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Abstract 

 
Structure and composition of forest edges created by a spruce budworm outbreak 

and maintained by moose browsing in Cape Breton Highlands National Park 

 

By Caroline Franklin 

 
 

Natural forest edges created by a severe spruce budworm outbreak in Cape Breton 

Highlands National Park, Nova Scotia, Canada, have been maintained three decades post-

disturbance by moose browsing.  My overall research objective was to determine the 

direct and indirect effects of edge creation on vegetation structure and composition.  

Trees, deadwood, and understorey plants were sampled along 120 m transects 

perpendicular to six forest edges.  The spruce budworm-induced forest edges were 

characterized by narrow transition zones where canopy cover, stem density, and structural 

diversity were intermediate between the disturbed area and forest.  Severe moose 

browsing appears to be preventing sapling growth and altering species composition, 

particularly on the insect disturbed side of the edge.  If moose continue to maintain the 

forest edge, contrasts in vegetation structure and composition between the severely 

browsed disturbed area and adjacent intact forest could increase and ultimately alter forest 

edge function.   
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Chapter 1: Introduction 

 

 The boreal forest of Cape Breton Highlands National Park, which is located on 

northern Cape Breton Island, Nova Scotia, Canada, offers a unique opportunity to study 

vegetation at forest edges.  Natural forest edges were created by a spruce budworm 

outbreak nearly three decades earlier and have since been maintained by an introduced 

moose population.  A better understanding of the structure, composition, and moose 

browse severity at the spruce budworm-induced forest edges reveals insight into the 

interplay between two herbivores and their effects on landscape dynamics.   

 
 

1.  Importance and classification of forest edges 

Forest edges, defined as the interfaces between forested and adjacent ecosystems, 

are often prominent landscape features that can be characterized by distinct patterns and 

processes.  The transition areas contribute to overall spatial heterogeneity and can 

therefore strongly influence habitat quality by providing environmental conditions 

different from those in the forest interior (Bannerman 1998; Disk 2007).  Furthermore, 

forest edges play significant ecological roles by regulating flows of organisms, materials, 

and energy across adjoining communities (Cadenasso et al. 2003).  A greater 

understanding of the complexity of edge function and of the related biological 

interactions is required for increased knowledge on landscape ecology. 

Forest edges can be classified by origin and state.  Inherent forest edges exist due 

to differences in soil type, microclimate, topography, or geomorphology between adjacent 

communities and are usually long-term features of the landscape (Thomas et al. 1979).  
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Meanwhile, induced forest edges result from natural disturbances or anthropogenic 

activities.  Human induced edges are either maintained or left to regenerate depending on 

the anthropogenic function of the non-forested area.  Since naturally induced edges result 

from disturbances such as wildfires, avalanches, windstorms, and insect outbreaks, these 

edges tend to regenerate once the disturbance agent has subsided.  In this thesis, I focus 

on unique edges that were not only created by a natural disturbance (an insect outbreak) 

but are also being maintained by a natural process (moose browse activity).  

 

2.  Edge influence 

Edge influence, also known as “edge effect,” results from differences in 

ecological conditions at the edge compared with the adjacent forest or non-forested areas.  

The abiotic and biotic gradients across forest edges induce primary responses to edge 

creation such as tree mortality (Harper et al. 2005).  Indirect effects of edge creation 

resulting from the combination of primary responses and initial edge-related gradients are 

known as secondary responses.  Subsequent edge effects resulting from these secondary 

influences are termed tertiary responses and include browsing of saplings and other plant-

animal interactions (Harper et al. 2005).  The extent and pattern of edge influence varies 

among response types (Harper et al. 2005) hence examinations of primary, secondary, as 

well as tertiary responses to edge creation provide a better understanding of edge 

dynamics.  

In addition to the response variable of interest, edge origin, edge age, and the state 

of the edge also determine the pattern and extent of edge influence by contributing to the 

contrast in vegetation structure and composition between the adjoining communities on 



 12 

either side of the forest edge.  If the contrast in structure is strong, the edges are abrupt 

and generally have greater edge influence on vegetation compared to more gradual edges 

(Bannerman 1998).  Human induced edges are usually more abrupt than natural edges 

(Matlack & Litvaitis 1999) and younger edges tend to be more abrupt than older edges 

(Harper et al. 2005).  At regenerating edges, where the adjacent community undergoes 

forest succession, the contrast in structure between the adjoining ecosystems decreases 

over time hence edge influence is generally lower compared to that of maintained forest 

edges (Harper et al. 2005).  

Geographical location also affects forest edge influence on vegetation.  For 

instance, boreal and sub-boreal forest edges usually exhibit less edge influence compared 

to edges located in tropical forests (Harper et al. 2005).  The weaker forest edge response 

in boreal ecosystems could be attributed to the ability of species to better adapt to 

ecological disturbances (Johnson 1992).  At a smaller spatial scale, edge influence is also 

determined by the orientation of the edge.  For example, light intensity and edge influence 

on vegetation tend to be greater at forest edges facing the equator compared to those 

facing other directions (Matlack & Litvaitis 1999).  The combination of the various 

factors affecting edge influence on vegetation reveals the innate complexity of forest 

edges.  

 

3.  Prior research on forest edges 

The majority of forest edge research has focused on edges created by human 

activity as opposed to edges induced by natural phenomena (Harper et al. 2005).  

However, anthropogenic edges differ from natural ones because they are often more 
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abrupt and the adjacent clearings are usually larger (Matlack & Litvaitis 1999).  While 

forest fragmentation becomes an increasingly important conservation issue, research 

related to the effects of edge creation and edge maintenance on ecosystem function is 

critical.  Natural edge studies are particularly valuable because they provide a better 

understanding of natural processes, which can be used in the development of effective 

forest management practices.  Sustainable forest management strategies often strive to 

emulate natural disturbances to minimize potentially negative anthropogenic impacts 

(Kuuluvainen & Grenfell 2012).  Forest managers could use increased knowledge on 

natural forest edges to create or improve techniques involving the creation of forest edges 

resulting from otherwise ecologically detrimental human activities, such as clear cutting.  

Various forest disturbances affect landscape patterns and processes differently (Foster et 

al. 1998), hence a greater understanding of forest responses to individual disturbances is 

required for the development of landscape ecology studies.  

Very few scientific studies have investigated forest edges adjacent to insect 

disturbances.  One study examined the structure of forest edges created by mountain pine 

beetle (Dendroctonus ponderosae) outbreaks in central British Columbia and estimated 

the distance of edge influence on forest structure to be approximately 51 m (McIntire & 

Fortin 2006).  A more recent study investigated the spatial patterns resulting from spruce 

budworm (Choristoneura fumiferana) defoliation in Ontario (James et al. 2010) but did 

not examine the actual influence of edge creation on abiotic or biotic response variables.  

Individual insect outbreaks result in different disturbance intensities; hence 

generalizations pertaining to the impact of insect outbreaks on forest dynamics cannot be 

based on findings from a single location or from a single outbreak (Bouchard et al. 2007).  
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4.  Study area 

Spruce budworm outbreaks are one of the major natural and stand initiating 

disturbances affecting forest dynamics in eastern boreal forests.  The insect defoliator 

feeds mainly on Abies balsamea (balsam fir), but Picea (spruce) species are also suitable 

hosts.  Populations of the spruce budworm tend to reach outbreak levels when there are 

large stands of mature host species and mild summer weather (Blais 1968).  Outbreaks 

typically occur every three decades (Blais 1983) and persist for approximately ten years 

(Boulanger & Arseneault 2004).   

The spruce budworm is native to the boreal forest of Cape Breton Highlands 

National Park, which encompasses 950 km
2 

of northern Cape Breton Island, Nova Scotia.  

The latest outbreak (1974 - 1985) was considered to be the most severe compared to prior 

outbreaks in the area (Ostaff & MacLean 1989) and Cape Breton Highlands National 

Park management refrained from using aerial insecticides or other methods of pest control 

to suppress the outbreak.  Defoliation caused by the insect resulted in tree growth 

reduction, tree mortality, and loss of wood production (MacLean 1984).  More 

specifically, mortality of Abies balsamea and Picea glauca (white spruce) started two to 

three years after the beginning of the outbreak (Ostaff & MacLean 1989).  By the collapse 

of the outbreak in 1985, affected stands experienced approximately 87% Abies balsamea 

mortality (MacLean & Ostaff 1989) and 27% Picea spp. mortality (Ostaff & MacLean 

1989). 

Due to the cyclic nature of the spruce budworm and balsam fir forest, it was 

expected that areas disturbed by the insect would regenerate after the outbreak collapse.  
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However, natural disturbances such as budworm defoliation create favourable moose 

(Alces alces) habitat by promoting sapling growth that is within reach of moose 

(Lautenschlager et al. 1997).  Consequently, a large introduced moose (Alces alces 

andersoni) population is currently inhibiting forest regeneration in the Cape Breton 

Highlands (Smith et al. 2010).  

Native moose (Alces alces americana) were extirpated from Cape Breton Island in 

the early 1900s as a result of over-hunting (Pulsifer & Nette 1995).  In 1947 and 1948, 18 

individual moose of the western sub-species (Alces alces andersoni) were introduced to 

northern Cape Breton from Elk Island National Park in Alberta (Pulsifer & Nette 1995).  

Since then, the population has increased dramatically due to hunting prohibition, an 

abundant food supply resulting from the spruce budworm outbreak, and a lack of natural 

predators.  Although calves are occasionally preyed upon by black bear (Ursus 

americanus), moose are relieved from heavy predation pressure since wolves (Canis spp.) 

were extirpated from Nova Scotia in 1928 (Whitaker 2006).  Furthermore, moose in the 

Cape Breton Highlands are not greatly affected by the transmission of the deadly parasite 

Parelaphostrongylus tenuis that is carried by white-tailed deer (Odocoileus virginianus) 

as deer are uncommon in the park.  In 2013, the moose population for northern Cape 

Breton Island was estimated to be 5,000 (James Bridgland, personal communication).  

Moose feed mainly on Abies balsamea and Betula papyrifera (white birch) (Basquill & 

Thompson 1996); however, their diet may also include Acer saccharum (sugar maple), 

Acer spicatum (mountain maple), Populus (poplar) spp., and shrubs (Prescott 1968).   
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5.  Research objectives 

In this thesis, I considered the direct and indirect effects of spruce budworm 

induced-forest edges on vegetation structure and composition.  In Chapter 2, I 

investigated primary structural responses (canopy cover, tree density, dead wood 

abundance) as well as a primary process response (decomposition rate) to edge creation.  

I then focused on secondary (sapling density, sapling height, understorey cover) and 

tertiary responses (moose browse activity) to edge creation in Chapter 3 to ultimately 

characterize the spruce budworm-induced forest edges in Cape Breton Highlands 

National Park.  My objectives, which I address in the following two chapters, were: 

1. To assess primary responses to edge creation by estimating the extent of edge 

influence on overstorey structure, deadwood abundance, and decomposition rate; 

and 

2. To investigate edge maintenance by determining the spatial pattern and extent of 

edge influence for the severity of moose browse, understorey structure, and 

composition to ultimately gain insight into the effects of moose browsing on 

regeneration. 

 The natural forest edges resulting from the severe spruce budworm outbreak 

offered a unique opportunity to study forest edges because moose browsing was 

maintaining the edges (Figure 1-1), which were expected to abate after the collapse of the 

outbreak nearly three decades prior to sampling.  All data were collected from the same 

transects in the study area to relate the effects of edge creation with the influence of 

moose herbivory on understorey characteristics in Chapter 4.  Structural attributes 

(Chapter 2) and understorey variables (Chapter 3) were sampled in 5 x 20 m plots and 
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contiguous quadrats, respectively.  The difference in sampling quadrat size was related to 

spatial scale due to the variability in vegetation size.  

 

 

Figure 1-1.  A spruce budworm-induced forest edge maintained by moose browsing in 

Cape Breton Highlands National Park, Nova Scotia.  The insect disturbed area is in the 

foreground and the relatively undisturbed intact forest is in the background.   
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Chapter 2: Structural responses to forest edge creation by a spruce budworm 

outbreak 

 

Abstract 

 

Natural disturbances such as insect outbreaks create boundaries that influence 

ecological patterns, processes, and functions.  To better understand the effects of edge 

creation on forest structure, I examined live and decomposed structural attributes of 30 

year-old forest edges created by a severe spruce budworm outbreak in Cape Breton 

Highlands National Park, Nova Scotia.  My research objectives were 1) to determine the 

extent of initial effects of spruce budworm-induced edges on forest structure; 2) to gain 

insight into the structural development of the edges since creation; and 3) to investigate 

the impact of edge creation and subsequent structural development on structural diversity.  

Canopy cover, tree density, deadwood abundance, and decomposition rates were 

examined in 5 x 20 m plots located along 120 m transects across six edges.  The forest 

edges were characterized by narrow zones of transition approximately 10 m wide over 

which structural diversity, live stem density, and canopy cover increased from the 

disturbed area into the forest.  Vegetative structural changes resulting from edge creation 

were only apparent on the disturbed side of the spruce budworm-forest edges; however, 

the edges could have receded into the forest since creation.  The unique and dynamic 

structure of spruce budworm-induced forest edges may play an important role in habitat 

function and therefore long-term monitoring of edge structure is encouraged.   
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1.  Introduction 

 

Natural disturbances, such as insect outbreaks, cause considerable changes in 

forest structure and consequently contribute to spatial heterogeneity (Bonan & Shugart 

1989).  The spruce budworm (Choristoneura fumiferana) is of particular importance to 

eastern boreal forest dynamics because outbreaks of this insect defoliator and balsam fir 

forests typically interact in a cyclic self-regulating system that enables forest succession 

(Baskerville 1975; MacLean 1984; MacLean 1988; Morin 1994).  The insect feeds 

mainly on Abies balsamea (balsam fir) but Picea (spruce) spp. are also suitable hosts.  

Populations of the spruce budworm tend to reach outbreak levels every three decades 

(Blais 1983) when there are large stands of mature host species, especially in years of 

mild and dry summer weather (Blais 1968).  Tree mortality begins within five years of 

severe defoliation (Belyea 1952) and the resulting deadwood contributes to increased 

structural diversity (Belle-Isle & Kneeshaw 2007).  Outbreaks usually persist for 

approximately ten years (Boulanger & Arseneault 2004) and have increased in severity, 

extent, and frequency over the past 200 years in eastern Canada (Blais 1983).  As spruce 

budworm outbreaks continue to cause large-scale forest fragmentation, an understanding 

of outbreak-induced forest edge function will increase knowledge of landscape patterns 

and processes.  

Forest edges resulting from extensive tree mortality caused by insect outbreaks are 

the boundaries between insect disturbed areas and relatively undamaged intact forests.  

Although prior studies have examined the direct effects of spruce budworm outbreaks in 

disturbed areas (e.g. D’Aoust et al. 2004; Bouchard et al. 2006; Bouchard et al. 2007), 



 22 

relatively few studies have explored the impact of insect outbreaks on the adjacent 

remaining forest stands.  James et al. (2010) investigated the spatial patterns resulting 

from spruce budworm defoliation in Ontario but did not examine the actual influence of 

edge creation on abiotic or biotic response variables.     

In Cape Breton Highlands National Park, Nova Scotia, natural forest edges 

created by the latest spruce budworm (Choristoneura fumiferana) outbreak approximately 

30-40 years ago provide a unique opportunity to study naturally maintained forest edges.  

A large re-introduced moose (Alces alces andersoni) population has been inhibiting forest 

regeneration in the insect disturbed areas (Smith et al. 2010); hence forest edges continue 

to persist.  Park management did not control the latest spruce budworm outbreak on Cape 

Breton Island, which began in 1974 and was the most severe compared to prior outbreaks 

in the area (Ostaff & MacLean 1989).  By the collapse of the outbreak in 1985, affected 

stands on Cape Breton Island experienced mortality of approximately 87% Abies 

balsamea (MacLean & Ostaff 1989) and 27% Picea spp. (Ostaff & MacLean 1989).  The 

influence of edge creation on forest structure and composition has yet to be investigated.  

My research objectives were 1) to determine the extent of initial effects of spruce 

budworm-induced edges on forest structure by investigating canopy cover, live tree 

density, and deadwood abundance; 2) to gain insight into the structural development of 

the edges by examining deadwood decay stages and measuring decomposition rate; and 

3) to investigate the impact of edge creation and subsequent structural development on 

structural diversity.  A characterization of the spruce budworm-induced forest edge 

structure will ultimately help assess the potential habitat function of these specific edges. 
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2.  Methods 

 

Study area 

 The study was conducted in Cape Breton Highlands National Park (46°50’N, 

60°30’W), which was established in 1936 and encompasses 950 km
2 

of northern Cape 

Breton Island, Nova Scotia.  The surrounding Atlantic Ocean to the east and the Gulf of 

St. Lawrence to the west of the island contribute to the park’s maritime climate.  Climatic 

normals (1971 – 2000) from nearby Pleasant Bay (46°49’N, 60°46’W) reported a mean 

January temperature of -5.3 ± 1.8°C, a mean July temperature of 18.1 ± 1.8°C, and a 

mean annual precipitation of 1450.1 mm (Environment Canada 2013).  The region is 

characterized by a plateau, which ranges in elevation from 350 m to 500 m above sea 

level and contains underlying Precambrian granitic and volcanic bedrock (Webb & 

Marshall 1999).  The plateau experiences heavy snowfall, high winds, and frequent fog 

(Webb & Marshall 1999).  Approximately 88% of Cape Breton Highlands National Park 

is forested by a unique combination of Acadian taiga and boreal vegetation (Parks Canada 

2010).  In the boreal land region, which dominates approximately 50% of the park, the 

dominant tree species is Abies balsamea interspersed with Picea glauca (white spruce) 

and Betula papyrifera (white birch).  Picea mariana (black spruce) and Larix laricina 

(eastern larch) are also present in moist areas.  Soils are mostly sandy loam of moderately 

coarse texture (Neily et al. 2003).   
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Site selection and data collection 

Historical aerial photographs of Cape Breton Island taken in 1969 were compared 

to aerial photographs taken in 2009 to identify areas of forest canopy reduction caused by 

the outbreak.  Ground surveys were subsequently used to select six forest edges that were 

created by the spruce budworm outbreak of 1974 – 1985 (Figure 2-1).  The following 

criteria were used in the edge selection process, in order of decreasing importance: 1) the 

forest edge was adjacent to an area disturbed by the last spruce budworm outbreak, 2) the 

forest edge was accessible, 3) the forest area and the disturbed area extended at least 80 m 

from the edge in opposite directions, 4) the forest area and the disturbed area interiors (70 

– 100 m from the edge) were located at least 100 m away from another edge, road, trail, 

or water body, 4) the forest area was fir-spruce dominated for at least 100 m from the 

edge into the interior, and 5) the elevation was relatively uniform across the edge 

gradient.  A total of six sites were used in the study (Table 2-1). The furthest distance 

between two sites was 25 km while the shortest distance between two sites was 0.93 km. 
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Figure 2-1. Map of study sites in Cape Breton Highlands National Park and the corresponding location in Nova Scotia (inset).  

