CHAPTER 3 - APPENDIX A

SUPPLEMENTARY MATERIALS

		Total Energy (Hartrees)				
Ligand	Point Group	HF	MP2	B3LYP	\mathbf{C} -PCM [†]	
H ₂ O	C_{2v}	-76.0177432	-76.2097764	-76.4225724	-76.433884	
Cl	O_h	-459.5396609	-459.6711454	-460.2747259	-460.387014	
OH	$C_{\infty v}$	-75.3764241	-75.5883641	-75.7966809	-75.931078	
NH ₃	C _{3v}	-56.1894994	-56.3631970	-56.5569857	-56.561088	

<u>Table 3A.1</u>: Total energies for the optimized geometries of water, chloride, hydroxide and ammonia.

[†]Total free energy in solution at 25°C, CPCM-B3LYP/6-31+G*//B3LYP/6-31+G*

<u>Table 3A.2</u>: Total energies for the stable geometries of $[Ni(H_2O)_n]^{2+}$, where n=0 – 6.

			Total Energ	y (Hartrees)	
n	Point Group	HF	MP2	B3LYP	\mathbf{C} -PCM [†]
0	O _h	-1505.7832337	-1505.9225289	-1507.1343557	-1507.891672
	C _s #1	1581.9313885	-1582.2188866	-1583.7441270	
1	C _s #2	-1581.8705465	-1582.2188866	-1583.7441129	-1584.308604
	C _{2v}	-1581.9537553	-1582.2989264	-1583.7441129	
	D _{2h}	-1658.0668942	-1658.6205866	-1660.2834407	-1660.747780
	D _{2d}	-1658.0748061	-1658.6263636	-1660.2876884	
2	Cs	-1658.0000750	-1658.5554510	-1660.2953768	
	C _{2v}	-1658.0693425	-1658.6206930	-1660.2834410	-1660.747780
	C ₂	-1658.0000751	-1658.5554510	-1660.2116357	-1660.743887
	D _{3h} #1	-1734.1550982	-1734.8983665	-1736.7583650	
3	C ₃	-1734.2037103	-1734.9538443	-1736.8247506	-1737.211909
5	D ₃	-1734.1666671	-1734.9157047	-1736.7868449	-1737.154660
	D _{3h} #2	-1734.1589583	-1734.9226233	-1736.8085537	-1737.184957
	D _{4h}	-1810.2310590	-1811.1905298	-1813.2831239	
	C _s #1	-1810.2967183	-1811.2457977	-1813.3218407	
	C ₂ #1	-1810.2821941	-1811.2336714	-1813.3121517	-1813.658191
4	C ₂ #2	-1810.2962889	-1811.2452445	-1813.3212448	-1813.671785
	C _s #2	-1810.2976555	-1811.2467159	-1813.3226296	-1813.672828
	C ₄	-1810.2866201	-1811.2357411	-1813.3122940	
	S_4	-1810.2926944	-1811.2404337	-1813.3164877	
5	C _{2v}	-1886.3739823	-1887.5222347	-1889.8041655	-1890.140211
5	C ₂	-1886.3004572	-1887.4548028	-1889.8041655	-1890.140211
	T _h #1	-1962.3816073	-1963.7180048	-1966.2013289	-1966.583284
6	T _h #2	-1962.4418358	-1963.7896800	-1966.2764639	-1966.598582
	D _{2h}	-1962.4202853	-1963.7613287	-1966.2469053	-1966.589797

NOT Stable [†]Total free energy in solution at 25°C, CPCM-B3LYP/6-31+G*//B3LYP/6-31+G*

		Optimized Ni-O Bond Lengths (Å)				
n	Point Group Symmetry	HF/6-31+G*	MP2/6-31+G*	B3LYP/6-31+G*		
	C _s #1	1.946	1.941			
1	C _s #2	1.975	1.941	1.861		
	C _{2v}	1.924	1.882			
	D _{2h}		1.893	1.876		
	D _{2d}		1.903			
2	C _{2v}		1.904	1.877		
	C_2	1.970	1.921	1.922		
	Cs	1.971	1.921			
3	D _{3h}	1.944	1.891	1.886		
	D ₃	2.024	1.981	1.970		
	C ₃	1.985	1.942	1.928		
	C #1	2.029	1.988	1.984		
	C ₂ #1	2.029	1.988	1.984		
	C ₂ #2	2.029	1.989	1.984		
4		2.034	1.993	1.996		
		2.042	2.005	2.004		
	Cs	2.020	1.976	1.968		
		2.029	1.987	1.987		
		2.275	2.255	2.026		
	C_2	2.048	1.992	2.065		
5		2.062	2.020	2.016		
5		2.067	2.022	2.026		
	C_{2v}	2.102	2.061	2.065		
		2.058	2.014	2.016		
		2.183	2.135	2.119		
	D _{2h}	2.080	2.034	2.035		
6		2.231	2.212	2.257		
	$T_h #1$	2.207	2.175	2.186		
	T _h #2	2.117	2.071	2.079		

<u>Table 3A.3</u>: Ni-O bond lengths for stable geometries of $[Ni(H_2O)_n]^{2+}$, where n=1-6.

n	Point Group	Freq. (cm ⁻¹)	Irr. Rep. Symm.	Mixing
	C _s #1	491.5	a'	
1	C _s #2	474.9	a'	
	C _{2v}	507.7	a ₁	
2	C	400.3	a'	
	C_s	527.6	a'	
2	C	401.0	a	
	C_2	528.5	b	
		423.0	a ₁ '	
	D _{3h}	487.0	e'	H ₂ O wag
		487.0	e'	H_2O wag
		376.9	a ₁	
3	D ₃	415.6	e	
		415.6	e	
		415.0	a	
	C ₃	436.2	e	H ₂ O wag
		436.2	e	H ₂ O wag
	C ₂ #1	366.9	b	
		372.7	а	
		375.5	а	
		421.1	b	H ₂ O wag
		355.8	а	H ₂ O wag
1	C.#2	379.7	b	H ₂ O wag
4	C ₂ #2	387.9	а	H ₂ O wag
		394.6	b	H ₂ O wag
		351.9	a'	
	С	379.9	a'	
	C_{s}	391.9	a'	H ₂ O wag
		403.2	a''	H ₂ O wag
		245.3	а	H ₂ O wag
		308.7	а	
	C_2	361.2	а	
		374.3	b	H ₂ O wag
5		377.7	b	H ₂ O wag
5		265.2	a_1	
		333.1	a_1	H ₂ O wag
	C _{2v}	344.4	b ₂	H ₂ O wag
		361.6	a_1	
		371.4	b ₁	H_2O wag

<u>Table 3A.4</u>: Vibrational stretching frequencies of stable geometries of $[Ni(H_2O)_n]^{2+}$, where n=1 – 6, calculated at HF/6-31+G*.

		191.2	a_{g}	
		249.9	ag	
	Л	281.8	b_{3u}	H_2O wag
	D_{2h}	291.9	b_{2u}	H_2O wag
		331.1	$a_{ m g}$	_
		355.7	b_{1u}	H ₂ O wag
		211.8	eg	
	T _h #1	221.3	eg	
6		288.4	t _u	H ₂ O wag
0		290.3	t _u	H_2O wag
		307.8	t _u	H_2O wag
		315.3	$a_{ m g}$	
		246.9	eg	
		246.9	eg	
	т #Э	322.5	t _u	H ₂ O wag
	I h#∠	322.5	t _u	H ₂ O wag
		322.5	t _u	H ₂ O wag
		335.3	$a_{ m g}$	_

n	Point Group	Freq. (cm ⁻¹)	Irr. Rep. Symm.	Mixing
	C_{2v}	531.7	a ₁	
1	C _s #1	495.5	a'	
	C _s #2	495.4	a'	
	D	439.0	ag	
	D_{2h}	585.5	b_{1u}	
	D	438.4	a ₁	
	D_{2d}	580.5	b ₂	
2	C	450.7	a ₁	
Z	C_{2v}	617.8	b ₂	
	C	427.4	a	
	C_2	574.3	b	
	C	427.1	a'	
	C_{s}	574.0	a'	
		448.0	a ₁ '	
	D _{3h}	533.2	e'	
		533.2	e'	
	D ₃	391.7	a ₁	
3		433.1	e	
		433.1	e	
	C ₃	431.5	a	
		473.5	e	
		473.5	e	
		381.1	b	H ₂ O wag
	C #1	393.0	а	
	C ₂ #1	406.9	а	H ₂ O wag
		449.4	b	
		370.3	а	H ₂ O wag
	C.#2	408.6	а	H ₂ O wag
1	$C_2 \pi Z$	414.8	b	H ₂ O wag
-		433.3	b	H ₂ O wag
		363.1	a'	H ₂ O wag
		383.3	a'	H ₂ O wag
	C	386.4	a'	H_2O wag
	$\sim_{\rm s}$	404.8	a'	H ₂ O wag
		429.3	a'	H ₂ O wag
		439.9	a"	H_2O wag

<u>Table 3A.5</u>: Vibrational stretching frequencies of stable geometries of $[Ni(H_2O)_n]^{2+}$, where n=1 – 6, calculated at MP2/6-31+G*.

		282.1	a ₁	
F		351.0	a_1	H_2O wag
	C_{2v}	374.9	b ₂	H_2O wag
		385.2	a_1	H_2O wag
		427.4	b ₁	H ₂ O wag
		251.9	a	H_2O wag
5		353.0	а	H ₂ O wag
		364.8	b	H_2O wag
	C_2	384.8	а	_
		401.0	b	H_2O wag
		439.8	а	H_2O twist
		439.8	а	H ₂ O wag
		214.3	eg	
	T _h #1	227.5	eg	
		286.9	t _u	H ₂ O wag
		294.6	t _u	H_2O wag
		314.2	t _u	H_2O wag
		328.0	ag	_
		268.3	eg	
		268.3	eg	
6	т #Э	322.0	t _u	H ₂ O wag
0	1 _h #2	322.0	t _u	H ₂ O wag
		322.0	t _u	H ₂ O wag
		355.0	ag	
		185.2	a_{g}	
		267.1	ag	
	D	282.2	b_{3u}	H ₂ O wag
	D_{2h}	282.2	b_{2u}	H ₂ O wag
		345.4	b_{2u}	H ₂ O wag
		349.8	ag	

n	Point Group	Freq. (cm ⁻¹)	Irr. Rep. Symm.	Mixing
1	Cs	524.4	a'	H ₂ O wag
	D	444.2	ag	
2	D _{2h}	587.2	b _{1u}	
	Ca	443.1	a_1	
	C_{2v}	585.8	b ₂	
	C ₂	425.8	a	
	02	565.6	b	
		456.5	a ₁ '	
	D _{3h}	549.8	e'	
		550.0	e'	
		394.3	a_1	
3	D ₃	427.8	e	
		427.8	e	
		432.4	a	H_2O wag
	C ₃	478.2	e	H_2O wag
		478.3	e	H ₂ O wag
	C ₂ #1	367.6	b	H ₂ O wag
		389.7	a	H_2O wag
		395.4	a	
		445.8	b	
		358.0	a	H ₂ O wag
	C #2	406.9	a	H_2O wag
4	C ₂ #2	411.0	b	H_2O wag
		424.4	b	H_2O wag
		368.7	a'	H ₂ O wag
	G	401.5	a'	H_2O wag
	Cs	425.8	a''	H_2O wag
		430.3	a'	H_2O wag
		275.2	a	2 0
		356.5	b a	H ₂ O wag
	C_2	359.1	a	H_2O wag
	02	378.8	a	1120 1148
		413.3	b	H ₂ O wag
5		275.1	2.	<u>/</u> <u>/</u>
		356.5	h_{1}	H ₂ O wag
	Car	359.0		H_2O wag
		378.7		1120 mug
		413.2	b ₁	H ₂ O wag

<u>Table 3A.6</u>: Vibrational stretching frequencies of stable geometries of $[Ni(H_2O)_n]^{2+}$, where n=1 – 6, calculated at B3LYP/6-31+G*.

	T _h #1	191.4 209.6 265.0 272.4 303.6 318.4	е _g е _g t _u t _u t _u	H ₂ O wag H ₂ O wag H ₂ O wag
6	T _h #2	258.9 258.9 350.3 351.2 351.2 351.2	e_g e_g a_g t_u t_u t_u	H2O wag H2O wag H2O wag
	D _{2h}	$ \begin{array}{r} 154.8\\ 248.0\\ 256.6\\ 265.4\\ 328.4\\ 346.5\\ 362.6\\ 401.0\\ \end{array} $	$egin{aligned} & a_g & & & \ & b_{3u} & & & \ & a_g & & & \ & b_{2u} & & & \ & b_{2u} & & & \ & b_{2u} & & & \ & a_g & & & \ & b_{1u} & & & \ & b_{1u} & & b_{1u} & & \ & b_{1u} & & b_{1$	$ m H_2O$ wag $ m H_2O$ wag

<u>Figure 3A-1</u>: Simulated polarized Raman spectra for $[Ni(H_2O)_n]^{2+}$, where n=1-6

			Total Energy (Hartrees)					
n	n m Point Group		HF	MP2	B3LYP	\mathbf{C} -PCM [†]		
1	0	$C_{\infty v}$ #1	-1965.884361	-1966.19764	-1968.057802	-1968.285348		
1	U	C _{∞v} #2	-1965.884361	-1966.19764	-1968.057144	-1968.283182		
		C_{2v}	-2041.9665359	-2042.4833722	-2044.5510704			
1	1	C _s #1	-2041.9922628	-2042.5021509	-2044.5512728	-2044.720267		
1	1	C _s #2	-2041.9901332	-2042.4194259	-2044.5684609			
		C ₁	-2041.9019069	-2042.4194259	-2044.5685071	-2044.737069		
		C_{2v}	-2118.0354508	-2118.743896	-2121.0130535	-2121.169272		
1	2	Cs	-2118.0354504	-2118.743896	-2121.0474062			
		C ₁	-2118.0719511	-2118.7819982	-2121.0501868	-2121.186794		
1	2	C ₃	-2194.1408265	-2195.0510299	-2197.5192907			
1	3	C_1	-2194.1408523	-2195.05103	-2197.5193688	-2197.638896		
		C_4	-2270.1810505	-2271.2850097	-2273.9571295	-2274.092667		
1	4	C_2	-2270.1936202	-2271.3032993	-2273.9774761	-2274.101670		
		C_1	-2270.1936199	-2271.3032993	-2273.977544	-2274.102898		
1	F	C_2	-2346.2473016	-2347.5558748	-2350.4328404			
1	Э	C_1	-2346.2473016	-2347.5559681	-2350.4327465	-2350.554839		
2	0	$D_{\infty h}$ #1	-2425.666213	-2426.136892	-2428.646861	-2428.699499		
2		$D_{\infty h}$ #2	-2425.743116	-2426.214835	-2428.667267	-2428.695876		
2	1	C_{2v}	-2501.8039684	-2502.4640566	-2505.1072273			
2	1	C_1	-2501.8064892	-2502.4704149	-2505.1210337	-2505.157899		
2	2	C_{2v}	-2577.8573807	-2578.7182479	-2578.7182479	-2581.609313		
2	2	C_{3h}	-2653.851715	-2654.9020493	-2657.9646699			
2	3	C_1	-2653.8984113	-2654.9592091	-2658.017955	-2658.048699		
		cis-C ₂	-2729.9326862	-2731.195399	-2734.4610234	-2734.497656		
		cis-C ₁	-2729.9229515	-2731.1869407	-2734.4542947	-2734.497876		
2	4	trans- C _{4h}	-2729.939175	-2731.2016	-2734.463343	-2734.506911		
	4	trans- C ₂	-2729.934947	-2731.19616	-2734.458202	-2734.50354		
		trans- C ₁	-2729.939175	-2731.2016	-2734.463151	-2734.507602		
		D _{3h}	-2885.35664	-2885.960392	-2888.994213	-2889.089456		
2	0	C_{2v}	-2885.38723	-2885.9933925	-2889.029186	-2889.089058		
5	U	Cs	-2885.3748156	-2885.9955507	-2889.0340637	-2889.112569		
		C_1	-2885.3441753	-2885.9687215	-2889.0213546	-2889.091440		
2	1	Cs	-2961.4276848	-2962.2336031	-2965.4744365			
3	1	C_1	-2961.4276847	-2962.23361	-2965.4744329	-2965.548567		

<u>Table 3A.7</u>: Total energies for all stable geometries of $[NiCl_n(H_2O)_m]^{2-n}$, where n=1-4, m=0-(6-n).

2	2	C _{2v}	-3037.4482676	-3038.4506277	-3041.8998775	
5		C1	-3037.4609235	-3038.4674474	-3041.9150537	-3041.992615
		fac-C _{3v}	-3113.4890229	-3114.6994586	-3118.3546164	-3118.434093
3	3	fac-C ₁	-3113.4890229	-3114.6994558	-3118.3546002	-3118.435810
		mer-C ₁	-3113.488086	-3114.697826	-3118.3508	-3118.437062
4	0	T_{d} #1	-3344.854000	-3345.589235	-3349.211157	-3349.491459
4		T _d #2	-3344.861014	-3345.599857	-3349.224403	-3349.502449
4	1	C _{2v} [3+2]	-3420.846244	-3421.797304	-3425.669942	-3425.908713
4	2	C _{2v} [4+2]	-3496.946267	-3498.087819	-3502.136855	-3502.37884

NOT Stable [†]Total free energy in solution at 25°C, CPCM-B3LYP/6-31+G*//B3LYP/6-31+G*

			Optimized Ni-O and Ni-Cl Bond Lengths (Å)					
			HF/6-	31+G*	MP2/6	-31+G*	B3LYP/	6-31+G*
n	m	Point Group Symmetry	Ni-Cl	Ni-O	Ni-Cl	Ni-O	Ni-Cl	Ni-O
1	0	C _{∞v} #1	2.106	N/A	2.045	N/A	2.055	N/A
1	0	C _{∞v} #2	2.106	N/A	2.045	N/A	2.024	N/A
		C_{2v}	2.111	1.992				
1	1	C _s #1	2.122	1.977	2.072	1.944	2.076	1.966
1	1	C _s #2	2.114	1.977	2.069	1.964		
		C ₁	2.117	2.017	2.069	1.964	2.034	1.926
		C_{2v}	2.153	2.093	2.091	2.056	2.106	2.063
1	2	Cs	2.153	2.092 2.092	2.092	2.056 2.056		
		C_1	2.151	2.031 2.031	2.079	2.006 1.973	2.071	2.028 1.965
		C ₃			2.109	2.037		
1	1 3	C ₁		2.072		2.037		2.056
1			2.184	2.068	2.109	2.037	2.105	2.057
				2.077		2.037		2.052
		C_4					2.141	2.181
		C_2	2.263	2.115 2.115	2.204	2.063 2.063	2.243	2.072 2.071
1	4	C ₁	2.262	2.115 2.115 2.115 2.115 2.115	2.204	2.063 2.063 2.063 2.063	2.240	2.071 2.072 2.072 2.072
		C ₂	2.321	2.152 2.145 2.145				
1	5	C ₁	2.321	2.152 2.145 2.152 2.145 2.145 2.145	2.251	2.096 2.103 2.109 2.089 2.095	2.290	2.107 2.137 2.116 2.101 2.107
n	0	$D_{\infty h}$ #1	2.165	N/A	2.111	N/A	2.136	N/A
	U	$D_{\infty h}$ #2	2.157	N/A	2.080	N/A	2.074	N/A
		C_{2v}	2.212	2.110	2.153	2.038		
2	1	C ₁	2.209 2.209	2.072	2.139 2.139	2.139	2.143 2.143	2.042
2	2	$\overline{C_{2v}}$	2.259	2.096	2.191	2.044	2.213	2.047

<u>Table 3A.8</u>: Ni-Cl and Ni-O bond lengths for stable geometries of $[NiCl_n(H_2O)_m]^{2-n}$, where n=1-4, m=0-(6-n).

		C _{3h}	2.312	2.311				
2	3	C ₁	2.321 2.327	2.172 2.131 2.107	2.241 2.258	2.122 2.082 2.061	2.253 2.310	2.132 2.096 2.091
		cis-C ₂	2.400	2.162 2.194	2.314	2.113 2.134	2.363	2.126 2.152
		cis-C ₁	2.417 2.417	2.169 2.169 2.142 2.142	2.338 2.338	2.113 2.115 2.093 2.094	2.374 2.374	2.134 2.134 2.122 2.122
2	4	trans-Cab	2 387	2.159	2 307	2.104	2 343	2.122
		trans-C ₂	2.386	2.159	2.307	2.104	2.343	2.122
		trans-C ₁	2.387 2.386 2.387	2.159 2.159 2.159 2.159 2.159	2.307 2.307 2.307	2.104 2.104 2.104 2.104 2.104	2.340 2.340	2.122 2.120 2.120 2.121 2.121
		D _{3h}	2.304	N/A	2.234	N/A	2.250	N/A
	0	C _{2v}	2.282 2.291	N/A		N/A	2.242 2.211	N/A
3		Cs	2.302 2.274	N/A	2.202 2.203	N/A	2.209 2.208	N/A
		C ₁	2.255 2.255 2.255	N/A	2.159 2.159 2.159	N/A	2.181 2.181 2.181	N/A
		Cs	2.309 2.346	2.177				
3	1	C ₁	2.309 2.346 2.346	2.176	2.221 2.274 2.272	2.123	2.232 2.306 2.306	2.144
		C_{2v}	2.311 2.476	2.284				
3	2	C ₁	2.377 2.426 2.377	2.219 2.219	2.289 2.340 2.288	2.161 2.160	2.330 2.368 2.330	2.175 2.174
		fac-C _{3v}	2.486	2.233	2.390	2.172	2.439	2.191
3	3	fac-C ₁	2.485 2.486 2.486	2.219 2.219	2.388 2.390 2.394	2.161 2.160	2.440 2.440 2.440	2.175 2.174
		C ₁ [5+1]	2.426 2.426	2.129 2.207 2.208	2.336 2.336	2.051 2.122 2.123	2.378 2.378	2.061 2.134 2.134

4	0	T _d #1	2.449	N/A	2.365	N/A	2.400	N/A
		T _d #1	2.434	N/A	2.344	N/A	2.376	N/A
4	1	C _{2v} [3+2]	2.256	1.920	2.166	1.858	2.242	1.882
4	2	C _{2v} [4+2]	2.332	2.075	2.251	2.029	2.281	2.037

n	m	Point Group Symmetry	Freq. (cm ⁻¹)	Irr. Rep. Symm.	Cl/H ₂ O	Mixing
1	0	C _{∞v} #1	474.5	σ_{g}	Cl	
1	1	C #1	385.5	a'	Cl/H ₂ O	
1	1	$C_s #1$	519.4	a'	Cl/H ₂ O	
			358.6	a	Cl/H ₂ O	
1	2	C_1	370.9	а	H_2O	
			468.8	а	Cl/H ₂ O	H ₂ O rock
			327.7	a	H ₂ O	H ₂ O wag
1	2	C	336.9	а	H_2O	H_2O wag
1	3	C_1	342.5	а	H_2O	H_2O wag
			429.1	а	Cl	H_2O wag
			254.1	a	H ₂ O	H ₂ O twist
			306.0	а	H_2O	H ₂ O twist
1	4	C	316.9	а	H_2O	H ₂ O twist
1	4	C_2	334.2	b	H_2O	H ₂ O twist
			334.2	b	H_2O	H ₂ O twist
			363.5	а	Cl	H ₂ O rock
			225.9	a	Cl/H ₂ O	H ₂ O twist
			234.7	а	Cl/H ₂ O	H ₂ O twist
1	5	C	286.6	b	H_2O	H_2O wag
1	Э	C_2	308.1	b	H_2O	H ₂ O wag
			308.6	а	H_2O	H ₂ O twist
			333.9	а	Cl/H ₂ O	H ₂ O twist
2	0	D #2	340.0	$\sigma_{ m g}$	Cl	
2	U	$D_{\infty h} # \Delta$	497.9	σ_{u}	Cl	
			322.3	a	Cl/H ₂ O	
2	1	C_1	334.1	а	H_2O	
			443.6	а	Cl	H ₂ O rock
			301.8	a ₁	Cl/H ₂ O	
2	2	C	318.7	b_1	H_2O	
2	2	C_{2v}	320.3	a_1	H_2O	
			397.5	b_2	Cl	H ₂ O twist
			220.3	a	Cl/H ₂ O	
			292.5	a	Cl/H ₂ O	
2	2	C	305.4	а	H_2O	H ₂ O rock
	3	C_1	306.9	a	Cl/H ₂ O	H ₂ O rock
			317.2	a	Cl/H ₂ O	H ₂ O wag
			354.8	а	Cl	H ₂ O rock

<u>Table 3A.9</u>: Ni-O and Ni-Cl vibrational stretching frequencies of $[NiCl_n(H_2O)_m]^{2-n}$, where n=1-4, m=0-(6-n) calculated at HF/6-31+G*.

			211.2	ag	Cl/H ₂ O	
			229.8	bg	H ₂ O	
			248.7	a_u	Cl	H ₂ O rock
2	4	trans-C _{4h}	297.0	a_{g}	Cl/H ₂ O	
			299.8	eu	H ₂ O	H ₂ O wag
			299.8	eu	H ₂ O	H ₂ O wag
			312.7	a_u	Cl	H ₂ O rock
			284.1	a_1	Cl	
3	0	C_{2v}	344.6	a_1	Cl	
			345.4	b ₂	Cl	
			249.7	a'	Cl/H ₂ O	
2	1	C	283.0	a'	Cl/H ₂ O	
3	1	C_{s}	298.9	a''	Cl	H ₂ O rock
			330.4	a'	Cl/H ₂ O	
			178.4	a	Cl/H ₂ O	
			247.6	а	Cl/H ₂ O	
3	2	C_1	251.8	а	Cl	H ₂ O rock
			274.6	а	Cl/H ₂ O	
			295.8	а	Cl	H ₂ O rock
			198.4	e	Cl/H ₂ O	
			198.4	e	Cl/H ₂ O	
3	3	fac	211.7	a_1	Cl/H ₂ O	
3	3	Tac-C _{3v}	260.8	e	Cl/H ₂ O	
			260.8	e	Cl/H ₂ O	
			278.9	a_1	Cl/H ₂ O	
			228.6	t_2	Cl	
4	0	т. #2	230.8	e	Cl	
4	U	1 _d #2	230.8	e	Cl	
			232.8	a_1	Cl	
			313.0	a ₁	Cl	
4	1	C _{2v} [4+1]	365.8	b_1	Cl	H_2O wag
			524.8	a ₁	H ₂ O	
			284.7	a ₁	Cl	
Λ	\mathbf{r}	$\mathbf{C}_{\mathbf{r}}$ [4+2]	309.0	b ₂	Cl	H ₂ O rock
4		C_{2v} [4+2]	334.1	b_1	H ₂ O	
			386.3	a_1	H_2O	

n	m	Point Group Symmetry	Freq. (cm ⁻¹)	Irr. Rep. Symm.	Cl/H ₂ O	Mixing
1	0	C _{∞v} #1	487.5	σ_{g}	Cl	
1	1	C #1	398.5	a'	Cl/H ₂ O	
1	1	$C_s #1$	537.9	a'	Cl/H ₂ O	
			382.0	a	Cl/H ₂ O	
1	2	C_1	389.5	a	H_2O	
			459.2	a	Cl	
			354.4	e	H ₂ O	
1	2	C	354.4	e	H_2O	
1 3	3	C_3	359.4	a	Cl/H ₂ O	
			461.7	a	Cl/H ₂ O	H ₂ O wag
			280.6	a	H ₂ O	H ₂ O twist
			341.9	a	Cl/H ₂ O	H ₂ O twist
1	4	C_2	369.4	b	H_2O	H ₂ O rock
			369.5	b	H_2O	H ₂ O rock
			382.2	a	Cl/H ₂ O	H ₂ O rock
			248.7	a	Cl/H ₂ O	H ₂ O rock
			251.3	a	H_2O	H ₂ O twist
			277.6	a	Cl/H ₂ O	H_2O wag
			284.3	a	H_2O	H ₂ O twist
1	5	C_1	315.6	a	H_2O	H_2O wag
			333.3	a	H_2O	_
			341.9	a	H_2O	H ₂ O rock
			353.6	a	Cl/H ₂ O	H ₂ O rock
			373.0	a	Cl/H ₂ O	H ₂ O rock
\mathbf{r}	0	D #2	353.7	$\sigma_{\rm g}$	Cl	
2	0	$D_{\infty h} # Z$	526.8	σ_{u}°	Cl	
			340.6	a	Cl	
2	1	C_1	365.5	a	H_2O	
			471.3	a	Cl	H ₂ O rock
			323.5	a ₁	Cl	
2	2	C	353.8	b ₁	H_2O	
2	2	C_{2v}	356.6	a_1	H_2O	
			423.4	b ₂	Cl	H ₂ O twist
			248.2	a	Cl/H ₂ O	
			315.6	a	Cl/H ₂ O	
2	3	C_1	338.6	a	H_2O	H ₂ O rock
			349.3	a	H_2O	H ₂ O rock
			381.1	a	Cl/H ₂ O	H ₂ O rock

<u>Table 3A.10</u>: Ni-O and Ni-Cl vibrational stretching frequencies of $[NiCl_n(H_2O)_m]^{2-n}$, where n=1 – 4, m=0 – (6-n) calculated at MP2/6-31+G*.

			239.6	ag	Cl/H ₂ O	
			260.0	bg	H_2O	
2	4	trans C.	320.8	ag	Cl/H ₂ O	
2	4	uans-C _{4h}	335.3	eu	H_2O	
			335.3	eu	H_2O	
			341.4	a _u	Cl	H ₂ O rock
			304.4	a'	Cl	
3	0	C_s	381.3	a''	Cl	
			381.5	a'	Cl	
			276.3	a	Cl/H ₂ O	
2	1	C	305.1	a	Cl/H ₂ O	
3	1	C_1	323.9	a	Cl	H ₂ O rock
			366.0	a	Cl/H ₂ O	H ₂ O wag
			208.7	a	Cl/H ₂ O	
			282.2	a	H_2O	
3	2	C_1	285.9	а	Cl	H ₂ O rock
			298.6	а	Cl/H ₂ O	
			335.8	a	Cl/H ₂ O	H ₂ O rock
			224.3	e	Cl/H ₂ O	
			224.4	e	Cl/H ₂ O	
2	2	C	247.0	a_1	Cl/H ₂ O	
3	3	C_{3v}	294.6	e	Cl/H ₂ O	H ₂ O rock
			294.6	e	Cl/H ₂ O	H ₂ O rock
			306.6	a_1	Cl/H ₂ O	
			247.4	t ₂	Cl	
1	0	т #Э	258.2	e	Cl	
4	U	1 _d #2	258.3	e	Cl	
			266.0	a_1	Cl	
			336.2	a ₁	Cl	
4	1	C _{2v} [4+1]	398.9	b ₁	Cl	
			587.3	a_1	H_2O	
			272.7	a ₁	Cl	
			305.1	a_1	Cl	
4	2	C _{2v} [4+2]	343.5	b ₂	Cl	H ₂ O rock
			369.8	b_1	H_2O	
			415.9	a1	H ₂ O	

n	m	Point Group Symmetry	Freq. (cm ⁻¹)	Irr. Rep. Symm.	Cl/H ₂ O	Mixing
1	0	C _{∞v} #1	452.2	σ_{g}	Cl	
1	1	C	391.8	a	Cl/H ₂ O	
1	1	C_1	526.6	а	Cl/H ₂ O	
			363.8	a	Cl/H ₂ O	H ₂ O wag
1	2	C	367.9	а	H_2O	H ₂ O wag
1	2	C_1	376.0	а	Cl/H ₂ O	H ₂ O wag
			485.2	а	Cl/H ₂ O	H ₂ O wag
			325.5	а	H_2O	
1	3	C	332.3	а	H_2O	
1	5	C_1	346.9	а	Cl/H ₂ O	
			400.6	а	Cl/H ₂ O	
			267.7	а	H_2O	
			320.7	а	Cl/H ₂ O	H ₂ O rock
1	4	C_1	353.3	а	Cl/H ₂ O	
			354.3	а	H_2O	
			354.5	a	H ₂ O	
			234.6	а	Cl/H ₂ O	H ₂ O twist
			239.3	а	Cl/H ₂ O	H ₂ O rock
			252.3	a	H_2O	H_2O wag
			269.2	a	H_2O	H ₂ O twist
1	5	C_1	299.9	a	H_2O	H_2O wag
			307.4	a	Cl/H ₂ O	H ₂ O rock
			324.4	a	Cl/H ₂ O	H ₂ O rock
			332.7	а	Cl/H ₂ O	H ₂ O rock
			343.7	a	Cl/H ₂ O	H ₂ O rock
2	0	D + #2	352.3	$\sigma_{ m g}$	Cl	
2	U	$\mathbf{D}_{\infty n}$ in \mathbf{Z}	514.1	σ_{u}	Cl	
			327.7	a	Cl/H ₂ O	
2	1	C_1	351.0	а	H_2O	
			446.6	a	Cl	H ₂ O rock
			301.9	a_1	Cl	
2	2	Car	345.8	b_1	H_2O	
2	2	C_{2V}	349.0	a_1	H_2O	
			389.4	b ₂	Cl	H ₂ O twist
			234.5	a	Cl/H ₂ O	
			289.1	a	Cl/H ₂ O	H ₂ O rock
2	3	C	313.8	a	Cl/H ₂ O	
4		\sim_1	324.6	a	H ₂ O	H ₂ O rock
			340.8	a	Cl/H ₂ O	H ₂ O rock
			356.3	a	Cl/H ₂ O	H ₂ O rock

<u>Table 3A.11</u>: Ni-O and Ni-Cl vibrational stretching frequencies of $[NiCl_n(H_2O)_m]^{2-n}$, where n=1 – 4, m=0 – (6-n) calculated at B3LYP/6-31+G*.

