parameters for stars and gas are defined

as

Qs =
κσs
πGΣs

, Qg =
κcg

πGΣg

, (3.16)

where Σs and Σg are the stellar and gas surface densities, σs the stellar radial velocity

dispersion, cg the gas sound speed, and κ the epicyclic parameter. Note that Qs

differs from Toomre (1964)’s definition of Q for a collisionless system by a factor of

3.36/π. If we define

q = 2πσs/(κλi), f = cg/σs, (3.17)

where λi is the wavelength of a particular mode of instability, and treat the stars as a

fluid with sound speed equal to σs as in Rafikov (2001) (who follows Jog & Solomon

1984), we can define a combined Qgs by

1

Qgs

=
2

Qs

q

1 + q2
+

2

Qg

fq

1 + q2f 2
, (3.18)

with a stability condition of Qgs < 1.

We calculate Qgs by using azimuthal means of Ω, Σ, κ, cg and σs, and setting

λi to λmin, the wavelength that minimizes Qgs. It is worth cautioning that these

parameters are derived from linear perturbation theory and may not adequately de-

scribe the system once clouds have formed. Nevertheless, λmin does not rapidly vary

(Fig. 3.8). λmin is fairly small (< 1 kpc) from t = 1 Myr to t = 200 Myr for LowSoftC

until a radius of 10 kpc at which point it triples in size. This jump is due to the small
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Figure 3.8: Wavelength λmin of the most unstable mode for LowSoftMW at 1 and 200 Myr
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Figure 3.9: Mass spectra for clouds in Milky Way runs at 1 Gyr. Left: Cumulative mass spec-
tra (for comparison with Agertz et al. 2009). Right: Differential mass spectra (for comparison
with Tasker & Tan (2009)). The bins in the differential mass plot have a width of log(4) ≈ 0.6
dex.

wavelength gas instabilities starting to dominate over the large wavelength stellar

instabilities. A comparison with the face-on density plots (e.g. Fig. 3.3) shows that

clouds predominately form within 10 kpc of the galaxy’s centre. In this region λmin is

of the order of 100s of pc. The ‘threshold’ resolution for cloud formation (assuming 4

to 5 softening lengths are required) in our models lies somewhere between 200 pc and

500 pc, and is consistent with this range. This quantifies an often quoted caveat for

galaxy models — if the gravitational softening length is larger than the wavelength

of the most unstable modes, then fragmentation is artificially frustrated.

The size of the unstable perturbations can be used to crudely estimate the

masses of clouds. Assuming that the disc fragments into clumps of mass ∼ πΣλ2
min,

then for the LowSoftMW simulation (for example) the typical cloud masses should

be the order of several 106M�, which is admittedly significantly larger than average

molecular cloud masses and actually much closer to giant molecular cloud complex

masses. Nonetheless, this value is broadly consistent with our spectrum of cloud

masses (e.g. Fig. 3.9). However, we caution against over interpretation as the mass

spectrum convolves together an initial spectrum and its subsequent evolution. If this

67



 0.01

 0.1

 1

105 106 107 108 109

N
(m

>
M

)/
N

to
t

Mass (Solar masses)

FlatMW
HighResFlatMW

Figure 3.10: Cumulative cloud mass spectra from flat initial conditions, including our highest
resolution model.

simple approach to calculating initial cloud masses were accurate we would not ex-

pect a higher resolution model to produce smaller clouds from this mode of instability,

although non-azimuthally symmetric modes which may produce smaller scale insta-

bilities have been excluded from this analysis. Smaller clouds could also be produced

in a higher resolution Milky Way model by changing the initial conditions, or if these

giant clouds undergo further fragmentation.

3.4.1.3 Cloud Mass Functions

The mass functions of our clouds (Fig. 3.9) differ from those of Tasker & Tan

(2009) and Agertz et al. (2009) in that our clouds are more massive. However, neither
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Figure 3.11: Viscous time-scales for disc models that ran for > 800 Myr (left) and ≤ 800 Myr
(right). At early times, some models give negative time-scales, but as these values are large,
they are not as dynamically important and are not plotted.

of these studies has equivalent physics. Tasker & Tan (2009) differ in that they do not

include a dynamic stellar disc while Agertz et al. (2009) include feedback. Resolution

could potentially also be an issue: although our mass function does not greatly vary

between our low and moderate resolution models in our fiducial simulations, our high

resolution flat model produced lower mass clouds than the moderate resolution flat

model (Fig. 3.10).

The high-mass region of our cumulative mass spectrum plot follows a power

law (i.e. N(m) ∝ mα or N(m > M) ∝Mα+1). A least-squares fitting gives α ∼ −1.5.

This value is slightly shallower than the∼ −1.8 in the simulations of Das & Jog (1996),

and Dobbs & Bonnell (2008) but close to the values of −1.5 to −1.6 from observations

(Sanders et al. 1985; Solomon et al. 1987; Solomon & Rivolo 1989; Williams & McKee

1997; Roman-Duval et al. 2010), and from the simulated mass spectra at around

106M� at 300 Myr in Tasker & Tan (2009) and at 1 Gyr in Agertz et al. (2009).

3.4.1.4 Viscous time-scales

The viscous time-scale is calculated using the method described in section

3.3.1.1 and is plotted in Fig. 3.11. Each point is calculated from 600 collisions.
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Viscous Simulation
Name Interactions time-scale (Gyr) time (Gyr)

HighSoftC 104 2.0 4.5
MidSoftC 211 1.8 3.9
LowSoftC 566 0.8 3.5

LowSoftFloorC 3672 5.8 3.7
LowResC 397 2.1 4.6

LowMassC 0 - 7.8
HighSoftMW 39 - 1.5
MedSoftMW 1911 4.0 1.1

LowSoftMW (Full) 3942 4.5 1.1
(First 300 Myr) 1766 22.4 0.3

LowFloorMW 4514 8.8 1.0
LowResMW 1576 2.5 2.0
LowViscMW 3639 4.0 1.0
MedGasMW 3765 3.6 0.5
HighGasMW 4448 0.6 0.4

FlatMW (Full) 4124 5.7 0.8
(First 300 Myr) 2237 11.3 0.3

HighResFlatMW 4445 16.0 0.3
WeakFeedMW 7806 17.7 1.37
StrongFeedMW 7159 20.5 1.0

Table 3.4: Mean viscous time-scales and simulation lengths for all runs for the time from
the first to the last recorded interaction. These time-scales are the mean time-scales during
the time period from the first to the last recorded interaction. Time-scales are not given for
LowMassC and HighSoftMW. There were no interactions in LowMassC, as it did not form
clouds. Interactions were detected in HighSoftMW, but only in clumps within the central
bar, which do not contribute to disc viscosity. The viscous time-scale for the first 300 Myr of
LowSoftMW and FlatMW are also given for more direct comparison with HighResFlatMW.

There is a general trend toward shorter time-scales as the simulation evolves, and

the final time-scales are generally below 10 Gyr, with many approaching 1 Gyr. This

decreasing trend coincides with the trend of the number of clouds lowering and the

mass of individual clouds increasing. The time-scales are less than a Hubble Time,

and so should have some effect on the evolution of a galaxy, contrary to the predictions

of B02.

The mean viscous time-scales from all interactions over each entire simulation

for both the Milky Way and collapse models are tabulated in Table 3.4. Despite the
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variation of parameters, many of the time-scales are within a narrow range, from 3–5

Gyr. Modifying the artificial viscosity (LowViscMW) did not appear to significantly

change the viscous time-scale. The softening length in HighSoftMW (600 pc) was

large enough to completely quench cloud formation, except for a few clumps that

formed within the central bar instability. We do not include a viscous time-scale here

as the mechanisms for formation and interaction are different to those of molecular

clouds in nearly circular orbits. Feedback processes from star formation and AGN

would also be more important here than in the other models. However, lowering the

softening length from 100 pc to 60 pc (MedSoftMW to LowSoftMW), while increasing

the number of clouds produced, did not significantly alter the viscous time-scale.

HighGasMW has a significantly shorter viscous time-scale at 0.6 Gyr, and

indeed there appears to be a trend of decreasing viscous time-scale with increasing

gas fraction. The effect is clearer if we compare the models over the same time period.

The viscous time-scale over the first 430 Myr is 7.1 Gyr for LowSoftMW, 1.5 Gyr for

MedGasMW, and 0.6 Gyr for HighGasMW. Increasing the gas fraction increases the

mass of the cloud population (Fig. 3.12), which increases the frequency and dissipative

efficiency of collisions.

HighResFlatMW is our highest resolution simulation, but has different ini-

tial conditions to LowSoftMW due to the more stringent stability requirements at

high resolution (detailed in section 3.2.3.1). The flat discs of FlatMW and HighRes-

FlatMW caused cloud formation to occur earlier than in LowSoftMW. A resolution

dependence is also evident: The 2.5× increase in mass resolution from FlatMW to

HighResFlatMW caused a 1.4× increase in the viscous time-scale, and the 5× in-

crease in mass resolution from LowResMW to LowSoftMW caused a 1.8× increase in

the viscous time-scale.

The inclusion of feedback in WeakFeedMW and StrongFeedMW also signifi-

cantly increases the viscous time-scale — by a factor of ∼ 4 − 5 from LowSoftMW,

even though all three simulations produced similar numbers of clouds at similar times

(Fig. 3.2). The weaker effective viscosity is likely because the clouds in the runs
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Figure 3.12: Cumulative cloud mass spectra across runs with varying gas fraction.

with feedback were considerably less massive than in the runs that included feedback

(Fig. 3.13). As might be expected, the strong feedback model produced smaller clouds

than the weak feedback model.

3.4.2 Monolithic Collapse Model

In all models the gas collapse proceeds as soon as cooling is turned on, thus

breaking the hydrostatic equilibrium. The hot core caused by the implied preheating

of the High-S profile (section 3.2.3.2) slowed the collapse sufficiently for the infalling

gas to fragment into clouds at a large radius, although these clouds are too diffuse to

be found by the cloud identification algorithm. As the simulation progresses, these
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Figure 3.13: Cumulative cloud mass spectra including runs with feedback.
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Figure 3.14: Number of clouds in collapse models (excepting LowSoftFloorC). To smooth the
data, each plotted point is an average of the 29 data points centred on it. Being very unstable,
these systems formed a few large clumps rather than many small clumps.

clouds start to merge (from t ∼ 3 Gyr in all runs except for LowMassC), and reach the

effective threshold density of our cloud-finder. The number of clouds quickly reaches

a maximum (see Fig. 3.14). These clouds combine to form a disc. The number and

size of clouds these discs fragment into varies greatly between our models.

In HighSoftC, MidSoftC, LowSoftC and LowResC, the disc is extremely un-

stable, collapsing into ∼ 7 massive (several times 109M� in mass) clumps (Fig. 3.15).

These are not small-scale GMC-style clumps as found in the Milky Way simulations,

and perhaps this level of collapse is more analogous to the gas-rich clump-cluster

galaxies found at high redshift (e.g. Elmegreen & Elmegreen 2005). In the simulations
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Figure 3.15: Impact of varying the softening length and resolution in collapse runs at t=3.5
Gyr. Top left is HighSoftC (514 pc, 3×104 K), top right is MidSoftC (200 pc, 3×104 K), bottom
left is LowSoftC (60 pc, 3 × 104 K) and bottom right is LowResC (60 pc, 300 K). Although
HighSoftC, MidSoftC and LowSoftC produce different numbers of clouds initially (more clouds
for a shorter softening length), after ∼ 500 Myr of collisions all three models have ∼ 7 large
clumps. Despite the low temperature floor, the limited resolution of LowResC produces an
unstable disc, instead of a swarm of dense clumps as in LowSoftFloorC.
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Figure 3.16: Face-on and side-on density plots of LowSoftFloorC at t=3.7 Gyr. The swarm
of clumps has a half-mass height of 7.8 kpc. The disc is very chaotic: at 10 kpc, the azimuthally
averaged tangential velocities and velocity dispersions are 180 km s−1 and 105 km s−1.

of Bournaud et al. (2007) and Dekel et al. (2009), the large clumps in clump-cluster

galaxies coalesce into a central bulge, forming a more stable disc. These simulations

differ to ours particularly in that they include star-formation and feedback. With

infalling material, Dekel et al. (2009) finds the clumpy phase can last for several Gyr.

The heavy clustering in our discs in this section dictated that they could only

be evolved for < 1 Gyr after formation (which takes ∼ 3 Gyr) due to problems

with the SPH solver. The high densities cause a large increase in the number of

particles with smoothing lengths at the minimum allowed which contributes to an

O(n2) slowdown.

The simulations of Kaufmann et al. (2009), while including star-formation (but

not explicit feedback), also produce a disc with large-scale gravitational instabilites.

Both our and Kaufmann’s collapse models have a temperature floor of 3 × 104 K,

as a very crude form of feedback, except in the case of LowSoftFloorC. Including

star-formation and more self-consistent feedback method could produce a stable disc

(Stinson et al. 2006; Christensen et al. 2010), but in this work we only include star-

formation and explicit feedback in some of our Milky Way runs.
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In LowSoftFloorC, the low temperature floor allows the halo clouds to con-

dense into dense (n ∼ 104 − 105cm−3) clumps (Fig. 3.16). Their low cross-section

means that their coalescence has properties of a collisionless collapse. So in addition

to an unstable disc, there exists a swarm of clumps with a half-mass height of 7.8 kpc.

Their ellipsoidal distribution and high densities are reminiscent of globular clusters,

but the inclusion of feedback would definitely increase the cloud cross-sections and

produce a more dissipated and flattened disc.

LowMassC is the only run that produces a disc that does not collapse into large

clumps (Fig. 3.17), although it took considerably longer to form (∼ 4.5 Gyr) and the

disc is still dominated by spiral instabilities. Discs are unstable to bar formation when

the disc mass fraction is greater than the spin parameter (md > λG) (Efstathiou et al.

1982; Foyle et al. 2008), so a lower mass disc is more stable. If the bar is too strong, it

may fragment into large clumps. This instability may well drive the infalling clouds

into a few large clumps in the higher mass models.

As seen in Table 3.4, the viscous time-scales for the collapse runs trend toward

lower values than the Milky Way simulations — around 1−2 Gyr. Though the number

of interactions is not as large as in the Milky Way models, they occur over a short

period (e.g. all 566 interactions in LowSoftC are within ∼ 500 Myr). The number of

clouds is small, so each cloud undergoes many collisions, producing a short viscous

time-scale.

3.4.3 Comparison with Analytical Model

B02 argued that while cloud collisions are not uncommon (occurring >∼ 1

time per orbit), the low efficiency of cloud collisions produces a long viscous time-

scale. This efficiency is measured with a parameter η, equal to the fraction of a

cloud’s energy that is lost in a collision (not entirely dissimilar from a coefficient

of restitution). When two clouds merge completely, the fraction of kinetic energy

lost is well approximated by η = (vrel/vrot)
2, where vrel is the relative velocity of the

clouds, and vrot is their rotational velocity which is roughly constant for a galaxy.
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Figure 3.17: LowMassC at t = 6.0 Gyr. The disc undergoes spiral instabilities but does not
fragment into clumps as the other collapse models do.
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This relationship is consistent with our numerical results. The analytical model of

B02, finds that η . 10−2 for a Milky-Way-like model, concluding that cloud-cloud

collisions are not an efficient sink of energy, with tν ∼ 1000–2000 Gyr.

The complex interactions that occur between clouds in our simulation mean

that it is not straightforward to determine values for η. Several of our merger and

separation events can take place within what is really a single extended interaction,

which lowers the average time between interactions significantly. Indeed, we find the

interaction rates are on the order of one separation or merger event per cloud every

50− 60 Myr for LowSoftMW, MedSoftMW, LowFloorMW, LowViscMW, HighSoftC

and LowMassC. The greatest interaction time-scale was in LowSoftFloorC (335 Myr),

and the smallest was in LowSoftC (14 Myr).

It is difficult to track the number of interactions over a full merger process, as

additional clouds often interact with the merging clouds. We carefully examined a

span of time around each of a sample of 10 recorded interactions in LowSoftMW on an

iteration-by-iteration basis to determine the number of recorded interactions per ‘real’

interaction. These interactions were selected so that they were evenly distributed

across the simulation (∼ 2 every 5000 iterations). We initially examined a period

of ±800 iterations around the interaction, and if no ‘real’ interaction was observed

during this time, this was extended to ±2000 iterations. Several different behaviours

were observed:

• In two cases, no real interactions were observed; outer parts of a cloud were

attaching and detaching to the main cloud, and dissolving and condensing across

the cloud density threshold, causing a number of recorded interactions which did

not correspond to any clear long-term merger, scattering or separation event.

• Three events were ‘messy’ interactions with 6, 7 and 16 recorded interactions

per real event; the event consisting of 16 recorded split and merge events was

a scattering event where the clouds passing by each other several times before

separating for a final time.
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• Four more events were more ‘tidy’ interactions, with 1, 2, 3, and 4 interactions

per real event.

• The last event was a series of mergers in rapid succession — 3 recorded mergers,

all of which were genuine mergers between distinct clouds.

Overall, there was a mean of 4.9 recorded interactions per examined period,

with a standard deviation of 4.3. A total of 11 ‘real’ interactions were observed, giving

4.5 recorded interactions per real interaction. Multiplying our interaction time-scale

by 4.5 gives us one event per ∼ 250 Myr for the LowSoftMW-like models. This is

approximately once per orbit at a solar radius. The analytic estimate in B02 of the

cloud-cloud collision rate is ∼ 100 Myr, which is of similar order.

We can estimate an η for the interactions in our models by

η = −(∆K + ∆φ)/(Kc), (3.19)

where ∆K and ∆φ are the change in kinetic and potential energy of a cloud, and Kc

is the total kinetic energy of both clouds before collision. η can be negative, as energy

is converted from internal motions into orbital kinetic energy during separations. The

clouds all have similar velocity because of the flat rotation curve, so the total energy

lost is primarily dependent on η and the cloud masses. We find for most interactions

|η| is on the order of ∼ 0.002 (Fig. 3.18). If we separate our η values into two sets, η−

for η < 0 and η+ for η > 0, we find that the median value of |η−| is greater than the

median value of |η+|, even though the viscous time-scale is positive. This unintuitive

result still produces a positive viscous time-scale because although η, the relative

energy change is larger for interactions which increase orbital energy (η− < 0) than

those which decrease orbital energy (η+ > 0), the absolute change in energy is larger

for interactions which decrease orbital energy than increase it — i.e. interactions

which decrease orbital kinetic energy tend to occur between clouds with greater mass

than interactions with increase orbital kinetic energy. Although it is not apparent on

these plots, there are several collisions for which η is very large, with η > 0.1. These

80



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

10-6 10-5 10-4 10-3 10-2 10-1

N
(

)

+ +
- -

10-5 10-4 10-3 10-2 10-1 100

 

+ +
- -

Figure 3.18: Distributions of the fraction of energy lost in a collision η, in bins of 0.35 dex.
Left: LowSoftMW, Right: LowSoftC. For each simulation, the distribution of all η− < 0 and
η+ > 0 are plotted separately. In both cases, the median value of |η−| is greater than the
median value of |η+|, even though both models show a positive viscous time-scale.

interactions occurred within the 1 kpc of galaxy centre, and only after ∼ 400 Myr.

