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The effect of changing tidal energy over the spring-neap cycle on net 
sediment deposition in a hypertidal Bay of Fundy salt marsh creek 

ABSTRACT 
Removal of tidal energy by proposed commercial-scale tidal power installations in 
the Minas Passage has raised concern for a non-linear response of fine 
sediments in far-field environments, including salt marshes. To investigate the 
effects of changing tidal amplitude and energy on tidal creek processes, 
measurements of current velocity and suspended sediment concentration, and 
samples of deposited and suspended sediment, were collected in a hypertidal 
(tide range > 6 m) creek in the Upper Bay of Fundy over 15 tidal cycles. Current 
velocity and turbulence in the creek showed: (1) marked variability associated 
with increasing tidal amplitude, and (2) the influence of flood and ebb pulses with 
flooding and drainage of the marsh surface. Parameterization of disaggregated 
inorganic grain size (DIGS) spectra with a non-liner, least-squares fit model 
suggest that fluctuating net deposition over the study period (55 - 328 g nrf2) is 
not directly related to changes in the flocculated nature of suspended materials, 
despite variation in mean floe fraction (0.67 - 0.89) and floe limit (12-26 pm). 

© C. O'Laughlin, July 2012 
Halifax, Nova Scotia. 
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1.0 Introduction 

With the recent recognition of tidal salt marshes as sites of coastal 

defense and ecological significance, interest in intertidal sedimentation processes 

has increased significantly (Reed et al., 1999). The capacity of salt marshes to 

function as critical habitat in biological production, and as energy-absorbing 

features that shield coastal infrastructure from storm surges and rising seas, is 

entirely dependent on their ability to import and retain sedimentary material 

(Donnelly and Bertness, 2001). Marshes are dominant estuarine features, 

occupying a large portion of high intertidal zones in temperate and high-latitude 

regions, where energy conditions are sufficiently low for sediment deposition and 

establishment of salt-tolerant grasses (Allen and Pye, 1992; Friedrichs and Perry, 

2001). Due to the inherent controls of tidal range and energy, and in response to 

modem rising sea levels, tidal marshes are always adjusting toward a new 

equilibrium (Morris etal, 2002). 

Potential links between anthropogenic fossil fuel consumption and climate 

change, along with rising sea level and the dwindling global supply of fossil fuels, 

has driven an increased desire for the development and implementation of 

renewable energy technologies (Dincer, 1999; Omer, 2008). Initiatives designed 

to develop tidal production in the Bay of Fundy are currently underway, and 

testing of tidal in-stream energy conversion (TISEC) devices in the area began in 

2009 (DFO, 2009; OEER, 2008a). Potential modification of local tidal 

characteristics (e.g. reduced tidal amplitude) associated with the extraction of 
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tidal energy for electrical generation may result in changes to intertidal 

sedimentation patterns that are beyond the natural range (Sanders and Baddour, 

2008; OEER, 2008a). Based on the impacts of previous engineering projects in 

Bay of Fundy estuaries (e.g. Petitcodiac and Avon causeways), such as 

disruption of natural hydrodynamics and associated large-scale deposition, there 

is concern for a non-linear response of fine sediments in intertidal zones following 

energy extraction (e.g. van Proosdij etal., 2009; Amos and Mosher, 1985; Turk et 

al, 1980). An overall reduction in tidal amplitude in the inner Bay of Fundy 

(predicted by Karsten et at. (2008) in response to moderate energy extraction) 

would ultimately reduce the inundation time of salt marsh surfaces. This may 

reduce deposition in salt marshes due to decreased sediment supply, or 

alternatively act to increase sediment deposition in intertidal zones. Either 

circumstance will impact the morphology and survival of salt marsh 

environments. Without salt marshes acting as buffer zones to absorb and 

dissipate energy, vulnerability of coastal areas will increase. Changes to or loss 

of salt marsh functionality will also impact ecosystem services, such as organic 

material and nutrient supply (Craft etal, 2009; Boorman, 1999). 

The extraction of tidal energy for generation of electricity is a viable source 

of renewable energy in many locations around the world (Charlier, 2003). With 

the possibility of adverse impacts of tidal power generation, the general 

recommendation for TISEC technology in the Bay of Fundy region has been to 

adopt a conservative approach to development, and to conduct thorough 
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investigations into far and near-field effects (Karsten et al, 2008; Sanders and 

Baddour, 2008; OEER 2008a). Sedimentary and hydrodynamic models of the 

Bay of Fundy region are currently in development (e.g. Wu et al, 2011; 

Greenberg et al, 2005), along with existing models of far-field effects of tidal 

power extraction (e.g. Polagye and Malte, 2010; Pethick et al, 2009). However, 

due to the extensive intertidal zone and complex sediment dynamics, modelling 

Bay of Fundy dynamics has proven to be challenging. As a result, regional 

models produced to date do not consider relatively shallow portions of the 

intertidal zone, such as extensive salt marshes and tidal creeks. To increase 

model resolution and accuracy, validation by hydrodynamic and sediment 

transport data from the intertidal zone is essential, including site-specific baseline 

information on sedimentary and hydrodynamic processes (DFO, 2009; OEER, 

2008b), such as that presented in the following chapters. The purpose of this 

thesis is identification of the processes which control sediment dynamics in a 

sheltered tidal creek, through analysis of in-channel hydrodynamics and 

inorganic grain size, to determine the effects of changing tidal amplitude and 

energy on sediment deposition. This research is designed to develop a better 

understanding of processes that may be linked to a non-linear response of fine 

sediment to energy extraction, such as the influence of tidal amplitude on the 

flocculated nature of suspended and deposited sediment. 

Data presented in this study were collected in the Upper Bay of Fundy 

region during the summer of 2009. Subsequent analyses presented within this 

document are aimed at identification of processes controlling sediment dynamics 
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in a sheltered, hypertidal creek (tide range < 6 m). A full range of tidal conditions 

have been sampled for current velocity, suspended sediment concentration and 

sediment deposition over the spring-neap cycle. 

1.2 Tides 

Astronomical tides are driven by orbital variation in the positioning, rotation 

and relative inclination angles of the Earth, Moon and Sun. The principal 

component of global tidal circulation is the semi-diurnal M2 tidal constituent, 

driven by the rotation of the Moon around Earth (Wells, 1986). In addition, 

spring-neap tidal cycles are generated by changing lunar phases, and the 

variable positioning of the Moon, Sun and Earth relative to each other. The 

spring portion of the cycle occurs during Full and New Moon phases, when the 

Earth, Moon and Sun are lined up, generating tides that are typically higher and 

stronger than average. Neap tides are generally lower and weaker than average, 

and occur during the First or Last Quarter. Thus there are two sets of spring-

neap tides during the synodical month, or the period of time from New Moon to 

New Moon (Desplanque and Mossman, 2001; Kvale, 2006). 

Flow magnitude in tidal creeks is directly linked to the amplitude of 

individual tidal cycles, as the resulting flow velocity corresponds with the volume 

of water being moved through a system. This volume, known as the tidal prism, 

is a determining factor for inundation time, maximum depth, and drainage 

patterns in the intertidal zone. The relationship between tidal prism and 

inundation time shows variation within the same environment in response to the 
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spring-neap tidal cycle (Voulgaris and Meyers, 2004; Manning and Dyer, 2002; 

Murphy and Voulgaris, 2006; Manning and Bass, 2006). Increased tidal 

amplitude is generally associated with spring tides, and implies longer inundation 

time, faster and more turbulent currents, and higher suspended sediment 

concentration, due to a greater carrying capacity relative to lower tidal amplitude 

(Allen 2000; Friedrichs and Perry, 2001). 

Evidence has been presented to support the existence of energy variability 

between spring and neap tidal cycles, through analysis of various parameters 

associated with tidal energy exchange. Evidence includes variations in biomass 

and water content, tidal currents, suspended sediment concentration (SSC), 

flocculation processes, nutrient fluxes and tidal dissipation (e.g. Manning et at., 

2006; Murphy and Voulgaris, 2006; Friend et a!., 2005; Manning and Dyer, 2002; 

O'Brien eta/., 2000; Voulgaris and Meyers, 2004; Cartwright, 1997; Peters, 1997; 

Vdrdsmarty and Loder, 1994; Middleton, 1972). Spring tides show greater mean 

current velocity and suspended sediment concentration compared with neap 

tides, along with higher rates of inter-particle collision and optimal conditions for 

formation of fast-settling floes (Manning et al, 2006). Neap tides have reportedly 

weaker than average current velocities and kinetic energy, and comparatively 

lower rates of floe formation and depositional capabilities than spring tides 

(Manning and Dyer, 2002; Voulgaris and Murphy, 2006). 
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1.3 Salt marshes 

Minerogenic salt marshes and mudflats require sufficient amounts of 

sediment input to keep pace with rising sea level, meaning that marshes are 

typically areas of net sediment accumulation (Craft et at, 2009; Voulgaris and 

Meyers, 2004; Reed, 1988). Marshes are generally composed of a flat, gently 

sloping platform dissected by tidal creeks (Lawrence et al, 2004; Voulgaris and 

Meyers, 2004). The characteristic morphology of these systems (which includes 

salt marsh, tidal channels and adjacent intertidal flats) consists of both vegetative 

growth and sedimentary features. Minerogenic marshes have platforms 

dominated by tidally introduced mineral matter, with a smaller component of 

locally sourced organics, such as plant litter and below-ground root biomass 

(Allen, 2000; Allen and Pye, 1992). The occurrence of salt marsh vegetation is 

generally limited to the zone between mid-neap tide level and the high water level 

during spring tides, while non-vegetated mudflats and creek banks occupy the 

space below (Allen and Pye, 1992). High marsh is known to develop above the 

mean high water line, while low marsh extends from this line in the seaward 

direction. Salt marsh vegetation communities adhere to strict boundaries 

imposed by tolerance to stressors, such as saline tidal waters (Bertness, 1991). 

Vegetation has been shown to reduce velocity and turbulence of tidal flow moving 

through salt marsh canopies (Leonard and Croft, 2006; Leonard and Luther, 

1995); however, it remains uncertain whether this action actually increases 

deposition or simply protects against erosion (Silva et al, 2009). 
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Marsh morphology is closely linked with tidal cycles, through platform 

accretion and the development and maintenance of creek networks. Local tide 

range limits the altitudinal growth of a marsh surface within the tidal frame (Allen, 

2000; French and Stoddart, 1992; Davidson-Amott et a!., 2002). The 

composition and linkages of salt marsh systems has been well illustrated by Allen 

(2000), where surface sedimentation is dictated by the relative elevation of the 

marsh surface and tidal inundation. Typically less than one third of tides are high 

enough to overfill tidal creeks and fully inundate high marsh surfaces. These 

flooding events, known as the hydroperiod or inundation period, range in duration 

from a few minutes to two or three hours. The remaining tides pass without 

surpassing the limits of potentially deeply incised channels (Lawrence et al, 

2004). The relationship between tidal range, inundation time and sedimentation 

controls the ability of a marsh to import sediment (Voulgaris and Meyers, 2004, 

Christiansen eta!., 2000). 

An increase in inundation time is related to greater maximum water depth 

over the marsh surface, which is associated with faster current velocity and the 

capacity for more sediment transport, increasing the availability of sediment for 

deposition (Friedrichs and Perry, 2001; Christiansen et al, 2000). It follows that 

any process acting to increase concentration in adjacent source areas will also 

increase the accretion rate of the marsh surface. With higher tides, and in 

macrotidal environments, a proportion of the total marsh tidal prism is not 

restricted to creeks, and flow moves across the marsh margin (Davidson-Amott et 
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al, 2002). The percentage of total input from marsh margins is greater with 

increasing high water level (Temmerman et al, 2005). Therefore, potential 

controls of salt marsh and tidal creek processes include those intrinsic to the 

marsh (e.g. topography, vegetation height and density), and others which are 

externally-driven (e.g. suspended sediment concentration, wave height, 

atmospheric effects, tidal amplitude and current velocity) (van Proosdij et al, 

2006a; Davidson-Amott et al, 2002; Friedrichs and Perry, 2001; French and 

Stoddart, 1992). The resulting deposition of sedimentary material on mudflats, 

creek banks and the marsh surface is a complex function of variables controlling 

sediment availability and the opportunity for deposition (van Proosdij et al, 

2006a). 

Tidal creeks are essential components of inorganic salt marsh systems, 

providing conduits for the import and export of sediment and organic material 

(Craft et al., 2009; Davidson-Arnott et al, 2002). In hypertidal salt marshes (e.g. 

the Bay of Fundy), generally straight, shore-normal channels with steep banks 

characterize the typical creek network arrangement, while micro- and meso-tidal 

marshes show more complex patterns (Davidson-Arnott et al., 2002). The 

sediment supply available to the marsh surface has been shown as proportional 

to the suspended sediment concentration of adjacent source areas, such as 

creeks and mudflats (Friedrichs and Perry, 2001). Deposition decreases with 

increasing distance from creeks (Christiansen et al, 2000; Allen, 2000; Friedrichs 

and Perry, 2001; Reed et al., 1999), implying that creeks are the dominant 
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supplier of sediment to much of the marsh surface. Grain size of bed sediments 

has also been shown to decrease with increasing distance from the sediment 

source (Christiansen etal, 2000; French and Stoddart, 1992). Resuspension of 

newly introduced material from creek banks has also been identified as a source 

of sediment for accretion on the marsh surface, especially with the occurrence of 

waves during flood tide stages (Reed, 1988). 

"The efficiency of sediment delivery to the marsh surface impacts the 

vertical development in the tidal frame, especially for restoration sites and 

managed marshes (Reed et al., 1999). Tidal creek morphology is dictated by 

topographic boundaries, such as the marsh platform itself, which influences 

general marsh morphology by controlling hydrodynamics and acting as a 

topographic threshold separating two relatively different flow regimes (French and 

Stoddart, 1992; Allen 2000; Friedrichs and Perry, 2001). Flood- and ebb-phase 

velocity and discharge asymmetries have been identified, and are impacted by 

channe l  geomet ry  and  marsh  morpho logy  (Dronkers ,  1986 ;  Bay l i ss -Smi th ,  eta / ,  

1979; Boon, 1975). As high marsh areas flood and drain in close proximity to 

high water, peak flood and ebb currents develop, typically shortly before or after 

slack tide (Blanton et a/., 2002; Dronkers, 1986). Marshes with a high equilibrium 

surface that is relatively flat promote a rapid transition from zero surface 

submergence to complete surface submergence with increasing tidal height 

(Friedrichs and Perry, 2001). 
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Flow within tidal creeks has been identified as fully turbulent (Christiansen 

et al, 2000). Current velocity in tidal creeks during over-marsh tides velocity has 

been shown not to exceed 1 ms"1, compared with channel-restricted tides which 

typically demonstrate slower velocity (10-20 cm s"1) (Christiansen et al., 2000, 

Voulgaris and Meyers, 2004; Lawrence et al, 2004). Tidal currents flowing 

across a marsh surface are known to be strongly influenced by the presence of 

vegetation, and are generally an order of magnitude lower (< 2 cm s"1) than flow 

over unvegetated areas (Leonard and Croft, 2006; Murphy and Voulgaris, 2006; 

Davidson-Arnott et al, 2002; Leonard and Luther, 1995; Friedrichs and Perry, 

2001). The turbulence structure and wave mechanics of marsh surface ftow is 

modified by vegetation (Leonard and Croft, 2006; Moller, 2006; Lawrence et al, 

2004; Neumier and Ciavola, 2004; Christiansen et al, 2000; Leonard and Luther, 

1995). Reduction of turbulence and resulting low shear stress on the marsh 

surface encourages rapid settling of suspended material, and discourages 

sediment resuspension (Leonard and Luther, 1995; Friedrichs and Perry, 2001). 

The absolute relationship between salt marsh vegetation and sedimentation 

patterns is not immediately clear, and it has been proposed that the 

characteristics of individual marshes must be considered to fully understand the 

role of vegetation in the stabilization of those areas (Silva et al., 2009). 

1.4 TheBayofFundy 

Development of the Fundy Basin began during the Appalachian Orogeny, 

approximately 286-360 million years before present, which established a system 
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of faults across the region during the mountain building process. The modem 

Bay of Fundy is within an aulacogen (failed rift valley), formed by reactivation of 

these faults during the spreading of the supercontinent Pangea, which began 

about 220 million years ago (AGS, 2001). Seaftoor spreading at the Mid-Atlantic 

Ridge dominated the extensional process, and eventually separated North 

America from Europe and Africa, leaving the failed Fundy Basin rift valley as a 

landlocked sedimentary graben. The infilling of this basin with sediments and 

volcanics which began more than 200 million years ago, and in more recent times 

has been affected by erosion and deposition related to Pleistocene glaciation, 

which established the modern Bay (Desplanque and Mossman, 2001; AGS, 

2001). 

Bay of Fundy tides are dominated by the M2 (lunar semi-diurnal) tidal 

constituent and to a lesser extent the S2 (solar semi-diurnal) and N2 (lunar elliptic) 

components (Garrett, 1972; Scott and Greenberg, 1983). Fundy tides are 

strongly semi-diurnal and show an extreme range (up to 16 metres), which is 

described as hypertidal (> 6m) (van Proosdij etal, 2010). This is caused by near 

resonance of the Bay of Fundy - Gulf of Maine system with the oceanic semi­

diurnal tide, coupled with influences of basin geometry and bottom friction (Shaw 

et a I, 2010). Changes in relative sea level are largely responsible for the 

development of the modem tidal regime in the Bay of Fundy, particularly the 

water depth over George's Bank; Scott and Greenberg (1983) report a 1-2% 

increase in tidal amplitude for every 1 metre of rising sea level. The system is 

transgressive, and with changing basin geometry, tidal amplification has 
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increased over the past 6000 years, with the greatest rate of tidal amplification 

between 7000 and 4000 BP (Scott and Greenberg, 1983; Amos, 1987). 

Bay of Fundy estuaries are routinely exposed to a high suspended 

sediment concentration and the aforementioned tidal range, as well as snow and 

ice for up to three months of the year (van Proosdij et al, 2001). The modem 

1400 km Bay of Fundy coastline is bound by sandstone and conglomerate cliffs 

which experience high rates of erosion, up to 1 m a'1 in some areas (Desplanque 

and Mossman, 2001). Fine sediments are also entrained from bed scours in the 

Minas Basin, introducing laminated silts and clays to suspension (Amos, 1987). 

Sections of coastline (e.g. Chignecto Bay) that show a dominance of Paleozoic 

siltstone and shale also contribute fine-grained materials, which maintain 

suspension through wave action and tidal cycling (Desplanque and Mossman, 

2001). 

The movement of estuarine mud is governed by hydrodynamic forcing 

agents, such as tidal currents and waves, which can be driven by gravity or 

pressure gradients. Waves generally have a lesser influence on sediment 

dynamics in an estuary than on an open coast, and thus energy exchange in 

estuaries is dominated by tidal processes (Whitehouse et al., 2000). The inner 

Fundy bays show considerable accumulations of fine sediments throughout the 

Minas and Cumberland Basins, a supply that has encouraged extensive salt 

marsh development in those areas. The lower portion of the Bay of Fundy is 

characterized by primarily sandy material (Davidson-Arnott et al., 2002). It has 

been suggested that the Bay of Fundy in undergoing a period of modern change, 
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evidenced by changing grain size distributions on tidal mudflats, increasing water 

depths in some areas and changing benthic communities (Desplanque and 

Mossman, 2004). 

1.5 Tidal power 

The extraction of tidal energy for electrical generation is a viable source of 

renewable energy in many locations around the world (Karsten et a!., 2008; 

Garrett and Cummins, 2005; Bryden et a/., 2004; Charlier, 2003). Recent 

initiatives to harness this resource in the Bay of Fundy began with testing of in-

stream energy conversion devices in 2009 (DFO, 2009; OEER, 2008a, b). Since 

the 1970s, studies have been undertaken at various sites in the Bay of Fundy to 

test suitability and feasibility of tidal power installations (e.g. Gordon, 1994; 

Seoni, 1979; Karas, 1978; Lee and Dechamps, 1978). These evaluations 

considered barrage construction and did not yield promising results, primarily due 

to the unknown effects of damming major components of the system, and 

construction within the upper Bay was never attempted. The modern approach 

involves tidal in-stream energy conversion (TISEC) devices, which are stationary, 

independent structures that are fully or partially submerged and do not 

completely disrupt tidal flow. Similar to wind turbines, these devices convert 

kinetic energy from flowing water into electricity, and do not require a dam or 

barrage-type structure. The naturally large tidal range of the Bay of Fundy 

creates a unique opportunity to employ TISEC technology for electrical 

generation (DFO, 2009; Sanders and Baddour, 2008; OEER, 2008a, b). 
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Energy extraction from tidal flows is understood to alter hydrodynamics in 

the near-field environment (Sun et a!., 2008; Garrett and Cummins, 2005). 