			217.3	ag	Cl/H ₂ O	
			244.8	bg	H ₂ O	
2	1	trong C.	308.7	a_{g}	Cl/H ₂ O	
2	4	uans-C _{4h}	313.1	eu	H ₂ O	
			313.1	eu	H ₂ O	
			313.6	a_u	Cl	H ₂ O rock
			290.9	a'	Cl	
3	0	C_s	353.4	a'	Cl	
			354.9	a''	Cl	
			249.0	a	Cl/H ₂ O	
2	1	C	287.6	а	Cl/H ₂ O	
3	1	C_1	290.3	а	Cl/H ₂ O	
			337.9	а	Cl/H ₂ O	
			187.7	a	Cl/H ₂ O	
			257.5	а	Cl	H ₂ O rock
3	2	C_1	258.6	а	Cl/H ₂ O	
		-	285.8	а	Cl/H ₂ O	H ₂ O rock
			288.1	а	Cl	H_2O rock
			207.7	е	Cl/H ₂ O	H ₂ O twist
			207.7	e	Cl/H ₂ O	H ₂ O twist
2	2	for C	219.6	a_1	Cl/H ₂ O	
3	3	$1ac-C_{3v}$	269.5	e	Cl/H ₂ O	
			269.5	e	Cl/H ₂ O	
			289.5	a_1	Cl/H ₂ O	
			215.4	t ₂	Cl	
4	0	T #2	215.4	e	Cl	
4	U	1 _d #2	225.6	e	Cl	
			229.1	a_1	Cl	
			283.0	a ₁	Cl	
4	1	C _{2v} [4+1]	318.1	b_1	Cl	
			484.2	a_1	H_2O	
			256.6	a ₁	Cl	
			288.2	a_1	Cl	
4	2	C _{2v} [4+2]	301.8	b ₂	Cl	H ₂ O rock
			350.9	b_1	H_2O	
			400.2	a1	H ₂ O	

<u>Figure 3A-2</u>: Simulated polarized Raman spectra for $[NiCl_n(H_2O)_m]^{2-n}$, where n=1-4, m=0-(6-n).

Figure 3A-2: (continued)

				Total Energy	(Hartrees)	
n	m	Point Group	HF	MP2	B3LYP	C-PCM [†]
1	0	Cs	-1581.78617830	-1582.16967900	-1583.65042140	-1583.88114
1	1	C_s	-1657.81305360	-1658.32815520	-1660.18132620	-1660.33638
1	1	C_1	-1657.91671820	-1658.49799460	-1660.18131800	-1660.335834
1	2	C_1	-1733.99233290	-1734.77048430	-1736.65473950	-1736.791805
1	3	C_1	-1810.05859060	-1811.03292560	-1813.11748700	-1813.235109
1	4	C_1	-1886.11180130	-1887.28411630	-1889.57392140	-1889.686223
1	5	C_1	-1962.16179380	-1963.53395880	-1966.02500970	-1966.136391
		C _{2v} #1	-1657.3901886	-1657.9604689	-1659.8605198	
2	0	C _{2v} #2	-1657.39765820	-1658.16230100	-1659.83694020	-1659.887261
		C_2	-1657.58540680	-1658.18519690	-1659.86288260	-1659.888691
2	1	C_s	-1733.59122830	-1734.43101770	-1736.3092134	
	1	C_1	-1733.63240700	-1734.42940340	-1736.23910850	-1736.342056
2	2	C_1	-1809.67542070	-1810.66730370	-1812.75031400	-1812.774219
2	3	C_1	1885.71102810	-1886.90144590	-1889.1908982	-1889.215298
n	4	C ₁ [5+1]	-1961.75162320	-1963.14136190	-1965.63786960	-1965.663983
2	4	cis-C ₁	-1961.747273	-1963.140185	-1965.633098	-1965.663156
2	0	C ₃	-1733.08091690	-1733.89079280	-1735.76625560	-1735.868499
3	U	C_1	-1733.07935930	-1733.88972640	-1735.76510580	-1735.867483
2	1	C _s [3+1]	-1809.1186792	-1810.1297168	-1812.2167927	
3	1	C ₁ [3+1]	-1809.12613230	-1810.13365490	-1812.21986650	-1812.313077
3	2	$C_{1}[4+1]$	-1885.16276240	-1886.37012630	-1888.65896070	-1888.749692
		fac-C _{3v} #1	-1961.1970624	-1962.60878990	-1965.1021487	
3	3	C _{3v} #2 [3+3]	-1961.20388760	-1962.60653600	-1965.11598350	-1965.195615
		C ₃ [3+3]	-1961.20388760	-1962.59328140	-1965.11599650	-1965.195644
1	0	\mathbf{S}_4	-1808.39030340	-1809.41385370	-1811.48410740	-1811.809330
4	U	C_2	-1808.39157600	-1809.41540790	-1811.48645920	-1811.812296
4	1	$C_{2}[4+1]$	-1884.45643380	-1885.67915860	-1887.96030300	-1888.262316
4	2	C ₂ [4+2]	-1960.51677980	-1961.93801130	-1964.43020740	-1964.710782
<u> </u>						

<u>Table 3A.12</u>: Total energies for all stable geometries of $[Ni(OH)_n(H_2O)_m]^{2-n}$, where n=1-4, m=0-(6-n).

NOT Stable [†]Total free energy in solution at 25°C, CPCM-B3LYP/6-31+G*//B3LYP/6-31+G*

			Optimized Ni-O Bond Lengths (Å)						
			HF/6-3	31+G*	MP2/6	-31+G*	B3LYP/	6-31+G*	
n	m	Symmetry	OH	H ₂ O	OH	H ₂ O	OH	H ₂ O	
1	0	Cs	1.752	N/A	1.734	N/A	1.768	N/A	
1	1	Cs	2.118	2.244	2.051	2.150	1.696	1.915	
1	1	C_1	1.740	1.969	1.708	1.918	1.693	1.915	
1	2	C	1 702	2.022	1 751	1.956	1 745	1.953	
1	2	C_1	1.792	2.039	1./51	2.024	1.745	2.051	
				2.069		2.030		2.040	
1	3	C_1	1.814	2.091	1.791	2.062	1.780	2.084	
				2.086		2.046		2.071	
				2.111		2.087		2.115	
1	1	C	1 856	2.098	1 826	2.071	1 9 1 1	2.099	
1	4	C_1	C_1	1.650	2.150	1.620	2.115	1.011	2.140
				2.164		2.100		2.113	
				2.162		2.105		2.118	
		C_1		2.149		2.094		2.110	
1	1 5		C_1	1.918	2.136	1.926	2.090	1.936	2.116
				2.173		2.113		2.126	
				2.170		2.119		2.138	
2	0	C _{2v} #2	1.770	N/A	1.763	N/A	1.763	N/A	
2	U	C ₂	1.790	N/A	1.761	N/A	1.730	N/A	
		Cs	1.815	2.077	1.799	2.060			
2	1	C1	1.836	2 1 5 6	1.782	2 1 1 2	1.786	2 077	
			1.812	2.130	1.811	2.112	1.751	2.077	
2	2	C	1.877	2.151	1.860	2.104	1.841	2.138	
2	2	Cl	1.881	2.180	1.863	2.134	1.837	2.205	
			1 940	2.213	1 950	2.157	1 953	2.238	
2	3	C_1	1.910	2.217	1.930	2.157	1.933	2.176	
			1.075	2.260	1.071	2.191	1.012	2.216	
		C.	1 925	2.171	1 924	2.105	1 933	2.109	
		[5+1]	1.923	2.230	1.924	2.155	1.955	2.179	
		[3+1]	1.752	2.168	1.757	2.102	1.700	2.104	
2	4			2.212		2.141		2.171	
		cis-C1	1.988	2.204	1.996	2.137	2.000	2.163	
		$c_{1S}-C_{1}$	1.976	2.182	1.981	2.118	1.987	2.138	
				2.268		2.187		2.218	
		C ₃	1.913	N/A	1.886	N/A	1.873	N/A	
3	0		1.932		1.869		1.844		
3		C_1	1.907	N/A	1.927	N/A	1.944	N/A	
			1.902		1.862		1.843		

<u>Table 3A.13</u>: Ni-O bond lengths, in Angstroms, for energy minimum structures of $[Ni(OH)_n(H_2O)_m]^{2-n}$, where n=1 – 4, m=0 – (6-n).

			1.917		1.892		1.886	
3	1	$C_{1}[3+1]$	1.911		1.885		1.873	
			1.902		1.869		1.847	
			1.971		1.972		1.988	
3	2	$C_{1}[4+1]$	1.916	2.300	1.887	2.197	1.868	2.213
			1.967		1.954		1.955	
		C3v#1			2.017	2.268		
3	3	C _{3v} #2[3+3]	1.909		1.879		1.866	
		C3[3+3]	1.909		1.839		1.866	
		S_4	2.043	N/A	2.016	N/A	2.013	N/A
4	0	C	2.050		2.028		2.041	
		C2	2.030	IN/A	1.997	IN/A	1.979	IN/A
4	1	C [4, 1]	2.041		2.013		2.016	
4	1	$C_{2[4+1]}$	2.026		1.997		1.994	
4 2		2.029		2.009		2.017		
4		$C_{2[4+2]}$	2.030		1.997		1.985	

n	m	Point Group Symmetry	Freq (cm ⁻¹)	Irr. Rep. Symm.	OH/H ₂ O	Notes
1	0	Cs	850.8	a'	OH	
1	1	C	422.9	a'	H ₂ O	
1	1	C_1	808.6	a'	OH	
			358.4	a	H ₂ O	H ₂ O wag
			380.2	а	H ₂ O	H ₂ O wag
1	2	C	385.3	а	H ₂ O	H ₂ O wag
1	2	C_1	670.6	а	OH	H ₂ O rock
			688.4	а	OH	H ₂ O rock
			736.6	а	OH	H ₂ O rock
			312.8	а	H ₂ O	
			315.5	а	H ₂ O	H ₂ O twist
			326.7	а	H ₂ O	H ₂ O wag/twist
1	3	C1 #1	352.7	а	H ₂ O	
			360.1	а	H ₂ O	H ₂ O wag/twist
			673.7	а	OH	H ₂ O rock
			703.6	а	OH	H ₂ O rock
			246.3	а	H ₂ O	H ₂ O twist/rock
			274.3	а	H ₂ O	H ₂ O twist
1	1	C	296.8	а	H ₂ O	H ₂ O twist
1	4	C_1	304.4	а	H ₂ O	H ₂ O twist
			329.3	а	H ₂ O	H ₂ O twist/wag
			635.5	a	OH	H ₂ O twist/rock
			236.0	а	H ₂ O	H ₂ O twist
			242.9	а	H ₂ O	H ₂ O twist
			265.8	а	H ₂ O	H ₂ O twist
			287.7	а	H ₂ O	H ₂ O twist
1	5	C	304.3	а	H ₂ O	H ₂ O twist/wag
1	5		306.6	a	H_2O	H ₂ O twist
			529.7	a	OH	H ₂ O wag/twist
			570.6	a	OH	H ₂ O rock
			579.9	a	OH	H ₂ O rock
			588.0	a	OH	H ₂ O rock
2	0	C	611.9	а	OH	
2	U	C ₂	784.3	b	OH	
			278.9	а	H ₂ O	H ₂ O twist
			289.6	a	H ₂ O	H ₂ O twist
2	2 1	C_1	583.5	a	OH	H ₂ O rock
			685.4	а	OH	H ₂ O twist
			730.2	a	OH	H ₂ O rock

<u>Table 3A.14</u>: Ni-O vibrational stretching frequencies, in wavenumbers, calculated at $HF/6-31+G^*$ for minimum energy structures of $[Ni(OH)_n(H_2O)_m]^{2-n}$, where n=1-4, m=0-(6-n).

			272.6	а	H ₂ O	
2	•	G	291.1	а	H ₂ O	
2	2	C_1	543.7	а	OH	H ₂ O wag
			630.8	а	OH	H ₂ O wag/twist
			208.5	а	H ₂ O	
			244.5	а	H ₂ O	
		G	249.5	а	H ₂ O	
2	3	C_1	283.9	а	H ₂ O	
			508.1	а	OH	H ₂ O rock
			597.4	a	OH	H ₂ O wag
			193.4	а	H ₂ O	2 0
			218.7	а	H ₂ O	
			270.1	а	H ₂ O	H ₂ O rock
		C_1	284.3	а	H ₂ O	H_2O rock
2	4	[5+1]	288.2	а	H ₂ O	H_2O rock
			474.6	а	OH	H ₂ O rock/wag
			490.5	а	OH	H ₂ O rock
			569.9	а	OH	H_2O rock/twist
			509.4	а	OH	2
3	0	C_3	540.3	е	OH	
		0,5	540.3	е	OH	
		C ₁	511.4	а	OH	
2			522.9	а	OH	H ₂ O rock
3	1	[3+1]	548.4	а	OH	H_2O rock
			566.9	а	OH	H_2O rock
	2	C ₁ [4+1]	213.7	а	H ₂ O	-
3			459.1	а	OH	H ₂ O rock
			484.7	а	OH	H_2O rock
			530.9	а	OH	H_2O rock
				а	OH	
			506.1	a ₁	OH	
3	3	C_{3v} #2	542.0	e	OH	
		[3+3]	542.0	e	OH	
			338.4	а	OH	
4	0	C	375.7	b	OH	
4	0	C_2	403.1	b	OH	
			413.6	а	OH	
			397.4	а	OH	
1	1	C_2	407.5	b	OH	
4	1	[4+1]	451.0	а	OH	
			463.4	b	OH	
			391.2	a	OH	
4	2	2 C ₂ [4+2]	400.4	b	OH	
			444.6	b	OH	
			444.9	а	OH	

n	m	Point Group Symmetry	Freq (cm ⁻¹)	Irr. Rep. Symm.	OH/H ₂ O	Notes
1	0	Cs	864.6	a'	OH	
1	1	C	447.7	а	H ₂ O	
1	1	C_1	811.2	а	OH	
			375.8	а	H ₂ O	
1	2	\mathbf{C}_1	409.7	а	H_2O	
		-	747.0	а	OH	
			328.7	а	H ₂ O	
			353.3	а	H ₂ O	H ₂ O twist
1	3	C	365.3	а	H ₂ O	H ₂ O twist
1	5	\mathbf{C}_1	377.1	а	H_2O	
			667.5	а	OH	H ₂ O twist
			686.2	а	OH	H ₂ O twist
		C ₁	239.6	а	H_2O	
			268.1	а	H_2O	H ₂ O twist
	4		302.3	а	H_2O	H ₂ O twist
1			313.9	а	H ₂ O	H_2O twist
1			327.1	а	H_2O	H ₂ O twist
			352.3	а	H_2O	H ₂ O twist/wag
			356.6	а	H ₂ O	H_2O twist
			632.8	а	OH	H_2O twist
			262.1	а	H ₂ O	
			270.3	а	H_2O	
			302.5	а	H_2O	H ₂ O wag/twist
			323.8	а	H_2O	
1	5	\mathbf{C}_1	334.7	а	H ₂ O	H_2O rock/twist
	-	- 1	337.5	а	H_2O	H_2O wag/twist
			509.0	а	OH	H_2O wag
			538.5	а	OH	H_2O wag/twist
			564.5	а	OH	H_2O rock/twist
	<u> </u>		572.9	a	OH	H ₂ O twist
2	0	C_2	613.2	a	OH	
	_	- 2	/9/.6	b	OH U O	
2	1	Cs	343.8	a'	H_2O	
	1		581.6	a'	OH	
			122.1	a	UH	
			295.7	a	H_2O	
2	2	C_1	313.0	a		
		_	554.2	a	OH	
1		1	618.5	a	UH	H_2O twist

<u>Table 3A.15</u>: Ni-O vibrational stretching frequencies, in wavenumbers, calculated at MP2/6-31+G* for minimum energy structures of $[Ni(OH)_n(H_2O)_m]^{2-n}$, where n=1 - 4, m=0 - (6-n).

			240.1	a	H ₂ O	
			262.0	а	H ₂ O	H ₂ O rock
			281.3	а	H_2O	H ₂ O rock
2	3	\mathbf{C}_1	295.7	а	H_2O	H ₂ O rock
			495.4	а	OH	H ₂ O twist
			580.4	а	OH	H_2O wag
			588.5	а	OH	H ₂ O wag/twist
			210.8	a	H ₂ O	H ₂ O twist
			242.4	а	H_2O	
2	4	C_1	312.2	а	H_2O	H ₂ O twist
2	4	[5+1]	325.7	а	H ₂ O	H ₂ O twist
			467.7	а	OH	H ₂ O wag
			518.0	а	OH	H ₂ O rock/twist
			501.9	а	ОН	
3	0	C_3	540.7	e	OH	
			540.7	e	OH	
		C ₁ [3+1]	500.8	а	OH	
3	1		524.3	а	OH	H ₂ O rock
			558.8	а	OH	H ₂ O rock
		C ₁ [4+1]	247.4	а	H ₂ O	
			439.2	а	OH	H ₂ O rock
3	2		467.5	а	OH	H ₂ O rock
			472.9	а	OH	H ₂ O rock
			535.2	а	OH	H ₂ O wag
2		C _{3v} #1	152.6	e	H ₂ O	
			152.7	e	H_2O	
	3		186.8	a_1	H_2O	
3			431.4	e	OH	
			431.5	e	OH	
			441.8	a_1	OH	
	0	0 C ₂	327.8	а	OH	
4			388.2	b	OH	
4			429.8	b	OH	
			412.0	а	OH	
	1	l C ₂ [4+1]	368.8	а	OH	
4			395.3	b	OH	
4			418.3	а	OH	
			420.0	b	OH	
			384.9	a	OH	
4	2	2 C ₂ [4+2]	396.1	b	OH	
			423.2	b	OH	
			428.1	а	OH	

n	m	Point Group Symmetry	Freq (cm ⁻¹)	Irr. Rep. Symm.	OH/H ₂ O	Notes
1	0	Cs	773.8	a'	OH	
1	1	C	438.8	a'	H ₂ O	
1	1	C_{s}	794.7	a'	OH	
			347.4	a	H ₂ O	
1	2	C_1	401.8	а	H_2O	
			727.1	а	OH	
			292.6	a	H ₂ O	
			333.8	а	H ₂ O	
1	3	C_1	351.9	а	H ₂ O	
			655.2	а	OH	H ₂ O twist
			690.5	а	OH	H ₂ O twist
			252.4	а	H ₂ O	
			268.5	а	H ₂ O	
1	Δ	C	295.4	а	H ₂ O	H ₂ O twist/wag
1	-	\mathbf{c}_1	312.9	а	H ₂ O	H ₂ O twist
			328.0	a	H_2O	
			635.4	a	OH	H ₂ O twist
			202.8	a	H ₂ O	H ₂ O twist
			232.8	а	H ₂ O	H ₂ O twist
			264.7	a	H ₂ O	H ₂ O twist
			256.8	a	H ₂ O	H ₂ O twist
			261.0	a	H ₂ O	
1	5	C_1	281.8	a	H_2O	H_2O wag
			304.3	a	H_2O	
			315.1	a	H ₂ O	H ₂ O twist
			502.9	a	OH	H_2O wag
			529.6	а	OH	H_2O wag
			562.7	a	OH	H ₂ O wag/twist
2	0	Ca	665.2	а	OH	
			821.5	b	OH	
			272.7	а	H ₂ O	H ₂ O rock
			284.2	а	OH	H ₂ O twist
2	1	C_1	589.8	а	OH	H_2O scissor
			697.1	а	OH	H_2O wag
			744.5	a	OH	H_2O scissor
			211.2	a	H_2O	
2	2	C	277.3	a	H ₂ O	
_			544.3	a	OH	H ₂ O twist
			617.6	a	OH	H ₂ O twist

			165.5	a	H ₂ O	
			200.4	а	H ₂ O	
			224.1	а	H_2O	H2O twist
			246.9	а	H2O	
2	3	C_1	278.3	а	H2O	
			282.0	а	H2O	
			495.3	а	OH	H2O wag
			583.0	а	OH	H2O twist
			599.2	а	OH	H2O rock/twist
			215.7	а	H ₂ O	
			233.1	а	H ₂ O	
		C	299.7	а	H ₂ O	
2	4	C_1	308.6	а	H_2O	H2O rock
		[3+1]	313.0	а	H2O	H2O twist
			456.6	а	OH	H2O twist
			511.4	а	OH	H2O twist/rock
			504.1	a	OH	
3	0	C_3	530.9	e	OH	
		_	530.9	e	OH	
		G	500.9	a	OH	
3	1	C_1	511.7	а	OH	H2O rock
		[3+1]	561.2	а	OH	
			191.6	а	H2O	
			226.8	а	H2O	
2	2	C_1	233.3	а	H2O	
3	2	[4+1]	417.4	а	OH	
			461.4	а	OH	
			535.5	а	OH	
		C	498.7	а	OH	
3	3	C_3	539.5	e	OH	
		[5+5]	539.5	e	OH	
			298.1	а	OH	
1	0	C	364.9	b	OH	
4	0	C_2	407.6	b	OH	
			415.5	а	OH	
			351.4	а	OH	
4	1	C_2	380.2	b	OH	
4	1	[4+1]	407.3	b	OH	
			409.6	a	OH	
			370.8	a	OH	
Λ	2	$\begin{array}{c} C_2 \\ [4+2] \end{array}$	376.2	b	OH	
4			420.1	а	OH	
			424.5	b	OH	

<u>Figure 3A-3</u>: Simulated polarized Raman spectra for $[Ni(OH)_n(H_2O)_m]^{2-n}$, where n=1-4, m=0-(6-n).

Figure 3A-3: (continued)

			Total Energies (Hartrees)						
n	m	Point Group	HF	MP	B3LYP	\mathbf{C} -PCM [†]			
1	0	C _{3v}	-1562.0793222	-1562.4182083	-1563.8432339	-1564.468456			
		C _s #1	-1638.3023300	-1638.8405963	-1640.4780228				
1	1	C _s #2	-1638.3023489	-1638.840627	-1640.4780274				
		C_1	-1638.2043510	-1638.749363	-1640.475559	-1640.914623			
1	2	C_s	-1714.3988260	-1715.1367730	-1716.9872854				
1		C ₁	-1714.3988260	-1715.1367730	-1716.9892140	-1717.36066			
1	3	C ₁	-1790.4891710	-1791.4259718	-1793.4831931	-1793.820502			
1	4	Cs	-1866.5591567	-1867.6947717	-1869.9584854	-1870.283644			
1	5	C _s	-1942.6229310	-1943.9577421	-1946.4261030	-1946.741075			
		D _{3d}	-1618.4070224	-1618.9412123	-1620.5602654	-1621.066891			
2	0	D _{3h}	-1618.4069912	-1618.9411844	-1620.5602518	-1621.067631			
		D ₃	-1618.4070224	-1618.4041510	-1620.5602648	-1621.067643			
2	1	C ₂	-1694.5947926	-1695.319691	-1697.1347733	-1697.478974			
2	1	C ₁	-1694.5953200	-1695.3205186	-1697.1347945	-1697.478973			
2	2	Cs	-1770.6788621	-1771.6027431	-1773.6403616	-1773.967627			
2	2	C_2	-1770.6787381	-1771.6027674	-1773.6401977				
2	2	C ₃	-1846.7375238	-1847.8578007	-1850.1028474				
2	3	C_2	-1846.7427819	-1847.8649630	-1850.1097881	-1850.426654			
		C _{2h} (trans)	-1922.8017782	-1924.1229727	-1926.5721979				
		C ₂ #1 (trans)	-1922.8017782	-1924.1229730	-1926.5722223	-1926.881780			
2	4	C ₂ #2 (trans)	-1922.8013714	-1924.1227461	-1926.5715507	-1926.881295			
		C _{2v} (trans)	-1922.8010525	-1924.1221318	-1926.5715171				
		C _s (cis)	-1922.8041127	-1924.1256554	-1926.5752917	-1926.883128			
3	0	C _{3h}	-1674.7418400	-1675.4672144	-1677.2948409				
5	Ŭ	C ₃	-1674.7872156	-1675.5008732	-1677.3174846	-1677.665822			
3	1	C_s	-1750.8673423	-1751.7782977	-1753.7985293				
-	•	C ₁	-1750.8673351	-1751.7783530	-1753.7985539	-1754.115331			
3	2	Cs	-1826.9283469	-1828.0377031	-1830.2640455	-1830.572161			
3	3	fac-C ₃	-1902.9853364	-1904.2934396	-1906.7244602	-1907.025093			
		mer-C ₁	-1902.9831195	-1904.2907497	-1906.7213607	-1907.023271			
4	0	C_{2v}	-1731.0417055	-1731.9413868	-1733.9450110	-1734.24907			
4	1	C_2	-1883.1633175	-1884.4564545	-1886.8678428				
+	1	Cs	-1807.1107778	-1808.2062837	-1810.4143918	-1810.714345			

<u>Table 3A.17</u>: Total energies for the stable geometries of $[Ni(NH_3)_n(H_2O)_m]^{2+}$, where n=1-6, m=0-(6-n).

4	2	C _{2v} (trans)	-1883.1633175	-1884.4564544	-1886.8678428	-1887.163814
		cis-C _s	-1883.1639541	-1884.4575665	-1886.8692235	-1887.164336
5	0	Cs	-1787.2917852	-1788.3725153	-1790.5614495	-1790.856646
5	U	C ₁	-1787.2917852	-1788.3726414	-1790.5613346	-1790.856389
5	1	Cs	-1863.3423715	-1864.6213830	-1867.0136406	
3	I	C ₁	-1863.3423715	-1864.6213811	-1867.0136639	-1867.30392
6	0	Cs	-1843.5200116	-1844.7839792	-1847.1566489	-1847.441755
0	0	C ₁	-1843.5200530	-1844.7840364	-1847.1566413	-1847.442386

NOT Stable [†]Total free energy in solution at 25°C, CPCM-B3LYP/6-31+G*//B3LYP/6-31+G*

			Ni-N and Ni-O Bond Lengths (Å)					
			UE/6	21 . C*	MP	2/6-	B3L	YP/6-
			пг/0	91+G.	31+	-G*	31+	-G*
n	m	Symm.	Ni-N	Ni-O	Ni-N	Ni-O	Ni-N	Ni-O
1	0	C _{3v}	2.044	N/A	2.005	N/A	2.016	N/A
1	1	Cs	2.004	1.938	1.956	1.905		
1	1	C ₁	2.032	1.976	1.976	1.927	1.958	1.870
1	2	C	2 044	2.026	1 000	1.974	1 000	1.965
1	2	C_1	2.044	1.998	1.990	1.962	1.990	1.961
				2.044		2.001		2.006
1	3	C ₁	2.080	2.057	2.017	2.022	2.019	2.024
				2.042		2.001		1.999
				2.068		2.025		2.031
1	4	Cs	2.103	2.087	2.037	2.043	2.044	2.049
				2.136		2.095		2.099
				2.145		2.098		2.109
1	5	Cs	2.137	2.142	2.065	2.097	2.075	2.113
	5			2.144	2.005	2.097	2.075	2.103
				2.149		2.102		2.114
2	0	D ₃	2.036	N/A	1.980	N/A	1.997	N/A
2	U	D _{3d}	2.036	N/A	1.979	N/A	1.997	N/A
2	1	C ₁	2.063	2 027	2.007	1 987	1.985	1 896
	-		2.061	2.027	2.009	1.907	1.985	1.070
2	2	C	2.093	2.067	2.027	2.029	2.035	2.029
	-	08	2.075	2.077	2.027	2.043	2.000	2.046
2	3	C ₂	2.112	2.109	2.047	2.063	2.057	2.074
	0	02		2.174		2.133		2.137
		C_{2h}	2.148	2.196	2.151	2.176		
		(trans)		2.179		2.165		
		C2#1	• • • •	2.197	• • • • •	2.149	• • • •	2.162
		(trans)	2.148	2.196	2.075	2.149	2.090	2.172
2	4	· · ·		2.179		2.135		2.145
		C ₂ #2					2.086	2,170
		(trans)						2.155
		C	2.152	2.174	2.078	2.128	2.087	2.150
		(cis)	2.160	2.180	2.085	2.139	2.007	2.158
	0		2075	2.1/6	2.014	2.132 N/A	2.012	2.141
5	U	C_3	2.075	IN/A	2.014	IN/A	2.013	IN/A
2	1	C	2.116	2 0.92	2.049	2045	2.059	2 0 2 0
5	1	C_1	2.110	2.083	2.049	2.045	2.059	2.038
	1	1	2.104	1	2.045	1	2.033	1

 $\begin{array}{l} \underline{\text{Table 3A.18:}} \\ \text{Optimized Ni-N and Ni-O bond lengths, in Angstroms, for energy} \\ \\ \text{minimum structures of } \left[\text{Ni}(\text{NH}_3)_n(\text{H}_2\text{O})_m\right]^{2^+} \!\!\!\!, \text{ where } n{=}1-6, \\ \\ m{=}0-(6{\text{-}n}). \end{array} \end{array}$

3	2	C	2.127	2.173	2.066	2.128	2.070	2.130
3	2	C_{s}	2.136	2.216	2.058	2.177	2.080	2.188
		fac-C ₃	2.173	2.214	2.096	2.172	2.106	2.198
3	3		2.168	2.216	2.099	2.161	2.105	2.188
5	5	mer-C ₁	2.167	2.232	2.095	2.189	2.105	2.221
			2.180	2.224	2.102	2.175	2.114	2.201
4	0	C	2.124	NI/A	2.060	NI/A	2.068	NI/A
4	0	C_{2v}	2.124	IN/A	2.060	IN/A	2.069	IN/A
			2.155		2.083		2.095	
4	1	Cs	2.143	2.272	2.073	2.246	2.085	2.272
			2.185		2.110		2.120	
		trans-	2.202	2.244	2.128	2.194	2.145	2.221
		C _{2v}	2.202	2.244	2.128	2.196	2.145	2.221
4	2		2.203	2 275	2.122	2 238	2.135	2 280
		cis-C _s	2.192	2.275	2.112	2.230	2.123	2.20
			2.193	2.232	2.116	2.210	2.129	2.230
			2.153		2.083		2.096	
			2.203		2.133		2.149	
5	0	C ₁	2.209	N/A	2.136	N/A	2.154	N/A
			2.206		2.135		2.151	
			2.206		2.134		2.152	
			2.213		2.135			
		С	2.221	2 3 1 7	2.137	2 287		
		C_{s}	2.232	2.317	2.155	2.207		
			2.216		2.139			
5	1		2.216		2.141		2.155	
			2.221		2.137		2.150	
		C ₁	2.232	2.317	2.155	2.285	2.175	2.329
			2.232		2.155		2.175	
			2.213		2.135		2.152	
							2.201	
							2.204	
		Cs					2.204	N/A
							2.200	
							2.195	
6	0		2.254		2.177		2.200	
			2.254		2.175		2.199	
		C_1	2.254	N/A	2.176	N/A	2.198	N/A
		U1	2.254		2.176		2.200	- ,,
			2.254		2.175		2.196	
			2.254		2.176		2.198	

n	m	Point Group Symmetry	Freq. (cm ⁻¹)	Irr. Rep. Symm.	NH ₃ /H ₂ O	Notes
1	0	C _{3v}	480.4	a ₁	NH ₃	
1	1	C #2	441.5	a'	H ₂ O/NH ₃	
1	1	$C_s \# Z$	553.4	a'	H ₂ O/NH ₃	
			385.8	a'	H ₂ O	H ₂ O wag
1	2	C_s	398.2	a'	H ₂ O/NH ₃	
			476.6	a'	H ₂ O/NH ₃	H ₂ O rock
			348.1	a	H ₂ O/NH ₃	
1	2	C	364.0	а	H_2O	
1	3	C_1	377.0	а	H ₂ O/NH ₃	
			418.6	а	H ₂ O/NH ₃	H_2O wag
			249.6	a'	H ₂ O/NH ₃	
			317.2	a''	H ₂ O	H_2O wag
1	4	Cs	322.7	a'	H ₂ O	H ₂ O twist
			351.9	a'	H_2O	
			391.5	a'	H ₂ O/NH ₃	
			232.3	a'	H ₂ O/NH ₃	
			234.5	a'	H ₂ O/NH ₃	
1	5	C	297.9	a''	H ₂ O	H ₂ O wag/twist
1	3	C_{s}	302.9	a'	H ₂ O	H_2O wag
			318.8	a'	H ₂ O	
			358.7	a'	H ₂ O/NH ₃	H_2O wag
2	0	D	410.4	a_{1g}	NH ₃	
2	0	D_{3d}	532.3	a _{2u}	NH ₃	
			378.6	a	H ₂ O/NH ₃	
2	1	C_1	435.7	а	H ₂ O/NH ₃	H_2O wag
			446.4	а	H ₂ O/NH ₃	
			340.8	a'	H ₂ O	
			350.5	a'	H ₂ O/NH ₃	
2	2	Cs	379.6	a'	H ₂ O/NH ₃	
			415.7	a''	NH ₃	H_2O wag
			432.5	a''	NH ₃	H_2O wag
			233.8	a	H ₂ O/NH ₃	
			289.8	b	H ₂ O	
2	2	C	313.2	а	H ₂ O	
2	3	C_2	361.3	a	H ₂ O/NH ₃	
			392.5	b	NH ₃	H ₂ O wag
			441.6	b	NH ₃	H_2O wag

<u>Table 3A.19</u>: Ni-O and Ni-N stretching frequencies, in wavenumbers, calculated at $HF/6-31+G^*$ for minimum energy structures of $[Ni(NH_3)_n(H_2O)_m]^{2+}$, where n=1-6, m=0-(6-n).