These are clouds that have been strongly scattered by interactions and fallen down

the potential well, colliding with speeds of > 100 km s−1.

Our interactions are no more efficient at removing energy than in B02, and

are no more common, yet the B02 model predicts tν ∼ 1000–2000 Gyr, while our

simulations have tν < 10 Gyr. Our simulated discs are more energetic than standard

Milky Way models: the velocity dispersion in LowSoftMW is ∼ 20 km s−1 at 7.5 kpc,

more than triple the standard Milky Way value used in B02 (6 km s−1). However,

this is not the cause of the large difference between the model of B02 and our own.

Here we derive our own model for η, and contrast this with the model in B02 to find

the source of this disparity.

We can split the velocity components of vrel into tangential and radial compo-

nents to give

η ∼ v2
rel

v2
rot

=
R2(φ̇1 − φ̇2)2 + (Ṙ1 − Ṙ2)2

v2
rot

. (3.20)

If we make the epicyclic approximation (Binney & Tremaine 2008), that the

deviation from a circular orbit is small compared to the radius of the orbit (R = Rg+x,
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where Rg is the ‘guiding centre’ of the orbit, and x� R is the radial excursion), then

Ṙ = ẋ = Xκ cos(κt+α), (where X is the maximum radial excursion of a cloud, κ the

epicyclic frequency, and α is a phase parameter) and φ̇ = Rgvrot/R
2 from conservation

of momentum in a flat rotation curve. Hence R2(φ̇1 − φ̇2)2 = (v2
rot/R

2)(Rg,1 − Rg,2)2

— the tangential component of the difference in velocity depends only on the radial

distance between the clouds’ guiding radii.

The radial component is more difficult to calculate, as it depends on the phase

of the interaction. We can estimate the maximum η by assuming the clouds are

perfectly out of phase, that is,

(Ṙ1 − Ṙ2)2 ∼ (X1κ1 +X2κ2)2 ∼ 2v2
rot

(
X1

Rg,1

+
X2

Rg,2

)2

∼ 2v2
rot

R2
(X1 +X2), (3.21)

as R ∼ Rg. For clouds to collide precisely out of phase, they must have the same

guiding radius, and so Rg,1−Rg,2 = 0. Hence, if X1 ∼ X2 ∼ X, then ηmax,r = 8X2/R2.

If the clouds are at their maximum deviation when they collide, then their radial

velocities are zero, but their relative φ velocities are maximized, that is, φ̇1−φ̇2 = 2X,

and so ηmax,φ = 4X2/R2. These coefficients give the maximum η, but we should

nevertheless expect η ∼ X2/R2, i.e. η depends on the radial excursion of clouds.

This can also be expressed in terms of a velocity dispersion. We can calculate

the velocity dispersion by

v2
s = 〈(v − v)2〉 = 〈ẋ2〉+ 〈R2(φ̇− Ωg)

2〉 (3.22)

Assuming a flat rotation curve and that X and κ are more or less constant

within the region of interest, the radial component is ẋ = Xκ cos(κt+ α) , hence

〈ẋ2〉 = (1/2)X2κ2 = X2v2
rot/R

2, (3.23)
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and the tangential component is R(φ̇− Ωg) = −2XΩg sin(κt+ α), hence

〈R2(φ̇− Ωg)
2〉 = 2X2Ωg = 2X2v2

rot/R
2. (3.24)

This gives

v2
s = 3v2

rot(X
2/R2), (3.25)

and so

η ∼ v2
s

v2
rot

. (3.26)

From these expressions for η we can determine the dissipative time-scale from

tν = tc/η.

We next summarize the model of B02. In the limit of rapid collisions, the

kinematic viscosity due to cloud-cloud collisions can be modelled as a Reynolds stress

and expressed as ν ∼ λdvs (Faber 1995), where vs is the velocity dispersion, and λd

is the mean free path. The mean free path is λd = vstc, where tc is the typical time

between collisions. Similarly to our result, B02 states η ∼ ∆R2/R2, where ∆R is the

radial distance between collisions. For the case of very rapid collisions, ∆R ∼ λd,

so η ∼ λ2
d/R

2. This equation gives a viscous time-scale that should be equal to the

dissipative time-scale,

tν ∼
R2

ν
∼ R2

λdvs
∼ tc

R2

λ2
d

∼ tc
η
. (3.27)

Hence if we follow the description given in B02, the results should be equivalent

to ours. Continuing to follow B02, we can set tc = Mcloudh/(Σgvsπr
2
cloud), so

tν =
R2

vsλd
∼ R2

vs

πr2
cloudΣg

Mcloudh
. (3.28)

We can evaluate this using the Milky Way parameters of B02, that r = 7.5

kpc, vrot = 220 km s−1, vs = 6 km s−1, Σg = 50M� pc−2, Mcloud = 105M�, h = 100
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pc, and rcloud = 10 pc to result in tν = 14 Gyr. However, B02 states tν ∼ 2000 Gyr,

which disagrees by a factor of 1/η. It appears that B02 includes an additional factor

of η ∼ 0.008 in the denominator — i.e. tν,Bell ∼ R2/(ην). This η is not necessary,

as it is already included in the radial excursion or velocity dispersion, and as is clear

from equation 3.27, the expression tν ∼ R2/νη is not equivalent to the dissipative

time-scale.

In B02’s rare collision case, ν ∼ vs∆R(tκ/tc), where tκ = 2π/κ is the epicyclic

time-scale. For a flat rotation curve κ =
√

2Ω ∼ v0/R. The excursion ∆R is on

the order of the radial excursion of the epicyclic motion of the clouds. B02 state

∆R ∼ vs/κ ∼ vsR/vrot, which is consistent with our result in equation 3.25. Putting

this together gives

tν ∼
tc/(2π)v2

rot

v2
s

, (3.29)

i.e. η ∼ 2πv2
s/(v

2
rot) ∼ 0.023. B02 uses a low surface brightness galaxy in this case,

with Σg = 10M� pc−2 and vrot = 100 km s−1, which results in tν ∼ 23 Gyr. Again, the

value in B02 is much larger, tν ∼ 1000 Gyr, which again is higher than our calculated

value by a factor of approximately 1/η.

These models are intended to apply in the limits of very frequent or very

infrequent collisions where tcΩ � 1 or tcΩ � 1. In our simulations, we found that

clouds collide about once per orbit, i.e. Ωtc ∼ 1. However, we can contrast these

results with those of Goldreich & Tremaine (1978), who solve the Boltzmann equation

for a system of inelastically colliding particles in a disc, and find for arbitrary Ωtc

that the viscosity is of order

ν ∼ vsλd
1

1 + (Ωtc)2
, (3.30)

after we make the substitution that λd ∼ vstc. For Ωtc = 1, ν = 1/2(λdvs). The fre-

quent collision case of B02, ν ∼ vsλd, is accurate to this within an order of magnitude

if we exclude the erroneous factor of 1/η.
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Substituting our typical cloud and disc parameters at 7.5 kpc (h ∼ 25 pc,

Σg ∼ 100M�/pc−2, vs ∼ 20 km s−1, rcloud ∼ 35 pc, and Mcloud ∼ 107M�) for

LowSoftMW at t = 1 Gyr into this model gives a viscous time-scale of 1.1 Gyr. This

value somewhat underestimates our numerical results for the Milky Way models in

Table 3.4, for most of which tν ≥ 4.0 Gyr. The unstable disc of LowSoftC, forming

from a collapse without stars, has very different properties at R = 7.5 kpc, with

h ∼ 250 pc, Σg ∼ 5000M�/pc−2, vs ∼ 100 km s−1, rcloud ∼ 100 pc, and Mcloud ∼

109M�. These properties produce tν = 0.35 Gyr, which agrees with our simulation

result (0.8 Gyr) within a factor of ∼ 2. The analytical expression for tν was evaluated

from order-of-magnitude arguments and assumptions that may not be entirely valid

in our simulations — particularly in models with very few clouds, such as LowSoftC.

Numerical factors also vary our simulation results by a factor of ∼ 4. Given these

issues, it is not surprising that the agreement is not exact.

Interestingly, despite the different disc properties, LowSoftC and LowSoftMW

have similar viscous time-scales in both our numerical simulations and in this anal-

ysis. This agreement is to be expected from equation 3.28. We should expect the

typical cloud mass to increase with the gas density and typical cloud radius, and so

Mcloud/(πr
2
cloudΣg) should vary only weakly. Hence the viscous time-scale will primar-

ily depend primarily on h and vs. This degree of parameter-independence suggests

that time-scales will not vary greatly for models beyond those simulated here — per-

haps even of higher resolution. To quantify this, we note that there appears to be

a correlation between the maximum number of clouds formed (Ncloud,max) and the

viscous time-scale (Fig. 3.19). Performing a fit to a power-law tν ∝ (Ncloud,max)m, we

find a power index of m = 0.39±0.19. This fit predicts a viscous time-scale of tν ∼ 23

Gyr for Ncloud,max = 104, and tν ∼ 60 Gyr for Ncloud,max = 105, although we caution

that this is a purely empirical fitting and is not likely to be very accurate.
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Figure 3.19: Correlation between peak number of clouds (Ncloud,max) and viscous time-
scales (tν) for all models whose time-scale is given in Table 3.4. The plotted fit is tν =
(0.67 Gyr)(Ncloud,max)0.39.
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3.5 Conclusions

Previous estimates of the viscous time-scale suggest that the viscous time-scale

for cloud-cloud collisions in a Milky-Way-like galaxy is large, with tν > 1000 Gyr. To

test the hypothesis that the viscous time-scale is long, we performed simulations using

the AP3M-SPH code HYDRA with cooling down to 10 K and a dynamic temperature

floor. The simulations fell into two sets of models: initially stable gaseous discs

within dark-matter halos and stellar discs, and a gaseous spheres collapsing inside

dark-matter halos. These two sets of models were chosen to bracket a wide range of

stability. The viscous time-scale was measured by tracking clouds with a friends-of-

friends algorithm, and determining the energy loss when clouds collided.

Although our cloud masses are larger than those found in other simulations,

potentially due to insufficient resolution, a simple analysis suggests that we are re-

solving the wavelength of the most unstable mode. However, further instabilities (in

particular, non-axisymmetric turbulent instabilities that we have not accounted for

in our linear stability analysis) may appear at higher resolutions, and while the in-

clusion of energy input from stellar feedback may not greatly alter the properties of

clouds, it may contribute to cloud evaporation and affect their collisional behaviour

by increasing their cross-section through heating.

Identifying clouds and interactions between clouds is still a difficult task, as

clouds have complex structures and dynamics. The friends-of-friends algorithm often

identifies clouds as merging and separating several times over a period that upon

visual inspection appears to be a single interaction. Through a detailed examination

of 10 interaction events, we determined that each ‘real’ interaction corresponds to

∼ 4.5 interactions found by our algorithms. The complex nature of these interactions

also complicated our estimates for η = ∆Kcloud/Kcloud, the efficiency of energy loss

per cloud interaction. We found that despite our low viscous time-scales, η was not

large, with η ∼ 0.002 per recorded interaction.

Most models from both sets of initial conditions collapsed into discs dominated

by clumps of gas. The Milky Way models produced a more stable disc with a large
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number of small clouds, while the collapse models produced a highly unstable disc

consisting of a small number of massive clumps. Despite this large disparity, the

viscous time-scales were similar, with tν = 4.5 Gyr for LowSoftMW, and tν = 0.8 Gyr

for LowSoftC. These values are much smaller than estimates using the formulation of

B02, which overestimate the viscous time-scale by appearing to erroneously include

inefficiency of cloud collisions twice. Removing this factor gives analytic estimates of

tν = 1.1 Gyr for LowSoftMW and tν = 17 Gyr for LowSoftC. These values do not

exactly coincide with our measured values as they are based on simple arguments that

are particularly inaccurate for LowSoftC. However, they all agree with the general

statement that viscosity due to cloud-cloud collisions is not negligible.

The scatter of tν across our models was moderate (0.6–16.0 Gyr), despite the

range of cloud properties. Hence our viscous time-scales are applicable for a wider

range of galaxies than those modelled here, although viscous time-scales will likely

increase somewhat as resolution improves. For a simulation capable of resolving 105

clouds, we predict a viscous time-scale of around 60 Gyr, admittedly making the

effect comparatively weak within a Hubble time, but nonetheless over an order of

magnitude faster than previous estimates.

These results suggest that viscosity due to cloud-cloud collisions, while not

dominant, does not have a completely negligible effect on the evolution of a galaxy.

Although our models may underestimate the viscous time-scales due to resolution

effects, it still appears that cloud-cloud viscosity is more significant than previously

estimated. While numerical models of galaxies may be able to model this directly

(as we do in this work), it may be necessary to include a cloud-cloud viscous term in

analytical and semi-analytical models of disc evolution.
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Chapter 4

The Formation of Cold Clouds in Outflows

4.1 Introduction

Increasing computational power combined with a greater understanding of

the turbulent nature of the interstellar medium has stimulated a surge of interest

in simulations of turbulence in a galactic context. These simulations generally fall

into two categories: simulations which lack a sub-grid turbulence model (including

Direct Numerical Simulations (DNS), which resolve all of the key scales), and Large-

Eddy Simulations (LES) (Smagorinsky 1963; Lesieur et al. 2005; Garnier et al. 2009),

which include a sub-grid turbulence model. Direct simulations of turbulence are

particularly useful for performing tests which help to determine the characteristics

of turbulence in the ISM regime — this information can be used to further develop

sub-grid models for larger scale simulations. These simulations are often performed

in a periodic box, where the effects of varying parameters such as the strength and

nature (e.g. compressive or solenoidal) of turbulent forcing, magnetic field strength,

and self-gravity, can be more easily disentangled. Examples of this approach include

Mac Low et al. (1998); Stone et al. (1998); Mac Low (1999); Porter et al. (1999);

Klessen (2000); Klessen et al. (2000); Klessen (2001); Boldyrev et al. (2002); Li et al.

(2003); Padoan et al. (2004); Jappsen et al. (2005); Ballesteros-Paredes et al. (2006);

Pavlovski et al. (2006); Dib et al. (2008); Federrath et al. (2008); Offner et al. (2008);

Federrath et al. (2009); Schmidt et al. (2009); Federrath et al. (2010); Konstandin

et al. (2012), and they have been useful in constraining velocity power spectra and

probability density functions. These simulations are usually applied to star formation

in molecular clouds, and have been used to clarify the relationship between turbulence

and the initial mass function of stars. Simulations without a sub-grid model are also
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often performed on more realistic initial and boundary conditions, as well as more

self-consistent physics. This approach is applied to simulations of molecular clouds

(e.g. Price & Bate 2008; Tilley & Pudritz 2007; Vázquez-Semadeni et al. 2005; Li

et al. 2004; Li & Nakamura 2006), or the intracluster-medium (e.g. Vazza et al. 2012,

2009; Maier et al. 2009; Iapichino & Niemeyer 2008; Dolag et al. 2005), for example.

However, the scale-independent nature of turbulence implies that unresolved

scales will be important in many of these circumstances, and sub-grid-scale turbu-

lence models can be essential, if numerical models are to be considered realistic.

Direct simulations can have a strong resolution dependence if the dissipation scale

is not resolved, with turbulent energy levels increasing with resolution (Stone et al.

1998), as the turbulent cascade is shut off at increasingly small length scales. Sub-

grid turbulence models have been well-used in various other fields, particularly under

the formalism of Large Eddy Simulations (LES) (Smagorinsky 1963; Lesieur et al.

2005; Garnier et al. 2009), with the eddy viscosity first being introduced in a meteo-

rological context (Smagorinsky 1963), and with a great deal of practical application

in engineering fields such as aerospace (Piomelli 1999). However, the large range of

critical lengths, temperatures, velocities (i.e. Mach numbers), and densities (i.e. the

strong compressibility) in galactic simulations has reduced the utility of direct appli-

cation of these methods. Recently however, sub-grid turbulence models for the ISM

and IGM have received increasing attention (e.g. Schmidt et al. 2006; Scannapieco &

Brüggen 2008; Joung et al. 2009; Maier et al. 2009; Oppenheimer & Davé 2009; Scan-

napieco & Brüggen 2010; Schmidt & Federrath 2011). In this chapter, we apply the

sub-grid turbulence model of Scannapieco & Brüggen (2010) to the problem of cold

high velocity-dispersion gas in ULIRG outflows, in addition to performing simulations

without sub-grid turbulence.

As noted in section 1.4, observations of absorption in ULIRG outflows have

detected broad NaI lines, which reveal the presence of large column-densities of cold

gas. This gas is too cold to provide sufficient thermal broadening to generate these
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lines, and so non-thermal broadening must be present — i.e. the gas is likely tur-

bulent with a large velocity-dispersion. One explanation for the origin of this gas

has been investigated by the simulations of Fujita et al. (2009), where the cold gas is

produced by Rayleigh-Taylor (RT) fragmentation of the radiatively-cooled shockfront

of a super-bubble that has been inflated by an intense starburst. This situation is

difficult to analyze numerically, because the cooling rate can vary rapidly with tem-

perature (and hence with time) and a very short time-step is required to capture

this correctly. Also, the RT instability can be strong at a wide range of wavelengths,

and so this instability will not converge without very high resolution. Furthermore,

the RT instability can produce turbulent gas, which cascades to smaller scales and

requires very high resolution or a sub-grid turbulence model. To better resolve the

scales relevant to turbulent formation and destruction of clouds, the simulations of

Fujita et al. (2009) are performed in two dimensions with cylindrical symmetry. While

this allows a resolution of as fine as 0.1 pc in a 100 pc by 200 pc box, it suppresses

modes of instability and gas flow that may be present in three dimensions. Further-

more, even at this high resolution, Fujita et al. (2009) note a significant resolution

dependence in the scale of these clouds, which suggests that the turbulence is still

not fully resolved.