However, the response of far-field environments to changes in tidal energy 

remains uncertain (Sanders and Baddour, 2008; Bryden etal, 2004). Numerical 

modeling has shown that the environmental significance of change in response to 

energy removal may be site-specific and non-linear (Polagye and Malte, 2010). 

A large amount of power can be harvested from the Bay of Fundy system, and 

extraction of the maximum amount of power available (up to 7 gigawatts) would 

generate significant regional impacts. Even moderate extraction would result in 

a reduction of local tidal amplitude by approximately 5% per 2.5 gigawatts of 

power extracted (Karsten et a!., 2008). The effect of energy extraction on 

sediment dynamics in salt marshes and tidal creeks is largely unknown, which is 

the main motivation for this study. 

1.6 Mud and Flocculation 

Suspended particles fall through a fluid with different settling rates that are 

directly dependant on their physical properties. Stokes' Law describes the 

frictional force exerted on spherical objects held in a continuous viscous fluid. 

Settling rates of fine-grained spherical particles of constant size and density 

suspended in still water of constant density and viscosity can be defined by 

Stokes' law: 

w = CPp-Pf)gd2 

S 18 fl Equation 1 
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where ws is the settling velocity, pp is particle density, pf is fluid density, g is 

gravitational acceleration, d is the particle diameter, and p is the dynamic 

viscosity of the fluid (Smith and Friedrichs, 2011; Voulgaris and Meyers, 2004; 

Christiansen et at., 2000). Stokes' Law applies well to silt grains, whose nearly 

equidimensional shapes result in settling velocities that are relatively similar to 

spheres of similar volumes. Smaller clay particles are more commonly non-

spherical in shape, and settling velocities of these particles are not as closely tied 

to Stokes' Law, although correction factors are available (Winterwerp, 2002; 

Eisma 1986). 

Mud is defined as the fraction of any sediment distribution that is less than 

63 |im in diameter, and generally consists of a large proportion of very small silt 

and clay particles (Whitehouse et al., 2000). The main mode of transport for 

particles in this size range is in suspension, and suspended muds span a variety 

of densities and critical shear-stresses that influence particle cohesion and 

deposition (Whitehouse et al., 2000; Kranck, 1980). Particles less than 63 pm in 

diameter tend to flocculate, which strongly influences depositbnal processes by 

enhancing the flux of muds to the bed (Kranck and Milligan, 1991; Law et al., in 

press). Flocculation is the process whereby suspended sediment and organic 

particles aggregate as the cumulative result of collision and cohesion processes 

to form loose associations of particles called floes (Eisma, 1986; Kranck, 1980). 

The tendency of fine sediments to settle as aggregates or floes rather than as 

single grains reduces Stokes' law applicability to fine sediments, as aggregates 
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demonstrate settling velocities greater than that of individual constituent grains 

(Whitehouse et al., 2000; Kranck, 1980). It has been shown that the settling 

velocity of silt- and clay-sized particles can be increased by several orders of 

magnitude, as flocculation enhances the flux of muds to the bed (Kranck and 

Milligan, 1991; Law et al., in press). Increased settling velocity of suspended 

particles can lead to increased water column clearance when flow conditions are 

calm (Kranck and Milligan, 1992). 

Particle collisions can occur through three mechanisms: Brownian motion 

of suspended particles, turbulent shear in the water column, and differential 

settling velocities of particles and floes (Winterwerp, 1998, 2002; Whitehouse et 

aL, 2000). Brownian motion describes the seemingly random motion of particles 

suspended in a fluid, while turbulent and shear forces in the water column 

simultaneously create opportunities for particle collisions, and limit the maximum 

size floes can achieve (Winterwerp, 2002). Differential settling velocities can 

effectively cause particle collisions as faster settling particles overtake and collide 

with slower settling grains (Kranck, 1980). 

Three dominant factors influence flocculation processes: (1) the 

concentration of particles in suspension which will control the frequency of 

particle collisions, (2) the efficiency of individual particles for adhesion upon 

collision, and (3) the level of turbulent shear in the water column (Milligan and 

Hill, 1998; Manning and Dyer, 2002; Winterwerp, 1998; van Leussen, 1999). 

Turbulent shear can enhance floe formatbn due to increased contact between 
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particles, but at some level will limit maximal floe size due to floe break-up 

(Winterwerp, 1998; Milligan and Hill, 1998). This is well described by 

Winterwerp's (1998) model of floe evolution, which demonstrates that particle 

residence time in a turbulent environment constrains floe growth. The rate at 

which flocculation occurs is primarily a function of sediment concentration 

(Milligan et al., 2007; Kranck, 1980). This can result in rapid deposition in 

episodic events, such as floods (Milligan et al, 2007), but other factors such as 

sedimentary characteristics (including composition, particle size, organic content, 

and the nature of structures) play significant roles in determining floe density and 

maximum floe size (Milligan and Hill, 1998; Whitehouse et al., 2000). As floes 

grow larger, more water is incorporated into the total volume, leading to a 

decrease in density with growth (Hill et al, in press). Increased particle size is 

also known to reduce floe density due to increased interstitial space between 

particles (Curran et a!., 2007). On seasonal time scales, floe sizes are dependent 

on binding properties related to biological activity, while settling velocities show 

minor variations resulting from a counterbalance of increased floe size by a 

decrease in floe density (Van der Lee, 2000). 

Floe cohesion is maintained through a combination of molecular attractive 

and electrostatic forces between neighbouring clay grains and organic complexes 

on particle surfaces (Whitehouse et al., 2000; Dyer and Manning, 1999; Eisma, 

1986; Kranck, 1981). This latter category includes the production of adhesive 

organic matter (mucopolysaccharides) by bacterial, algae and higher plants (van 
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Der Lee, 2000; Eisma, 1986; Kranck, 1980). The significance of biological 

factors in flocculation is related to the cohesive properties of these organic 

compounds, which potentially enhance particle aggregation via organic coatings 

on individual mineral grains (Eisma, 1986; van der Lee, 2000). For example, 

enhanced flocculation on spring tides has been linked to a high total 

carbohydrate concentration (Manning et al, 2006). Also, laboratory experiments 

by Kranck and Milligan (1985) demonstrated that a 1:1 mixture of organic matter 

and mineral particles settles at a much higher rate than the organic matter or 

mineral particles alone. A strengthening effect of salinity on floes has also been 

identified, which is considered to be an important contributing factor in estuarine 

processes (Pejrup and Mikkelsen, 2010; Milligan et a!., 2001; Kranck, 1981). In 

estuarine environments, flocculation processes are subject to variations related to 

the spring-neap cycle, due to increased current velocity (and associated shear 

stresses) associated with spring tides. This results in typically higher suspended 

sediment concentration, which increases flocculation efficiency. This in turn 

encourages the retention of fine particles that would otherwise be swept out to 

sea (Manning and Bass, 2006; Bartholoma eta!., 2009; Kranck, 1981). 

Limited knowledge of suspension rates and particle characteristics, 

coupled with variation on spring-neap and seasonal scales, make time-variant 

flocculation processes challenging yet essential components of sediment 

transport models (Friedrichs and Perry, 2001; Manning et a!., 2006; Milligan and 

Hill, 1998). Flocculation processes are especially important for proper 
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assessment of environmental impacts of development in the coastal zone 

(Milligan and Hill, 1998; Milligan and Law, 2005; van Proosdij et al, 2009). The 

transport and deposition of mud is therefore complex and widely varied, and is 

linked to the concentration of particulates in suspension, turbulence and shear in 

the water column, and biological processes which impact particle cohesion and 

flocculation (Milligan and Hill 1998; Manning et al., 2006; van Der Lee, 2000; 

Kranck, 1981). 

Eisma (1986) differentiated suspended floes by diameter and the origin of 

constituent particles. He assigned the term microflocs to floes that measure up to 

125 nm, are composed of tightly-packed organic and inorganic particles, and are 

typically smaller mineral grains held together by organic matter. Macroflocs by 

comparison are porous and loosely-bound, and are a combination of microfbcs 

as well as individual particles (Mikkelson et a!., 2006). Macroflocs are fragile 

agglomerations that form under viscous flow conditions, and those found in 

estuaries can measure up to sizes of 3-4 mm and are easily destroyed during 

sampling (Eisma, 1986; Curran et a!., 2007). Larger macroflocs (up to 12 mm 

diameter), such as those which occur in coastal waters or farther offshore where 

the supply of mineral particles is limited, show lower density and demonstrate 

high organic content, much more than those found in estuarine environments 

(Eisma, 1986). 
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1.7 I nverse floe model 

Work by Kranck (1980) has shown that floes are unbiased samplers of the 

parent suspension, and they remove material from the water column in the same 

proportions that are found in suspension. The size distribution of that suspension 

provides a record of sedimentary origin and insight into the conditions of the 

depositional environment (Kranch and Milligan, 1985; Milligan and Loring, 1997). 

A bottom deposit is therefore a proportional mixture of single-grain and floe-

deposited material, relative to the environmental conditions at the time of 

deposition (Curran et al, 2004; Kranck and Milligan, 1991). Results of 

disaggregated inorganic grain size (DIGS) analysis of bed sediment can be 

applied to estimate the ratio of material deposited as floes, under the assumption 

that suspended material can either be deposited within floes or as single grains 

(Kranck and Milligan, 1985; Kranck, 1980). Several studies have employed this 

principle to study sediments in estuarine and marine environments (e.g. Kranck 

et a!., 1996a & 1996b; Milligan and Loring, 1997; Hill et al, 2000; Mikkelsen et 

aL, 2004; Milligan et a!., 2001; Fox et a!., 2004; van der Lee, 2000; van der Lee et 

a!., 2009; Manning et a!., 2010) and the method is widely accepted. This 

research applies the inverse floe model to marsh sediment to investigate its 

usefulness in this environment, which has not been extensively studied using this 

method (e.g. Voulgaris and Meyers, 2004; Christiansen et at., 2000). Recently, 

the inverse floe model has been applied to investigate particle size characteristics 

on intertidal flats (e.g. Hill eta!., in press; Law etal, in press). 
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A conceptual model modified from Curran et a! (2004) demonstrates the 

relationship between suspended fine sediment and bottom deposits (Figure 1.1). 

The texture of bed sediment is largely dependent on the relative effectiveness of 

the two modes of arriving at the bed (either as single grains or as floes), and the 

proportional mixture is relative to the environmental conditions (e.g. 

concentration, energy and particle adhesion) at the time of deposition. This is the 

basis of the bottom sediment DIGS parameterization, and for the 'inverse floe 

model' developed by Curran et at., (2004) and based on work by Kranck and 

Milligan (1991) and Kranck et at. (1996a, 1996b). The model assumes that 

sediment of a particular component grain size may exist in one of three unique 

reservoirs: suspended as single grains, suspended as part of floes, or within the 

bed deposit (Figure 1.1). Aggregation and disaggregation processes transfer 

grains to and from suspended single grain and floe reservoirs, and deposition to 

the bed occurs as both single-grain and floes. 

Parameterization of DIGS distributions can be completed using the inverse 

floe model (Figure 1.2). As mineral grains are the first principle of flocculation, 

the material that remains after organics are removed from a sample is the focus 

of this study due to the relationship between particle size and deposition, and the 

mode with which particles arrive at the bed (either within a floe or as a single 

grain). Model parameters include source slope (m), which indicates the relative 

amounts of fine versus coarse particles, is a property of the parent material, and 

is generally similar among different samples from a common source (Kranck et 
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a!., 1996a). Roll-off diameter (*/A) describes the diameter (in pm) of particles 

whose concentration has fallen to 1/e of its initial concentration. Floe limit (<$ 

describes the grain size at which the flux of mass to the seabed via floe or single-

grain deposition is equal (Curran et al, 2004); this value conceptually represents 

the upper size limit of particles held in floes, and the lower size limit of single 

grains held in suspension (Christiansen et a/., 2000). The flocculated component 

of a bottom deposit is represented by floe fraction (/), or the proportion of 

suspended mass held in floes at the time of deposition (Curran etal, 2004). The 

model uses a non-linear fit of observed bottom sediment DIGS distributions to the 

modeled equation, and is capable of separation of fbc and single-grain settled 

components, and estimation of source slope (m) and roll-off diameter (dA) (Figure 

1.2). Changes in these characteristics can indicate fluctuation in depositional 

conditions (e.g. turbulence), and represent the dynamic influence of flocculation 

on estuarine sediment transport. A detailed description of the analytical 

processes and routines discussed here, including model assumptions and 

limitations, can be found in Milligan and Kranck (1991), Curran et al. (2004) and 

Mikkelsen et al. (2007). 
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Figure 1.1: Conceptual basis for the inverse-floc model (modified from 
Curranetal, 2004). 
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Figure 1.2: Idealized DIGS distribution (solid line) showing concentration versus 
diameter on tog-bg axes. The floc-settled (dotted line) and single-grain (dashed 
line) components are determined by the inverse floe model. Graphical locations 
of mode! parameters (df, d, m) are shown. Modified from deGelleke (2011). 
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1.8 Additional Analyses 

1.8.1 Entropy analysis 
Entropy analysis can be applied to group DIGS distributions into 

categories based on similarity, minimizing information loss that is typical of 

traditional descriptors by taking the entire size spectrum into consideration, and 

enabling analysis of multi-modal size distributions (Mikkelsen et al., 2007). The 

concept of entropy was first discussed by Shannon (1948) in relation to 

information theory, as a measure of information, choice and uncertainty. In 

reference to particle size distributions, entropy is greatest (and randomness is 

maximized) when particles are evenly distributed between all size classes. 

Conversely, if all particles fit into one size class, then entropy and randomness 

are minimized. The use of entropy analysis for grouping data has long been 

recognized, but applications to geological and sedimentological problems was 

initially limited (Woolfe and Michibayashi, 1995). Johnson and Semple (1983) 

originally applied this approach to sediment size, and subsequent work by Forrest 

and Clark (1989) and Woolfe and Michibayashi (1995) demonstrated that entropy 

analysis of bottom sediment size distributions generated groupings that could be 

correlated to depositional environment. This method has recently been applied to 

classify in-situ particle size spectra of suspended and bottom sediments, 

reflecting variations in forcing conditions (e.g. turbulence variability) (Mikkelsen et 

al., 2007). Bottom sediment textures have also been successfully interpreted 

using entropy analysis, for definition of ecological habitats on continental shelves 

(Orpin and Kostylev, 2006). 
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1.8.2 Acoustic backscatter 
The use of acoustic backscatter intensity (e.g. amplitude, or signal 

strength) as a surrogate estimation of suspended sediment concentration (SSC) 

has been successfully evaluated and employed in laboratory and field settings for 

measuring size and fall velocity of suspended particles (e.g. Voulgaris and 

Meyers, 2004; Thome and Hanes, 2002; Fugate and Friedrichs, 2002). Several 

calibration routines are available, and frequently involve co-location of optical 

backscatter and/or laser in-situ scattering and transmissometery instrumentation 

(e.g. Hoitink and Hoekstra, 2005; Hill etal, 2003; Holdaway eta!., 1999; Lynch et 

at, 1991). While it has been demonstrated that acoustic backscatter can be 

converted to valuable estimates of SSC, Hoitink and Hoekstra (2005) describe 

complications related to unknown influences of flocculation, as well as 

anomalous scatterers in the water column (e.g. phytoplankton). Kim and 

Voulgaris (2003) found calibration methods to be most accurate for fine sands, 

whereas silt and finer materials generate bias in acoustic measurement. 

Additionally, high SSC is generally understood to generate measurement 

inaccuracies due to significant signal attenuation in the water column (Thorne et 

a!., 1991). Consequently, acoustic Doppler current profiler (ADCP) amplitude 

data presented in the following chapters is not quantified, but has been applied 

as a relative indicator of changing suspended sediment concentration in the 

absence of calibration. Rates of changing signal strength in the water column 

can be applied to characterize suspended sediment dynamics and link with 

periods of deposition (e.g. Hill etal., in press). 
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1.9 Summary and thesis goals 

Salt marshes play a crucial role in sediment exchange by occupying zones 

of transition between terrestrial and marine ecosystems, and also provide 

valuable ecosystem and storm-protection services, such as nutrient supply and 

enhancing coastal stability (Craft et a/., 2009; Davidson-Arnott et al, 2002; 

Donnelly and Bertness, 2001; Reed et a!., 1999). Primary and secondary 

productivity in the intertidal zone is strongly linked to salt marsh environments, 

which makes the presently uncertain practice of predicting the fate of estuarine 

sediments a high priority (Smith and Friedrichs, 2011; OEER, 2008a). In 

response to modification of local tidal characteristics (e.g. reduced tidal 

amplitude), changes in intertidal sedimentation patterns can be expected due to 

the high sensitivity of intertidal zones to sediment supply, which is inherently 

linked to hydrodynamics (Ralston and Stacy, 2007; Boorman, 2003). Such 

environmental effects of tidal power development in the Bay of Fundy have been 

previously considered (e.g. Yeo and Risk, 1979; Gordon 1994), but the 

magnitude of potential change still remains to be fully understood (Polagye et a!., 

2011). It is hypothesized that intertidal sedimentation rates in the Minas Basin 

will demonstrate a non-linear response to modification of the tidal energy regime, 

due to a naturally high suspended sediment concentration (Polagye et a!., 2011; 

Polagye and Malte, 2010; OEER, 2008a). This notion is well-supported by 

previous work assessing the response of estuarine systems on the Bay of Fundy 
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to anthropogenic alterations of natural hydrodynamics (e.g. van Proosdij et a/., 

2009; Amos and Mosher, 1985; Turk etal, 1980). 

As stated, the goal of this thesis is to identify processes controlling 

sediment dynamics in a sheltered tidal creek environment and determine the 

effects on inorganic grain size. This research has been undertaken to better 

understand processes that may be linked to a potentially non-linear response of 

fine sediment to energy extraction, such as the influence of tidal amplitude on the 

flocculated nature of suspended and deposited sediment. Data were collected in 

the Upper Bay of Fundy region during the summer of 2009 over a range of tidal 

conditions associated with the spring-neap cycle. Individual tidal cycles were 

sampled for current velocity, suspended sediment concentration and sediment 

deposition. Chapters in this document have been organized manuscript-style; 

chapters 2 and 3 are focussed companion papers for submission to academic 

journals. Chapter 2 focuses on the variability of creek hydrodynamics and 

suspended sediment concentration, while Chapter 3 discusses the sedimentary 

characteristics of associated suspended and deposited sediments. Finally, 

Chapter 4 provides a synthesis of information collected and discussed throughout 

this document. 
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CHAPTER 2: INFLUENCE OF VARYING TIDAL PRISM ON HYDRODYNAMICS 
AND SEDIMENTARY PROCESSES IN A HYPERTIDAL SALT MARSH CREEK 



2.1 Abstract 

Recent initiatives directing tidal power development in the Bay of Fundy have 
raised questions about far-field environmental impacts related to energy 
extraction. It has been proposed that commercial scale tidal power installations in 
the Minas Passage will result in an overall decrease in tidal amplitude in the 
Minas Basin. Corresponding changes in sedimentation patterns may or may not 
be within the natural range of variability, and it is hypothesized that irrtertidal 
sedimentation rates will demonstrate a non-linear response to modification of the 
tidal energy regime. This research considers current velocity and suspended 
sediment concentration data from a sheltered tidal creek in the Minas Basin, for 
analysis of tidal characteristics in a hypertidal creek environment over spring and 
neap tidal cycles. Sediment deposition in the creek was also measured. Results 
show a first-order control of topography on flow magnitude in the tidal creek, 
which impacts net sediment deposition through resuspension and removal of 
newly introduced material. This study demonstrates that tides which peak 
around the bankfull level show reduced early ebb stage turbulence and flow 
velocity and encourage an extended depositional period. 