Cartography credits by Caroline Franklin, National Geographic base map, National Geographic, Esri, DeLorme, NAVTEQ, iPC, 

NRCAN, METI, NASA Blue Marble, ESA GlobCover 2009 (Copyright notice: © ESA 2010 and UCLouvain), IUCN and UNEP-

WCMC (2011), The World Database on Protected Areas (WDPA) Annual Release. Cambridge, UK: UNEP-WCMC.
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Table 2-1.  UTM coordinates, edge orientation, and elevation at the edge for individual 

study sites. 

 

Site UTM coordinates (East, 

North)* 

Edge orientation (facing 

insect-disturbed area) 

Elevation (metres 

above sea level) 

1 678421, 5186826 213° SW 438 

2 677648, 5186305 271° W 465 

3 664632, 5184089 320° NW 352 

4 667192, 5178624 39° NE 422 

5 660735, 5178802 249° W 381 

6 661314, 5168032 351° N 459 

*Universal Transverse Mercator coordinates, Zone 20, NAD 83. 

 

 

I established a 120 m long transect perpendicular to each of the six forest edges, 

which extended 60 m into both the forest and the disturbed area (Figure 2-2).  The 

distance of 60 m was chosen to detect edge influence, which usually dissipates within 50 

m from the edge in boreal forests (Harper et al. 2005).  The forest edge in the middle of 

the transect at 0 m was defined as the point at which the intact forest transitioned into the 

insect disturbed area, or the limit of continuous canopy.  Along each transect, nine 5 m x 

20 m plots (length parallel to the forest edge) were established at the centres of the 

following distances from the edge: -60, -40, -20, -10, 0, 10, 20, 40, and 60 m (negative 

distances represent the insect disturbed side of the edge).  Three plots (each 5 m x 20 m) 

were established in the insect disturbed area and in the forest area to represent reference 

conditions.  The patchiness of the study area restricted disturbed area and forest reference 

plots from being established at every site so one site and two sites did not have disturbed 

area reference plots and forest reference plots, respectively.  The majority of these plots 

were located 100 m away from the insect disturbed area-forest edge; however, some of 

the reference plots were located only 70 m away from the edge due to spatial constraints.  
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Figure 2-2. Sampling design illustrating an edge transect and corresponding reference 

plots at an insect disturbed area-forest study site used to measure primary response 

variables.  Reference plots were 70 – 100 m away from the edge.  Data were collected 

inside the rectangular plots (5 x 20 m each).  Drawing is not to scale.   

 

   

Data were collected from June to August 2012.  Average canopy cover for each 

plot was calculated from four measurements taken facing each cardinal direction using a 

spherical densiometer.  Species, relative canopy position, and diameter at breast height 

(dbh) of each tree (dbh ≥ 5 cm) growing in the plots were recorded.  The heights of the 

three tallest trees in each plot were measured using a laser rangefinder.  The relative 

canopy position of the remaining trees was estimated as suppressed, intermediate, co-

dominant, or dominant (Côté 2000).  A classification system adapted from Thomas et al. 

(1979) (Table 2-2) was used to determine the decay stage of deadwood.  Decay stage, 

relative canopy position, and diameter at breast height of each snag (≥ 5 cm dbh) located 

in the plots were recorded.  The line intercept method was used to sample logs (≥ 5 cm in 

diameter) along the 20 m centre line of each plot and log diameter was measured at the 

point of line intersection.   

 

Forest Disturbed area 

Reference Reference 

60 m 60 m 
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Table 2-2.  The classification system used to measure decay stage of deadwood (adapted 

from Thomas et al. 1979).  

 

Decay class Snags Logs 

Lightly decayed Branches and twigs 

present; bark present 

 

Boles with sound structural integrity; 

bark fully or somewhat intact; branch 

system may contain twigs and 

needles/leaves; little to no moss or other 

vegetation present on bole 

Moderately decayed Some branches 

detached; no twigs or 

needles/leaves; bark 

absent 

Boles somewhat soft but maintain some 

structural integrity; bark detached; 

branch system absent; moss/vegetation 

covering bole 

Severely decayed No branches or bark; 

bole often hollow 

Boles with very soft wood; often hidden 

as lumps on forest floor; covered in thick 

moss vegetation 

 

 The decomposition rate of wood was estimated using a time series approach with 

untreated popsicle sticks made of Betula chinensis (Chinese birch).  Popsicle sticks were 

used as a standard substrate so that decomposition rates could be compared across the 

disturbed area-forest gradient.  In the middle of each plot at five sites, six pre-weighed 

popsicle sticks were secured on the surface of the soil in June 2012.  Two and four 

popsicle sticks from each plot were retrieved after 118 to 121 days (4 months) in October 

2012 and after 337 to 342 days (11 months) in May 2013, respectively.  Each stick was 

then oven dried at 60°C until a constant mass was achieved and subsequently weighed to 

determine percentage mass loss.   

Due to time constraints, soil samples were collected only from three sites.  

Temperature, moisture, and pH were averaged from three sub-samples collected near the 

centre of each plot.  In October 2012, a digital thermometer was used to obtain the 

temperature of soil approximately 15 cm below the surface.  Soil moisture was 

determined using the gravimetric method (Jarrell et al. 1999) because it was inexpensive 
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and relatively simple compared to electronic methods (Strangeways 2003).  The mass of 

each sub-sample (~ 5 g) was recorded prior to placing samples in an oven at 60°C.  After 

a constant mass was achieved, initial mass was subtracted from final mass to estimate soil 

moisture.  A digital pH meter was used to measure soil pH of each sub-sample (1:1 soil 

water mixture). 

 

Data analysis    

I analyzed edge influence on the following variables: canopy cover, live stem 

density of all trees together and of individual tree species (Abies balsamea, Picea glauca, 

Betula papyrifera, Larix laricina), tree species diversity, snag and log densities of three 

different decay classes (light decay, moderate decay, severe decay), snag breakage, 

decomposition rate, soil temperature, soil moisture, soil pH, and structural diversity.  Tree 

species diversity was calculated using the Shannon-Weiner index.  Structural diversity 

was determined separately for live trees, snags, and logs by creating mutually exclusive 

structural groups as ‘pseudo-species’ based on frequency (Appendix 2-A).  The structural 

groups were then used to calculate the structural equitability index, which is a more 

suitable index compared to Shannon’s diversity index (structural diversity index = 

Shannon diversity index/ln (# pseudo-species)) (Valbuena et al. 2012).  Total structural 

diversity index included all groups representing live stems, snags, and logs.  Snag 

breakage was measured by calculating the percentage of snags with broken tops in each 

plot. 

The randomized test of edge influence (RTEI) (Harper & Macdonald 2011) was 

used to quantify the distance of edge influence (DEI) for each of the variables under 
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investigation.  Distance of edge influence is the distance over which a given response 

variable in significantly different compared to the reference ecosystem (Harper et al. 

2005).  Compared to other methodological approaches that estimate the distance of edge 

influence, the RTEI is considered one of the most effective as it considers randomization 

of the values in the reference ecosystem as well as of the values at the forest edge (Harper 

& Macdonald 2011).  The no blocking method was used because not all of the study sites 

included reference plots.  RTEI involved the following steps: 1) the observed difference 

between the mean of the reference values and the mean of the values at a given distance 

from the edge was calculated, 2) all values were combined and then randomly assigned as 

either edge or reference, 3) the calculation in step 1 was repeated for the randomized data, 

4) steps 2 and 3 were repeated 5000 times to obtain a distribution of differences from the 

randomization of the data.  The percentile of the observed difference within the 

distribution of randomized differences was subsequently used as the p-value.  Using a 

two-tailed test, the mean edge value was considered to be significantly different than the 

reference values when the p-value was in the upper 97.5 or lower 2.5 percentiles.  The 

analysis was performed for each distance along the edge transect (-60, -40, -20, -10, 0, 10, 

20, 40, 60 m) using the disturbed area reference and forest reference separately.  To 

address the issue of multiple testing, DEI was only considered significant if there were at 

least two consecutive significant p-values.  
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3.  Results 

 

 Spruce budworm outbreak-forest edges were abrupt zones of transition between 

adjoining disturbed areas and relatively undisturbed forest.  Edge influence did not extend 

into the forest for any of the response variables under investigation when compared to the 

forest reference, suggesting that the forest side of the edge was not significantly different 

from the undisturbed forest.   

The transition zone was approximately 10 m in width and extended from what 

was arbitrarily defined as the forest edge (the limit of continuous canopy) into the 

disturbed area.  Within this narrow zone of transition, live stem density and canopy cover 

were significantly different than both the disturbed area reference and forest reference 

(Figure 2-3a-b).  Canopy cover was reduced by half and live stem density decreased from 

1300 ± 358 trees/ha to 400 ± 103 trees/ha from the edge to 10 m into the disturbed area.  

Similar to canopy cover and live stem density, maximum tree height also increased from 

the disturbed area into the forest and revealed a sigmoidal shaped pattern across the edge 

gradient (Figure 2-3c).  Maximum tree height was highest 10 m into the forest from the 

edge and was almost twice as high in the forest reference compared to the disturbed area 

reference.  
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Figure 2-3.  Mean (a) canopy cover, (b) live stem density, and (c) maximum tree height 

along the insect disturbed area-forest edge.  Bars represent ± 1 standard error.  Open 

circles represent values for the disturbed area reference (D.R.) and forest reference (F.R.).  

Solid and dashed horizontal lines at the top of plots indicate the distance of edge 

influence (DEI) for values compared to the forest reference and disturbed area reference, 

respectively.   

 

 

 

(a) 

(b) 

(c) 
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Only four tree species were identified in the study area.  Abies balsamea 

represented the greatest density at every distance from the edge, except in the disturbed 

area reference where Picea glauca and Betula papyrifera were the dominant species 

(Table 2-3).  Larix laricina was absent except at 40 m and at 60 m from the edge into the 

forest and in the forest reference.  Tree species diversity was zero at 20 m to 60 m from 

the edge into the disturbed area and values were significantly higher 0 m to 10 m from the 

edge into the forest compared to the disturbed area reference.   

 

Table 2-3.  Mean stem density of individual species and species diversity at different 

distances from the spruce budworm disturbed area-forest edge.  Negative values represent 

the distances from the edge on the disturbed side.  Distance of edge influence (DEI) is the 

set of consecutive distances that were significantly different than the disturbed area 

reference (D.R.) or the forest reference (F.R.).  

 

Distance 

from edge 

(m) 

Stem density (#/ha) (± 1 SE) Species 

diversity  

(± 1 SE) 
Abies 

balsamea 
Picea glauca 

Betula 

papyrifera 
Larix 

laricina 
D.R. 7 ± 7 20 ± 15 60 ± 38 0 ± 0 0.09 ± 0.06 
-60 50 ± 50 17 ± 17 0 ± 0 0 ± 0 0.00 ± 0.00 
-40 100 ± 100 33 ± 21 0 ± 0 0 ± 0 0.00 ± 0.00 
-20 283 ± 145 83 ±54 0 ± 0 0 ± 0 0.00 ± 0.00 
-10 283 ± 101 117 ± 83 0 ± 0 0 ± 0 0.10 ± 0.10 
0 1083 ± 376 217 ± 75 0 ± 0 0 ± 0 0.46 ± 0.11 
10 1750 ± 530 717 ± 341 0 ± 0 0 ± 0 0.43 ± 0.14 
20 2250 ± 706 1167 ± 528 0 ± 0 0 ± 0 0.35 ± 0.12 
40 2167 ± 685 1183 ± 561 0 ± 0 50 ± 50 0.31 ± 0.13 
60 2067 ± 1037 1200 ± 636 17 ± 17 50 ± 50 0.43 ± 0.14 
F.R. 1458 ± 545 1717 ± 587 0 ± 0 8 ± 8 0.28 ± 0.10 
DEI (m)      
D.R. -20 to 60 0 to 60 -- -- 0 to 10 
F.R. -60 to -40 -60 to 0 -- -- -60 to -20 
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Snag density increased from the disturbed area into the forest, where density was 

highest 20 m from the edge on the forest side (Figure 2-4a).  The majority of snags on the 

disturbed side of the edge were moderately or severely decayed whereas a greater 

proportion of snags located over 10 m from the edge into the forest were lightly decayed 

(Figure 2-4a) and of smaller diameter (Appendix 2-C).  Edge influence on overall snag 

density extended further when compared to the disturbed area (DEI = - 20 m to 60 m) 

than when compared to the forest reference (DEI = -60 m to -40 m).  Severely decayed 

snag density did not exhibit significant edge influence and extent of edge influence on 

lightly decayed snag density did not surpass the forest edge.  Forest edge creation did not 

significantly affect the proportion of broken snags despite a general decrease from the 

disturbed area into the forest (Figure 2-4b).       

In contrast to overall snag density, total log density generally declined from the 

disturbed area into the forest (Figure 2-4c) yet there was no significant edge influence. 

Moderately decayed log density was the only decay class to exhibit edge influence (DEI = 

-40 m to -20 m compared to the forest reference).  Among the three decay classes, 

moderately decayed was the most dominant followed by severely decayed and then 

lightly decayed.    
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Figure 2-4.  Mean (a) snag density by decay class, (b) snag breakage, and (c) log 

abundance by decay class along the insect disturbed area-forest edge.  In (b), open circles 

represent values for disturbed area reference (D.R.) and forest reference (F.R.) and bars 

represent ± 1 standard error.  Standard error values for (a) and (c) are included in 

Appendix 2-B. 

 

 

 

(a) 

(b) 

(c) 
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Decomposition rate fluctuated across the spruce budworm-induced forest edges 

despite slower rates in the forest reference compared to the disturbed area reference 

(Table 2-4).  Average decomposition rates after 4 months and 11 months were 

significantly greater 10 m from the edge into the forest compared to the disturbed area 

reference.  Soil temperature, moisture, and pH did not exhibit significant edge influence 

(Table 2-4). 

 

Table 2-4.  Mean decomposition after 4 months and after 11 months, and soil 

temperature, moisture, and pH at different distances from the spruce budworm disturbed 

area-forest edge (D.R. = disturbed area reference, F.R. = forest reference).  Negative 

values represent the distances from the edge on the disturbed side.  Asterisks indicate 

distances from the edge that were significantly different than the disturbed area reference. 

 

Distance 

from edge 

(m) 

Decomposition ± 1 SE 

(% mass change) 
Soil variables 

After 4 months 
After 11 

months 

Temperature 

(°C) ± 1 SE 
Moisture 

(%) ± 1 SE 
pH ± 1 SE 

D.R. 21.9 ± 2.3 36.3 ± 2.1 17.7 ± 0.7 49.4 ± 5.9 4.3 ± 0.1 
-60 21.6 ± 3.1 30.0 ± 1.4 18.1 ± 0.9 57.2 ± 7.9 4.2 ± 0.1 
-40 14.9 ± 0.6 29.3 ± 2.5 17.9 ± 0.9 68.1 ± 16.6 4.1 ± 0.1 
-20 15.7 ± 1.9 30.9 ± 3.0 17.0 ± 0.7 64.9 ± 11.7 4.5 ± 0.1 
-10 17.2 ± 2.3 29.1 ± 2.7 17.3 ± 0.9 43.5 ± 12.5 4.7 ± 0.0 
0 18.2 ± 2.9 26.8 ± 2.0 16.6 ± 0.9 60.4 ± 12.0 4.4 ± 0.0 
10 14.2 ± 0.7* 24.9 ± 2.2* 16.5 ± 0.8 45.4 ± 11.2 4.5 ± 0.1 
20 20.4 ± 3.0 25.2 ± 2.5 16.4 ± 0.8 48.4 ± 12.5 4.6 ± 0.1 
40 20.1 ± 3.5 29.9 ± 3.7 16.5 ± 1.0 51.7 ± 4.1 4.7 ± 0.1 
60 15.0 ± 1.5 23.0 ± 1.2* 16.6 ± 1.0 50.5 ± 9.0 4.7 ± 0.0 
F.R. 14.8 ± 1.3 24.0 ± 1.5 14.8 ± 0.7 29.3 ± 2.1 4.5 ± 0.0 
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The forest side of the edge was characterized by greater tree and snag structural 

diversities but lower log structural diversity compared to the disturbed side of the edge 

(Figure 2-5).  When compared to the forest reference, tree and snag structural diversities 

were only significantly different on the disturbed side (Figure 2-5a-b).  Edge influence on 

tree structural diversity (DEI = -20 m to 60 m) was slightly less than snag structural 

diversity (DEI = -40 m to 60 m) when compared to the disturbed area reference.  Log 

structural diversity did not experience significant edge influence compared to either 

reference (Figure 2-5c) and overall structural diversity was significantly different up to 10 

m from the edge into the disturbed area when compared to the forest reference (Figure 2-

5d).   