			219.4	a'	H ₂ O/NH ₃	H ₂ O twist
			220.0	a'	H ₂ O/NH ₃	
			277.6	a''	H_2O	H ₂ O twist
2	4	cis-C _s	282.9	a"	H_2O	H ₂ O twist
			298.4	a'	H_2O	
			334.4	a'	H ₂ O/NH ₃	H_2O wag
			350.8	a'	NH ₃	_
			423.5	a	NH ₃	
3	0	C_3	459.8	e	NH ₃	
			459.8	e	NH ₃	
			334.7	a'	H ₂ O	
2	1	C	363.9	a'	H_2O/NH_3	
3	1	C_s	391.5	a''	NH ₃	H ₂ O rock
			391.6	a'	NH ₃	H ₂ O wag
			222.2	a'	H ₂ O/NH ₃	
			276.0	a'	H_2O	
3	2	C_s	340.2	a'	H_2O/NH_3	
			369.1	a'	NH ₃	H ₂ O rock/wag
			375.6	a''	NH ₃	H ₂ O rock/wag
			207.8	e	H_2O/NH_3	
			207.8	e	H_2O/NH_3	
			275.0	а	H_2O	
3	3	fac-C ₃	319.6	e	H_2O/NH_3	
			319.6	e	H_2O/NH_3	
			340.6	а	NH ₃	H ₂ O twist
			346.7	a	NH ₃	H ₂ O twist
			367.8	a_1	NH ₃	
Λ	0	C.	371.9	e	NH ₃	
4	0	C_{2v}	371.9	e	NH ₃	
			401.6	a ₁	NH ₃	
			210.3	a'	H_2O/NH_3	
			303.0	a'	H_2O/NH_3	
4	1	Cs	337.6	a'	NH ₃	
			357.0	a'	NH ₃	H ₂ O rock
			358.7	a''	NH ₃	H ₂ O wag
			194.1	a'	H ₂ O	
			208.1	a'	H ₂ O/NH ₃	
Δ	2	cis-C	279.5	a'	H ₂ O/NH ₃	
-	~	C15-C _S	301.2	a'	H ₂ O/NH ₃	H ₂ O wag
			322.9	a''	NH ₃	H ₂ O rock
			333.0	a'	H_2O/NH_3	

			225.7	a'	NH ₃	
		Cs	318.0	a'	NH ₃	
5	0		318.3	a''	NH ₃	
			320.6	a'	NH ₃	
			348.6	a'	NH ₃	
			188.9	a'	H ₂ O/NH ₃	
	1	Cs	218.5	a'	NH ₃	
F			274.2	a'	H ₂ O/NH ₃	
5			292.3	a''	NH ₃	H ₂ O rock
			306.6	a'	NH ₃	H_2O wag
			322.8	a'	H ₂ O/NH ₃	
			205.4	a	NH ₃	
			205.4	а	NH ₃	
6	0	C	276.2	а	NH ₃	
0	0	C_1	275.4	а	NH ₃	
			276.5	а	NH ₃	
			312.1	а	NH ₃	

n	m	Point Group Symmetry	Freq. (cm ⁻¹)	Irr. Rep. Symm.	NH ₃ /H ₂ O	Notes
1	0	C _{3v}	488.9	a ₁	NH ₃	
1	1	C #2	457.8	a'	H ₂ O/NH ₃	
1	1	C_{s} #2	578.2	a'	H ₂ O/NH ₃	
			392.8	a'	H ₂ O/NH ₃	H ₂ O wag
1	2	C	414.6	a'	H ₂ O/NH ₃	
1		C_{s}	425.3	a'	H ₂ O/NH ₃	H ₂ O wag
			504.3	a'	H ₂ O	H ₂ O rock
			359.2	a	H ₂ O/NH ₃	H ₂ O wag
			364.7	а	H ₂ O/NH ₃	H ₂ O wag
1	2	C	381.2	а	H ₂ O	H ₂ O wag
1	5	C_1	395.2	а	H ₂ O	H ₂ O wag
			397.5	а	H_2O/NH_3	H ₂ O wag
			458.7	а	H ₂ O/NH ₃	H ₂ O rock
			266.0	a'	H ₂ O/NH ₃	
			319.7	a''	H ₂ O	H ₂ O wag
			339.2	a'	H ₂ O	H ₂ O wag
1	4	Cs	348.3	a''	H ₂ O	H ₂ O wag
			357.6	a'	H ₂ O	H ₂ O wag
			377.7	a'	H ₂ O/NH ₃	H ₂ O wag
			444.2	a'	H ₂ O/NH ₃	H ₂ O wag
			252.6	a'	H ₂ O/NH ₃	H ₂ O wag
			255.1	a'	H ₂ O/NH ₃	
			310.8	a''	H ₂ O	H ₂ O twist/wag
			316.6	a'	H ₂ O	H ₂ O wag
1	5	C	321.4	a''	H_2O/NH_3	H ₂ O twist/wag
1	5	C_{s}	330.9	a'	H ₂ O	H ₂ O wag
			346.6	a'	H ₂ O	H ₂ O wag/twist
			367.0	a'	H_2O/NH_3	H_2O wag
			387.6	a'	H_2O/NH_3	H ₂ O wag/rock
			404.0	a'	H ₂ O/NH ₃	H ₂ O wag/rock
2	0	D	433.2	a_{1g}	NH ₃	
2	0	D_{3d}	568.6	a_{2u}	NH ₃	
			383.4	а	H ₂ O	H ₂ O wag
2	1	C	404.5	а	H ₂ O/NH ₃	H ₂ O wag
			462.2	а	NH ₃	H ₂ O wag
			475.0	а	H ₂ O/NH ₃	

<u>Table 3A.20</u>: Ni-O and Ni-N stretching frequencies, in wavenumbers, calculated at MP2/6-31+G* for minimum energy structures of $[Ni(NH_3)_n(H_2O)_m]^{2+}$, where n=1 - 6, m=0 - (6-n).

			361.0	a	H ₂ O/NH ₃	H ₂ O wag
			362.2	b	H_2O	H_2O wag
2	2	C_2	379.1	а	H_2O	H_2O wag
			402.1	а	H ₂ O/NH ₃	H_2O wag
			460.2	b	NH ₃	H ₂ O rock
			247.1	a	H ₂ O/NH ₃	H ₂ O twist
			299.3	b	H_2O	H_2O wag
2	3	C_2	335.9	а	H ₂ O/NH ₃	H_2O wag
			385.9	а	H ₂ O/NH ₃	H ₂ O wag
			446.4	b	NH_3	H ₂ O wag/rock
			221.5	a'	H ₂ O/NH ₃	H ₂ O twist/wag
			239.5	a'	H_2O/NH_3	H ₂ O wag
			241.1	a'	H ₂ O/NH ₃	H ₂ O twist
			278.3	a''	H_2O	H ₂ O wag/twist
2	1	cia C	298.7	a''	H_2O	H ₂ O twist
2	4	cis-C _s	316.1	a'	H ₂ O/NH ₃	H ₂ O wag
			321.6	a''	H_2O	H ₂ O wag/twist
			353.4	a'	NH_3	H ₂ O wag
			372.8	a'	NH ₃	H ₂ O wag
			389.4	a'	H_2O/NH_3	H ₂ O wag/rock
			423.5	а	NH ₃	
3	0	C_3	459.8	e	NH ₃	
			459.8	e	NH ₃	
			348.7	a'	H_2O	
3	1	C	387.2	а	NH ₃	H ₂ O wag
5	1		421.0	а	NH ₃	H ₂ O wag
			430.9	а	NH ₃	H ₂ O rock
			254.2	a'	H_2O/NH_3	
			272.5	a''	H_2O	
3	2	Cs	340.4	a'	H_2O/NH_3	H ₂ O wag
			371.5	a'	H_2O/NH_3	H ₂ O wag
			423.9	a'	NH ₃	H ₂ O wag
			220.1	e	H_2O/NH_3	H ₂ O twist
			220.1	e	H_2O/NH_3	H ₂ O twist
3	3	fac C.	287.9	а	H_2O/NH_3	H ₂ O twist
5	5	1ac-C ₃	355.3	e	H_2O/NH_3	H ₂ O wag
			355.3	e	H_2O/NH_3	H ₂ O wag
			372.9	a	H ₂ O/NH ₃	H ₂ O twist
			386.8	a_1	NH ₃	
Δ	0	C	404.7	e	NH ₃	
4		C_{2v}	404.7	e	NH ₃	
			431.8	a_1	NH ₃	

-						
			224.3	a'	H_2O/NH_3	
			333.9	a'	H ₂ O/NH ₃	
4	1	C_s	367.6	a'	NH ₃	
			377.0	a''	NH ₃	H ₂ O wag
			386.4	a'	NH ₃	H ₂ O rock
			209.8	a'	H ₂ O	
			225.4	a'	H ₂ O/NH ₃	
1	2	ois C	311.4	a'	H ₂ O/NH ₃	
4	2	CIS-C _s	337.6	a'	NH ₃	H ₂ O wag/rock
			357.2	a''	NH ₃	H ₂ O twist/rock
			359.3	a'	NH ₃	H_2O wag
			252.4	а	NH ₃	
		C1	346.5	а	NH ₃	
5	0		348.3	а	NH ₃	
			348.6	а	NH ₃	
			376.6	а	NH ₃	
			205.9	a'	H ₂ O	
			249.1	a'	NH ₃	
5	1	C	309.9	a'	H ₂ O/NH ₃	
5	1	C_{s}	324.0	a''	NH ₃	H ₂ O rock
			338.5	a'	NH ₃	H ₂ O wag
			348.0	a'	H_2O/NH_3	
			235.0	а	NH ₃	
			235.5	а	NH ₃	
6	0	C	304.7	а	NH ₃	
0	U	\mathbf{C}_1	305.8	а	NH ₃	
			305.8	а	NH ₃	
			335.0	а	NH ₃	

n	m	Point Group Symmetry	Freq. (cm ⁻¹)	Irr. Rep. Symm.	NH ₃ /H ₂ O	Notes
1	0	C _{3v}	469.2	a ₁	NH ₃	
1	1	C	450.0	а	H ₂ O/NH ₃	
1	1	C_1	579.9	а	H ₂ O/NH ₃	
			387.4	а	H ₂ O/NH ₃	H ₂ O wag
1	2	C	411.2	а	H ₂ O/NH ₃	H ₂ O wag
1	2	\mathbf{C}_1	433.0	а	NH ₃	H ₂ O wag
			492.5	а	H_2O/NH_3	H ₂ O wag
			348.1	а	H ₂ O	H ₂ O wag
			354.6	а	H_2O/NH_3	H ₂ O wag
1	3	C	378.9	а	H_2O	H ₂ O wag
1	5	C_1	390.0	а	H_2O/NH_3	H ₂ O wag
			398.1	а	H_2O/NH_3	H ₂ O wag
			446.7	а	H ₂ O/NH ₃	H ₂ O wag/rock
			257.5	a'	H_2O/NH_3	
			300.6	a''	H_2O	H_2O wag
			319.3	a'	H_2O	H ₂ O wag
			322.9	a''	H ₂ O	H ₂ O wag
1	4	Cs	333.4	a''	H ₂ O	H ₂ O wag/rock
			336.3	a'	H_2O/NH_3	H ₂ O wag
			365.7	a'	H ₂ O/NH ₃	H ₂ O wag/twist
			374.0	a''	H_2O/NH_3	H ₂ O wag/twist
			427.4	a'	H_2O/NH_3	H ₂ O wag/rock
			240.4	a'	H_2O/NH_3	H ₂ O twist/wag
			243.1	a'	H_2O/NH_3	H ₂ O twist/wag
			292.7	a'	H_2O	H ₂ O twist/wag
			299.5	a''	H_2O	H ₂ O wag
1	5	С	306.6	a''	H_2O	H ₂ O twist/wag
1	5	C_{s}	313.3	a'	H_2O	H ₂ O wag/twist
			327.9	a'	H_2O/NH_3	H ₂ O wag
			347.2	a'	H_2O/NH_3	H ₂ O wag
			373.3	a'	NH ₃	H ₂ O wag/rock
			387.1	a'	H ₂ O/NH ₃	H ₂ O wag/twist
2	0	Dat	423.1	a _{1g}	NH ₃	
	0	D ³ d	547.5	a _{2u}	NH ₃	
			429.3	а	H_2O/NH_3	
2	1	C_1	500.5	а	H_2O/NH_3	
			533.0	а	NH ₃	

<u>Table 3A.21</u>: Ni-O and Ni-N stretching frequencies, in wavenumbers, calculated at B3LYP/6-31+G* for minimum energy structures of $[Ni(NH_3)_n(H_2O)_m]^{2+}$, where n=1 - 6, m=0 - (6-n).

	1					
			352.5	a'	H_2O/NH_3	H_2O wag
2	2	C	358.4	a'	H_2O/NH_3	
2	-	C_{s}	392.7	a'	H_2O/NH_3	
			443.8	a''	NH ₃	H ₂ O rock
			244.0	а	H ₂ O/NH ₃	H ₂ O twist
			285.9	b	H_2O	H_2O wag
			320.1	а	H_2O/NH_3	H ₂ O wag
2	3	C_2	321.3	b	H_2O	H ₂ O wag
			324.0	а	H_2O	H ₂ O wag
			375.2	а	H ₂ O/NH ₃	
			426.1	b	NH ₃	H ₂ O wag/rock
			210.4	a'	H ₂ O	H ₂ O twist/wag
			222.0	a'	H ₂ O/NH ₃	H ₂ O twist
			228.0	a'	H_2O	H ₂ O twist/wag
			262.5	a''	H_2O	H ₂ O twist/wag
2	4	cis-C _s	289.4	a''	H_2O	H ₂ O twist/wag
			298.4	a'	H_2O	H ₂ O wag
			338.5	a'	NH ₃	H ₂ O wag
			358.1	a'	H_2O/NH_3	H ₂ O wag
			372.3	a'	NH ₃	H ₂ O twist
			417.9	а	NH ₃	
3	0	C_3	447.0	e	NH ₃	
		447.0	e	NH ₃		
			344.0	а	H ₂ O/NH ₃	
2	1	C	372.2	а	H ₂ O/NH ₃	
3	1	C_1	405.8	а	NH ₃	
			411.6	а	NH ₃	H ₂ O rock
			225.7	a'	H ₂ O/NH ₃	
			276.6	a'	H_2O	
			337.5	a'	NH ₃	H_2O wag
3	2	C_s	348.9	a''	NH ₃	H_2O wag
			355.2	a'	H ₂ O/NH ₃	H_2O wag
			386.7	a'	NH ₃	H ₂ O rock
			395.1	a''	NH ₃	H ₂ O wag/rock
			201.3	e	H ₂ O/NH ₃	
			201.3	e	H ₂ O/NH ₃	
2	2	for C	266.3	а	H ₂ O/NH ₃	H_2O wag
3	3	Tac-C ₃	338.1	e	H ₂ O/NH ₃	H_2O wag
			338.1	e	H ₂ O/NH ₃	H ₂ O twist
			362.8	а	H ₂ O/NH ₃	H ₂ O wag/twist
			377.5	a ₁	NH ₃	
1	0	C	395.2	b ₁	NH ₃	
4	U	C_{2v}	395.4	b_2	NH ₃	
			416.6	a_1	NH ₃	

			208.2	a'	H ₂ O	
			314.7	a'	H_2O/NH_3	
4	1	C	352.7	a'	NH ₃	
4	1	C_{s}	363.8	a''	NH ₃	H_2O wag
			371.6	a'	NH ₃	H ₂ O rock
			392.2	a''	NH ₃	H_2O wag
			193.1	a'	H ₂ O	
			203.9	a'	H_2O	
1	2	ois C	290.2	a'	H ₂ O/NH ₃	
4	2	CIS-C _s	319.5	a'	H ₂ O/NH ₃	
			337.0	a''	NH ₃	H ₂ O wag/rock
			349.1	a'	NH ₃	H ₂ O wag
			236.3	a'	NH ₃	
			326.7	a''	NH ₃	
5	0	Cs	326.7	a'	NH ₃	
			331.7	a'	NH ₃	
			361.2	a'	NH ₃	
			140.7	а	H ₂ O	
			192.3	а	H ₂ O	
			231.2	а	NH ₃	
5	1	C_1	292.6	а	H_2O/NH_3	
			297.1	а	NH ₃	H ₂ O rock
			318.1	а	NH ₃	H ₂ O wag
			336.5	а	H ₂ O/NH ₃	
			214.0	a'	NH ₃	
			216.5	a'	NH ₃	
6	0	С	275.7	a'	NH ₃	
0	0	C_8	277.5	a'	NH ₃	
			282.7	a''	NH ₃	
			320.2	a'	NH ₃	

<u>Figure 3A-4</u>: Simulated polarized Raman spectra for $[Ni(NH_3)_n(H_2O)_m]^{2+}$, where n=1-6, m=0-(6-n).

<u>Figure 3A-4</u>: (continued)

		-			Optimized Ener	gies (Hartrees)	
n	m	1	Point Group	HF	MP2	B3LYP	\mathbf{C} -PCM [†]
1	1	0	C_s	-2041.66947940	-2042.1807902	-2044.2422968	-2044.301892
1	1	1	C_1	-2117.71650550	-2118.4460582	-2120.7139267	-2120.750431
1	1	c	C_s	-2193.7615123	-2194.6859971	-2197.1543587	-2197.189945
1	1	Ζ	C_1	-2193.76678980	-2194.6925508	-2197.1600672	-2197.190205
			C_s	-2269.8023058	-2270.9283548	-2273.6021136	
1	1	3	C ₁ [4+1]	-2269.804125	-2270.928723	-2273.605633	-2273.626944
			trans-C _s #1	-2345.8336848	-2347.170189	-2350.048203	-2350.078542
1	1	4	trans-C _s #2	-2345.842566	-2347.170188	-2350.048203	-2350.078555
			cis-C ₁	-2345.840196	-2347.168488	-2350.048074	-2350.080359
1	2	0	C_2	-2117.14919140	-2117.9054956	-2120.192356	
1	2	0	C_1	-2117.14919140	-2117.9054956	-2120.19235120	-2120.286044
1	2	1	Cs	-2193.22989990	-2194.1698547	-2196.64598440	-2196.732299
1	2	2	C_2	-2269.26349930	-2270.4040929	-2273.0775598	
1	2	2	C ₁	-2269.26488270	-2270.4041086	-2273.07769890	-2273.158959
1	2	3	C ₁ [5+1]	-2345.30645060	-2346.6455981	-2349.52704130	-2349.606143
1	3	0	C ₃	-2192.52218580	-2193.4695964	-2195.93407160	-2196.240935
1	3	1	C ₁ [4+1]	-2268.58443500	-2269.7326165	-2272.4062421	-2272.691713
1	3	2	C _s [3+2+1]	-2344.63602040	-2344.6287329	-2348.859308	
1	5	2	C ₁ [3+2+1]	-2344.64095840	-2345.9778076	-2348.8756447	-2349.134069
			C _s #1	-2501.2469244	-2501.9344455	-2501.60773230	-2504.683233
2	1	0	C _s #2	-2501.24849650	-2501.9385309	-2504.6162314	
			C ₁	-2501.24849650	-2501.9658051	-2504.61798020	-2504.702131
2	1	1	C_1	-2577.33129080	-2578.2042117	-2581.05815300	-2581.138804
2	1	2	C_1	-2653.36426140	-2654.4369142	-2657.49753960	-2657.576358
2	1	3	C ₁ [5+1]	-2729.39573260	-2730.6658144	-2733.94055680	-2734.024255
			C_2	-2576.64463590	-2577.5217834	-2580.3803982	
2	2	0	Cs	-2576.64457510	-2577.5218910		
			C ₁	-2576.6446359	-2577.5217834		
2	2	1	C _s [3+2]	-2652.69800370	-2653.7715476	-2656.85143930	-2657.11759
2	2	2	C _{2v} [4+2]	-2728.74417390	-2730.0164648	-2733.29040500	-2733.547031

3	1	0	Cs	-2960.75207160	-2961.5615582	-2964.7987142	
5	1	0	C_1	-2960.75769220	-2961.5672031	-2964.80869380	-2965.090155
3	1	1	C ₁ [4+1]	-3036.81050170	-3037.8200020	-3041.26990320	-3041.531485
3	1	2	C _s [4+2]	-3112.84904320	-3114.0555961	-3117.71990960	-3117.965422

NOT Stable [†]Total free energy in solution at 25°C, CPCM-B3LYP/6-31+G*//B3LYP/6-31+G*

				Optimized Ni-O Bond Lengths (Å)						
				HF/6	31+G*	MP2/6	-31+G*	B3LYP/	6-31+G*	
n	m	1	Point Group	ОН	H ₂ O	ОН	H ₂ O	ОН	H ₂ O	
1	1	0	Cs	1.785	N/A	1.765	N/A	1.769	N/A	
1	1	1	C ₁	1.810	2.123	1.782	2.080	1.765	2.105	
1	1	2	C_1	1.873	2.114 2.141	1.853	2.070 2.094	1.829	2.104 2.119	
1	1	3	C ₁ [4+1]	1.888	2.094 2.124	1.891	2.042 2.074	1.907	2.042 2.095	
			trans-C _s #1			1.984	2.298 2.112 2.179	2.000	2.335 2.124 2.228	
1	1	4	trans-C _s #2	1.968	2.383 2.171 2.248	1.983	2.298 2.112 2.179	2.000	2.335 2.124 2.228	
			cis-C ₁	1.957	2.237 2.217 2.158 2.210	1.967	2.165 2.151 2.101 2.143	1.973	2.181 2.182 2.118 2.157	
			Ca	1.861	N/A	1.834	N/A		N/A	
1	2	0	C ₁	1.861 1.861	N/A	1.834 1.834	N/A	1.845 1.843	N/A	
1	2	1	Cs	1.919	2.315 2.370	1.897	2.258 2.270	1.844	2.268 [3+1]	
			C ₂	1.935	2.321					
1	2	2	C_1	1.936 1.936	2.356 2.357 2.480	1.938 1.923	2.272 2.283 2.365	1.943 1.902	2.316 2.311 2.423	
1	2	3	C ₁ [5+1]	1.956 1.938	2.327 2.272	1.943 1.942	2.291 2.180	1.937 1.942	2.332 2.209	
1	3	0	C ₃	1.972	N/A	1.974	N/A	1.951	N/A	
1	3	1	C ₁ [4+1]	1.968 1.978 1.981		1.964 1.963 1.977		1.953 1.946 1.960		
	2	2	C _s [3+2+1]	1.927 1.936 1.922						
1	3	2	C _s [3+2+1]	1.924 1.916 1.910		1.894 1.890 1.885		1.892 1.872 1.867		

<u>Table 3A.23</u>: Ni-O bond lengths for stable geometries of $[NiCl_n(OH)_m(H_2O)_l]^{2-n-m}$, where n=1-3, m=1-(4-n), l=0-(6-n-m).

			C _s #1					1.858	N/A
2	1	0	C _s #2	1.845	N/A	1.818	N/A		N/A
			C_1	1.845	N/A	1.834	N/A	1.815	N/A
2	1	1	C ₁ #1		2.251	1.876	2.209	1.847	2.299
2	1	1	C ₁ #2		2.274	1.925	2.223	1.893	2.299
2	1	2	C_1	1.926	2.228	1.930	2.163	1.937	2.167
			G		2.265		2.210		2.225
2	1	3	C_1	1.887	2.152	1.864	2.124	1.841	2.155
			[5+1]		2.152		2.102		2.116
2	\mathbf{r}	0	C ₂	1.929	N/A	1.918	N/A		N/A
2	2	U	Cs	1.930	N/A	1.918	N/A		
2	2	1	C _s [3+2]	1.854	2.048	1.825	2.016	1.806	2.049
2	2	2	C _{2v} [4+2]	1.907	2.173	1.901	2.114	1.892	2.129
2	1	0	Cs	1.960	N/A		N/A		N/A
5	1	U	C_1	1.922	N/A	1.912	N/A	1.889	N/A
3	1	1	C ₁ [4+1]	1.940		1.932		1.922	
3	1	2	C_{s} [4+2]	1.885	2.121	1.877	2.071	1.865	2.084

				Optimiz	zed Ni-Cl Bond Ler	ngths (Å)
n	m	l	Point Group	HF/6-31+G*	MP2/6-31+G*	B3LYP/6-31+G*
1	1	0	C _s	2.171	2.093	2.098
1	1	1	C ₁	2.222	2.152	2.164
1	1	2	C ₁	2.264	2.203	2.233
1	1	3	C ₁ [4+1]	2.275	2.199	2.205
			trans-C _s #1		2.298	2.335
1	1	4	trans-C _s #2	2.383	2.298	2.335
			cis-C ₁	2.409	2.319	2.371
1	2	0	C_2	2.312	2.211	
1		U	C ₁	2.313	2.210	2.272
1	2	1	Cs	2.370	2.270	2.268
1	2	2	C_2	2.518		
1		2	C ₁	2.480	2.365	2.423
1	2	3	C ₁ [5+1]	2.470	2.347	2.400
1	3	0	C ₃	2.909	2.491	2.808
1	3	1	C ₁ [4+1]			
1	3	2	C _s [3+2+1]			
1	3	2	C _s [3+2+1]			
			C _s #1			2.275 2.253
2	1	0	C _s #2	2.280	2.183	
			C	2.281	2.216	2.223
			C_1	2.281	2.249	2.276
2	1	1	C	2.358	2.267	2.294
Z	1	1	C_1	2.330	2.240	2.261
2	1	2	C	2.397	2.298	2.340
Z	1	2	C_1	2.446	2.351	2.390
2	1	3	C ₁ [5+1]	2.471	2.376	2.453
			C_2	2.635	2.455	
2	2	0	C	2.686	2.505	
			C_{s}	2.575	2.406	
2	2	1	C _s [3+2]			
2	2	2	C _{2v} [4+2]			

<u>Table 3A.24</u>: Ni-Cl bond lengths for stable geometries of $[NiCl_n(OH)_m(H_2O)_l]^{2-n-m}$, where n=1-3, m=1-(4-n), l=0-(6-n-m).

			Cs	2.437 2.480		
3	3 1	0		2.497	2.375	2.432
			C_1	2.494	2.376	2.455
				2.450	2.336	2.360
			C	2.459	2.347	2.404
3	1	1	C_1	2.464	2.346	2.389
			[4+1]	2.447	2.334	2.362
3	1	2	C _s [4+2]	2.360	2.271	2.318

n	m	1	Point Group Symmetry	Freq. (cm ⁻¹)	Irr. Rep. Symm.	OH/H ₂ O/Cl	Notes
1	1	0	C	395.0	a'	Cl	
1	1	0	C_s	734.6	a'	OH	
				292.7	a	H ₂ O	
1	1	1	C	364.7	а	Cl	H ₂ O wag
1	1	1	C_1	609.6	а	OH	H ₂ O rock
				695.9	а	OH	H ₂ O rock
				291.4	a	H ₂ O	
				300.9	а	H_2O	H ₂ O rock
1	1	2	C	316.4	а	$H_2O/$	H ₂ O rock
1	1	2	C_1	337.6	а	H ₂ O/Cl	H ₂ O rock
				600.4	а	OH	H ₂ O rock
				629.7	а	OH	H ₂ O rock
				305.0	a	H ₂ O	
			G	334.1	а	H ₂ O/Cl	H ₂ O rock
1	1	3	C_1	337.6	а	Cl	H ₂ O wag
			[4+1]	347.3	а	H_2O	H ₂ O twist/rock
				596.4	а	OH	H ₂ O twist
				173.1	a''	H ₂ O	
				206.4	a'	H ₂ O/Cl	
				245.1	a''	H_2O	
1	1	4	C _s #2	263.5	a'	H ₂ O/Cl	
				283.2	a''	H_2O	
				297.8	a'	H ₂ O/Cl	
				504.0	a'	OH	H ₂ O wag/twist
				305.7	a	Cl	
1	2	0	C_2	576.8	а	OH	
				618.6	b	OH	
				229.3	a'	H ₂ O	
				264.9	a'	Cl	
1	2	1	C_s	272.0	a'	Cl	
				515.4	a'	OH	
				548.9	a''	OH	
				119.9	a	H ₂ O	
				156.2	a	H_2O	
1	2	2	C_1	219.8	a	Cl	
				485.8	a	OH	
				542.0	а	OH	

<u>Table 3A.25</u>: Ni-O and Ni-Cl stretching frequencies of $[NiCl_n(OH)_m(H_2O)_l]^{2-n-m}$, where n=1-3, m=1-(4-n), l=0-(6-n-m) calculated at HF/6-31+G*.