There is thus motivation to reexamine this scenario with a fully three dimen-

sional hydrodynamic model, and to test the effects of sub-grid turbulence to coun-

teract the resolution dependence. However, we are not able to attain an equivalent

resolution in 3D models on our available equipment within a reasonable wall-clock

time, even with adaptive mesh approaches. Instead we develop models with two scales

of size — one with the same scale as Fujita et al. (2009) but lower resolution, and a

full-scale galaxy model to examine large-scale effects. We perform simulations with

and without sub-grid turbulence. As suggested by the strong resolution dependence

of cloud formation found in Fujita et al. (2009), clouds are formed at the limit of the

model’s resolution, and hence any sub-grid model should have a significant effect here:

the expectation is that the models with sub-grid turbulence should show a weaker
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resolution dependence, and hence allow us to make more robust conclusions from our

simulations. We also vary the initial conditions, mass loading rates, and components

of the sub-grid turbulence model, and thus produce a suite of models to investigate

numerical effects. To facilitate a more direct comparison with observations, we have

also produced a raytracing code for calculating mock NaI absorption spectra of our

models.

Following this introduction, this chapter is divided into six sections. In sec-

tion 4.2 we give the initial conditions of our models, in addition to outlining our

models of other physical processes such as feedback and cooling. In section 4.3 we

motivate our sub-grid turbulence model. In section 4.4 we detail our algorithms for

raytracing and producing spectra, and detecting clumps. In section 4.5 we give our

techniques for analyzing spectra and predicting clump trajectories. In section 4.6 we

present our results, and in section 4.7 we gives our conclusions.

4.2 Simulation model

4.2.1 Initial Conditions

The initial conditions were generated using the galactic disc generator of Scan-

napieco & Brüggen (2010) with some modifications. In this model, only the gaseous

component is explicitly evolved, while the dark matter component is represented by

a gravitational potential, and the stellar component is modelled by both a gravita-

tional potential and a feedback algorithm. The gaseous disc is initially axisymmetric,

following a sech profile in both the radial and vertical directions:

ρ(r, z) =
Mgas

4Cπ2h2
rhz

sech(r/hr) sech(z/hz) + ρamb, (4.1)

where Mgas is the total gass mass, hr and hz are the radial and vertical scale heights,

ρamb is the ambient IGM density, and C is Catalan’s constant, defined by

2C =

∫ ∞
0

x sech(x)dx. (4.2)
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Pressure is set to provide vertical hydrostatic equilibrium by

P (r, z) = Pamb −
∫ z

zmax

ρ(r, z)g(r, z)dz, (4.3)

where Pamb is the ambient pressure of the IGM, zmax is the height of the computed

volume, and g(r, z) is the acceleration due to gravity. This gravity is given by a

combination of a halo and a thick-disc potential. We use the halo potential already

implemented in FLASH by Scannapieco & Brüggen (2010), which was defined in

Burkert (1995) and given explicitly in Mori & Burkert (2000). The halo potential is

an phenomenological model based on observations of dwarf galaxies, where the dark

matter density profile can be more directly probed. This potential is designed to

resemble an isothermal profile at low radii, preventing the problem of “cuspiness”,

while agreeing with the commonly used Navarro-Frenk-White profile at large radii

(Navarro et al. 1996). Our halo potential is given by

φhalo = −πGρd0r
2
d0

{
− 2

(
1 +

rd0

R

)
atan

(rd0

R

)
+ 2

(
1 +

rd0

R

)
ln

(
1 +

R

rd0

)
−
(

1− rd0

R

)
ln

[
1 +

(
R

rd0

)]}
,

(4.4)

where rd0, and ρd0 are the parameters that define the spatial and mass scale of the

halo, and R is the radius in spherical coordinates.

The disc potential is a Plummer-Kuzmin disc (Binney & Tremaine 2008),

which is given by

φdisc =
−GMdisc√

r2 + [hr + (z2 + h2
z)

1/2]2
, (4.5)

where Mdisc is the mass of the disc, hr and hz are the radial and vertical scale heights,

and r and z are position in cylindrical coordinates. We do not include a bulge potential

— given that our initial conditions do not accurately account for the complex irregular

structure of a ULIRG, including a bulge potential is an unnecessary detail that should

not significantly improve our model.
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To break the symmetry of the small-scale disc model, we have also produced

models that included asymmetric density perturbations. Using the cartesian coordi-

nate system (x, y, z) where (x, y, z) = (0, 0, 0) is the centre of the feedback region and

(x, y, 0) defines the plane of the ULIRG disc, the perturbation is applied by defining

a factors ξ and f by

ξ =[1 + A cos(π(x+ δ)/λ) cos(π(y + δ)/λ)]2

×[1− A cos(π(x+ δ)/λ) cos(π(y + δ)/λ)]2
(4.6)

andf = [1− (1− ξ)erfc(−y/10hz)/2] (4.7)

and defining the perturbed density ρ′(x, y, z) by

ρ′(x, y, z) = ρ(x, y, z)f cos[π(z+δ)/λ]. (4.8)

This provides an approximately sinusoidal perturbation that is dampened as the

z direction increases, which prevents extreme temperature variations in the sparse

higher-altitude gas. Here λ is the wavelength of the perturbation, δ is the offset

to break symmetry, the complementary error function term (erfc) smoothly reduces

the amplitude of the perturbation towards zero over several scale heights, A is the

amplitude of the perturbation, and the term that is sinusoidal in the z-direction

is placed in the exponential in order for the perturbation to be significant when

compared to the rapid exponential rate of change of density in the vertical direction.

To further reduce symmetry, we apply this to the density twice, using λ = 37.3 pc

and δ = 0 pc in the first instance, and λ = 97.2 pc and δ = 22.7 pc in the second,

with A = 0.5 in both cases. These values are not intended to closely match the

details of the density field in the central region of a real ULIRG, but are chosen such

that the wavelength of the perturbation is large enough to be well-resolved, but still

small enough that at least one wavelength can fit within the simulated domain. The
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Figure 4.1: Side-on density slice of initial conditions for SHighResNoTurbLumpy.

intention here is only to test the reaction of our model to asymmetric perturbations.

These “lumpy” initial conditions are plotted in Fig. 4.1.

4.2.2 Feedback from Star Formation

We use the feedback model implemented by Scannapieco & Brüggen (2010),

with some modifications. In this model, the number of supernovae is tallied over

iterations. Informed by the cosmic SN rate (Dahlen et al. 2004; Giavalisco et al.

2004; Scannapieco & Bildsten 2005) and by initial mass functions (Scannapieco et al.

2002), it is assumed that 150M� of star formation is required to produce a single

supernova. When the cumulative count of supernovae exceeds a certain parameter, a

bubble of hot gas is produced in the disc, and these supernovae are decremented from

the total supernova count. The number of supernovae required to produce a bubble

is determined by generating a random variable ζ ∈ [0, 1] by
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NSN =
NSN,min

1− ζ
, (4.9)

where NSN,min is a model parameter. If NSN > NSN,max, where NSN,max is another

model parameter, then ζ is recalculated. NSN,min and NSN,max determine whether

feedback consists of a small number of large bubbles, or a large number of small

bubbles. The radius of the bubble is set such that it is at least the size of the region

containing twice the mass in gas of the mass converted into stars, as well as being

greater than some resolution-dependent minimum size that ensures that the bubble

covers at least one cell.

In the large-scale disc models, each bubble is placed randomly, with positions

weighted according to ρ(r, z)3/2, where ρ(r, z) is the initial analytic distribution of

density. This procedure is based on the assumption that the star formation rate is

proportional to ρtff , where the free-fall time tff is proportional to ρ1/2. Three random

numbers ξ1, ξ2, ξ3 ∈ [0, 1] determine the position of the bubble. Defining a cartesian

coordinate system ~r = (x, y, z) where the disc lies in the (x, y) plane, the position is

given by

x = r cos(2πξ1) (4.10)

y = r sin(2πξ1) (4.11)

z = hz ln(ξ3), (4.12)

where r is determined by iteratively solving the equation

r = log((1 + r)/(1− ξ2)), (4.13)

as mentioned in section 2.3.1.5.

In the small-scale central-disc models, we model the outflow as a central star-

burst. While NSN is calculated as above, the bubbles are always placed in the centre
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of the disc at z = 0pc, and have a constant radius of Rbub = 10pc. This approach

is similar to that of the Fujita et al. (2009), and allows a more direct comparison of

the important differences in the models: that we are performing our simulation in

three dimensions instead of two (at the cost of lower resolution), and that some of

our models include sub-grid turbulence.

The bubble is implemented by first calculating the mass density ρSN and energy

density eSN added to the feedback region,

ρSN = MSN
NSN

4πR3
bub

(4.14)

eSN = NSN

4πR3
bub
fSN1051erg, (4.15)

where fSN, the fraction of the supernovas’ energy transferred to the bubble, and MSN,

the amount of mass ejected into the bubble, are adjustable parameters. Next we

apply the transforms

ρnew 7→ ρold + ρSNerfc
(
~rcell−~rbub
0.05Rbub

)
(4.16)

ei,new 7→
[
ei,oldρold + eSNerfc

(
~rcell−~rbub
0.05Rbub

)]
/ρnew (4.17)

to all gas cells with centres (~rcell) within 2Rbub of the centre of the bubble (~rbub).

The complementary error function erfc is used to smooth the edges of the bubble.

This function ensures that the only sharp discontinuities in density and temperature

are those caused by the evolution and interaction of bubbles, and not those directly

imposed by the feedback algorithm. In simulations including sub-grid turbulence, we

also apply

Knew 7→ (Koldρold + fturbeSNerfc
(
~rcell−~rbub
0.05Rbub

)
)/ρnew (4.18)

L 7→ Rbub (4.19)
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Figure 4.2: Density (left) and temperature (right) slices at z = 0 pc of BHighResNoTurb at
t = 5 Myr

to the same region, where fturb, the fraction of feedback that is inputted as turbulent

energy, is a model parameter. The significance of K and L, the turbulent kinetic

energy and length scale, are given in section 4.3.

In our fiducial models we set fSN to fSN = 0.6, and MSN = 6M�, which allows

us to parameterize the feedback’s luminosity, LFB, in addition to the mass loading

rate, Ṁ , in terms of the star formation rate Ṁ∗, through the following equations:

LFB ≈ 1.3× 1043ergs−1
(

Ṁ∗
100M�/yr

)
(4.20)

Ṁ ≈
(

Ṁ∗
18.75

)
. (4.21)

Face-on z = 0 pc slices through BHighResNoTurb at t = 5 Myr are plotted

in Fig. 4.2 to demonstrate the properties of the generated population bubbles once

the star formation rate has inflated several bubbles, but before differential rotation,

buoyancy and turbulence have had sufficient time to cause significant perturbations.

With a star formation rate of 200 M�/yr, this corresponds to 109M� of star formation.
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Figure 4.3: Cooling curve used in our FLASH simulations

In some models we also investigated the effect of different mass loading rates

by altering MSN. We include some unrealistically large values to investigate the effects

of very large mass-loading rates.

4.2.3 Cooling Function

For this code, we make use of the cooling curves (Λ(T )) of Raymond et al.

(1976) and Sarazin (1986), plotted in Fig. 4.3. The cooling algorithm simply applies

the discretised form of equation 1.13) to the internal energy ei of each cell several

times, each with a shorter time-step than the true time-step. That is, ∆ei = Λn2∆tj,

with cooling time-step ∆tj set such that |∆ei| < |ei|/10 in each step, and that
∑

∆tj

is equal to the true time-step.
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Figure 4.4: Face-on (z = 0 pc) and edge-on (x = 0 pc) slices of SHighResNoTurb at t = 0 yr.

4.2.4 Galaxy-centre model

The simulated domain of central-disc model is a cartesian grid of size 2003 pc3.

We reduce the computational load by using reflective boundary conditions across the

z = 0 plane – which is justified due to the symmetry of the flow in this situation.

Following Fujita et al. (2009), the disc has a vertical scale-height of 7 pc, a radial

scale-length of 700 pc, and a mass of 1010M�. As the scale-length is much larger than

the box size, this produces a disc that has almost no radial density variation within

the box. We truncate this disc using the complementary error function

erfc(r) =
2√
π

∫ ∞
r

e−t
2

dt (4.22)

This ensures the density at the edge of the box is small, and large amounts of gas do

not rotate out of the box. As this truncation is much shorter than the radial scale-

length, this truncation does not accurately represent the density profile, and we stop

the simulation when the inflated bubble reaches the truncated region. Density plots

of these initial conditions for SHighResNoTurb are given in Fig. 4.4. The parameters

for all of our galaxy-centre models are summarized in the top section of Table. 4.1.
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Name MSN lref Turb flumpy

SVLowResNoTurb 6 1 No 0.
SLowResNoTurb 6 2 No 0.
SMedResNoTurb 6 3 No 0.
SHighResNoTurb 6 4 No 0.
SVLowResTurb 6 1 Yes 0.
SLowResTurb 6 2 Yes 0.
SMedResTurb 6 3 Yes 0.
SHighResTurb 6 4 Yes 0.

SLowResNoTurbLumpy 6 2 No 0.5
SMedResNoTurbLumpy 6 3 No 0.5
SHighResNoTurbLumpy 6 4 No 0.5

SMedResTurbLumpy 6 3 Yes 0.5
SMedResNoTurbHeavy 16 2 No 0.
SMedResNoTurbLight 4 3 No 0.

SMedResNoTurbMassless 0 3 No 0.

BMedResNoTurb 6 2 No 0.
BHighResNoTurb 6 3 No 0.

BMedResTurb 6 2 Yes 0.
BHighResTurb 6 3 Yes 0.

Table 4.1: Parameters in disc outflow models. The prefix “S” refers to the “small” central-disc
models, while the prefix “B” refers to the “big” full-scale galaxy models. MSN is the mass ejected
in each supernova (i.e. the mass-loading), lref is the number of refinement levels (including the
top level), “Turb” indicates whether sub-grid turbulence is active in the simulation, and flumpy

gives the amplitude of perturbations to the initial conditions.

Fujita et al. (2009) used a range of luminosities from 1041–1043 erg/s for the

feedback region. In this model we set Ṁ∗ = 50M�/yr, which is equivalent to a lumi-

nosity of 6.3× 1042 erg/s, on the upper edge of their energy range. These parameters

result in a mass-loading rate of 2 M�/yr.

4.2.5 Full galaxy model

The full galaxy model is simulated within a cartesian grid of size 2403kpc3.

The asymmetry of the feedback does not permit reflective boundary conditions for

this model.
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This disc is intended to be a simple ULIRG prototype, without a companion

galaxy. As ULIRG discs are obscured by dust and are locally rare, their characteristics

are poorly constrained by observations. However, we should still choose parameters

that are at least consistent with observations. Farrah et al. (2008) performed a mid-

infrared survey of 32 ULIRGs at z ∼ 1.5 − 2, estimating star formation rates of

1000 − 2000M�/yr. Aravena et al. (2011) estimate the total mass of the elliptical

host galaxy for one ULIRG/QSO transition object to be 2.1 × 1012M�, with the

dynamical mass of the CO source being ∼ 80% of this. They estimate the molecular

gas mass to be 8 × 109M�. The semi-analytical models of Swinbank et al. (2008)

return dynamical masses of around 2−5×1011 within 4−8 kpc from CO line-widths,

and gas masses of ∼ 3 × 1010M� within 2 kpc. Sub-millimetre Galaxies (SMGs)

are thought to be the high-redshift analogues for ULIRGs (Narayanan et al. 2009),

and Baugh et al. (2005) gives masses of 1010h−1M� and 1012h−1M� for the stellar

and dark matter components of z ∼ 2 SMGs, where h = H/(100 km/s/Mpc) and

H is the Hubble constant. Davé et al. (2010) select likely SMGs from cosmological

simulations at z ∼ 2, and report stellar masses of ∼ 1011−11.7M�, and star formation

rates of 180− 500M�/yr. Dust-obscured Galaxies (DOGs) may also be high-redshift

optically-faint ULIRGs, and Narayanan et al. (2010) show that luminous DOGs are

gas-rich mergers in extremely massive (5×1012−13 M�) haloes with high star formation

rates (500− 1000M�/yr) and/or very strong AGNs.

We can also use the precedent of previous models to inform our choices of

parameters. Matsui et al. (2012) modelled merging galaxies (i.e. ULIRG progenitors)

each with dark matter haloes of mass 1.1×1011M�, stellar discs of mass 5.1×109M�

and radial scale-length 4 kpc, and gaseous discs of mass 1.2×109M� and radial scale-

length 8 kpc. Saitoh et al. (2009) also performed galaxy interaction simulations, with

dark-matter halo masses of 1.05 × 1011M�, stellar discs of mass 6.3 × 109M� with

scale-length 4 kpc, a gaseous halo component with 1% of the dark-matter halo mass,

and a gaseous disc with 20% of the stellar disc-mass – these were produced with the

GalactICs package we use in chapter. 3. The merger simulations of Bekki et al. (2006)
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included a disc of mass 6× 1010M� and scale-length 17.5 kpc, but are not performed

in a full 3D hydrodynamical code and do not need to model all the components

of a ULIRG. The parameters from all of these previous studies are summarized in

Table. 4.2.
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SFR M∗ MDM Mg hz hr Reference
M�(yr)−1 or (kpc) (kpc)

Mdynamic

1000–2000 - - - - - Farrah et al. (2008)
180–500 - ∼ 1011−11.7 - - - Davé et al. (2010)
500–1000 5× 1012−13 - - - - Narayanan et al. (2010)

- 1010h−1 1012h−1 - - - Baugh et al. (2005)
- 1.05× 1011 6.3× 109 - 1.05× 109 (halo) 4 Saitoh et al. (2009)

1.3× 109 (disc) “
- 1.1× 1011 5.1× 109 1.2× 109 - 4 (gas) Matsui et al. (2012)

8 (star) “
- - 2.1× 1012 ∼ 1.7× 1012 - - Aravena et al. (2011)
- - 2-5×1011 ∼ 3× 1010 - - Swinbank et al. (2008)
- - 6× 1010 - - 17.5 Bekki et al. (2006)

Table 4.2: Parameters from previous studies used to inform our initial conditions. The SFR is the star formation rate, M∗ is the stellar
mass, MDM is the mass of the dark matter halo, Mdynamic is the total dynamic mass of the system (which may be mostly dark matter by
mass), Mg is the mass of the gaseous component (or sometimes a gaseous component) and hz and hr are the vertical and radial scale heights
of the stellar disc.

104



Informed by these results and preceding simulations, we employ a gaseous

disc with mass of 1.0 × 1010M�, scale-length 8 kpc, and scale-height 2 kpc, and a

background potential equivalent to a stellar disc of mass 4.0× 1010M� with a scale-

length of 16 kpc and a scale-height of 4 kpc, superimposed on a dark-matter halo

of mass 3.0 × 1012M� and scale-radius 100 kpc. We set our star formation rate to

200M�/yr, which is at the lower end of ULIRG SFRs.