2.2 Introduction 
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Interest in intertidal sedimentation processes has increased over the past 

decade, along with recognition that tidal salt marshes provide valuable ecological 

and storm-protection services (Craft etal., 2009; Boorman, 1999). The capacity 

of salt marshes to function as critical habitat, in biological production, arid as a 

coastal defense is entirely dependent on their ability to import and retain 

sedimentary material (Donnelly and Bertness, 2001; Reed etal., 1999). Intertidal 

systems in eastern Canada, where concentrations of suspended fine-grained 

sediments are high (up to 30,000 mg/L), have shown marked decadal-scale 

changes in sedimentation patterns in response to anthropogenic alterations of 

the natural hydrodynamics (van Proosdij et at., 2009; van Proosdij et at., 2006b; 

Amos and Mosher, 1985; Turk et al., 1980). However, current knowledge 

regarding the distribution and dynamics of sediments in shallow, muddy and 

vegetated environments such as the Bay of Fundy is limited (Whitford, 2008; 

DFO, 2009; Sanders and Baddour, 2008). 

Tidal creeks are essential components of inorganic salt marsh systems, 

providing conduits for the import and export of sedimentary material, material that 

is required to maintain a positive balance and mitigate regional changes in sea 

level (van Proosdij 2006b; Voulgaris and Meyers 2004a). Deposition and particle 

grain size have been shown to decrease with increasing distance from creek 

margins (Christiansen et al., 2000; Allen, 2000; Friedrichs and Perry, 2001), 

implying that creeks are the dominant supplier of sediment to the marsh surface. 

With higher tides and in macrotidal environments, a proportion of the total marsh 

42 



tidal prism is not restricted to creeks and flow moves across the marsh margin 

(Davidson-Amott et al., 2002). The percentage of total input from marsh margins 

is greater with increasing high water level (Temmerman et al., 2005). Flow 

magnitude in tidal creeks is linked to the amplitude of individual tidal cycles, 

which is also a determining factor for inundation time, as the resulting flow 

velocity corresponds with the volume of water being moved through a system. 

This relationship shows variation within the same environment in response to the 

spring-neap tidal cycle (Voulgaris and Meyers, 2004a; Manning and Dyer, 2002; 

Murphy and Voulgaris, 2006; Manning and Bass, 2006). In general, increased 

tidal amplitude is associated with spring tides, and implies longer inundation time, 

faster and more turbulent currents, and higher suspended sediment 

concentration due to a greater carrying capacity, relative to lower tidal amplitude 

(Allen 2000; Friedrichs and Perry, 2001). Evidence has been presented to 

support the existence of an energy variation over the spring-neap cycle, which 

affects suspended concentration and flocculation processes (e.g. Voulgaris and 

Meyers, 2004a), depositional capabilities (e.g. O'Brien et al., 2000), variations in 

sedimentary, biomass and water content (e.g. Friend et al., 2005), as well as tidal 

dissipation, currents and depth (e.g. Desplanque and Mossman, 2001; 

Cartwright, 1997; Peters, 1997; Middleton, 1972). 

Tides which inundate the marsh surface show very different velocity 

patterns from those that remain restricted to channels (Torres and Styles, 2007; 

Lawrence et al., 2004; French and Stoddart, 1992). In general, greater flow 
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velocity in tidal creeks (up to 1 ms"1) has been reported during over-marsh tides, 

compared with channel-restricted tides (10 - 20 cm s"1) (Christiansen et al., 

2000, Voulgaris and Meyers, 2004a). Tidal creek morphology is dictated by 

topographic boundaries, such as the marsh platform itself, which influences 

marsh structure through hydrodynamics and acts as a topographic threshold 

separating two relatively different flow regimes (French and Stoddart, 1992; Allen 

2000; Friedrichs and Perry, 2001). Torres and Styles (2007) present results that 

imply a first-order control of salt marsh topographic structure on over-marsh flow 

complexities, including current reversal in tidal creeks associated with high tide. 

Velocity and discharge asymmetries have been identified between flood and ebb 

phases of individual tidal cycles, impacted by channel geometry and marsh 

morphology (Dronkers, 1986; Bayliss-Smith, et al., 1979; Boon, 1975). As 

intertidal areas (e.g. high marsh) flood and drain in close proximity to high water, 

peak flood and ebb currents develop shortly before or after slack tide at high 

water (Blarrton et al., 2002; Dronkers, 1986). Marshes with a high equilibrium 

surface that is relatively flat promote a rapid transition from zero surface 

submergence to complete surface submergence with increasing tidal height, 

evidenced by sudden changes in velocity patterns with submergence of marsh 

topography (Friedrichs and Perry, 2001; Torres and Styles, 2007). 

Potential controls that influence salt marsh and tidal creek processes 

include those intrinsic to the marsh (e.g. topography, tidal prism, vegetation 

height), and others which are externally-driven (e.g. suspended sediment 



concentration, wave height, tidal amplitude and current velocity). The resulting 

deposition of sedimentary material on mudflats, creek banks and the marsh 

surface is therefore a complex function of variables controlling sediment 

availability and the opportunity for deposition (van Proosdij et al., 2006a). 

Vegetation has been shown to reduce velocity and turbulence of tidal flow 

moving through salt marsh canopies (Leonard and Croft, 2006; Leonard and 

Luther, 1995); however, it remains uncertain whether this action actually 

increases deposition or simply protects against erosion (Silva et al., 2009). The 

occurrence of salt marsh vegetation is generally limited to the zone between mid-

neap tide level and the high water level during spring tides, while non-vegetated 

mudflats and creek banks occupy the space below (Allen and Pye, 2002). Marsh 

vegetation communities adhere to sharp boundaries defined by tolerance to 

stressors, such as saline tidal waters (Bertness, 1991). 

As part of a provincial renewable energy initiative, the Minas Passage has 

been selected as a test site for tidal in-stream energy conversion (TISEC) 

devices, which commenced in 2009. Numerical modelling of regional 

hydrodynamics (e.g. (Karsten et al., 2008) demonstrates that a significant 

decrease in tidal energy will lead to reduced tidal amplitude in the Minas Basin, 

related to modification of the resonant period in the Bay of Fundy-Gulf of Maine 

system, in response to alteration of flow through the Minas Passage. The 

purpose of this project is to investigate natural variations in tidal characteristics 

(e.g. tidal prism, velocity, suspended and deposited sediment) and determine the 
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variability of controls on sedimentation processes in a tidal creek over the spring-

neap cycle. Recent initiatives driving tidal power development in the Bay of 

Fundy have raised questions about far-field environmental impacts. Simple 

numerical models of energy extraction from various channel networks show a 

general decrease in kinetic power density of tidal flows with increasing dissipation 

by turbines (Polagye and Malte, 2010; Sun et al., 2008; Bryden et al., 2004). 

According to Karsten etal. (2008), proposed tidal power installations in the Minas 

Passage will result in an overall lowering of tidal amplitude in the Minas Basin; a 

5% reduction in tidal amplitude has been associated with moderate levels (e.g. 

2.5 gigawatts) of energy extraction from the Minas Passage. Environmental 

effects of tidal power development in the Bay of Fundy have been previously 

considered (e.g. Yeo and Risk, 1979; Gordon 1994), but the magnitude of 

potential change still remains to be fully understood (Polagye et al., 2011) and 

may or may not occur within a range of natural variability. It is hypothesized that 

intertidal sedimentation rates in the Minas Basin will demonstrate a non-linear 

response to modification of the tidal energy regime, due to a naturally high 

suspended sediment concentration (Polagye et al., 2011; Polagye arid Malte, 

2010; Whitford, 2008), and based on previous work assessing estuarine 

response to anthropogenic alterations of hydrodynamics (e.g. van Proosdij et al., 

2009; Amos and Mosher, 1985; Turk et al., 1980). The present research will 

investigate the hypothesis that sedimentation rates in the tidal creek will 

decrease in response to a reduced frequency of over-marsh tides, associated 
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with an overall lowering of tidal amplitude. This may reduce deposition in tidal 

creeks, and by extension, salt marshes, due to a decreased sediment supply. 

Alternatively, a reduction in tidal amplitude may increase sediment deposition in 

intertidal zones, including increased sedimentation in tidal creeks. Either 

circumstance will impact the form and function of salt marshes, as changes to 

balanced sediment budgets will show the greatest impact in accretion rates on 

low marsh surfaces (Chmura et al., 2001). It is anticipated that tidal prism and 

depth of inundation on the marsh surface will play a key role in intertidal 

hydrodynamics, and resulting sediment mobility in the tidal creek. 

2.3 StudyArea 
The Bay of Fundy is a funnel-shaped, macrotidal embayment on Canada's 

east coast. It forms the north-eastern extension of the Gulf of Maine, and splits 

into two inner-bay systems: Chignecto Bay and the Minas Basin (Davidson-Amott 

et al., 2002; van Proosdij et al., 2000). The intertidal zone is extensive, and salt 

marshes and mudflats dominate a large portion of the coastal zone. The Bay is 

famous for its tidal range (up to 16 meters), and was the subject of tidal barrage 

research in the 1970s (Desplanque and Mossman, 2004; Charlier, 2003; Yeo 

and Risk, 1979). Relative sea level rise is largely responsible for the 

development of the modern tidal regime in the Bay of Fundy, particularly the 
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Figure 2.1: Study Area: Maritime Provinces (bottom right), the Minas Basin (large view, top), and Starrs Point marsh on the 
Comwallis River (2002air photo, bottom left). The study site is indicated by a star in each instance. The tidal power testing area 

in the Minas Passage is also indicated on the top layout (rectangle). 



water depth over George's Bank. Scott and Greenberg (1983) report a 1-2% 

increase in tidal amplitude for every 1 meter of rising sea level. The Bay's 1400 

km coastline is bound by sandstone and conglomerate cliffs which experience 

high rates of erosion, up to 1 m a"1 in some areas. Bed scours of fine sediment 

introduce laminated silts and clays to suspension (Desplanque and Mossman, 

2001; Amos 1987). High erosion rates correspond with typically high suspended 

sediment concentration (SSC) in the intertidal zone (van Proosdij et al., 2000). 

Salt marshes in the region are minerogenic, and are typically dominated by 

Spartina alterniflora and S. patens. 

The study site is a sheltered terminal creek at Starrs Point marsh, near the 

upper limit of the Minas Basin, at the mouth of the Comwallis River (Figure 2.1). 

A headwater location was selected for investigation of subtle variations in tidal 

parameters that occur in a low-energy segment of the tidal environment, where 

high rates of sediment deposition are anticipated as channel banks receive 

sediment for eventual distribution over the marsh surface. Accessibility also 

played a considerable role in site selection. Mean grain size and the diameter 

of the 50th percentile (d50) of deposited sediment samples collected from the tidal 

creek are 6.2 and 6.1 pm, respectively. Salinity is relatively constant (~30 

practical salinity units). The marsh surface is characterized by a mix of high 

marsh platforms (dominated by Spartina patens) and deeply incised creeks, with 

a dominance of Spartina alterniflora on the upper creek banks and in low marsh 

areas. 
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Elevations are reported relative to the Canadian Geographic Vertical 

Datum of 1928 (CGVD28), which is referenced from Mean Water Level (MWL) 

measurements made in 1928 at tide gauges across Canada. This is the most 

current standard for vertical datums in Canada. Bankfull elevations are variable 

from the east to west creek banks, ranging from -4.2 - 4.8 meters above datum, 

respectively. Creek banks are gently sloping and partially vegetated (Figure 2.2). 

Tidal flows navigate more than one kilometer of main channel before reaching 

the study location. A deep, incised ditch (~1 meter width, > 1 meter depth) 

continues for several hundred meters beyond the creek head and through an 

area of densely-vegetated low marsh, parallel to an agricultural dike (most recent 

construction in 1955). The ditch is a former burrow pit that has been 

incorporated into the drainage network, as is common on Fundy marshes 

(MacDonald etal., 2010; Bowron etal., 2009; van Proosdij etal., 2010). 

2.4 Methods 
Current velocity and suspended sediment concentration data were 

collected with two instrument arrays mounted at different elevations in the tidal 

creek. Each array includes an acoustic Doppler velocimeter (ADV) (Vector, 

Nortek) and co-located optical backscatter sensor (OBS) (OBS3+, Campbell-

Scientific) (Figure 2.3 and 2.4). Two measurement locations in the tidal creek 

where chosen to allow full characterization of creek flows, and to facilitate 

comparison between thalweg and above-bank locations. Instruments were 

positioned for measurement at 10 centimeters above the bed. Each 
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Figure 2.3: View looking down the tidal creek, from the creek head. The general instrument configuration in the creek is shown, 
along with elevations of thalweg (0.47 m) and bank (1.25 m) ADV/OBS arrays, in local datum (CGVD28). The location of 

sediment traps on the creek bank is also indicated. Note the person for vertical scale. Red arrows indicate flood tide direction. 



OBS sensor was individually calibrated in the field (Puleo etal., 2007; Hoitink and 

Hoekstra, 2005; Voulgaris and Meyers, 2004a). The thalweg array was placed 

above the creek thalweg (sampling volume at 0.47 m CGVD28), and sampled 

continuously at a rate of 16Hz. The bank array was located approximately 3 

meters away from the thalweg on the eastern creek bank, sampling at an 

elevation of 1.25 m (CGVD28). This array sampled continuously at a tower rate 

(4Hz) to allow data collection over extended periods, and limit disturbance of the 

creek bank associated with repeated access to the sampling location by 

personnel. The hard thalweg was used to access the lower array to download 

data daily and make available memory space for further data collection. 

Samples of deposited sediment were collected with surface-mounted 

sediment traps and pre-weighed filter papers (Whatman 5, 90 mm paper filters), 

based on the design by van Proosdij et al. (2006a, 2006b) (Figure 2.4). This trap 

design allows for resuspension of deposited materials within a tidal cycle and can 

be used to characterize net sediment deposition on non-vegetated creek banks 

arid tidal flats. Four traps were deployed within an approximately 2 m2 plot on 

the creek bank, with three filter papers in each trap, and were leveled using a 

spirit level. This study focuses on in-creek deposited sediment to enable full 

characterization of tides that remain confined to channels and do not flood the 

marsh surface. Traps were not deployed in rainy weather. Deposited samples 

were air dried for 24-48 hours before weighing to determine the total amount of 

sediment deposited on each paper, on each trap, and at each trap location over 

53 



Figure 2.4: Sediment traps are shown before (left) andfoitowing (right) inundation, in early August, 2009. Each tide was 
sampled using 4 traps, with three filters in each. Filter papers were recovered after individual tidal cycles. 



the course of the study. The traps were not rinsed prior to analysis since minimal 

salt accumulated over individual tidal cycles. Salinity was measured with a RBR 

XR-420 logger positioned at the mouth of the study creek, and remained 

relatively constant over the experimental period. Statistical analyses on 

deposited sediment samples were completed using a nested ANOVA and 

standard two-sample t-tests (SYSTAT 13). 

A detailed total station survey of the creek and surrounding marsh area 

was conducted in June 2009 with a Lecia TCR705 reflectorless total station. This 

was applied to create a high-resolution (0.25 meter) digital elevation model 

(DEM) of the creek and adjacent marsh surface. A profile located near the 

instrumentation arrays was interpolated to characterize the creek and develop 

cross-sectional areas at 10-centimeter increments. A regional, LiDAR-generated 

DEM (2 meter resolution) was applied for analysis and quantification of drainage 

basin geometry. Channel morphology can be quantified by the tidal asymmetry 

factor (y), which considers changes in surface area as a function of water level to 

determine if a given channel has stronger flood or ebb currents, given by: 

e Ah Ab 
Y = S —- — 

n Equation (1) 

where h and b represent average channel depth and embayment width, and A/i 

and Afc describe the amplitude of depth and width variation over a tidal cycle. 
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Flood or ebb dominance is demonstrated when y 2 or < 0, respectively 

(Friedrichs and Perry, 2001; Blanton etal., 2002). 

A portable weather station (Campbell-Scientific) was installed at the study 

site to record meteorological parameters, including wind speed and direction, 

rainfall, temperature and atmospheric pressure. Hourly averaged records were 

collected for the duration of the study period. 'Webtide' (Dupont et at., 2005) was 

used to develop a one-year record (15 minute intervals) of predicted tide 

elevations at Starr's Point. These were found to vary consistently by 0.5 - 1.0 

metres less, compared with observed water levels, possibly representative of 

hydraulic friction in the channel. A correction was applied to reduce modeled 

tidal elevations by the mean variation between observed and predicted tidal 

elevations (0.92 meters). 

Wave conditions during the sampling periods were investigated using raw 

pressure signals from the bank ADV, where consistently identified centimeter-

scale ripples on the water surface reflect field observations. Instantaneous 

horizontal flow components (x, y) from ADV records were rotated into down­

stream (u) and cross-stream (v) velocities following methods outlined by Roy et 

al. (1996) and Lane etal. (1998). 

Mean current velocity and subsequent derived parameters were estimated 

through time-averaging over each measurement burst (5 minutes). Resolved 

horizontal velocity was computed as Vu* + v2 . Instantaneous turbulent 
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components (u t ,v t ,w t )  were derived using the relationship u =  U +  u t  ,  and 

turbulence intensities (iu, iv, iw) were calculated as the root mean square of 

turbulent components. Turbulent kinetic energy (TKE) (J-rrf3) was calculated 

using: 

TKE =  ±p(u t
2  + v t

2  + w t
2 )  

Equation (2) 

where p is water density at 20°C (p = 1025 kgm"3) (Neumier and Amos, 2006; 

Voulgaris and Meyers, 2004a). Mean kinetic energy (KE) (J) in the tidal creek 

was estimated with: 

TTE = a ( V? pw2) 
Equation (3) 

where a is the channel cross-sectional area and u is upstream current velocity 

(Karsten et at., 2008). Friction velocity (u,) was computed using the Reynolds 

stress method (Soulsby, 1983; Kim and Friedrichs, 2000): 

u* = (-u twc)1/2 
v Equation (4) 

where ut and wt are instantaneous components of down-stream and vertical 

vetocity, respectively. Friction velocity can then be applied to calculate bed shear 

stress (t0) (N m"2): 

r0 = p um
2 

and bed shear velocity (ub - )  (m-s ) 

Equation (5) 

-1\. 
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Uh. = u*w2 

U b  i - z /h  
Equation (6) 

where z is the measurement elevation above the sea bed, and h is the total bcal 

water depth in the channel (Barnes et a!., 2009; Kim and Friedrichs, 2000; Biron 

etal., 2004; Voulgaris and Meyers, 2004a). 

2.5 Results 
A total of 17 tides were measured over 4 separate experiments during 

August and September of 2009 (Table 2.1). Time series of all data including 

mean water depth, current velocity, suspended sediment concentration, sediment 

deposition and environmental parameters are shown in Figure 2.5. Elevations of 

marsh topography and tidal amplitude are relative to CGVD28. The drainage 

basin of the studied creek has a total volume of approximately 9,800 m3 and a 

submerged area over 13,800 m2 at the mean bankfull level (4.5 m). Equation (1) 

describes the study creek as flood dominant, which is typical for macrotidal 

channels with relatively high equilibrium marsh (Friedrichs and Perry, 2001). 

However, tides that exceeded the bankfull level showed notable ebb-dominance 

during initial ebb phases and as water depth in the creek fell below bankfull. A 

broad range of maximum tidal amplitudes (2.7 to 5.7 m) were considered for this 

study. Tides were categorized by water depth, into two groups: over-marsh tides 

(amplitude > 4.5 m & tidal prism > 9800 m3) and channel-restricted tides 

(amplitude < 4.5 meters & tidal prism < 9800 m3) (Figure 2.2). This division was 

based primarily on the visual appearance of these data when plotted as stage 
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curves Figure 2.6 (Allen, 2000). Over-marsh tides are therefore defined as those 

which fully inundate the high marsh surface, while channel-restricted tides do not 

surpass the general bankfull level and remain confined to the creek network. 

A series of morphological stages controls flow as it enters the creek. The tidal 

bore at this location is slight, and initial flood velocities are low (0.5 - 3 cm s"1). 

Tidal flow moves into the creek gradually and is detained at the creek head, while 

filling continues until water depth reaches ~2.0 meters above datum. Above this 

elevation, tidal flow is allowed access to the incised ditch which extends into the 

high marsh beyond the creek head, and a slight increase in flow velocity (up to 5 

cm s"1) was found to occur at this stage. Above the bankfull level, over-marsh 

flows develop marked increases in velocity (5 - 12 cm s"1) (Figure 2.6). Wave 

development during the sampling period was minor, where storm and non-storm 

conditions failed to produce waves greater than a few centimeters in height. 