 38 

 
 

Figure 2-5.  Mean structural diversity index for (a) live trees, (b) snags, (c) logs, and (d) 

all structural components combined along the insect disturbed area-forest edge.  Bars 

represent ± 1 standard error.  Open circles represent values for disturbed area reference 

(D.R.) and forest reference (F.R.).  Solid and dashed horizontal lines at the top of plots 

indicate distance of edge influence (DEI) for values compared to the forest reference and 

disturbed area reference, respectively.   

(a) 

(b) 

(c) 

(d) 
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4.  Discussion 

 

  Structural changes caused by the latest spruce budworm outbreak in Cape Breton 

Highlands National Park were still evident three decades post-edge creation.  As 

expected, the disturbed side of the edge contained fewer trees and lower canopy cover 

than the forest side as a result of heavy tree mortality from the insect outbreak.  Shorter 

trees, which were premature during heavy insect infestation, were the only surviving 

stems in the disturbed areas.  The outbreak caused greater mortality in taller trees since 

the insect defoliator prefers more mature host trees.  Tree growth rates in disturbed areas 

can be slower than those in intact forests (Chapman & Chapman 1997), which could also 

explain the relatively low tree height on the insect disturbed side of the edge.  In addition 

to distinct structural differences between the disturbed area and the relatively undisturbed 

forest, overstorey structure at the interface between the areas was unique.  

 

Narrow transition zones resulting from the spruce budworm outbreak 

The narrowness of the 10 m wide transition zone that characterized the spruce 

budworm-induced edges suggests that the edges were abrupt as the contrast in vegetation 

structure between the disturbed area and adjacent forest was apparent over a relatively 

short distance.  The underlying mechanisms responsible for the abruptness of the 

budworm-induced forest edges are unknown but here I present and discuss a few 

hypotheses.  Abies balsamea and Picea glauca, the two main host species of the spruce 

budworm, were the dominant tree species on the forest side of the edge so host density 

was not the cause for cessation of the outbreak at the edge.  Even though spruce budworm 
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populations can decline due to disease (Royama 1984) and predation (Régnière & Nealis 

2007), these local ecological factors probably would have caused more gradual forest 

edges.  The outbreak was most likely advancing steadily and then stopped due to 

inclement weather such as high rainfall and freezing temperatures at the time of larvae 

emergence and post-emergence, respectively (Sanders & Lucuik 1985).  Therefore, the 

abruptness of the spruce budworm-induced forest edges throughout Cape Breton 

Highlands National Park was likely caused by sudden changes in regional climate.  

It is also unclear why there was a lack of significant edge influence on forest 

structure using the forest reference, which suggests that the edge was structurally similar 

to undisturbed forest.  High resilience to natural disturbances in boreal forests could be 

responsible for the negligible influence on vegetation although prior research indicated 

significant edge effects in boreal ecosystems.  For instance, distance of edge influence on 

forest structure extended up to 10 m from the edge into the forest at anthropogenic edges 

(Harper & Macdonald 2002; Rheault et al. 2003; Harper et al. 2004).  At inherent forest 

edges, the distance of edge influence on primary responses extended from the edge up to 

20 m into forest (Harper & Macdonald 2001; Komonen 2009).  At natural edges created 

by fire, forest structure response variables had distance of edge influence that extended up 

to 40 m from the edge into the forest (Harper et al. 2004).  Boundaries created by 

different natural disturbances have distinct vegetative characteristics (McIntire & Fortin 

2006), which could potentially explain the inconsistent findings for edge influence.  
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Structural development since edge creation 

Forest edges are not static hence structural attributes, such as tree height, can 

change over time.  Maximum tree height could have been highest 10 m from the edge into 

the forest due to increased resource availability such as light, which would enhance tree 

growth close to the edge.  Murphy (2013) measured tree radial growth along some of the 

transects and found higher average growth rates post edge creation compared to pre-

budworm outbreak growth rates at 10 m from the edge into the forest. Although trees 

growing at 0 m receive more light exposure than those growing at 10 m, they are also 

subjected to higher wind speeds (Chen et al. 1995; Davies-Colley et al. 2000), which may 

have restricted tree height directly at the edge. 

Contributions to deadwood input and deadwood transformation continued to 

persist during the three decades after edge creation.  Snag density increased yet log 

density decreased from the disturbed area into the forest interior.  Insect caused-tree 

mortality initially resulted in standing deadwood.  The majority of the stems that died 

from insect defoliation have since fallen and become logs hence the greater log density 

and lower snag density on the disturbed side of the edge compared to the forest side.  

After the collapse of the spruce budworm outbreak in Cape Breton, 17% of the dead trees 

had already blown down after four years (Ostaff & MacLean 1989).  Furthermore, 

blowdown continues to play an important role in the transformation of snags to logs up to 

15 years after outbreak collapse (Spence & MacLean 2012).  Higher percentages of snag 

breakage in the disturbed area in my study and in Ostaff & MacLean (1989) suggest 

stronger winds compared to the forest.  While studying maintained edges, Davies-Colley 

et al. (2000) concluded that wind speeds were consistently higher up to 80 m from the 
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edge into the disturbed area than in the forest side of the edge.  Therefore, the majority of 

snags resulting from the insect outbreak have most likely already blown over within the 

last few decades to become logs.  

An examination of deadwood in different stages of decay provides insight into the 

relationship between the process of decomposition and time since disturbance.  Compared 

to the disturbed area reference, decomposition rate was significantly slower 10 m from 

the edge into the forest, where the abundance of lightly decayed snags was relatively 

high.  According to results obtained from dendrochronology techniques used to correlate 

snag degradation classification systems with predictions of time since death (Campbell & 

Laroque 2007; Aakala et al. 2008; Angers et al. 2012), snags classified as light, moderate, 

and severe decay experienced death post-outbreak, during the outbreak, and pre-outbreak, 

respectively.  Since lightly decayed snags are estimated to have died within the past 15 

years (Aakala et al. 2008; Angers et al. 2012), higher proportions of lightly decayed, 

small diameter snags on the forest side of the edge compared to the disturbed side were 

most likely the result of self-thinning post-outbreak.  Greater light availability on the 

forest side of the edge compared to the forest interior may have caused increased sapling 

growth following edge creation, which then led to self-thinning and higher lightly 

decayed snag density near the edge.  

Previous research on forest edges created by wildfire indicated that the forest edge 

contained greater amounts of more recent deadwood compared to the disturbed area 

(Harper et al., unpublished) but a similar phenomenon was only observed for snags at the 

spruce budworm-induced edges.  Three hypotheses for more recent deadwood at the edge 

compared to the disturbed area are: 1) mortality occurs later at edges compared to the 
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disturbed area due to partial disturbance at edges, 2) windthrow contributes more recent 

deadwood post-edge creation, and 3) decomposition is slower at the edge compared to the 

disturbed area (Harper et al., unpublished).  More recently decayed snags at the spruce 

budworm-forest edges were more likely the result of self-thinning than partial disturbance 

due to the high abundance of small-diameter trees at the edge.  The lack of significant 

edge influence on snag breakage and log abundance suggest that windthrow was 

indifferent at the edge.  Therefore, my results support the third hypothesis because 

decomposition rate was statistically significantly slower 10 m from the edge into the 

forest when compared to the disturbed area reference.  

The lack of extensive edge influence on decomposition may reflect the absence of 

significant edge influence on the abundance of logs in separate decay classes.  The 

decomposition rates represent decomposition of deadwood on the ground rather than of 

standing deadwood because the sticks were placed on the surface of the soil similar to 

logs.  Furthermore, although the popsicle sticks were used as a common substrate to 

provide comparisons of decomposition rates relative to distance from edge, they could not 

provide an accurate depiction of decomposition rates on all species in the study area since 

wood decay rates vary depending on plant species (Yatskov et al. 2003; Freschet et al. 

2012).  

Even though the spruce budworm outbreak contributed a substantial amount of 

deadwood to the area, the scarcity of live trees lowered total structural diversity in the 

severely disturbed area.  Total structural diversity was highest 10 m from the edge into 

the forest, which suggests that the interface may function as a distinctive habitat 

containing a mixture of live trees, logs, and snags.  Both snags and logs are important 
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habitat features for the endangered American marten (Martes americana) (Payer & 

Harrison 2000), therefore the insect disturbed area-forest edge may play an important role 

in habitat quality by providing a variety of structural components.  Future studies could 

develop more complex structural indices that give extra weight to specific or desirable 

habitat characteristics (Spies & Franklin 1988). 

Habitat quality and edge characteristics should be monitored over time.  Forest 

edges recede after isolation (Gascon et al. 2000) hence the position of the spruce 

budworm-induced edges could have shifted since edge creation.  More specifically, the 

distinct contrast in overstorey structure could have initially been situated approximately 

10 m into the disturbed area from what was considered the edge at time of sampling.  

Future studies could incorporate long-term monitoring into sampling designs to better 

understand the temporal dynamics of vegetation structure at forest edges. 

 

5.  Conclusions 

 

Transition zones of approximately 10 m between the disturbed areas and intact 

forests characterized the spruce budworm-induced edges in Cape Breton Highlands 

National Park.  Initial effects of edge creation included reduced canopy cover and tree 

density compared to the undisturbed forest.  Tree mortality caused by the insect outbreak 

resulted in snags, which have transformed into logs since the collapse of the outbreak.  In 

contrast to higher log abundance on the disturbed side of the edge, the forest side of the 

edge contained more snags, the majority of which were recently decayed and resulted 

from self-thinning.  Higher structural diversity at the spruce budworm outbreak-forest 
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edge compared to the disturbed area reference suggests that the edge may play a more 

important role in providing habitat for some species.  Evidence of the initial effects of 

edge creation in addition to structural changes since the insect disturbance reveals that the 

spruce budworm-induced edges are not merely intermediate zones of transition between 

disturbed areas and adjacent forests, but are active features of the landscape characterized 

by unique structural attributes.  
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Appendix 2-A: Classification of structural groups of trees, snags, and logs used to 

calculate structural diversity indices. 

 

 Relative height Diameter (cm) Decay stage 

Live trees    

Suppressed Suppressed > 5  

Small diameter 

intermediate height 

Intermediate 5 – 10   

Large diameter 

intermediate height 

Intermediate > 10  

Small diameter tall Co-dominant, Dominant 5 – 10  

Medium diameter tall Co-dominant, Dominant 11 – 15  

Large diameter tall Co-dominant, Dominant > 15  

Snags    

Stump < 3 m All 1 – 3 

Small diameter 

suppressed recent 

Suppressed 5 – 10 1 

Small diameter 

suppressed decayed 

Suppressed 5 – 10 2, 3 

Large diameter recent Suppressed, Intermediate, 

Co-dominant, Dominant 

> 10 1 

Large diameter 

suppressed decayed 

Suppressed > 10 2, 3 

Small diameter tall 

recent 

Intermediate, Co-dominant, 

Dominant 

5 – 10 1 

Tall decayed Intermediate, Co-dominant, 

Dominant 

All 2, 3 

Logs    

Small lightly decayed  5 – 10 1 

Small moderately 

decayed 

 5 – 10 2 

Small well decayed  5 – 10 3 

Medium lightly decayed  11 – 15 1 

Medium moderately 

decayed 

 11 – 15 2 

Medium well decayed  11 – 15 3 

Large lightly decayed  > 15 1 

Large moderately 

decayed 

 > 15 2 

Large well decayed  > 15 3 
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Appendix 2-B: Mean snag and log densities of each decay class at different distances 

from the spruce budworm disturbed area-forest edge and corresponding distance of 

edge influence (DEI) when compared to the disturbed area reference and forest 

reference.   

 

Negative values represent the distances from the edge on the disturbed side.  

 

Distance 

from 

edge (m) 

Snag density (# snags/ha) ± 1 SE Log abundance (# logs/20 m) ± 1 

SE 

Light 

decay 

Moderate 

decay 

Severe 

decay 

Light 

decay 

Moderate 

decay 

Severe 

decay 

Disturbed 

area 

reference 

42 ± 23 25 ± 11 25 ± 11 .3 ± .2 6.1 ± 1.0 1.4 ± .4 

-60 50 ± 34 50 ± 22 67 ± 33 .3 ± .3 7.7 ± 3.4 1.5 ± .5 

-40 17 ± 17 150 ± 81 83 ± 40 .8 ± .5 8.8 ± 1.3 1.5 ± .4 

-20 117 ± 65 250 ± 109 150 ± 76 0 ± 0 7.3 ± 1.9 1.3 ± .6 

-10 67 ± 42 233 ± 61 150 ± 81 .2 ± .2 5.3 ± 1.4 2.5 ± .8 

0 217 ± 83 400 ± 106 50 ± 34 .2 ± .2 3.7 ± 1.3 2.2 ± .7 

10 767 ± 211 183 ± 48 117 ± 48 .2 ± .2 4.7 ± 1.7 2.2 ± 1.1 

20 967 ± 246 300 ± 68 83 ± 31 0 ± 0 3.7 ± 1.6 2.0 ± .9 

40 783 ± 170 83 ± 31 150 ± 56 .2 ± .2 1.8 ± .7 1.7 ± .7 

60 533 ± 184 300 ± 93 50 ± 34 1.2 ± .8 4.0 ± 1.7 .5 ± .3 

Forest 

reference 
650 ± 110 292 ± 85 125 ± 41 1.0 ± .4 3.2 ± .6 1.5 ± .5 

DEI (m)       

D.R. 0 to 60 -20 to 60 -- -- -- -- 

F.R. -60 to 0 -- -- -- -40 to -20 -- 
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Appendix 2-C: Mean snag densities of each decay class and dbh (diameter at breast height) class at different distances from the 

spruce budworm disturbed area-forest edge.   

 

Negative values represent the distances from the edge on the disturbed side.  

 

 Average snag density (# snags/ha) ± 1 SE 

Snag decay class Light Moderate Severe 

dbh class (cm) 5 – 10 11 – 15 > 15 5 – 10 11 – 15 > 15 5 – 10 11 – 15 > 15 

Disturbed area 

reference 
20 ± 20 7 ± 7 0 ± 0 7 ± 7 0 ± 0 13 ± 9 7 ± 7 0 ± 0 27 ± 12 

-60 50 ± 34 0 ± 0 0 ± 0 17 ± 17 0 ± 0 33 ± 21 17 ± 17 33 ± 21 50 ± 22 

-40 0 ± 0 0 ± 0 17 ± 17 100 ± 63 50 ± 50 0 ± 0 17 ± 17 33 ± 33 50 ± 50 

-20 50 ± 50 33 ± 33 33 ± 21 133 ± 115 83 ± 48 50 ± 22 50 ± 22 167 ± 17 83 ± 65 

-10 33 ± 21 17 ± 17 17 ± 17 67 ± 49 67 ± 33 100 ± 63 50 ± 22 50 ± 34 50 ± 34 

0 133 ± 42 50 ± 22 17 ± 17 117 ± 65 183 ± 75 83 ± 48 17 ± 17 33 ± 21 0 ± 0 

10 633 ± 204 50 ± 34 83 ± 40 50 ± 22 117 ± 48 17 ± 17 0 ± 0 67 ± 33 67 ± 49 

20 833 ± 254 100 ± 37 33 ± 21 150 ± 56 83 ± 40 100 ± 52 17 ± 17 17 ± 17 50 ± 22 

40 683 ± 156 67 ± 33 33 ± 21 50 ± 22 0 ± 0 33 ± 21 50 ± 22 33 ± 21 83 ± 48 

60 367 ± 193 100 ± 45 67 ± 33 183 ± 60 67 ± 49 50 ± 50 17 ± 17 0 ± 0 33 ± 33 

Forest reference 533 ± 81 100 ± 37 25 ± 18 208 ± 51 42 ± 19 58 ± 42 58 ± 29 17 ± 11 67 ± 22 
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Chapter 3: Moose browse severity, regeneration, and understorey composition at 

spruce budworm-induced forest edges 

 

Abstract 

 

Natural forest edges were created from tree mortality caused by a severe spruce 

budworm outbreak in the early 1980s in Cape Breton Highlands National Park, Nova 

Scotia.  An introduced moose population has since maintained these edges, thereby 

restricting forest succession.  Patterns of moose browsing and vegetation at these edges 

provides insight into the processes that are hindering regeneration of large forested areas 

in the park.  My objective was to determine patterns and extent of edge influence for 1) 

moose browse severity, 2) regeneration structure, and 3) species composition at the 

budworm-induced edges.  Browse intensity, saplings, and understorey plant species were 

sampled in contiguous quadrats along 120 m transects across six edges and in reference 

forest and disturbed areas.  Most saplings in the disturbed area were severely browsed and 

were shorter than those in the intact forest.  Understorey diversity as well as shrub, herb, 

and fern cover were significantly lower whereas sapling height and the percentage of 

unbrowsed saplings were higher at 25 – 30 m from the forest edge into the forest 

compared to the disturbed area and forest references.  The findings suggest that reduced 

browse pressure negatively affects unpalatable understorey growth.  The insect disturbed 

area was characterized by more shade intolerant species, increased graminoid cover, and 

reduced bryophyte cover compared to the forest.  Therefore, moose are maintaining the 

forest edges extending edge influence on forest regeneration into the forest by preventing 

sapling growth and altering species composition.  
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1.  Introduction 

 

 Forest edges are often prominent landscape features that contribute to spatial 

heterogeneity and can be characterized by distinct ecological patterns and processes.  