				145.2	a	H ₂ O/Cl	
				176.4	а	H_2O	
				207.7	а	H ₂ O/Cl	
1	2	2	C_1	230.5	а	H ₂ O/Cl	
1	2	3	[5+1]	265.2	а	H_2O	
				452.7	а	OH	
				484.6	а	OH	H ₂ O rock
				572.5	а	OH	H_2O wag
				44.5	а	Cl	
1	2	0	C	458.0	e	OH	
1	3	0	C_3	458.1	e	OH	
				463.9	а	OH	
				102.2	a	Cl	
1	2	1	C_1	451.4	а	OH	
1	3	1	[4+1]	452.8	а	OH	
				467.0	а	OH	
			G	504.5	a	OH	
1	3	2	C_1	532.3	а	OH	
			[3+2+1]	540.0	а	OH	
				303.3	a'	Cl	
2	1	0	C _s #2	345.6	a''	Cl	
				623.4	a'	OH	
				201.3	a	H ₂ O	
2	1	1	С	270.1	а	H ₂ O/Cl	
	1	1	C_1	306.1	а	H ₂ O/Cl	
				539.5	а	OH	
				146.5	а	H ₂ O	
				169.7	а	H ₂ O/Cl	
				197.4	а	H ₂ O	
2	1	2	C	234.6	а	Cl	
2	1	2	C_1	246.9	а	H ₂ O/Cl	
				257.2	а	H ₂ O/Cl	
				272.1	а	H ₂ O/Cl	
				528.7	а	OH	
				190.2	а	H ₂ O/Cl	
				223.7	а	H ₂ O/Cl	
			C	247.5	а	H ₂ O/Cl	
2	1	3	C_1	272.8	а	H ₂ O	
			[J+1]	320.3	а	H ₂ O/Cl	
				563.1	а	OH	H ₂ O twist
				571.5	а	OH	H ₂ O twist

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					87.6	b	Cl	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					107.2	а	Cl	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2	0	C	130.5	b	Cl	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Z	Ζ	0	C_2	147.9	а	Cl	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					488.7	а	OH	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					533.1	b	OH	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				G	379.8	a'	H ₂ O	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2	1	C_s	554.5	a'	OH	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				[3+2]	653.9	a''	OH	H ₂ O rock
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					249.4	b ₁	H ₂ O	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2	2	C_{2v}	302.9	a_1	H ₂ O	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	2	2	[4+2]	515.5	a ₁	OH	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					578.5	b ₂	OH	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					186.9	a	Cl	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1	0	C	194.3	а	Cl	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	1	U	C_1	213.8	а	Cl	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					524.0	а	OH	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					211.7	a	Cl	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C	215.1	а	Cl	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	1	1	C_1	218.4	а	Cl	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				[4+1]	492.6	а	OH	
$\left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$					530.5	а	OH	
$ \begin{vmatrix} 3 & 1 & 2 & C_s & 290.3 & a'' & H_2O \\ [4+2] & 344.1 & a' & H_2O \\ 582.5 & a' & OH \end{vmatrix} $					276.2	a'	Cl	
$\begin{bmatrix} 3 & 1 & 2 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & $	3	1	2	C_s	290.3	a''	H ₂ O	
582.5 a' OH	3	1	2	[4+2]	344.1	a'	H ₂ O	
					582.5	a'	OH	

n	m	1	Point Group Symmetry	Freq (cm ⁻¹)	Irr. Rep. Symm.	OH/H ₂ O	Notes
1	1	0	C	417.4	a'	Cl	
1	1	0	C_s	735.7	a'	OH	
				319.9	a	H ₂ O	
1	1	1	C	381.6	а	Cl	
1	1	1	C_1	638.2	а	OH	H ₂ O rock
				719.0	а	OH	H ₂ O rock
				320.0	a	H ₂ O	
1	1	2	C	338.1	а	H ₂ O	
1	1	Ζ	C_1	359.0	а	H ₂ O/Cl	
				598.8	а	OH	H ₂ O rock/wag
				326.9	a	H ₂ O	
			C	350.8	а	H ₂ O/Cl	H ₂ O rock
1	1	3	C_1	375.1	а	H ₂ O/Cl	H ₂ O rock
			[4+1]	382.0	а	H ₂ O	H ₂ O twist
				573.8	а	OH	
				200.8	a''	H ₂ O	
				228.0	a'	H ₂ O/Cl	
				247.7	a'	H ₂ O	
				280.0	a''	H ₂ O	
1	1	4	C _s #1	296.0	a'	H ₂ O/Cl	
				324.1	a''	H ₂ O	
				328.1	a'	H ₂ O/Cl	
				442.6	a'	OH	
				495.4	a'	OH	
				338.8	а	Cl	
1	2	0	C_2	598.5	а	OH	
				629.4	b	OH	
				176.4	a'	H ₂ O	
				226.4	a'	H ₂ O	
1	2	1	C	272.9	a'	H ₂ O/Cl	
1	4	1	C_{s}	307.7	a'	Cl	
				504.4	a'	OH	
				548.4	a''	OH	

<u>Table 3A.26</u>: Ni-O and Ni-Cl stretching frequencies of $[NiCl_n(OH)_m(H_2O)_l]^{2-n-m}$, where n=1-3, m=1-(4-n), l=0-(6-n-m) calculated at MP2/6-31+G*.

				157.1	a	H ₂ O/Cl	
				183.2	а	H ₂ O	
				247.4	а	H ₂ O/Cl	
1	2	2	C_1	263.4	а	H ₂ O/Cl	
				272.9	а	H ₂ O/Cl	
				471.0	а	OH	H ₂ O rock
				532.0	а	OH	H ₂ O rock
				148.1	a	H ₂ O	
				168.5	а	H_2O	
				244.8	а	Cl	
1	2	2	C_1	257.0	а	H ₂ O	
1	Ζ	3	[5+1]	268.1	а	H ₂ O/Cl	
				272.5	а	Cl	
				456.7	а	OH	H ₂ O rock
				513.5	а	OH	H ₂ O rock
				165.0	a	Cl	
1	2	0	C	430.2	e	OH	
1	3	0	C_3	430.2	e	OH	
				446.9	а	OH	
				180.9	а	Cl	
1	2	1	C_1	429.3	а	OH	
1	3	1	[4+1]	441.6	а	OH	
				453.2	а	OH	
			G	502.7	а	OH	
1	3	2	C_1	537.3	а	OH	
			[3+2+1]	541.4	а	OH	
				309.1	a	Cl	
2	1	0	C_1	348.4	а	Cl	
				595.9	а	OH	
				268.4	a	H ₂ O/Cl	
2	1	1	C	291.6	а	H ₂ O/Cl	
2	1	1	C_1	348.9	а	Cl	H ₂ O rock
				513.7	а	OH	H ₂ O rock
				197.7	a	H ₂ O/Cl	
				222.3	а	H ₂ O	
				269.2	а	H ₂ O/Cl	
2	1	2	C_1	279.2	а	H ₂ O/Cl	
				283.1	а	H ₂ O/Cl	
				303.3	а	H ₂ O/Cl	
				516.0	а	OH	

				214.8	a	H ₂ O/Cl	
2				259.9	а	H ₂ O/Cl	
	1	2	C	280.8	а	H ₂ O/Cl	
	1	3	C_1	291.7	а	H_2O	
				342.0	а	H ₂ O/Cl	
				561.4	а	OH	
				162.4	a'	Cl	
2	2	0	Cs	210.9	a'	Cl	
2	2	0		465.2	a'	OH	
				515.2	a''	OH	
			C	396.2	a'	H ₂ O	
2	2	1	C_s	546.9	a'	OH	
			[3+2]	660.4	a''	OH	
				286.9	b ₁	H ₂ O	
2	2	2	C_{2v}	333.9	a_1	H_2O	
2	2	2	[4+2]	493.1	a_1	OH	
				544.3	b ₂	OH	
				222.8	а	Cl	
				237.5	а	Cl	
3	1	0	C_1	245.3	а	Cl	
				275.2	а	Cl	
				503.6	а	OH	
				242.6	а	Cl	
2	1	1	C_1	258.3	а	Cl	
5	1	1	[4+1]	263.0	а	Cl	
				482.7	а	OH	
		2	Cs	304.6	a'	Cl	
3	1			324.2	a''	H_2O	
5	1	2	[4+2]	373.0	a'	H ₂ O	
				552.0	a'	OH	H ₂ O rock

n	m	1	Point Group Symmetry	Freq (cm ⁻¹)	Irr. Rep. Symm.	OH/H ₂ O	Notes
1	1	0		417.4	a'	Cl	
1	1	0	C_{s}	735.7	a'	OH	
1				319.9	a	H ₂ O	
	1	1	C	381.6	а	Cl	
	1	1	C_1	638.2	а	OH	
				719.0	а	OH	
				320.0	a	H ₂ O	
1	1	2	C_1	359.0	а	H ₂ O/Cl	H ₂ O rock
				598.8	а	OH	H ₂ O rock/wag
				276.2	a	H ₂ O/Cl	
				288.0	a	H ₂ O/Cl	
1	1	2	C_1	321.5	а	H ₂ O	
1	1	3	[4+1]	341.2	а	H ₂ O/Cl	H ₂ O rock
				373.6	а	H ₂ O	
				547.6	а	OH	H ₂ O rock
				188.5	a'	H ₂ O	
				208.1	a'	H ₂ O/Cl	
				235.4	a'	Cl	H ₂ O rock
1	1	4	C #1	264.2	a'	H ₂ O/Cl	
1	1	4	$C_s #1$	304.5	a'	H_2O	
				314.9	a'	H ₂ O/Cl	
				459.1	a'	OH	H ₂ O rock
				494.5	a'	OH	H ₂ O twist
				282.7	a	Cl	
1	2	0	C_1	544.4	а	OH	
				559.5	а	OH	
			C	290.6	a'	Cl	
1	2	1	C_{s}	533.2	a'	OH	
			[3+1]	581.1	a''	OH	
				135.2	a	H ₂ O/Cl	
				149.0	а	H ₂ O	
1	2	2	C_1	226.6	а	H ₂ O/Cl	
				469.1	a	OH	
				526.5	a	OH	
				129.8	a	H ₂ O	
			C	227.3	a	H ₂ O/Cl	
1	2	3	C_1	234.9	a	H ₂ O/Cl	
			[J+1]	453.5	a	OH	
				502.8	a	OH	H ₂ O rock

<u>Table 3A.27</u>: Ni-O and Ni-Cl stretching frequencies of $[NiCl_n(OH)_m(H_2O)_l]^{2-n-m}$, where n=1-3, m=1-(4-n), l=0-(6-n-m) calculated at B3LYP/6-31+G*.

				10 5		01	
1				48.6	а	Cl	
	3	0	C_2	447.0	e	OH	
		-		447.1	e	OH	
				458.4	a	OH	
1				103.0	а	Cl	
			C.	430.7	а	OH	
	3	1	[4+1]	442.9	а	OH	
			[1 1]	455.2	а	OH	
				465.1	a	OH	
			C	503.1	а	OH	
1	3	2	C_1	521.2	а	OH	
			[3+2+1]	537.9	а	OH	
				284.8	а	Cl	
2	1	0	C_1	319.4	а	Cl	
				600.8	а	OH	
				232.1	a	H ₂ O	
				255.5	а	H ₂ O/Cl	
2	1	1	C_1	271.0	а	H ₂ O/Cl	
				316.6	а	H ₂ O/Cl	
				499.6	а	OH	
				174.8	а	H ₂ O/Cl	
				203.1	а	H ₂ O	
2	4	•	G	248.0	а	H ₂ O/Cl	
2	I	2	C_1	261.9	а	H ₂ O	
				269.0	а	H ₂ O/Cl	
				508.8	а	ŌH	H ₂ O rock
				236.2	а	H ₂ O/Cl	2
				225.2	а	H ₂ O/Cl	
2	1	3	C_1	259.4	а	H ₂ O	
		_	[5+1]	313.6	a	H ₂ O/Cl	H ₂ O rock
				572.1	а	ŌH	H_2O twist
2	2	0					
				359.0	a'	H ₂ O	
			C	564.1	a'	OH	
2	2	1	[3+2]	665.0	a''	OH	H ₂ O rock
				675.2	a''	OH	H ₂ O rock
				266.9	b ₁	H ₂ O	2
			Ca	312.5	21 21	H_2O	
2	2	2	[4+2]	489.9	-*1 21	OH	
			– ,	524.2	b_2	OH	H ₂ O rock
				180.2	a 3	Cl	<u>/</u> 0 100m
				189.2	a	Cl	
3	1	0	C_1	234.6	a	Cl	
				502.9	a	OH	
1			1	502.7	u		1

				207.8	а	Cl	
3	1	1	C_1	214.7	а	Cl	
5	1	1	[4+1]	236.6	а	Cl	
				470.4	а	OH	
	1	2	C _s [4+2]	243.3	a'	Cl	
				268.6	a'	Cl	
3				301.3	a''	H_2O	
				353.1	a'	H_2O	
				545.8	a'	OH	H ₂ O rock

<u>Figure 3A-5</u>: Simulated polarized Raman spectra for $[NiCl_n(OH)_m(H_2O)_l]^{2-n-m}$, where n=1-3, m=1-(4-n) and l=0-(6-n-m)

<u>Figure 3A-5</u>: (continued)

					Optimized Ener	rgies (Hartrees)	
n	m	l	Point Group	HF	MP2	B3LYP	\mathbf{C} -PCM [†]
1	1	0	C_{3v}	-2022.0980564	-2022.6041428	-2024.7279077	
1	1	0	C_1	-2022.1883406	-2022.6860537	-2024.7151254	-2024.877645
			C _s #1	-2098.2131827	-2098.9270800	-2101.1910704	
1	1	1	C _s #2	-2098.2131642	-2098.9269617	-2101.1910438	-2101.305085
1	1	1	C _s #3	-2098.2600669	-2098.9576410	-2101.2062985	
	C		C_1	-2098.2630663	-2098.9576409	-2101.2070834	-2101.333125
1	1	2	Cs	-2174.3276946	-2175.2226221	-2177.669693	
1	1	2	C_1	-2174.3276330	-2175.2235796	-2177.6717744	-2177.78607
1	1	2	C_s	-2250.3797989	-2251.4741945	-2254.1275377	
1	1	5	C_1	-2250.3796168	-2251.4741932	-2254.1275960	-2254.241266
1	1	1	trans-C ₁	-2326.4293401	-2327.7240739	-2330.5817946	-2330.696261
1	1	4	cis-C ₁	-2326.427845	-2327.722271	-2330.579878	-2330.695757
			C_{2v}	-2078.4034719	-2079.1339232	-2081.3565099	
1	2	0	C_2	-2078.4034719	-2079.1041295	-2081.3475190	-2081.450697
1	2	0	Cs	-2078.4382613	-2079.1041295	-2081.3475172	
			C_1	-2078.4506871	-2079.1349343	-2081.3638443	-2081.482464
1	2	1	C_1	-2154.5134195	-2155.3955160	-2157.8239233	-2157.932329
1	2	2	C_2	-2230.5609366	-2231.6420052	-2234.2764732	-2234.382417
			mer-C ₂	-2306.6063231	-2307.8852423	-2310.7240271	
1	2	3	mer-C ₁	-2306.6087815	-2307.8890036	-2310.7274536	-2310.834643
			fac-C _s	-2306.606911	-2307.886436	-2310.725247	-2310.834483
			C_{3v}	-2134.6976760	-2135.5655365	-2137.9747161	
1	3	0	Cs	-2134.6976761	-2135.5656659	-2137.9749818	-2138.07835
			C ₁	-2134.6976761	-2135.5656659	-2137.9749972	-2138.078245
1	3	1	Cs	-2210.7406736	-2211.8070288	-2214.4220821	
1	5	1	C ₁	-2210.7406736	-2211.8071171	-2214.4224854	-2214.523325
			mer-C _s	-2286.7860630	-2288.0501281	-2290.8695286	-2290.972438
			$mer-C_1$	-2286 7860630	-2288 0501342	-2290 8695009	-2290 973156
1	3	2	#1	2200.7000030	2200.0301312	2290.0093009	2290.975150
1	5	2	mer-C ₁ #2	-2286.78399	-2288.048109	-2290.867593	-2290.972374
			fac-C ₁	-2286.787263	-2288.052535	-2290.871856	-2290.974232
1	4	0	C_4	-2190.9179084	-2191.9695394	-2194.5649489	-2194.665632
			trans-C ₂	-2266.9592327	-2268.2079399	-2271.0069362	
1	4	1	trans-C ₁	-2266.9592052	-2268.2079331	-2271.0076066	-2271.110998
			cis-C ₁	-2266.963828	-2268.213431	-2271.013151	-2271.111722
1	5	0	Cs	-2247.1384287	-2248.3715745	-2251.1521094	-2251.249910
1	5	U	C_1	-2247.1384321	-2248.3716948	-2251.1521093	-2251.249923

<u>Table 3A.28</u>: Total energies for all stable geometries of $[NiCl_n(NH_3)_m(H_2O)_l]^{2-n}$, where n=1 - 4, m=1 - (6-n), l=0 - (6-n-m).

			0 //1	2401 0000002	2402 (404210	0405 0702627	
	1	0	$C_s \# I$	-2481.9898892	-2482.6404218	-2485.2723637	
2	1	0	C _s #2	-2481.989883	-2482.6404067	-2485.2723576	-2485.302/16
			C_1	-2481.9898895	-2482.6404218	-2485.2723574	-2485.302719
2	1	1	Cs	-2558.0405850	-2558.8879777	-2561.7203077	-2561.754151
2	1	2	Cs	-2634.0831933	-2635.1303271	-2638.1687266	-2638.200500
2	1	2	C_1	-2634.0831933	-2635.1303208	-2638.1687227	-2638.200517
2	1	3	$mer-C_1$	-2710.1096648	-2711.3573060	-2714.6038273	-2714.636472
2	1	5	fac-C ₁	-2710.10878	-2711.3563	-2714.602517	-2714.638134
			C_{2v}	-2538.2193655	-2539.0521149	-2541.8649231	
2	2	0	C_2	-2538.219225	-2539.0521150	-2541.8650448	
			C_1	-2538.2193658	-2539.0521150	-2541.8650788	-2541.897504
2	2	1	C_1	-2614.2530432	-2615.2837623	-2618.3031744	-2618.338217
			all-trans-				
			Ci	-2690.2919760	-2691.5237651	-2694.7462132	-2694.785727
			all-cis-	-2690.285521	-2691.518167	-2694.744756	-2694.778252
			H_2O				
2	2	2	trans- C_{2v}	-2690.285284	-2691.517167	-2694.744139	-2694.778380
			NH ₃ -	-2690 283041	-2691 515087	-2694 741682	-2694 777933
			trans- C_2	20701202011	2071010007	207 117 12002	
			C_1 -trans- C_1	-2690.293135	-2691.525096	-2694.747787	-2694.786928
•	2	0	Cs	-2594.4317890	-2595.4479139	-2598.4474248	
2	3	0	C_1	-2594.4317891	-2595.4479139	-2598.4474315	-2598.481764
			$mer-C_1$	-2670.4563966	-2671.6723212	-2674.8792690	-2674.916844
2	3	1	fac-C _s	-2670.458282	-2671.674434	-2674.881381	-2674.916571
			fac-C ₁	-2670.458282	-2671.674478	-2674.8813873	-2674.917358
			trans-C _{4h}	-2650.6411940	-2651.8408884	-2655.0241477	-2655.064122
			trans- C_{2y}	-2650.6411571	-2651.8413701	-2655.0239758	
2	4	0	trans-C ₂	-2650.6411941	-2651.8413699	-2655.0240196	-2655.063148
			cis-C _{2y}	-2650.6283634	-2651.8270651	-2655.0145476	-2655.054129
			cis-C ₂	-2650.6283614	-2651.8271261	-2655.0145476	-2655.054138
			C.24	-2941 6057872	-2942 3949595	-2945 6145710	-2945 703019
3	1	0	C.	-2941 6062327	-2942 3961493	-2945 6162124	-2945 705135
3	1	1		-3017 6386861	-3018 6287553	-3022.0563875	-3022 139619
5		-		5017.0500001	3010.0207333	3022.0303073	3022.139019
3	1	2	[5+1]	-3093.6684086	-3094.8555353	-3098.4932607	-3098.57533
			C _{3h}	-2997.8157774	-2998.7874416	-3002.1955805	
3	2	0	C _{2v} #1	-2997.8156408	-2998.7889534	-3002.1951338	
5	2	U	C _{2v} #2	-2997.8161501	-2998.7886257	-3002.1967848	-3002.285954
			C_s	-2997.8161494	-2998.7889534	-3002.1968114	-3002.285986
3	2	1	C_1 [5+1]	-3073.8481268	-3075.0205447	-3078.6408278	-3078.726809
			fac-C _{3v}	-3053.9922929	-3055.1513991	-3058.7455920	-3058.853373
3	3	0	fac-C ₂	-3053.9922929	-3055.1515773	-3058,7455842	-3058.853332
		-	$C_1[5+1]$	-3054.0165752	-3055.1738445	-3058.7727412	-3058.868521

			C #1	2401.0571041	2401 0828500	2405 7099242	
			$C_{3v} #1$	-3401.0371941	-3401.9828399	-3403.7988242	
4	1	0	C _{3v} #2	-3401.0565443	-3401.9816377	-3405.7995623	-3406.074909
4	1	U	C ₃	-3401.05719	-3401.9828601	-3405.7987992	-3406.077956
			Cs	-3401.0577058	-3401.9842551	-3405.8003769	
4	1	1	C_1	-3477 1342146	-3478 2541651	-3482 2856329	-3482 52012
	1	1	[4+2]	5477.1542140	5470.2541051	5462.2656527	5462.52612
4	2	0	C_{2v}	-3457 2729464	-3458 3795192	-3462 3842043	-3462 66446
4	4	0	[5+1]	-3+37.2729404	-3-30.3793192	-3+02.3042043	-3+02.00440

NOT Stable [†]Total free energy in solution at 25°C, CPCM-B3LYP/6-31+G*//B3LYP/6-31+G*

				(Optimized	Ni-Cl and I	Ni-N Bond	Lengths (Å	()						
				HF/6	31+G*	MP2/6	-31+G*	B3LYP/	6-31+G*						
n	m	1	Point Group	Ni-Cl	Ni-N	Ni-Cl	Ni-N	Ni-Cl	Ni-N						
1	1	0	C _{3v}	2.120	2.060	2.070	1.997								
1	1	0	C ₁	2.126	2.036	2.076	1.986	2.083	2.005						
			C _s #1	2.139	2.056	2.057	1.982								
1	1 1	1	C _s #2					2.093	1.989						
1		1	C _s #3	2.159	2.069	2.086	2.015								
			C ₁	2.162	2.073	2.086	2.015	2.086	2.018						
1	1	C	Cs	2.204	2.099										
1	1	Z	C ₁	2.202	2.100	2.132	2.034	2.125	2.040						
1	1	3	Cs	2.260	2.110	2.194	2.048								
1	1	3	C ₁	2.260	2.119	2.194	2.048	2.216	2.048						
1	1 4	4	trans- C ₁	2.350	2.154	2.285	2.085	2.329	2.102						
			cis-C ₁	2.336	2.149	2.265	2.070	2.307	2.082						
		0	C _{2v}	2.149	2.062										
			C_2	2.149	2.063			2.088	2.001						
1	2		Cs	2.157	2.096	2.064	1.985								
			C_1	2.170	2.094 2.094	2.099	2.020 2.020	2.103	2.024 2.024						
1	2	1	C ₁	2.211	2.119 2.115	2.144	2.051 2.043	2.149	2.074 2.055						
1	2	2	C_2	2.293	2.125	2.232	2.050	2.275	2.060						
			mer- C ₂	2.362	2.168										
1	2	3	3	2 3	2 3	2 3	2 3	3	mer- C ₁	2.367	2.173 2.172	2.302	2.099 2.090	2.351	2.117 2.103
			fac-C _s	2.357	2.166	2.285	2.086	2.331	2.095						
			C _{3v}	2.218	2.133										
1	3	0	Cs	2.218	2.133 2.133	2.148	2.067 2.059	2.157	2.093 2.073						
			Cs	2.298	2.153 2.175										
1	3	1	C ₁	2.298	2.153 2.153 2.170	2.237	2.100 2.067 2.069	2.282	2.107 2.078 2.083						

<u>Table 3A.29</u>: Ni-Cl and Ni-N bond lengths, in Angstroms, for stable geometries of $[NiCl_n(NH_3)_m(H_2O)_l]^{2-n}$, where n=1 - 4, m=1 - (6-n), l=0 - (6-n-m).

$1 3 2 \frac{\text{mer-C}_{\text{s}}}{\#2} \frac{2.389}{2.199} \frac{2.199}{2.197} {2.377} \frac{2.377}{2.197} \frac{2.112}{2.375} \frac{2.187}{2.199} \frac{2.326}{2.120} \frac{2.112}{2.376} \frac{2.192}{2.197} \frac{2.192}{2.119} \frac{2.119}{2.119} \frac{2.192}{2.191} \frac{2.192}{2.105} \frac{2.347}{2.191} \frac{2.192}{2.105} \frac{2.212}{2.105} \frac{2.212}{2.105} \frac{2.212}{2.105} \frac{2.212}{2.105} \frac{2.212}{2.105} \frac{2.212}{2.105} \frac{2.212}{2.105} \frac{2.212}{2.105} \frac{2.212}{2.10} \frac{2.212}{2.105} \frac{2.212}{2.10$	2.141 2.135 2.119 2.142 2.134 2.134
$1 3 2 \frac{\operatorname{mer-C_1}}{\#2} 2.389 2.197 2.326 2.112 \\ \frac{\operatorname{mer-C_1}}{\#1} 2.389 2.199 2.326 2.120 2.376 \\ 2.197 2.119 2.119 2.119 2.119 \\ \frac{\operatorname{mer-C_1}}{\#2} 2.373 2.187 2.299 2.097 2.347 \\ \frac{2.191}{2.105} 2.105 2.110 \\ \frac{\operatorname{mer-C_1}}{\#2} 2.188 2.110 2.105 2.257 $	2.135 2.119 2.142 2.134 2.110
$1 3 2 \frac{\text{mer-C}_1}{\#1} 2.389 \frac{2.187}{2.199} 2.326 \frac{2.112}{2.120} 2.376 \\ \frac{2.197}{2.197} 2.326 2.110 \\ \frac{2.197}{2.119} 2.110 \\ \frac{\text{mer-C}_1}{\#2} 2.373 \frac{2.192}{2.191} 2.299 2.097 2.347 \\ \frac{2.191}{2.105} 2.105 \\ \frac{2.188}{2.191} 2.105 \\ \frac{2.188}{2.110} 2.105 \\ \frac{2.188}{2.105} 2.105 \\ $	2.119 2.142 2.134
$1 3 2 \frac{\operatorname{mer-C_1}}{\#1} 2.389 \begin{array}{c} 2.199 \\ 2.199 \\ 2.197 \end{array} \begin{array}{c} 2.326 \\ 2.120 \\ 2.119 \end{array} \begin{array}{c} 2.376 \\ 2.119 \\ 2.119 \\ 2.119 \\ 2.110 \\ 2.105 \\ \end{array}$	2.142 2.134 2.134
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.134
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.131
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	/ 119
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.115
	2.115
	2.100
T T T T TAC-C, T 2383 T 2188 T 2318 T 2105 T 2367 T	2.12)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.110
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.136
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.150
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
2.232 2.122	2 166
2.252 2.117	2.164
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.101
$\begin{vmatrix} 1 & 4 & 1 \\ 2 & 212 \\ 2 & 212 \\ \end{vmatrix}$	2.147
	2.141
	2.152
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.132
2.214 2.118	2.130
2.233	2.176
$C_{c} = 2.419 = 2.248 = = 2.412$	2.179
2.253	2.183
2.247 2.164	2.182
	2.176
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.179
	2.182
2.250 2.161	2.179
2.218 2.156 2.000	
$C_{s} #1$ 2.217 2.098 2.154 2.030	
2 1 0 $C_s #2$ 2.153	2.040
2.220 2.111 2.147 2.022 2.153	2.0.11
C_1 2.220 2.111 2.148 2.032 2.153	2.041
2 1 1 C _s 2.269 2.118 2.200 2.037 2.222	2.042
C_{s} 2.334 2.117 2.258 2.034 2.291	2.042
	2.0.42
$\begin{bmatrix} C_1 \\ 2334 \end{bmatrix} = \begin{bmatrix} 2.117 \\ 2257 \end{bmatrix} = \begin{bmatrix} 2.033 \\ 2001 \end{bmatrix}$	2.042
1 2.291 2.291	
mer- 2.410 2.150 2.326 2.002 2.372	A 001
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.091
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.091

-			C	0.001	0.100	0.011	0.050		
			C_{2v}	2.281	2.139	2.211	2.052		
2	2	0	C_2			2.211	2.052		
-	-	U	C.	2.281	2.139	2.211	2.052	2.238	2.064
			$\mathbf{c}_{\mathbf{l}}$	2.281	2.139	2.211	2.052	2.235	2.059
2	0	1	C	2.380	2.153	2.307	2.070	2.319	2.077
Z	Ζ	1	C_1	2.380	2.173	2.307	2.089	2.377	2.096
			all-						
			trans-	2.432	2.173	2.345	2.093	2.401	2.096
			Ci						
			all-cis-	2.462	2.199	2.382	2.105	2.446	2.117
			C_1	2.415	2.160	2.329	2.076	2.379	2.086
			H ₂ O-						
2	2	\mathbf{r}	trans-	2.447	2.220	2.366	2.127	2.420	2.138
2	2	Ζ	C_{2v}						
			NH ₃ -						
			trans-	2.441	2.164	2.351	2.085	2.413	2.089
			C_2						
			Cl-	2 430	2 183	2 3/3	2 092	2 386	2 106
			trans-	2.430	2.163	2.3+3 2 3 4 2	2.072	2.300	2.100
			C_1	2.430	2.105	2.342	2.078	2.307	2.007
			C	2.390	2.158	2.315	2.065		
			C_{s}	2.383	2.183	2.308	2.098		
2	3	3 0		2 200	2.158	2 215	2.065	2 257	2.077
			C_1	2.390	2.183	2.515	2.098	2.557	2.105
				2.383	2.183	2.308	2.098	2.335	2.104
			mer- C ₁	2,420	2.223	0.000	2.123	2 200	2.140
				2.430	2.198	2.338	2.117	2.398	2.122
				2.492	2.178	2.414	2.097	2.489	2.104
-				2.1.5.1	2.182			2 4 4 4	2.108
2	3	I	fac-C _s	2.464	2.243			2.441	2.157
					2.243		2.144		2.157
			fac-C1	2.465	2.243	2.386	2.111	2.443	2.157
				2.464	2.243	2.378	2.141	2.442	2.107
			trong		2.102		2.070		2.107
			u alis-	2.473	2.217			2.432	2.144
			C _{4h}			2 295	2.126		
			trans-			2.385	2.120		
			C_{2v}	0.470	0.010	2.385	2.125	0.422	0.1.1.7
2	4	0	trans-	2.472	2.218	2.384	2.125	2.432	2.145
_		2	C_2	2.472	2.218	2.384	2.127	2.432	2.145
			cis-	2.488	2.211			2.473	2.137
			C_{2v}	2. 100	2.272			2.f13	2.183
			cis-	2 181	2.212	2 102	2.133	2 172	2.137
			C_2	2.404	2.274	2.403	2.164	2.4/3	2.183

			C _{3v}					2.299	2.050											
3	1	0	C	2.343	2 1 4 2	2.265	2.055	2.294	2.052											
			C_{s}	2.353	2.142	2.266	2.055	2.294	2.052											
				2.384		2.285	2.060	2.325	2.071											
3	1	1	C_1	2.432	2.158	2.339	2.069	2.383	2.071											
				2.453		2.356	2.180	2.412	2.203											
2	1	0	Cs	2.346	0.140	2.265	2.077	2.296	2072											
3	1	2	[5+1]	2.405	2.149	2.324	2.067	2.357	2072											
			C _{3h}	2.463	2.154															
			C #1			2.336	2.070													
			C_{2v} #1			2.360	2.070													
2	2	0	C #2	2.440	2 155			2.394	2.072											
5	2	0	C_{2v} #2	2.471	2.133			2.422	2.075											
				2.472		2.360		2.421												
			Cs	2.441	2.155	2.336	2.070	2.424	2.074											
				2.470		2.360		2.393												
2	2	1	C_1	2.421	2.174	2.321	2.090	2.369	2.091											
5	2	1	[5+1]	2.416	2.131	2.329	2.058	2.385	2.059											
			fac-	2 5/15	2 265			2 525	2 1 5 9											
			C _{3v}	2.343	2.203			2.323	2.137											
3	3	0	fac-C ₃	2.546	2.265			2.525	2.159											
5	5	U	mer-	2 4 2 6	2.129	2 336	2.051	2 378	2.061											
														C_1	2.426	2.207	2.336	2.122	2.378	2.134
			[5+1]	2.720	2.208	2.330	2.123	2.370	2.134											
			C_2 #1	2.384	2 1 5 2	2.323	2 104													
			C3v #1	2.621	2.132	2.466	2.104													
			$C_{2.1}$ #2					2.326	2.080											
			03112					2.558	2.000											
4	1	0	C_2					2.325	2.076											
			03					2.558	2.070											
						2.319														
			C_s			2.388	2.098													
						2.504														
			C	2.359		2.258		2.283												
4	1	1	[4+2]	2.382	2.109	2.302	2.029	2.342	2.189											
			['' 2]	2.382		2.307		2.338												
Δ	2	0	C_{2v}	2.387	2 204	2.308	2 1 1 3	2.342	2 124											
	-	Ŭ	[5+1]	2.568	2.201	2.459	2.115	2.503	2.12 ľ											