Minor increases in flow velocity are seen during final ebb stages, associated with 

gravity-driven drainage of the marsh surface. Velocity measurements 

demonstrate that over-marsh tides (> 4.5 m) typically generate higher current 

velocities and greater estimates of TKE. The highest mean flow velocities (10 -

12 cm s"1) occurred during the early ebb stages of two over-marsh tides, while 

the marsh surface was well submerged (Figure 2.6). These enhanced flows may 

be linked to wind alignment with the channel at high tide. Other tides of 

comparable depth showed notably lower flow velocity during this stage. 
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Tidal Conditions - Starr's Point 2009 Data Collected 

Date Elevation (CGVD28) (m) Over-marsh vs. 
Channel-restricted 

Bank array 

ADV/OBS1 

Thalweg array 

ADV/OBS2 
Traps 

Comments 
Date 

Predicted Observed 

Over-marsh vs. 
Channel-restricted 

Bank array 

ADV/OBS1 

Thalweg array 

ADV/OBS2 
Traps 

Comments 

04-Aug-09 3.3 3.6 Channel-Restricted • 

05-Aug-09 3.5 3.8 Channel-Restricted • • Thalweg array start (V2) 

06-Aug-09 3.8 3.9 Channel-Restricted • • • Bank array start (V1) 

07-Aug-09 4.1 4.1 Channel-Restricted • • • 

08-Aug-09 4.3 4.2 Channel-Restricted • • • 

09-Aug-09 4.4 4.2 Channel-Restricted • • • V2 error (late start) 

10-Aug-09 4.5 4.2 Channel-Restricted • • Rain: No traps. 

11-Aug-09 4.3 4.1 Channel-Restricted • • Rain: No traps. 

12-Aug-09 4.5 4.1 Channel-Restricted • • • 

20-Aug-09 5.1 5.3 Over-Marsh • • • 

21-Aug-09 5.2 5.5 Over-Marsh • • 

23-Aug-09 5.2 5.2 Over-Marsh • • Hurricane Bill 

24-Aug-09 5 5.3 Over-Marsh • • • 

25-Aug-09 4.7 4.9 Over-Marsh • • • 

26-Aug-09 4.3 4.4 Channel-Restricted • • • 

20-Sep-09 5.2 5.7 Over-Marsh • • • 

26-Sep-09 3.3 3.3 Channel-Restricted • • • 

27-Sep-09 2.7 2.7 Channel-Restricted • • • 

Table 2.1: Summary of tidal conditions and data collection at Starr's Point (2009). Predtted (Webtide, 
corrected) and observed (ADV records) high tide elevation is shown in meters (converted to CGVD28). 

Successful data collection is indicated by < 



Peak flood tide velocity (9-10 cm s"1) on over-marsh tides occurred 

between 3.5 and 4.1 meters, just below the bankfull level, while the channel was 

full and at its widest and before flow spread over the marsh surface. Flow 

velocity decreased markedly above the bankfull level, and slack tide velocities 

(2-5 cm s"1) persist until early ebb stages. Velocity typically increased as water 

depth fell below bankfull and flow became channelized, and reached typical peak 

ebb flows of 5 - 8 cm s"1. The remainder of over-marsh tidal cycles was 

consistently characterized by velocity decreasing to low values (0.5 - 1.5 cm s"1) 

and late ebb drainage, which was regularly measured at the thalweg position 

(Figure 2.6). 

Channel-restricted tides displayed a strong tendency towards flood 

dominant velocity at both measurement locations. Velocity consistently 

increased with depth during flood stages, typically reaching peak velocities of 5 -

7 cm s"1 just prior to high tide (Figure 2.6). The highest velocity associated with 

channel-restricted tides (9.1 cm s"1) occurred at the thalweg position on August 

26, associated with a peak water depth in the tidal creek of ~4.4 meters, which is 

near the bankfull level. Ebb stages of channel-restricted tides consistently 

generated the lowest velocities (0.1 - 2 cm s"1) measured at this site, which 

remained nearly constant except for gravity-driven acceleration during final ebb. 

These slowly flowing ebb stages showed very low values (< 1) of velocity 

(cm s"1), TKE (J m"3), and KE (J), compared with the preceding flood stages. 
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Figure 2.6: Stage-height relationships of current velocity in the tidal creek (5-
minute meanADV data). Over-marsh (black circles) and channel-restricted 
(red x's) tides are shown, as measured at both thalweg and bank positions: 

plot (a) show datas from the creek bank (1.25 m) while plot (b) shows thalweg 
data (0.47 m). Elevation of bankfull level and the thalweg are shown. All 

elevations are referenced in CGVD28. 
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As with velocity, higher estimates of TKE are associated with greater tidal 

prism, resulting in generally ebb-dominant TKE during over-marsh tides. 

Increase in TKE around the bankfull level with rising flood tide is consistently 

observed, although peak values of TKE (up to 1.5 jm"3) occurred during ebb 

stages of over-marsh tides, as flow is re-channelized and the marsh surface is 

emptied (Figure 2.7). Thalweg values of TKE are near-zero (0.01 - 0.1 j m'3) for 

the majority of ebb-stage flow during channel-restricted tides, compared with 

slightly greater flood values (0.1 - 0.8 j m"3). Kinetic energy (KE) in the tidal 

creek was slightly higher during flood stages of over-marsh tides, compared with 

similar stages of channel-restricted tides. Over-marsh ebb stages showed KE up 

to a magnitude greater than that noted during channel-restricted ebbs (Figure 

2.11). Peak values of KE (90 - 118 J) are associated with tides that peaked near 

the bankfull level (e.g. Aug 25 & 26); maximum values occurred prior to high tide 

in these cases, and was seen to reduce dramatically with the onset of ebb tide. 

Early ebb phases of some over-marsh tides (e.g. Aug 21 & 24) showed high KE 

with water depth above bankfull (4.8 - 5.1 m). Estimates of bed shear stress (r0) 

(Figure 2.8) were higher for over-marsh tides (up to 0.4 Nm"2), and achieved 

maximum with water depth near the bankfull level before and after slack tide, and 

during ebb drainage below bankfull. Channel-restricted tides show low bed 

shear stresses (< 0.1 N m"2) for the duration of tidal stages, although a marginal 

flood dominance can be identified, most notably during the August 26th tide, 

which peaked near the bankfull level (Figure 2.8). 
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Figure 2.7: Select stage curves of 5 minute mean turbulent kinetic energy (TKE) 
values from the thalweg measurement location in the tidal creek. 
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Figure 2.8: Estimates of bed shear stress from the thalweg ADVsampling 
location (0.47 m CGVD28). Channel-restricted tides are shown to have tower bed 

shear stress than over-marsh tides. Note the variation in Y-axis values. 
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Over-marsh tides were generally found to demonstrate similar incoming 

suspended sediment concentration (SSC) compared with channel-restricted tides 

(Figure 2.10). A broad range of concentration values were reported by OBS 

sensors (1 - 1000 mg-l~1) in the tidal creek under non-storm conditions. 

Maximum initial suspended concentrations (2000 - 3000 mgT1) were measured 

ahead of Hurricane Bill (Aug 23rd), in response to periods of rain that occurred 

prior to flood tide, increasing the potential for mobilization of exposed sediments 

on mudflats and creek banks. Regardless of varying maximum water depth, 

suspended concentration during flood phases of both channel-restricted and 

over-marsh tides is similar, showing a gradual reduction from moderate initial 

values (100 - 300 mg-r1) to a stabilized low concentration (~50 mg-1"1). Stable 

concentrations around this level were noted at both thalweg and bank sampling 

locations, and persisted through high water and ebb stages on channel-restricted 

tides. Final ebbs of all tides were characterized by increasing concentration (up 

to 700 mg*l"1); in many cases this is when peak per-tide concentrations occurred, 

associated with increased flow velocity via gravity-driven drainage. In addition, 

ebb phases of over-marsh tides brought about episodic, rapid increases to high 

concentration (600 - 1000 mg-r1) at only the thalweg location. Such increases 

occurred much earlier during ebbs than the final stages, and are linked to brief 

periods of flow acceleration with depth near the bankfull level. These rapid 

increases in concentration were not measured by the 

66 



c 
o 33 
£ 
C 
8 
C 
8 
•e e 
E 
•O a 0) 
•o 
a 
x> 
c 
a 
a. </> 3 (0 

200 T (a) 
- Bed Shear Stress 

150 • 
August 12 - thalweg 
Channel raitrictad 
Max: 4.1 meter* CGVD28 100 • 

August 21-thalweg 
Ovar-manh tida 
Max: 5.5 mater* CGVD28 

• 0.10 

0.08 

0.05 
N 

E 
z 

• 0.03 

0.00 £ 
co 

0.50 
la. 
«0 
* 
£ 

• 0.38 CO 
*o 

• 
0.25 <2 

• 0.13 

0.00 
-50 0 50 

Minutes, relative to high tide 

150 

Figure 2.9: Representative time-series of channel-restricted (August 12) and 
over-marsh (August21) tides. Note variability in Y-axis values. 

Aug-5 (CR: 3.6m) 300 «r 

250" 

200-

150 • 

100" 

100 120 -160 -140 -120 -100 -80 

1000 Aug-23 (OM: 5.1m) 

Aug-24 (OM: 4.9m) 

- • - Aug-25 (OM: 4.7m) 

Sep-20 (OM: 5.5m) 

900 • 

800 • 

700" 

600' 

500 • 

400" 

300 • 

200" 

100' 

-160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 

Minutes, relative to high tide 

Figure 2.10: Time-series of thalweg SSC for (a) a series of channel-restricted 
tides and (b) a series of o ver-marsh tides. Impacts on the August 23 flood tide 

are credited to the passage of Hurricane Bill. 



bank array. The maximum suspended sediment concentration measured during 

the study period occurred in close proximity to the passing of Hurricane Bill on 

August 23. At the thalweg, initial SSC was -3500 mg-r1, and reached 2000 mg-l" 

1 during late ebb stages. Along with these high flood and ebb values, the 

stabilized, high water concentration (-100 mg-r1) was twice that of tides with 

similar depth and under non-storm conditions (-50 mg-r1). Moderate storm 

conditions were measured at the study site associated with Bill, including an 

average wind speed of 15 m/s, and 40 millimeters of rain over a 5 hour period, 

ending just before high tide. 

The general relationship interpreted from samples of deposited sediment 

is that over-marsh tides introduce more material to the creek banks through 

deposition (Figure 2.11). However, a wide range of variability exists here. The 

lowest deposition (55.02 g-m~2) was measured on a channel-restricted tide (Sept 

26), and the highest (328.19 g-m'2) on another channel-restricted tide (August 

26). However, statistical analysis using nested ANOVA and standard two-sample 

t-test showed that the difference in deposition for over-marsh versus channel-

restricted tides was not statistically significant. However, the result is different 

with inclusion of the August 26th tide (which peaked near the bankfull level and 

partially flooded low-marsh areas) in the over-marsh category; the result of this 

analysis yields a statistically significant difference (p-value of 0.05, 95% 

confidence) between deposition resulting from over-marsh and channel-restricted 

groups. Variability across the sampling zone (between the 4 traps) was 
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maximized on over-marsh tides (e.g. with increasing kinetic energy), and 

variability was notably lower following channel-restricted tidal cycles. This 

suggests that with decreased tidal energy, net sediment deposition is more 

consistent over the sampling location, contrasting the large variability following 

over-marsh tides, which show increased energy (Figure 2.11). 

2.6 Discussion 
Intertidal sedimentation is a complex balance of variables controlling 

sediment availability and the opportunity for deposition (van Proosdij et al., 

2006a). Macrotidal embayments tend to have high equilibrium marsh and flood-

dominant channels, and generally transport more sediment landward through 

deep tidal creeks compared with smaller tidal ranges (Friedrichs and Perry, 

2001). At the studied location, deposition shows high variability linked to 

incoming SSC and topographic influences on local flow dynamics. This reflects 

the results of Torres and Styles (2007), which identifies topography as a first-

order control on in-channel currents. Due to the large tidal range in the Bay of 

Fundy, complete submergence of high marsh surfaces (e.g. beyond the limits of 

the drainage basin) can promote marginal ebb-dominance of currents in tidal 

creeks, due to rapid drainage and basin-scale influences. Equation (1) describes 

the study creek as flood dominant, although over-marsh tides showed marked 

phases of ebb-dominance following high water and with gravity-driven drainage 

of the marsh surface during mid-ebb stages. Blanton et al. (2002) point out that 

this equation was developed for lagoonal systems where there is no influence of 
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freshwater discharge on tidal currents. As this does not apply to the studied 

system, the results of Equation (1) were used only as a preliminary indicator of 

flood versus ebb dominance for channel-restricted flows. Atmospheric pressure 

measured at the study site remained relatively constant during sampling (1010 -

1025 millibars). Variations in atmospheric pressure are not thought to impact 

flow and sediment dynamics discussed here. 

With inundation of the marsh surface, a component of incoming 

suspended sediment that passes through the creek can be expected to deposit 

on the marsh (Reed, 1988). Deposition in tidal creeks cannot be extrapolated to 

deduce marsh sedimentation; however, the relative availability of sediment in the 

tidal creek can be viewed as a controlling factor for deposition on the marsh 

surface. In this way, sediment dynamics in the tidal creek can be applied to infer 

the relative depositional capacity of both channel-restricted and over-marsh tides. 

Over-marsh tides appear distinctly different compared with channel-

restricted tides on stage-curve plots, due to the utilization and drainage of 

storage space on the marsh surface that is associated with tides of sufficient 

depth (>4.5 meters). Peak flood and ebb currents at this site were found to 

develop shortly before or after slack tide, where high marsh flooded and drained 

in close proximity to high water; this reflects the results of other studies (e.g. 

Blanton et al., 2002; Friedrichs and Perry, 2001; Dronkers, 1986). Over-marsh 

tides generally show greater suspended sediment concentration and deposition 

in the tidal creek, demonstrating increased sediment availability compared with 
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tides that are restricted to channels. Currents associated with over-marsh tides 

were primarily ebb-dominant, due to topographic forcing through drainage of the 

marsh surface, influencing net deposition on creek banks. 

Tides which inundate the marsh surface have been found to generate 

faster and more turbulent ebb phases, in response to a greater tidal prism 

(Friedrichs and Perry, 2001; Allen, 2000; French and Stoddart, 1992). This is 

consistent with results presented here, where channel-restricted tides are 

distinctly flood-dominant and show ebb phases that are calm (< 2 cm s"1), 

compared with those of over-marsh tides (3-6 cm s"1). Enhanced ebb stage 

velocity of over-marsh tides is linked to drainage of the marsh surface; the 

magnitude of enhanced ebb currents is in turn linked to the maximum depth on 

the marsh. With submergence of the marsh surface beyond the limits of 

individual drainage basins, flow becomes unconfined and the potential for higher 

ebb-stage flow is increased. There is also the potential for basin-scale or wind 

influence on flow velocity, with sufficient depth (up to 1 meter) above the marsh 

surface (Davidson-Amott et a/., 2002). Over-marsh tides on Aug 21st and 24th 

showed increased flow velocity during early ebb stages, with water depths above 

the bankfull level (Figures 2.6 & 2.7). Wind conditions were moderate (~3 ms"1) 

near high tide on both days. Wind directions (50 - 60° relative to magnetic North) 

were well-aligned with the general direction of the flood tide. This pushed water 

to the back of the marsh at high tide, which resulted in more water being moved 
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back through the creek, and generated enhanced flow velocity with the onset of 

ebb tides. 

A unique flow situation was found to develop with tides that peaked close 

to the bankfull level (e.g. Aug 25th, 5 m; Aug 26th, 4.5 m). These tides showed 

the highest flood velocities (9-10 cms"1); had relatively high incoming 

suspended sediment concentration at the thalweg (> 200 mg I"1); and were 

associated with high deposition in the tidal creek (> 200 g-nrf3). While both tides 

had typical flood and slack tide velocities, the ebb phase of Aug 25th is unique. 

The early ebb acceleration noted on other over-marsh tides as water depth 

approached the bankfull level is absent, while the typical secondary increase in 

flow velocity just below bankfull is maintained. According to Boon (1975), such 

tidal discharge asymmetries develop as a consequence of drainage basin 

morphology and storage characteristics, in conjunction with prevailing tidal range 

and stage. This suggests that only partial submergence of the marsh surface (~ 

20 cm depth) results in a flow situation in the tidal creek that differs from deeper 

tides, most notably during early ebb phases. In contrast, Aug 26th was channel-

restricted and showed distinct flood-dominant velocity (up to 9 cm s"1), 50% faster 

than flood stages of other channel-restricted tides. However, with no drainage 

input from the marsh surface, the corresponding ebb flows were of low 

magnitude, and were comparable with other channel-restricted tides. 

The flow conditions on Aug 25th demonstrate the influence of marsh 

surface storage, and subsequent drainage, on flow magnitude deep in the tidal 
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creek. This also implies an approximate threshold for development of early ebb-

stage flow acceleration. Submergence of the marsh surface must be complete 

(e.g. beyond the limits of drainage basins) to generate consistently increasing 

velocity with decreasing depth during ebb stages. Variability in ebb stage flow 

magnitude may impact net deposition on creek banks, through differential 

resuspension or erosion of bank material associated with varying levels of bed 

shear stress (Figures 2.6 & 2.7). Given that incoming tidal conditions (e.g. 

concentration) for tidal cycles on Aug 25th and 26th were very similar, the absence 

of increased flow vebcity during ebb stages on the bwer tide may have 

encouraged the notably higher net deposition (328.19 gm3), compared with Aug 

25th (254.36 g m3). The distribution of bed shear stress (r0) seems to support 

this, where Aug 26th shows relatively bw r0 (0.002 - 0.9 N-m"2) and general 

flood-ebb symmetry. This compares with higher r0 (> 0.4 N-m'2) on over-marsh 

tides (e.g. Aug 25th), which show dominant ebb currents that are more capable of 

resuspension and transport of material back out of the creek (Figures 2.7 & 2.8). 

Alternatively, variation in deposition between Aug 25th and 26th could represent 

the component of incoming material that settled on the marsh surface on Aug 

25th, but was confined to the channel on the bankfull Aug 26th tide. 

Initial suspended sediment concentration in the tidal creek, under storm 

and non-storm conditions, represents sediment laden water moving up the 

channel with the onset of tidal cycles. Material may be brought from offshore or 

sourced from tidal flats and imported to the marsh system. Maximum initial 
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suspended concentrations (2000 - 3000 mgT1) were measured ahead of 

Hurricane Bill (Aug 23rd) at both sampling locations in the creek. Periods of rain 

occurred in the region prior to the rising tide, which impacted exposed sediments 

on mudflats and creek banks. The resulting high concentrations measured in the 

tidal creek demonstrate well the response to intense rainfall on exposed tidal flats 

and creek banks, as noted by others, where sediment mobilization is significantly 

increased (Schostak et at., 2000; Murphy and Voulgaris, 2006; Mwamba and 

Torres, 2002 Voulgaris and Meyers, 2004b). 

Suspended sediment dynamics during flood phases under non-storm 

conditions consistently showed a gradual reduction from initial concentrations 

(100 - 300 mgT1) and achieved stabilized levels (20 - 50 mgT1) that persisted 

until high tide. This suggests continuous deposition during this portion of all tidal 

cycles (van Proosdij et al., 2006a; 2006b). Final ebb phases saw concentrations 

increase back to levels typically comparable with initial floods, in response to 

gravity-driven drainage and ebb stage transport of fine particles which maintained 

suspension throughout tidal cycles (Reed, 1988). Results from both thalweg and 

bank sampling locations reflect this pattern. However, over-marsh tides which 

exceeded the limits of drainage basins repeatedly generated early ebb-phase 

peaks to high concentrations (up to 1000 mgT1), at the thalweg location only. 

These peaks are timed with brief periods of increased velocity and TKE following 

high tide, with depth near or above the bankfull level, and are thought to 

represent remobilized material being transported at the thalweg. It should be 
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noted that this pattern is observed on all but one of the over-marsh tides 

measured (e.g. Aug 25th), which was the lowest tide of the over-marsh group. 

This agrees with the aforementioned depth threshold above the marsh surface 

for generation of early ebb velocity increases, which impacts suspended 

concentration in the creek. 