Edges can be naturally inherent as a result of differences in soil type, microclimate, 

topography, or geomorphology (Thomas et al. 1979).  Alternatively, forest edges can be 

induced by anthropogenic activities or natural disturbances including wildfires, 

avalanches, windstorms, and insect outbreaks.  While inherent edges are typically 

permanent features of the landscape, naturally induced edges are usually short-term 

features that eventually dissipate due to regeneration in the disturbed area adjacent to the 

forest (Thomas et al. 1979).  The majority of forest edge research has focused on edges 

created by human activity as opposed to edges induced by natural phenomena (Harper et 

al. 2005).  However, anthropogenic edges differ from natural edges because they are often 

more abrupt and the adjacent clearings are usually larger (Matlack & Litvaitis 1999).  An 

understanding of both edge types is required for increased knowledge of landscape 

processes and patterns.   

Natural forest edges were created by the latest spruce budworm (Choristoneura 

fumiferana) outbreak approximately 30 years ago in the boreal forest of northern Cape 

Breton Island, Nova Scotia.  Due to the cyclic nature of the spruce budworm and balsam 

fir forest (Baskerville 1975), it was expected that areas disturbed by the insect would 

regenerate after the outbreak collapse.  However, natural disturbances, such as budworm 

defoliation, create favourable moose (Alces alces) habitat by promoting sapling growth 

that is within reach of moose (Lautenschlager et al. 1997).  A large re-introduced moose 
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(Alces alces andersoni) population has been inhibiting forest regeneration in the Cape 

Breton Highlands.  Consequently, grasslands now dominate large tracts of previously 

forested land that was affected by the spruce budworm outbreak (Smith et al. 2010).   

It has been recognized that moose are foraging heavily in areas affected by the 

latest spruce budworm outbreak in northern Cape Breton (Basquill & Thompson 1996; 

Smith et al. 2010); however, recent studies focused solely on areas that were severely 

affected by the insect outbreak.  Therefore, there is a lack of knowledge related to the 

patterns of browse severity at the interface between forest stands that were not defoliated 

by the insect outbreak and disturbed areas.  The edges between forested stands and 

disturbed areas have been observed to be sharp (Smith 2007), yet ecological processes 

and species composition at these particular edges have yet to be thoroughly examined.  

Adequate moose habitat contains shelter from adverse weather conditions, optimal 

snow depth, and cover for predator avoidance (Timmermann & McNicol 1988).  Despite 

these habitat requirements, moose densities tend to be highest in areas affected by fires 

(Telfer 1970; LeResche et al. 1974; Bangs & Bailey 1980), logging (Dodds 1960; Telfer 

1967; Bergerud & Manuel 1968), and insect epidemics (Brassard et al. 1974; Forbes & 

Theberge 1993) due to superior forage production post-disturbance.  A mixture of insect 

disturbed and undisturbed areas is ideal for moose as preferred winter moose habitat 

contains various palatable, young species interspersed with mature stands that consist of 

palatable coniferous species (Cowan et al. 1950).  Therefore, forest edges are considered 

beneficial for moose because they supply cover adjacent to forage and provide a greater 

variety of palatable species (LeResche et al. 1974).  Although researchers in other regions 

found no correlation between moose browse and distance to forest edge (Hamilton et al. 
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1980; Andrén & Angelstam 1993), only the non-forested sides of the edge were 

considered and the edges under investigation were anthropogenic.   

An examination of herbivory in both the insect disturbed area and undisturbed 

forest is necessary to gain a better understanding of the interplay between natural edge 

creation and moose browsing as well as the potential effects on forest dynamics.  In 

addition to moose browse, an investigation of understorey structure and composition will 

reveal insight into the processes that are preventing forest regeneration in the park.    

My objective was to evaluate moose browse severity at spruce budworm-induced 

forest edges to ultimately determine the extent to which moose browsing is affecting 

understorey growth and composition.  The following questions were addressed:  

1) How does species-specific moose browse severity vary across the insect disturbed 

area-forest edge? 

2) What size of saplings are most vulnerable to browse? 

3) Do sapling height and density vary across the budworm-induced edge and/or 

among species? 

4) How do overall understorey cover, species composition, and species diversity vary 

across the spruce budworm-induced forest edge? 

 

2.  Methods 

 

Study area 

 The study area was located in Cape Breton Highlands National Park (46°50’N, 

60°30’W), which was established in 1936 and encompasses 950 km
2 

of northern Cape 
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Breton Island, Nova Scotia.  The surrounding Atlantic Ocean to the east and the Gulf of 

St. Lawrence to the west of the island contribute to the Park’s maritime climate.  Climatic 

normals (1971 – 2000) from nearby Pleasant Bay (46°49’N, 60°46’W) reported a mean 

January temperature of -5.3 ± 1.8°C, a mean July temperature of 18.1 ± 1.8°C, and a 

mean annual precipitation of 1450.1 mm (Environment Canada 2013).  The region is 

characterized by a plateau, which ranges in elevation from 350 m to 500 m above sea 

level and contains underlying Precambrian granitic and volcanic bedrock (Webb & 

Marshall 1999).  The plateau experiences heavy snowfall, high winds, and frequent fog 

(Webb & Marshall 1999). Approximately 88% of Cape Breton Highlands National Park 

is forested by a unique combination of Acadian taiga and boreal vegetation (Parks Canada 

2010).  In the boreal land region, which dominates approximately 50% of the park, the 

dominant tree species is Abies balsamea (balsam fir) interspersed with Picea glauca 

(white spruce) and Betula papyrifera (white birch).  Picea mariana (black spruce) and 

Larix laricina (eastern larch) are also present in moist areas.  Soils are mostly sandy loam 

of moderately coarse texture (Neily et al. 2003).   

 

Site selection and data collection 

Historical aerial photographs of Cape Breton Island taken in 1969 were compared 

to aerial photographs taken in 2009 to identify areas of forest canopy reduction caused by 

the outbreak.  Ground surveys were subsequently used to select six forest edges that were 

created by the spruce budworm outbreak of 1974 – 1985 (Figure 2-1).  The forest edge (0 

m) was defined as the point at which the intact forest transitioned into the insect disturbed 

area, or the limit of continuous canopy.  The following criteria were used in the edge 



 58 

selection process in order of decreasing importance: 1) the forest edge was adjacent to an 

area disturbed by the last spruce budworm outbreak, 2) the forest edge was accessible, 3) 

the forest area and the disturbed area extended at least 80 m from the edge in opposite 

directions, 4) the forest area and the disturbed area interiors (70 – 100 m from the edge) 

were located at least 100 m away from another edge, road, trail, or water body, 4) the 

forest area was fir-spruce dominated for at least 100 m from the edge into the interior, and 

5) the elevation was relatively uniform across the edge gradient.  Since moose were 

located throughout the entire park, criteria related to moose activity were not required.  A 

total of six sites were used in the study (Table 2-1). The furthest distance between two 

sites was 25 km while the shortest distance between two sites was 0.93 km. 

I established a 120 m long transect perpendicular to each of the six forest edges, 

which extended 60 m into both the forest and the disturbed area (Figure 3-1).  The 

distance of 60 m was chosen to detect edge influence, which usually dissipates within 50 

m from the edge in boreal forests (Harper et al. 2005).  The forest edge in the middle of 

the transect at 0 m was defined as the point at which the intact forest transitioned into the 

insect disturbed area, or the limit of continuous canopy.   Contiguous 1 m
2 

quadrats were 

used for sampling along the entire lengths of the transects.  Plots composed of five 

contiguous quadrats (1 m
2
) were established separate from the transects in the insect 

disturbed area and in the forest area to represent reference conditions.  The majority of 

these plots were located 100 m away from the insect disturbed area-forest edge; however, 

some of the reference plots were located only 70 m away from the edge due to spatial 

constraints.  Moreover, the patchiness of the study area restricted six reference plots from 



 59 

being established at every site, hence three plots were located in the disturbed area at five 

sites and three plots were established in the forest area at four sites. 

 

 
Figure 3-1.  Sampling design illustrating an edge transect and corresponding reference 

plots at an insect disturbed area-forest study site used to measure secondary and tertiary 

response variables.  Reference plots were 70 – 100 m away from the edge.  Thick solid 

lines represent contiguous quadrats (1 m
2
) in which data were collected.  Drawing is not 

to scale.   

 

Data were collected from June to August 2012.  The height and species of each 

seedling (height ≤ 10 cm) and sapling (height > 10 cm, diameter at breast height < 5 cm) 

growing in the contiguous quadrats were recorded.  Saplings were classified as short (< 

50 cm in height), intermediate (50 – 99 cm in height), or tall (≥ 100 cm in height).  Each 

sapling was assessed for moose browsing using a classification system based on the 

presence of live foliage, the growth form, and the proportion of browsed stems (Table 3-

1).  The classification system was adapted from Smith et al. (2010) to include an 

additional category so that dead saplings could be identified as either browsed or 

unbrowsed.  Some of the prior studies that evaluated moose browsing only considered 

whether a sapling was browsed or unbrowsed (e.g. Hamilton et al. 1980; Mastenbrook & 

Cumming 1989).  Although classification systems may be subjective, the results provide 

additional details regarding the intensity of herbivory and have been applied in previous 

 

Forest Disturbed area 

Reference Reference 

60 m 60 m 
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studies (e.g. Dodds 1960; Peek 1963; Andrén & Angelstam 1993; Thompson & Curran 

1993; Smith et al. 2010).  For this study, all of the individual saplings located in the 

sampling quadrats were classified as one of six different classes: live unbrowsed, lightly 

browsed, moderately browsed, severely browsed, dead unbrowsed, and dead browsed.  If 

there were fewer than five saplings found in a 5 m interval of contiguous quadrats, then 

the next closest saplings growing near the transect were evaluated for browse severity, up 

to 5 m from the transect.  The number of Abies balsamea, Betula papyrifera, and Picea 

glauca saplings and seedlings were tallied in each 1 m
2
 quadrat located along the edge 

transect and in the reference plots to obtain sapling and seedling densities. 

 

Table 3-1. Criteria used on individual saplings for determining severity of moose browse.  

The classification system was adapted from Smith et al. (2010). 

Browse Class 

Live Dead 

Unbrowsed 
Lightly 

browsed 

Moderately 

browsed 

Severely 

browsed 
Unbrowsed Browsed 

Live foliage Yes Yes Yes Yes No No 

Browse 

evidence 
No Yes Yes Yes No Yes 

Altered 

growth form 
No No 

Yes (some 

evidence) 

Yes 

(drastic 

evidence) 

No Yes 

Proportion of 

stems 

browsed 

None <1/3 
>1/3,  

< 2/3 
>2/3 None N/A 

Cylindrical 

and dense 

(Abies 

balsamea) 

No No No Yes No Yes 

Multiple dead 

stems (Betula 

papyrifera) 

No No No Yes No Yes 
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Overall cover of moose pellets, the shrub layer, the herbaceous layer, ferns, 

bryophytes, graminoids, fine woody debris, and litter were visually estimated to the 

nearest 1% up to 5%, and to the nearest 5% thereafter.  Individual species cover was 

estimated for shrubs, herbs, and ferns with the exception of Amelanchier spp., Aster spp. 

(other than A. acuminatus), Oxalis spp., Solidago spp. (other than Solidago macrophylla), 

and Dryopteris spp., which were identified to genus but were treated as species for the 

purpose of analysis.  Species with growth habits classified as either dwarf shrub or herb, 

according to CFIA and NRCan/CFS (2011), were considered to be part of the herbaceous 

layer vegetation while those classified as either small tree or shrub were considered as 

shrub layer vegetation. Visual estimation was used to determine cover because more 

rigorous methods, such as the use of point quadrats, would have been impractical and 

inaccurate due to dense and tall vegetation.  

 

Data analysis    

Percentages of Abies balsamea and of Betula papyrifera saplings in each browse 

class were calculated for each 5 m interval along the edge transects and for the reference 

sites.  Proportions of species were calculated separately to detect differences associated 

with moose diet preferences.  However, two species were excluded from analysis: Picea 

glauca saplings since none encountered at the study sites were browsed, and Acer rubrum 

saplings due to relatively low density, although some were lightly browsed.  In addition to 

analyzing browse severity among sapling species, moose browse severity was also 

analyzed using height class categories.  The percentages of saplings in each of the six 
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browse classes were calculated for each height class.  The tallest sapling of each of the 

three most common tree species (Abies balsamea, Betula papyrifera, and Picea glauca) 

growing in every 5 m interval along the edge and in the reference plots was used to 

examine maximum sapling height.  Species diversity was calculated using the Shannon-

Weiner index and overall understorey diversity included shrubs, herbs, and ferns.  Species 

found in at least 25 % of the 5 m transect intervals were examined on an individual level.  

To determine patterns across the insect disturbed area-forest edge, data were 

analyzed using generalized additive mixed models (GAMM) in the mgcv package (Wood 

2011) in the R software (R Core Team 2013).  This type of model was used to give 

flexibility in the modeling process so that asymmetry could be more easily detected than 

generalized linear modeling (Yee & Mitchell 1991).  Each site was recognized as a 

random variable in the models, therefore data collected at the same site were not 

considered independent from one another.  Variables related to browse severity were 

analyzed with binomial distribution.  Variables measured with count data (sapling and 

seedling densities) were analyzed with Poisson distribution while the remaining 

continuous variables (cover, species diversity) were analyzed using Gaussian distribution.  

Reference data were not included in the GAMM analysis due to the variation in the 

distances from the edge from which these data were collected.  The sequential Bonferroni 

test was used to address the issue of multiple comparisons and highly correlated response 

variables were analyzed collectively.   

The randomized test of edge influence (RTEI) (Harper & Macdonald 2011) was 

used to quantify the distance of edge influence (DEI) for each of the variables under 

investigation.  Compared to other methodological approaches that estimate the distance of 
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edge influence, the RTEI is considered one of the most effective as it considers 

randomization of the values in the reference ecosystem as well as of the values at the 

forest edge (Harper & Macdonald 2011).  The analysis compares the average difference 

of values at a specific distance from the edge and reference values to a distribution of 

randomized differences for the entire data set (Harper & Macdonald 2011).  The no 

blocking method was used because not all of the study sites included reference plots.  

RTEI involved the following steps: 1) the observed difference between the mean of the 

reference values and the mean of the values at a given distance from the edge was 

calculated, 2) all values were combined and then randomly assigned as either edge or 

reference, 3) the calculation in step 1 was repeated for the randomized data, 4) steps 2 and 

3 were repeated 5000 times to obtain a distribution of differences from the randomization 

of the data.  The percentile of the observed difference within the distribution of 

randomized differences was subsequently used as the p-value.  Using a two-tailed test, the 

mean edge value was considered to be significantly different than the reference values 

when the p-value was in the upper 97.5 or lower 2.5 percentiles.  The analysis was 

performed for each distance along the edge transect (-60, -40, -20, -10, 0, 10, 20, 40, 60 

m) using the disturbed area reference and forest reference separately.  To address the 

issue of multiple testing, DEI was only considered significant if there were at least two 

consecutive significant p-values.  
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3.  Results 

Moose pellet cover and browse 

Two different types of analyses provided separate results for moose pellet cover.  

The generalized additive mixed models (GAMM) indicated that the spatial pattern of 

moose pellet cover across the spruce budworm-forest gradient was not statistically 

significant (Figure 3-2).  However, the randomized test of edge influence (RTEI) revealed 

that moose pellet cover was significantly higher from -10 m on the disturbed side to 5 m 

from the edge into the forest compared to both the forest and disturbed area references 

(Figure 3-2).  Distances from the edge on the disturbed side and the forest side are 

represented using negative and positive values, respectively.  

 

 
Figure 3-2.  Percentage cover of moose pellets along the insect disturbed area-forest edge.  

Negative and positive values on the x-axis represent the disturbed and forest sides of 

edge, respectively (D.R. = disturbed area reference, F.R. = forest reference). Circles 

indicate average values from all sites at each 1 m distance along the transect and the trend 

line (dashed = p ≥ 0.05) represents the fitted model with 95% CI (dotted lines).  

Horizontal lines near the top of graph represent significant DEI as compared to the forest 

(solid line) and disturbed area (dashed line). 
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Moose browsing was more prevalent on the disturbed side of the edge compared 

to the forest side (Figure 3-3).  Of all Abies balsamea saplings examined, 15% and 45% 

were living and unbrowsed in the disturbed area reference and forest reference, 

respectively (Figure 3-3a).  Similarly, the percentage of live, unbrowsed Betula 

papyrifera saplings also exhibited an increasing pattern from the disturbed area into the 

forest, yet percentages were significantly higher at the edge compared to the disturbed 

area reference (Figure 3-3b).  The proportions of light and moderately browsed saplings 

were generally relatively low and did not reveal any edge influence (Figure 3-3c-f).  The 

majority of browsed saplings were severely browsed and characterized by stunted and 

other abnormal growth forms.  Both Abies balsamea and Betula papyrifera saplings 

exhibited significant decreasing patterns of severe browsing from the disturbed area into 

the forest (Figure 3-3g-h).  Compared to Abies balsamea, a lower percentage of Betula 

papyrifera saplings were severely browsed overall although DEI was greater for B. 

papyrifera than A. balsamea.  
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Figure 3-3.  Percentage of Abies balsamea saplings (n = 824) and Betula papyrifera 

saplings (n = 315) in individual live browse severity classes (as a proportion of the total 

number of live and dead saplings) along the insect disturbed area-forest edge.  Negative 

and positive values on the x-axis represent the disturbed and forest sides of edge, 

respectively (D.R. = disturbed area reference, F.R. = forest reference). Circles indicate 

mean values from all sites at each 5 m interval along the transect and the trend lines 

(dashed = p ≥ 0.05, solid = p < 0.05 before Bonferroni correction) represent the fitted 

model with 95% CI (dotted lines).  The pattern for lightly browsed Abies balsamea (c) 

was not significant at the 0.05 level after Bonferroni correction.  Horizontal lines near the 

top of the graphs represent significant DEI as compared to the forest (solid line) and 

disturbed area (dashed line). 