	Optimized Ni-O Bond Lengths (Å)								
n	m	1	Point Group	HF/6-31+G*	MP2/6-31+G*	B3LYP/6-31+G*			
			C _s #1	2.001	1.941				
1	1	1	C _s #2			1.954			
1	1	1	C _s #3	2.076	2.009				
			C ₁	2.048	2.009	2.010			
			Cs	2.087					
1	1	2	C	2.093	2.055	2.090			
			C_1	2.088	2.053	2.076			
			С	2.112	2.062				
			C_{s}	2.176	2.137				
1	1	3		2.181	2.137	2.132			
			C_1	2.181	2.137	2.134			
				2.105	2.062	2.102			
				2.171	2.117	2.132			
			trans-C ₁	2.172	2.117	2.133			
				2.173	2.119	2.134			
1	1	1		2.173	2.117	2.132			
1	1	4		2.172	2.121	2.135			
			cia C	2.171	2.127	2.158			
			$cis-c_1$	2.183	2.128	2.144			
				2.180	2.132	2.144			
1	2	1	C_1	2.111	2.068	2.083			
1	2	2	C_2	2.201	2.151	2.162			
			marC	2.221					
			$\operatorname{Iner}-\mathbf{C}_2$	2.200					
				2.205	2.153	2.171			
1	2	3	mer-C ₁	2.191	2.139	2.153			
				2.209	2.152	2.170			
			fac-C	2.213	2.169	2.201			
				2.211	2.158	2.179			
1	3	1	Cs	2.272					
1	5	1	C_1	2.272	2.243	2.267			
			mer-C _s	2.232		2.193			
			mer C #1	2.232	2.151	2.193			
				2.232	2.151	2.193			
1	3	2	mer C #2	2.258	2.232	2.274			
				2.243	2.197	2.244			
			fac C	2.272	2.216	2.252			
					2.226	2.175	2.191		

<u>Table 3A.30</u>: Ni-O bond lengths, in Angstroms, for stable geometries of $[NiCl_n(NH_3)_m(H_2O)_l]^{2-n}$, where n=1 - 4, m=1 - (6-n), l=0 - (6-n-m).

			trans-C ₂	2.279	2.246	
1	4	1	trans-C ₁	2.286	2.246	2.285
			cis-C ₁	2.331	2.279	2.312
2	1	1	Cs	2.127	2.074	2.042
			C	2.177	2.121	2.134
2	1	2	C_{s}	2.173	2.119	2.131
2	1	Z	C	2.173	2.117	2.134
			C_1	2.177	2.124	2.131
				2.276	2.204	2.229
			$mer-C_1$	2.172	2.122	2.139
2	1	2		2.182	2.133	2.149
	1	3		2.250	2.179	2.206
			fac-C ₁	2.214	2.151	2.169
				2.187	2.141	2.154
2	2	1	C ₁	2.146	2.087	2.119
			all-trans-C _i	2.204	2.146	2.191
			all ais C	2.212	2.168	2.183
			all-CIS-C ₁	2.300	2.223	2.251
2	2	2	H ₂ O-trans- C _{2v}	2.185	2.135	2.156
			NH ₃ -trans- C ₂	2.286	2.214	2.247
			C1 trans C	2.201	2.153	2.184
				2.217	2.165	2.194
			mer-C ₁	2.377	2.289	2.317
2	3	1	fac-C _s	2.223		2.198
			fac-C ₁	2.223	2.184	2.198
3	1	1	C_1	2.232	2.069	2.071
3	1	2	C _s [5+1]	2.236	2.188	2.217
3	2	1	C ₁ [5+1]	2.150	2.116	2.129
4	1	1	C ₁ [4+2]			

n	m	1	Point Group	Frog (cm ⁻¹)	Irr. Rep.	Cl/NH ₃ /H ₂	Notos
11	111	1	Symmetry	rieq. (cm)	Symm.	0	THUES
1	1	0	C	395.0	а	Cl/NH ₃	
1	1	0	C_1	526.0	а	Cl/NH ₃	
				373.9	a	Cl/NH ₃ /H ₂ O	
1	1	1	C	433.2	а	Cl/NH ₃ /H ₂ O	H ₂ O wag
1	1	1	C_1	450.4	а	Cl/H ₂ O	H ₂ O wag
				478.0	а	Cl/NH ₃	H ₂ O wag
				319.7	a''	H ₂ O	
1	1	2	C	326.8	a'	NH ₃ /H ₂ O	
1	1	2	C_{s}	354.0	a'	Cl/NH ₃	
				428.8	a'	Cl/NH ₃	H ₂ O rock
				221.6	a'	Cl/H ₂ O	
				260.2	a''	H ₂ O	H ₂ O wag/twist
1	1	2	C	308.9	a''	H ₂ O	H ₂ O twist
1	1	5	C_{s}	312.4	a'	Cl/H ₂ O	
				362.6	a'	Cl/NH ₃ H ₂ O	
				382.0	a'	Cl/NH ₃ /H ₂ O	H ₂ O rock
				224.6	а	Cl/NH ₃ /H ₂ O	
				233.7	а	H ₂ O	H ₂ O twist
1	1	1	trong C	290.1	а	H ₂ O	H ₂ O twist
1	1	4	uans-C ₁	291.3	а	H ₂ O	H ₂ O twist
				317.8	а	Cl/NH ₃ /H ₂ O	
				354.0	а	Cl/NH ₃	H ₂ O twist
				369.0	а	Cl/NH ₃	
1	2	0	C_1	391.7	а	NH ₃	
				454.6	а	Cl/NH ₃	
				307.9	а	H ₂ O	
1	2	1	C	347.2	а	Cl/NH ₃	H ₂ O twist
1		1	\mathbf{C}_1	367.6	а	NH ₃	H ₂ O wag
				411.8	а	Cl/NH ₃	H ₂ O rock
				205.8	а	Cl/H ₂ O	H ₂ O twist
				230.2	а	Cl/NH ₃	H ₂ O twist
1	2	2	C.	268.6	b	H ₂ O	
1			C_2	330.4	a	Cl/NH ₃	
				352.4	а	Cl/NH ₃ /H ₂ O	
				377.5	b	NH ₃	H ₂ O twist

<u>Table 3A.31</u>: Ni-N, Ni-Cl and Ni-N stretching frequencies of $[NiCl_n(NH_3)_m(H_2O)_l]^{2-n}$, where n=1 – 4, m=1 – (6-n), l=0 – (6-n-m) calculated at HF/6-31+G*.

				199.0	а	Cl/H ₂ O	H ₂ O twist/rock
				216.6	а	Cl/NH ₃ /H ₂ O	-
				231.3	а	H ₂ O	H ₂ O twist
			G	231.9	а	H ₂ O	H ₂ O rock
1	2	3	mer- C_1	271.4	a	H ₂ O	H ₂ O twist
				303.7	а	Cl/NH ₃ /H ₂ O	H_2O rock
				331.2	а	Cl/NH ₃	2
				336.9	а	Cl/NH ₃	H ₂ O wag
				347.0	a1	Cl/NH ₃	
1	2	0	G	351.9	e	NH ₃	
1	3	0	C_{3v}	351.9	e	NH ₃	
				401.1	a_1	Cl/NH ₃	
				204.7	a'	H ₂ O	
				302.1	a'	Cl/NH ₃ /H ₂ O	
1	3	1	C_s	326.0	a'	Cl/NH ₃ /H ₂ O	H ₂ O twist
			-	347.7	a'	Cl/NH ₃	H ₂ O rock
				356.0	a''	NH ₃	H ₂ O wag
				215.5	а	Cl/NH ₃ /H ₂ O	H ₂ O twist
				228.0	а	Cl/NH ₃ /H ₂ O	H ₂ O twist
1	2	2	6 0	246.7	а	H ₂ O	H_2O twist
1	3	2	$1ac-C_1$	311.8	а	Cl/NH ₃	H ₂ O rock
				316.7	а	Cl/NH ₃ /H ₂ O	
				326.7	а	NH ₃ /H ₂ O	
				226.3	b	NH ₃	
				303.1	а	Cl/NH ₃	
1	4	0	C_4	314.9	e	NH ₃	
				314.9	e	NH ₃	
				341.5	а	Cl/NH ₃	
				183.8	а	H ₂ O	H ₂ O wag
				219.1	а	Cl/NH ₃ /H ₂ O	H ₂ O wag
1	1	1	cis C.	280.4	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
1	-	1	C15-C1	302.2	а	Cl/NH ₃	H ₂ O rock
				305.2	а	Cl/NH ₃	H ₂ O twist
				320.1	а	Cl/NH ₃ /H ₂ O	
				205.2	а	Cl/NH ₃	
				209.1	а	NH ₃	
1	5	0	C	273.8	а	NH ₃	
1	5	0	$\mathbf{C}_{\mathbf{I}}$	274.1	а	NH ₃	
				287.3	а	Cl/NH ₃	
				310.5	a	Cl/NH ₃	
				319.6	a'	Cl	
2	1	0	C _s #1	374.8	a'	NH ₃	
				431.7	a'	Cl	

				293.5	a'	Cl/H ₂ O	
			G	310.5	a'	Cl/H ₂ O	
2	1	1	C _s	366.8	a'	NH ₃	H ₂ O wag
				385.4	a'	Cl	H_2O twist
				217.4	a'	C1/H ₂ O	
				289.0	a'	H ₂ O	
				202.0	a'	C1/H ₂ O	
2	1	2	C_s	320.4	a"		H ₂ O rock
				350.9	a"		H ₂ O rock
				367.5	a'	NH ₂	H_2O wag
				183.4	а Э	Cl/NH ₂ /H ₂ O	1120 wag
				221.0	a	C1/H-O	H.O. rock/twist
				221.0	a	$C1/NH_2/H_2O$	1120 100K/twist
2	1	3	mer C.	203.0	a	$C1/NH_3/H_2O$	
2	1	5	mer-C ₁	293.1	a	$C1/NH_3/H_2O$	H.O. rock
				294.4	a		H_2O rock
				323.3	a		H_2O lock
				342.0	a		П20 ТОСК
				294.7	a ₁		
2	2	0	C_{2v}	545.0 245.7	D ₂		
				345.7	a ₁	NH ₃	
				3/3./	b ₁		
				214.8	а	CI/NH ₃	
				278.3	а	NH_3/H_2O	
2	2	1	C_1	301.6	а	CI	H_2O rock
			-	316.9	а	CI/NH ₃ /H ₂ O	
				333.3	а	NH ₃	H_2O wag
				3/5.1	a	NH ₃	H_2O wag
				193.3	а	Cl/NH ₃ /H ₂ O	
				213.4	а	CI/NH ₃ /H ₂ O	
		-		267.5	а	CI	H_2O rock
2	2	2	Cl -trans- C_1	270.3	а	Cl/NH ₃ /H ₂ O	H_2O wag
				295.7	а	CI/NH ₃ /H ₂ O	H_2O wag
				323.5	а	NH_3/H_2O	H_2O wag
				334.5	a	NH ₃	H_2O wag
				210.9	a'	Cl/NH ₃	
	_	_		298.4	a'	Cl/NH ₃	
2	3	0	Cs	300.8	a'	Cl/NH ₃	
				326.4	a''	NH_3	
				330.9	a'	Cl/NH ₃	
				176.4	a'	Cl/H ₂ O	
				186.5	a'	Cl/NH ₃	H ₂ O twist
				213.6	a'	Cl/NH ₃ /H ₂ O	
2	3	1	fac-C _s	264.5	a'	Cl/NH ₃ /H ₂ O	
				273.0	a''	Cl/NH ₃	H ₂ O rock
				289.4	a'	Cl/NH ₃ /H ₂ O	
				316.9	a'	Cl/NH ₃ /H ₂ O	

				187.5	a	Cl/NH ₂	
				219.5	b _a	NH ₂	
				248.9	a.	Cl	
2	4	0	trans-C _{4h}	297.5	e	NH ₂	
				297.5	e	NH ₂	
				304.5	C _u	C1/NH ₂	
				258.3			
				230.5	a o"		
3	1	0	C_s	294.0	a		
				290.3	a		
				344.2	a	NH ₃	
				169.3	а	H ₂ O	
				177.1	а	Cl/H ₂ O	
3	1	1	C_1	236.2	а	Cl/H ₂ O	H_2O rock
5	1	1	CI	262.3	а	Cl/H ₂ O	
				268.4	а	Cl/H ₂ O	H ₂ O rock
				335.5	а	NH ₃	
				196.9	a'	Cl/NH ₃ /H ₂ O	
			C	258.3	a''	H ₂ O	
3	1	2	C_{s}	280.0	a'	Cl/NH ₃ /H ₂ O	
			[5+1]	304.0	a'	Cl/H ₂ O	
				349.0	a'	NH ₃	H ₂ O rock
				185.9	a_1	Cl/NH ₃	
				222.6	b1	Cl	
3	2	0	C_{2y} #2	236.2	a1	Cl	
		_	- 24	313.6	a ₁	NH ₃	
				361.7	\mathbf{b}_2	NH ₃	
				210.8	a	$C1/NH_2/H_2O$	
				241.9	a	$C1/H_2O$	
			C	258.7	a	$C1/H_2O$	
3	2	1	[5+1]	300.6	a	$C1/NH_2/H_2O$	
			[5+1]	338.5	а Э	$C1/NH_2/H_2O$	
				374.1	a	NH.	H.O. rock
				100 0	a		1120 TOCK
				228.4	a		
			C	230.4	a		
3	3	0	C_1	202.1	a		
			[3+1]	293.9	a		
				310.0	а		
				304.1	a	CI/NH ₃	
				115.3	a ₁	CI/NH ₃	
4	1	0	C _{3v} #1	195.9	a ₁	Cl	
			ο _{3γ} τ	251.2	a ₁	Cl/NH ₃	
				345.0	a_1	Cl/NH ₃	

4	1	1	C ₁ [4+2]	251.0 262.9 285.9 380.6	a a a a	Cl Cl Cl NH ₃	
4	2	0	C _{2v} [5+1]	140.9 195.3 256.0 312.1 334.4	$b_1 \\ b_1 \\ a_1 \\ b_2 \\ a_1$	Cl Cl Cl NH ₃ Cl/NH ₃	

n	m	1	Point Group	Freq (am ⁻¹)	Irr. Rep.	Cl/NH ₃ /H ₂	Notos
11	111	I	Symmetry	rieq. (cm)	Symm.	0	INULES
1	1	0	C	409.0	a	Cl/NH ₃	
1	1	U	C_1	548.0	а	Cl/NH ₃	
				346.5	a'	Cl/H ₂ O	
1	1	1	C _s #3	419.1	a'	Cl/NH ₃ /H ₂ O	
				489.3	a'	Cl/NH ₃ /H ₂ O	
				342.0	a	H ₂ O	
1	1	2	C	355.8	а	H_2O	
1	1	2	C_1	377.1	а	Cl/NH ₃	
				464.2	а	Cl/NH ₃	H_2O wag
				233.4	a'	Cl/NH ₃ /H ₂ O	H ₂ O twist
				261.2	a'	Cl/NH ₃ /H ₂ O	H ₂ O twist
				284.3	a''	H_2O	H ₂ O twist
1	1	3	C_s	337.9	a''	H_2O	H ₂ O twist
				349.7	a'	H_2O	
				358.0	a''	Cl/NH ₃ /H ₂ O	
				424.9	a'	Cl/NH ₃ /H ₂ O	H ₂ O rock
				250.3	a	Cl/NH ₃ /H ₂ O	H ₂ O twist
				255.5	а	Cl/NH ₃ /H ₂ O	H ₂ O twist
				259.3	а	H_2O	
1	1	4	trans C	319.3	а	H_2O	H ₂ O twist
1	1	4	trans- C_1	322.3	а	H_2O	
				324.6	а	H_2O	H ₂ O twist
				335.3	а	Cl/NH ₃ /H ₂ O	
				386.2	а	Cl/NH ₃	H ₂ O twist
				398.5	a	Cl/NH ₃	
1	2	0	C_1	438.9	а	NH ₃	
				474.7	а	Cl/NH ₃	
				330.8	a	H ₂ O	
1	2	1	C	366.9	а	Cl/NH ₃ /H ₂ O	
1	2	1	C_1	406.3	а	Cl/NH ₃	H_2O wag
				444.4	а	Cl/NH ₃	H ₂ O twist
				225.6	a	H ₂ O	
				272.0	а	H_2O	
1	2	2	C	298.3	b	H_2O	
1	2	2	C_2	357.8	a	Cl/NH ₃	
				377.1	a	Cl/NH ₃ /H ₂ O	
				416.3	b	NH ₃	H_2O wag

<u>Table 3A.32</u>: Ni-N, Ni-Cl and Ni-N stretching frequencies of $[NiCl_n(NH_3)_m(H_2O)_l]^{2-n}$, where n=1 – 4, m=1 – (6-n), l=0 – (6-n-m) calculated at MP2/6-31+G*.

		1		220.2		ЦО	
				220.3	а	H ₂ O	
				243.5	а	$CI/NH_3/H_2O$	
				250.2	а	H_2O	H_2O wag
1	r	3	mer C.	259.2	а	NH ₃ /H ₂ O	H ₂ O twist
1	2	5	mer-C ₁	294.5	а	H_2O	H ₂ O rock
				324.3	а	Cl/NH ₃ /H ₂ O	
				365.0	а	Cl/NH ₃ /H ₂ O	
				370.9	а	Cl/NH ₃ /H ₂ O	
				361.1	a'	Cl/NH ₃	
1	2	0	C	386.6	a'	NH ₃	
1	3	0	C_{s}	394.3	a"	NH ₃	
				431.0	a'	Cl/NH ₃	
				217.9	а	H ₂ O	
				337.0	а	Cl/NH ₃ /H ₂ O	
1	3	1	C_1	353.9	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
			-	372.9	а	Cl/NH ₃	-
				401.5	а	NH ₃	H ₂ O wag
				215.1	а	Cl/NH ₃ /H ₂ O	
				249.4	а	Cl/NH ₃ /H ₂ O	H ₂ O twist
	•			264.2	а	Cl/NH ₃ /H ₂ O	$H_{2}^{2}O$ twist
1	3	2	fac-C ₁	274.9	a	H ₂ O	2
				335.8	a	Cl/NH ₃ /H ₂ O	
				359.7	a	$Cl/NH_3/H_2O$	H ₂ O twist
				257.5	a	NH ₂	2
				335.3	a	Cl/NH ₂	
1	4	0	C4	353.0	e	NH ₂	
-	•	Ũ	04	353.2	e	NH ₂	
				361.4	a	Cl/NH ₃	
				201.4	a	H ₂ O	
				248.6	a	Cl/NH ₂	H ₂ O wag
				315.7	a	$C1/NH_2/H_2O$	H ₂ O rock
1	4	1	$cis-C_1$	334 5	a	Cl/NH ₂	H_2O rock
				339.9	a	Cl/NH ₂	H_2O rock
				347.9	a	Cl/NH ₂	H_2O rock
				233.0	a	Cl/NH ₂	1120 TOOK
				233.0	a	NH ₂	
				307.2	a	NH ₂	
1	5	0	C_1	307.2	a	NH ₂	
				315.8	a a	Cl/NH ₂	
				334.6	a	Cl/NH ₂	
				225 6	a a'		
2	1	0	C #1	555.0 A18.7	a a'		
	1	U	$C_{\rm S}$ #1	410./ 157 0	a c'		
1				457.8	a	U U	

				317.3	a'	Cl/H ₂ O	
2	1	1	C	336.7	a'	H ₂ O	
2	1	1	C_{s}	410.3	a''	Cl	H ₂ O twist
				414.9	a'	NH ₃	H ₂ O wag
				244.4	a'	Cl/NH ₃ /H ₂ O	
				313.0	a'	Cl/H ₂ O	
2	1	2	C_s	320.5	a'	H_2O	H ₂ O rock
				369.9	a''	Cl	H ₂ O wag
				417.1	a'	NH ₃	H ₂ O rock
				243.5	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
				250.2	а	H ₂ O	H ₂ O twist
				259.2	а	NH ₃ /H ₂ O	H ₂ O rock/twist
2	1	3	mer-C ₁	294.5	а	H_2O	H ₂ O twist
				324.3	а	Cl/NH ₃ /H ₂ O	
				365.0	а	Cl/NH ₃ /H ₂ O	H ₂ O twist
				370.9	а	Cl/NH ₃ /H ₂ O	H ₂ O twist
				313.5	a ₁	Cl	
2	2	0	C	389.0	a_1	NH ₃	
2	2	U	C_{2v}	397.4	b_2	NH ₃	
				398.2	b ₁	Cl	
				239.2	а	Cl/NH ₃ /H ₂ O	
				311.9	а	Cl	H ₂ O rock
2	2	1	C	319.3	а	NH ₃ /H ₂ O	
2	2	1	\mathbf{C}_1	340.7	а	Cl	H ₂ O rock
				346.8	а	Cl/NH ₃ /H ₂ O	
				396.4	а	NH ₃	H ₂ O wag
				220.6	а	Cl/NH ₃ /H ₂ O	
				240.2	а	Cl/NH ₃ /H ₂ O	
				298.9	а	Cl/NH ₃ /H ₂ O	H ₂ O wag
2	2	2	Cl-trans-C ₁	312.5	а	Cl	H ₂ O rock
				349.5	а	NH ₃ /H ₂ O	H ₂ O wag
				370.1	а	NH ₃ /H ₂ O	H ₂ O wag
				397.5	а	NH ₃	H ₂ O wag
				235.9	a'	Cl/NH ₃	
				326.0	a'	Cl	
2	3	0	Cs	333.7	a'	Cl/NH ₃	
				370.0	a''	NH ₃	
				380.0	a'	NH ₃	
				222.0	а	Cl/NH ₃	H ₂ O rock
				232.2	а	Cl/NH ₃ /H ₂ O	
2	2	1	fac	296.4	а	Cl/NH ₃ /H ₂ O	
2	З	1		310.0	а	Cl/NH ₃	H ₂ O rock
				328.2	а	NH ₃ /H ₂ O	
				352.5	а	NH ₃ /H ₂ O	H ₂ O rock

				215.3	a ₁	Cl/NH ₃	
				258.7	a ₁	Cl/NH ₃	
			~	278.5	a ₁	Cl/NH ₃	
2	4	0	trans- C_{2v}	337.1	a1	Cl/NH ₃	
				341.1	b_2	NH ₃	
				341.7	\mathbf{b}_1	NH ₂	
				279.0	a'	Cl	
				324.9	a'		
3	1	0	C_s	332.2	a"		
				392.2	a'		
				184.3	a 2	H	H ₂ O wag
				202.6	a	$C1/NH_2/H_2O$	1120 wag
				262.6	a		H ₂ O rock
3	1	1	C	202.0	a	C1/H ₂ O	H ₂ O rock
5	1	1		277.1	a	$C1/H_2O$	H ₂ O rock
				200.5	a		H ₂ O rock
				313.7	a		1120 IOCK
				216.0	a 0'		
				210.9	a a'	$C1/H_{10}$	
2	1	2	C_s	302.8	a o'	C1/NL/LO	
5	1	2	[5+1]	331.2	a o''		
				332.0 201.2	a o'	$\Pi_2 \cup$	U O real
				217.2	a	$C1/N\Pi_3/\Pi_2O$	H ₂ O 10CK
				217.5	a ₁		
2	n	0	C #1	271.0	\mathbf{D}_1		
3	Z	U	$C_{2v} #1$	217.9	a ₁		
				342.2 408.0	a ₁		
				408.0	02		
				244.0	a	$CI/NH_3/H_2O$	
			G	275.1	a	$CI/NH_3/H_2O$	
3	2	1	C_1	294.7	a	CI/H_2O	
			[5+1]	333.3 270.0	a	$CI/NH_3/H_2O$	
				570.0	a		U. O reals
				415.0	a		H ₂ O FOCK
				220.7	a	CI/NH ₃	
2	2	0	C_1	205.5	a		
3	3	0	[5+1]	288.2	a		
				333.4	а	CI/NH ₃	
				357.4	a	NH ₃	
				230.8	a''		
4	1	0	C_s	239.1	a'		
				267.0	a'	CI/NH ₃	
				363.9	a	CI/NH ₃	
			-	269.2	а		
4	1	1	C_1	288.4	а	CI	
	-		[4+2]	323.5	а		
				434.3	а	NH ₃	

				170.2	a ₁	Cl/NH ₃	
			C	227.5	b_1	Cl	
4	2	0	C_{2v}	281.6	a_1	Cl	
			[3+1]	367.2	a_1	Cl/NH ₃	
				372.6	b_2	NH_3	

n	m	1	Point Group Symmetry	Freq. (cm ⁻¹)	Irr. Rep. Symm.	Cl/NH ₃ /H ₂ O	Notes
1	1	0	C	394.1	a	Cl/NH ₃	
1	1	0	C_1	526.3	а	Cl/NH ₃	
				352.7	a	Cl/H ₂ O	
1	1	1	C_1	407.3	а	Cl/NH ₃ /H ₂ O	
				465.3	а	Cl/NH ₃ /H ₂ O	
				298.6	a	H ₂ O	
1	1	2	C	324.7	а	H_2O	
1	1	2	C_1	389.6	а	Cl/NH ₃ /H ₂ O	H_2O wag
				430.2	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
				230.8	a	Cl/NH ₃ /H ₂ O	
				277.9	а	H_2O	H ₂ O twist
1	1	3	C_1	311.0	а	H_2O	H ₂ O twist
				361.8	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
				396.8	а	Cl/NH ₃	
				230.8	a	Cl/NH ₃ /H ₂ O	H ₂ O twist
				232.4	а	Cl/NH ₃ /H ₂ O	H ₂ O twist
				250.0	а	H_2O	H ₂ O twist
1	1	4	trans C	303.4	а	H_2O	
1	1	4	trans- C_1	305.4	а	H_2O	H ₂ O twist
				318.8	а	Cl/NH ₃ /H ₂ O	H ₂ O twist
				328.2	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
				360.8	а	Cl/NH ₃	H ₂ O twist
				398.4	а	Cl/NH ₃	
1	2	0	C_1	424.9	а	NH_3	
				446.7	а	Cl/NH ₃	
				307.9	а	H ₂ O	
1	2	1	C	345.3	а	Cl/NH ₃ /H ₂ O	
1		1	C_1	389.8	а	Cl/NH ₃	H ₂ O wag
				416.8	а	Cl/NH ₃ /H ₂ O	
				217.5	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
				266.6	а	H_2O	H ₂ O twist
				284.5	b	H_2O	H ₂ O twist
1	2	2	C_2	315.4	а	Cl/NH ₃	H ₂ O twist
				364.8	а	Cl/NH ₃ /H ₂ O	
				400.2	b	NH ₃	H ₂ O wag
				475.8	b	NH ₃	H ₂ O wag

<u>Table 3A.33</u>: Ni-N, Ni-Cl and Ni-N stretching frequencies of $[NiCl_n(NH_3)_m(H_2O)_l]^{2-n}$, where n=1 - 4, m=1 - (6-n), l=0 - (6-n-m) calculated at B3LYP/6-31+G*.

				217.4	a	Cl/NH ₃ /H ₂ O	H ₂ O twist
				225.0	а	Cl/NH ₃ /H ₂ O	-
				259.7	a	H ₂ O	H ₂ O twist
				265.0	a	H ₂ O	H_2O twist
1	2	3	mer-C ₁	286.6	a	H ₂ O	H_2O twist
-	_	0		306.6	a	$C1/NH_2/H_2O$	
				313.3	a	C1/NH ₂	H ₂ O twist
				343.3	a	Cl/NH ₂	H_2O twist
				353.1	а Э	$C1/NH_2/H_2O$	1120 twist
				332.3	a'		
				368.9	a'	C1/NH ₂	
1	3	0	C_s	372.6	a"	NH ₂	
				372.0 403.5	a o'		
				403.3	a		
				300.1	a	CI/NH_3	H O rock
1	2	1	C	327.3	a	$CI/NH_3/H_2O$	H_2O fock
1	3	1	C_1	302.0 292.9	a	$CI/NH_3/H_2O$	H_2O rock
				382.8	a		H_2O FOCK
				420.3	a	NH ₃	H_2O wag
				186.7	a		
				205.9	a	$CI/NH_3/H_2O$	H ₂ O twist
1	2	•		232.7	a	CI/NH ₃ /H ₂ O	-
1	3	2	fac- C_1	233.4	a	H ₂ O	H ₂ O wag
				313.8	a	Cl/NH ₃ /H ₂ O	H ₂ O twist
				327.0	a	Cl/NH ₃ /H ₂ O	
				347.7	a	Cl/NH ₃ /H ₂ O	
				239.9	b	NH ₃	
		_		291.0	а	Cl/NH ₃	
1	4	0	C_4	332.5	e	NH_3	
				332.5	e	NH ₃	
				348.1	a	NH ₃	
				190.3	a	H ₂ O	
				226.1	a	Cl/NH ₃	H_2O wag
1	Δ	1	cis-C1	293.3	a	Cl/NH ₃ /H ₂ O	H_2O wag
1	-	1		308.0	a	Cl/NH ₃	H_2O wag
				319.2	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
				337.9	а	Cl/NH ₃	H ₂ O rock
				181.9	a'	Cl/NH ₃	
				214.6	a'	Cl/NH ₃	
				226.0	a''	NH ₃	
1	5	0	C_s	282.3	a'	Cl/NH ₃	
				284.7	a'	NH ₃	
				285.2	a''	NH ₃	
				323.9	a'	Cl/NH ₃	
				320.9	a'	Cl	
2	1	0	C _s #2	403.5	a'	NH ₃	
				434.5	a''	Cl	

-		1					
				295.5	a'	Cl/H ₂ O	
2	1	1	C	327.0	a'	H_2O	
2	1	1	C_{s}	377.7	a''	Cl	H ₂ O twist
				404.4	a'	NH ₃	H ₂ O wag
				225.1	a'	Cl/NH ₃ /H ₂ O	
				300.3	a'	Cl/H ₂ O	
	1	2	C	306.0	a'	H ₂ O	H ₂ O rock
2	1	2	C_{s}	308.4	a''	Cl	H ₂ O rock
				346.3	a''	Cl	H ₂ O rock
				403.2	a'	NH ₃	H_2O wag
				193.1	а	H ₂ O	
				228.5	а	Cl/H ₂ O	
				265.9	a	Cl/H ₂ O	
2	1	3	mer-C ₁	299.7	а	Cl/H ₂ O	
			1	301.7	а	Cl/NH ₃ /H ₂ O	
				342.1	a	NH ₃	H ₂ O rock
				361.7	a	NH ₃	H ₂ O rock
				289.2	a	Cl	
		0		361.3	a	Cl	
2	2	0	C_1	376.5	a	NH ₃	
				384.1	a	NH ₃	
				218.3		Cl/NH ₃ /H ₂ O	
				276.3	а	Cl/NH ₃ /H ₂ O	
			~	297.5	а	Cl/NH ₃ /H ₂ O	H ₂ O twist
2	2	1	C_1	320.3	а	Cl/NH ₃	H_2O twist
				338.4	а	Cl/NH ₃ /H ₂ O	
				383.1	а	NH ₃	H ₂ O wag
				197.6	а	Cl/H ₂ O	2
				217.1	a	Cl/NH ₃ /H ₂ O	
				261.9	a	Cl/H ₂ O	H ₂ O rock
2	2	2	Cl -trans- C_1	279.3	a	$C1/H_2O$	112010011
				335.2	a	NH ₂ /H ₂ O	H ₂ O wag
				357.2	a	NH ₂	H_2O wag
				211.8	a	Cl/NH ₂	
				288.5	a	Cl	
2	3	0	\mathbf{C}_{1}	322.9	a	Cl/NH ₂	
_	U	Ŭ		354 3	a	NH ₂	
				364 3	a	NH ₂	
<u> </u>				206.8	a	Cl/NH ₂	
				215.9	a	Cl/NH ₂ /H ₂ O	
				273.8	a a	$C1/NH_2/H_2O$	
2	3	1	fac-C ₁	275.0	a a	CI/NH ₂	
1				308.0	u a	Cl/NH ₂	
				339.1	u a	NH ₂ /H ₂ O	
1			1	557.1	a	1113/1120	1