The parameters for our galaxy-scale models are summarized in the bottom

section of Table. 4.1.

4.3 Sub-grid Turbulence Model

Before specifically discussing our chosen turbulence model, we develop the

theory behind sub-grid approaches in more detail.

4.3.1 Decomposition of equations

Sub-grid turbulence in astrophysics can follow the methodology of Large Eddy

Simulations by separating a problem into a large scale and a small scale component.

The Navier-Stokes equations for momentum conservation are

ρ

(
∂v

∂t
+ v · ∇v

)
= ρg −∇P +∇ · τ , (4.23)

where g is the sum of all body forces (in particular, gravitational acceleration), P is

the thermal pressure, and the deviatoric stress tensor τ is defined by

τij = νρ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ δijλ

∂vk
∂xk

, (4.24)

where δij is the Kronecker delta, ν is the kinematic viscosity, and λ is the coefficient

of dilatational viscosity, which assuming the Stokes hypothesis (Mihalas & Weibel

Mihalas 1984) is set to λ = −(2/3)ρν. The Stokes hypothesis ensures that τ is trace-

less, and hence that the mechanical pressure on a fluid is equal to the thermodynamic
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pressure (Gad-el Hak 1995). When decomposing into large-scale and small-scale com-

ponents, it is more convenient to express equation 4.23 as

∂

∂t
(ρv) +∇ · (ρv ⊗ v) = ρg −∇P +∇ · τ , (4.25)

which is equivalent under the condition of mass conservation. Here x⊗ y represents

the outer product of x and y — i.e. a tensor defined by [x⊗ y]ij = (xi)(yj).

To separate out an average large scale component, we convolve equation 4.25

with a filter function, G. A filter function smooths out small-scale variations below

some length-scale ∆, which in numerical simulations is generally the cell size. A

simple example of a filter is the Box Filter, defined by

G(x− r) =

1/∆, for |x− r| ≤ ∆/2,

0, otherwise

, (4.26)

and this is applied to a field variable φ(x) through a convolution,

φ(x) =

∫
φ(r)G(x− r)dr. (4.27)

Defining the smoothed large-scale variables in this way by e.g. ρ = G ∗ ρ

(where ∗ represents a convolution) results in a set of equations in terms of these

large-scale variables that is similar in form to the Navier Stokes equations. A filter

function must commute with differentiation and with constants, but not necessarily

with scalars or vectors that vary across the field. For an incompressible fluid (where

ρ = ρ is a constant), the filtered momentum conservation equations are

ρ
∂

∂t
(v) + ρ∇ · v ⊗ v = ρg −∇P +∇ · τ . (4.28)

Even for an incompressible fluid the non-linearity of the ∇ · v⊗ v term is a source of

difficulty, as ∇·v ⊗ v can not be determined without detailed knowledge of the small

scale velocity field, which for numerical simulations requires a sub-grid model. This
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equation can conveniently be rearranged into the familiar momentum conservation

equation (in terms of ρv) with an additional term due to sub-grid scale (SGS) effects:

ρ
∂

∂t
(v) + ρ∇ · (v ⊗ v) = ρg −∇P +∇ · τ + ρ∇ · (v ⊗ v − v ⊗ v) , (4.29)

where ρ(v · ∇v− v · ∇v) is the SGS term. To close the equations, some prescription

must be given for this term. In models where small scale velocity perturbations

are considered unimportant it may be acceptable to completely neglect this term,

otherwise it must be approximated by a sub-grid turbulence model.

The situation is slightly more complicated for a compressible fluid, as ρ no

longer commutes with the filter function convolution. Hence we use a mass-weighted

average (Favre 1983) for the velocity field. The Favre-average of a quantity φ is

depicted here by φ̃, and is defined by

ρφ̃ = ρφ. (4.30)

This can be applied to any expression, hence

ṽ ⊗ v =
ρv ⊗ v
ρ

. (4.31)

The compressible filtered momentum conservation equations including sub-grid effects

are then given by

∂

∂t
(ρṽ) +∇ · ρ (ṽ ⊗ ṽ) = ρg̃ −∇P̃ +∇ · τ̃ +∇ ·

(
ρṽ ⊗ ṽ − ṽ ⊗ v

)
, (4.32)

and so the SGS effects are given by the ∇·
(
ρṽ ⊗ ṽ − ṽ ⊗ v

)
term. We can represent

this term with the divergence of a tensor, which we call the sub-grid scale stress

tensor, σSGS. This tensor represents the effects of all unresolved motions in the fluid,

and some expression for it must be assumed in order to close the momentum equation.

We can interpret this tensor by comparison with the fluid’s intrinsic stress tensor, σ.
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This stress tensor is typically separated into a traceless component – the deviatoric

stress tensor, τ , – and a pressure component, which is equal to one third of the trace

of the stress tensor, i.e. (1/3)
∑

i τii = P . The deviatoric stress tensor gives the effect

of shear, usually through viscosity. For a Newtonian fluid, this is

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
. (4.33)

Similarly, we can produce an effective pressure term from σSGS, where PSGS =

(1/3)Tr(τ). The kinetic energy density of the sub-grid scale is

KSGS =
1

2
ρṽ · ṽ − 1

2
ρṽ · v =

1

2
tr(σSGS), (4.34)

and so

PSGS =
3

2
KSGS. (4.35)

Furthermore, it makes sense to model the remaining sub-grid-scale deviatoric

stress tensor as an effective viscosity. This viscosity can simply be the eddy vis-

cosity (i.e. a Reynold’s stress), that is, µ ∝ LV , where L is the length-scale and

V =
√

2KSGS is the velocity-scale of the turbulent eddies. Calculating viscosity as

the product of a length-scale and a velocity-scale is the same process we used in ana-

lytically estimating the effective viscosity due to cloud-cloud collisions in section 3.4.3.

L and V can be estimated from coarse-grid properties, or evolved with a parallel set

of equations.

These two terms (effective pressure and eddy viscosity) represent the simplest

sub-grid turbulence models, but more complex models have been developed. For ex-

ample, the model of Schmidt & Federrath (2011) includes additional terms to account

for highly compressible astrophysical turbulence, and includes turbulent source terms

from the turbulent cascade.
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4.3.2 Dimonte-Tipton Sub-grid Turbulence Model

This sub-grid turbulence model was developed by Dimonte & Tipton (2006)

to model turbulence from the self-similar growth of the Rayleigh-Taylor (RT) and

Richtmyer-Meshkov (RM) instabilities. In this method, turbulence is modelled by

two field variables, the turbulent eddy size L, and the turbulent kinetic energy per

unit mass, K. These affect the evolution of the system through the addition of a

turbulent viscosity, turbulent pressure, and an explicit energy source term.

The RT instability occurs when a denser fluid is located “above” a lower

density fluid in a gravitational field, or equivalently, if a denser fluid is accelerated by

a lower density fluid, as happens when hot supernova gas propels a cold dense front

of swept-up gas, or when a molecular cloud is impacted by a shock. Even though

these systems may be in pressure equilibrium, they are not stable, and the less dense

fluid will penetrate the denser fluid with bubbles of increasing amplitude, producing

a mixing region whose size grows as

hb = αbA0gt
2, (4.36)

where hb is the amplitude of the bubbles, g is the acceleration or external gravitational

field, t is time, and A0 is the Atwood number. A0 is defined by A0 = (ρ2−ρ1)/(ρ2+ρ1),

where ρ1 the the density of the lighter fluid, and ρ2 is the density of the denser fluid.

αb ∼ 0.03−0.07 is a parameter determined by experiments and numerical simulations.

The RM instability can be thought of as the instantaneous limit of the RT

instability. In this case, the interface between fluids is accelerated by a sudden impulse

such as a passing shock, instead of a continuous acceleration such as that caused by

a gravitational field. This impulse imparts a speed v to the interface, and amplifies

any interfacial perturbations. On moderate time-scales, this produces a mixing region

which grows as

hb ∝ (vt)θb (4.37)

109



with θb ∼ 0.025± 0.05 for 3D perturbations.

Equations 4.36 and 4.37 can be combined into a more generic differential equa-

tion for bubble growth for Vb = dhb/dt,

dVb
dt

= CBA0g − CD
ρ2

ρ2 + ρ1

V 2
b

hb
, (4.38)

provided the coefficients CB and CD are chosen to correctly fit αb and θb. This for-

mulation demonstrates that both of these instabilities can be modelled by a single

equation, known as the buoyancy-drag model. However, it is more useful and conve-

nient in a numerical model to track physical quantities such as the scale-length and

kinetic energy of turbulent instabilities, instead of directly tracking bubble ampli-

tudes. Tracking these physical parameters is the principle behind the approach used

by Dimonte & Tipton (2006).

The energy equation in this model is

∂ρE

∂t
+
ρEṽj
∂xj

=
∂

∂xj

(
µt
Ne

∂E

∂xj

)
− ∂P ṽj

∂xj
− SK , (4.39)

where µt is the turbulent viscosity, the Prandtl number Ne ∼ 1 is a model parame-

ter, and SK is the turbulent source term. This source term includes the growth of

instabilities from Rayleigh-Taylor and Richtmyer-Meshkov instabilities which act as

a sink of (thermal) internal energy and a source of turbulent kinetic energy, and a

decay rate that is assumed to be proportional to ρV 2/L2, where V =
√

2K is the

turbulent velocity scale. The source from RT and RM instabilities is based on the

buoyancy-drag model (Equation. 4.38), and gives the combined form:

SK = ρV

[
CBAigi − CD

V 2

L

]
, (4.40)

where CB and CD are model parameters, gi is the acceleration in the i direction, Ai

is the Atwood number in the i direction, and giAi is a sum over i. CB = 0.84 and

CD = 1.25 are determined from experiment (Scannapieco & Brüggen 2008), while Ai

is given by
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Ai =
ρ+ − ρ−
ρ+ + ρ−

+ CA
L

ρ+ L|∂ρ/∂xi|
∂ρ

∂xi
, (4.41)

where CA = 2.0 is another model parameter (Scannapieco & Brüggen 2008), and ρ+

and ρ− are the densities on the front and back cell boundaries in the i direction.

The definitions of ρ+ and ρ− form an important approximation in the model, as the

Atwood number is intended to describe the density contrast across a discontinuity,

while density is typically assumed to vary smoothly across a cell. It is also worth

noting that this is a resolution dependent term. For a constant density slope in the

i direction ∂ρ/∂xi across a cell of size 2h, the density at the front of the cell with

central density ρc is ρ+ = ρC +h∂ρ/∂xi while the density at the back of the cell would

be ρ− = ρC − h∂ρ/∂xi. For an initially non-turbulent system (L = 0), this gives an

Atwood number of

Ai =
h∂ρ/∂xi

ρc
. (4.42)

That is, the source term is smaller at higher resolutions. This result also holds to

first order for any smooth ρ, which is a reassuring feature of the model, as it indicates

that as resolution increases, the production of sub-grid turbulence should approach

zero — i.e. the model approaches the limit of direct simulation of turbulence.

The turbulent viscosity is given by

µt = CµρLV, (4.43)

where Cµ = 1.0 is a model parameter (Scannapieco & Brüggen 2008). Note that this

is equivalent to a Reynolds stress with a characteristic length of L and a characteristic

velocity of V .

By energy conservation, both the source term and the turbulent viscosity terms

must also be included in the turbulent kinetic energy equation, which is

∂ρK

∂t
+
∂ρKṽj
∂xj

=
∂

∂xj

(
µt
NK

∂K

∂xj

)
− τSGS,ij

∂ṽi
∂xj

+ SK , (4.44)
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where the terms on the right hand side represent turbulent diffusion, turbulent stress,

and the source and decay of turbulence, and NK = 1 is a model parameter. Only

the pressure component of the turbulent stress τSGS is considered (i.e. it is assumed

to be isotropic and a diagonal tensor), as shear-driven turbulence has not yet been

implemented, hence

τSGS,ij = CP δijρK, (4.45)

where CP is a model parameter. Off-diagonal terms are not included as they can

cause a pathological overamplification of preexisting turbulence by a shock (Sinha

et al. 2003; Dimonte & Tipton 2006). Off-diagonal terms would however be necessary

to describe the Kelvin-Helmholtz instability.

The evolution of the eddy length scale must also be considered in this approach,

as it sets the decay rate of K, as well as the turbulent viscosity µt. The evolution of

L is given by

∂ρL

∂t
+
∂ρLṽj
∂xj

=
∂

∂xj

(
µt
NL

∂L

∂xj

)
+ ρV + CCρL

∂ṽi
∂xi

, (4.46)

where NL and CC are model parameters. The terms on the right-hand-side correspond

to turbulent diffusion, the growth of eddies due to turbulent velocity, and the change

in eddy scale to the compression and expansion of the fluid.

Finally, the momentum equation (neglecting off-diagonal terms in the SGS

tensor) is simply
∂ρṽi
∂t

+
∂ρṽiũj
∂xj

= −∂P
∂xi
− CP

∂ρK

∂xi
, (4.47)

where the isotropic CPρK term acts as an effective pressure.

In summary, momentum and energy are evolved through equations 4.47 and

4.39, which are the basic equations for conservation of momentum and energy, mod-

ified to include the effects of sub-grid turbulence. The energy equation includes a

diffusion term from turbulent viscosity and a source term, while the momentum equa-

tion includes an additional effective pressure term. The source term (equation 4.40),

the turbulent viscosity (equation 4.43), and the effective pressure all depend on the
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turbulent kinetic energy (evolved by equation 4.44) and the turbulent length scale

(evolved by equation 4.46), which are additional fluid variables for this model. The

turbulent source term also depends on a modified Atwood number (equation 4.41),

which in turn depends on the turbulent length-scale.

There are a large number of input parameters in this model. While many

of these parameters (NK , NF , Nε, CC) can be set by physical assumptions such

as self similarity and mass conservation, others (CD and CB in particular) must be

tweaked to fit observations from experiments and direct numerical simulations. These

fits are performed under the assumption of moderate Mach number (M ∼ 1) and

incompressibility, and are likely not be entirely applicable across our entire simulation

— in regions of high Mach number, CP ∼ 0.4 may be more appropriate, a difference

of a factor of two. Nevertheless, we retain the values of Dimonte & Tipton (2006) for

simplicity.

4.3.3 Implementing Sub-grid Turbulence in FLASH

The Dimonte-Tipton model has been implemented in FLASH by Scannapieco

& Brüggen (2008, 2010). The grid variables for turbulent kinetic energy, eddy length

scale, and turbulent viscosity are automatically advected by FLASH, and diffused

with an additional subroutine. FLASH’s internal energy array is implicitly redefined

to be the sum of the sub-grid turbulent kinetic energy and the thermal internal energy,

from which FLASH will naturally produce a pressure that includes contributions from

both thermal energy and sub-grid turbulence. Temperature is derived by T = A(γ −

1)(ei − kturb)/R, where the adiabatic index γ = 5/3, the atomic mass is A = 16/27

g/mol, and R is the gas constant.

Several issues in the implementation had to be fixed. These are discussed in

detail in Chapter 2. In brief, the sub-grid turbulence equations were applied in an

incorrect order (causing grid properties to become unsynchronized, and a directionally

dependent error), an incomplete subset of cells was updated by some subroutines, the

113



equation of state was not numerically stable, and lastly there was a pair of small

typographical errors.

4.4 Raytracing and Simulated Spectra

To compare our results with observations, we developed a code to perform

ray-tracing on FLASH data dumps, and hence obtaining a synthetic spectrum from

the output. This spectrum covers the NaI line, as this is a useful tracer of cold gas.

In particular, Martin (2005) produced spectra for a sample of z ∼ 1 ULIRGs, and we

use these as a basis for our comparison. This comparison can be used to attempt to

answer the three questions posed in Fujita et al. (2009),

1. Why do the absorption line widths tend to greatly exceed the thermal velocity

dispersion of warm neutral gas?

2. Why do the terminal velocities of the cold gas approach the escape velocities

from the starburst galaxies (Martin 2005)

3. What do the maximum and mean velocities measured in the line profiles really

represent physically?

4.4.1 Raytracing Algorithm

Our raytracing algorithm tracks a ray or a grid of rays with arbitrary angles

through data from a FLASH simulation data dump. As the raytracing is performed

on a single dump, the gas can not evolve as the rays pass through it. Using a single

static dump is a reasonable approximation if the light travel time is shorter than

the evolutionary time-scales of the simulation. For our small-scale 200 pc models,

the light travel time is ∼ 650 yr, much shorter than our evolutionary time-scales
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(for a 1000 km/s outflow velocity, this gives an error of ∼ 0.7 pc). For our large-

scale 200 kpc models, the light travel time is ∼ 650 kyr, which is still not large -

given our typical outflow velocites of ∼ 300 km/s, this gives an error of ∼ 200 pc,

which is often close to our resolution limit. We also assume that the rays follow a

straight path through the simulated region — we are not performing a fully calculation

including scattering processes, but are only integrating the optical depth along a line

of sight. Most radiative processes — including scattering — are either outside the

narrow range of wavelengths we simulate observations of, or if part of the continuum,

are implicitly normalised out. This is acceptable because — given our low optical

depths — scattering will not greatly alter the intensity of the ray, and because we are

comparing with observations which have also performed this normalisation.

Various quantities can be integrated along a ray. Performing this integration

a large number of times can produce a column density or optical depth plot from

arbitrary angles. The integrators are separate C++ objects that are passed into and

called by the raytracing class, and this modular design leaves the code easily open to

expansion to new quantities to integrate or trace along a ray.

This algorithm is optimized towards the FLASH data structure. FLASH stores

cell data in regular rectangular blocks. This approach is convenient in an MPI AMR

code, as hydrodynamics, gravity and source-terms can be calculated on a block-by-

block basis, without requiring explicit information on the refinement level or global

position. In our simulation, we use blocks of 8x8x8 cells, with a 4-cell width of guard

cells on each face. These blocks are organized into an oct-tree structure, where each

node on the tree represents a block, and each node can have eight smaller “child”

nodes. The eight child blocks are half the size of their parent blocks, and fit as a 2x2x2

grid within their parent. A block that contains child blocks has been “refined”, and

its children are “at a higher level of refinement”. Nodes that do not have child nodes

are called “leaf nodes”, and represent the blocks where the highest resolution physics

is performed. Nodes with children are “branch nodes”, and exist primarily to track

the connections between blocks of different refinement levels. FLASH tracks the

115



geometry of blocks using the grid geometry array (named gid in FLASH), which gives

the coordinates for the neighbouring, parent, and child blocks of every block.