 67 

 

Overall, fewer saplings were dead than alive and causes of mortality varied 

between species and across the edge gradient (Figure 3-4).  The percentages of 

unbrowsed dead saplings of Abies balsamea and of Betula papyrifera were significantly 

greater on the forest side of the edge compared to the disturbed area side; however, only 

the former species had significant DEI when compared to both references (Figure 3-4a-b).  

Abies balsamea saplings that had experienced mortality consequent of browse were more 

abundant on the disturbed area side of the edge compared to the forest side (Figure 3-4c).  

Conversely, an opposite, yet non-significant, pattern was revealed for the percentage of 

severely browsed dead Betula papyrifera saplings, which increased from the disturbed 

area into the forest (Figure 3-4d).  
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Figure 3-4.  Percentage of Abies balsamea saplings (n = 824) and Betula papyrifera 

saplings (n = 315) in individual dead browse severity classes (as a proportion of the total 

number of live and dead saplings) along the insect disturbed area-forest edge.  Negative 

and positive values on the x-axis represent the disturbed and forest sides of edge, 

respectively (D.R. = disturbed area reference, F.R. = forest reference).  Circles indicate 

mean values from all sites at each 5 m interval along the transect and the trend lines 

(dashed = p ≥ 0.05, solid = p < 0.05) represent the fitted model with 95% CI (dotted 

lines).  Horizontal lines near the top of the graphs represent significant DEI as compared 

to the forest (solid line) and disturbed area (dashed line). 
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Browse severity classification patterns differed among distinct height classes as 

taller saplings were more severely affected by browsing (Figure 3-5).  The majority of 

short saplings (< 50 cm in height) were unbrowsed, particularly at the edge (Figure 3-5a).  

The shortest browsed saplings were 11 cm in height and were found growing in the 

disturbed area.  While the percentages of lightly browsed short saplings did not display a 

significant pattern across the disturbed area-forest gradient, short saplings that were 

moderately or severely browsed were more numerous in the disturbed area compared to 

the forest (Figure 3-5b-d).  Similar trends were observed for saplings of intermediate 

height (50-99 cm), yet relatively fewer saplings were unbrowsed (Figure 3-5e) and more 

saplings were browsed (Figure 3-5f-h) compared to shorter saplings.  No tall saplings (> 

99 cm in height) were unbrowsed in the disturbed area and very few were unbrowsed 

even in the forest reference (Figure 3-5i).  The percentages of tall saplings that were 

lightly browsed and moderately browsed increased from the disturbed area to the forest 

(Figure 3-5j-k).  The percentage of severely browsed saplings was greatest for tall 

saplings (Figure 3-5l) and decreased with shorter height classes.
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Figure 3-5.  Percentage of Abies balsamea and Betula papyrifera saplings (n = 1139) divided by three height classes (short = < 50 cm, 

intermediate = 50 – 99 cm, tall = > 99 cm) in individual live browse severity classes (as a proportion of the total number of live and 

dead saplings) along the insect disturbed area-forest edge.  Negative and positive values on the x-axis represent the disturbed and forest 

sides of edge, respectively (D.R. = disturbed area reference, F.R. = forest reference).  Circles indicate mean values from all sites at 

each 5 m interval along the transect and the trend lines (dashed = p ≥ 0.05, solid = p < 0.05 before Bonferroni correction) represent the 

fitted model with 95% CI (dotted lines).  The pattern for severely browsed intermediate saplings (h) was not significant at the 0.05 

level after Bonferroni correction.  Horizontal lines near the top of graphs represent significant DEI as compared to the forest (solid 

line) and disturbed area (dashed line). 
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Greater percentages of taller saplings were dead compared to saplings of shorter 

height (Figure 3-6).  Among short saplings, percentages of unbrowsed dead saplings were 

higher in the disturbed area (Figure 3-6a).  The maximum average percentage of severely 

browsed dead saplings was 25% and the proportion declined significantly from the insect 

disturbed area side of the edge into the forest (Figure 3-6b).  The percentages of 

intermediate and tall saplings that died from causes unrelated to browsing were 

significantly greater 16 – 40 m and 6 – 60 m from the edge into the forest compared to the 

disturbed area reference, respectively (Figure 3-6c,e).  Similar to short saplings, the 

average proportion of saplings of intermediate height representing severely browsed, dead 

saplings was zero in the forest reference (Figure 3-6d).  The percentage of tall saplings 

that died from browsing was greater than the proportions associated with short and 

medium height classes (Figure 3-6f).  
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Figure 3-6,  Percentage of Abies balsamea and Betula papyrifera saplings (n = 1139) divided by three height classes (short = < 50 cm, 

intermediate = 50 – 99 cm, tall = > 99 cm) in individual dead browse severity classes (as a proportion of the total number of live and 

dead saplings) along the insect disturbed area-forest edge.  Negative and positive values on the x-axis represent the disturbed and forest 

sides of edge, respectively (D.R. = disturbed area reference, F.R. = forest reference).  Circles indicate mean values from all sites at 

each 5 m interval along the transect and the trend lines (dashed = p ≥ 0.05, solid = p < 0.05) represent the fitted model with 95% CI 

(dotted lines).  Horizontal lines near the top of graphs represent significant DEI as compared to the forest (solid line) and disturbed 

area (dashed line).
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Regeneration 

Abies balsamea and Picea glauca were generally the tallest saplings on the 

disturbed side of the edge and on the forest side, respectively, whereas Betula papyrifera 

was the shortest species at the majority of distances from the edge (Figure 3-7a-c).  In the 

disturbed area reference, Picea glauca maximum sapling height was over twice as high as 

both Abies balsamea and Betula papyrifera maximum sapling heights.  Average 

maximum Abies balsamea sapling height was significantly higher 36 m to 60 m from the 

edge into the forest compared to the disturbed area reference (Figure 3-7a).  Neither 

Betula papyrifera nor Picea glauca exhibited significant edge influence (Figure 3-7b-c). 

Total sapling density did not differ significantly across the insect disturbed area-

forest gradient due to contrasting patterns of density between species.  Abies balsamea 

represented the greatest sapling density; however, there was no significant edge influence 

despite an overall increasing trend from the disturbed area to the forest interior (Figure 3-

7d).  In contrast, Betula papyrifera sapling density decreased significantly from the 

disturbed area to the forest (Figure 3-7e).  Even though Picea glauca sapling density was 

significantly lower at the edge (11 – 20 m) compared to the forest reference, there was no 

significant spatial pattern for this response variable and overall density was lower 

compared to density of the browsed species. Total seedling density increased significantly 

from the disturbed area into the forest and the greatest average seedling density occurred 

20 m from the edge into the forest (Figure 3-7f).  Abies balsamea accounted for the 

majority of the seedlings and was the only species found as a seedling in the forest 

reference quadrats.  Average seedling density of Betula papyrifera and Picea glauca did 
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not exceed one in any of the quadrats and neither species exhibited significant patterns 

across the edge gradient.  

 

 

 

Figure 3-7.  Mean maximum sapling height of (a) Abies balsamea, (b) Betula papyrifera, 

and (c) Picea glauca and mean density of (d) A. balsamea saplings, (e) B. papyrifera 

saplings, and (f) seedlings of all species along the insect disturbed area-forest edge.  

Negative and positive values on the x-axis represent the disturbed and forest sides of 

edge, respectively (D.R. = disturbed area reference, F.R. = forest reference).  Circles 

indicate mean values from all sites at each 5 m interval along the transect and the trend 

lines (dashed = p ≥ 0.05, solid = p < 0.05) represent the fitted model with 95% CI (dotted 

lines).  Horizontal lines near the top of the graphs represent significant DEI as compared 

to the forest (solid line) and disturbed area (dashed line). 
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Understorey composition 

Average cover of graminoids decreased along the disturbed area-forest gradient 

and was significantly lower up to 10 m from the edge into the disturbed area compared to 

the disturbed area reference (Figure 3-8a).  In contrast to the decreasing pattern of 

graminoids cover, bryophytes cover increased from the disturbed area into the forest up to 

approximately 35 m from the edge, at which point cover began to stabilize (Figure 3-8b).  

Furthermore, bryophytes cover was over six times greater in the forest reference than the 

disturbed area reference. Despite relatively low values of percentage cover, fine woody 

debris abundance was significantly lower in the disturbed area compared to the forest 

(Figure 3-8c).  Litter cover did not vary significantly across the edge gradient (Figure 3-

8d).  Average shrub layer cover was significantly lower at 11 to 25 m on the forest side of 

the edge compared to both the disturbed area and forest references (Figure 3-8e).  Overall 

herbaceous layer cover was relatively higher than shrub layer cover and decreased from 

the edge to 25 m into the forest, after which cover then steadily increased (Figure 3-8f).  

Overall fern cover exhibited a similar pattern to herb cover and was approximately 30% 

on the disturbed area side of the edge and decreased to 25 m from the edge into the forest 

before increasing again (Figure 3-8g).  



 76 

 
 

Figure 3-8.  Mean percentage cover of (a) graminoids, (b) bryophytes, (c) FWD = fine 

woody debris, (d) litter, (e) shrub layer species, (f) herbaceous layer species, and (g) fern 

species along the insect disturbed area-forest edge.  Negative and positive values on the 

x-axis represent the disturbed and forest sides of edge, respectively (D.R. = disturbed area 

reference, F.R. = forest reference).  Circles indicate mean values from all sites at each 1 m 

distance along the transect and the trend lines (dashed = p ≥ 0.05, solid = p < 0.05) 

represent the fitted model with 95% CI (dotted lines).  Horizontal lines near the top of the 

graphs represent significant DEI as compared to the forest (solid line) and disturbed area 

(dashed line). 
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A total of 16 species of shrubs and 22 species of herbs were identified, none of 

which were considered endangered.  The only exotic species, Rumex acetosella, was only 

found in the disturbed area.  The majority of shrubs and herbs that exhibited significant 

patterns in percentage cover across the edge gradient increased from the disturbed area 

into the forest (Amelanchier spp., Kalmia angustifolia, Vaccinium 

angustifolium,Clintonia borealis, Coptis trifolia, Epigaea repens, Gaultheria hispidula, 

Linnaea borealis, Maianthemum canadensis, Trientalis borealis) although cover of some 

species decreased (Rubus idaeus, Aster acuminatus, other Aster spp., Solidago 

macrophylla).  

Of the four ferns identified, cover of three species varied significantly across the 

insect disturbed area to forest interior (Table 3-2).  Percent coverage of Thelypteris 

noveborancensis and Osmundastrum cinnamomeum fluctuated across the edge gradient; 

however, the latter species was relatively more prevalent in the forest compared to the 

former species.  Pteridium aquilinum was most abundant on the disturbed area side of the 

edge.  Meanwhile, Dryopteris spp. cover fluctuated less than patterns for the other three 

fern species, despite a slight decrease in cover on the forest side of the edge.   

Among individual species of shrubs, herbs, and ferns, only Kalmia angustifolia 

had a significant distance of edge influence when compared to the forest reference (Table 

3-2).  The extent of edge influence compared to the disturbed area reference was greatest 

for Rubus idaeus and Solidago macrophylla (DEI = -10 to 60 m, Table 3-2).  

Maianthemum canadense was the only species that had significantly lower cover at a 

specific distance (26 to 35 m from edge into the disturbed are) compared to both 
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reference ecosystems.  Of the fern species, Dryopteris spp. cover only exhibited a 

negative edge response when compared to the disturbed area reference, while Thelypteris 

noveboracensis cover resulted in a negative edge response compared to the forest 

reference. 
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Table 3-2.  Average cover, generalized additive mixed model results, and distance of edge influence for individual understorey species.  

Estimated degrees of freedom = 1 when pattern is linear and higher values correlate positively with more non-linear curves. Bolded p-

values indicate significance at the 0.05 significance level after sequential Bonferroni correction.  Distance of edge influence (DEI) is 

distance from the edge over which edge influence is statistically significant compared with the forest or disturbed area reference. For 

average cover at each distance, see Appendix 3-B.    

 

 

 

Species Average cover (%) ± SE 

 

Generalized Additive Mixed 

Model 

Distance of Edge Influence (m) 

Disturbed 

area 

reference 

Edge (-5 to 5 

m) 

Forest 

reference 

Estimated 

degrees of 

freedom 

p-value Forest 

reference 

Disturbed area 

reference 

Shrub layer 
Amelanchier spp. 0.44

  
± 0.25 1.4 ± 0.55 1.7 ± 0.36 1.00 0.0015 -40 to -21 ns 

Kalmia 

angustifolia 
0.0 ± 0.0 0.0 ± 0.0 3.5 ± 0.7 4.16 < 0.0001 -60 to 10 31 to 60 

Rubus idaeus 5.7 ± 0.51 0.53 ± 0.22 0.0 ± 0.0 4.80 < 0.0001 -60 to -6 -10 to 60 

Sorbus 

americana 
0.7 ± 0.34 0.7 ± 0.23 0.53 ± 0.22 1.48 0.0777 ns ns 

Vaccinium 

angustifolium 
0.12 ± 0.08 1.7 ± 0.7 2.4 ± 0.7 1.00 0.0462 ns ns 

Herbaceous layer 
Aralia nudicaulis 3.0 ± 0.41 2.6 ± 0.35 2.0 ± 0.34 4.81 < 0.0001 ns ns 

Aster acuminatus 1.1 ± 0.26 0.7 ± 0.23 0.23 ± 0.11 1.00 < 0.0001 -55 to -16 ns 

Aster spp. (other 

than A. 

acuminatus) 

1.7 ± 0.45 0.0 ± 0.0 0.0 ± 0.0 1.00 0.00971 ns ns 

Clintonia 

borealis 
0.15 ± 0.07 0.6 ± 0.18 2.1 ± 0.53 6.08 < 0.0001 ns 6 to 15 
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Species Average cover ± S.E. (%) 

 

Generalized Additive Mixed 

Model 

Distance of Edge Influence (m) 

Disturbed 

area 

reference 

Edge (-5 to 5 

m) 

Forest 

reference 

Estimated 

degrees of 

freedom 

p-value Forest 

reference 

Disturbed area 

reference 

Coptis trifolia 0.52 ± 0.14 1.1 ± 0.25 0.25 ± 0.06 5.49 < 0.0001 ns ns 

Cornus 

canadensis 
9.7 ± 0.9 17.1 ± 1.7 14.1 ± 1.8 4.07 0.0517 ns ns 

Epigaea repens 0.0 ± 0.0 0.07 ± 0.07 0.20 ± 0.10 2.41 0.0149 ns ns 

Gaultheria 

hispidula 
0.01 ± 0.02 0.08 ± 0.05 0.53 ± 0.16 4.67 < 0.0001 ns 46 to 60 

Linnaea borealis 
0.0 ± 0.0 1.6 ± 0.26 1.8 ± 0.42 3.53 0.00156 ns 

-35 to 20, 31 

to 60 

Maianthemum 

canadensis 
1.0 ± 0.18 1.5 ± 0.24 1.5 ± 0.18 4.94 0.000699 -40 to -26 -35 to -26 

Mitchella repens 0.0 ± 0.0 0.40 ± 0.24 0.0 ± 0.0 2.09 0.0634 ns ns 

Oxalis spp. 0.36 ± 0.11 0.03 ± 0.02 0.28 ± 0.08 1.00 0.294 ns ns 

Solidago 

macrophylla 
2.0 ± 0.48 0.03 ± 0.02 0.07 ± 0.05 2.10 < 0.0001 ns -10 to 55 

Trientalis 

borealis 
0.03 ± 0.02 0.7 ± 0.14 1.2 ± 0.26 1.00 < 0.0001 -60 to -21 1 to 60 

Ferns 
Dryopteris sp. 6.3 ± 1.1 2.2 ± 0.7 2.3 ± 0.7 2.91 0.00321 ns -10 to -1 

Osmundastrum 

cinnamomeum 
0.11 ± 0.07 15.0 ± 2.6 3.7 ± 1.2 6.60 < 0.0001 -45 to -36 

-5 to 15, 36 to 

60 

Pteridium 

aquilinum 
0.8 ± 0.55 11.8 ± 3.4 2.8 ± 1.1 5.99 < 0.0001 ns ns 

Thelypteris 

noveboracensis 
5.5 ± 1.6 7.2 ± 4.2 0.47 ± 0.30 6.93 < 0.0001 -20 to -6 ns 
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Sapling and seedling diversities did not display significant spatial patterns across 

the edge gradient and seedling diversity was quite low, especially on the disturbed area 

side of the edge.  Total understorey species diversity was significantly lower 16 to 40 m 

from the edge into the forest compared to the disturbed area reference (Figure 3-9a).  

Herbs accounted for the greatest amount of diversity and followed a very similar pattern 

to total understorey diversity (Figure 3-9b).  Although fern diversity was relatively lower 

than herb diversity, the pattern across the gradient was similar with a decrease of 

approximately 20 m from the edge into the forest (Figure 3-9c).  Shrub diversity was 

significantly lower in the disturbed area and increased into the forest (Figure 3-9d). 