				193.2	2-	C1/NH ₂	
				241.0	ag b	NH ₂	
				241.0	Dg a		
2	4	0	trans-C _{4h}	247.5	au A	NH ₂	
				318.3	C _u	NH ₂	
				325 5	C _u	C1/NH ₂	
				256.6	a'		
				200.0	a 2'		
3	1	0	C_s	291.7	a 2"		
				388.8	a' a'	NH ₂	
				173.7	a	Cl/H ₂ O	
				236.7	a	$C1/H_2O$	
3	1	1	C	256.7	a	$C1/H_2O$	
5	1	1		200.0	a	$C1/H_2O$	
				374.8	a	NH ₂	
				195.3	a'	Cl/NH ₂ /H ₂ O	
				222.9	a'	Cl	
			С	282.9	a'	$C1/NH_2/H_2O$	
3	1	2	[5+1]	282.6	a"	H ₂ O	
			[0+1]	300.6	a'	$C1/H_2O$	
				378.0	a'	NH ₂	
				186.6	a'	C1/NH ₂	
				223.2	a'	Cl	
3	2	0	C	225.2	a'		
5	-	Ŭ	U _S	343.6	a'	NH ₂	
				398.0	a"	NH ₂	
				213.7	a	Cl/NH ₂ /H ₂ O	
				244.4	a	Cl/H_2O	
			C	262.2	a	Cl/H_2O	
3	2	1	[5+1]	317.0	a	Cl/NH ₃ /H ₂ O	
				356.1	a	Cl/NH ₃ /H ₂ O	
				406.5	a	Cl/NH ₃ /H ₂ O	H ₂ O wag
				198.3	a	Cl/NH ₃	2
				252.1	a	Cl	
		0	\mathbf{C}_{1}	268.9	a	Cl	
3	3	0	[5+1]	309.8	a	Cl/NH ₃	
				338.3	a	NH ₃	
				390.7	a	NH ₃	
				150.1	a1	Cl	
				152.8	a ₁	Cl/NH ₃	
	1		G	219.4	a1	Cl	
4	1	0	C _{3v} #2	223.6	a1	Cl	
				263.3	a ₁	Cl/NH ₃	
				375.1	a_1	Cl/NH ₃	

4	1	1	C_1 [4+2]	243.3 255.8 285.9	a a a	Cl Cl Cl	
				417.0	а	NH ₃	
				148.4	a ₁	Cl/NH ₃	
			C	197.4	b_1	Cl	
4	2	0	C_{2v}	254.7	a_1	Cl	
			[3+1]	342.9	a_1	Cl/NH ₃	
				355.2	b_2	NH ₃	

<u>Figure 3A-6</u>: Simulated polarized Raman spectra for $[NiCl_n(NH_3)_m(H_2O)_l]^{2-n}$, where n=1-4, m=1-(6-n) and l=0-(6-n-m)

Figure 3A-6: (continued)

Figure 3A-6: (continued)

Figure 3A-6: (continued)

Figure 3A-6: (continued)

Figure 3A-6: (continued)

				Optimized Energies (Hartrees)						
n	m	l	Point Group	HF	MP2	B3LYP	С-РСМ			
			C _s #1	-1638.1115331	-1638.6760294	-1640.341047				
1	1	0	C _s #2	-1638.1110108	-1638.6735649	-1640.3410463				
1		U	C _s #3	-1638.1105885	-1638.6784111	-1640.3411337	-1640.483099			
			C_1	-1638.1115331	-1638.6779930	-1640.3411021	-1640.482715			
1	1	1	C_1	-1714.1835433	-1714.9471138	-1716.8105499	-1716.933127			
1	1	2	C_1	-1790.2414581	-1791.2014443	-1793.2668743	-1793.378169			
1	1	3	C_1	-1866.2949191	-1867.4527584	-1869.7219400	-1869.827581			
1	1	4	$cis-C_1$	-1942.3395207	-1943.6973962	-1946.1689652	-1946.274199			
1	1	4	trans-C ₁	-1942.343364	-1943.701762	-1946.172935	-1946.276065			
1	2	0	C_s	-1713.8133101	-1714.5973938	-1716.4560240	-1716.485368			
1	2	1	C_s	-1789.8396337	-1790.820199	-1792.8875606	-1792.921315			
1	2	1	C_1	-1789.8533802	-1790.8312127	-1792.8939565	-1792.916505			
1	2	2	C_1	-1865.8923141	-1867.0684521	-1869.3350377	-1869.358178			
1	2	3	C ₁ [5+1]	-1941.9299590	-1943.3048764	-1945.7795186	-1945.807904			
1	3	0	C_1	-1789.2815635	-1790.2735552	-1792.3315876	-1792.437472			
1	3	1	C ₁ [4+1]	-1865.3332317	-1866.5254259	-1868.7900132	-1868.888053			
1	3	2	C ₁ [4+2]	-1941.3750600	-1942.7654102	-1945.2404004	-1945.329462			
1	4	0	C ₁ [4+1]	-1864.6059882	-1865.8084879	-1868.0700193	-1868.373073			
1	4	1	C ₁ [4+2]	-1940.6683494	-1942.0691966	-1944.5421388	-1944.823888			
2	1	0	C_1	-1694.3683590	-1695.1195629	-1696.9634337	-1697.074362			
2	1	1	C_1	-1770.4299986	-1771.3764745	-1773.4201989	-1773.521675			
2	1	\mathbf{r}	Cs	-1846.4768089	-1847.6204168	-1849.8690617				
Z	1	Ζ	C_1	-1846.4771232	-1847.6207932	-1849.8698747	-1849.969568			
2	1	2	mer-C ₁	-1922.5170839	-1923.8600675	-1926.3132765	-1926.411118			
Z	1	3	fac-C ₁	-1922.520932	-1923.865111	-1926.317687	-1926.415524			
2	2	0	C_2	-1770.0234009	-1770.9883615	-1773.0348679	-1773.058164			
2	2	1	C ₁ [4+1]	-1846.0698683	-1847.2316311	-1849.4805936	-1849.504426			
			C ₂ #1 [4+2]	-1922.102169	-1923.459897	-1925.924416	-1925.948835			
			C ₂ #2 [4+2]	-1922.11271	-1923.47397	-1925.930728	-1925.953281			
2	2	2	C_{s}	-1922.0902146	-1923.4502356	-1925.9016848				
2	2	Ζ	$C_1 #1$	-1922.0902126	-1923.4571439	-1925.9212236	-1925.943536			
			C ₁ #2	-1922.098649	-1923.462257	-1925.914264	-1925.938640			
			C ₁ #3 [4+2]	-1922.11271	-1923.473968	-1925.930662	-1925.955311			
		ĺ	C ₁ #4	-1922.092813	-1923.456548	-1925.909254	-1925.935783			
2	3	0	C ₁ [4+1]	-1845.4886462	-1846.6621366	-1848.9069586	-1849.004987			
2	3	1	C1 [4+2]	-1921.5353558	-1922.9058519	-1925.3612471	-1925.449684			
2	4	0	C ₂ [4+2]	-1920.8154586	-1922.1974349	-1924.6521230	-1924.934545			

<u>Table 3A.34</u>: Total energies for all stable geometries of $[Ni(NH_3)_n(OH)_m(H_2O)_l]^{2-m}$, where n=1 - 5, m=1 - (5-n), l=0 - (6-n-m).

2	1	0	Cs	-1750.6105235	-1751.5429185	-1753.5671037	-1753.663455
3			C_1	-1750.6105872	-1751.5429184	-1753.5671871	-1753.66356
2	1	1	Cs	-1826.650074	-1827.7775819	-1830.0057648	
3			C_1	-1826.6500735	-1827.7775798	-1830.0057908	-1830.102439
	1	2	mer-C _s	-1902.6974299	-1904.0266555	-1906.4588598	-1906.550955
3			mer-C ₁ #1	-1902.6974670	-1904.0267419	-1906.4591277	-1906.551047
			mer-C ₁ #2	-1902.695739	-1904.024671	-1906.457587	-1906.551840
			fac-C _s	-1902.702923	-1904.033046	-1906.46562	-1906.555400
3	2	0	C_1	-1826.2308886	-1827.3752745	-1829.6014597	-1829.624969
2	2	1	C ₁ [5+1]	-1902.2616305	-1903.6077124	-1906.0424578	-1906.069677
5			fac-C _s	-1902.2172212	-1903.5074179	-1906.046216	-1906.069625
3	3	0	C ₁ [4+2]	-1901.691825	-1903.044585	-1905.47877	-1905.566068
5			C ₃ [3+3]	-1901.6865249	-1903.0258589	-1905.4790893	-1905.556265
4	1	0	C_s	-1806.8302152	-1807.9436937	-1810.1517359	-1810.241731
		1	cis-C ₁	-1882.8758320	-1884.1901127	-1886.6025303	-1886.689757
4	1		trans-C _s	-1882.86704	-1884.179005	-1886.591465	-1886.684389
			trans-C ₁	-1882.867042	-1884.179005	-1886.591456	-1886.684278
		0	trans-C ₂	-1882.4308006	-1883.7601248	-1886.1688146	-1886.182461
4	2		C ₁ [5+1]	-1882.4307972	-1883.7583792	-1886.1746470	-1886.193421
			cis-C ₂	-1882.432593	-1883.762831	-1886.172773	-1886.194117
5	1	0	Cs	-1863.0460474	-1864.3427909	-1866.7348329	-1866.82058
5	1	U	C ₁	-1863.0460475	-1864.3429145	-1866.7348103	-1866.820652

NOT Sta	ble [†] Tota	l free energy in solu	tion at 25°C, CPCM	-B3LYP/6-31+G*//	B3LYP/6-31+G*

				Optimized Ni-O Bond Lengths (Å)						
				HF/6-31+G*		MP2/6	MP2/6-31+G*		B3LYP/6-31+G*	
n	m	l	Point Group	ОН	H ₂ O	ОН	H ₂ O	ОН	H ₂ O	
			C _s #1	1.755	N/A		N/A		N/A	
1	1	0	C _s #2	1.761	N/A	1.742	N/A		N/A	
1		0	C _s #3	1.743	N/A	1.710	N/A	1.699	N/A	
			C_1	1.755	N/A	1.712	N/A	1.699	N/A	
1	1	1	C_1	1.802	2.055	1.763	2.029	1.755	2.057	
1	1	2	C ₁	1.827	2.095 2.112	1.797	2.085 2.064	1.788	2.115 2.086	
1	1	3	C_1	1.860	2.127 2.205 2.180	1.839	2.088 2.155 2.145	1.822	2.129 2.179 2.166	
	1			cis-C ₁	1.921	2.201 2.161 2.169 2.222	1.931	2.144 2.114 2.110 2.166	1.942	2.161 2.147 2.121 2.196
1		4	trans-C ₁	1.933	2.180 2.175 2.204 2.201	1.949	2.119 2.116 2.141 2.148	1.960	2.133 2.128 2.162 2.169	
1	2	0	Cs	1.838 1.835	N/A	1.811 1.808	N/A	1.800 1.798	N/A	
			Cs					1.815	2.377	
1	2	1	C ₁	1.879 1.898	2.210	1.857 1.884	2.169	1.837 1.862	2.275	
1	2	2	C ₁	1.926 1.922	2.278 2.284	1.954 2.894	2.214 2.198	1.975 1.872	2.231 2.226	
1	2	3	C ₁ [5+1]	1.920 1.935	2.328 2.246	1.921 1.930	2.242 2.174	1.939 1.927	2.261 2.194	
1	3	0	C ₁	1.952 1.983 1.965	N/A	1.917 1.951 1.979	N/A	1.922 1.922 1.950	N/A	
1	3	1	C ₁ [4+1]	1.950 1.979 1.971		1.933 1.962 1.953		1.929 1.971 1.952		
1	3	2	C ₁ [4+2]	1.965 1.977 1.953		1.945 1.972 1.937		1.953 1.977 1.926		

<u>Table 3A.35</u>: Ni-O bond lengths for stable geometries of $[Ni(NH_3)_n(OH)_m(H_2O)_l]^{2-m}$, where n=1-5, m=1-(5-n), l=0-(6-n-m).

				2.038		1.983		1.967							
1	4	0	C_1	2.038		2.002		1.991	N/A						
1			[4+1]	2.028	N/A	2.021	N/A	2.021							
				2.050		2.029		2.042							
				2.025		1.985		1.974							
		1	C_1	2.028		2.010		2.019							
1	4	I	[4+2]	2.042		1.996		1.989							
				2.038		2.022		2.030							
2	1	0	C_1	1.796	N/A	1.771	N/A	1.766	N/A						
2	1	1	C ₁	1.836	2.122	1.816	2.086	1.805	2.109						
			Cs			1.902	2.124								
2	1	2	Q	1.076	2.201	1.056	2.173	1.020	2.199						
			C_1	1.8/6	2.208	1.856	2.164	1.839	2.200						
					2.201		2.145		2.175						
			$mer-C_1$	1.936	2.217	1.953	2.172	1.969	2.227						
2	1				2.237		2.175		2.190						
2	1	3			2.270		2.207		2.248						
			$fac-C_1$	1.941	2.196	1.953	2.176	1.955	2.198						
			_			2.227		2.140		2.179					
2	2	0	C_2	1.878	N/A	1.857	N/A	1.845	N/A						
2	2	1	C_1	1.934		1.933		1.939							
	2	1	[4+1]	1.885		1.864		1.847							
		2	C ₂ #1 [4+2]	1.909		1.892		1.881							
			C ₂ #2 [4+2]	1.923		1.912		1.911							
				Cs	1.929	2.022	1.931	2.057							
			2	2		1.020	2.400	1 866	2.203	1.850					
2	2				$C_1 #1$	1.929	2.413	1.000	[4+2]	1.030	[4+2]				
										1 000	2.307	1.024	2 225	1.910	2 257
						C ₁ #2	1.972	2.300	2 014	2.223	2 009	2.237 2 320			
									C #2	1.972	2.317	1 911	2.230	1 911	2.320
						$C_1 #3$ [4+2]	1.923		1.911		1.911				
			[112]	1.923	2 302	2 006	2 212	2 011	2 234						
			C ₁ #4	1.992	2.362	2.000	2.232	2.007	2.266						
				1.973	2.002	1.947	2.202	1.949	2.200						
2	3	0	C_1	1.971	N/A	1.950	N/A	1.945	N/A						
_	C		[4+1]	1.962		1.956		1.958							
				1.980		1.960		1.965							
2	3	1	C ₁	1.944		1.924		1.921							
			[4+2]	1.975		1.961		1.964							
_		6	Ca	2.029	37/4	1.990		1.981	NT / 4						
2	4	0	[4+2]	2.042	N/A	2.023	N/A	2.028	N/A						

2	1	0	Cs		N/A	1.819	N/A	1.811	N/A
5	1	U	C_1	1.839	N/A	1.819	N/A	1.811	N/A
2	1	1	Cs	1.901	2.199				
3			C_1	1.901	2.198	1.907	2.152	1.920	2.192
			mer-C _s	1.953	2.241	1.984	2.176	2.000	2.197
			mer-C ₁	1.052	2.232	1 092	2.175	1.005	2.196
2	1		#1	1.955	2.246	1.962	2.177	1.995	2.201
5	1	2	mer-C ₁	1.042	2.346	1.057	2.274	1.056	2.364
			#2	1.942	2.241	1.957	2.181	1.930	2.240
			fac-C _s	1.955	2.296	1.978	2.229	1.978	2.281
3	2	0	C	1.933	N/A	1.916	N/A	1.888	NI/A
	2	U	C_1	1.948	IN/A	1.976	1N/A	1.997	IN/A
	2	1	C_1	1.964		1.981		1.994	
3			[5+1]	1.938		1.930		1.920	
			fac-C _s	1.995	2.326	2.003	2.259	2.009	2.288
	3	0	C ₃ [3+3]	1.911	N/A	1.880	N/A	1.888	N/A
2			0 C_1 [4+2]	1.983		1.939		1.939	
5				1.959	N/A	1.953	N/A	1.959	N/A
			[4+2]	1.969		1.963		1.950	
4	1	0	Cs	1.911	N/A	1.922	N/A	1.934	N/A
		1	cis-C ₁	1.953	2.396	1.977	2.303	1.971	2.442
4	1		trans-C _s			1.951	2.207	1.959	2.279
			trans-C ₁	1.938	2.274	1.951	2.207	1.958	2.288
			trans-C ₂	1.992	N/A	2.010	N/A	2.025	N/A
1	2		C_1	1.991	NI/A	1.926	NI/A	1.902	NI/A
4	2	U	[5+1]	1.991	1N/A	1.985	IN/A	2.003	IN/A
			cis-C ₂	1.999	N/A	2.013	N/A	2.022	N/A
			C	1.055	N/A		NI/A	1 099	N/A
5	1	0	C_{s}	1.933	1N/A		1N/A	1.700	1N/A
			C_1	1.955	N/A	1.976	N/A	1.986	N/A
				Optimized Ni-N Bond Lengths (Å)					
---	---	---	---------------------------------------	---------------------------------	-------------	---------------	--	--	--
n	m	1	Point Group	HF/6-31+G*	MP2/6-31+G*	B3LYP/6-31+G*			
			C _s #1	2.035					
1	1	0	C _s #2	2.036	1.984				
1	1	0	C _s #3	2.046	1.987	1.983			
			C ₁	2.035	1.983	1.983			
1	1	1	C ₁	2.069	2.005	2.008			
1	1	2	C ₁	2.108	2.041	2.054			
1	1	3	C ₁	2.125	2.054	2.068			
1	1	4	$_{4}$ cis-C ₁ 2.166 2.084		2.084	2.092			
1	1	4	trans-C ₁	2.139	2.066	2.084			
1	2	0	Cs	2.137	2.057	2.074			
1	2	1	Cs			2.107			
1	2	1	C ₁	2.147	2.065	2.079			
1	2	2	C ₁	2.146	2.058	2.076			
1	2	3	C ₁ [5+1]	2.167	2.071	2.074			
1	3	0	C ₁	2.198	2.099	2.186			
1	3	1	C ₁ [4+1]	2.184	2.080	2.087			
1	3	2	C ₁ [4+2]	2.209	2.096	2.101			
1	4	0	C ₁ [4+1]						
1	4	1	C ₁ [4+2]						
2	1	0	C	2.098	2.034	2.053			
2	1	0	C_1	2.094	2.025	2.028			
2	1	1	C	2.124	2.058	2.079			
2	1	1	C_1	2.129	2.061	2.084			
			C		2.055				
2	1	2	C_{s}		2.071				
2	1	2	C	2.135	2.067	2.089			
			C_1	2.147	2.072	2.095			
			mer_C.	2.175	2.083	2.088			
2	1	3	mer-el	2.183	2.099	2.107			
2		5	fac-C.	fac C. 2.175 2.093		2.098			
				2.170	2.085	2.094			
2	2	0	C ₂	2.243	2.149	2.175			
2	2	1	C ₁	2.158	2.072	2.082			
~	-	1	[4+1]	2.171	2.087	2.120			

<u>Table 3A.36</u>: Ni-N bond lengths for stable geometries of $[Ni(NH_3)_n(OH)_m(H_2O)_l]^{2-m}$, where n=1-5, m=1-(5-n), l=0-(6-n-m).

			C ₂ #1 [4+2]	2.199	2.095	2.121		
			C ₂ #2 [4+2]	2.150	2.067	2.077		
			Cs	2.189 2.277	2.097 2.154			
2	2	2	C ₁ #1	2.190 2.277	2.072 2.118	2.096 2.151		
			C ₁ #2	2.211	2.115	2.130		
			C ₁ #3	2.150	2.067	2.078		
			$C_1 #4$	2.213	2.007	2.131		
2	3	0	C_1	2.230	2.078	2.087		
2	3	1	$C_1 [4+2]$	2.180	2.078	2.085		
2	4	0	$C_{2}[4+2]$					
			0		2.074	2.089		
			C_{s}		2.080	2.105		
3	1	0		2.144	2.074	2.088		
			C_1	2.153	2.080	2.105		
				2.147	2.080	2.105		
			C	2.150				
					C_{S}	2.195		
3	1	1		2.150	2.072	2.083		
			C_1	2.195	2.106	2.115		
				2.195	2.107	2.112		
				2.203	2.111	2.123		
			mer-C _s	2.185	2.103	2.129		
				2.221	2.134	2.152		
			mer-C ₁	2.210	2.120	2.135		
			#1	2.188	2.106	2.131		
3	1	2		2.214	2.130	2.144		
			mer-C ₁	2.190	2.107	2.111		
			#2	2.191	2.102	2.109		
				2.202	2.120	2.128		
			fac-C	2.187	2.102	2.110		
			1	2.176	2.097	2.116		
			_	2.294	2.166	2.177		
3	2	0	C_1	2.299	2.181	2.194		
1				2.198	2.107	2.162		

			G	2.242	2.137	2.156
			C_1	2.206	2.103	2.135
3	2	1	[5+1]	2.271	2.154	2.164
			fac C	2.217	2.111	2.122
			Tac-C _s	2.255	2.145	2.172
2	2	0	C ₃ [3+3]			
5	5	U	C1 [4+2]	1.896	1.872	1.866
				2.194	2.113	2.142
4	1	0	Cs	2.167	2.087	2.102
				2.231	2.141	2.149
				2.202	2.120	2.146
			aia C	2.203	2.112	2.115
			$CIS-C_1$	2.235	2.148	2.163
				2.230	2.139	2.151
					2.129	2.145
4	1	1	1 trans-C _s		2.160	2.171
					2.159	2.176
				2.250	2.160	2.170
			trans-C ₁	2.223	2.129	2.144
				2.249	2.160	2.171
				2.242	2.159	2.175
			trans C	2.309	2.183	2.203
			trans-C ₂	2.309	2.183	2.203
) trans C	2.312	2.200	2.228
4	2	0		2.310	2.120	2.135
4	2	U	trans-C ₁	2.313	2.118	2.164
				2.310	[5+1]	[5+1]
			aia C	2.281	2.172	2.185
			$cis-c_2$	2.284	2.167	2.200
				2.283		2.220
			C	2.223		2.167
			C_{s}	2.269		2.190
				2.259		2.178
5	1	0		2.283	2.187	2.194
				2.223	2.136	2.168
			C_1	2.269	2.190	2.216
				2.269	2.161	2.180
				2.259	2.163	2.186

n	m	1	Point Group	Freq. (cm^{-1})	Irr. Rep.	OH/H ₂ O/NH	Miving
11	111	1	Symmetry	rreq. (cm)	Symm.	3	winxing
				445.1	a'	NH ₃	
1	1	0	C #1	598.6	a'	OH	
1	1	U	$C_{\rm S} \pi 1$	770.7	a'	OH	
				795.5	a'	OH	
				354.5	а	H_2O	
1	1	1	C	409.3	а	NH ₃	H ₂ O rock
1	1	1	C_1	709.4	а	OH	
				720.5	а	OH	
				296.5	а	H ₂ O	
				322.5	а	H_2O	
				327.9	а	H ₂ O	H ₂ O wag
1	1	2	C.	375.0	а	NH ₃	H ₂ O wag
1	1	2	C_1	402.5	а	NH ₃	H ₂ O wag
				661.6	а	OH	H ₂ O rock
				667.3	а	OH	
				711.8	а	OH	H ₂ O rock
				215.7	а	H ₂ O	H ₂ O twist
				250.0	а	H ₂ O	H ₂ O wag/rock
				277.3	а	H ₂ O	H ₂ O wag
				305.2	а	H_2O/NH_3	H ₂ O twist
1	1	3	C	323.5	а	H ₂ O	H ₂ O twist
1	1	5	C_1	357.6	а	H_2O/NH_3	H ₂ O rock/wag
				369.9	а	H_2O/NH_3	H ₂ O wag
				565.0	а	OH	H ₂ O wag
				617.5	а	OH	H ₂ O twist
				655.9	a	OH	H ₂ O rock
				189.1	а	H_2O	H ₂ O twist
				212.8	а	H_2O	H ₂ O twist
				226.2	а	H_2O	H ₂ O twist
				234.8	а	H_2O/NH_3	H ₂ O twist
				254.8	а	H_2O	H ₂ O twist
1	1	Δ	trans C.	263.3	а	H_2O	H ₂ O twist
1	1	4	uans-C1	278.7	а	H_2O	H ₂ O twist
				294.4	а	H ₂ O	H ₂ O twist
				321.1	а	H ₂ O	H ₂ O twist
				345.2	а	H_2O/NH_3	H ₂ O wag
				515.6	a	OH	H ₂ O wag/rock
				559.5	a	OH	H ₂ O wag/rock

 $\begin{array}{l} \underline{\text{Table 3A.37}:} & \text{Ni-N and Ni-O vibrational stretching frequencies for optimized} \\ & \text{geometries of } [\text{Ni}(\text{NH}_3)_n(\text{OH})_m(\text{H}_2\text{O})_l]^{2\text{-m}}, \text{ where } n=1-5, \, m=1-(5\text{-n}), \\ & l=0-(6\text{-n-m}) \text{ calculated at } \text{HF}/6\text{-}31\text{+}G^*. \end{array}$

				349.0	а	NH ₃	
1	•	0	q	572.8	а	OH	
I	2	0	C_1	633.7	а	ОН	
				702.1	a	ОН	
				218.4	а	H ₂ O	
				265.7	a	H ₂ O	
				338.6	a	NH ₃	H ₂ O wag
1	2	1	C_1	345.1	a	NH ₃	H ₂ O rock
			- 1	533.6	a	OH	H ₂ O twist
				607.7	a	OH	2
				646.9	а	OH	H_2O wag
				175.6	а	H ₂ O	- 0
				206.6	а	H ₂ O	
				260.8	а	H ₂ O	
				284.0	а	H ₂ O	
				338.9	a	NH ₃	
1	2	2	\mathbf{C}_1	496.4	a	OH	H ₂ O twist
-	-	-	U1	500.5	a	OH	H_2O twist
				523.6	a	OH	H_2O twist
				562.8	a	ОН	H_2O was
				592.0	a	ОН	m ₂ O wag
				617.6	a	ОН	H ₂ O wag
				151.5	a	H ₂ O	II20 wag
				153.1	a		H ₂ O rock
				166.8	a		H_2O Wag
				221.6	a		$\Pi_2 O$ wag
				221.0	a		
				290.9	a	NU.	H_2O wag
1	2	3	C_1	310.0	a	NII3	H_2O wag
1	2	5	[5+1]	319.9	a	NII3	H_2O wag
				332.7 480 2	a		H_2O wag
				480.2	a		H_2O wag
				409.9	a		H_2O wag
				556.0	a		H_2O wag
				575 7	a	OH OH	H_2O wag
				274.1	a	NH.	Th ₂ O wag
				274.1	a	NII3	
				299.1	a	INII3 NILI	
1	3	0	C_1	310.2 445 0	a		
				445.0	a	ОН	
				4/J.0 101 1	a		
				404.1	ä		
				289.1	a		
1	2	1	C_1	509.5 447 1	a		
1	3	1	[4+1]	44/.1	a		
				408.3	а	OH	
				492.8	a	OH	

				281.3	a	NH ₃	
1	2	\mathbf{r}	C_1	454.0	а	OH	
1	3	Z	[4+2]	465.3	а	OH	
				489.6	а	OH	
				352.5	a	OH	
				365.8	а	OH	
1	4	0	C_1	377.2	а	OH	
1	4	0	[4+1]	389.4	а	OH	
				399.0	а	OH	
				420.4	а	OH	
				364.4	a	OH	
			G	377.1	а	OH	
1	4	1	C_1	382.5	а	OH	
			[4+2]	399.1	а	OH	
				424.9	а	OH	
				376.3	a	NH ₃	
				392.3	а	NH ₃	
2	1	0	C	400.3	а	NH ₃	
2	1	0	C_1	697.3	а	OH	
				710.3	а	OH	
				742.1	а	OH	
				307.3	a	H ₂ O	
				348.0	а	NH ₃	H ₂ O wag
2	1	1	C_1	365.0	а	NH ₃	H ₂ O wag
				374.1	а	NH ₃	H ₂ O wag
				651.2	а	OH	H ₂ O wag
				207.8	a	H ₂ O	H ₂ O twist
				233.2	а	H_2O	H ₂ O twist
				256.8	а	H ₂ O	H ₂ O wag
				300.3	а	H ₂ O	H ₂ O wag
2	1	2	C_1	328.7	а	NH ₃	H ₂ O wag
				346.9	a	NH ₃	H ₂ O wag
				355.1	a	NH ₃	H ₂ O wag
				596.6	а	OH	H ₂ O rock
				612.5	a	OH	H ₂ O twist

-							
				127.5	а	H ₂ O	
				207.9	а	H_2O	H ₂ O twist
				222.2	а	H_2O/NH_3	H ₂ O twist
				232.2	а	H_2O	
2	1	3	fac-C1	261.8	а	H_2O/NH_3	H ₂ O twist
2	1	5		305.5	а	H_2O/NH_3	H ₂ O twist
				325.8	а	NH_3	H_2O wag
				336.8	а	H_2O/NH_3	H ₂ O twist
				524.9	а	OH	H ₂ O wag
				540.3	a	OH	H ₂ O twist
				245.3	а	NH ₃	
				289.6	b	NH ₃	
2	2	0	C	514.8	а	OH	
	Ζ	0	C_2	587.3	b	OH	
				591.2	а	OH	
				655.4	b	OH	
				316.5	a	NH ₃	
				319.9	а	NH ₃	
	2	1	C_1	339.6	а	NH_3	
2	2	I	[4+1]	492.1	а	OH	
				561.1	а	OH	
				588.4	а	OH	
-				334.6	b	NH ₃	
				356.0	а	NH ₃	
	~	~	C ₂ #2	484.5	а	OH	
2	2	2	[4+2]	532.2	b	OH	
				564.5	b	OH	
				566.1	а	OH	
-				296.7	а	NH ₃	
			G	309.8	а	NH ₃	
2	3	0	C_1	450.4	а	OH	
			[4+1]	468.9	а	OH	
				482.0	а	OH	
				305.1	a	NH ₃	
				315.1	а	NH ₃	
	2	1	\mathbf{C}_1	438.4	а	OH	
2	3	I	[4+2]	452.4	а	ОН	
				468.3	a	ОН	
				502.0	a	OH	
				356.1	b	OH	
				360.8	a	OH	
_		~	\mathbf{C}_{2}	375.5	b	OH	
2	4	0	[4+2]	381.4	a	OH	
			r . – 1	395.9	h	OH	
				420.8	a	OH	
				120.0	u	011	l

				325.2	а	NH ₃	
3	1	0	C	342.0	а	NH ₃	
5	1	0	\mathbf{C}_1	353.9	а	NH ₃	
				641.7	а	OH	
				214.4	a'	H ₂ O/NH ₃	
				281.8	a'	H ₂ O/NH ₃	H_2O wag
				295.7	a''	NH ₃	H ₂ O rock
3	1	1	C_s	298.2	a'	H ₂ O/NH ₃	H ₂ O wag
				334.0	a''	NH ₃	H ₂ O rock
				341.5	a'	NH ₃	H ₂ O wag
				568.2	a'	OH	
				197.7	a'	H ₂ O/NH ₃	H ₂ O twist
				281.0	a'	NH ₃	H ₂ O wag
				297.7	a'	H ₂ O/NH ₃	
3	1	2	fac-C _s	307.7	a'	H ₂ O/NH ₃	H ₂ O rock
				326.8	a''	NH ₃	H ₂ O rock
				507.5	a'	OH	H ₂ O rock
				523.7	a'	OH	H ₂ O rock
				183.1	а	NH ₃	
				198.0	а	NH ₃	
				234.2	а	NH ₃	
3	2	0	C	268.8	а	NH ₃	
5	2	0	\mathbf{C}_1	283.4	а	NH ₃	
				475.9	а	OH	
				532.9	а	OH	
				634.4	a	OH	
				207.8	а	NH ₃	
				219.4	а	NH ₃	
				267.9	а	NH ₃	
3	2	1	C_1	283.7	а	NH ₃	
5	2	1	[5+1]	472.1	а	OH	
				478.4	а	OH	
				494.7	а	OH	
				518.1	a	OH	
				293.1	а	NH ₃	
				321.1	а	NH ₃	
3	3	0	C_1	436.2	а	OH	
5	5	U	[4+2]	462.0	а	OH	
				480.6	а	OH	
				505.8	а	OH	