The first step in the algorithm is generating a grid of rays. The direction of

the rays v is set by the user. To set up the grid, the positions of the FLASH cells are

rotated from a set of points r into a coordinate system r′ defined so that v is rotated

into v′ = (1, 0, 0). This is done by by transforming the coordinates of every corner

(x, y, z) of every FLASH block by the appropriate rotation matrices.

This approach is used to calculate the grid of starting points for the rays,

which is a rectangular grid in y′ and z′ coordinates, parallel to the x′ = 0 plane. The

x′ coordinate of the grid is the lowest x′ over all corners of blocks in the FLASH data.

The maximum and minimum y′ and z′ coordinates of the grid are the maximum and

minimum y′ and z′ coordinates over all corners of blocks in the FLASH data (see

Figure 4.5). The initial positions of rays are evenly spaced in the y′ and z′ directions.

This process produces a grid of rays that encompasses the entire data set even if

some rays may miss the data set entirely. Typically we generate grids of 128x128 to

512x512 rays.

This grid is then transformed back into (x, y, z) coordinates by inverting the

earlier rotation. Next, the first cell that each ray intersects must be calculated. This

first step is done by simply looping across every cell. To detect the intersection

between the face of a cell and a ray, the intersection between the ray and the plane

defined by the cell is determined. This process is trivial in a rectangular cartesian

grid as each face can be used to define a plane of constant x, y, or z. We only

perform this calculation across the three closest faces of all cells, e.g. for a ray with

direction (x, y, z) = (1,−1,−2), only the faces on the negative x side, positive y side,

and positive z side of each cell are considered (See Figure 4.5). Next, if the either

of the other two coordinates of the intersection point is outside the boundaries of

the cell, then the intersection is discarded. Finally, the distance between the ray’s

initial coordinate and each intersection point is calculated, and intersection point at
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Figure 4.5: Top: Our system is rotated such that rays are moving in the x direction. This
geometry allows us to easily find the projected size of the simulated grid, and hence generate
a grid of rays to cover this entire domain. Bottom: When calculating the intersection of a ray
with a cell, only the “near” edges are considered.
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the smallest distance will give the cell that the ray first intersects. Only leaf-node

cells are considered in this step.

For the subsequent evolution of the ray, the intersection points of adjacent

cells are calculated similarly, but only the three faces of the cell containing the ray

are considered. This calculation gives coordinates for the entry and exit of the ray

from the cell, from which a distance can be calculated, and this is passed along with

the cell’s data and the ray’s direction into the integration routine.

When the ray reaches the face of a block, the grid geometry array is consulted

to determine what block the ray will pass into. Each block can have 8 child blocks, 1

parent block, and 6 neighbouring blocks. These neighbouring blocks connect to the

faces of the block. If the appropriate neighbouring block is at the same refinement

level, then ray is passed into the new block. If this block is not a leaf node, the ray

is passed into the appropriate child until it is in a leaf node. If the neighbouring

block is at a higher refinement, then the ray passes to its “parent” block, until the

neighbouring block matches its refinement level, and a sole correct neighbouring block

can be found. In the rare event that a ray hits the face of the block at an edge or

corner (within numerical accuracy), it is stepped through blocks that share a face with

its current block, until it reaches the appropriate block. This approach is illustrated

in Fig. 4.6 and Fig. 4.7.

This approach naturally and efficiently follows a ray through a complex struc-

ture of refinements without the extra memory or drop in resolution necessary to

convert FLASH AMR data to a uniform grid. Furthermore, as the evolution and

output of each ray is independent of all other rays, this is a good example of an “em-

barrassingly parallel” problem, and parallelizing this code with OpenMP produces

nearly linear speed-up with processor number in the range available to us (up to 32

processors) — e.g. for building a line profile from an array of 512× 512 rays through

a low resolution test grid, the program completed in 24.7s when using 16 cores, and

12.5s when using 32 cores.
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Small, high resolution refinements 

Large, low resolution refinements 

If neighbouring block is not a leaf 
block, choose the appropriate 
child block 

If neighbouring block is at a 
higher refinement level, find the 
neighbour of the parent block 

If appropriate neighbour is at 
same refinement level, select the 
neighbouring block 

Figure 4.6: The procedure for propagating a ray across FLASH’s mesh of blocks. Arrow
indicate a transition of the ray from one block to another.

4.4.2 NaI Line spectrum

4.4.2.1 General process

To model the NaI line, we assume a constant HI/NaI ratio, taken from Martin

(2005). Following Fujita et al. (2009), we assume that any cell with a temperature

below 5 × 104 K will contain some cold NaI absorbing gas. As justified below, we

also make a density cut at 10−21g/cm3, with the assumption that any gas above

this density will contain some regions that have cooled sufficiently to absorb the NaI

doublet. We assume that any gas which fulfils either of these criteria will contain

NaI absorbing gas. The line is calculated by integrating the optical depth through a

ray across a range of wavelengths. The optical depth is summed for each cell the ray

passes through, emissivity is ignored, and the continuum intensity is normalized to

1, so the final intensity of each frequency is given by

I(ν) = exp(−τν) = exp
(
−
∑

τν,i

)
, (4.48)
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Figure 4.7: 2D projection of a ray tracing through a low-resolution AMR grid. Intersected
cells have thicker borders.
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where τν,i is the optical depth at frequency ν through cell i. The optical depth is

calculated according to Spitzer (1978)

τν,i = NiαλΦ(ν), (4.49)

where the frequency-integrated cross-section for the interaction (α) is given by α =

0.015924 cm2 s, Ni is the NaI column density, and the doppler profile Φ(ν) is given

by

Φ(ν) =
1√
πb

exp(−v2/b2). (4.50)

The optical depth is binned in 1000 bins, representing line of sight velocities of −500

through 500 km/s. Each optical depth bin is summed through a ray’s path, and

converted to intensity in the final step.

4.4.2.2 Sub-grid turbulence

In the simulations with sub-grid turbulence, the density and temperature

recorded on the grid represent average values, and hot turbulent cells can still con-

tain a component of cold gas. Isothermal compressible turbulence gives a lognormal

density probability density function (PDF) (Vazquez-Semadeni 1994),

dP (s)/ds =
1√

2πσs
exp

[
−(s− s0)2

2σ2
s

]
, (4.51)

where s = ln(ρ), s0 = ln(ρ0) for a cell of average density ρ0, and σs is the standard

deviation of the distribution. It is not accurate to assume that gas in our models is

isothermal at a sub-grid level due to the strong density dependence of the cooling

rate, but it has been reported (Mac Low et al. 2005; Pavlovski et al. 2006) that the

PDF remains close to lognormal even in a system with explicit heating and cooling,

although there may be a power-law tail at low densities (which is not critical to this

work, as we are primarily concerned with the densest structures).
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Federrath et al. (2008) suggest that σs can be paramerised in terms of the

Mach number M of the flow, and another factor b,

σs =
√

ln(1 + b2M2). (4.52)

This b depends on the nature of the turbulence. It has been found that b ∼ 1/3 with

purely solenoidal turbulence in both grid (Kritsuk et al. 2007; Beetz et al. 2008) and

particle (Li et al. 2008) simulations. Federrath et al. (2008) find b ∼ 1 for purely

compressive turbulence, while confirming b ∼ 1/3 for purely solenoidal turbulence

— i.e. compressive turbulence produces a broader density PDF. Turbulence caused

by the R-T instability should be primarily solenoidal with a compressive component

largely resulting from further evolution, so we set b = 1/3. We also examine b = 1 to

test the effects of a broader PDF, noting that the turbulence from supernovae should

be primarily compressive, and that this is a better fit for turbulence directly induced

by feedback.

The Mach number, M, is defined as the ratio of the turbulent velocity to the

sound speed, i.e. M = vturb/cs. The sound speed can be calculated from the pressure

and density,

cs =

√
γ
p

ρ
, (4.53)

where for an ideal monoatomic gas the adiabatic constant is γ = 5/3, and p =

(γ − 1)ρethermal, and so cs =
√

(10/9)ethermal. The turbulent velocity vturb can be

represented by vturb =
√

2Kturb, and so the Mach number can be written as

M2 =
9

5

Kturb

ethermal

, (4.54)

or, because Kturb = fturbei and ethermal = (1− fturb)ei,

M2 =
9

5

fturb

1− fturb

. (4.55)
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Figure 4.8: Temperature/density phase plot for SHighResNoTurb

This is convenient as the Mach number is now parametrised by a single variable fturb,

which is directly calculated in our FLASH subroutines.

Although this PDF is for an isothermal distribution, we can assume that gas

above a certain threshold density will rapidly cool to NaI absorbing temperatures.

Fig.4.8 shows that much of the gas denser than 10−21g/cm3 has cooled dramatically.

We therefore make the simple assumption that any gas above 10−21g/cm3 is cool

enough to absorb the NaI doublet. Thus the fraction of absorbing gas in a cell with

sub-grid turbulence is

123



fNaI =

∫ ∞
10−21g/cm3

1√
2πσs

exp

[
−(s− s0)2

2σ2
s

]
(4.56)

=
1

2
erfc

[
log

(
1021g/cm3

√
2σs

)]
, (4.57)

where

σs =

√
ln

(
1 +

9

5
b2

fturb

1− fturb

)
. (4.58)

4.4.2.3 Spatial and Spectral Resolution

The above procedure produces a line profile for an infinitely narrow beam

passing through the system. This geometry represents the limit where an instrument

can spatially resolve scales considerably smaller than the typical scale-lengths of any

structures in the observed object.

As noted in Martin (2005), individual clouds are not spatially or spectrally

resolved when using the Echelle Spectrograph and Imager on Keck II. To represent

this finite spatial resolution, we create a grid of rays intersecting the grid at different

points. We evaluate a single spectrum by averaging the spectral lines over all rays

produced by this grid. Hence the final spectrum is not the spectrum of an infinitesimal

beam, but is taken from a sample that covers a finite region of the galaxy, which

better represents the finite spatial resolution of a real instrument. Specifically, the

total spatial size of this grid is the effective spatial resolution. We found the qualities

of the spectrum can vary strongly on this spatial resolution. Because the filling factor

of dense clouds is small, at very high spatial resolution the grid of rays will generally

either all pass through a cloud, or all entirely miss all clouds. This dramatic dichotomy

will produce either a narrow saturated absorption line, or the complete absence of any

absorption lines. At lower spatial resolutions the line strengths can be weak, because

most of the rays will miss the cloud region entirely. However, at low resolution a large

number of clouds are included within the simulated aperture, causing non-thermal
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broadening in the sodium-line, as observed by Martin (2005). Martin’s observations

were Keck absorption-line studies, with the ULIRG galactic discs as the background

light-source for the absorption.

The resolution in Martin (2005) is given as∼ 1′′, which corresponds to a spatial

resolution of ∼ 2 kpc at a distance of z ∼ 0.1. For our galaxy-centre models, this is

larger than our entire simulated domain, and so the best approximation is to reduce

our spatial resolution to be equal to the size of the entire simulated domain, i.e. 200

pc. In the full galaxy models, our smallest cells are 250 pc in size, and a ∼ 2 kpc

spatial resolution is equal to only ∼ 8 cell-widths. While ∼ 8 cells may be sufficiently

large to resolve the entirety of a small clump, it is not sufficient to resolve a large

number of clumps and produce the observed non-thermal broadening. However, if we

assume that the filling factor and velocity dispersion of dense NaI-absorbing clouds

do not depend strongly on scale, then we should expect the absorption spectrum of a

real galaxy to not strongly depend on spatial resolution, and we can justifiably reduce

the spatial resolution in our simulated spectra from ∼ 2 kpc to a much larger value,

and hence observe a significant number of clumps in our spectra. The assumption

of scale-independence is not unreasonable, as these clouds are produced by turbulent

motions, and the statistics of turbulence do not depend strongly on scale.

We have plotted the effects of varying the spatial resolution on the line profile

of BHighResNoTurb in Fig. 4.9 for a ray of altitude 45◦ and azimuth 45◦. For the

range 80 − 120 kpc, all of the NaI absorbing gas is within the beam. At these low

spatial resolutions, changing the resolution does not change the line profile shape,

but only changes the strength of the line, as more rays “miss” the NaI absorbing

regions entirely. The line-depth here is proportional to 1/l2 where l is the spatial

resolution. As l drops further (e.g. 40 kpc and below), the line not only strengthens,

but noticeably changes its shape. However, this is strongly dependent on the ray’s

path — as noted above, for narrow beams the ray generally either hits one clump, or

misses every clump. This sensitivity is not the case for broader spatial resolutions, and

so we choose 100 kpc as our spatial resolution. The strength of the line is still strongly
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resolution dependent in this regime, and so we should not consider the line-strength

to be comparable to observations. However, the velocity-width and velocity at line

centre should not be affected by these issues (given the assumption of only weak

scale-dependence), and these are the properties that we emphasize for comparison

with observation.

We also removed the circular component of velocity before calculating the line

profiles, as at low spatial resolution this can be a source of velocity dispersion. At later

times, much of the rotation is no longer coherent (e.g. Fig. 4.10), but some residual

rotational velocity remains. We bin the mass and horizontal angular momentum of

each cell into annuli 2 kpc thick and 2 kpc tall to produce a set of rotation curves (an

averaged rotation curve is shown in Fig. 4.11). The rotational velocity of each cell

is then calculated with a simple 2-parameter linear interpolation from this table and

subtracted from the cell.

We also found the shape of the spectrum depended weakly on the number of

rays produced by the grid. For a small number of rays (e.g. 32 × 32), the produced

spectrum was jagged and did not show the smooth shape produced when a larger

number of rays (e.g. 512 × 512) were used (Fig. 4.12, left). We found that the line

was fairly well converged for an L × L grid for L > 64 (Fig. 4.12, right). We hence

used a 128×128 grid of rays as it was slightly more accurate and still computationally

efficient.

Our method for incorporating finite spatial resolution incorporates a number

of assumptions, which we list here. Given the low resolution of our simulations,

we do not believe it is necessary to model these effects in detail. Firstly, we have

assumed uniform background illumination by weighting our grid of rays evenly when

performing an average. It would be more accurate to give greater weight to rays

that originate in more luminous regions. A more detailed weighting would put more

weight in the bright central regions, which could have an effect on the output spectra

if the absorbing clouds have a radial dependence.
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Figure 4.9: Examining the effect of spatial resolution on line profiles. Top left: Lines with
spatial resolutions of 80 − 120 kpc. Top right: Lines with spatial resolutions of 80 − 120 kpc,
normalized according to 1/l2, where l is the spatial resolution. This plot demonstrates there is
no significant deviation between the line shapes. Centre left: Lines with spatial resolutions of
2 − 100 kpc. Centre right: 2 kpc spatial resolution line at three different altitudes. Bottom:
100 kpc spatial resolution line at three different altitudes.
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Figure 4.10: Slices of circular velocity divided by total velocity for each cell. Top: Slice
through plane of disc (y = 0). Bottom: Horizontal slice (z = 0). While “positive” rotation is
slightly more prominent, the overall structure is turbulent. Erroneous values at the edge of the
domain are caused by rounding errors where velocities are small (i.e. a small circular velocity
is divided by a small total velocity).
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Figure 4.11: Rotation curve for run BHighResNoTurb at t = 100 Myr.

Figure 4.12: Varying the number of rays fired through the grid, from 16 × 16 to 512 × 512.
Left: line shape. Right: Root-mean-squared deviation from I = 1 across each line, normalised
so that this is equal to 1 for a 512× 512 grid.
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Secondly, we have not accounted for dust, which has a significant effect in

ULIRGs. Dust attenuates radiation, often in a spatially complex manner. This may

also affect the observed spectra, but it is difficult to predict what these effects would

be.

Finally, we have ignored any spatial broadening from the Earth’s atmosphere

or from the instrument. Here, the smearing w ould also be radially dependent. These

effects are too fine to be incorporated into our relatively simple model, but should be

considered in more detail as resolution and physical complexity increases.

To represent finite spectral resolution, we can convolve the output line profile

with a Gaussian curve. However, this is computationally expensive, as the convolution

Ismooth(v) =

∫ vmax

vmin

I(v′)
1

σ
√
π

exp

(
(v − v′)2

σ2

)
dv′, (4.59)

(where the standard deviation σ is a instrument-dependent parameter that represents

the size of the broadening) is discretised as

∀i ∈ [0, N) : I(vi) =
N∑
j

I(vj)
1

σ
√
π

exp

(
(vi − vj)2

σ2

)
(4.60)

which is an O(N2) operation. With 128 × 128 rays and N = 1000 intensity bins,

this requires 1.6× 1010 calculations. To reduce this computational load, we make use

of the convolution theorem. If we represent the Gaussian curve with G(v), then the

smoothed line profile is I(v) ∗ G(v), where ∗ represents a convolution. If we let F

represent the Fourier transform (and F−1 its inverse), then the convolution theorem

states that

I(v) ∗G(v) = F−1{F{I(v)} · F{G(v)}}. (4.61)

This is less computationally expensive, as we can use a “fast-Fourier transform”

(FFT) (Cooley & Tukey 1965; Brigham 1988). We make use of the Fastest Fourier

Transform in the West (FFTW) library(Frigo & Johnson 2012). FFTW adapts its

algorithm according to the size, dimensionality, and field (whether complex or strictly
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real) of the Fourier transform, and so performs very well across many applications.

Making use of this algorithm allows us to perform this convolution without excessive

computational load.

4.4.3 Clump finding and tracking

To determine the properties of the cold clumps of NaI-absorbing gas produced

in these simulations, we developed an algorithm to identify, track, and plot them.

The basic assumption of this algorithm is that all cells of sufficiently low temperature

or high density are “clumpy” cells, and that any cell that is orthogonally adjacent to

another cell (i.e. a cell that share face with another cell) is labelled as part of the

same clump — i.e. any contiguous region of Na-absorbing gas is considered a single

clump, regardless of the shape or density profile of the region, even if it contains

many over-dense “cores”. This assumption is equivalent to a “flood fill” algorithm,

and is less complex than the Friends of Friends algorithm used in Chapter 3, as

is it straightforward to find which cells neighbour a region, and it is not necessary

to calculate the distances between a large number of particles. The clump finding

algorithm performs the following steps:

1. All cells that were above our density threshold or below our temperature thresh-

old for Na absorption (10−21g/cm3 and 5 × 104 K respectively) are identified.

A list of these “cold” cells is recorded for each 8 × 8 × 8 block of cells. (As

mentioned above, FLASH divides the system into blocks of 8× 8× 8 cells, and

lists “links” to neighbouring blocks for filling the boundary conditions on each

block).