Scatter plots relating suspended concentration to tidal elevation and ebb-

stage velocity (Figure 2.12) show that increasing concentration in the tidal creek 

is associated with greater tide height and stronger ebb flows. Over-marsh tides 

are generally more energetic (Figure 2.11) and have more turbulent ebb phases 

(Figure 2.8). However, the maximum deposition was associated with a tidal cycle 

that peaked at the bankfull level and showed pronounced flood-dominance (Aug 

26th, Figure 2.6). Due to the distinct velocity asymmetry in favour of flood-

dominance, it would appear that the large amount of material deposited on Aug 

26th was not subject to any resuspension or erosion by enhanced ebb flows. 

This tide showed a capacity for a high sediment bad, similar to over-marsh tides, 

and encouraged high net sediment deposition with calm ebb stages that allowed 

deposition to persist over an extended period. Although it is not clear where the 

deposited materials originated from, high initial SSC values indicate that the 

majority of material was imported to the study portion of the creek during flood 

stages, rather than being sourced from the immediate surroundings, in the form 

of bank erosion, slumping or sediment-rich flow down creek banks. The range of 

deposition measured at this site is up to 4 times greater than estimates of marsh 
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surface deposition developed for other Bay of Fundy sites (e.g. van Proosdij et 

al., 2006a; Davidson-Arnott et al., 2002), which used a similar sediment trapping 

method and reported values up to 75 g-m"2. 

The 3-way inundation classification of tides cycles originally proposed by 

Bayliss-Smith (1979) included a group of tides termed 'marshfull', which peaked 

near or at the bankfull level and showed velocity peaks shortly before or after 

high tide. This division was later simplified into a two-way division to differentiate 

between tides that are confined to creeks and show little to no velocity 

asymmetry, and those that inundate the marsh surface and generate flow 

asymmetry (French and Stoddart, 1992). The results of this study suggest that 

tides which would represent the marshfull category may behave differently than 

either channel-restricted or over-marsh tides. Results from Reed (1988), which 

also describe macrotidal conditions, show peak net sediment flux associated with 

a bankfull tide; as waves break on the marsh edge, sediment is mobilized, but is 

not moved from the creek system to the marsh. The marsh edge contributes to 

suspended concentration in the creek in this way, and is most effective when 

slack tide depth is at the bankfull level. The significance of tides that peak at the 

marsh edge is reinforced by the lower limit threshold (depth -0.6 m above 

levees) proposed by Torres and Styles (2007) for development of flow reversals 

in tidal creeks. The current study suggests that tides which peak around the 

bankfull level show reduced early ebb stage turbulence and flow velocity, and 

encourage an extended depositional period. In essence, strong flood 
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dominance, maximum depth near the bankfull level, and the associated mobility 

of suspended material promotes sediment availability, while enhanced slack tide 

duration associated with calm ebb stages provides ample opportunity for particle 

settling. The result is maximum potential deposition in the tidal creek. While this 

explanation is limited in scope as it is based on only one tidal cycle, this response 

to bankfull tides may be of high importance in hypertidal regions like the Bay of 

Fundy, where the tide range is high and marshes have a relatively high 

equilibrium surface. 

At the studied location, a 5% reduction in tidal amplitude would reduce the 

number of over-marsh tides by a similar figure, and cause an increase in the 

occurrence of channel-restricted tides. The frequency of marshfull tides can 

potentially increase as well, in which case amplified erosion of marsh edges may 

create an additional sediment source. Decreased inundation frequency of high 

marsh surfaces may impose a sediment deficit in marsh systems, as less 

material is distributed to the marsh surface from tidal creeks. This can show 

impacts in marsh sedimentation and resulting elevation, channel equilibrium, 

vegetation community structure, and ecological productivity (Smith and 

Friedrichs, 2011; Craft etal., 2009; Bertness, 1991). 

Decreased ebb-flow magnitude is likely to be associated with decreased 

tidal amplitude, due to less water being put into storage on the marsh surface, as 

well as less frequent inundation events. Lower magnitude ebb flows may show 
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less capacity for sedimentary work, reducing sediment mobility during ebb 

phases. The result may be creek infilling and a reduction in bank steepness, 

which would most likely have continued impacts on creek hydrodynamics and 

sediment transport. Reduced bank steepness may further accelerate creek 

infilling, through reduction of in-channel currents, such as ebb-phase, gravity-

driven drainage of marsh surfaces, which mediate bank elevations through ebb-

stage resuspension of newly introduced materials (Reed, 1988). A continuation 

and exacerbation of this cycle would constitute a non-linear response of fine­

grained materials in tidal creeks, and would impact the movement of water in and 

out of the estuary through changes in deposition and erosion patterns, and the 

resulting basin geometry. Either a circumstance of decreased sediment supply 

to the marsh surface, or an increase in in-channel sedimentation, may impact the 

form and function of salt marshes. It has been shown that changes to balanced 

sediment budgets will show the greatest impact in accretion rates on low marsh 

surfaces (Chmura etal., 2001). 

2.7 Conclusions 

Variability of current velocity, kinetic energy and bed shear stress in the 

tidal creek during flood stages of all tides was limited below the bankfull level. 

This suggests that the measured variation in these parameters over the studied 

tides is primarily linked to local topographic forcing, rather than notable variations 

in incoming tidal energy. Deposition in the creek generally increased with depth, 

along with the strength of ebb stage currents, which impacts net deposition 

80 



through resuspension of newly introduced material. The results presented here 

demonstrate a wide range of variability in net sediment deposition, which can be 

understood through links to suspended sediment concentration and topographic 

influences on flow dynamics in the tidal creek. The relative availability of 

sediment in the creek can be viewed as a controlling factor for deposition on the 

marsh surface, which can be applied to infer the relative depositional capacity of 

both channel-restricted and over-marsh tides. Over-marsh tides utilize and drain 

large amounts of storage space on the marsh surface, and associated currents 

are primarily ebb-dominant, in spite of flood-dominant channel geometry. Failure 

to occupy the marsh surface storage volume, as in the case of channel-restricted 

tides, results in calm ebb stages and prolonged periods suitable for deposition. 

Our results show that tides which peak near the bankfull level show reduced 

early ebb stage turbulence and flow velocity, and encourage such an extended 

depositional period. When this situation is combined with a high incoming 

suspended concentration, high levels of deposition occur. 

The dynamics of marshfull tides (which peak at or near the bankfull level) 

in a hypertidal environment such as the Bay of Fundy may be responsible for the 

maximum sediment deposition in tidal creeks, providing large amounts of 

material that is eventually distributed to and deposited on marsh surfaces. High 

over-marsh tides (beyond limit of drainage basin) remove newly introduced 

material through bank erosion and resuspension during enhanced ebb flows, 

while channel-restricted tides typically import lesser amounts of material. The 
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resulting geomorphic workload is generally skewed towards marshfull tides for 

net sediment import, and over-marsh tides for distribution of materials sourced 

from creek banks onto the marsh surface. Further work to investigate the 

sedimentary response to changing energy in salt marshes should consider 

variation in Hocculation processes, and expand to include exposed marsh 

margins, where the potential for dissipation of tidal energy is high. 
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3.1 Abstract 

Removal of tidal energy in response to commercial-scale tidal power 
development in the Minas Passage has generated concern for a non-linear 
response of fine sediments in far-field environments. Disaggregated inorganic 
grain size (DIGS) spectra were obtained using a Coulter Multisizer III to describe 
samples of deposited and suspended sediment collected in a hypertidal salt 
marsh creek, in order to investigate the effects of changing tidal amplitude and 
energy on the flocculated nature of sediments. Parameterization of DIGS spectra 
using a non-liner, least-squares fit model suggest that amidst changes in mean 
floe fraction (0.67 - 0.89) and floe limit (12 - 26 urn), the fluctuation in net 
deposition measured over the study period (55 - 328 g-m"2) is not directly related 
to changes in the flocculated nature of suspended materials. Both concentration 
and the degree of flocculation of suspended materials are consistently high in 
sheltered hypertidal creeks. Net deposition is predominantly controlled by 
topographically-influenced flow dynamics and resuspension of newly introduced 
material on creek banks. This suggests that changing tidal amplitude does not 
have a marked effect on the flocculated nature of suspended sediments in 
confined and sheltered tidal creeks. 

3.2 Introduction 
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Tidal salt marshes have gained recognition as valuable coastal areas that 

deliver important ecological and storm-protection services (Craft et a/., 2009; 

Boorman, 1999). The capacity of salt marshes to function as critical habitat and 

sites of coastal defense in an era of rising sea level is dependent on continued 

import and retention of sedimentary material (Donnelly and Bertness, 2001; Reed 

et al, 1999). The hypertidal (tide range > 6 metres) nature of the Bay of Fundy 

has encouraged modem initiatives to develop commercial-scale tidal power 

production facilities in the region, beginning with device testing in 2009. These 

activities have raised questions about far-field environmental impacts associated 

with energy extraction, including the fate of fine estuarine sediments (OEER, 

2008b; DFO, 2009; Sanders and Baddour, 2008). While the environmental 

effects of tidal power development in the Bay of Fundy have been 

considered in the past (e.g. Yeo and Risk, 1979; Gordon 1994), the magnitude of 

potential change still remains to be fully understood (Polagye et al., 2011). Due 

to their dependence on sediment import and retention, salt marsh environments 

are potentially sensitive to alterations in natural tidal energy circulation and the 

associated sediment transport patterns. 

Fine sediment less than 63 |jm in diameter (e.g. silts and clays) is known 

as mud. Mud commonly occurs in estuaries, where forces generated by waves 

and currents are relatively weak at the bed (Whitehouse et al., 2000; Williams et 

al., 2006; Kranck and Milligan 1992). Particles in this size range tend to 

flocculate, which increases the settling velocity of suspended particles and leads 
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to increased water column clearance when ftow conditions are calm (Kranck and 

Milligan, 1992). Flocculation strongly influences depositional processes by 

enhancing the flux of muds to the bed (Kranck and Milligan, 1991; Law etal, in 

press). Transport and deposition of mud is therefore complex and widely varied, 

and is linked to suspended sediment concentration, turbulence, and biological 

processes that influence particle cohesion (Milligan and Hill 1998; Manning et a!., 

2006; van Der Lee, 2000; Kranck, 1981; Winterwerp and van Kesteren, 2004; 

Dyer and Manning, 1999; Eisma, 1986). Predicting the fate of muds in coastal 

and estuarine environments is complicated by the effects of flocculation, which 

vary over time (Milligan and Law, 2005; Hill et a!., 2000; Smith and Friedrichs, 

2011). Sediment transport models designed to assess environmental impacts in 

the coastal zone must account for these time-variant effects (Milligan and Hill, 

1998; Smith and Friedrichs, 2011; Winterwerp, 2002). Currently, knowledge 

regarding the distribution and dynamics of sediments in shallow, muddy, and 

vegetated environments such as the Bay of Fundy is limited (e.g. Whitford, 2008; 

DFO, 2009; Sanders and Baddour, 2008), although studies have shown marked 

decadal-scale changes in sedimentation patterns in response to anthropogenic 

alterations of regional hydrodynamics (e.g. van Proosdij et al., 2009; van Proosdij 

et al., 2006a; Amos and Mosher, 1985; Turk et al., 1980). 

Tidal creeks are crucial components of minerogenic salt marsh systems, 

acting as conduits for import and export of sediment required to maintain a 

positive balance and adjust to changes in sea level (van Proosdij et al. 2006b; 
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Voulgaris and Meyers 2004). Suspended sediment concentration (SSC), 

deposition rates and inorganic grain size have been found to decrease with 

distance from tidal creeks, implying that creeks are the main source of 

sedimentary material for adjacent marsh surfaces (Friedrichs and Perry, 2001; 

Christiansen et a!., 2000). However, the percentage of total input via marsh 

margins is greater with increasing high water level (Temmerman et al, 2005; 

Davidson-Arnott et al, 2002). Tides that inundate the marsh surface show 

different velocity patterns compared with those that remain restricted to channels 

(Torres and Styles, 2007; Lawrence et al., 2004; French and Stoddart, 1992). 

The marsh platform acts as a topographic threshold and separates two relatively 

different flow regimes (French and Stoddart, 1992; Allen 2000; Friedrichs and 

Perry, 2001). Flow magnitude in tidal creeks is defined by the amplitude of 

individual tidal cycles, as the resulting flow velocity corresponds with the volume 

of water being moved through a system. When intertidal areas (e.g. high marsh) 

flood and drain in close proximity to high water, peak flood and ebb currents 

develop shortly before or after slack tide, at high water (Blanton et at., 2002; 

Dronkers, 1986). Marshes with an equilibrium surface that is relatively flat and 

high in the tidal frame promote a rapid transition from zero surface submergence 

to complete surface submergence with increasing tidal height, evidenced by 

sudden changes in velocity patterns with submergence of marsh topography 

(Friedrichs and Perry, 2001; Torres and Styles, 2007). 

Energy extraction from tidal flows is understood to alter hydrodynamics in 

the near-field environment (e.g. within close proximity to turbines) (Polagye and 
93 



Malte, 2010; Sun et al, 2008; Bryden, 2004). However, the response of far-field 

environments (e.g. upper intertidal zones) to changes in tidal energy and the 

magnitude of potential alterations to estuary-scale dynamics remains relatively 

unknown (Polagye et a!., 2011; Sanders and Baddour, 2008). Numerical models 

have shown that a 5% reduction in tidal amplitude in the Minas Basin may occur 

in response to 2.5 gigawatts (GW) of energy extraction from the Minas Passage 

(Karsten et al., 2008). Changes in estuarine sedimentation patterns can be 

expected in response, due to a high sensitivity of intertidal zones to sediment 

supply and inherent links to hydrodynamics (Ralston and Stacey, 2007; Boorman, 

2003). A non-linear response of sedimentation rates in the Upper Bay of Fundy 

may occur in response to modification of the tidal energy regime, due to a 

naturally high concentration of fine sediments (Polagye eta!., 2011; Polagye and 

Malte, 2010; Whitford, 2008). A cautious approach to tidal power development in 

the area is supported by previous studies of coastal engineering projects in Bay 

of Fundy estuaries (e.g. van Proosdij et al., 2009; Amos and Mosher, 1985; Turk 

et a!., 1980), which have demonstrated rapid, decadal-scale changes to intertidal 

sedimentation patterns in response to anthropogenic manipulation of natural 

hydrodynamics. A reduction of tidal amplitude in the inner Bay of Fundy will 

reduce the overall inundation time of salt marsh surfaces, which may result in a 

reduction in sedimentary input over time (Friedrichs and Perry, 2001; O'Laughlin 

and van Proosdij, in review). 
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The purpose of this research is to investigate natural variations in grain 

size characteristics of suspended and deposited sediment during over-marsh and 

channel-restricted tidal cycles in a hypertidal salt marsh creek. As shown in the 

previous chapter, channel-restricted and over-marsh tides show variations in 

current velocity and kinetic energy, associated with changing tidal amplitude 

(O'Laughlin and van Proosdij, in review; French and Stoddart, 1992). Grain-size 

variations in samples of suspended and deposited sediment may be related to 

changing floe dynamics over the tide range, which can potentially impact net 

deposition through differential flow and turbulent conditions (Curran et al, 2004; 

Dyer and Manning, 1999; Kranck and Milligan, 1992). "This research considers 

the hypothesis that increased deposition associated with over-marsh tides is 

related to a higher floe fraction (the fraction of the total suspended mass held in 

floes) (Law et a/, in press). A limited number of studies have investigated 

variability in the flocculated nature of salt marsh or tidal creek sediments for 

characterization of controls on deposition patterns (e.g. Voulgaris and Meyers, 

2004; Christiansen et a!., 2000). It is possible that linkages between 

hydrodynamics and sedimentary characteristics will demonstrate a strong 

influence of tidal prism on net sediment deposition in the relatively low-turbulence 

environment of a terminal salt marsh creek. 

3.3 Study Area 

The Bay of Fundy is a funnel-shaped embayment on the east coast of 

Canada which forms the north-eastern extension of the Gulf of Maine (Figure 
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3.1). The upper bay is divided into two inner-bay systems: Chignecto Bay and 

the Minas Basin (Davidson-Amott et al, 2002; van Proosdij et al, 2000). The 

modern 1,400 km coastline is bound by sandstone and conglomerate cliffs which 

demonstrate high rates of erosion (up to 1 m a"1 in some areas) (Desplanque and 

Mossman, 2001). Bed scours in the Minas Basin introduce laminated silts and 

clays to suspension, increasing the supply of fine sediments (Amos, 1987). This 

abundance of material corresponds with typically high suspended sediment 

concentrations (SSC) in intertidal zones (van Proosdij, 2001). The Bay of Fundy 

system is semidiurnal and hypertidal, with a maximum tide range of up to 16 

metres in the Minas Basin. Numerous salt marsh-mudflat complexes dominate 

the extensive intertidal zone. Marshes are predominantly mature and 

minerogenic, are dominated by Spartina altemiflora and S. patens, and endure 

extended periods of ice and snow each winter. 

Data for this research were collected during the summer of 2009, in a well-

sheltered terminal creek at Starr's Point marsh, near the upper limit of the Minas 

Basin, at the mouth of the Cornwallis River (Figures 3.1 & 3.2). A headwater 

location was selected for investigation of subtle variations in tidal parameters in a 

low-energy segment of the tidal environment, where processes are relatively 

straightforward and high rates of sediment deposition are anticipated. The marsh 

surface is characterized by a mix of high marsh platforms (dominated by Spartina 

patens) and deeply incised creeks, with a dominance of Spartina altemiflora in 

low marsh areas, such as the upper creek banks. Elevations are reported 
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Figure 3.1: Maps of Maritime Provinces and the Minas Basin, and an aeriai photo (2002) showing Starrs Point marsh. The 
study site is indicated in each instance with a red star in each instance. 



relative to the Canadian Geographic Vertical Datum of 1928 (CGVD28), which is 

referenced from mean water level (MWL) measurements made in 1928 at tide 

gauges across Canada. This is the most current standard for vertical datums in 

Canada. Creek depth at the study site is 4 - 5 metres, where the banks are gently 

sloping and partially vegetated. Bankfull elevations vary from the east to west 

creek banks, ranging from 4.2 - 4.8 metres CGVD28. The drainage basin of the 

studied creek section has a total volume of approximately 9,800 m3 and a 

submerged area of over 13,800 m2 at the mean bankfull level (4.5 m CGVD28). 

Median grain size at the site is 6.7 |im, and salinity of tidal waters is relatively 

constant (~30). Tidal flows navigate more than one kilometer of main channel 

before reaching the study site. A deep, incised ditch (~1 metre width, > 1 metre 

depth) continues for several hundred metres beyond the creek head and through 

an area of densely-vegetated low marsh, parallel to an agricultural dike (most 

recent construction in 1955). The ditch is a former borrow pit that has been 

incorporated into the marsh drainage network, as is common on Fundy marshes 

(MacDonald etal, 2010; Bowron eta!., 2009; van Proosdij etal, 2010). 

3.4 Methods 

Near-bed current velocity and suspended sediment concentration were 

measured over 15 tides with acoustic and optical sensors at two elevations in the 

tidal creek: above the thalweg (0.5 meters CGVD28), and above the eastern 

creek bank (1.2 meters CGVD28) (Figure 3.2). Acoustic Doppler velocimeters 

(ADV) (Vector, Nortek) and co-located optical backscatter sensors (OBS) 
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Figure 3.2: Instrument configuration in the tidai creek, including ADV/OBS arrays (2), thaiweg-mounted ADCP, surface-mounted 
sediment traps, and RBR logger. Black arrows show fbod tide direction. Photo by C. O'Laughlin, July2009. 



(OBS3+, Campbell-Scientific) were deployed at each location. All sensors were 

positioned for measurement at 10 centimeters above the bed. Each OBS unit 

was individually calibrated in the field (Puleo et al, 2007; Hoitink and Hoekstra, 

2005; Voulgaris and Meyers, 2004). The thalweg array sampled continuously at 

16 Hz and was accessed daily. The bank array sampled continuously at 4 Hz, to 

allow data collection over extended periods and limit disturbance of the creek 

bank. An upward-looking, thalweg-mounted acoustic Doppler current profiler 

(ADCP) (Aquadopp HR, Nortek) was deployed in high-resolution mode at the 

base of the channel. This instrument profiled up to a maximum height of 2.97 

metres above the bed, in 3-centimeter bins. The pulse distance was set to 

approximately match the mawmum profile height (3 metres), to reduce the 

occurrence of double pinging and signal contamination. The hard thalweg was 

used to access the lower ADV array and ADCP daily in order to minimize 

disturbance to natural surfaces, for data downloading required to make available 

memory space for further collection. Salinity and temperature in the creek was 

measured with an RBR XR-420 logger, located above the thalweg at the mouth of 

the study creek (Figure 3.2). 