				229.2	a'	NH ₃	
				276.4	a''	NH ₃	
4	1	0	C	306.6	a'	NH ₃	
4	1	0	C_{s}	330.2	a'	NH ₃	
				337.1	a''	NH ₃	
				556.5	a'	OH	
				88.4	a	H ₂ O	H ₂ O twist
				193.1	а	H_2O	
				226.9	а	H ₂ O/NH ₃	
				248.6	а	NH ₃	
1	1	1	cia C	278.1	а	NH ₃	H ₂ O wag
4	1	1	$cis-c_1$	287.6	а	H ₂ O/NH ₃	H ₂ O wag
				299.6	а	NH ₃	H ₂ O twist
				312.1	а	NH ₃	H ₂ O rock
				502.1	а	OH	H ₂ O rock
				519.2	а	OH	H ₂ O rock
				174.5	а	NH ₃	
				228.7	а	NH ₃	
1	2	0	cia C.	232.9	b	NH ₃	
4		0	$cis-c_2$	267.0	а	NH ₃	
				439.7	b	OH	
				464.6	а	OH	
				195.4	a'	NH ₃	
				219.9	a'	NH ₃	
				225.5	a'	NH ₃	
				250.4	a'	NH ₃	
5	1	0	C_s	266.1	a''	NH ₃	
				296.0	a'	NH ₃	
				471.5	a'	OH	
				502.4	a'	OH	
				530.4	a'	OH	

n	m	1	Point Group Symmetry	Freq. (cm ⁻¹)	Irr. Rep. Symm.	OH/H ₂ O/NH ₃	Mixing
			<u>Symmetry</u>	458.2	a'	NH ₃	
1	1	0	C _s #3	809.8	a'	OH	
				371.6	a	H ₂ O	
				422.9	a	NH ₃	H ₂ O wag
			~	442.8	a	NH ₃	H ₂ O twist
1	1	I	C_1	712.3	a	OH	H ₂ O rock
				719.3	a	OH	H ₂ O rock
				726.8	а	OH	H_2O rock
				304.7	а	H ₂ O	
				341.5	а	H ₂ O	H_2O wag
				400.5	а	NH ₃	H_2O wag
1	1	2	C_1	426.6	а	NH ₃	H_2O wag
				440.1	а	H ₂ O/NH ₃	H_2O wag
				657.9	а	OH	C
				714.8	а	OH	
				237.2	a	H ₂ O	H ₂ O twist
				253.3	а	H_2O	H ₂ O wag
				282.6	а	H ₂ O	H ₂ O rock
				293.6	а	H ₂ O	H ₂ O wag
1	1	3	C_1	300.0	а	H ₂ O	H ₂ O twist
				327.5	а	H_2O/NH_3	H ₂ O wag
				384.7	а	H_2O/NH_3	H ₂ O wag
				394.7	а	NH ₃	H ₂ O wag
				615.5	a	OH	H ₂ O rock
				227.1	а	H_2O	H ₂ O twist
				254.4	а	H_2O	H ₂ O twist
				261.9	а	H_2O/NH_3	H ₂ O twist
				270.9	а	H ₂ O	H ₂ O twist
				305.6	а	H_2O/NH_3	H_2O rock
1	1	4	trans-C ₁	309.5	а	H_2O	H_2O wag
1	-			336.7	а	H ₂ O	H_2O wag
				378.2	а	H_2O/NH_3	H_2O twist
				381.7	а	H_2O/NH_3	H_2O twist
				520.0	а	OH	H_2O wag
				540.5	а	OH	H_2O twist
				560.8	a	OH	H_2O wag
				392.5	а	NH ₃	
1	2	0	C_1	566.8	а	OH	
1	_		\mathcal{L}_1	644.0	а	OH	
				709.5	a	OH	

 $\begin{array}{l} \underline{\text{Table 3A.38}:} & \text{Ni-N and Ni-O vibrational stretching frequencies for optimized} \\ & \text{geometries of } [\text{Ni}(\text{NH}_3)_n(\text{OH})_m(\text{H}_2\text{O})_l]^{2\text{-m}}, \text{ where } n=1-5, \, m=1-(5\text{-n}), \\ & l=0-(6\text{-n-m}) \text{ calculated at } MP2/6\text{-}31\text{+}G^*. \end{array}$

				241.1	a	H ₂ O	
				255.6	a	H ₂ O	
				285.9	a	H ₂ O	
1	2	1	\mathbf{C}_1	384.8	a	NH ₃	H ₂ O twist
-	_	-		523.3	a	OH	H_2O wag
				594.0	a	OH	28
				603.4	a	OH	
				198.1	a	H ₂ O	
				236.4	a		H ₂ O rock
				264.8	a		1120 100K
				282.3	a		H ₂ O rock
				384.9	a	NH ₂	H_2O rock
1	2	2	C_1	388.5	a	NH ₂	H_2O rock
				481.5	a	OH/H ₂ O/NH ₂	H_2O twist
				529.6	a	OH OH	H_2O twist
				539.7	a	OH	H_2O wag
				559.1	a	ОН	H_2O wag
				188.5	а Э	Ha	m20 wag
				248.7	a		
				240.7	a		
1	2	3	C_1	207.1	a	NH.	H.O. rock
1	~	5	[5+1]	370.4	a	NII3	H_2O rock
				309.7 471.0	a		H_2O lock
				471.9 544.8	a		H_2O TOCK
				302.1	a		II ₂ O twist
				302.1	a	NII3	
				420.0	a		
1	3	0	C_1	459.0	a	ОН	
				434.3	a	ОН	
				566 1	a		
				257.0	a		
				557.0 270.9	a	NH3	
1	2	1	C_1	570.8	a	NH ₃	
1	3	1	[4+1]	440.0	a	OH	
				400.4	a	OH	
				490.6	a	OH	
			C	343.8	a	INH ₃	
1	3	2	C_1	444.7	a	OH	
			[4+2]	454.6	a	OH	
				494.3	a	OH	
			~	339.0	a	OH	
1	4	0	C_1	390.5	a	OH	
-	.	~	[4+1]	412.5	a	OH	
				434.2	a	OH	

				370.6	a	OH	
				380.3	а	OH	
1	1	1	C_1	392.7	а	OH	
1	4	1	[4+2]	418.9	а	OH	
				427.1	а	OH	
				432.0	а	OH	
				411.6	a	NH ₃	
				420.4	а	NH ₃	
2	1	0	C_1	441.2	а	NH ₃	
				697.0	а	OH	
				716.0	а	OH	
				327.6	a	H ₂ O/NH ₃	H ₂ O twist
				378.4	а	NH ₃	H_2O wag
2	1	1	C_1	394.5	а	NH ₃	H ₂ O wag
				398.0	а	NH ₃	
				641.3	а	OH	H ₂ O wag
				230.9	a	H ₂ O	
				257.6	а	H_2O	
2	1	C	C	288.9	а	H ₂ O/NH ₃	
Z	1	Ζ	C_1	371.1	а	NH ₃	H ₂ O wag
				385.2	а	H ₂ O/NH ₃	H ₂ O rock
				594.5	а	OH	H ₂ O rock
				236.5	а	H ₂ O	H ₂ O rock
				256.9	а	H ₂ O/NH ₃	
				291.1	а	H ₂ O/NH ₃	H ₂ O wag
				337.9	а	H ₂ O/NH ₃	H ₂ O rock
2	1	3	fac-C ₁	355.7	а	NH ₃	H ₂ O twist
				367.5	а	H_2O/NH_3	H ₂ O rock
				373.5	а	NH ₃	H ₂ O twist
				504.1	а	OH	H ₂ O rock
				522.5	a	OH	H ₂ O twist
				274.2	а	NH ₃	
				328.6	b	NH ₃	
2	2	0	C.	513.0	а	OH	
2	2	0	C_2	584.1	b	OH	
				596.7	а	OH	
				661.2	b	OH	
				362.7	а	NH ₃	
			C	380.0	a	NH ₃	
2	2	1		477.2	a	OH	
			[+ 1]	575.1	a	OH	
				583.5	а	OH	

				386.5	b	NH ₃	
				387.4	а	NH ₃	
2	2	2	C #2	411.1	а	NH ₃	
2	2	2	$C_2 # 2$	473.8	а	OH	
				536.0	b	OH	
				564.3	b	OH	
				362.8	a	NH ₃	
2	2	0	C_1	443.4	а	OH/NH ₃	
2	3	0	[4+1]	469.7	а	OH	
				478.0	а	OH	
				361.8	a	NH ₃	
				376.1	а	NH ₃	
2	2	1	C_1	441.5	а	OH	
2	3	1	[4+2]	454.2	а	OH	
				481.1	а	OH	
				501.5	а	OH	
				370.3	b	ОН	
2	1	0	C_2	376.8	а	OH	
2	4	U	[4+2]	417.9	а	OH	
				425.9	b	OH	
				356.3	a''	NH ₃	
				373.8	a'	NH ₃	
3	1	0	C_s	384.2	a'	NH ₃	
				625.7	a'	OH	
				642.4	a'	OH	
				235.3	а	H_2O/NH_3	
				322.6	а	H_2O/NH_3	
3	1	1	C.	327.2	а	NH ₃	H ₂ O rock
5	1	1	\mathbf{C}_1	365.9	а	NH ₃	H ₂ O rock
				380.8	а	NH ₃	
				543.0	а	OH	
				223.5	a'	H ₂ O	H ₂ O wag
				265.7	a'	H_2O	
				281.7	a''	NH ₃	
3	1	2	fac-C _s	343.7	a''	NH ₃	H ₂ O twist
				351.9	a'	NH ₃	H ₂ O rock
				355.7	a'	NH ₃	H ₂ O twist
				470.6	a'	OH	H_2O wag

				215.0	a	NH ₃	
				232.1	а	NH_3	
				250.5	а	NH ₃	
				290.0	а	NH ₃	
3	2	0	C_1	310.3	а	NH ₃	
			-	337.8	а	NH ₃	
				455.0	а	OH	
				458.1	а	OH	
				511.3	а	OH	
				238.8	а	NH ₃	
				265.4	а	NH ₃	
~		1	C_1	320.1	а	NH ₃	
3	2	I	[5+1]	333.9	а	NH ₃	
				451.1	а	OH	
				482.3	а	OH	
				358.5	а	NH ₃	
			G	390.7	а	NH ₃	
3	3	0	C_1	444.4	а	OH	
			[4+2]	467.8	а	OH	
				481.5	а	OH	
				262.8	a'	NH ₃	
				314.3	a''	NH ₃	
4	1	0	C	343.5	a'	NH ₃	
4	1	0	C_{s}	365.2	a'	NH ₃	
				369.3	a''	NH ₃	
				527.0	a'	OH	
				198.8	a	H ₂ O/NH ₃	H ₂ O wag
				231.6	а	H ₂ O/NH ₃	H_2O rock
				251.7	а	NH ₃	
4	1	1		284.1	а	NH ₃	H_2O wag
4	1	1	$c_{1s}-c_{1}$	327.8	а	NH_3	H_2O wag
				329.6	а	NH ₃	H_2O wag
				342.9	а	NH_3	H ₂ O twist
				475.4	а	OH	H_2O wag
				212.0	a	NH ₃	
				212.8	b	NH_3	
				253.9	b	NH ₃	
				261.7	a	NH ₃	
4	2	0	cis-C ₂	277.5	b	NH ₃	
				304.4	a	NH ₃	
				425.0	b	OH	
				437.6	a	OH	
				450.4	a	OH	

				232.9	а	NH ₃	
				244.1	а	NH_3	
				256.5	а	NH_3	
5	1	0	C	268.9	а	NH_3	
5	1	0	C_1	301.4	а	NH_3	
				327.2	а	NH_3	
				461.1	а	OH	
				498.7	а	OH	

n	m	1	Point Group Symmetry	Freq. (cm ⁻¹)	Irr. Rep. Symm.	OH/H ₂ O/NH ₃	Mixing
1	1	0	<u>с</u> щ2	452.2	a'	NH ₃	
1	1	0	$C_s #3$	786.2	a'	OH	
				340.6	a	H ₂ O	
1	1	1	C_1	423.5	а	NH ₃	
				717.8	а	OH	
				264.1	a	H ₂ O	H ₂ O twist
				317.8	а	H_2O	H_2O wag
1	1	C	C	378.3	а	H ₂ O/NH ₃	H ₂ O wag
1	1	Ζ	C_1	407.4	а	NH ₃	H ₂ O wag
				650.2	а	OH	H ₂ O twist
				692.1	а	OH	H ₂ O twist
				216.9	а	H ₂ O	
				238.7	а	H_2O	
				262.2	а	H_2O	H ₂ O rock
1	1	3	C_1	284.4	а	H_2O/NH_3	H_2O wag
				367.7	а	H_2O/NH_3	H ₂ O rock
				390.2	а	NH ₃	H ₂ O wag
				616.9	a	OH	H ₂ O rock
				200.4	а	H_2O	H ₂ O rock
				209.8	а	H_2O	H ₂ O twist
				220.6	а	H_2O	H ₂ O rock
				245.7	а	H ₂ O/NH ₃	H ₂ O twist
				258.0	а	H_2O	H ₂ O rock
				265.7	а	H_2O	H ₂ O rock
1	1	4	trans-C ₁	285.5	а	H_2O/NH_3	H ₂ O rock
				292.2	а	H_2O	H_2O wag
				360.4	а	NH ₃	H ₂ O twist
				470.3	а	OH	H_2O wag
				496.0	а	OH	H ₂ O twist
				511.9	а	OH	H_2O wag
				538.5	a	OH	H ₂ O twist
				369.4	а	NH ₃	
1	2	0	\mathbf{C}_1	573.9	а	OH	
1	_	Ŭ	U1	613.3	а	OH	
				705.9	a	OH	
				177.3	а	H ₂ O	
			_	360.0	а	NH ₃	
1	2	1	1 C ₁	535.3	а	OH	H ₂ O twist
				595.4	а	OH	H_2O twist
				639.4	a	OH	H_2O wag

 $\begin{array}{l} \underline{\text{Table 3A.39}}: & \text{Ni-N and Ni-O vibrational stretching frequencies for optimized} \\ & \text{geometries of } [\text{Ni}(\text{NH}_3)_n(\text{OH})_m(\text{H}_2\text{O})_l]^{2\text{-m}}, \text{ where } n=1-5, \, m=1-(5\text{-n}), \\ & l=0-(6\text{-n-m}) \text{ calculated at } B3LYP/6\text{-}31\text{+}G^*. \end{array}$

				183.1	а	H ₂ O	
				190.2	a	H ₂ O	
				218.6	a	H ₂ O	
1	2	2	C_1	260.3	a	H ₂ O	
		_	-1	355.2	a	NH ₃	H ₂ O wag
				548.1	a	OH	H ₂ O rock
				576.0	a	ОН	H ₂ O rock
				161.7	a	H ₂ O	<u> </u>
				175.0	а	H ₂ O	
				242.6	а	H ₂ O	
			~	338.3	а	NH ₃	H ₂ O twist
1	2	3	C_1	363.7	а	NH ₃	H_2O twist
			[5+1]	391.2	а	NH ₃	H ₂ O twist
				462.4	а	OH/H ₂ O	H ₂ O rock
				504.7	а	OH	H ₂ O rock
				534.4	а	OH	H ₂ O rock
				193.8	а	NH ₃	
				224.0	а	NH ₃	
1	3	0	C	241.7	а	NH ₃	
1	5	0	C_1	447.2	а	OH/NH ₃	
				477.7	а	OH	
				483.5	а	OH	
				346.0	а	NH ₃	
1	3	1	C_1	423.3	а	OH/NH ₃	
1	5	1	[4+1]	461.8	а	OH	
				479.7	а	OH	
				332.8	а	NH ₃	
1	3	2	C_1	426.0	а	OH	
1	5	2	[4+2]	449.2	а	OH	
				480.8	a	OH	
				304.6	а	OH	
1	4	0	C_1	375.0	а	OH	
	-	, in the second se	[4+1]	407.6	а	OH	
				425.2	a	OH	
				355.2	а	OH	
1	4	1	C_1	362.8	а	OH	
			[4+2]	412.8	а	OH	
				420.3	a	OH	
				389.7	а	NH ₃	
	4	0	C	402.3	а	NH ₃	
2	1	0	\mathbf{C}_1	678.5	а	OH	
				684.7	a	OH	
				712.7	а	OH	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					298.3	a	H ₂ O	H ₂ O twist
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					344.2	а	NH ₃	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					373.8	а	NH ₃	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	1	1	C_1	628.7	а	OH	H ₂ O twist
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Ĩ	657.4	а	OH	H_2O wag
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					662.0	а	ОН	H_2O twist
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					688.6	a	ОН	H ₂ O twist
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					212.6	а	H ₂ O	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					238.2	a	H ₂ O	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					270.2	a	H ₂ O	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				~	355.1	a	NH ₃	H ₂ O rock
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	1	2	C_1	355.8	a	NH ₃	H_2O rock
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					382.8	a	NH ₃	H_2O wag
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					588.7	a	OH	H ₂ O rock
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					599.5	a	OH	H_2O wag
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					170.7	a	H ₂ O	H ₂ O twist
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					206.7	a	H_2O	H_2O twist
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					224.2	a	H ₂ O	H_2O twist
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					252.3	a	H_2O	H_2O wag
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					257.2	a	H ₂ O	H_2O wag
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					260.4	a	H_2O/NH_2	H_2O twist
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1	3	fac-C ₁	329.0	a	H_2O/NH_2	H_2O twist
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					342.6	a	H_2O/NH_2	H_2O twist
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					350.9	a	H_2O/NH_2	H_2O twist
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					368.7	a	H_2O/NH_2	H_2O twist
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					496.4	a	OH	H_2O twist
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					508.9	a	OH	H_2O twist
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					255.5	a .	NH ₂	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					299.6	b	NH ₂	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	2	0	C_2	514.9	a	OH	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	-	Ŭ	02	572.5	a	OH	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					652.5	b	OH	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					309.8	a	NH ₃	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					321.1	a	NH ₂	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					365.1	a	NH ₂	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2	1	C_1	469.9	a	OH	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	_	-	[4+1]	563.2	a	OH	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					575.1	a	OH	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					588.4	a	OH	
$\begin{vmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 &$					313.0	a	NH ₂	
$ \begin{vmatrix} 2 & 2 & 2 \\ 2 & 2 & C_2 \# 2 \\ 465.5 & a & OH \end{vmatrix} $					370.8	b	NH ₂	
465.5 a OH	2	2	2	C_{2} #2	378.6	a	NH ₂	
	_	-	-		465 5	a	OH	
527.5 b OH					527.5	b	OH	

				348.2	а	NH ₃	
			C	426.0	а	OH/NH ₃	
2	3	0	C_1	432.4	а	OH	
			[4+1]	462.2	а	OH	
				469.2	а	OH	
				350.4	а	NH ₃	
				372.4	а	NH ₃	
2	2	1	C_1	428.1	а	OH/NH ₃	
2	3	1	[4+2]	455.9	а	OH/NH ₃	
				480.6	а	OH	
				497.6	а	OH	
				344.4	а	OH	
2	1	0	C_2	356.9	b	OH	
2	4	0	[4+2]	408.5	b	OH	
				415.7	а	OH	
				315.9	а	NH ₃	
				348.6	а	NH ₃	
				362.2	а	NH ₃	
3	1	0	C_1	612.8	а	OH	
				619.3	а	OH	
				649.3	а	OH	
				679.0	a	OH	
				213.1	а	H_2O	H_2O wag
				307.9	а	H_2O/NH_3	
3	1	1	C.	310.4	а	NH ₃	H ₂ O rock
5	1	1	C_1	343.2	а	NH ₃	H ₂ O rock
				362.9	а	NH ₃	
				519.5	a	OH	
				233.5	a'	H_2O	
				242.5	a'	H_2O	
3	1	2	fac-C.	265.4	a'	OH/NH ₃	
5	1	2	The Og	325.9	a'	NH ₃	H_2O wag
				330.5	a''	NH ₃	
				458.9	a'	OH	H_2O wag
				207.0	а	NH ₃	
				226.8	а	NH ₃	
				250.4	а	NH ₃	
				265.4	а	NH ₃	
3	2	0	C_1	280.4	а	NH ₃	
				301.6	а	NH ₃	
				443.9	а	OH	
				498.8	а	OH	
				519.8	а	OH	

				174.8	a'	H ₂ O	
				246.3	a''	NH ₃	
2	2	1	fac	290.8	a'	NH ₃	
5	2	1	lac-C _s	306.7	a'	NH ₃	
				417.3	a''	OH/NH ₃	
				438.8	a'	OH	
			G	517.0	а	OH	
3	3	0	C_3	545.3	e	OH	
			[3+3]	545.4	e	OH	
				244.4	a'	NH ₃	
				297.5	a''	NH ₃	
4	1	0	С	319.9	a'	NH ₃	
4	1	0	C_{s}	345.3	a'	NH ₃	
				347.3	a''	NH ₃	
				505.9	a'	OH/NH ₃	
				58.6	а	H ₂ O	H ₂ O twist
				238.3	а	NH ₃	H ₂ O twist
				276.0	а	NH ₃	H ₂ O twist
4	1	1	ois C	307.5	а	NH ₃	H ₂ O twist
4	1	1	$cis-c_1$	313.0	а	NH ₃	H ₂ O wag
				323.9	а	NH ₃	H ₂ O wag
				352.1	а	H ₂ O/NH ₃	H ₂ O wag
				470.7	а	OH/NH ₃	H ₂ O wag
				240.9	а	NH ₃	
				268.0	а	NH ₃	
1	2	0	C_1	290.4	а	NH ₃	
4	2	0	[5+1]	319.7	а	NH ₃	
				439.3	а	OH/NH ₃	
				488.4	а	OH	
				220.1	a'	NH ₃	
				235.1	a'	NH ₃	
				248.0	a'	NH ₃	
5	1	0	С	270.4	a''	NH ₃	
5	1	U	C_{s}	274.8	a'	NH ₃	
				302.3	a'	NH ₃	
				445.6	a'	OH	
				481.3	a'	OH	

<u>Figure 3A-7</u>: Simulated polarized Raman spectra for $[Ni(NH_3)_n(OH)_m(H_2O)_l]^{2-m}$, where n=1-5, m=1-(5-n) and l=0-(6-n-m)

<u>Figure 3A-7</u>: (continued)

 $\begin{array}{l} \underline{\text{Table 3A.40}}: \ \ \text{Total energies for all stable geometries of} \\ & \left[\text{NiCl}_m(OH)_n(NH_3)_l~(H_2O)_k\right]^{2\text{-m-n}}, \text{ where } m{=}1-3, \, n{=}0-(4\text{-m}), \, l{=}0-(6\text{-m-n}), \, k{=}0-(6\text{-m-n-l}) \end{array} \right.$

					Optimized Energies (Hartrees)											
n	n	1	k	Point Group	HF	MP2	B3LYP	C-PCM								
1	1	1	Δ	C _s #1	-2097.8984682	-2098.5388668	-2100.8625140	-2100.892474								
1	1	1	0	C _s #2	-2097.9019941	-2098.6137560	-2100.8508198	-2100.894441								
1	1	1	1	C1	-2173.9491185	-2174.8612469	-2177.3071303	-2177.330319								
1	1	1	2	C1	-2249.9872851	-2251.0984984	-2253.7513385	-2253.779722								
1	1	1	3	mer-C ₁	-2326.0225184	-2327.3359178	-2330.1944851	-2330.223985								
1	1	1	3	fac-C ₁	-2326.01966	-2327.331969	-2330.191261	-2330.222185								
1	1	2	0	C_1	-2154.1248193	-2155.0212360	-2157.4472270	-2157.477865								
1	1	2	1	C1	-2230.1570685	-2231.2535203	-2233.8920347	-2233.915077								
				Cs	-2306.195543	-2307.494401	-2310.333518	-2310.360297								
				C ₁ #1 [5+1]	-2306.2028961	-2307.4992239	-2310.3407447	-2310.368487								
1	1	2	2	C ₁ #2 [5+1]	-2306.203406	-2307.497626	-2310.340389	-2310.370309								
				C ₁ #3	-2306.194825	-2307.491797	-2310.330825	-2310.361186								
				C ₁ #4	-2306.191886	-2307.488249	-2310.327375	-2310.358122								
		C ₁ #5 -2306.192607 -2307.48		-2307.489724	-2310.327102	-2310.360359										
1	1	3	0	C_1	-2210.3318567	-2211.4117202	7202 -2214.0248236 -2214.056									
1	1	3	1	C ₁ [5+1]	-2286.3691018	-2287.6500380	-2290.4701886	-2290.500483								
1	1	5	1	fac-C ₁	-2286.367663 -2287.650462 -		-2290.469077	-2290.492377								
				trans- C _s #1	-2266.5354987	-2267.7995529	-2270.5950098									
1	1	4	4 0	4 0	4 0	4 0	4 0	4 0	4 0	0	0	trans- C _s #2	-2266.5352952	-2267.7995004	-2270.5952726	-2270.630848
				trans- C ₁	-2266.5354985	-2267.7995449	-2270.5952923	-2270.63082								
				cis-C _s	-2266.534896	-2267.799598	-2270.597736	-2270.627465								
1	2	1	0	Cs	-2173.3936442	-2174.3192795	-2176.7681097	-2176.867711								
1	2	1	0	C_1	-2173.3967838	-2174.3202679	-2176.7663338	-2176.865202								
1	2	1	1	C _s [4+1]	-2249.4455366	-2250.5688308	-2253.2229647									
1	2	1	1	C ₁ [4+1]	-2249.4464390	-2250.5705451	-2253.2236988	-2253.313611								
1	2	1	2	C _s [5+1]	-2325.4709678	-2325.4709678 -2326.7884388 -2329.6517312 -2329.		-2329.742757								
1	2	1	2	C ₁ [5+1]	-2325.4758255	-2326.7976464	-2329.6622890	-2329.747874								
1	2	2	0	C ₂ [4+1]	-2229.5968442	-2230.6998961	-2233.3500060	-2233.445901								
1	2	2	0	C ₁ [4+1]	-2229.6061514	-2230.7103147	-2233.3500491	-2233.445947								
1	2	2	1	C ₁ [5+1]	-2305.6421258	-2306.9487756	-2309.7882295	5 -2309.878751								
1	2	3	0	mer-C _s	s -2285.7922783 -2287.0858493 -2289.9007494 -2290		-2290.003169									
	4	5	U	C ₁ [4+2]	-2285.8067508	2285.8067508 -2287.0898089 -2289.9175125 -2290.00		-2290.009799								
1	3	1	0	C ₁ [4+1]		-2249.8641152										
2	1	1	0	C_1	-2557.5042787	-2558.3605060	-2561.1939057	-2561.288064								

c	1	1	1	C_s	-2633.536808	-2634.5941230	-2637.6348453	-2637.722687
2	1	1	1	C ₁	-2633.5370403	-2634.5941182	-2637.6348519	-2637.722751
2	1	1	2	C ₁ [5+1]	-2709.5742442	-2710.8305547	-2714.0797189	-2714.157337
2	1	2	0	Cs	-2613.7085975	-2614.7482600	-2617.7688541	-2617.861955
2	1	2	1	C ₁ [5+1]	-2689.7503930	-2690.9893122	-2694.2212681	-2694.31123
c	1	2	0	Cs	-2669.9078460	-2671.1304689	-2674.3363495	
2	1	3	U	C ₁ [5+1]	-2669.9184376	-2671.1407828	-2674.3533063	-2674.448303
2	2	1	0	C _s [3+2]	-2632.8680342	-2633.9250347	-2636.9869744	-2637.253409
2	2	1	1	C ₁ [4+2]	-2708.9236489	-2710.1727474	-2713.4340753	-2713.692583
2	2	2	0	C ₂ [4+2]	-2689.0922393	-2690.3243690	-2693.5669970	-2693.828113
3	1	1	0	C ₁ [4+1]	-3016.9669700	-3017.9572953	-3021.3878438	-3021.650009
3	1	1	1	C ₁ [4+2]	-3093.0284103	-3094.2111638	-3097.8593914	-3098.109172
3	1	2	0	C _s [4+2]	-3073.1900418	-3074.3617904	-3077.9883992	-3078.249442

NOT Stable	^f Total free energy in solution at 25°C, CPCM-B3LYP/6-31+G*//B3LYP/6-31+G*

					Optimized Ni-O Bond Lengths (Å)								
					HF/6-	31+G*	MP2/6	-31+G*	B3LYP/	6-31+G*			
n	n	1	k	Point Group	ОН	H ₂ O	ОН	H ₂ O	ОН	H ₂ O			
1	1	1	0	C _s #1	1.819	N/A	1.792	N/A	1.779	N/A			
1	1	1	U	C _s #2	1.849	N/A	1.841	N/A	1.844	N/A			
1	1	1	1	C_1	1.890	2.158	1.898	2.111	1.914	2.149			
1	1	1	2	C	1.007	2.225	1 000	2.157	1 075	2.184			
1	1	1	Z	C_1	1.907	2.198	1.900	2.145	1.873	2.170			
						2.303		2.218		2.250			
				$mer-C_1$	1.970	2.214	1.986	2.153	1.988	2.174			
1	1	1	2			2.195		2.139		2.162			
1	1	1	3			2.199		2.140		2.170			
				fac-C ₁	1.963	2.225	1.976	2.161	1.977	2.185			
						2.291		2.211		2.241			
1	1	2	0	C_1	1.891	N/A	1.881	N/A	1.857	N/A			
1	1	2	1	C_1	1.939	2.395	1.955	2.281	1.919	[4+1]			
				Cs	1.976	2.218	2.000	2.162	2.007	2.188			
				C ₁ #1 [5+1]	1.938	2.298	1.934	2.224	1.937	2.247			
				C ₁ #2 [5+1]	1.932	2.190	1.925	2.140	1.917	2.160			
1	1	2	2	C ₁ #3	1.973	2.395 2.252	1.991	2.273 2.192	1.992	2.331 2.214			
							C ₁ #4	1.967	2.350 2.280	1.982	2.271 2.204	1.983	2.329 2.271
				C ₁ #5	1.975	2.246 2.312	1.991	2.173 2.230	1.994	2.213 2.273			
1	1	3	0	C_1	1.923	N/A	1.921	N/A	1.894	N/A			
1	1	2	1	C ₁ [5+1]	1.968	[5+1]	2.014	2.372	1.980	[5+1]			
1	1	3	1	fac-C ₁	1.977	2.288	1.997	2.231	2.001	2.252			
				trans- C _s #1	1.978	N/A		N/A		N/A			
1	1	4	0	trans- C _s #2		N/A		N/A	2.003	N/A			
				trans-C ₁	1.978	N/A	1.997	N/A	2.003	N/A			
				cis-C _s	1.972	N/A	1.992	N/A	1.996	N/A			
				Cs		N/A	1.908	N/A	1.877	N/A			
1	2	1	0	C ₁	1.920 1.937	N/A	1.907 1.922	N/A	1.867 1.915	N/A			

				C _c [4+1]			1.932			
				0,[11]	1.947		1002			
1	2	1	1	C_1 [4+1]	1.937		1.938		1.939	
				-1[]	1.957		1.922		1.918	
				~	1.979		1.986		1.979	• • • •
	•		~	$C_{s}[5+1]$	1.923	2.316	1.914	2.261	1.914	2.303
1	2	I	2	G	1.926	2.208	1.904	2.152	1.886	2.182
				C_1 [5+1]	2.002	2.200	2.017	2.151	2.023	2.182
				C ₂ [4+1]	1.912	N/A		N/A	1.896	N/A
1	2	2	0	0 (4 1)	1.925	NT/A	1.909	NT/A	1.896	NT/A
				C_1 [4+1]	1.925	IN/A	1.909	IN/A	1.896	IN/A
1	2	2	1	C [5, 1]	1.962		1.978		1.987	
1	Z	Ζ	1	$C_{1}[5+1]$	1.970		1.980		1.970	
				mer C		N/A	2.036	N/Λ	2.044	N/Λ
1	2	3	0	mer-C _s		\mathbf{N}/\mathbf{A}	2.035	IN/A	2.030	IN/A
1	2	5	U	$C_{4}[4 + 2]$	1.936	N/Δ	1.915	N/Δ	1.904	N/Δ
				01[112]	1.929	11/1	1.919	11/1	1.909	11/17
				C ₁ [4+1]		N/A	1.949			
1	3	1	0				1.979	N/A		N/A
							1.947			
2	1	1	0	C ₁	1.908	N/A	1.903	N/A	1.881	N/A
2	1	1	1	Cs			1.903	2.279	1.885	2.292
2	1	1	1	C_1	1.919	2.313	1.903	2.279	1.886	2.287
2	1	1	2	C ₁ [5+1]	1.952	2.343	1.959	2.256	1.955	2.297
2	1	2	0	Cs	1.954	N/A	1.972	N/A	1.969	N/A
2	1	2	1	C ₁ [5+1]	1.920	2.188	1.914	2.147	1.888	2.178
2	1	3	0	Cs	1.950	N/A	2.004	N/A		N/A
2	1	5	0	C ₁ [5+1]	1.921	N/A	1.917	N/A	1.879	N/A
2	2	1	0	C _s [3+2]	1.858	N/A	1.827	N/A	1.809	N/A
2	2	1	1	C_{1} [4+2]	1.914	2 141	1.903	2 083	1.883	2 1 4 3
2	2	1	1	C] [4+2]	1.924	2.171	1.922	2.005	1.900	2.143
2	2	2	0	C ₂ [4+2]	1.928	N/A	1.919	N/A	1.904	N/A
3	1	1	0	C ₁ [4+1]	1.931	N/A	1.919	N/A	1.903	N/A
3	1	1	1	C ₁ [4+2]	1.894	2.110	1.886	2.059	1.881	2.067
3	1	2	0	C _s [4+2]	1.897	N/A	1.889	N/A	1.873	N/A