 

 
 

Figure 3-9.  Mean species diversity of (a) understorey plants (shrubs, herbs, and ferns 

combined), (b) herbs, (c) ferns, and (d) shrubs along the insect disturbed area-forest edge.  

Negative and positive values on the x-axis represent the disturbed and forest sides of 

edge, respectively (D.R. = disturbed area reference, F.R. = forest reference).  Circles 

indicate mean values from all sites at each 1 m interval along the transect and the trend 

lines (solid = p < 0.05) represent the fitted model with 95% CI (dotted lines).  Dashed 

horizontal line near the top of the graph represents significant DEI as compared to the 

disturbed area. 



 82 

 

4.  Discussion 

My results suggest that the preference for moose browse on the disturbed side of 

the edge caused a reduction in sapling growth and an increase in shade-intolerant species.  

In the following sections, I describe the potential function of the edge in relation to moose 

activity and then explain the spatial patterns and extents of edge influence for moose 

browse severity classes.  The influence of browsing on regeneration is subsequently 

addressed and followed by an explanation of the implications of understorey composition 

patterns on ecosystem dynamics.  

 

Moose pellet cover and browse 

 

Significantly higher moose pellet cover at the edge suggests that moose may be 

using the forest edge to travel between abundant food supply in the disturbed area and 

adequate thermal cover in the forest.  Moose in other parts of Nova Scotia prefer areas 

that contain excellent food supplies rather than those with extensive shelter (Telfer 1967), 

but moose abundance may be highest at the spruce budworm-induced forest edge because 

it is located in between both resources.  Moose may use different plant communities for 

specific purposes just as elk and deer use clear-cut openings only to feed but then return 

to the forest to ruminate (Lyon & Jensen 1980).  Moose prefer dense conifer cover for 

bedding sites (Telfer 1967; Van Ballenberghe & Peek 1971; Peek et al. 1976) and may 

retreat to shaded forest cover when temperatures are high because they are vulnerable to 

heat stress (Renecker & Hudson 1990).  Prior studies have indicated that moose use 

clearcut-forest edges (Mastenbrook & Cumming 1989) and logging roads (Van 
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Ballenberghe & Peek 1971) as travel corridors hence spruce budworm-forest edges may 

provide a similar function.   

The lack of significant difference in browsing intensity between Abies balsamea 

and Betula papyrifera suggests that moose did not prefer one species over the other.  

Higher percentages of unbrowsed Betula papyrifera at the edge compared to the disturbed 

area reference, a finding that was not shared with Abies balsamea, could be attributed to 

relatively lower Betula papyrifera height at the edge.  Moose preferred to feed on 

saplings greater than 50 cm in height and the maximum Betula papyrifera sapling height 

at the edge ranged from 42.5 cm to 46.8 cm.  Negative effects of herbivory on sapling 

growth of both browsed species could lead to more successful regeneration of unpalatable 

Picea glauca.  Even though Smith et al. (2010) concluded that Betula papyrifera was 

more severely browsed than Abies balsamea in the insect disturbed areas of the Cape 

Breton Highlands, sampling occurred in more remote insect disturbed areas hence other 

ecological factors could have influenced food preferences at their study sites.  

Moose preference for forage in the disturbed area was more likely related to food 

quality than food quantity.  While other studies found a negative correlation between 

palatable sapling density and moose browse damage (Bergerud & Manuel 1968; 

Thompson 1988; Brandner et al. 1990; Andrén & Angelstam 1993), similar trends were 

only observed for Abies balsamea at spruce budworm-induced forest edges.  Total sapling 

density did not vary significantly across the edge gradient, yet the disturbed area 

contained a greater amount of Betula papyrifera saplings compared to the forest.  Prior 

research indicates that Betula papyrifera is the preferred food source for moose (Pimlott 

1963; Peek et al. 1976; Lautenschlager et al. 1997; Smith et al. 2010), hence moose may 
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be foraging in the disturbed area rather than the forest as a result of higher Betula 

papyrifera sapling density.  Furthermore, Abies balsamea is mainly an important winter 

browse species and Betula papyrifera tends to be a substantial dietary component year-

round (Peek et al. 1976) so browse severity could be greater in the disturbed area because 

it provides a more constant supply of food throughout the year.  Moose herbivory of 

conifers has been found to be prevalent in areas with increased density of palatable 

deciduous tree species (Brassard et al. 1974; Heikkilä & Härkönen 1996) and Abies 

balsamea can be a less important dietary component when various other species are 

present (Peek 1974).  Consequently, the disturbed area may be a more attractive feeding 

site for moose due to a greater variety of palatable species.  

The difference in browse severity along the disturbed area-forest gradient could 

also be attributed to variations in the nutritional quality of forage.  Analysis of nutrition 

quality was beyond the scope of this study, however Bergerud & Manuel (1968) 

concluded that moose in Newfoundland selected Abies balsamea saplings with high 

protein content.  Furthermore, early successional stands can contain more nutritious 

forage compared to older stands (Cowan et al. 1950).  Thompson et al. (1989) 

demonstrated that twigs in commercially thinned stands were greater in length, weight, 

and diameter with higher concentrations of crude fats, crude protein, as well as some 

nutrients compared to those from unthinned stands.  

Moose browse damage was most severe for the tallest saplings, which are 

considered most vulnerable to moose (Andrén & Angelstam 1993).  Shorter saplings may 

be less affected by browse because they may be concealed by deep snow in winter.  Even 

though taller saplings were preferred, moose browsed saplings as short as 11 cm in 
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height, a finding which should be considered when creating future sampling designs 

related to moose browsing.  Other researchers have evaluated browse in restricted height 

classes often known as “browse zones” which ignore saplings shorter than 100 cm (e.g., 

Danell & Ericson 1986; Andrén & Angelstam 1993) or 50 cm (Basquill & Thompson 

1996).  Although moose in northern Cape Breton may be foraging on shorter species 

because the ungulate population is relatively high, an initial trial survey of browse 

damage in the study area may be useful for researchers to determine optimal height 

classes of interest because browse activity varies by location and depends on moose 

density. 

At the majority of the distances from the edge, most of the browsed saplings were 

considered severely browsed.  This supports results of Smith et al. (2010), who used a 

very similar browse damage classification system and also found that the severe browse 

class represented the greatest proportion of saplings.  Similar findings were represented in 

high moose density areas of Newfoundland, where 84% of trees were heavily browsed 

and the remainder was of moderately or lightly browsed (Dodds 1960).  Saplings severely 

affected by browsing may have difficulty surviving, may not reach their full growth 

potential, or may eventually die.  Bergerud & Manuel (1968) discovered that over half of 

trees with 75% of growth removed by simulated browsing died but less than 2% of trees 

with 10 – 50% of growth removed died within two years.  Living Abies balsamea should 

be able to recover within two years if browsing were to cease completely (Bergerud & 

Manuel 1968); however, in the absence of active population control, moose will continue 

to occupy the Cape Breton Highlands and browse on saplings even if the population 

decreases naturally.  
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In addition to the direct consequences of heavy browsing on individual saplings, 

indirect effects of browsing could potentially alter the entire ecosystem.  Secondary 

effects of severe browsing in boreal forest include a decline in nitrogen mineralization, 

microbial activity, as well as the availability of soil nutrients (Pastor et al. 1993).  

Changes in tree composition can result in negative effects on the ground layer as greater 

abundance of Picea may reduce litter quality and quantity (Pastor et al. 1993).  

Furthermore, indirect effects of understorey Abies balsamea removal, such as a shift from 

feathermoss seedbed types to those dominated by competing grasses, may result in 

decreased Abies balsamea germination potential (Gosse et al. 2011). Therefore, moose 

are not only having direct effects on individual plants by modifying growth forms or 

inducing mortality but they are also causing indirect effects through alterations in habitat 

characteristics and plant interactions.  

Other variables that influence spatial patterns of moose browse activity and 

movement, including predation, proximity to water, and snow characteristics, were 

beyond the scope of this study but also influence spatial patterns of moose browse activity 

and movement.  The lack of predators in northern Cape Breton could contribute to higher 

browse activity in the disturbed area since moose are not pressured to seek refuge and 

therefore select habitats based on increased forage abundance rather than protective cover 

(Massé & Côté 2009).  Moose frequent aquatic ecosystems in the summer not only to 

feed on aquatic vegetation, but also to reduce insect irritation (Flook 1959) or to cool off 

(Kelsall & Telfer 1974), hence proximity to water influences moose behaviour.  

Moose retreat to dense forest stands in periods of increased snow hardness (Peek 

et al. 1976) and rapid snow accumulation (Van Ballenberghe & Peek 1971).  Snow levels 
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less than 75 cm do not seem to affect moose movement (Berg & Phillips 1974; Hamilton 

et al. 1980; Mastenbrook & Cumming 1989) but snow depths greater than 75 cm seem to 

deter moose (Peek 1963; Telfer 1970; Krefting 1974; Hundertmark et al. 1990).  For the 

Cape Breton Highlands, 2012 climate data revealed that average snow depths were over 

60 cm for only two months of the year (February and March; Parks Canada, unpublished), 

hence moose may have continued to use the open areas in months of relatively lower 

snow depth.  Unfortunately, snow data were not collected along the spruce budworm 

induced forest edge and timing of browsing was not calculated, but perhaps saplings in 

the forest were browsed in months of deep snow cover or periods of increased snow 

hardness. 

 

Regeneration 

 Moose appeared to be preventing forest regeneration by restricting sapling 

growth, particularly on the insect disturbed side of the edge where browsing was most 

severe.  While Abies balsamea maximum sapling height increased from the disturbed area 

into the forest interior, browse severity decreased therefore suggesting that saplings 

relieved from herbivory pressure had greater opportunities for growth and survival.  Other 

studies revealed that moose browsing suppresses terminal growth of Abies balsamea 

(Bergerud & Manuel 1968; Risenhoover & Maass 1987; Brandner et al. 1990; Thompson 

& Curran 1993) and can inhibit individual trees from growing over one metre in height 

(Thompson et al. 1992; McLaren et al. 2004). 

 In contrast to Abies balsamea, maximum Betula papyrifera sapling height did not 

vary significantly across the insect disturbed area-forest edge.  Since B. papyrifera is a 
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shade-intolerant species, it was expected to be taller in the disturbed area where growth 

conditions were favourable.  However, moose browsing can restrict Betula spp. growth 

(Bergerud & Manuel 1968; Thompson et al. 1992; Andren & Angelstam 1993; Thompson 

& Curran 1993; Persson et al. 2005) hence more severe browse damage in the disturbed 

area may be limiting sapling height causing an insignificant difference in Betula 

papyrifera sapling height across the insect disturbed area-forest gradient.  Picea glauca 

was probably the tallest species in the disturbed area because it is unpalatable to moose 

and therefore was not browsed.  

 

Understorey composition 

Moose browsing could be indirectly affecting understorey composition by altering 

species competition.  The overall decrease in shrub layer cover, herbaceous layer cover, 

fern cover, and understorey diversity approximately 10 – 25 m from the edge into the 

forest corresponded to high seedling density, relatively low browse severity, and 

increased sapling height.  Reduced herbivory could benefit palatable saplings but 

consequently decrease the viability of non-dietary herbs, shrubs, and ferns as these 

understorey species experience greater competition for resources with vigorous saplings 

and seedlings.  In a moose exclosure study, Thompson & Mallik (1989) concluded that 

densities of unpalatable shrub species were higher outside the exclosures, where moose 

browsing reduced sapling density and consequently affected the amount of shading 

received by shrubs.  Therefore, the lower abundance of shrubs, herbs, and ferns on the 

forest side of the edge could be indirectly caused by reduced herbivory and patterns of 

understorey cover could alter if browse severity changed.   
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In addition to understorey species abundance, different levels of moose browse 

severity could eventually affect overstorey composition along the disturbed area-forest 

gradient.  The spruce budworm-forest edge was an intermediate zone of transition 

between high moose browse severity in the disturbed area and relatively low moose 

browse in the forest.  Future forest composition may be determined by moose, which have 

the ability to prevent recruitment of preferred species to reproductive-aged trees (McInnes 

et al. 1992; Heikkilä & Härkönen 1996; Gosse et al. 2011) and to thereby alter the upper 

canopy in the long term (Didion et al. 2009).  Because moose were preferentially feeding 

on Abies balsamea, the fir component of the ecosystem could decrease and therefore 

eventually prevent the return to the fir-dominated forests that were typical of the past 

(Brandner et al. 1990; McInnes et al. 1992).  Picea glauca saplings were much healthier 

than Abies balsamea and Betula papyrifera hence P. glauca density will most likely 

increase as a result of reduced competition (Snyder & Janke 1976; Thompson & Curran 

1993; Connor 1999), especially on the disturbed side of the edge where palatable species 

were most affected by browsing.  Since browsing was less severe on the forest side of the 

edge, changes in canopy composition will be less apparent.  Consequently, contrasts in 

vegetation composition between the severely browsed disturbed area and adjacent intact 

forest may increase.   

The dominance of graminoids cover on the disturbed side of the edge area could 

further prevent forest regeneration and help maintain the forest edge.  Calamagrostis 

canadensis was a main component of the graminoid cover in the spruce budworm 

disturbed areas (Smith et al. 2010).  This particular species has the ability to delay 

thawing of the soil and to decrease mean summer soil temperatures by 3.8°C, which 
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could potentially slow conifer seedling growth (Hogg & Lieffers 1991).  Furthermore, 

high abundance of Calamagrostis canadensis can also result in a smothering mulch layer 

that ultimately inhibits Betula papyrifera as well as Picea glauca seedling establishment 

(Cater & Chapin 2000). Nutrient input from large herbivore carcasses and waste products 

benefits graminoid cover (McKendrick et al. 1980).  Consequently, a positive feedback 

loop can occur as the prevention of seedling establishment and presence of moose can 

contribute to more extensive graminoids cover (Smith et al. 2010). 

Overall litter cover did not vary significantly across the spruce budworm-induced 

forest edge most likely because of the contrasting patterns of different litter types.  While 

litter on the forest side of the edge was mainly composed of leaf matter, litter on the 

disturbed area side of the edge was characterized by thick, insulating dead grass matter. 

The effects of these two litter types on soil conditions and plant growth could be 

investigated in the future.    

Species diversity was not higher at the edge compared to the adjacent ecosystems, 

possibly due to the gradual transition between disturbed oriented species and forest 

oriented species.  Greater diversity at other forest edges (Harper et al. 2005) usually 

results from the edge functioning as an adequate habitat for species found on both sides of 

the interface (Harris 1988), but the opposite effect may have occurred at the insect-

induced forest edges.  Species that were either disturbed area oriented (e.g. Rubus ideaus) 

or forest oriented (e.g. Kalmia angustifolia) were less abundant within 20 m from the 

edge, which could reflect a distinct contrast in growing conditions between the two 

ecosystems. 
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In contrast to the forest, the disturbed area was characterized by species that thrive 

under low canopy cover, such as Rubus ideaus (Ricard & Messier 1996).  The disturbed 

area also contained the only exotic species, Rumex acetosella, which is an early 

successional weed (Stopps et al. 2011).  Species that were able to grow in shaded as well 

as open canopy conditions, such as Cornus canadensis (Hall & Sibley 1976), did not 

exhibit edge influence and were ubiquitous across the disturbed area-forest gradient.  

Therefore, the disturbed area was an attractive growing habitat for fast growing shade-

intolerant species, which would have most likely been outcompeted by shade-tolerant 

species had forest regeneration progressed post-disturbance.  

 

5.  Conclusions and implications 

Moose browsing appeared to be maintaining the spruce budworm-forest edges in 

Cape Breton Highlands National Park by restricting sapling height and preventing forest 

regeneration.  While moose used the forest edge as a travel corridor, these ungulates 

selected the disturbed side of the edge as a preferred browsing area.  Overall sapling 

density did not differ significantly across the edge, yet greater density of Betula 

papyrifera saplings in the disturbed area suggests that diet preference may be based on 

quality and variety rather than quantity.  Severely browsed saplings may eventually die or 

may not reach their full growth potential hence sapling mortality caused by browsing may 

increase, particularly in the disturbed area.  Graminoids and other shade intolerant species 

capable of thriving in the disturbed area were benefitting from the hindrance of forest 

succession and moose diet preferences could ultimately alter species composition.  

Consequently, forest previously dominated by Abies balsamea may become dominated by 
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unpalatable Picea glauca, and grassland expansion may lead to habitat loss for species 

dependent on closed-canopy forest.  The spruce budworm-induced forest edges in Cape 

Breton Highlands National Park are unique because naturally created edges are usually 

short-term features of the landscape (Thomas et al. 1979), yet the natural process of 

herbivory is responsible for their continued existence. 
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Appendix 3-A: Secondary and tertiary response variables with significant distance 

of edge influence (DEI) compared to the disturbed area reference and/or forest 

reference.  