Samples of deposited sediment were collected with surface-mounted 

sediment traps and pre-weighed filter papers (Whatman 5, 90 mm paper filters), 

based on the design by van Proosdij et al (2006) (Figure 3.3). This trap design 

allows for resuspension of deposited materials, and can be used to characterize 

net sediment deposition on non-vegetated creek banks and tidal flats. Four traps 



were deployed to the sampling surface, 5 cm above the bed, spread evenly over 

an approximately 2 m2 plot on the creek bank. Three filter papers were placed in 

each trap, which were leveled with a spirit level once placed on the bank. 

Sediment-laden filters were collected after single tidal cycles. Filters were air 

dried for ~48 hours before weighing, to determine the total amount of material on 

each filter. Samples were not rinsed prior to analysis, as no salt crystals were 

observed, and the amount of salt accumulated over individual tidal cycles was 

minimal relative to the amount of sediment. One sample from each trap was 

heated in a muffle furnace and processed for organic content, and another used 

in grain size analyses (discussed below). 

In-situ water samples were drawn from the thalweg using an automated 

water sampler (Teldyne ISCO) (Figure 3.3). The intake nozzle (15 cm length) 

was mounted with the lowest sampling point at 10 cm above the bed. 200-

millilitre samples were collected every 30 minutes during tidal cycles. A portable 

weather station (Campbell-Scientific) was installed at the study site to record 

meteorological parameters, including wind speed and direction, rainfall, 

temperature and atmospheric pressure. Hourly averaged records were collected 

for the duration of the study period. "Webtide" (Dupont et al, 2005) was used to 

develop a one-year record (15 minute intervals) of predicted tide elevations at 

Starr's Point. These were found be consistently less (by 0.5 - 1.0 metres) 

compared with observed water levels, possibly due to hydraulic friction, and were 

corrected to reduce modeled tidal elevations by the mean variation from actual 



Figure 3.3: ISCO automated water sampler, mounted above the marsh surface. 
The intake nozzle was placed near the thalweg. Inset: Sediment traps prior to 

inundation. Photos by C.O'Laughlin. 
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water levels (0.92 m). A regional, LiDAR-generated digital elevation model (2-

metre resolution) was applied for analysis and quantification of drainage basin 

geometry. 

Acoustic data recorded by the ADCP were filtered, viewed and interpreted 

using the standard settings in Storm (ver. 1.08, Nortek). Flow velocity and 

average signal strength were considered for each deployment. Wave conditions 

during the sampling periods were investigated using raw pressure signals from 

the bank ADV, where consistently identified cm-scale ripples on the water surface 

reflect field observations. Mean current velocity and subsequent parameters 

derived from ADV records were estimated through time-averaging over 5-minute 

measurement bursts. Instantaneous horizontal flow components (x, y) were 

rotated into down-stream (u) and cross-stream (v) velocities following methods 

outlined in Roy et al (1996) and Lane et al (1998), and velocity was calculated 

as Vu2 + v2 . Instantaneous turbulent components (ut,vt,wt) were derived 

using the relationship u = U + ut , and turbulence intensities (iu, iv, iw) were 

calculated as the root mean square of turbulent components. Turbulent kinetic 

energy (TKE) (J m"2) was calculated using: 

TKE =  \  p (Ut
2 +  V t

2  +  W t
2 )  Equation (1) 

where p is salt water density at 20°C (p = 1025 kg m"3) (Neumier and Amos, 

2006; Voulgaris and Meyers, 2004). Mean kinetic energy (KE) (J) in the tidal 

creek was estimated with: 
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TtE = a ( V2 P u2 ). Equation (2) 

where a is channel cross-sectional area and u is upstream current velocity 

(Karsten et al, 2008). Friction velocity (u) was computed using the Reynolds 

stress method (Soulsby, 1983; Kim and Friedrichs, 2000): 

U,  =  (~U t W t ) 1 / 2 ,  Equation (3) 

where ut and wt are instantaneous components of down-stream and vertical 

velocity, respectively. Friction velocity can then be applied to calculate bed shear 

stress (TO) (N-rrf2) 

To — p U,2 Equation (4) 

and bed shear velocity (ub>) (m s"1): 

_ U«(z)2 
Uh * = ~*K~' , Equatton (5) 

0  l -z /h '  

where z is the measurement elevation above the sea bed, and h is the total local 

water depth in the channel (Barnes et at., 2009; Kim and Friedrichs, 2000; Biron 

et a!., 2004; Voulgaris and Meyers, 2004). The inertial dissipation (I.D.) method 

was also applied to develop the TKE dissipation rate (e) (rn '̂s"3) from the vertical 

component of the current: 

, ,3  
iil. Equation (6) 9 
K'Z 
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where K is the von Karman constant (0.41) and z is the measurement elevation 

above the bed (Voulgaiis and Meyers, 2004). Dissipation rate estimates (£) were 

applied to calculate the Kolmogorov microscale (n) (fjm-10"3): 

and dissipation parameter (G) (s"1): 

G = W '  w  

where v is the kinematic viscosity of water at 20°C (1.004 x 10"6 kg-m"1-s"1) 

(Milligan and Hill, 1998). The Kolmogorov microscale indicates the scale of 

turbulent eddies that may affect particle collision rates and therefore, floe 

formation. The dissipation (or shear rate) parameter (G) is a proxy measure of 

forces that at low values promote floe formation, and at high values break-up 

flocculated particles (Voulgaris and Meyers, 2004; Milligan and Hill, 1998; Dyer 

and Manning, 1999). 

Disaggregated inorganic grain size (DIGS) analysis was performed on 

samples of suspended and deposited sediment, using a Beckman-Coulter 

Multisizer III electroresistance particle counter, following methods described by 

Milligan and Kranck (1991), Kranck et al (1996a, 1996b), Curran et al (2004), 

and Milligan and Law (2005). Small subsamples (0.1 - 0.5 g) for DIGS analysis 

were extracted from field samples of deposited sediment. Material was generally 

Equation (7) 

105 



abundant on filters, and subsamples were easily removed from filter papers after 

drying. Subsamples were treated with hydrogen peroxide (30%) to remove 

organic materials, added to ~10 ml of deionized, reverse osmosis water, and 

placed in a sonic bath for 10 minutes to disaggregate particles. For processing 

samples of suspended sediment, known volumes of sample laden-water were 

filtered onto Millipore 8.0 mm SCWP (cellulose acetate) pre-weighed filters using 

standard gravimetric methods. Millipore filters were selected based on previous 

studies that recommend these filters due to high retention of particles less than 

their nominal pore sizes (Sheldon, 1972; Sheldon and Sutcliffe, 1969). Filters 

were oxidized at <60° C in a low temperature oxygen/plasma asher, to prevent 

the fusing together of mineral grains while removing the filter. Once subsamples 

were isolated, they were diluted in a 1% NaCI solution and re-sonicated for 2 

minutes using a sapphire-tipped ultrasonic probe, before processing with the 

Coulter Multisizer III. Both 30 and 200 pm aperture tubes were used in these 

analyses, the size distributions measured of which were merged to create 

continuous grain size spectra. DIGS distributions were parameterized using a 

non-linear, least-squares fit 'inverse floe model', through a semi-automated 

MATLAB routine developed by Curran et al, (2004) and based on work by 

Kranck and Milligan (1991) and Kranck et al. (1996a, 1996b). The model applies 

a non-linear fit of observed bottom sediment DIGS distributions to the modeled 

equation, and can be used for separation of floe and single-grain settled 

components. Additional grain size statistics were completed with G RAD I STAT 

(Blott, 2010). 
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Changes in the flocculated nature of sediment can indicate fluctuation in 

depositional conditions, representing the dynamic influence of fbcculation on 

estuarine sediment transport. Source slope (m) indicates the relative amounts of 

fine versus coarse particles, is a property of the parent material, and is generally 

similar among different samples from with a common source (Kranck et al, 

1996a). Roll-off diameter (dA) describes the diameter (in pm) of particles whose 

concentration has fallen to 1/e of its initial value, and can be thought of as the 

largest grain held in floes. Floe limit (df) describes the grain size at which the flux 

of mass to the seabed via floe or single-grain deposition is equal (Curran et a!., 

2004). The flocculated component of a bottom deposit is represented by floe 

fraction (f), or the proportion of suspended mass held in floes at the time of 

deposition (Curran et a!., 2004). Examples of merged and parameterized data 

are shown with model results in Figure 3.4. Deposited sediment DIGS 

distributions are expressed as the log of equivalent weight percent versus log of 

particle diameters, normalized over the size range (Kranck et ali, 1996a, 1996b; 

Milligan and Kranck 1991). Suspended samples are expressed using log of 

concentration in parts per million (PPM) (Law eta!., 2008). 

Work by Johnson and Semple (1983) and Woolfe and Michibayashi (1995) 

demonstrated that entropy analysis of bottom sediment size distributions 

generates groupings that can be correlated to depositional environment. Entropy 

analysis was applied to group deposited sediment DIGS into categories based on 

similarity. This method has recently been applied to classify in situ particle size 
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spectra of suspended and bottom sediments into groups based on similarities in 

distribution characteristics, reflecting variations in forcing conditions (e.g. 

turbulence) (Mikkelsen et a!., 2007). Bottom sediment textures have also been 

successfully interpreted using entropy analysis, for definition of ecological 

habitats on continental shelves (Orpin and Kostylev, 2006). 

Fluctuations in acoustic backscatter intensity (e.g. amplitude or signal 

strength) have been considered for investigation of sediment dynamics in both 

laboratory and field settings, for measurement of size and settling velocity of 

suspended particles (e.g. Voulgaris and Meyers, 2004; Thorne and Hanes, 2002; 

Fugate and Friedrichs, 2002). Kim and Voulgaris (2003) found calibration 

methods to be most accurate for fine sands, while silt and finer materials 

generated bias in acoustic measurements. High suspended sediment 

concentration is also understood to cause measurement inaccuracies due to 

significant signal attenuation in the water column (Thome et a!., 1991). In 

consequence, ADCP amplitude data presented in this study are not quantified, 

but have been investigated as a relative indicator of changing suspended 

sediment concentration in absence of calibration. Tidal-cycle scale time-series 

were developed at two elevations above the bed (170 and 50 cm), where rapid 

changes in signal strength were observed. Rates of change over the 30-minute 

period following high tide were calculated at both elevations to characterize 

changing suspended content through the water column, in effort to link dynamics 

with sediment deposition (e.g. Hill etal, in press). 
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Figure 3.4: Examples of DIGS distributions (merged data from 200and 30 pm aperture tubes), parameterized data and model 
results. Blue squares in parameterized data represent modelled single-grain settling, and red circles indicate ftoc-settled material; 

black stars show actual grain-size results; and the black line shows the modeled distribution. 



3.5 Results 

Data were collected during 15 individual tidal cycles over a range of 

spring and neap conditions, where maximum depth in the tidal creek varied 

between 2.3 and 5.2 metres. Time-series of current velocity and parameters 

derived from ADV data for five tidal cycles are shown, relative to high tide, in 

Figure 3.5. These results show that tides which inundate the marsh surface 

generate faster and more turbulent ebb phases in response to a greater tidal 

prism, compared with those that remain restricted to channels. Near-bed velocity 

and turbulence in the tidal creek tends to be greatest with water depth in the 

creek near the bankfull level, associated with flooding and drainage of high marsh 

surfaces in close proximity to high water, reflecting the results of other studies 

(e.g. Blanton eta!., 2002; Friedrichs and Perry, 2001; Dronkers, 1986). 

Variations in near-bed current velocity measured by thalweg- and bank-

mounted ADVs are also evident in ADCP measurements throughout the lower 

water column (0.15 - 2.97 m). Prominent flow accelerations (< 50 cm-s"1) are 

noted with water depth in the creek at and above the mean bankfull level (4.5 m), 

most notably during ebb stages of over-marsh tides. This, like near-bed 

accelerations noted in ADV records, is associated with flooding and drainage of 

the high marsh surface in close proximity to high tide. Flow velocity showed more 

variability during channel-restricted compared with over-marsh cycles, up to the 

profiling limit of the ADCP (2.97 m). ADCP profiles show isolated regions of 

acceleration (up to 15 cm-s"1) near the bed during channel-restricted 
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flood tides, and higher in the water column (2-3 meters above the bed) during 

corresponding ebbs. In contrast, over-marsh tides develop ebb-phase 

accelerations that penetrate through the water column to the bed. This is 

emphasized by ADV-derived estimates of bed shear stress, which achieves 

maximum during ebb phases of over-marsh tides. 

Velocity-derived Kolmogorov microscale (n), dissipation parameter (G) 

and bed shear stress (T0) values are shown in Figures 3.5 & 3.6. The 

Kolmogorov microscale (n) describes the maximum allowable size for potential 

floe formation, as estimated from turbulence levels. Results demonstrate that 

values of rj were routinely higher and showed more variability during channel-

restricted tidal cycles than during over-marsh tides. In general, peak values on 

channel-restricted cycles ranged from 4-10 x 103 pm, while that of over-marsh 

tides ranged from 3-6 x 103 pm. This suggests that the moderate turbulence level 

associated with typical channel-restricted tides allows for formation of floes up to 

50% larger than more turbulent over-marsh tides. Turbulence levels were 

especially low (0.01 - 0.1 J-nr3) for the duration of ebb phases of channel-

restricted tides, which resulted in peaks to very high rj (20-38 x 103 pm) at both 

thalweg and bank sampling locations, suggesting that floe formation would be 

most efficient during ebb phases of channel-restricted tidal cycles. These peaks 

to high values promoted the aforementioned variability (indicated by standard-

error bars in Figure 3.6) during channel-restricted cycles, contrasting relatively 

short periods of increased n during over-marsh cycles, with minimal variability. 
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Over-marsh tides demonstrate maximal r\ during high water, with 

submergence of the marsh surface, a stage which persists until ebb flow velocity 

increases (""40 minutes following high tide). Higher dissipation parameter (G) (2 -

15 s"1) and bed shear stresses (T0) (0.1 - 0.5 N m"2) during initial and final stages 

of over-marsh tides are associated with turbulent flows, and are potentially 

periods of erosion or resuspension. However, lower values of G and T0 (0.1 -2 s" 

1 and 0.001 - 0.05 N-m"2, respectively) over the duration of slack tide (30 to 45 

minutes) are associated with moderate potential for floe formation (n = "2.5 x 103 

lim). Overall, bed shear stresses peaked during flows that can be linked to 

flooding and drainage of low-marsh surfaces, independent of maximum tidal 

height (Figure 3.7). The general pattern of tidal energy over the study period 

follows this trend, and shows higher kinetic energy with submergence of highl­

and low-marsh surfaces (e.g. over-marsh tides). This is most notable during 

early ebb stages, associated with gravity-driven drainage of the marsh. Figure 

3.8 shows that increasing channel cross-sectional area correlates well with 

increasing kinetic energy of in-channel flows. 

A complete description of suspended sediment dynamics in the tidal creek 

as observed by OBS sensors is presented in O'Laughlin and van Proosdij (in 

review). Suspended sediment concentration generally demonstrated a 

continuously decreasing pattern throughout flood stages, at both bank and 

thalweg measurement locations, for both channel-restricted and over-marsh tidal 

cycles. Initial suspended sediment concentration at the thalweg ranged from 100 
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- 300 mg-r1, although the tide on Aug 23rd showed an incoming concentration 

>3000 mg-r1 in response to a rainfall event in the region. Ebb phases of over-

marsh tides frequently show episodic increases to high concentration (up to 1000 

mgf1) at the thalweg location, initiating 20-40 minutes following high tide (Figure 

3.9). Increases in SSC at 10 cm above the bed are thought to be associated with 

clearance of material from further up in the water column; however, these 

increases were limited to the thalweg sampling location and may represent the 

transport of material out of the creek through the thalweg. 

Variability in suspended concentration measured through DIGS analysis of 

suspended samples (Figure 3.10) agrees with that monitored by OBS sensors. 

Peak concentrations generally occurred during initial flood and final ebb stages. 

Notable increases in concentration following high tide were associated with over-

marsh tidal cycles. Suspended concentration regularly increased with flow 

accelerations at and above the bankfull level, as the marsh surface flooded and 

drained, resulting in alternating periods of resuspension and potential deposition 

occurring throughout over-marsh tides. Potential deposition is characterized by 

periods of decreasing suspended concentration, which are truncated by 

increases in concentration associated with velocity pulses and resuspension. 

Most prominent during over-marsh tides is rapid fluctuation in concentration that 

occurred in association with declining flow velocity during slack tide phases, 

evidenced by drastic reductions in concentration (Figure 3.10). In contrast, 

channel-restricted tides show a near-continuous decrease in suspended 
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concentration throughout tidal cycles, reducing from a maximal concentration 

measured during the first 1 or 2 samples (Figures 3.9 & 3.10). 

Under the assumption that suspended material was eroded from bottom 

deposits, suspended sediment DIGS were parameterized in a similar fashion to 

deposited samples. Initial flood-tide values of floe fraction (f), or the proportion of 

the total suspended mass held in floes, followed fluctuations in suspended 

concentration, gradually decreasing throughout tidal cycles, before increasing 

slightly during late ebb stages. An increase in floe fraction (f) was also 

occasionally observed during slack tide periods, potentially increasing the flux of 

material to the bed. This is supported both by increased suspended 

concentration at 10 cm above the bed during these periods, as monitored by the 

thalweg OBS sensor, and samples of suspended sediment. Daily mean values of 

f and source slope (m) were relatively constant throughout the study period, 

varying between 0.78 and 0.83, and 0.31 and 0.54, respectively (Table 3.1). This 

limited variability suggests that the flocculated nature of suspended sediments, 

and their source, does not change drastically over the study period. These 

values closely reflect the range of variability in floe fraction and source slope, 

measured in samples of deposited sediments. 

Similar to variability in current velocity, notable differences exist in the 

fluctuation of suspended sediment concentration in response to changing tidal 

amplitude and inundation time (Figure 3.10). Over-marsh tides show cyclic 

periods of increasing and decreasing concentration as current velocity is adjusted 
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11-Aug 0.80 0.45 
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26-Sep 0.83 0.46 

27-Sep 0.83 0.48 

Table 3.1 (above): Mean 
parameterized values of suspended 
sediments: Hoc fraction (f) and 
source slope (m). 

Figure 3.10 (left): Suspended 
sediment concentration from water 
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by topography during both flood and ebb stages. Flow accelerations linked to 

flood and ebb pulses represent periods of increased concentration, indicating 

potential resuspension of newly introduced materials. Channel-restricted tides 

show a contrastingly progressive decline in concentration following early flood 

tide stages, indicating that material is continuously removed from suspension. 

Tides that peak near the bankfull level show a pattern more similar to over-marsh 

tidal cycles, where flow accelerations linked to topographic forcing and drainage 

lead to increases in concentration that occur throughout tidal cycles. 

The amplitude of the return signal measured by the ADCP shows 

variability in response to changing amounts of suspended material present in the 

water column, and is reported by the instrument as a signal strength (represented 

by 'counts'). As mentioned, amplitude data discussed here remains un-

calibrated, and has been applied as an un-quantified, relative indicator of 

changing suspended sediment concentration. Examples of amplitude plots 

typical of over-marsh and channel-restricted tides are shown in Figure 3.11. 

Channel-restricted tides show a continuous and steady decrease in suspended 

content, evidenced by decreasing signal strength at a given depth. This pattern 

persists until mid-ebb, when signal strength increases in response to export of 

material that either remained in suspension for the duration of tidal cycles, or was 

re-mobilized by ebb flow (Figures 3.9 & 3.11). Over-marsh tides experience a 

similar gradual reduction in suspended matter following initial flood, prior to ebb-

stage increases that are related to resuspension or advectfon (Reed, 1988). 
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Figure 3.11. Plots ofADCP amplitude, or the strength of the return signal, are shown for two tidal 
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Clearance rates describing decreasing signal strength at 170 cm above the bed 

during the 30-minute period following high tide varied by up to one magnitude 

(0.02 - 0.2 counts/minute), and achieved maximum in response to channel-

restricted tidal cycles. However, at 50 cm above the bed, rates of change were 

higher during most over-marsh tidal cycles (""0.1 counts/minute) compared with 

that of channel-restricted cycles (~0.03 counts per minute). 