					Optimized Ni-N and Ni-Cl Bond Lengths (Å)					Å)		
					HF/6	31+G*	MP2/6	MP2/6-31+G*		6-31+G*		
n	n	1	k	Point Group	NH ₃	Cl	NH ₃	Cl	NH ₃	Cl		
1	1	1	0	C _s #1	2.147	2.232	2.065	2.158	2.075	2.169		
1	1	1	U	C _s #2	2.121	2.232	2.048	2.166	2.058	2.169		
1	1	1	1	C_1	2.129	2.268	2.044	2.184	2.045	2.184		
1	1	1	2	C_1	2.132	2.356	2.048	2.278	2.061	2.345		
1	1	1	2	mer-C ₁	2.155	2.418	2.070	2.322	2.083	2.376		
1	1	1	3	fac-C ₁	2.166	2.429	2.080	2.335	2.089	2.389		
1	1	2	0	C	2.155	2 200	2.071	2 210	2.083	2.265		
1	1		U	C_1	2.155		2.066	2.218	2.088	2.203		
1	1	2	1	C	2.175	2.175 2.252 2.087		2 266	2.080	2 251		
1	1	2	1	C_1	2.162	2.555	2.082	2.200	2.064	2.231		
				C	2.189	2 452	2.095	2 244	2.116	2 208		
				C_{s}	2.238	2.433	2.139	2.344	2.148	2.398		
				$C_1 #1$	2.169	2 282	2.082	2 206	2.090	2 255		
				[5+1]	2.141	2.363	2.053	2.300	2.063	2.333		
				C ₁ #2	2.229	2 386	2.128	2 306	2.136	2 366		
1	1	2	2	[5+1]	2.158	2.300	2.069	2.300	2.080	2.300		
1	1	2	-	2	C, #3	2.172	2 /31	2.085	2 336	2.101	2 300	
					-	C[#J	2.193	2.431	2.103	2.330	2.115	2.390
							ľ	C , #4	2.179	2 450	2.086	2 255
				01	2.187	2.730	2.100	2.333	2.100	2.711		
				C1 #5	2.197	2 4 5 8	2.105	2 362	2.114	2 437		
				C1 #5	2.177	2.730	2.091	2.302	2.095	2.737		
					2.177		2.080		2.109			
1	1	3	0	C_1	2.245	2.410	2.140	2.329	2.159	2.423		
					2.213		2.123		2.135			
					2.184		2.102		2.097			
					C ₁ [5+1]	2.196	2.430	2.111	2.353	2.111	2.395	
1	1	3	1		2.195		2.105		2.122			
	1		1		2.211		2.115		2.143			
				fac-C ₁	2.202	2.476	2.106	2.366	2.119	2.252		
					2.270		2.164		2.176			

		4		trans- C _s #1	2.265 2.238 2.254	2.512				
				trans- C _s #2					2.159 2.172	2.475
1	1		0	trans-C ₁	2.266 2.237 2.237 2.255	2.513	2.155 2.151 2.140 2.137	2.395	2.174 2.159 2.171 2.157	2.476
				cis-C _s	2.232 2.307 2.250	2.513	2.132 2.191 2.158	2.401	2.167 2.211 2.160	2.476
1	r	1	Δ	Cs			2.118	2.311	2.164	2.395
1	4	1	U	C1	2.167	2.453	2.071	2.338	2.106	2.442
1	2	1	1	C _s [4+1]			2.085	2.280		
1	2	1	1	C ₁ [4+1]	2.162	2.403	2.069	2.296	2.074	2.340
1	2	1	2	C _s [5+1]	2.152		2.070		2.072	
	2	, 1	2	C ₁ [5+1]	2.179		2.093		2.104	
	1 2	2	0	C ₂ [4+1]	2.208				2.093	
1				C ₁ [4+1]	2.147 2.147		2.067 2.067		2.093 2.093	
1	2	2	1	C ₁ [5+1]	2.220 2.210	2.672	2.161 2.120	2.398	2.183 2.119	2.467
1	2	3	0	mer-C _s			2.128 2.138	2.503	2.146 2.144	2.646
1		5	U	C ₁ [4+2]	2.130 2.159		2.048 2.075		2.069 2.092	
1	3	1	0	C ₁ [4+1]				2.551		
2	1	1	0	C ₁	2.153	2.384 2.390	2.063	2.282 2.296	2.062	2.329 2.348
				Cs			2.075	2.362	2.075	2.427
2	1	1	1	C_1	2.157	2.494 2.458	2.075	2.361 2.364	2.075	2.428 2.429
2	1	1	2	C ₁ [5+1]	2.166	2.407 2.482	2.077	2.313 2.364	2.075	2.352 2.421
2	1	2	0	Cs	2.174	2.503 2.530	2.093	2.369 2.384	2.083	2.438 2.459
2	1	2	1	C ₁ [5+1]	2.193 2.148	2.485	2.105 2.064	2.367	2.120 2.081	2.455
				Cs	2.178 2.262	2.432 [5+1]	2.110 2.118	2.500 2.503		
2	1	3	0	C ₁ [5+1]	2.228 2.154 2.189	2.527	2.139 2.070 2.108	2.399	2.153 2.107 2.121	2.513

2	2	1	0	C _s [3+2]	2.120		2.045		2.072	
2	2	1	1	C ₁ [4+2]	2.147		2.056		2.072	
2	2	2	0	C ₂ [4+2]	2.168		2.079		2.106	
						2.474		2.361		2.422
3	1	1	0	C ₁ [4+1]		2.477		2.350		2.406
						2.444		2.332		2.355
3	1	1	1	C ₁ [4+2]	2.112	2.363	2.034	2.281	2.047	2.321
3	1	2	0	C _s [4+2]	2.138	2.393	2.057	2.299	2.069	2.356

				Point				
m	n	1	k	Group Symmet	Freq. (cm ⁻¹)	Irr. Rep. Symm.	Cl/OH/H ₂ O /NH ₃	Mixing
				ry				
					355.6	a'	Cl/NH ₃	
1	1	1	0	C #2	368.0	a'	Cl/NH ₃	
1	1	1	U	$C_{\rm S}$ II Z	642.1	a'	OH	
					677.7	a'	OH	
					290.7	a	H_2O	
1	1	1	1	C.	332.8	a	Cl	H ₂ O rock
1	1	1	1	$\mathbf{C}_{\mathbf{I}}$	356.2	а	NH ₃	H_2O wag
					585.3	a	OH	H ₂ O wag
					202.4	а	H_2O	
					222.2	а	Cl/H ₂ O	
				C_1	254.5	а	H_2O	H ₂ O rock
1	1	1	2		275.1	а	H_2O	H ₂ O rock
1	1	1	2		286.0	а	Cl/H ₂ O	H ₂ O rock
					298.2	а	Cl/H ₂ O	H ₂ O rock
					352.2	а	NH ₃	H ₂ O wag
					551.3	а	OH	H ₂ O wag
					163.4	а	H_2O	H ₂ O wag
					179.1	а	H_2O	H ₂ O rock
					220.0	а	Cl/OH/NH ₃ /H ₂ O	H ₂ O wag
1	1	1	3	mor C	250.1	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
1	1	1	5	mer-C ₁	270.4	а	Cl/H ₂ O	H ₂ O rock
					274.1	а	Cl/NH ₃ /H ₂ O	H ₂ O wag
					331.4	а	Cl/NH ₃ /H ₂ O	H ₂ O wag
					502.3	а	OH	H ₂ O wag
					319.2	а	Cl/NH ₃	
1	1	n	0	C	329.1	а	NH ₃	
1	1	2	U	C_1	332.2	а	NH ₃	
					579.2	а	OH	
					256.6	a	Cl/OH/NH ₃ /H ₂ O	
					276.4	a	Cl/NH ₃	
1	1	2	1	C1	306.3	а	Cl/NH ₃	H ₂ O twist
					335.0	а	NH ₃	H ₂ O twist
					524.1	а	OH	

 $\begin{array}{l} \underline{\text{Table 3A.43}}: & \text{Ni-N, Ni-Cl and Ni-O vibrational stretching frequencies for optimized} \\ & \text{geometries of } [\text{NiCl}_m(\text{OH})_n(\text{NH}_3)_l(\text{H}_2\text{O})_k]^{2\text{-m-n}}, \text{ where } m=1-3, \\ & n=0-(4\text{-m}), \ l=0-(6\text{-n-m}), \ k=0-(6\text{-m-n-l}) \ \text{calculated at } \text{HF/6-31+G}^*. \end{array}$

					214.1	а	Cl/NH ₃ /H ₂ O	
					249.0	a	Cl/NH ₃ /H ₂ O	H ₂ O rock
					282.4	a	$C1/NH_2/H_2O$	
1	1	2	2	C ₁ #2	288.9	a	$C1/NH_2/H_2O$	
1	-	-	_	[5+1]	292.1	a	Cl/NH ₂	
					334.3	a	$C1/NH_2/H_2O$	
					507.0	a	OH	H ₂ O twist
					208.6	a	Cl/NH ₂	
					200.0	a	Cl/NH ₂	
					274.7	a	Cl/NH ₂	
1	1	3	0	C_1	289.0	a	NH ₂	
					313.5	a	CI/NH ₂	
					521.8	a	OH	
					200.8	а Э	C1/NH ₂	
					205.8	a	C1/NH ₃	
					210.0	a		
1	1	3	1	C_1	275.4	a		
1	1	5	1	[5+1]	200.7	a	$C1/NH_3$	
					315 7	a	$C1/NH_3$	
					173.6	a		
					182.2	a		
					105.5	a o'		
					100.7	a o'		
				trans C	209.7	a o"		
1	1	4	0	$\frac{\text{trans-C}_{s}}{\#1}$	201.0	a a'		
				#1	203.5	a a'		
					277.4	a a''		
					289.5	a -'	NH ₃	
					464.4	a	OH	
					218.7	a		
1	2	1	0	C	313.3	а	NH ₃	
1	2	I	0	C_1	491.2	а	OH	
					528.1	а	OH	
					546.9	a	OH	
					238.6	а		
				~	250.4	а	CI/NH ₃	
1	2	1	1	C_1	259.4	а	CI/NH ₃	
				[4+1]	324.8	а	NH ₃	
					491.5	а	OH	
					508.6	а	OH	
					231.1	а	H ₂ O	
				\mathbf{C}_{1}	240.1	а	H ₂ O	
	2	1	2	[5+1]	321.5	а	NH_3/H_2O	
				r 1	460.1	а	OH	
1					507.9	а	OH	

	-							1
					335.1	а	NH ₃	
1	2	n	Δ	C_1	355.7	а	NH ₃	
1	2	2	U	[4+1]	495.7	а	OH	
					535.6	а	OH	
					248.0	а	Cl/NH ₃	
					257.4	а	Cl/NH ₃	
1	~	0	1	C_1	288.5	а	NH ₃	
1	2	Ζ	1	[5+1]	298.1	а	NH ₃	
					448.2	а	OH	
					475.0	а	OH	
					331.3	а	NH ₃	
					338.3	а	NH ₃	
1	~	0	0	C_1	367.1	а	NH ₃	
1	2	3	0	[4+2]	472.8	а	OH	
					501.1	а	OH	
					531.4	а	OH	
					247.3	а	Cl/NH ₃	
		4	0	a	263.9	a	Cl	
2	I	I	0	C_1	334.7	a	NH ₃	
					547.6	a	OH	
					143.0	a	H ₂ O	
					216.6	a	Cl/H ₂ O	
2	1	1	1	C_1	244.5	a	Cl/NH ₃ /H ₂ O	
				-1	330.1	a	NH ₃	
					524.7	a	OH	
					95.5	a	H ₂ O	
					101.4	a	H ₂ O	
					125.7	a	Cl/H ₂ O	H ₂ O twist
					218.5	a	Cl/NH ₃ /H ₂ O	
2	1	1	2	C_1	245.2	а	Cl/H ₂ O	H ₂ O rock
				[5+1]	251.8	а	Cl/NH ₃ /H ₂ O	H_2O rock
					323.5	a	NH ₃	H ₂ O rock
					480.1	а	OH	$H_{2}O$ rock
					509.3	а	OH	H_2O rock
					173.6	a'	Cl/NH ₃	
					205.4	a'	Cl	
2	1	2	0	Cs	288.0	a'	Cl/NH ₃	
				- 5	346.7	a''	NH ₃	
					494.2	a'	OH	
\vdash					188.7	a	Cl/H ₂ O	
1					193.9	a	Cl/H ₂ O	
				\mathbf{C}_{1}	261.2	a	Cl/NH ₃ /H ₂ O	
2	1	2	1	[5+1]	309.6	a	Cl/NH ₃ /H ₂ O	
				r 1	345.0	a	NH ₃ /H ₂ O	
					531.8	a	OH	H ₂ O wag
					178.8	а	Cl	
---	--------------	--------------	---	-------	-------	-----	--------------------	------------------------
					182.9	а	Cl/NH ₃	
2	1	2	0	C_1	269.3	а	Cl/NH ₃	
2	1	3	U	[5+1]	308.3	а	NH_3	
					345.6	а	NH_3	
					531.9	а	OH	
				C	375.1	a'	NH ₃	
2	2	1	0	C_s	551.7	a'	OH	
				[3+2]	645.3	a''	OH	
					315.4	а	H ₂ O	
2	C	1	1	C_1	348.9	а	NH_3	
2	2	1	1	[4+2]	498.7	а	OH	H ₂ O rock
					559.8	а	OH	H ₂ O twist
					325.6	b	NH ₃	
2	\mathbf{r}	r	0	C_2	334.9	а	NH_3	
2	2	4	U	[4+2]	490.8	а	OH	
					541.2	b	OH	
					186.6	а	Cl	
				C	202.5	а	Cl	
3	1	1	0	C_1	208.0	а	Cl	
				[4+1]	220.2	а	Cl	
					515.5	а	OH	
					270.9	а	Cl	H ₂ O rock
				C	344.8	а	H_2O	
3	1	1	1	C_1	372.8	а	NH_3	H ₂ O twist
				[4+2]	387.4	а	NH_3	H ₂ O twist
					562.4	а	OH	H ₂ O rock
					255.3	a'	Cl	
3	1	\mathbf{r}	0	C_s	332.9	a'	NH_3	
3	1	2	U	[4+2]	377.2	a'	NH ₃	
					559.7	a'	OH	

m	n	1	k	Point Group Symmetry	Freq. (cm ⁻¹)	Irr. Rep. Symm.	CI/OH/H ₂ O /NH ₃	Mixing
					374.0	a'	Cl/NH ₃	
1	1	1	0	C _s #2	408.7	a'	Cl/NH ₃	
					626.4	a'	Cl/OH	
					298.8	a	H ₂ O	H ₂ O rock
					309.3	а	H_2O	
1	1	1	1	C_1	360.6	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
					407.3	а	NH ₃	H ₂ O rock
					562.0	а	OH	
					228.6	a	H ₂ O	H ₂ O wag
					250.3	а	Cl/H ₂ O	H ₂ O rock
					303.9	а	H ₂ O	H ₂ O rock
1	1	1	2	C_1	322.4	а	Cl/H ₂ O	H ₂ O rock
					399.5	а	NH ₃	H ₂ O rock
					527.4	а	OH	H ₂ O twist
					554.5	а	OH	H ₂ O wag
					196.5	a	H ₂ O	H ₂ O wag
					220.0	а	H ₂ O	H ₂ O rock
					242.4	а	Cl/OH/NH ₃ /H ₂ O	
					268.1	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
1	1	1	2	mor C	298.3	а	Cl/H ₂ O	H ₂ O rock
1	1	1	3	mer-C ₁	308.1	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
					373.7	а	NH ₃	H ₂ O twist
					374.5	а	NH ₃	H ₂ O rock
					482.8	а	OH	H ₂ O rock
					494.2	а	OH	H ₂ O wag
					341.0	а	Cl	
1	1	2	0	C	375.6	а	NH ₃	
1	1	2	U	\mathbf{C}_1	377.5	а	NH ₃	
					564.6	а	OH	
					271.7	а	Cl/NH ₃ /H ₂ O	
					310.0	а	Cl/NH ₃	
1	1	n	1	C	332.9	а	Cl/NH ₃	H ₂ O twist
1	1		1	C_1	350.9	а	Cl/NH ₃	H ₂ O twist
					383.7	а	NH ₃	H ₂ O wag
					500.5	а	OH	H ₂ O wag

 $\begin{array}{l} \underline{\text{Table 3A.44}}: & \text{Ni-N, Ni-Cl and Ni-O vibrational stretching frequencies for optimized} \\ & \text{geometries of } [\text{NiCl}_m(OH)_n(NH_3)_l(H_2O)_k]^{2\text{-m-n}}, \text{ where } m=1-3, \\ & n=0-(4\text{-m}), \ l=0-(6\text{-n-m}), \ k=0-(6\text{-m-n-l}) \ \text{calculated at } MP2/6\text{-}31\text{+}G^*. \end{array}$

							1	
					210.3	а	Cl/H ₂ O	
					305.9	а	Cl/H ₂ O	H ₂ O twist
1	1	2	\mathbf{r}	C ₁ #1	372.3	а	NH ₃	
1	1	2	2	[5+1]	399.5	а	NH_3	H ₂ O wag
					477.0	а	OH	H ₂ O twist
					519.1	а	OH	H ₂ O twist
					246.8	а	Cl/NH ₃	
					310.3	а	Cl/NH ₃	
1	1	2	0	C	341.4	а	NH ₃	
1	1	3	0	C_1	362.1	а	NH ₃	
					494.0	а	OH	
					508.0	а	OH	
					201.2	а	Cl/H ₂ O	
					230.9	а	Cl/NH ₃ /H ₂ O	
					238.6	а	Cl/NH ₃	
1	1	2	1	í c	258.7	а	Cl/NH ₃	
1	1	3	I	fac- C_1	300.5	а	Cl/NH ₃ /H ₂ O	
					328.6	а	NH ₃ /H ₂ O	
					342.0	а	Cl/NH ₃	
					464.5	а	OH	H ₂ O rock
					238.2	a'	Cl/NH ₃	_
					254.4	a'	Cl/NH ₃	
1	1	4	0	· c	287.8	a'	Cl/NH ₃	
1	1	4	0	$c_{1S}-C_{s}$	297.4	a''	NH ₃	
					325.9	a'	Cl/NH ₃	
					459.6	a'	OH	
					259.5	а	Cl	
					366.1	а	NH_3	
1	2	1	0	C_1	387.6	а	NH ₃	
					476.6	а	OH	
					521.5	а	OH	
					268.5	а	Cl	
					288.3	а	Cl	
1	2	1	1	C_1	346.0	а	NH ₃	
1	2	1	1	[4+1]	380.8	а	NH ₃	
					479.3	а	OH	
					500.5	а	OH	
					260.0	а	H ₂ O	
				C	283.0	а	H ₂ O	
1	2	1	2	C_1	361.2	а	NH ₃ /H ₂ O	
				[3+1]	443.6	а	OH	
					503.8	а	OH	
					376.9	а	NH ₃	
1	n	n	Δ	C_1	398.4	а	NH ₃	
1	2	2	U	[4+1]	483.3	а	OH	
					526.4	а	OH	

					214.4	a	Cl/NH ₃	
					239.2	а	Cl/NH ₃	
				C	245.8	а	Cl/NH ₃	
1	2	2	1	C_1	276.4	а	Cl/NH ₃	
				[3+1]	336.2	а	NH ₃	
					423.2	а	OH/NH ₃	
					455.0	а	OH	
					372.7	а	NH ₃	
				C	382.0	а	NH ₃	
1	2	3	0	C_1	413.1	а	NH ₃	
				[4+2]	475.9	а	OH	
					523.1	а	OH	
					135.9	а	Cl	
				C	421.1	а	OH	
1	3	1	0	C_1	441.0	а	OH	
				[++1]	471.5	а	OH	
					478.4	а	OH	
					274.2	а	Cl	
2	1	1	0	C.	307.1	а	Cl	
2	I	1	U	$\mathbf{C}_{\mathbf{I}}$	383.3	а	NH ₃	
					529.2	a	OH	
					154.1	a'	H_2O	
					255.4	a''	Cl	
2	1	1	1	C_s	275.5	a'	Cl/H ₂ O	
					371.1	a'	NH ₃	
					506.5	a'	OH	H ₂ O wag
					159.7	а	H_2O	
					164.6	а	Cl/H ₂ O	
				C.	251.8	а	Cl/H ₂ O	
2	1	1	2	[5+1]	273.1	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
				[3+1]	290.3	а	Cl/H ₂ O	H ₂ O wag
					371.3	а	NH ₃	H ₂ O rock
					479.3	a	OH	H ₂ O rock
					211.2	a'	Cl/NH ₃	
					259.9	a'	Cl	
2	1	2	0	C	316.0	a'	Cl/NH ₃	
-	1		0	Us	363.3	a''	NH ₃	
					401.2	a''	NH ₃	
					459.6	a'	OH	

					222.7	а	Cl/H ₂ O	
					295.3	а	Cl/H ₂ O	
2	1	2	1	C_1	354.0	а	Cl/NH ₃ /H ₂ O	
	1	Ζ	1	[5+1]	385.4	а	NH ₃ /H ₂ O	
					411.5	а	NH ₃	
					512.2	а	OH	H ₂ O wag
					217.9	а	Cl	
					308.3	а	Cl/NH ₃	
2	1	2	0	C_1	349.1	а	NH ₃	
	1	З	U	[5+1]	385.1	а	NH ₃	
					497.2	а	OH	
					516.3	а	OH	
				C	414.0	a'	NH ₃	
2	2	1	0	C_s	544.9	a'	OH	
				[3+2]	654.0	a''	OH	
					355.3	а	H ₂ O	
2	r	1	1	C_1	407.0	а	NH ₃	
	Ζ	1	1	[4+2]	479.7	а	OH	
					538.0	а	OH	H ₂ O rock
					377.6	b	NH ₃	
2	n	2	0	C_2	387.7	а	NH ₃	
	Ζ	Ζ	U	[4+2]	472.8	а	OH	
					520.9	b	OH	
					232.8	а	Cl	
				G	252.8	а	Cl	
3	1	1	0	C_1	255.1	а	Cl	
				[4+1]	269.7	а	Cl	
					500.4	а	OH	
					294.6	а	Cl	
	1	1	1	C_1	382.6	а	H ₂ O	
3	I	1	I	[4+2]	432.0	а	NH ₃	H ₂ O twist
					546.1	а	OH	H_2O rock
F					283.9	a'	Cl	
2	1	~	0	Cs	379.5	a"	NH ₃	
3	1	2	0	[4+2]	421.4	a'	NH ₃	
					537.0	a'	OH	

m	n	1	k	Point Group Symmetry	Freq. (cm ⁻¹)	Irr. Rep. Symm.	Cl/OH/H ₂ O /NH ₃	Mixing
					353.7	a'	Cl/NH ₃	
1	1	1	0	C #1	367.8	a'	Cl/NH ₃	
1	1	1	U	$C_s \# I$	639.8	a'	Cl/OH	
					700.0	a'	Cl/OH	
					244.1	а	H ₂ O	
					259.5	а	H_2O	
1	1	1	1	C	310.2	а	Cl/H ₂ O	H ₂ O rock
1	1	1	I	\mathbf{C}_1	351.8	а	Cl/NH ₃ /H ₂ O	H ₂ O twist
					398.5	а	NH ₃	H ₂ O rock
					537.3	а	OH	
					210.4	а	Cl/H ₂ O	
					271.8	а	Cl/H ₂ O	H ₂ O rock
					278.8	а	Cl/H ₂ O	H ₂ O rock
1	1	1	2	C_1	306.2	а	Cl/H ₂ O	H ₂ O rock
					380.8	а	NH ₃	H ₂ O rock
					517.9	а	OH	H ₂ O twist
					553.5	а	OH	H_2O wag
					179.3	а	Cl/NH ₃ /H ₂ O	H ₂ O wag
					221.6	а	Cl/H ₂ O	H ₂ O rock
					223.6	а	Cl/OH/NH ₃ /H ₂ O	
					254.8	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
1	1	1	3	mer-C ₁	277.6	а	Cl/H ₂ O	H ₂ O rock
					280.1	а	Cl/NH ₃ /H ₂ O	H ₂ O rock
					356.3	а	NH ₃	H ₂ O rock
					475.1	а	OH/NH ₃	H ₂ O rock
					494.5	a	OH	H ₂ O rock
					300.4	а	Cl/NH ₃	
					344.8	а	Cl/NH ₃	
1	1	2	0	C_1	355.3	а	NH ₃	
					373.6	а	NH ₃	
					559.3	а	OH	
					286.6	а	Cl/NH ₃	
				C	297.7	а	Cl/NH ₃	
1	1	2	1	\mathbb{C}_1	341.9	а	Cl/NH ₃	
				[+++1]	383.7	а	NH ₃	
					497.5	а	OH	

Table 3A.45:Ni-N, Ni-Cl and Ni-O vibrational stretching frequencies for optimized
geometries of $[NiCl_m(OH)_n(NH_3)_l(H_2O)_k]^{2-m-n}$, where m=1 – 3,
n=0 – (4-m), l=0 – (6-n-m), k=0 – (6-m-n-l) calculated at B3LYP/6-31+G*.

					181.3	а	Cl/H ₂ O	
				C #1	275.1	а	Cl/H ₂ O	H ₂ O rock
1	1	2	2	$C_1 #I$	359.0	а	NH ₃	
				[5+1]	385.6	а	NH_3	H_2O wag
					468.6	а	OH	H ₂ O twist
					209.3	а	Cl/NH ₃	
					278.4	а	Cl/NH ₃	
1	1	2	0	C	310.4	а	NH_3	
1	1	3	U	C_1	334.6	а	NH_3	
					504.5	а	OH	
					557.9	а	OH	
					219.0	а	Cl/NH ₃	
					291.6	а	Cl/NH ₃	
1	1	2	1	C_1	307.9	а	Cl/NH ₃	
1	1	3	1	[5+1]	338.7	а	NH ₃	
					345.6	а	Cl/NH ₃	
					438.8	а	OH	
					191.9	a'	Cl/NH ₃	
					209.4	a'	Cl/NH ₃	
					233.7	a'	Cl/NH ₃	
1	1	4	0	cis-C _s	265.1	a'	Cl/NH ₃	
					281.8	a''	NH ₃	
					303.0	a'	Cl/NH ₃	
					447.2	a'	OH	
					207.2	a'	Cl/NH ₃	
					276.6	a'	Cl/NH ₃	
1	2	1	0	C_s	487.6	a'	OH	
					539.9	a''	OH	
					578.4	a''	OH	
					246.1	а	Cl	
					265.4	а	Cl	
1	2	1	1	C_1	356.6	а	NH ₃	
1	2	1	1	[4+1]	367.9	а	NH ₃	
					465.3	а	OH	
					493.1	a	OH	
					236.8	а	NH_3/H_2O	
				C	246.9	а	H_2O	
1	2	1	2	[5+1]	341.6	a	NH_3/H_2O	
				[3+1]	432.3	а	OH	
					507.6	а	OH	
					329.2	а	NH ₃	
1	2	2	0	\mathbf{C}_1	363.8	а	NH ₃	
	-	4	U	[4+1]	490.4	а	OH	
1					518.3	а	OH	

					185.0	a	Cl/NH ₃	
					213.6	а	Cl/NH ₃	
					249.4	а	Cl/NH ₃	
1	2	2	1	C_1	311.8	а	NH ₃	
1	2	2	1	[5+1]	342.3	а	NH ₃	
					406.5	а	OH/NH ₃	
					431.2	а	OH	
					452.5	а	OH	
					342.2	а	NH ₃	
					351.9	а	NH ₃	
	•	•	0	\mathbf{C}_1	366.7	a	NH ₃	
1	2	3	0	[4+2]	388.3	a	NH ₃	
					470.5	a	OH	
					511.8	a	OH	
					238.1	a	Cl	
				~	264.5	a	Cl	
2	1	1	0	C_1	372.0	a	NH ₃	
					530.4	a	OH	
					141.5	a	H ₂ O	
					210.4	a	Cl	
2	1	1	1	C_1	248.5	a	Cl/H ₂ O	
_	-	-	-	01	363.1	a	NH ₃	
					510.4	a	OH	H ₂ O wag
					128.8	a	H ₂ O	1120
					219.8	a	Cl/H ₂ O	
					250.8	a		
2	1	1	2	C_1	267.4	a	Cl/NH ₂ /H ₂ O	
-	-	-	-	[5+1]	354.9	a	NH ₃	H ₂ O rock
					372.1	a	NH ₂	H ₂ O rock
					477.3	a	OH	H ₂ O rock
					180.1	a'	Cl/NH ₂	112010011
					212.0	a'	Cl	
					316.4	a'	Cl/NH ₂	
2	1	2	0	C_s	370.3	a"	NH ₂	
					403 7	a"	NH ₂	
					454.0	a'	OH	
					190.3	a	Cl/H ₂ O	
					257.8	a	Cl/H ₂ O	
				C	263.2	a	$C1/NH_2/H_2O$	
2	1	2	1	[5+1]	328.2	a	$C1/NH_2/H_2O$	
				[2 1]	367.0	a	NH ₂	
					521.2	a	OH	H ₂ O wag
1					541.4	a		1120 wag

					164.1	а	Cl	
					172.5	а	Cl	
				C	187.5	а	Cl	
2	1	3	0	C_1	292.5	а	Cl/NH ₃	
				[3+1]	315.3	а	NH_3	
					356.3	а	NH ₃	
					527.5	а	OH	
				C	380.9	a'	NH ₃	
2	2	1	0	C_{s}	561.0	a'	OH	
				[3+2]	662.8	a''	OH	
					282.1	a	H ₂ O	
				C	301.5	а	H_2O	
2	2	1	1	C_1	376.5	а	NH ₃	
				[4+2]	481.5	а	OH	
					537.6	а	OH	H ₂ O rock
					317.5	b	NH ₃	
				C	348.1	b	NH ₃	
2	2	2	0	C_2	349.4	а	NH ₃	
				[4+2]	478.9	а	OH	
					507.1	b	OH	
					200.4	а	Cl	
2	1	1	0	C_1	207.0	а	Cl	
5	1	1	U	[4+1]	240.0	а	Cl	
					497.9	а	OH	
					258.6	а	Cl	
2	1	1	1	C_1	365.9	а	H ₂ O	
5	1	1	1	[4+2]	405.7	а	NH ₃	H ₂ O twist
					536.1	а	OH	H ₂ O rock
					218.9	a'	Cl	
				C	241.8	a'	Cl	
3	1	2	0	C_{s}	358.2	a''	NH ₃	
				[4 ⊤∠]	403.9	a'	NH ₃	
					537.2	a'	OH	

<u>Figure 3A-8</u>: Simulated polarized Raman spectra for $[NiCl_m(OH)_n(NH_3)_l (H_2O)_k]^{2-m-n}$, where m=1-3, n=0-(4-m), l=0-(6-n-m), k=0-(6-m-n-l)

Figure 3A-8: (continued)

Figure 3A-8: (continued)

<u>Figure 3A-8</u>: (continued)