Response variable DEI (m) for 

disturbed reference 

DEI (m) for forest 

reference 

Tertiary responses 

Overall moose pellet cover -10 to 5  -10 to 5 

Proportion of browse class for all Abies balsamea saplings 
Live unbrowsed ns -55 to -41 

Lightly browsed 41 to 50 ns 

Severely browsed ns -55 to -31 

Dead unbrowsed 6 to 60 -60 to -36 

Proportion of browse class for all Betula papyrifera saplings 
Live unbrowsed -10 to 10 ns 

Severely browsed 6 to 30 -60 to -11 

Proportion of browse class for all short saplings 

Live unbrowsed -10 to 5 ns 

Moderately browsed ns -55 to -46 

Severely browsed 21 to 35 ns 

Proportion of browse class for all intermediate height saplings 
Dead unbrowsed 16 to 40 ns 

Proportion of browse class for all tall saplings 

Lightly browsed 41 to 50 ns 

Severely browsed ns -50 to -41, -10 to -1 

Dead unbrowsed 6 to 60 -45 to -26 

Vegetation Structure 

Maximum sapling height 

All species combined 16 to 60 -45 to -26 

Abies balsamea 36 to 60 ns 

Sapling density 

Betula papyrifera ns -55 to -41 

Picea glauca ns 11 to 20 

Seedling density 

Abies balsamea -26 to 60 -60 to -26 

All species combined -26 to 60 -60 to -26 

Vegetation Composition 

Overall understorey cover 
Overall bryophytes cover 16 to 45 -60 to -16 

Overall fern cover ns ns 

Overall fine woody debris cover ns -35 to -26 

Overall grass cover -20 to 60 -60 to -11 

Overall herb cover ns ns 

Overall shrub cover 11 to 25 11 to 25 
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Response variable DEI (m) compared 

to disturbed area 

reference 

DEI (m) compared 

to forest reference  

Individual shrub species 
Amelanchier spp. ns -40 to -21 

Kalmia angustifolia 31 to 60 -60 to 10 

Rubus idaeus -10 to 60 -60 to -6 

Individual herb species 
Aster acuminatus ns -55 to -16 

Clintonia borealis 6 to 15 ns 

Gaultheria hispidula 46 to 60 ns 

Linnaea borealis -35 to 20, 31 to 60 ns 

Maianthemum canadense -35 to -26 -40 to -26 

Trientalis borealis 1 to 60 -60 to -21 

Solidago macrophylla -10 to 55 ns 

Individual fern species 
Dryopteris spp. -10 to -1 ns 

Osmundastrum cinnamomeum -5 to 15, 36 to 60 -45 to -36 

Thelypteris noveboracensis ns -20 to -6 

Species diversity 
Understorey (including shrubs, 

herbs, ferns) 
16 to 40 ns 
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Appendix 3-B: Secondary and tertiary response variables and corresponding mean values (± standard error) from all sites at 

individual distances from insect disturbed area-forest edge.  Negative and positive distances represent the disturbed side and forest 

side of the edge, respectively (D.R. = disturbed area reference and F.R. = forest reference). 

 Distance from insect disturbed area-forest edge (m) 

 D.R. -57.5 -52.5 -47.5 -42.5 -37.5 -32.5 -27.5 -22.5 -17.5 -12.5 -7.5 -2.5 

Percentage of all A. balsamea saplings 

Unbrowsed live 15.0 ± 

10.0 

25.7 ± 

19.4 

7.5 ± 

7.5 

3.9 ± 

3.9 

10.0 ± 

10.0 

25.0 ± 

17.1 

0 ± 0 11.1 ± 

11.1 

10.3 ± 

4.7 

25.0 ± 

8.3 

33.1 ± 

12.3 

31.7 ± 

9.2 

53.2 ± 

13.5 

Lightly browsed 1.3 ± 

1.3 

8.6 ± 

8.6 

0 ± 0 7.7 ± 

7.7 

5.0 ± 

5.0 

0 ± 0 8.3 ± 

8.3 

0 ± 0 5.8 ± 

4.2 

2.8 ± 

2.8 

3.7 ± 

3.7 

1.7 ± 

1.7 

0 ± 0 

Moderately browsed 7.0 ± 

5.2 

2.9 ± 

2.9 

2.5 ± 

2.5 

13.2 ± 

5.7 

0 ± 0 4.2 ± 

4.2 

4.2 ± 

4.2 

6.7 ± 

6.7 

22.5 ± 

16.0 

0 ± 0 4.2 ± 

2.7 

7.2 ± 

5.5 

6.3 ± 

6.3 

Severely browsed 57.3 ± 

12.2 

45.0 ± 

22.9 

70.0 ± 

20.0 

62.8 ± 

8.6 

85.0 ± 

15.0 

66.7 ± 

17.9 

79.2 ± 

8.0 

48.9 ± 

21.6 

63.6 ± 

17.6 

25.0 ± 

9.6 

27.0 ± 

16.0 

40.0 ± 

13.9 

28.1 ± 

12.6 

Unbrowsed dead 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 8.3 ± 

8.3 

6.7 ± 

6.7 

3.3 ± 

3.3 

11.1 ± 

11.1 

0 ± 0 5.6 ± 

5.6 

4.2 ± 

4.2 

Browsed dead 19.5 ± 

10.4 

17.9 ± 

14.6 

20.0 ± 

20.0 

12.5 ± 

12.5 

0 ± 0 4.2± 

4.2 

0 ± 0 26.7 ± 

19.4 

11.1 ± 

11.1 

27.8 ± 

16.5 

20.8 ± 

16.4 

8.3 ± 

5.7 

4.2 ± 

4.2 

Percentage of all B. papyrifera saplings 

Unbrowsed live 13.3 ± 

8.2 

40.0 ± 

24.5 

12.5 ± 

8.5 

36.7 ± 

20.0 

20.0 ± 

20.0 

20.0 ± 

20.0 

0 ± 0 27.4 ± 

13.6 

50.0 ± 

25.5 

36.0 ± 

22.3 

22.2 ± 

16.5 

66.7 ± 

33.3 

78.8 ± 

19.2 

Lightly browsed 12.6 ± 

6.5 

0 ± 0 0 ± 0 10.0 ± 

6.7 

20.0 ± 

20.0 

0 ± 0 0 ± 0 5.1 ± 

5.1 

11.1 ± 

11.1 

5.0 ± 

5.0 

27.8 ± 

15.9 

16.7 ± 

16.7 

0 ± 0 

Moderately browsed 13.2 ± 

7.7 

0 ± 0 8.9 ± 

5.7 

3.3 ± 

3.3 

5.7 ± 

5.7 

16.7 ± 

10.5 

14.3 ± 

14.3 

10.7 ± 

8.2 

16.7 ± 

9.6 

25.0 ± 

19.4 

11.1 ± 

7.0 

16.7 ± 

16.7 

0 ± 0 

Severely browsed 39.9 ± 

12.6 

50.0 ± 

22.4 

51.2 ± 

18.3 

43.3 ± 

19.4 

54.3 ± 

22.8 

60.0 ± 

19.4 

81.0 ± 

19.1 

40.1 ± 

15.5 

22.2 ± 

22.2 

29.0 ± 

18.5 

30.6 ± 

16.3 

0 ± 0 16.3 ± 

8.3 
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 Distance from insect disturbed area-forest edge (m) 

 D.R. -57.5 -52.5 -47.5 -42.5 -37.5 -32.5 -27.5 -22.5 -17.5 -12.5 -7.5 -2.5 

Unbrowsed dead 0 ± 0 0 ± 0 8.3 ± 

8.3 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 16.7 ± 

16.7 

0 ± 0 0 ± 0 8.3 ± 

8.3 

0 ± 0 0 ± 0 

Browsed dead 21.0 ± 

10.4 

10.0 ± 

10.0 

19.1 ± 

10.1 

6.7 ± 

6.7 

0.0 ± 

0.0 

3.3 ± 

3.3 

4.8 ± 

4.8 

0 ± 0 0 ± 0 5.0 ± 

5.0 

0 ± 0 0 ± 0 5.0 ±  

4.0 

Percentage of short (11 - 49 cm in height) saplings 

Unbrowsed live 33.2 ± 

12.5 

50.0 ± 

22.4 

21.7 ± 

10.1 

36.6 ± 

20.3 

26.7 ± 

19.4 

25.0 ± 

25.0 

0 ± 0 58.5 ± 

20.1 

84.3 ± 

7.9 

80.0 ± 

10.5 

70.2 ± 

15.4 

96.7 ± 

3.3 

81.3 ± 

10.1 

Lightly browsed 23.5 ± 

11.2 

0 ± 0 0 ± 0 4.2 ± 

4.2 

13.3 ± 

13.3 

4.2 ± 

4.2 

8.3 ± 

8.3 

6.5 ± 

6.5 

8.3 ± 

8.3 

4.0 ± 

4.0 

14.8 ± 

11.1 

3.3 ± 

3.3 

0 ± 0 

Moderately browsed 6.7 ± 

6.7 

10.0 ± 

10.0 

25.0 ± 

11.2 

34.2 ± 

20.8 

20.0 ± 

20.0 

27.1 ± 

15.7 

54.2 ± 

4.2 

5.0 ± 

5.0 

3.7 ± 

3.7 

4.0 ± 

4.0 

0.0 ± 

0.0 

0.0 ± 

0.0 

83.3 ± 

83.3 

Severely browsed 36.7 ± 

14.7 

40.0 ± 

24.5 

20.0 ± 

16.3 

25.0 ± 

17.1 

40.0 ± 

24.5 

43.8 ± 

21.4 

37.5 ± 

12.5 

30.0 ± 

20.0 

3.7 ± 

3.7 

12.0 ± 

9.7 

12.5 ± 

12.5 

0 ± 0 10.4 ± 

8.2 

Unbrowsed dead 0 ± 0 0 ± 0 8.3 ± 

8.3 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 2.5 ± 

2.5 

0 ± 0 0 ± 0 

Browsed dead 0 ± 0 0 ± 0 25.0 ± 

17.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Percentage of intermediate (50 – 99 cm in height) saplings 

Unbrowsed live 0 ± 0 6.3 ± 

6.3 

0 ± 0 0 ± 0 0  ± 0 0 ± 0 0 ± 0 8.3 ± 

8.3 

0 ± 0 0 ± 0 0 ± 0 5.0 ± 

5.0 

0 ± 0 

Lightly browsed 11.1 ± 

8.5 

18.8 ± 

18.8 

0 ± 0 3.3 ± 

3.3 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 13.9 ± 

9.0 

5.6 ± 

5.6 

10.0 ± 

6.1 

5.0 ± 

5.0 

0 ± 0 

Moderately browsed 10.6 ± 

4.0 

0 ± 0 4.0 ± 

4.0 

20.0 ± 

20.0 

0 ± 0 5.6 ± 

5.6 

0 ± 0 6.7 ± 

6.7 

20.8 ± 

16.4 

5.6 ± 

5.6 

16.7 ± 

7.0 

10.0 ± 

6.1 

5.0 ± 

5.0 

Severely browsed 52.8 ± 

11.6 

61.7 ± 

21.7 

78.7 ± 

13.7 

65.3 ± 

18.3 

100.0 

± 0.0 

82.8 ± 

8.6 

89.3 ± 

6.9 

62.2 ± 

12.2 

56.9 ± 

13.7 

68.1 ± 

12.3 

58.3 ± 

20.1 

70.0 ± 

18.4 

45.0 ± 

20.0 
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 Distance from insect disturbed area-forest edge (m) 

 D.R. -57.5 -52.5 -47.5 -42.5 -37.5 -32.5 -27.5 -22.5 -17.5 -12.5 -7.5 -2.5 

Unbrowsed dead 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 6.7 ± 

6.7 

13.9 ± 

9.0 

0 ± 0 11.1 ± 

11.1 

0 ± 0 0 ± 0 20.0 ± 

20.0 

Browsed dead 25.6 ± 

1.2 

13.3 ± 

8.2 

17.3 ± 

12.9 

11.3 ± 

7.9 

0 ± 0 11.7 ± 

8.3 

4.0 ± 

4.0 

8.9 ± 

5.9 

8.3 ± 

8.3 

9.7 ± 

6.2 

15.0 ± 

10.0 

10.0 ± 

6.1 

30.0 ± 

20.0 

Percentage of tall (> 99 cm in height) saplings 

Unbrowsed live 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.00 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Lightly browsed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Moderately browsed 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.00 0 ± 0 20.0 ± 

20.0 

0 ± 0 33.3 ± 

33.3 

10.0 ± 

10.0 

0 ± 0 

Severely browsed 57.1 ± 

17.0 

25.0 ± 

25.0 

83.3 ± 

16.7 

100.0 

± 0.0 

100.0 

± 0.0 

100.0 

± 0.0 

100.0 50.0 ± 

50.0 

40.0 ± 

24.5 

25.0 ± 

25.0 

33.3 ± 

33.3 

70.0 ± 

20.0 

87.5 ± 

12.5 

Unbrowsed dead 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.00 0 ± 0 20.0 ± 

20.0 

25.0 ± 

25.0 

0 ± 0 20.0 ± 

20.0 

0 ± 0 

Browsed dead 42.9 ± 

17.0 

75.0 ± 

25.0 

16.7 ± 

16.7 

0 ± 0 0 ± 0 0 ± 0 0.00 50.0 ± 

50.0 

20.0 ± 

20.0 

50.0 ± 

28.9 

33.3 ± 

33.3 

0 ± 0 12.5 ± 

12.5 

Maximum sapling height (cm) 

All species 123.3 

± 13.3 

142.2 

± 14.7 

124.3 

± 19.2 

142.2 

± 15.3 

123.5 

± 19.8 

125.7 

± 15.6 

126.3 

± 17.8 

121.8 

± 15.4 

174.7 

± 7.0 

158.5 

± 10.3 

120.5 

± 15.0 

151.8 

± 12.0 

119.7 

± 21.7 

A. balsamea  83.6 ± 

15.4 

116.6 

± 31.4 

91.8 ± 

15.2 

115.8 

± 24.6 

95.5 ± 

34.5 

102.7 

± 22.1 

85.0 ± 

14.9 

110.6 

± 20.3 

146.2 

± 21.3 

141.2 

± 20.2 

96.3 ± 

14.9 

138.2 

± 17.2 

113.8 

± 24.1 

B. papyrifera  76.5 ± 

12.0 

53.0 ± 

5.5 

71.3 ± 

21.2 

51.0 ± 

16.2 

70.0 ± 

20.4 

52.0 ± 

12.4 

56.0 ± 

17.1 

58.2 ± 

8.9 

48.3 ± 

12.5 

42.6 ± 

16.9 

48.2 ± 

11.7 

45.0 ± 

17.0 

42.5 ± 

13.6 

P. glauca  171.0 

± 10.4 

141.0 

± 15.0 

195.0 150.3 

± 24.2 

135.0 

± 19.0 

116.0 

± 20.5 

153.7 

± 26.3 

119.0 

± 33.0 

171.5 

± 20.5 

92.7 ± 

39.5 

97.0 ± 

40.2 

158.0 84.0 ± 

6.8 
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 Distance from insect disturbed area-forest edge (m) 

 D.R. -57.5 -52.5 -47.5 -42.5 -37.5 -32.5 -27.5 -22.5 -17.5 -12.5 -7.5 -2.5 

Sapling density (# of individuals / 5 m) 

All species  3.5 ± 

1.2 

2.5 ± 

0.9 

4.7 ± 

1.3 

7.3 ± 

2.6 

5.7 ± 

2.5 

3.2 ± 

0.9 

2.3 ± 

1.2 

5.5 ± 

1.9 

3.0 ± 

1.7 

3.0 ± 

1.1 

5.0 ± 

1.3 

2.2 ± 

1.0 

7.2 ± 

1.9 

A. balsamea  0.9 ± 

0.6 

0.7 ± 

0.3 

1.7 ± 

0.8 

2.0 ± 

1.2 

2.8 ± 

1.9 

1.0 ± 

0.4 

1.0 ± 

0.6 

1.2 ± 

0.8 

1.2 ± 

0.8 

1.3 ± 

0.6 

3.3 ± 

0.8 

1.8 ± 

0.9 

4.0 ± 

0.9 

B. papyrifera  2.5 ± 

0.8 

1.3 ± 

0.5 

2.8 ± 

1.0 

3.8 ± 

1.3 

2.7 ± 

1.1 

1.8 ± 

1.0 

1.2 ± 

0.8 

4.2 ± 

2.09 

1.8 ± 

1.0 

1.5 ± 

0.8 

1.5 ± 

0.4 

0.2 ± 

0.2 

2.7 ± 

1.6 

P. glauca  0.1 ± 

0.1 

0.5 ± 

0.5 

0.2 ± 

0.2 

1.5 ± 

1.2 

0.2 ± 

0.2 

0.3 ± 

0.2 

0.2 ± 

0.2 

0.2 ± 

0.2 

0 ± 0 0.2 ± 

0.2 

0.2 ± 

0.2 

0.2 ± 

0.2 

0.5 ± 

0.3 

Seedling density (# of individuals / 5 m) 

All species  0.1 ± 

0.1 

0 ± 0 0.7 ± 

0.5 

1.0 ± 

0.8 

0.7 ± 

0.7 

1.2 ± 

1.2 

0.3 ± 

0.2 

0.5 ± 

0.3 

3.0 ± 

1.3 

2.0 ± 

1.2 

4.3 ± 

3.2 

3.2 ± 

1.7 

2.3 ± 

1.6 

A. balsamea  0 ± 0 0 ± 0 0.7 ± 

0.5 

1.0 ± 

0.8 

0.5 ± 

0.5 

1.2 ± 

1.2 

0.3 ± 

0.2 

0.3 ± 

0.2 

2.7 ± 

1.3 

2.0 ± 

1.2 

4.3 ± 

3.2 

3.2 ± 

1.7 

2.3 ± 

1.6 

B. papyrifera  0.1 ± 

0.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.2 ± 

0.2 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 

P. glauca  0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.2 ± 

0.2 

0 ± 0 0 ± 0 0.2 ± 

0.2 

0.2 ± 

0.2 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Overall cover (%) 