Deposited sediment was primarily composed of medium silt, with a mean 

grain size of 6.2 nm and median of 6.7 pm. Over-marsh tides generally deposited 

more material, although a wide range of variability exists: the lowest deposition 

(55.02 gm"2) was measured on a channel-restricted tide (Sept 26), and the 

highest (328.19 g m"2) on a tide that peaked near the bankfull level (August 26) 

(Figure 3.6). Statistical analysis using nested ANOVA and standard two-sample 

T-tests showed that the difference in deposition for over-marsh and channel-

restricted tidal cycles was not statistically significant; however, shifting the 

approximately bankfull tide on August 26th from the channel-restricted category to 

the over-marsh category produces a significant difference (0.05, 95%) in net 

deposition between the two groups. Parameterized DIGS of deposited sediment 

indicate that mean (per day) fbc fraction (f), or the proportion of the total 

suspended mass held in fbcs, ranged from 0.67 to 0.89, and was generally 

maximized on channel-restricted tides (Figure 3.6). Floe limit (df), which 

describes the grain size at which the flux of mass to the seabed via floe or single-

grain deposition is equal, folbwed a similar pattern over a range of 8 to 32 pm 
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(Table 3.2). Mean source slope (m) showed minor variation over the study 

(approximately 0.4 to 0.6), suggesting limited variability in source material. 

Entropy analysis was used to divide size distributions into groups such that 

similarity within each and dis-similarity between groups is maximized, to consider 

potential variations in forcing conditions. Entropy analysis was applied to 

deposited sediment DIGS, and determined a nominal separation into 4 unique 

groups (Figure 3.12 & Table 3.3). Groupings determined here show notable 

variation at the fine end of the curve, demonstrated by changing mean f across 

groups (0.7 to 0.82). Group 2 shows the highest mean tidal amplitude (4.73 m) 

and the highest mean f (0.82), coupled with relatively low net deposition (145 

g-m"2). Group 1 shows the lowest f (0.70) and highest net deposition (195 g*m"2), 

associated with tides that generally peak near the bankfull level (4.5 m). Group 1 

tides also demonstrated the greatest amount of suspended material in 

suspension at the thalweg location. 
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Date Elevation Deposition Organic content f m df 

m. CGVD28 -3 o m d  % um 
04-Aug-09 3.40 186.38 7.88 0.69 0.50 11.67 

05-Aug-09 3.60 164.12 7.34 0.73 0.45 15.00 

06-Aug-09 3.75 140.08 8.16 0.70 0.47 15.25 

07-Aug-09 3.91 159.26 7.62 0.81 0.57 21.00 

08-Aug-09 4.03 103.79 7.92 0.85 0.53 21.00 

09-Aug-09 4.04 98.65 9.09 0.82 0.46 18.75 

12-Aug-09 4.16 87.93 8.44 0.87 0.55 23.00 

20-Aug-09 5.14 169.01 7.72 0.79 0.48 15.75 

21-Aug-09 5.36 254.36 7.24 0.73 0.46 15.50 

24-Aug-09 5.14 241.37 8.31 0.74 0.41 15.00 

25-Aug-09 4.75 242.85 7.04 0.79 0.44 15.50 

26-Aug-09 4.23 328.19 8.55 0.67 0.44 12.50 

20-Sep-09 5.69 106.62 7.54 0.84 0.45 21.25 

26-Sep-09 3.07 55.02 8.11 0.89 0.55 26.00 

27-Sep-09 2.57 55.63 10.08 0.74 0.60 12.00 

Table 3.2: Daily-mean values of tidal elevation, sediment deposition, organic content, and 
results of deposited DIGS, including floe fraction (f), source slope (m), and floe limit (df). 

Potential Forcing Parameters 
1 

Entropy Groups 
2 3 4 

Tidal elevation (m, CGVD28) 4.47 4.73 4.39 4.24 

Suspended sediment concentration (mgT1) 127.3 105.8 96.6 87.3 

Velocity (em s'1) 1.89 2.11 1.65 1.64 

Turbulent kinetic energy (J-nrf3) 0.2 0.26 0.17 0.18 

Bed shear stress (N m 2) 0.021 0.035 0.024 0.024 

Kolmogorov microscale (Mm-103) 1.74 1.91 1.95 2.69 

Mean deposition (g-m~2) 195.12 145.67 164.63 103.12 

Organic content (%) 7.97 7.71 7.82 8.39 

Floe limit (Mm) 17.4 16.5 17.5 18.2 

Floe fraction (0 -1) 0.70 0.82 0.77 0.80 

Table 3.3: Mean values of various forcing condition variables measured at the thalweg 
location in the tidal creek, as grouped by entropy analysis. Maximum values for each 

parameter are indicated by bold text. 
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3.6 Discussion 

The studied location shows high variability in net deposition linked to 

topographic influences on flow dynamics in the tidal creek, reflecting the results 

of Torres and Styles (2007) and O'Laughlin and van Proosdij (in review), which 

identified topography as a first-order control on in-channel currents. Due to the 

large tidal range in the Bay of Fundy, complete submergence of high marsh 

surfaces (e.g. beyond the limits of the drainage basin) promotes ebb-dominance 

in tidal creeks, due to rapid drainage and the associated pressure gradient, the 

influence of wind over a large submerged area, and basin-scale influences. 

Over-marsh tides generally caused more sediment deposition, presumably due to 

longer inundation time, which can be up to 2 hours longer in the tidal creek than 

during channel-restricted cycles (Figure 3.6). Incoming suspended sediment 

concentrations were high, and generally comparable for over-marsh and channel-

restricted cycles (> 100 - 200 mgf1). All tides show a continuous decrease in 

suspended content from initial concentrations over the duration of tidal cycles, 

which is most notable and consistent with channel-restricted tides. This reflects 

results of other tidal creek and salt marsh studies (e.g. Voulgaris and Meyers, 

2004; Ralston and Stacey, 2007) as well as that of several Bay of Fundy studies, 

which indicate continuous deposition throughout tidal cycles (e.g. van Proosdij et 

al, 2000; Davidson-Arnott et a!., 2002; van Proosdij et a!., 2006a). While 

suspended concentration certainly plays a role in the amount of material available 

for deposition, the relatively constant measurements of incoming concentration 

127 



over the sampled tides are not a suitable indicator of net deposition. This directly 

contrasts results presented by other similar studies (e.g. Voulgaris and Meyers, 

2004). Given that incoming suspended sediment concentration is relatively 

constant at this site (standard deviation of ""40 mgT1), excluding tides where 

suspended sediment concentration was influenced by Hurricane Bill (e.g. Aug 23 

and 24), inundation time and surface reworking by energetic ebb flows are likely 

first-order controls on net deposition on creek banks (Reed, 1988; Torres and 

Styles, 2007). 

Near-bed variations in flow velocity measured by ADVs are echoed by 

ADCP measurements, which show increased variability (over the profiling range) 

in response to over-marsh tidal cycles, compared with those that are confined to 

channels. This follows results presented by Torres and Styles (2007) where 

increased depth on the marsh surface was found to encourage higher in-channel 

flow velocity. Flow accelerations associated with channel-restricted tides are 

limited to lower sections (< 2 m) of the water column during flood tides, and the 

upper section of the sampling region during ebb phases (2-3 m). Conversely, 

over-marsh tides show flow accelerations that penetrate from the bed to the top 

of the sampling region (~0.2 - 3 m), most notably during ebb phases, which is 

supported by estimates of bed shear stress from thalweg- and bank-mounted 

ADVs (Figure 3.6), and measured variability in suspended concentration of water 

samples (Figure 3.10). This describes a situation of increased sediment mobility 

and potential deposition associated with over-marsh tides, similar to that 
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described by Voulgaris and Meyers (2004) in response to increased particle 

settling velocities. 

Resuspension of newly deposited material by active ebb currents during 

over-marsh tidal cycles is supported by results from Reed (1988), Torres and 

Styles (2007) and Voulgaris and Meyers (2004). This is demonstrated here with 

samples of deposited and suspended sediment, which show evidence of 

resuspension and considerable variability in net deposition and resuspension 

effects over the ~2 m2 sampling plot. Varying retention of material deposited 

during individual tidal cycles is identifiable through corresponding standard error 

estimates of mean deposition values, which are consistently greater for over-

marsh tides (Figure 3.6). All traps theoretically should receive a similar amount 

of material during individual tidal cycles, assuming relatively uniform deposition 

over the ~2 m2 sampling plot. This indicates increased variability in net 

deposition across the sampling area in response to increased water depth, 

associated with more turbulent flows that develop with drainage of high marsh 

surfaces. 

A general threshold depth for total submergence of the marsh surface, as 

proposed by Temmerman et a!., (2005) for development of sheet flows above 

marsh vegetation and input of tidal water via marsh margins, and by Torres and 

Styles (2007) for development of flow reversals in creek flows, is supported by 

evidence of enhanced in-channel flows presented here. Tides that only partially 

submerge high marsh surfaces do not develop enhanced ebb flows, and thus 
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promote higher net deposition on creek banks (Figures 3.5 & 3.6). Spring tides 

measured early in the study did not inundate the marsh surface. 

ADV-derived estimates of Kolmogorov microscale (n) and turbulent 

dissipation (G) suggest that floe formation is most efficient during ebb phases of 

channel-restricted tides, contrasting results presented in Voulgaris and Meyers 

(2004). However, over-marsh tides do reflect the general pattern discussed in 

Voulgaris and Meyers (2004), where increases in n were limited to periods of 

slack water. An increased efficiency for flocculatbn during slack tide on over-

marsh tidal cycles can be associated with reduced near-bed current velocity 

measurements and bed shear stress estimates from ADV data, as well as 

clearance of the water column and reduced current velocity identified in ADCP 

records. Although it can be expected that values of net deposition will 

substantiate this with maximal deposition, this is not the case; over-marsh tides 

did supply generally more material for deposition, but the highest over-marsh tide 

resulted in deposition that is lower than most channel-restricted tides. This 

relationship supports the notion that energetic ebb-stage currents associated with 

increasing tidal amplitude reduce net-deposition through resuspension of newly 

deposited material. Also, while the efficiency for floe formation was increased 

during channel-restricted cycles, this did not appear to substantial increase the 

amount of material deposited to the surface, presumably due to a relatively 

shorter inundation period in the channel compared with over-marsh tides. 
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In general, parameterized results (e.g. floe fraction, source slope and floe 

limit) from DIGS of deposited sediment reflect similar data presented in 

Christiansen et a!. (2000) from a microtidal system with similar grain size; those 

results were determined using a similar particle sizing protocol (Coulter Multisizer 

lie). Data presented here show an increased efficiency for floe formation noted 

on channel-restricted tides, although this did not appear to impact the floe fraction 

of deposited sediment. Surprisingly, the observed variability in this parameter 

occurred seemingly independent of changes in maximum tidal amplitude (Table 

3.2). In terms of net deposition, tides which contributed less material to the 

surface showed higher floe fractions (Figure 3.6). Conversely, the highest net 

deposition measured was in response to a tide showing the lowest mean floe 

fraction (Figure 3.13). This relationship is contrary to what is demonstrated by 

Law et at. (in press), which describes increased deposition from more flocculated 

suspensions (analysis with Coulter Multisizer lie). Results of this study also 

contradict that of Voulgaris and Meyers (2004), who measured variations in floe 

density related to the spring-neap cycle with laser in-situ scattering and 

transmissometery instrumentation. Although data presented here are insufficient 

for a full investigation of this relationship, it would appear that variations in 

flocculated parameters noted at this site are also not related to either tidal 

amplitude or the spring-neap cycle. However, variables describing the 

flocculated nature of deposited material, including floe fraction (f) and floe limit 

(df), showed high variability within the sampling zone, which was not expected on 

such a limited spatial scale. This supports a situation of increasing variability in 
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deposition and resuspension processes with increased tidal energy, which is 

linked to tidal amplitude (Figure 3.8). 

It is possible that floe density, which is known to decrease with floe growth 

and increasing particle size, due to increased interstitial space and increased 

incorporation of water (Hill et al., in press; Curran et al., 2007), may be 

responsible for variation in the settling and deposition patterns of over-marsh and 

channel-restricted tides. Larger, lower-density floes that may develop with 

optimal formation conditions (e.g. high q and low G associated with channel-

restricted tides) would have lower settling velocities, potentially retaining more 

particles in suspension throughout tidal cycles. This, coupled with limitations in 

the duration of slack tide and total inundation time, would support reduced 

deposition during channel-restricted tides, following results presented in Curran 

etal. 2007), Van der Lee (2000) and Hill etal. (in press). 

It is notable that during over-marsh tides, clearance of the water column 

(at ~1.5 - 2.0 meters above the bed) routinely accelerates +/-10 minutes of high 

water, following results described by Christiansen et al. (2000) and Voulgaris and 

Meyers (2004). Ebb phases of over-marsh tides frequently show rapid pulses to 

high concentrations (up to 1000 mg-l"1) in OBS signals measured at the thalweg 

location (Figure 3.7). Pulses initiate within 20 - 40 minutes after high tide, and 

may indicate material being transported to the bed, associated with clearance of 

material from further up in the water column. However, these increases were 

limited to the thalweg sampling location, and were typically associated with 
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increasing flow velocity, suggesting that these pulses may relate to mobilized 

material moving through the thalweg. To investigate this, an estimated floe still-

water settling velocity of 1 mrn-s"1 was applied, based on results of a variety of 

flocculatbn studies in different environments (e.g. Dyer et al, 1996; Dyer and 

Manning, 1999; Manning et a!., 2010; Peijup and Edelvang, 1996; Hill et a!., 

2000; Mikkelsen et al., 2004), to determine an approximate time required for 

particles to reach the bed from heights where clearance is observed in ADCP 

records. Figure 3.9 shows the relationship between signal strength deterioration 

at 50 cm above the bed and suspended sediment concentratfon reported by the 

thalweg OBS sensor at 10 cm above the bed. The temporal sequence of 

clearance initiating at 1.7 - 2.0 meters above the bed ~10 minutes after high tide 

is in agreement with the arrival of material at 10 cm above the bed ~30 minutes 

later, as indicated by OBS measurements (Figure 3.9). Under the assumed 

settling velocity of 1 mrn-s1, particles should take ~30 minutes to reach the OBS 

measurement volume (at 10 cm above the bed), from 1.7 - 2.0 meters above. 

There is sufficient time for this sequence of events to elapse during over-marsh 

tides. However, the relatively shorter inundation period associated with channel-

restricted tidal cycles is not as accommodating, and particles settling from ~2 

meters above the bed are not allowed the time required to reach the bed. 

While the 30-minute period following high tide on channel-restricted tidal 

cycles shows clearance of the mid to upper water column (e.g. 170 cm above the 

bed), settling is not initiated nearer the bed (e.g. 50 cm above the bed). The 
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opposite is true for over-marsh tides, where sustained reductions in current 

velocity and turbulence at slack tide allow for transfer of material from the mid to 

upper water column to the bed. This fundamental difference in depositbnal 

mechanisms is likely a simple response to increased inundation time associated 

with over-marsh tides, and is independent of variations in concentration or the 

flocculated nature of suspended materials. 

Entropy analysis was performed on DIGS of deposited sediments to 

investigate the dominance of forcing conditions. Entropy analysis has been 

applied to DIGS distributions before, namely by Mikkelsen et at. (2007) for 

consideration of marine in-situ floe size spectra. The nominal number of groups 

determined here from entropy analysis of deposited sediment DIGS is four 

(Figure 3.12), which indicates potential control of four unique forcing conditions. 

Group 2 (blue line) contains tides with the greatest maximum depths, highest 

mean current velocities, and marginally higher mean floe fractions (Table 3.3). 

However, net deposition resulting from tides in group 2 was comparatively less 

than that of other groups. The response of creek banks to more energetic ebb 

phases associated with over-marsh tides is demonstrated by this variability, 

through re-working of newly deposited material by increased current velocities 

and the associated kinetic energy, turbulence and bed shear stresses which are 

largely responsible for reducing net deposition. While the mass held in floes can 

be slightly higher during over-marsh tidal cycles, any existing relationship with 

increased deposition is obscured by re-working of creek banks during ebb 
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phases. By contrast, group 1 (red line) is composed of tides that show the 

smallest proportion of matter held in floes, maximum depth nearest the bankfull 

level, and the highest amount of net deposition. Tides from this group also 

showed the highest suspended sediment concentration at the thalweg location, 

and had the highest occurrence of coarser material. Overall, this suggests that 

increased deposition is not directly linked to increases in floe fraction. The 

presence of larger grain sizes in group 1, demonstrated by the right side of the 

curve (Figure 3.12), as well as higher suspended sediment concentration, 

indicates potentially increased energy and carrying capacity associated with this 

group of tides. However, as the mean maximum depth for this group is near the 

bankfull level, it is most likely that exposed creek surfaces were not subjected to 

the enhanced ebb flows of deeper, over-marsh tides, which remove newly 

deposited material and reduce net deposition. 

Entropy analysis also showed that of the four daily sediment samples 

processed for grain size analysis, each typically falls into a different entropy 

group. The anticipated division, where samples of deposited sediment collected 

on one particular day would be similar to one another and fall into one entropy 

group, was only realized twice, in response to channel-restricted tides (Aug 7 and 

Sept 26). This suggests that entropy analysis would be most informative when 

performed on DIGS datasets yielded from each trap location, rather than a 

comparison of all samples together. This reiterates the degree of variability 

measured over the 2 m2 sampling area, and suggests that mean values per day 
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may be the best way to characterize a generalized value of net deposition on 

creek banks. 

Regressbn analysis (Figure 3.13) demonstrates that increased deposition 

on creek banks is associated with increased water depth, although this 

relationship is not statistically significant. This relation is likely a response to 

increased inundation time associated with higher maximum tidal elevation. It is 

also shown that the mass of sediments held in fbcculated form decreases with 

increasing tidal amplitude. While r2 values are bw, this can largely be accounted 

for by the high variability encountered daily over the sampling zone. Although 

suspended sediments show variability in concentration and their fbcculated 

nature, both concentration and the degree of flocculation can ultimately be 

considered as consistently high in sheltered hypertidal creeks. This implies that 

higher net deposition is likely not associated with an increase in the mass of 

suspended sediment held in fbcculated form. 

3.7 Conclusions 

Samples of deposited and suspended sediments were collected in a 

hypertidal creek in the Bay of Fundy, over 15 individual tidal cycles and across 

various stages of the spring-neap cycle. Samples were analysed for grain size, 

organic content and the fbcculated nature of constituent particles. 

Disaggregated inorganic grain size analysis performed with a Coulter Multisizer 

III indicates that variatbns in the proportbn of suspended matter held in fbcs, 
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while high, is not directly linked to deposition processes on creek banks (Figure 

3.11). The high floe fraction in the tidal creek is likely driven by routinely high 

suspended sediment concentration, as well as energy levels that are frequently 

favourable for floe formation. Turbulence levels estimated from ADV records 

suggest that channel-restricted tidal cycles show the greatest potential for the 

formation of large floes, along with calm flow conditions that are ideal for particle 

settling. However, presumably due to limitations in inundation time, deposition 

was comparatively less with channel-restricted tides. The influence of inundation 

time is further suggested by a relatively consistent incoming suspended sediment 

concentration, excluding high concentration motivated by rainfall. Concentration 

at the thalweg is routinely 100 - 200 mgT1 at the initial stages of flood tides under 

non-storm conditions, and does not appear to vary substantially with changes in 

maximum tidal elevation. The magnitude of ebb-phase flow velocity is directly 

linked to tidal elevation through topographically-influenced flow patterns in the 

creek, and on over-marsh cycles where the marsh is well submerged (> 30 cm 

depth), ebb flows appear to regularly modify newly deposited materials and exert 

a large degree of control on net deposition on creek banks. This equilibrium 

relationship is necessary to ensure that tidal creeks are not completely infilled. 

Variability in depositional characteristics (e.g. total amount, floe fraction) 

was identified over the ~2 m2 sampling area where deposited sediments were 

obtained. Entropy analysis performed on DIGS of deposited sediments indicates 

that independent samples collected during individual tidal cycles frequently fall 
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into different groups. This highlights the differential effects of ebb-phase flows 

and resuspension on creek banks, and suggests that variability in net deposition 

can occur over limited spatial scales. It also demonstrates the necessity of 

considering each trap independently, owing to these differential effects of ebb 

flows and varied resuspension over the sampling plot. It would perhaps be 

helpful in future work to place traps at discrete locations rather than develop 

mean values to characterize deposition over a larger plot. 