2. The algorithm sweeps through each block in this list of cold cells. Each cell

has from three to six orthogonal neighbours within the block, depending on

whether the cell is in the centre of the block or on a face, edge, or corner of

the block. These orthogonal neighbours are queried, to determine if any are

“cold” blocks, and whether they already belong to a clump. We refer to the cell
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whose neighbours we are finding as “current” cell. If the current cell and the

neighbouring cell are both “cold” blocks, then the following logic is followed to

determine how to join these blocks into a single clump

• If both the current cell and the other cell do not already belong to a

clump, then create a new clump containing these two cells. A linked list is

created, where the current cell points to the other cell, and the “head” and

the “tail” of this linked list are recorded — in this case, the “head” is the

current cell, and the “tail” is the other cell. The clump number for each

of the two cells is also recorded in an array, so that it is straightforward

for neighbouring cells to determine what clump each cell belongs to.

• If exactly one of the two cells belongs to the clump, then the other cell joins

that clump. The clump array entry for the other cell is updated to the

correct clump number. The linked list is updated — the previous “tail”

cell is modified to point to the new cell, and the “tail” of the linked list is

now the new cell.

• If both cells belong to a clump, then these clumps must be merged. This

process is efficient due to the linked list structure — by propagating through

the linked list, we can find all cells throughout the domain that belong to

a clump, and update them to the new clump. The tail of one linked list is

updated to point towards the head of the other linked list. This is a fast

and memory-efficient method for combining clumps. One of the clumps

must also be deleted. All clumps have sequential identification numbers,

and to avoid any “holes” in this array, the identification number for the

last clump in this array is swapped with the clump that must be deleted

(propagating through the linked list to update all cells), and the number

of clumps is decremented by one.

Once all cells within each block are properly linked into clumps, comparisons

of cells between blocks are performed to link clumps that touch across a block face.

132



This linking the procedure outlined above for cell, although only the cells on the face

of each block are considered, and because blocks can have different refinement levels,

adjacent cells can differ in size by a factor of two, and so the larger cell will have four

neighbours per face.

To track clumps between data dumps, we are not able to reuse the method

detailed in Chapter. 3, as this is an Eulerian calculation, and unlike a Lagrangian

particle code, we can not easily track the history of a parcel of mass. Instead we use

a method similar to that used by Tasker & Tan (2009). For each clump, the centre-

of-mass position and velocity were calculated. These values were used to predict the

position of the clump in the following dump, i.e. if the positions and velocities in

successive files vi, ri and vi+1, ri+1 are separated by a time ∆t, the estimated position

is

rest = ri + vi∆t. (4.62)

The clump closest to this position (i.e. the clump which corresponds to the minimum

of ||ri − ri+1||) is identified as the “same clump”. In our full galaxy simulations,

dumps are performed every 5 Myr, while in our central scale simulations, dumps are

performed every 10 kyr, and these values are used for our time-step here. These

values were selected so that 10–20 dumps were produced for each simulation.

By repeating this cloud identification procedure over several dumps we can

track the history of each clump, determining whether it is being significantly slowed by

drag and ram pressure, and whether it is losing mass due to the impact of hot winds, or

gaining mass as fluid cools and accretes. To test this process, we produced animations

tracking a sample of clouds, and did not observe any unexpected discontinuities.

4.5 Analysis

4.5.1 Line fitting

Having produced line profiles over a large range of angles for a series of param-

eters, we can fit a Gaussian to the result and estimate the line-width for comparison
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Figure 4.13: Edge-on line profile for the simulation BHighResNoTurb, demonstrating a
double-peak. The red line is the line profile, while the green line is a Gaussian fit, both described
the y-axis labels on the left of the plot. The blue line is the residual, described by the y-axis
labels on the right of the plot. The x-axis is velocity in km/s.

with Martin (2005). This was performed with a standard χ2 fit. To ensure the line-

centres were well-fit, we reduced the weight of wavelengths with zero NaI opacity (i.e.

I = 1), by weighting each point in the line according to W = (1.0001−I)2, where the

value of 1.0001 is used instead of 1.0 prevent divide-by-zero errors. This weighting

improved our algorithm’s ability to correctly fit the width and strength of each line.

In edge-on orientations, a strong double-peak is visible (Fig. 4.13). These

two peaks have a similar velocity relative to the rest frame of the galaxy (i.e. the

peaks at are ±v0 for some v0) and are clearly distinct in the line profile. However,

the clumpy nature of the outflow can produce several peaks in the line that do not

correspond to distinct outflow components — they are merely part of the velocity

dispersion within the outflow, and should be modelled by a single broad Gaussian.

To automatically capture both cases, we perform two fits on each line — one with a

single Gaussian curve, and one with two Gaussian curves, both of whose parameters

are allowed to vary freely. To determine which fit is most appropriate, we examine
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the fit parameters. If the two Gaussians have a similar velocity at line centre — where

“similar” is defined by ||v1| − |v2||/(|v1| + |v2|) < 0.5 — then the double-peak fit is

used. Otherwise, the single-line fit is used. In the double-peak case, the parameters

of each peak (FWHM, line-centre velocity, line-strength) are averaged to produce one

set of parameters for each spectrum.

4.5.2 Predicting cloud trajectories

In some cases we predict the trajectory of clouds using the ballistic approxi-

mation. The gravity field is produced from the subroutine used by FLASH to produce

its table of gravitational accelerations during a simulation’s initialization. The initial

position and velocity of each cloud is calculated from the FLASH output by the algo-

rithm detailed above. The cloud’s position and velocity are integrated using a form

of the leapfrog algorithm:

xi+1 = xi + vi∆t+
1

2
ai∆t

2 (4.63)

vi+1 = vi +
1

2
(ai + ai+1)∆t. (4.64)

with a fixed time-step. It is also possible to produce an analytic expression for the

speed of the clump over time as in Fujita et al. (2009), by relating the potential at

the end of the simulation φi, the potential at some more distant equipotential surface

φf , and the speed of the clump at these points (vi and vf ) through

vf =
√
v2
i + 2(φi + φf ), (4.65)

but we perform the numerical integration in order to also calculate the vector com-

ponents of the velocity.
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Figure 4.14: Edge-on slices of BHighResNoTurb at t = 10, 20, 30, 40 Myr.

136



Figure 4.15: Vertical velocity slices of BHighResNoTurb at t = 100 Myr at x = 0 kpc (above,
left), and x = 20 kpc (above, right). A temperature slice at x = 20 kpc is also given (bottom)
to show the positions of clumps.
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4.6 Results

4.6.1 Full Galaxy Models

4.6.1.1 General Evolution

In all model, the bubbles very quickly combine to form a single coherent out-

flow (See Fig. 4.14 for example). Although feedback is spread throughout the disc,

and all of the disc gas has a large vertical velocity, the flow is strongest near the

centre (Fig. 4.15). As almost all of the disc gas is incorporated into the outflow, the

outflow front is very dense. This cool, dense front is followed by a hot low-density

medium which has been directly heated by feedback. In some of the simulations, cool

clumps are carried with the wind, while in others the interior of the wind remains hot.

Column density plots of BHighResNoTurb in Fig. 4.16 illustrate these clumps. The

origin of these clumps does not appear to be the Rayleigh-Taylor instability acting

on the cold front of the super-bubble, as we detail in the following subsection.

4.6.1.2 Formation and evolution of clumps

The evolution of the number of clumps in these models is plotted in Fig. 4.17.

Both models with sub-grid turbulence and BMedResNoTurb show an initial peak in

clump formation, which is extinguished within 40 Myr. BMedResNoTurb then forms

additional clumps at 60 Myr, and while BHighResNoTurb also shows an initial peak,

it manages to maintain a large number of clumps through the simulation. The reason

for this is apparent if we track the positions of this cold gas, as shown in Fig. 4.18.

The disc initially cools, producing a large quantity of Na-absorbing gas. Feedback

bubbles divide this gas into discrete regions, causing a large number of separate clumps

of cool gas to be detected. In all models except BHighResNoTurb, the feedback fills

the entire disc with hot gas, destroying all of the cold gas regions. However, in

BHighResNoTurb, the cold clumps are not destroyed, and instead are pushed out of

the disc by the hot winds, forming the cold high-velocity-dispersion component of the

wind while continuing to accrete cooling gas from the surrounding hot wind. These
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Figure 4.16: Density ray-trace plots of BHighResNoTurb at t = 100 Myr with altitudes in
22.5◦ intervals. Top left: φ = 0◦, i.e. an edge-on view. Top right: φ = 22.5◦. Centre left:
φ = 45◦. Centre right: φ = 67.5◦. Bottom: φ = 90◦, i.e. a face-on view.
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Figure 4.17: Number of clumps in full galaxy models.

cool regions can only form above and below the plane of the disc, as the feedback is too

intense in the plane to allow any cold gas to exist. In BMedResNoTurb there is also a

cold high-velocity dispersion component in the wind, but this is caused solely by gas

cooling within the wind. This cooling is allowed because the starburst has completed,

and because the hot gas is now free to adiabatically expand into the regions above

the disc.

Hence, contrary to the findings of Fujita et al. (2009) where cold gas is pro-

duced in Rayleigh-Taylor induced break-up of a cold bubble wall, the cold gas in

BHighResNoTurb is produced by the cool regions between hot bubbles being pushed

out of the disc by the pressure of the hot outflow beneath them, while the cold gas

in both BMedResNoTurb and further cold gas in BHighResNoTurb is produced by

cooling in the outflow itself.
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Figure 4.18: Evolution of cold gas in BHighResTurb (top), BMedResNoTurb (centre), and BHighResNoTurb (bottom), in snapshots at
t = 0, 25, 50, 75, 100 Myr (left to right). These plots show the temperature of the coldest gas of all cells along the line of sight (the z direction),
and hence the proximity of clouds is exaggerated. The colour scheme has also been chosen to distinguish the T < 5 × 104 K gas which will
produce NaI absorption.

141



The inclusion of sub-grid turbulence suppresses the formation and survival of

clumps. Similarly to the models without sub-grid turbulence, the early peak in clump

number is due to the cooling disc being fragmented by hot bubbles, until these hot

bubbles fill the entire disc. The turbulent kinetic energy is a reservoir of non-thermal

energy that is not subject to radiative cooling, and this turbulent energy continues to

cascade into thermal energy as the outflow continues, supporting a high temperature

in the outflow. As a result, there are no cells that explicitly contain cold gas by the

end of the simulations.

The formation of cold clumps of gas in these simulations is resolution de-

pendent, and so even in our highest resolution model without subgrid turbulence

(BHighResNoTurb) only a small number (∼ 150) of these clumps form by the end of

our simulation time, as visible in a ray-traced column-density plot (Fig. 4.16). A 2D

slice through the disc of this model (Fig. 4.19, top left) does not show this structure

— only one clump is visible near the centre. This lack of clumps suggests that the

additional avenues for gas flow permitted in 3D simulations inhibit the formation of

these clumps. The number and mass of these clumps depends on resolution, with

fewer clumps forming at lower resolution. As the mass spectrum plots in Fig. 4.20

demonstrate, the clumps at higher resolution are also more massive, possibly because

we can resolve higher densities, and hence cooling instabilities are more dramatic, but

also because these clumps have formed at an earlier time from a denser medium (i.e.

the disc rather than the outflow).

We can calculate the escape velocities of these clouds using vescape =
√

2φ,

where φ is the gravitational potential given by Flash’s subroutines — i.e. dv/dt = ∇φ.

Most of the clouds have exceeded the escape velocities at their positions (Fig. 4.21).

Making use of the ballistic approximation detailed above, there is very little change

in each cloud’s velocity over a period of 100 Myr, as also shown in Fig. 4.21. Taking

this at face value (i.e. ignoring hydrodynamics), this implies that most of the cold gas

will not eventually rain back onto the disc as a “galactic fountain”, but will instead

continue outwards and enrich the intergalactic medium.
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Figure 4.19: Face-on (left) and edge-on (right) slices of density (top) and temperature (bot-
tom) for BHighResNoTurb at t = 100 Myr.

Figure 4.20: Cumulative mass spectra for BHighResNoTurb and BMedResNoTurb.
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Figure 4.21: Top: Face-on (left) and edge-on (right) plots of the predicted trajectories for all
clumps in BHighResNoTurb. Bottom-left: Escape velocities and net velocities for all clumps.
The line indicates where vescape = vclump. Bottom-right: Velocity space trajectories for all
clumps. The clumps do not decelerate significantly over 100 Myr.
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The next question is whether we might expect hydrodynamic effects to dissolve

the clouds instead. We can estimate this effect by examining the history of the clumps,

to see if they have begun to lose mass. The mass history of a sample of clumps is

plotted in Fig. 4.22 (left panel), and it is clear that at the end of the simulation the

clumps are still gaining mass, as additional gas is cooling and being accreted. The

continual increase in clump mass fits the overall trend of cold gas plotted in Fig. 4.23

(where we have defined “cold” gas cells to be cells that would be considering Na-

absorbing according to our treatment in section 4.4.2). The large density of gas ejected

from the galaxy permits efficient cooling, catalysing clump-forming instabilities.

However, even though the clumps are gaining mass, they are still in the process

of dissolving into the intergalactic medium. The top-left and top-right panels of

Fig. 4.22 show that after ∼ 25 Myr, the clumps are gaining volume more rapidly

than they are gaining mass — in fact, the mean density of each clump is dropping

exponentially (as shown in the bottom panel of Fig. 4.22). If this continues, we would

expect the clumps to reach the background density of 10−29g/cm3 in only ∼ 250 Myr,

and will likely be disrupted by hot flows well before then. Hence we should not expect

these clouds to remain coherent as they rise to large distances from the disc. Martin

(2006) observed that NaI absorption extends out to distances of around 4–18 kpc.

Although the hot outflows in BHighResNoTurb extend much further than this, out

to almost 100 kpc, the cold clumps are closer to the disc, agreeing with this result.

However, x-ray emission maps from Chandra surveys (Ptak et al. 2003) only

reveal hot gas at scales of ∼ 10 kpc, much closer to the disc — either the hot gas

at large altitudes must be currently undetectable in x-ray wavelengths (perhaps it

is not dense enough), or our outflows are too energetic. We propose two possible

explanations for this discrepancy.

Firstly, our limited resolution does not permit us to model the detailed struc-

ture of the interaction between hot bubbles and cool gas in the disc, and hence instead

of hot under-dense gas escaping through narrow avenues, almost the entire gaseous

mass of the disc is propelled outwards, providing a large reservoir of momentum to
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Figure 4.22: The histories of a sample of clumps in BHighResNoTurb. Top left: Mass history.
Top right: Volume history. Bottom: Mean density (i.e. mass/volume) history. The thick line
is 2× 10−24 exp(−t/22Myr) g/cm3.
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Figure 4.23: The evolution of the mass fraction and volume fraction of cold gas in BHigh-
ResNoTurb.

plough through the halo. This unrealistically powerful flow might be exacerbated by

our stochastic feedback mechanism, which is not entirely consistent with realistic star

formation, especially as resolution limits force a lower limit on the size of hot bubbles

— e.g. a hot bubble is likely to be placed directly on top of an existing hot bubble,

even though star formation is unlikely in such a hot low-density environment.

Our second explanation is that our halo model lacks density contrasts, and

that a more detailed model of the gaseous halo will provide additional impediments

to hot outflowing gas.

4.6.1.3 Simulated spectra: Models without sub-grid turbulence

Using our raytracing code, we have produced a suite of NaI lines at various

viewing angles and with various parameters. In figures 4.24 and 4.25 we have plotted

lines for BHighResNoTurb at viewing angles with altitude intervals of 10◦. These plots

are for a single NaI line, and do not include instrumental broadening. Absorption
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lines from the disc are not visible as the disc does not retain any cold gas in this

simulation.

It is clear from these plots that there is substantial broadening in the outflow.

If we remove the thermal contribution to the broadening, replacing each Gaussian

line profile with a top-hat function with width equal to our spectral resolution (our

best approximation to the Dirac delta function), then this broadening is still present

(Fig. 4.26), showing that this broadening is non-thermal. This plot in itself confirms

that instabilites in outflows can produce cold gas with large non-thermal broadening.

Fig. 4.27 shows the line-centre outflow velocity as a function of viewing angle.

The trend is closely modelled by an absolute sine function, which demonstrates that

the outflow appears to be a single coherent flow. This is not surprising as our spatial

resolution is essentially the entire disc, and so any small-scale deviations will be

smoothed out. There is also no significant variation with azimuthal angle. This result

is consistent with the line-widths below, and so we can conclude that on a broad scale,

this model is azimuthally symmetric. Note that this does not necessarily justify the

accuracy of two-dimensional simulations: on smaller scales (i.e. not summing over

the entire galaxy), non-axisymmetric instabilities and flows are still dominant, as is

clear in Fig. 4.10.

These outflow velocities are significantly smaller than the average observed by

Martin (2005) of 330 ± 100 km/s. Our maximum (i.e. face-on) outflow velocity is

240 km/s, which (just barely) agrees with Martin’s result, but at any other angle our

outflow velocities are slower. The cause may be simply that our star formation rate

is smaller than a typical ULIRG, or that we have neglected the significant energy

impact from an AGN. However, there is also a significant scatter in the relationship

between star formation rate and outflow velocity (Martin 2005), and indeed there are

observed ULIRGs with star formation rates of ∼ 300 M�/yr with outflow velocities of

∼ 100 km/s. Of course, it may also be the case that “real” cold outflows are formed

by a completely different method, and that our model is not capturing the “true”

effect at all, but the large scatter in the observational data does not allow us to draw
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Figure 4.24: Line profiles for altitudinal angles of 0− 170◦, and azimuthal angles of 45◦, for
the simulation BHighResNoTurb. The altitudinal angle increases from left to right. The red
line is the line profile, while the green line is a Gaussian fit, both described the y-axis labels on
the left of each plot. The blue line is the residual, described by the y-axis labels on the right of
each plot. The x-axis is velocity in km/s.
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Figure 4.25: Line profiles for altitudinal angles of 180 − 350◦, and azimuthal angles of 45◦,
for the simulation BHighResNoTurb. The altitudinal angle increases from left to right. The red
line is the line profile, while the green line is a Gaussian fit, both described the y-axis labels on
the left of each plot. The blue line is the residual, described by the y-axis labels on the right of
each plot. The x-axis is velocity in km/s.
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Figure 4.26: Line profiles with and without thermal (i.e. Doppler) broadening in a sim-
ulation without sub-grid turbulence. The strength of the un-broadened lines are dependent
on the spectral resolution of the code, and so we arbitrarily rescale the intensity to allow a
closer comparison with the thermal broadened lines. These lines are sight-lines through the
BHighResToTurb model at an altitudinal angle of 0◦ and an azimuthal angle of 45◦.
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Figure 4.27: Fitted outflow velocities at line-centre as a function of angle for BHighResNo-
Turb.
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Figure 4.28: Line width vs altitude for three azimuthal angles

absolute conclusions at this point. By comparison, the hot gas in this simulation

reaches extremely high velocities. As shown in the top left panel of Fig. 4.15, the

hot gas can reach velocities as high as 2000 km/s, although most of the volume of

gas still has velocities of less than 1000 km/s. The velocity of the hot gas greatly

exceeds that of the cold clumps. However, the cold clumps do not have significantly

slower velocities than the hot gas at their altitude (Fig. 4.15, centre and right panel).

This agreement suggests that once cold clumps are formed, they are efficiently carried

along with the hot wind.

Fig.4.28 shows the full-width at half-maximum (FWHM) of the NaI lines as

a function of viewing angle. The line-width peaks at edge-on viewing angles, and is

at a minimum for face-on viewing angles, approximately fitting a sine wave. This

fit appears to show that most of the velocity dispersion is parallel to the plane of
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the disc. This dispersion may be seeded by the rotation of the disc, although the

outflowing gas is no longer coherently rotating (Fig. 4.10).

The FHWMs of these NaI lines range from 200 km/s to 300 km/s, which

agrees with the lower range of Martin (2005)’s observations of 320± 120 km/s. This

agreement shows that it is indeed possible for cold clumps formed by Rayleigh-Taylor

instabilities in outflows to have sufficient velocity dispersion to explain the large line-

widths of NaI gas observed in outflows.

4.6.1.4 Simulated spectra: Models with sub-grid turbulence

Introducing turbulence smooths out the cold structure in our models. This

effect is quite dramatic, and as density slices and raytraced column density plots

show (Figs. 4.29 and 4.30), no dense cold clumps are formed. Even incorporating a

lognormal density distribution for the turbulentmedium (section 4.4.2), negligible gas

is cold enough to absorb in the NaI line.

The possible causes are that either the sub-grid turbulence model is too strong

— that it smooths and heats flows more dramatically than it should for its energy

fraction — or that our assumption that the sub-grid density distribution is lognormal

is not a suitable simplification (i.e. self-gravity and cooling are significant), or that

both of these problems are serious contributions. This first option is the most likely,

as the turbulence is almost universally subsonic (Fig. 4.31), and should not be able to

maintain the broad density PDF required for NaI absorbing clouds to be present in

cells — we require the densest cells to contain gas ∼ 105 times denser than their mean

density. Self-gravity can provide a high-density tail to the density PDF (Fig. 4.31),

but we have already demonstrated that it is possible to create these dense clumps in

the absence of self-gravity.
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Figure 4.29: Face-on (left) and edge-on (right) slices of density (top) and temperature (bot-
tom) for BHighResTurb.
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Figure 4.30: Density ray-trace plots of BHighResTurb with altitudes in 22.5◦ intervals. Top
left: φ = 0◦, i.e. an edge-on view. Top right: φ = 22.5◦. Centre left: φ = 45◦. Centre right:
φ = 67.5◦. Bottom: φ = 90◦, i.e. a face-on view.
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Figure 4.31: Edge-on x = 0 pc slice of Mach number for BHighResTurb
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Figure 4.32: Density slices of galaxy-centre models at various resolutions. Slices of models
without sub-grid turbulence (“NoTurb”) are taken at 130 kyr, slices from models with sub-
grid turbulence (“Turb”) are taken at 110 kyr. Top left:SVLowResNoTurb, effective resolution
643. Top centre: SLowResNoTurb, 1283. Top right: SMedResNoTurb, 2563. Bottom left:
SHighResNoTurb, 5123. Bottom centre: SLowResTurb, 1283. Bottom right: SMedResTurb,
2563.

4.6.2 Galaxy-centre Models

4.6.2.1 General evolution with and without sub-grid turbulence

In these models, the centralized feedback inflated a bubble which rapidly rises

through the disc, sweeping up dense matter until instabilities allow the hot gas to

break through the bubble. At lower resolutions, the entire centre of the bubble “blows

out”, and no complex structure is formed. However, at higher resolutions the bubble

wall fragments into a number of dense regions, around which the hot gas flows. These

results are illustrated in Figure. 4.32. Here — as in Fujita et al. (2009) — the origin of

fragmentation does indeed appear to be the RT and RM instabilities, but the nature

of the fragmentation differs greatly in our models.

The evolution of the system is quite different with the inclusion of the sub-grid

turbulence model (Fig. 4.33). Here, turbulence is produced by the density gradient
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Figure 4.33: Face-on (left) and edge-on (right) slices of density (top) and temperature (bot-
tom) for SHighResTurb.
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Figure 4.34: Evolution of hot gas volume fraction as resolution is varied, for models with
sub-grid turbulence (dotted lines), and without (solid lines). The drop in hot gas fractions at
the end of some simulations is due to hot gas escaping the simulated region.

of the bubble’s wall. Further turbulent energy is diffused into the bubble wall from

the disc and the bubble interior. The presense of turbulent energy in the bubble

wall gives it a large effective pressure, causing it to spread out. As a result, after

some time there is no longer a strong dense barrier that must be disturbed for gas to

escape, and gas will freely flow out of the bubble. This free flow is of course intended

to represent the effects of instabilities below the resolution of the grid — and indeed,

the gross picture shows this to be the case: a bubble is inflated with a dense wall,

which is disrupted, allowing hot gas to stream out of the region of energy input. The

bubble wall does not visibly fragment into cold clumps, as this is assumed to take

place beneath the grid resolution. More critically, the pseudo blow-out phase occurs

at a similar time to the highest-resolution simulations without the sub-grid model

(Fig. 4.34), even for the lowest resolution model with sub-grid turbulence.

The opening angle of the hot-gas after blow-out is also less constrained when

the sub-grid turbulence model is included (e.g. Fig. 4.35). The sub-grid turbulence

model destroys the bubble interface fairly uniformly, allowing gas to pass through
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Figure 4.35: Density (top) and z-velocity (bottom) slices of smoothed SHighResNoTurb (left),
and unsmoothed SVLowResTurb (right).

the entire region. Without this model, hot gas can only flow through the holes in

the bubble interface that have been created by the Rayleigh-Taylor instability. These

holes are initially near the centre of the bubble face, and so the outflowing gas has

less spatial spread.

4.6.2.2 Fragmentation of the bubble wall

Although at t = 130 kyr, a 2D slice of SHighResNoTurb appears to show

clumps forming from the bubble wall e.g. Fig. 4.36, it is clear from Fig. 4.37 that

rather than a series of clumps, the cold gas is still in a single contiguous structure.

It appears that the hot gas has punched holes in the cold shock front, but that
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Figure 4.36: Face-on (left) and edge-on (right) slices of density (top) and temperature (bot-
tom) for SHighResNoTurb.
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Figure 4.37: Face-on density slices of SHighResNoTurb through z = 65, 70, 75 and 80 pc (top
left to bottom right) at t = 130 kyr.
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Figure 4.38: Face-on density slices of SHighResNoTurbLumpy through z = 65, 70, 75 and 80
pc (top left to bottom right) at t = 130 kyr.
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Figure 4.39: Wall-clock time per 10 kyr dump in SHighResNoTurbLumpy.

the walls surrounding these holes have remained largely intact. The structure of

these walls is strongly symmetrical, due to the symmetry of the feedback and initial

conditions. The inclusion of asymmetric density perturbations in the initial conditions

of SHighResNoTurbLumpy breaks this pattern (Fig. 4.38,4.41).

At this point in the simulation, hot gas can flow through the fragmenting

bubble wall, filling much of the simulated domain with hot high-speed gas. This high-

speed gas drives down the time-step and forces refinements across a greater volume of

the simulation, dramatically increasing the wall clock time per output (Fig. 4.39). As

a result, we did not have sufficient wall-clock time to fully evolve every high resolution

simulation. However, we have allowed one simulation – SHighResNoTurbLumpy – to

be further evolved so that we can examine the evolution of the fragmenting bubble

wall. Our fiducial line profiles are taken from SHighResNoTurbLumpy at t = 160

kyr. We compare this with the lower resolution simulations SMedResNoTurbLumpy

and SMedResTurbLumpy.
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Figure 4.40: Number of clumps in galaxy-centre models. In these models, the portions of
the disc not included in the outflow are cold and contiguous, and hence are counted as a single
ever-present clump.

We applied our clump finding algorithm to these simulations (Fig. 4.40). Most

of the models did not have sufficient time to fragment into a large number of small

clumps, but SHighResNoTurbLumpy produced > 70 clumps by the end of the simu-

lated time. These clumps are still being strongly accelerated by the hot gas by the end

of the simulation, and so it is not at all appropriate to use the ballistic approximation

here to predict their trajectories. However, these clumps will still contribute to the

non-thermal broadening of the NaI line, which we analyze in the following section.

4.6.2.3 Simulated spectra

We applied our raytracing code to produce simulated spectra of the models

SHighResNoTurbLumpy. In contrast to the full-galaxy run, in this model the initial
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Figure 4.41: Face-on (left) and edge-on (right) slices of density for SHighResNoTurbLumpy
(top) at t = 130 kyr and SMedResTurbLumpy (bottom) at t = 110 kyr.
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Figure 4.42: Face-on spectrum of SHighResNoTurbLumpy at t = 160 kyr, with an effective
spatial resolution equal to the size of the simulation.

disc is largely intact outside of the central feedback region. Furthermore, even after

blow-out, the lower portions of the bubble wall also remain intact. These regions are

both dense and cold, and will absorb the NaI line. An unfiltered face-on spectrum

of SHighResNoTurbLumpy at t = 160 kyr (with an effective spatial resolution broad

enough to cover the entire simulated region) shows three components (Fig. 4.42) —

a sharp line at v ∼ 0 km/s, a broad line at v ∼ 500 km/s and a weaker line at

v ∼ 1000 km/s. The bottom right panel of Fig. 4.43 shows the z-velocities of a slice

through the simulation at t = 160 kyr, with a colour scheme chosen to emphasize

these three broad regions of velocity. The v ∼ 0 km/s line clearly corresponds to the

intact disc, while the v ∼ 500 km/s line corresponds largely to the outer portions of

the burst-open bubble wall. Only the v ∼ 1000 km/s line corresponds to fragmenting

material within the outflow. As we are primarily interested in outflowing gas, we

can neglect the disc component, and we do this by cutting out all gas below 70 pc

from our raytracing algorithm. The lower components of the wall have significant

velocities (∼ 500 km/s), but this dense gas is not entrained within the hot flow, and
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Figure 4.43: Vertical velocity (i.e. vz) of SHighResNoTurbLumpy at t = 130 kyr (top left),
t = 140 kyr (top right), t = 150 kyr (bottom left), t = 160 kyr (bottom right). The colour
scheme is chosen to divide the gas into four categories: v ∼ 0 km/s, v ∼ 500 km/s, v ∼ 1000
km/s, and v � 1000 km/s.

is not being accelerated by it. As shown in Fig. 4.43, the clumps are accelerated from

∼ 500 km/s to ∼ 1000 km/s from t = 130 kyr to t = 160 kyr, while the lower walls

remain at a roughly constant speed. Hence the gas of interest only consists of the

clumps near the centre of the outflow. To cut out this outer wall, we narrow the

beam-width to 60 pc.
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Figure 4.44: Line profiles for altitudinal angles of 0−20◦, for the simulation SHighResNoTurb.
The red line is the line profile, while the green line is a Gaussian fit, both described the y-axis
labels on the left of each plot. The blue line is the residual, described by the y-axis labels on
the right of each plot. The x-axis is velocity in km/s.

We also attempted to produce spectra of SMedResTurbLumpy, but no absorp-

tion lines were produced. The sub-grid turbulence suppresses the resolved Rayleigh-

Taylor instabilities by diffusing turbulent energy through the bubble wall, which cas-

cades into heat, preventing the bubble wall from cooling into a dense barrier. Instead,

hot gas freely flows outwards. As in the full galaxy models, the assumption that tur-

bulent gas follows a lognormal PDF is not sufficient to produce noticeable absorption.

Fig. 4.44 shows the line profiles from rays through SHighResNoTurbLumpy at

angles of 0− 20◦ from face-on. We are not able to produce meaningful spectra from

rays at angles greater than this, as the still intact lower bubble wall blocks the view.

The velocity dispersion of the clouds produces a curve that is well approximated by

a Gaussian. There is no strong difference between the lines as we change the viewing

angle by this small amount. However, as shown in Fig. 4.45, the velocity at line-centre
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Figure 4.45: Line-of-sight velocity at line centre (left), and line-width (right) as a function of
viewing angle for SHighResNoTurbLumpy, with the disc removed and a spatial resolution that
resolves the outflow while missing the lower bubble wall.

decreases and the velocity dispersion increases as we move away from a direct face-on

view. These trends are unsurprising, as the main component of the net velocity is in

the vertical direction, while the main component of the velocity dispersion is in the

horizontal direction.

Interestingly, despite the large difference in initial conditions and system evo-

lution, the FWHM of the lines here are similar to the full galaxy case, both reaching a

minimum of around 220 km/s for a face-on view. These agree with the lower limit of

Martin (2005)’s value of 330±100 km/s, and so we have confirmed that the break-up

of the bubble wall does indeed produce sufficient velocity dispersion to explain the

observed broadening. However, here the outflow velocity (∼ 1000 km/s) greatly ex-

ceeds the observed velocities of 330±100 km/s. This may simply be a product of our

feedback conditions — we may have overestimated the energy input rate, or under-

estimated the size of the feedback region, producing unrealistically intense feedback.
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4.6.2.4 Mass-loading

We also examined the effects of varying the mass-loading rate. As mentioned

above, this is parameterised by MSN, the mass of gas ejected in each supernova.

Modifying this value is roughly equivalent to a combination of varying the initial

mass function of massive star formation, including a low mass-loading AGN, and/or

varying the amount of gas that completely escapes a supernova. We have produced

simulations with MSN = 4M� and MSN = 16M� in addition to the fiducial MSN =

6M�. These simulations are performed at a low resolution, and so we can not perform

a detailed analysis of the variation in clump formation and properties with mass-

loading. However, we can investigate the impact on bubble evolution and blow-out.

The evolution of a hot bubble is a scenario that has been well-studied in the past

(e.g. Mac Low et al. 1989; Norman & Ikeuchi 1989; Ferriere et al. 1991; Koo & McKee

1992; Stil et al. 2009; Zaninetti 2012).

The primary result is that bubble inflation and blow-out occurs much more

rapidly and violently at smaller mass-loading rates. During blow-out, the volume of

hot gas increases dramatically, and so we can plot the volume fraction of hot gas in

our models over time to compare the times at which blow-out occurs. With “hot gas”

defined as gas above 105 K, this is plotted in Fig. 4.46, and it is clear that blow-out

is weakened and delayed with increasing mass-loading (the initial gentle downwards

slope is caused by cooling). The addition of mass raises the density within the bubble,

which decreases the cooling time, reducing the effectiveness of heating. A greater

mass also requires more kinetic energy to reach a high velocity. The greater mass

loading also reduces the density contrast across the bubble interface, weakening the

Rayleigh-Taylor instability.

4.6.2.5 Resolution Dependence

We examined models with four different maximum levels of refinement, with

effective resolutions ranging from 643 to 5123. The effect on blow-out times is clear in

the hot gas fraction plots, Fig. 4.34. As in section 4.6.2.4, the hot gas fraction initially
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Figure 4.46: Evolution of hot gas volume fraction as mass-loading is varied.
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decreases slowly as gas radiatively cools throughout the disc, until the hot fraction

dramatically rises as “blow-out” occurs and hot gas streams out of the bubble. With-

out the sub-grid turbulence model, a resolution dependence is clear: blow-out occurs

at earlier times as resolution is increased, although this may have reached conver-

gence at the higher resolutions, as SMedResNoTurb and SHighResNoTurb appear to

be consistent. This resolution dependence is likely because the growth-rate of the

Rayleigh-Taylor instability increases with decreasing wavelength — for an inviscid

medium, the growth rate of an instability with amplitude η in a gravitational field of

acceleration g is given by

dη

dt
= (Agk)1/2η, (4.66)

where A is the Atwood number, and k = 2πλ is the wave-number of the instabil-

ity (Chandrasekhar 1961). As resolution is increased, the stronger instabilities at

shorter wave-lengths are no longer suppressed by the discretization of the grid, and

the bubble-wall can fragment and allow blow-out earlier. Our medium and high res-

olution runs appear to follow the same locus, but this does not mean the simulation

has converged — while blow-out occurs at a similar time, the level of fragmentation

is clearly different (Fig. 4.32).

By contrast, and largely by design, the models including sub-grid turbulence do

not show such a strong resolution dependence. The diffusion of energy stabilizes the

system against small-scale instabilities, which in this case is sufficient to apparently

stabilize the bubble wall against all wavelengths of instability, so that the bubble

wall never fragments, regardless of resolution. The evolution of the hot gas volume

fraction is identical at all but the lowest resolution (Fig. 4.34), although we were

not able to follow the evolution of the highest resolution model up to the pseudo

blow-out stage because the computational load for each time-step had become too

arduous. Density slices are almost identical between SLowResTurb and SMedResTurb

(Fig. 4.32), except that the bubble’s lateral walls are a thinner and denser at the higher

resolution.
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Figure 4.47: Density (above) and pressure (below) slices for SLowResTurb (left),
SLowResTurbNoOutflow (middle), and SLowResTurbNoOutflowNoDisc(right).

4.6.3 Investigating the Sub-grid Turbulence Model

To further investigate the particular effects of the sub-grid turbulence model,

we can vary the implementation of the sub-grid turbulence model to investigate the

importance of different sources of turbulence. There are three sources of turbulence

in our model. Firstly, the disc can contain some initial turbulence. Secondly, turbu-

lence can be generated by the Rayleigh-Taylor and Richtmyer-Meshkov instabilities.

Thirdly, turbulence can be injected into the feedback region. We ran tests switching

these effects on and off in various permutations.

We found that the general evolution was qualitatively the same in all three

cases (see Fig. 4.47) — the gas mixes well, and no cold dense structures are formed.

However, the bubble itself has a different shape in the absence of turbulent injection

from the feedback region. The inclusion of sub-grid turbulence narrowed the bubble’s

size at low z, as this region’s high density allows it to cool efficiently, greatly reducing

its pressure in the absence of sub-grid turbulence. Removing the turbulent support
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from the disc’s initial conditions allows radiative cooling to reduce the pressure in the

lower portions of the disc, but this does not appear to have an effect on the bubble’s

shape.