In the context of tidal power generation, results of this study suggest that 

Bay of Fundy salt marshes exist under a range of highly variable depositbnal 

conditions, which are not clearly linked to changing suspended sediment 

concentration or the nature of suspended materials, tidal elevation or the spring-

neap cycle. Suspended concentration and the degree of flocculation can 

ultimately be considered to be consistently high in sheltered hypertidal creeks 

due to the consistent abundance of fine-grained materials. Variability in net 

deposition in these areas may be most sensitive to topographically-influenced 

flow dynamics and resuspension of newly introduced material, compared with 

changes in the flocculated nature of incoming suspended sediments. This 

suggests that moderate changes in tidal amplitude caused by energy extraction 

via tidal power generation may impact the distribution of creek-deposited material 

to the marsh surface, but will not have a marked effect on the flocculated nature 

of suspended sediments in confined, sheltered tidal creeks. This is an important 

step in a thorough understanding the vulnerability, and more importantly the 
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resilience, of salt marsh environments in the Bay of Fundy and their potential 

response to energy extraction. 
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CHAPTER 4: HYDRODYANAMICSAND SEDIMENTATION IN A HYPERTIDAL 
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As discussed in the previous chapters, the capacity of salt marshes to 

perform various ecosystem and storm protection services is directly dependent 

on the continued import and retention of sedimentary material, necessary to 

maintain equilibrium with rising sea level (Donnelly and Bertness, 2001; Reed et 

al, 1999; Morris et al, 2002). In order for minerogenic marshes to continually 

function as critical habitat in biological production, and as sites capable of energy 

absorption, the current state of equilibrium with sea level should be at best 

modestly disturbed (Wh'itford, 2008). It has been demonstrated that powerful 

estuarine systems in the Bay of Fundy region become large-scale depositional 

sinks following modification and disruption of natural hydrodynamics and energy 

(e.g. van Proosdij et al., 2009; van Proosdij et al., 2006; Amos and Mosher, 

1985; Turk et al., 1980). A tidal creek is the subject of study here, because 

creeks are the main conduits for sediment transport into marshes, to be spread 

over high marsh surfaces and trapped by vegetation, contributing to the vertical 

growth of the marsh platform (Allen, 2000; Friedrichs and Perry, 2001; van 

Proosdij 2006b; Voulgaris and Meyers 2004). 

Deposition in the intertidal zone is a complex function of variables 

controlling sediment availability and the opportunity for deposition (van Proosdij 

et al., 2006a). Intrinsic controls that influence salt marsh and tidal creek 

processes (e.g. topography, tidal prism), and others which are externally-driven 

(e.g. suspended sediment concentration, the flocculated nature of materials, 

changing tidal amplitude and current velocity) were investigated as to their 
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influence on sediment deposition patterns in a hypertidal creek. It has been 

shown through research presented here that tides which inundate the marsh 

surface show very different velocity patterns compared with those that remain 

restricted to channels, following the conclusions of similar studies (e.g. Torres 

and Styles, 2007; Lawrence et al, 2004; French and Stoddart, 1992). Results 

presented in this study emphasize this (e.g. Figures 2.6 & 2.7), and reinforce the 

idea of a threshold depth on marsh surfaces, associated with the development of 

flow reversals in tidal creeks (Torres and Styles, 2007), as well as sheet flows 

above marsh vegetation (Temmerman et al, 2005). Data from this study show 

that the development of early ebb-stage flow accelerations were limited to tides 

that surpassed this general threshold (~0.5 meters above high marsh). Also, the 

degree to which ebb flows are accelerated as water depth falls below the bankfull 

level is linked to the maximum inundation depth on the marsh surface. This is 

seen here to be a primary control on net deposition on creek banks. 

Research by Karsten et al. (2008) shows that proposed tidal power 

installations in the Minas Passage will result in an overall lowering of tidal 

amplitude in the Minas Basin. An extraction of 2.5 gigawatts of tidal energy 

would result in a moderate 5% decrease in tidal amplitude in the Minas Basin. 

Such a decrease in tidal amplitude would reduce the number of over-marsh tidal 

events by a similar figure. It of course follows that the occurrence of channel-

restricted tides will increase, at the expense of over-marsh cycles. The frequency 

of bankfull (or 'marshfull') tides, such as those identified by Bayiiss-Smith et al. 
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(1979) and discussed by French and Stoddart (1992), can potentially increase as 

well. In this case, amplified erosion of creek banks driven by prolonged wave 

access to marsh edges may create an additional sediment source for deposition 

in creeks, and could act to destabilize salt marsh platforms over time (Friedrichs 

and Perry, 2001; Allen, 2000). Accordingly, a decrease in inundation frequency 

of high marsh surfaces may impose a sediment deficit in these areas, with less 

material being distributed to the marsh surface from tidal creeks. This can impact 

marsh and channel equilibrium, vegetation community structure, ecological 

productivity, and the transfer of energy through marsh systems (Smith and 

Friedrichs, 2011; Craft eta!., 2009; Bertness, 1991). 

The relative availability of sediment in tidal creeks can be viewed as a 

controlling factor for deposition on the marsh surface, which can be applied to 

infer the relative depositional capacity of both channel-restricted and over-marsh 

tides. Incoming suspended sediment concentration (> 100 mg I"1), and the 

flocculated nature of deposited materials (0.67 - 0.89), were both relatively high 

for all tidal conditions sampled at Starrs Point. The measured tide that peaked 

near the bankfull level (August 26th) maximized the potential inundation time for a 

tide that did not flood the marsh surface, which allowed reduction in early ebb 

stage turbulence and flow velocity, and in turn encouraged an extended 

depositional period. Combined with a high incoming suspended concentration, 

large amounts of deposition were seen to occur in response to this particular tidal 

cycle. 
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In a hypertidal environment such as the Bay of Fundy, where the 

maximum tidal range is 16 metres, bankfull tides like the one on August 26th may 

be responsible for peak sediment import and deposition in tidal creeks, providing 

large amounts of material that is eventually distributed to and deposited on marsh 

surfaces by over-marsh cycles. As a result, the geomorphic 'importation' 

workload may be skewed towards bankfull tides for net sediment import, leaving 

over-marsh tides for distribution of materials from creek banks onto the marsh 

surface. With change to this relationship (e.g. the frequency of occurrence of any 

of the three types of tidal cycles), the current balance of sediment import, 

distribution and export will be forced to adapt. It is possible that an increase in 

channel-restricted tides will promote increasingly rapid deposition in tidal creeks, 

as less material that is imported is either distributed to the marsh surface, or 

removed by ebb-stage flow in response to over-marsh tidal cycles. The 

importance of those over-marsh cycles that do occur will be increased, as fewer 

will be available to mobilize and distribute sediments to the marsh surface with an 

overall reduction in tidal amplitude. 

It is possible that variations in deposition are associated with changing floe 

dynamics in the creek, impacted by variable flow characteristics and turbulent 

conditions (Curran et al, 2004; Dyer and Manning, 1999; Kranck and Milligan, 

1992). The size distribution suspended materials can be applied to deduce 

sedimentary origin and provide insight into conditions of the depositional 

environment (Milligan and Loring, 1997; Curran et a!., 2004). Velocity-derived 
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estimates of Kolmogorov microscale (rj) and dissipation parameter (G) from the 

tidal creek suggest that floe formation was most efficient during ebb phases of 

channel-restricted tides. Turbulence levels associated with typical channel-

restricted tidal cycles were sufficient for formation of floes up to 50% larger than 

more turbulent over-marsh tides. However, this did not appear to impact the 

mass fraction of sediments held in ftocs, as determined through DIGS analysis of 

deposited sediment samples. While some variability was observed in mean floe 

fraction over the study period, this occurred seemingly independent of changes in 

maximum tidal amplitude. In regard to net deposition, tides that showed higher 

floe fractions contributed less material to the surface overall. In contrast, the 

maximum net deposition measured was in response to a tide showing the lowest 

mean floe fraction. 

Kinetic energy was found to be higher with over-marsh tidal cycles, 

although this has been attributed to variable influences of topography on ebb-

stage flows at this site. Incoming tidal energy was relatively similar for over-

marsh and channel-restricted tides (Figure 3.8), and while flocculation was 

routinely high (Figure 3.6), a causative link between these two processes was not 

developed through this study. Therefore, it cannot be said for certain whether 

reduced tidal energy in the Minas Basin due to tidal power installations will alter 

the flocculated nature of suspended sediment in intertidal zones, based on the 

results of this study. A decrease in tidal energy may result in an overall reduction 

of material in suspension in the larger Minas Basin, which would have obvious 
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impacts for intertidal sediment supply. However, while reduced tidal amplitude 

has been shown to potentially be a source of increased sensitivity for marsh 

environments, the dominance of salt marshes in the Bay of Fundy, under such 

highly variable conditions in their current equilibrium, suggests that systems will 

adapt to moderate changes in tidal energy. 

Net deposition, floe fraction (f) and floe limit (df) showed variability within 

the ~2 m2 sampling zone that was not expected on such a limited spatial scale. 

This suggests high variability in net deposition over small spatial scales on creek 

banks in response to ebb-stage resuspension processes. It is possible that 

upstream sediment traps were preferentially exposed to enhanced ebb-stage 

currents, allowing more ebb-stage resuspension to occur at that location. This 

would suggest that variation in per-tide sediment weight and volume may be an 

artifact of the sampling method, such as the placement of the traps over the 

sampling area. 

Figure 4.1 demonstrates variability in net deposition and the flocculated 

nature of samples, in response to one over-marsh tidal cycle. Figure 4.2 shows 

variability in d90 (diameter of the 90th percentile, in pm) over the study period. 

Entropy analysis revealed that of the four sediment trap locations sampled daily, 

the DIGS distribution of each typically fell into a different entropy group. This 

suggests that entropy analysis would be most informative when performed on 

DIGS datasets representative of each trap location, rather than completing a 

comparison of all samples together. This reiterates the degree of variability 
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measured over the ~2 m2 sampling area, but does not provide further explanation 

of why this variation occurred. This does suggest that mean per-day values may 

be the best way to generalize daily net deposition on creek banks. In addition, 

such variability could advocate a small-scale investigation to consider the spatial 

unevenness of erosion and resuspension across creek banks, presuming these 

affects are overprinted on relatively homogenous deposition. In addition, the 

development of an in-situ instrument to accurately measure the contributions of 

individual tidal cycles while excluding ebb-phase modifications of sediment 

surfaces would be an ideal approach to this problem. A one-way, closing 

sediment trap should be considered, with the ability to restrict access by ebb tide 

flows to captured deposited material. A small chamber or column would trap 

material descending through the water column onto a standard filter paper, then 

close to retain the sampled sediment until ebb tides have elapsed and samples 

are available for collection by field personnel. Closing of the trap could be 

triggered by a pressure sensor, which would allow samples to be sealed when 

the water level stops rising, or as soon as it begins to drop. Such an approach 

should be considered for future work, and could be applied to investigate both 

sediment deposition and differential erosion and resuspension. 

While suspended concentration certainly plays a role in the amount of 

material available to creek banks and the marsh surface, the relatively consistent 

measurements of incoming suspended sediment concentration over the sampled 

tides are not an optimal indicator of net deposition. This directly contrasts results 



Figure 4.1: Variability in net deposition and the flocculated nature of deposited materials in response to an over-marsh tidal cycle 

(5.5 m CGVD28), August 21st 2009. Note the apparent effects of differential erosion/resuspension of trapped materials, where 
samples facing the ebb-current direction visually appear to have incurred the greatest impacts. 



Figure 4.2: Variability in d90 (diameter of the 9Cfh percentile) in deposited material over the study period (August - September, 

2009). In general, patterns of change on the left traps (1 & 2) are similar, as are those for the traps on the right (3 & 4). 



presented by similar studies (e.g. Voulgaris and Meyers, 2004). Given that 

incoming suspended sediment concentration is relatively constant, inundation 

time and surface reworking by energetic ebb flows are first-order controls on net 

deposition on creek banks (Reed, 1988; Torres and Styles, 2007). This suggests 

that reductions in overall tidal energy may reduce the amount of sediment 

introduced to the marsh surface, related to a reduced frequency of inundation of 

high marsh surfaces. This represents an important step in fully understanding 

the dynamic behavior of fine-grained materials in an intertidal portion of a 

hypertidal environment. 

Recent initiatives driving tidal power development in the Bay of Fundy 

have raised questions about far-field environmental impacts. The magnitude of 

potential change in response to energy extraction still remains to be fully 

understood, and requires more work to quantify baseline conditions prior to 

installation of a commercial field of generating devices (Polagye et al, 2011). 

Simple numerical models of energy extraction from various channel networks 

show a general decrease in kinetic power density of tidal flows with increasing 

dissipation by turbines (Polagye and Malte, 2010; Sun eta!., 2008; Bryden et al, 

2004). It is possible that such energy reductions will reduce the total amount of 

material in suspension in the Minas Basin, which would have impacts for intertidal 

sediment supply. However, data presented in this study support a continually 

high intertidal sediment supply over a range of tidal conditions, at least in 

sheltered salt marsh environments. Further work of this nature should be 
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completed at more exposed locations, where exposure and the potential for 

variability are increased. Seasonal variations (e.g. above- and below-ground 

biomass, bacterial and nutrient production, benthos activity) should also be 

investigated to consider the effects of these processes on sediment erodability 

and cohesion of suspended particles. 

The forecast reduction in tidal amplitude associated with tidal power 

development and extraction will ultimately reduce the overall inundation time of 

regional salt marshes, although the current distribution of work between tidal 

cycles can potentially compensate for this. Over-marsh tides will continue to 

control the distribution of material to marsh surfaces from tidal creeks following 

energy extraction, although with a reduced frequency, individual tidal cycles may 

become more important. This may become a critical factor in the survival of high 

marsh surfaces as sea level continues to rise. The occurrence of channel-

restricted tides will increase, but due to limitations in inundation time it is unlikely 

that this range of tidal cycles will introduce enough material to completely infill 

tidal creeks. Finally, a more frequent occurrence of bankfull tides is a possible 

response to reduction in tidal amplitude, which may increase active erosion of 

marsh edges along tidal creeks, reducing bank steepness and further increasing 

sediment supply in tidal creeks. 

Due to the hypertidal nature of the Bay of Fundy environment, the margin 

of error for optimal tidal elevation appears to be fairly large. Modelled and 

corrected results from Webtide suggest that over 80% of tidal cycles inundate 
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high marsh surfaces, to some degree. Reducing this figure to 75% will 

moderately modify the current equilibrium between high marsh surfaces and 

regional sea level. Currently, sediment dynamics in sheltered tidal creeks are 

dependent on tidal amplitude and surface re-working by ebb-stage currents, and 

are relatively independent of suspended concentration and flocculated nature of 

suspended materials, which are routinely high. This study provides important 

baseline data from the intertidal zone for hydrodynamic and sediment transport 

modelling efforts currently underway for the Minas Basin region. This work will 

continue with investigation into the effects of entropy analysis of deposited 

sediment DIGS over discrete locations, to better characterize variability in net 

deposition over limited spatial scales. Further data collection and continued work 

of this nature are required to fully understand how the form and function of salt 

marsh environments in the Minas Basin will be impacted by a reduction in tidal 

amplitude. 
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APPENDIX A: Metadata 
This document is available in digital format in the ln_CoaST lab. 

Near-bed velocity and suspended sediment concentration 

In total, near-bed velocity and suspended sediment concentration data have been 
collected for a total of 17 tides during the summer of 2009 (August and September) using 
ADV and OBS arrays. These data characterize two discrete elevations in the tidal creek 
(0.5 and 1.25 m CGVD28) at Starrs Point over a range of maximum water depths. Data 
were collected at a rate of 16 Hz at the thalweg, and at a rate of 4 Hz over the creek 
bank. Data quality is good. 

Vertical velocity profiles 

An ADCP was deployed at the thalweg (upward oriented) for the same range of tides 
mentioned above. The ADCP recorded at a rate of 1 Hz, and profiled up to 2.97 metres 
of the water column, measuring 97 3-cm cells (high-resolution mode). Blanking distance 
above the instrument was 5 cm. Pulse distance was set to 3 meters to match the 
anticipated profile height and to minimize double-pings. The horizontal velocity range 
measured was 0.30 m/s, and the vertical velocity range measured was 0.13 m/s. Quality 
of this dataset is reasonably good, although there are suspicious events listed in the .ssl 
file, of unknown cause. 

Suspended sediment concentration 

Approximately 120 samples of suspended sediment were collected with the ISCO 
automated water sampler, drawn from the creek near the thalweg measurement location. 
These samples were filtered using standard gravimetric methods in the ln_CoaST lab by 
A Silver (2009). Portions of samples were processed for organic content (2009) in a 
muffle furnace (550°C). Samples of suspended sediment used in DIGS processing were 
ashed at BIO. These samples were processed using ln_CoaST DIGS protocol for grain-
size measurement (Coulter Multisizer III) by C. Wrathall and B. Blotnicky (2012) in the 
ln_CoaST lab. Additional portions of these samples have been retained for future use. 

Deposited sediment 

Approximately 180 samples of deposited sediment were collected during this field 
campaign. Four traps were deployed over 15 tidal cycles (traps were not deployed in 
rainy weather), with three filter papers in each. These were processed for water content, 
organic content by A. Silver (2009), and grain size using DIGS methods (Coulter 
Multisizer III) in the ln_CoaST lab by E. Poirier and C. Skinner (2011). One filter paper 
from each trap remains for future analysis. 
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Surface elevations 

A high-resolution digital elevation model (DEM) was produced from a detailed 
refiectorless survey of the creek and surrounding area, using standard total station 
methods during June of 2009. This survey was completed by Greg Baker (MP_SpARC) 
and data are available through ln_CoaST. These data have been used in calculation of 
bankfull elevations, creek volume and cross-sectional area. 

Surface elevation on the creek bank was also tracked using a rod-surface interface 
method, where the base of each of a network of aluminum pins, placed on the creek 
bank in a grid arrangement, was surveyed using the total station in refiectorless mode. 
Measuring against the 20 centimeters of pin that was protruding from the surface, 
attempts to track changes in surface elevation were made on the scale of individual tidal 
cycles. However this data was not applied in this study, primarily due to the impacts of 
vegetation wrapping around the base of the pins, creating a tent of sediment-trapping 
material that obscured the interface of the pin with the surface. 

Placing the pins farther apart may improve issues noted here. Also, ensure a stable 
construction of the fixed total station stand, as instability will cause the unit to sawy and 
generate further inaccuracy. 

Figure 1 A: The pin network in early August (left), at the initiation of the study, and in late 
September (right), near the end of the sampling period. The bases of most pins have 
been wrapped by loose vegetation, which trapped sediment, which obscured the base of 
the pin and impacted the accuracy of surveys. 
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Weather conditions 

Hourly means of wind speed and direction, rainfall, humidity and atmospheric pressure 
were recorded on site using a portable weather station and tipping rain gauge. This 
dataset includes the passage of Hurricane Bill on August 23rd, 2009, which passed just 
south of Nova Scotia. 

Analyses presented within this document have been performed by C. O'Laughlin. 

Protocols describing analytical methods applied here are available in the ln_CoaST 
Research Unit. 

Data collection and sample processing was completed by C. O'Laughlin, A. Silver, E. 
Poirier, C. Skinner, C. Wrathall and B. Bbtnicky. 

All data associated with this research project are stored in the Intertidal Sediment 
Transport Research Unit (ln_CoaST) at Saint Mary's University (4th floor Science 
Building, room s404). 

To access these data, contact the Lab Director, Dr. Danika van Proosdij, at 
dvanproo @s m u.ca or (902) 420-5738. 
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APPENDIX B: Example merged and parameterized DIGS 
distributions. 
These samples have been included to show methodological approach and do not 
illustrate the full range of this dataset. 

Neap tide (channel-restricted) Sep27. 
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Aug07. Transitional tide (channel-restricted) 

o.i 
10 100 

0.1 
10 100 

Sample ID Cut-off Floe fraction Floe limit Source slope Roll-off dia. 

Sep27-V7A-LL 14 0.76 14 0.58 12 

Sep27-T2A-HL 13.5 0.74 12 0.58 11 

Sep27-LR-V3A 12.8 0.76 12 0.6 10 

Aua7-HR-T3A 14.4 0.67 14 0.51 16 

Auq7-T1B-LL 12.3 0.62 12 0.4 17 

Table 1A: Manual cut-off values and model results for DIGS examples. 
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