We found in general that the simulations with the sub-grid turbulence model

ran much slower than the simulations without it. The additional load from directly

executing the subroutines for the sub-grid source terms and diffusion are not the

main source of this. Instead, as the turbulent diffusion is efficient at spreading and

maintaining large thermal and turbulent energies (and hence pressures and effective

sound speeds), the time-step becomes short, and the mesh must be more heavily re-

fined. The additional time-step criterion from turbulent diffusion further contributes

to this.

A critical test of this sub-grid turbluence model model is whether a low res-

olution model with sub-grid turbulence is an accurate approximation to a high res-

olution model without sub-grid turbulence. We can compare SHighResNoTurb with

SVLowResTurb by smoothing density and velocity slices of SHighResNoTurb by a

factor of 23 so that the resulting plots have equivalent resolution. This smoothing

is done by taking a simple arithmetic average. As shown in Fig. 4.35, the result is

that the models do not agree even in the general size and shape of the blowout and

outflow. However, as Fig. 4.32 shows, the models without turbulence are not yet con-

verged in resolution, and it is still possible that sub-grid turbulence model accurately

represents the behaviour of the system in the limit of high resolution, but only higher

resolution tests can confirm this.

The sub-grid turbulence model, as implemented here, does not successfully

model the production of cold clumps by the Rayleigh-Taylor instability, while adding

to the computational load. Either sub-grid turbulence is not an adequate model for

the large density and temperature range in this scenario, or our sub-grid turbulence

model is not adequate. Indeed, it may be possible to improve this model by including

the full turbulent cascade (Schmidt & Federrath 2011), and by including off-diagonal

terms in the sub-grid tensor (Gray & Scannapieco 2011).
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Figure 4.48: The effects of extensions to the line profile models (left), and the effects of
narrowing the “beam-width” (right).

4.6.4 Line profiles: Extended models

We examined the effects of a more “realistic” line profile, including broadening

from limited spectral resolution, and line confusion from inclusion of both lines in the

Na D doublet. We also explored the results of using a raytracing model with a much

tighter spatial resolution (i.e. beam width), using 10 kpc instead of our fiducial 100

kpc. The results of these examinations are plotted in Figure. 4.48.

The second line in the doublet is simply a copy of the first line, transposed by

∆λ = 5.97 Å. The contribution of this to the optical depth profile is calculated for

each cell the ray passes through. That is, if the contribution to the optical depth at
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frequency ν by cell i for a single line is

τν,i = NiαλΦ(ν), (4.67)

(where λ is the wavelength, Ni the number density, α the cross-section, and Φ(ν) the

doppler profile as in section 4.4.2), then for a doublet line (under the assumption that

both components of the line have the same amplitude) this is replaced with

τν,i = Niαλ(Φ(ν) + Φ(ν −∆ν)), (4.68)

where ∆ν = ∆λc/(λ2). Our fitting algorithm was modified to include the assumption

that every Gaussian curve centred at λ had an identical partner at λ − ∆λ, i.e. a

“single” Gaussian fit is a fit to the function

I(λ) = 1− {A exp[−(λ− b)/c2] + A exp[−(λ− b−∆λ)/c2]}, (4.69)

where A, b, c are fitted parameters.

As mentioned in section 4.4.2, the effective broadening due to spectral reso-

lution is produced by convolving the intensity with a Gaussian curve. We set the

full-width at half-maximum (FWHM) of the Gaussian to 65 km/s as in Fujita et al.

(2009), to match the observations of Martin (2005). Here, the fitting algorithm is not

changed.

It is clear (left panels of Fig. 4.48) that these additions do not significantly

alter the line profile properties. Even when there is confusion due to one line of

the disc’s doublet being superimposed on one line of the outflow’s doublet, the fits

correctly disentangle the lines. Furthermore, the intrinsic broadening (both thermal

and non-thermal) is large enough that the additional 65 km/s does not significantly

change the profile’s properties.

However, tightening the effective spatial resolution of the simulated observer

does significantly change the line properties (right panels of Fig. 4.48). Resolution
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limits in our simulation place a lower limit on the length-scale of any structure. As a

result, a tight beam will not capture the details of the structure of the outflow — the

beam will likely intersect with only a few clouds, or none at all. Furthermore, a tight

beam produces a smaller outflow FWHM, as non-thermal broadening is reduced, and

also produces a strongly irregular variation with viewing angle, as clouds pass in and

out of the raytraced region. There is a similar effect in the outflow velocities, with

some angles even producing a negative outflow velocity, which is not at all indicative of

the overall structure of the outflow. While the very broad effective spatial resolution

used in our fiducial models effectively smooths large-scale structure into an average, a

tight beam misses the structure entirely. We conclude that, given the resolution limits

of our hydrodynamic simulation, the “broad beams” used in our fiducial raytracing

calculations are the most appropriate choice.

4.7 Conclusions

In this chapter we performed three-dimensional numerical simulations to ex-

plain the source of cold high velocity-dispersion gas in ULIRG outflows (as observed

by Martin 2005, in particular). Our initial conditions were set up to produce a sce-

nario where clouds are produced by the Rayleigh-Taylor induced fragmentation of the

wall of a galactic super-bubble (as in Fujita et al. 2009). This was done in two sce-

narios, one focusing on the central 200 pc of the galaxy, and another where the entire

galaxy is included in the simulated domain. To account for a lack of convergence with

respect to resolution, we also investigated a sub-grid turbulence model (implemented

in FLASH by Scannapieco & Brüggen 2010). Finally, we produced spectra of our

simulations with a raytracing algorithm to facilitate comparison with observation.

Our models were indeed successful at producing cold outflowing gas with simi-

lar velocity dispersions to the observations, at our higher resolutions when the sub-grid

turbulence is switched off. Our two scales of simulation produce this cold outflowing

gas through different means. In our highest resolution full galaxy models the cold

disc gas is fragmented by the large number of hot bubbles produced in the disc. This
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gas is then pushed into the outflow by the intense pressure of the feedback beneath it.

In our central-scale models, the cold gas is produced by the Rayleigh-Taylor induced

fragmentation of the bubble-wall produced by the feedback. Hence we have developed

two distinct explanations for the origin of this cold gas. We can not choose which of

these models most closely resembles observations without more thorough testing at

higher resolutions, larger domain sizes, and longer simulation times.

However, the velocities of the cold gas do not completely agree with the obser-

vations, being somewhat lower than average in the full galaxy simulations (although

not entirely inconsistent with soem observed ULIRGs), but much too large in the

galaxy-centre simulations. Hence, we can not be completely confident that our mod-

els are an accurate representation of the mean behaviour that produce this cold high-

velocity dispersion gas. Rectifying this disagreement may only require an adjustment

of model parameters, which are based on observations that have large uncertainties

because ULIRGs are dust-obscured and locally rare. However, because the results are

not converged with resolution, higher resolution simulations should produce different

results — perhaps even affecting these outflow velocities. Furthermore, improving the

physical model to include self-gravity and a more self-consistent feedback algorithm

may also improve the result.

The inclusion of the sub-grid turbulence model has a dramatic effect, smooth-

ing away much of the substructure that forms in models that lack it. However, we

did not find evidence of cold gas in these models — indeed the sub-grid turbulence

model is effective at maintaining high pressures and temperatures across the domain.

Assuming a lognormal PDF for the turbulent gas did not alleviate this problem. A

more complex model for the temperature and density variations within a turbulent

cell may perhaps solve this problem, but these variations must be very large indeed to

reveal any cold gas in such hot cells. However, we note that the sub-grid turbulence

model does indeed appear to be converged with respect to resolution, and hence the

gross evolution of these models may perhaps represent the high resolution limit of the

models without sub-grid turbulence. More research needs to be done to produce a
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model that accurately evolves the mass fractions and velocity dispersions of sub-grid

cold gas.
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Chapter 5

Conclusions

While detailed conclusions are presented at the end of each chapter, I summa-

rize here the key results that were outlined in this thesis. I also discuss outstanding

questions, and make suggestions for future avenues of research.

5.1 Code Development

We improved HYDRA by extending its cooling curve down to 10 K to al-

low formation of molecular clouds, and (more critically) modified the parallelization

algorithm. In the existing code, large refinements were distributed across the entire

machine, while smaller refinements were assigned one processor at time. We extended

this logic to the individual cells within a refinement, so that if a single cell contained

more than a threshold number of particles, its particle-particle (gravity and SPH)

calculation would also be distributed across the entire machine. This adjustment im-

proved the performance of the code by a factor of ∼ 7 in certain simulations of disc

evolution.

This improvement allowed our simulations to be performed within a reason-

able time frame. Our higher resolution HYDRA simulations took about a month

to run — for example, LowSoftMW took 33 days to reach 1.1 Gyr. Without this

modification to load-balancing, this simulation would have likely required at least

half a year to complete. This significant reduction in computating time highlights

the importance of good load-balancing in simulations, as here it is essentially the

difference between our simulations being tractable or intractable. Additionally, ap-

plying the widely-used code GADGET-2 to our problem did not noticeably improve

the performance. These issues demonstrate the problems in a “black-box” approach
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to numerical simulations — neither of these well-established SPH codes produced the

optimal load-balancing for our model in their “off-the-shelf” forms for our particular

problem and computational architecture, with HYDRA only performing well after a

significant modification was made. Hence we can emphasize how important it is to

know the internal workings of simulation codes, so that the user can modify them to

be more appropriate for their particular model.

Our modifications to FLASH were primarily fixing mistakes in the feedback

subroutines implemented in Scannapieco & Brüggen (2010) and the sub-grid turbu-

lence subroutines implemented in Scannapieco & Brüggen (2008). The mistake in the

feedback subroutine (a single missing pair of parentheses) was not pathological —

it altered the distribution of feedback bubbles to not correctly follow the Kennicutt-

Schmidt law, but as both Scannapieco & Brüggen (2010) and this work concentrated

on the properties of the outflow and not the disc, this would not have produced a

large error. Furthermore, this algorithm has not been used outside of those two works

(to the author’s knowledge).

The errors in the sub-grid turbulence subroutine are more critical, with large

numbers of cells being incorrectly updated, and the fraction of turbulent kinetic en-

ergy in a cell sometimes exceeding 100%, amongst other issues. This algorithm was

first implemented in 2008, and has been used in a series of publications since then

(Scannapieco & Brüggen 2008; Scannapieco et al. 2009; Gray & Scannapieco 2011).

These publications may have failed to catch these mistakes, as they are most notice-

able — and most likely to cause FLASH to exit with an error — when the turbulent

kinetic energy fraction in a cell is large, and this regime was not explored in these

publications1. Our models included particularly intense feedback, which triggered

this condition, and brought the mistakes to our attention. Tracking the source of

these errors proved difficult, and required learning all of the details of the imple-

mentation of the algorithm, switching on and off the various sub-grid subroutines to

determine which are the sources of the errors, and then tracing through the offending

1To prevent these errors from surviving in the code-base, I contacted E. Scannapieco personally
and let him know how to correct the subroutines
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subroutines one line at a time to determine which lines are incorrect. These tests

took several months, and was one of the most intensive parts of this component of

this thesis. Again, this stresses that a code can not be used as a black-box — not

only can a code be not entirely optimal for a given model (as above), but the code

can simply be incorrect, even if it has been used in several refereed publications.

5.2 Effective viscosities due to cloud-cloud collisions in disc

galaxies

We performed SPH simulations using HYDRA of Milky-Way-like galaxies to

investigate the strength of the effective viscosity due to cloud-cloud collisions. Here

we found that the viscous time-scale was on the order of ∼ 10 Gyr — which, while

long, is much shorter than previous analytic estimates of ∼ 1000 Gyr. We also found

that these analytic estimates contained an error that when corrected also produces a

viscous time-scale of similar order.

However, the viscous time-scale from our simulations appears to be resolution

dependent, increasing with improving resolution. This trend corresponds with an

increase in the number of clouds produced in the models — a small number of large

clouds has a larger effective viscosity than a large number of small clouds. This

trend contributes to an interesting situation where very low-resolution simulations —

i.e. simulations that do not have sufficient resolution to produce molecular clouds in

a galactic disc — will not produce this effective viscosity, but moderate resolution

simulations — simulations that resolve molecular cloud formation, but overestimate

the mass and underestimate the number of clouds — will produce an effective viscosity

that is stronger than it should be.

The first situation applies in particular to cosmological simulations, where the

large size of the simulated domain does not usually allow each galaxy to be extremely

well-resolved. Here, the problem of the absence of the effects of resolved clouds could

be alleviated by the explicit inclusion of an additional viscosity term to account for

the effective viscosity of cloud-cloud collisions — indeed, as one of the outcomes of

184



viscous evolution is to redistribute angular momentum out from the centre of a disc,

this might help to overcome issues with overconcentration of angular momentum,

at the cost of exacerbating the issues with overconcentration of mass. This effective

viscosity should also be included in high-accuracy semi-analytic models (Baugh 2006).

The second situation is more relevant to simulations of individual galaxies, as

the highest resolution simulations that are currently being performed are still just

falling short of the resolutions required to resolve individual molecular clouds. Unfor-

tunately, there is no “antiviscosity” term that can be applied to remedy this. Simula-

tions must either have sufficient resolution that the difference between the cloud-cloud

viscosity is accurate enough for the purposes of the model, or they must have feedback

or a temperature floor tuned to prevent explicit cloud formation, instead treating star

formation and cloud-cloud collisions with a sub-grid model.

5.3 Cold clouds in outflows

We performed simulations in FLASH of a ULIRG at both a 200 pc galaxy-

centre scale and a full-galaxy scale to determine the source of cold high velocity-

dispersion gas in hot ULIRG outflows, and wrote a raytracing code to produce artifi-

cial spectra for comparison with observations. While we found we could produce this

cold high velocity-dispersion gas, this gas was produced by different processes in the

different scales, and hence the true source of the gas remains ambiguous. Further-

more, these simulations are not well-converged with respect to resolution and in some

cases have not had sufficient time to fully evolve, and so the details of these processes

may change if resolution was increased and the simulation was allowed to continue.

The heavy computational cost of improving resolution and running the simulation for

a long time did not permit us to do this. This work reemphasizes the difficulty of

modeling cooling and turbulence accurately in simulations.

The Dimonte-Tipton (DT) sub-grid turbulence model was used to attempt to

remove this strong resolution dependence. While the simulations that included the

sub-grid turbulence model did indeed show a much weaker resolution dependence, we

185



were not able to produce any cold gas in the outflow. This cold gas would have to be

included in an additional sub-grid model. We have implemented a simple model for

this by allowing giving each cell a lognormal PDF with a width based on its turbulent

kinetic energy, and assuming that any gas above a certain density in this PDF is cold

enough to absorb the NaI line, but this still does not produce any cold gas. While the

DT sub-grid turbulence might be sufficiently accurate in describing the bulk motion

of the gas, a more detailed model is required to follow the PDFs of gas produced by

the RT and RM instabilities.

There are many opportunities to improve the DT model, such as the inclusion

of turbulence produced by the Kelvin-Helmholtz instability as well as turbulent vis-

cosity terms, and the production of turbulence from the cascade of larger scale kinetic

energy. However, these improvements will still not solve the problem of determining

the fraction of gas within a turbulent cell that is cool enough to absorb in the NaI

line.

This problem has applications beyond absorption line studies, as identifying

cool sub-resolution gas is critical to understanding the unresolved formation of molec-

ular clouds and the stars within them. Here, turbulence is not uniform, isothermal, or

incompressible, and so it is a difficult situation to analyze, and the problem currently

remains open.

5.4 Future work

In the FLASH models of ULIRG outflows, there are two important avenues for

improvement. One is that we can increase the resolution of the simulations without

the sub-grid turbulence model. As these simulations are not yet converged, this is

more critical than improving the physics of the simulations. However, performing

these simulations at a higher resolution will require a great deal of computational

resources — either occupying a large amount of time, or requiring access to a larger

machine. The other avenue for development is improving the sub-grid turbulence

model to better account for the PDFs of gas produced by the RT and RM instabilities.
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The models with sub-grid turbulence are indeed better converged, and so improving

the physics is the primary concern. However, producing a sub-grid model of this

complexity is by no means a trivial task, and the approximations required for any

sub-grid model may outweigh the advantages of this method over simply increasing

the resolution of the models without sub-grid terms.

The issue of improving the resolution of our disc simulations is more interest-

ing, as these simulations are reaching a stage where sub-grid models (i.e. feedback)

have a similar length-scale to resolved physics (i.e. molecular cloud formation). Feed-

back and star formation have generally been implemented as an unresolved or spatially

averaged phenomenon, but if molecular clouds are being resolved, this is no longer

self-consistent. Here it is not necessarily helpful to improve resolution ad infinitum,

as smaller scale physics requires different sub-grid models. For example, if the spatial

resolution is large enough for individual molecular clouds to be resolved, and the time

resolution is sufficient for individual supernovae to be resolved, then it is necessary

to represent events and structures in an accurate way, perhaps including the effects

of photoionization (i.e. HII regions) and other radiative transport effects, as well as

the explicit disruption of the molecular cloud and the stars formed within it. If we

improve the resolution of our simulations to resolve smaller and smaller scales, we

will need to consider these issues.

A more pragmatic concern in improving the resolution of our simulations is the

computational load. Here we may be reaching the limits of HYDRA’s OpenMP imple-

mentation. OpenMP limits a program to shared memory machines, which generally

provide fewer processors than distributed memory machines. While large shared-

memory machines exist, distributed memory machines are more numerous and hence

more accessible to numerical astrophysicists. While we could attempt to further im-

prove the load-balancing of HYDRA, it may be that the best approach is to apply our

load-balancing improvements from HYDRA in an MPI code such as GADGET, re-

moving the effective “cap” on processor number. Indeed, the unreleased GADGET-3

already contains a number of load-balancing improvements. However, MPI is not the
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best approach for our most accessible hardware. As the nodes in our SMU computing

cluster contain a large number of processors (16–32), a pure MPI code will have to

pass a large number of messages between any two nodes. A hybrid implementation

combining MPI and OpenMP, would be the best approach for our architecture. The

upcoming Phantom code (Lodato & Price 2010; Price & Federrath 2010) — a hybrid

MPI/OpenMP SPH code to be released in 2013 — may perhaps be useful here.

5.5 Conclusion

Despite constantly improving computational power and decades of study in

numerical algorithms, we are still far from being able to resolve the critical scales in

many astrophysical systems. As such, for the foreseeable future we should expect to

continue to rely on approximate models. Nevertheless, we can continue to progress

by improving these approximate methods with observation, theory and numerical

simulations. Furthermore, these approximate methods can still provide deep physical

insight into the modelled phenomenon. Explicitly selecting and refining the physics

of the system to build an approximate model helps to clarify the results of each

component. Hence, despite the perhaps irresolvable problem of finite resolution, we

can, with confidence, continue to establish meaningful conclusions about the universe.
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