Graminoids 36.4 ± 

3.2 

41.9 ± 

5.8 

37.1 ± 

4.4 

24.4 ± 

4.2 

29.4 ± 

4.2 

29.1 ± 

5.2 

31.4 ± 

5.5 

26.1 ± 

5.2 

26.1 ± 

4.3 

13.5 ± 

2.8 

9.7 ± 

2.6 

11.7 ± 

3.5 

7.4 ± 

2.6 

Bryophytes 6.6 ± 

1.6 

2.8 ± 

1.3 

2.8 ± 

0.6 

10.3 ± 

3.0 

5.1 ± 

2.3 

5.7 ± 

1.7 

12.2 ± 

4.6 

12.5 ± 

4.0 

12.8 ± 

3.8 

10.2 ± 

3.2 

23.6 ± 

5.9 

20.8 ± 

5.7 

26.7 ± 

5.9 

Fine woody debris 6.2 ± 

0.9 

5.6 ± 

0.8 

8.8 ± 

1.3 

6.9 ± 

1.1 

5.6 ± 

0.7 

6.7 ± 

1.1 

4.9 ± 

0.9 

5.7 ± 

0.6 

7.2 ± 

1.1 

7.4 ± 

1.1 

7.9 ± 

1.1 

6.0 ± 

0.8 

7.6 ± 

1.2 
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 Distance from insect disturbed area-forest edge (m) 

 D.R. -57.5 -52.5 -47.5 -42.5 -37.5 -32.5 -27.5 -22.5 -17.5 -12.5 -7.5 -2.5 

Litter 52.2 ± 

2.5 

55.2 ± 

3.9 

52.8 ± 

4.5 

51.3 ± 

4.3 

56.0 ± 

4.8 

57.3 ± 

5.0 

56.4 ± 

5.4 

56.3 ± 

5.2 

53.5 ± 

5.0 

64.0 ± 

4.0 

54.8 ± 

3.9 

48.5 ± 

4.6 

57.3 ± 

4.3 

Moose pellet 0.3 ± 

0.1 

0.5 ± 

0.2 

0.8 ± 

0.3 

1.1 ± 

0.4 

0.5 ± 

0.2 

0.8 ± 

0.3 

0.4 ± 

0.2 

0.4 ± 

0.2 

0.3 ± 

0.2 

0.6 ± 

0.2 

0.7 ± 

0.3 

0.9 ± 

0.3 

0.9 ± 

0.4 

Shrub layer 8.6 ± 

0.8 

7.6 ± 

1.1 

7.2 ± 

1.2 

9.7 ± 

1.7 

6.8 ± 

1.0 

7.3 ± 

0.8 

7.8 ± 

1.1 

8.2 ± 

1.4 

5.9 ± 

1.6 

5.7 ± 

1.5 

4.6 ± 

1.2 

5.3 ± 

1.0 

6.8 ± 

1.9 

Herb layer 19.9 ± 

1.2 

21.8 ± 

2.8 

26.8 ± 

3.1 

27.8 ± 

3.2 

21.5 ± 

2.0 

22.3 ± 

2.3 

19.0 ± 

2.3 

28.6 ± 

3.4 

25.8 ± 

2.9 

33.3 ± 

2.3 

30.0 ± 

3.7 

27.2 ± 

3.4 

25.5 ± 

2.6 

Fern 12.7 ± 

2.0 

9.8 ± 

2.9 

4.6 ± 

1.0 

7.5 ± 

2.9 

12.2 ± 

3.7 

15.6 ± 

4.7 

18.7 ± 

6.0 

19.9 ± 

5.6 

20.7 ± 

6.2 

32.0 ± 

6.3 

32.6 ± 

6.0 

27.8 ± 

5.4 

30.9 ± 

4.1 

Shrub layer species cover (%) 

Amelanchier spp. 0.4
  
± 

0.3 

0.6 ± 

0.5 

0.1 ± 

0.1 

2.5 ± 

1.2 

0.5 ± 

0.4 

0.1 ± 

0.1 

0.3 ± 

0.2 

0.1
 
± 

0.1 

0.4
 
± 

0.2 

0.5 ± 

0.2 

0.2
 
± 

0.2 

1.3 ± 

0.5 

2.5 ± 

1.1 

Kalmia angustifolia 0.0 ± 

0.0 

0.0 ± 

0.0 

0.0
 
± 

0.0 

0.0 ± 

0.0 

0.0 ± 

0.0 

0.0 ± 

0.0 

0.0
 
± 

0.0 

1.2 ± 

0.9 

0.0 ± 

0.0 

0.0
 
± 

0.0 

0.0 ± 

0.0 

0.0
 
± 

0.0 

0.0 ± 

0.0 

Kalmia polifolia 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Myrica gale 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Nemopanthus 

mucronatus 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.1 ± 

0.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Prunus pensylvanica 0.03 ± 

0.03 

0 ± 0 0 ± 0 0.03 ± 

0.03 

0 ± 0 0 ± 0 0.03 ± 

0.03 

0.03 ± 

0.03 

0 ± 0 0.1 ± 

0.1 

0 ± 0 0.30 ± 

0.03 

0.1 ± 

0.1 

Rhododendron 

canadense 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Rhododendron 

groenlandicum 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
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 Distance from insect disturbed area-forest edge (m) 

 D.R. -57.5 -52.5 -47.5 -42.5 -37.5 -32.5 -27.5 -22.5 -17.5 -12.5 -7.5 -2.5 

Ribes glandulosum 0.04 ± 

0.02 

0.4 ± 

0.2 

0.4 ± 

0.2 

0.2 ± 

0.2 

0 ± 0 0.03 ± 

0.03 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Rosa nitida 0.5 ± 

0.2 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Rubus idaeus 5.7
  
± 

0.5 

6.5
 
± 

1.2 

5.1
 
± 

0.8 

6.6
 
 ± 

1.3 

5.4
  
± 

0.9 

6.7
 
 ± 

1.0 

6.6
  
± 

1.0 

5.7 ± 

1.3 

2.4
 
± 

0.5 

4.8
 
± 

1.5 

2.4
 
 ± 

0.8 

2.1 ± 

0.7 

1.0
 
 ± 

0.4 

Rubus pubescens 0.5 ± 

0.2 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Sambucus racemosa 0 ± 0 0 ± 0 0 ± 0 0.1 ± 

0.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Sorbus americana 0.7 ± 

0.3 

0.1 ± 

0.1 

0.1 ± 

0.1 

0.1 ± 

0.1 

0.4 ± 

0.2 

0.3 ± 

0.2 

0.6 ± 

0.4 

0.7 ± 

0.3 

0.4 ± 

0.2 

0.4 ± 

0.2 

1.4 ± 

0.4 

0.5 ± 

0.2 

0.8 ± 

0.3 

Vaccinium 

angustifolium 

0.1 ± 

0.1 

0.2 ± 

0.2 

1.6 ± 

0.9 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.1 ± 

0.1 

1.9 ± 

1.2 

0 ± 0 0.4 ± 

0.2 

0.8 ± 

0.5 

2.3 ± 

1.3 

Viburnum nudum 0.5 ± 

0.2 

0 ± 0 0 ± 0 0 ± 0 0.3 ± 

0.3 

0.4 ± 

0.2 

0.2 ± 

0.2 

0 ± 0 0.6 ± 

0.4 

0.2 ± 

0.2 

0.2 ± 

0.2 

0.5 ± 

0.2 

0.1 ± 

0.1 

Herbaceous layer species cover (%) 

Anaphalis 

margaritacea  

0.1 ± 

0.1 

0 ± 0 0 ± 0 0.1 ± 

0.1 

0 ± 0 0 ± 0 0.2 ± 

0.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Aralia nudicaulis 3.0 ± 

0.4 

1.6 ± 

0.4 

4.9 ± 

0.8 

3.2 ± 

0.6 

3.5 ± 

0.8 

5.2 ± 

1.5 

3.3 ± 

0.9 

3.2 ± 

0.6 

3.6 ± 

0.7 

5.6
a
 ± 

0.7 

3.3 ± 

0.6 

3.6 ± 

1.1 

2.3 ± 

0.3 

Aster acuminatus 1.1 ± 

0.3 

1.2 ± 

0.3 

2.5
 
± 

0.6 

2.4
 
± 

0.5 

1.8
 
± 

0.4 

1.7
 
± 

0.4 

2.1
 
± 

0.6 

2.8
 
± 

0.8 

2.0 ± 

0.4 

1.7
 
± 

0.4 

1.1 ± 

0.3 

1.2 ± 

0.3 

0.5 ± 

0.2 

Aster spp. (except A. 

acuminatus) 

1.7 ± 

0.5 

0.1 ± 

0.1 

0 ± 0 1.7 ± 

1.1 

0.8 ± 

0.4 

0 ± 0 0.3 ± 

0.2 

0 ± 0 0.1 ± 

0.1 

0.4 ± 

0.2 

0.1 ± 

0.1 

0 ± 0 0 ± 0 
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 Distance from insect disturbed area-forest edge (m) 

 D.R. -57.5 -52.5 -47.5 -42.5 -37.5 -32.5 -27.5 -22.5 -17.5 -12.5 -7.5 -2.5 

Clintonia borealis 0.2 ± 

0.1 

0.1 ± 

0.1 

0.2 ± 

0.2 

0.2 ± 

0.2 

0 ± 0 0.2 ± 

0.1 

0 ± 0 1.5 ± 

0.8 

0.8 ± 

0.3 

0.8 ± 

0.4 

1.2 ± 

0.3 

1.1 ± 

0.4 

0.3 ± 

0.2 

Coptis trifolia 0.5 ± 

0.1 

0.3 ± 

0.1 

0.2 ± 

0.2 

0.2 ± 

0.1 

0.3 ± 

0.1 

0.1 ± 

0.1 

0.7 ± 

0.4 

1.0 ± 

0.4 

0.3 ± 

0.2 

0.3 ± 

0.1 

0.7 ± 

0.2 

0.9 ± 

0.4 

0.9 ± 

0.4 

Cornus canadensis 9.7 ± 

0.9 

16.1 ± 

2.8 

14.7 ± 

2.0 

16.8 ± 

3.0 

12.2 ± 

2.2 

9.8 ± 

1.9 

10.5 ± 

2.2 

17.5 ± 

2.6 

13.4 ± 

2.5 

18.7 ± 

2.6 

20.8 ± 

3.7 

17.0 ± 

2.8 

16.7 ± 

2.7 

Cypripedium acaule 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Epigaea repens 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Gaultheria hispidula 0.01 ± 

0.02 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.1 ± 

0.1 

0.5 ± 

0.3 

0.3 ± 

0.1 

0.6 ± 

0.3 

0.1 ± 

0.1 

0 ± 0 0.1 ± 

0.1 

Linnaea borealis 0 ± 0 0.1 ± 

0.1 

2.4 ± 

1.2 

0.8 ± 

0.7 

0.4 ± 

0.3 

1.7 ± 

0.8 

1.4 ± 

0.5 

1.2
 
± 

0.4 

1.6
 
± 

0.6 

3.0 ± 

0.8 

1.1 ± 

0.3 

1.7 ± 

0.6 

1.4 ± 

0.4 

Maianthemum 

canadense 

1.0 ± 

0.2 

0.9 ± 

0.2 

0.9 ± 

0.3 

0.7 ± 

0.2 

0.9 ± 

0.2 

0.4 ± 

0.1 

0.1 ± 

0.1 

0.1
 
± 

0.1 

1.5 ± 

0.4 

1.2 ± 

0.3 

0.8 ± 

0.3 

0.5 ± 

0.1 

1.7 ± 

0.4 

Mitchella repens 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.2 ± 

0.1 

0 ± 0 0.8 ± 

0.4 

0 ± 0 0 ± 0 0 ± 0 0.4 ± 

0.3 

Oxalis spp. 0.4 ± 

0.1 

0.1 ± 

0.1 

0.3 ± 

0.1 

0.1 ± 

0.1 

0.1 ± 

0.1 

0.03 ± 

0.03 

0.4 ± 

0.2 

0.4 ± 

0.2 

0.2 ± 

0.2 

0.1 ± 

0.1 

0.1 ± 

0.1 

0.2 ± 

0.1 

0 ± 0 

Rubus chamaemorus 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.2 ± 

0.2 

0.2 ± 

0.2 

0.1 ± 

0.1 

0 ± 0 0 ± 0 0 ± 0 1.0 ± 

0.5 

0.8 ± 

0.3 

Rumex acetosella 0.4 ± 

0.2 

0 ± 0 0 ± 0 0 ± 0 0.2 ± 

0.2 

1.8 ± 

0.8 

0.3 ± 

0.2 

0.1 ± 

0.1 

0.2 ± 

0.1 

0.7 ± 

0.5 

0 ± 0 0 ± 0 0 ± 0 

Smilacina trifolia 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.03 ± 

0.03 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Solidago 

macrophylla 

2.0 ± 

0.5 

1.5 ± 

0.6 

0.6 ± 

0.4 

1.2 ± 

0.6 

1.1 ± 

0.7 

1.5 ± 

0.8 

0.03 ± 

0.03 

0.4 ± 

0.2 

1.1 ± 

0.5 

0.5 ± 

0.2 

0.3 ± 

0.2 

0.03 ± 

0.03 

0.0
 
± 

0.0 
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 Distance from insect disturbed area-forest edge (m) 

 D.R. -57.5 -52.5 -47.5 -42.5 -37.5 -32.5 -27.5 -22.5 -17.5 -12.5 -7.5 -2.5 

Solidago spp. 

(except S. 

macrophylla) 

0 ± 0 0 ± 0 0.1 ± 

0.1 

0.03 ± 

0.03 

0.03 ± 

0.03 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.3 ± 

0.2 

0 ± 0 0 ± 0 

Trientalis borealis 0.03 ± 

0.02 

0.1
 
± 

0.1 

0 ± 0 0.03 ± 

0.03 

0 ± 0 0.03 ± 

0.03 

0.1 ± 

0.1 

0.1
 
± 

0.1 

0.1
 
± 

0.1 

0.2 ± 

0.1 

0.1
 
± 

0.1 

0.3 ± 

0.1 

0.2 ± 

0.1 

Vaccinium 

oxycoccos 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Veronica officinalis 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Fern species cover (%) 

Dryopteris spp. 6.3 ± 

1.1 

3.4 ± 

0.6 

3.5 ± 

0.8 

1.9 ± 

0.6 

4.0 ± 

1.2 

6.4 ± 

1.7 

2.6 ± 

0.7 

4.0 ± 

0.8 

2.1 ± 

0.6 

3.3 ± 

1.0 

1.9 ± 

0.6 

0.5 ± 

0.2 

1.0 ± 

0.5 

Osmundastrum 

cinnamomeum 
0.1 ± 

0.1 

0.03 ± 

0.03 

0.2 ± 

0.2 

0.5 ± 

0.4 
0 ± 0 

0.1 ± 

0.1 

1.4 ± 

1.2 

2.7 ± 

1.1 

2.7 ± 

1.5 

6.2 ± 

2.1 

11.3 ± 

3.3 

6.5 ± 

1.9 

12.7 ± 

3.5 

Pteridium aquilinum 0.8 ± 

0.5 

2.7 ± 

1.1 

0.8 ± 

0.4 
0 ± 0 

0.03 ± 

0.03 

2.0 ± 

1.2 

9.0 ± 

3.8 

11.5 ± 

5.2 

10.3 ± 

4.5 

13.0 ± 

5.5 

6.5 ± 

2.6 

7.0 ± 

2.6 

12.9 ± 

5.4 

Thelypteris 

noveboracensis 
5.5 ± 

1.6 

4.0 ± 

2.0 

0.3 ± 

0.2 

5.2 ± 

2.9 

8.2 ± 

3.8 

7.5 ± 

4.2 

6.2 ± 

2.7 

4.5 ± 

2.1 

7.5 ± 

2.9 

13.5 ± 

3.1 

14.8 ± 

3.6 

14.9 ± 

3.9 

13.2 ± 

4.2 

 

 Distance from insect-disturbed area forest edge (m) 

 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 F.R. 

Percentage of all A. balsamea saplings 

Unbrowsed live 30.3 ± 

15.1 

15.3 ± 

10.0 

9.3 ± 

4.3 

9.9 ± 

4.9 

22.8 ± 

11.9 

25.2 ± 

14.3 

17.2 ± 

10.6 

18.6 ± 

10.6 

28.5 ± 

14.1 

27.0 ± 

12.1 

22.6 ± 

14.5 

31.6 ± 

11.1 

44.7 ± 

10.4 

Lightly browsed 4.8 ± 

4.8 

3.4 ± 

2.2 

10.2 ± 

6.9 

2.4 ± 

2.4 

4.4 ± 

2.9 

2.1 ± 

2.1 

2.8 ± 

2.8 

6.1 ± 

3.9 

20.5 ± 

12.3 

10.9 ± 

5.0 

4.0 ± 

4.0 

11.7 ± 

8.3 

6.2 ± 

3.2 
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 Distance from insect-disturbed area forest edge (m) 

 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 F.R. 

Moderately browsed 4.8 ± 

4.8 

6.4 ± 

4.0 

8.3 ± 

5.4 

11.1 ± 

8.2 

10.0 ± 

8.2 

19.4 ± 

16.3 

13.3 ± 

9.9 

11.4 ± 

8.3 

8.3 ± 

8.3 

6.7 ± 

6.7 

5.0 ± 

5.0 

1.7 ± 

1.7 

3.3 ± 

3.3 

Severely browsed 43.1 ± 

16.9 

23.1 ± 

9.3 

18.2 ± 

8.2 

15.9 ± 

11.2 

10.0 ± 

10.0 

13.2 ± 

10.9 

17.8 ± 

11.8 

18.2 ± 

12.7 

4.3 ± 

2.9 

25.0 ± 

17.1 

50.0 ± 

20.9 

20.1 ± 

9.6 

13.1 ± 

8.2 

Unbrowsed dead 11.9 ± 

9.3 

50.0 ± 

18.4 

54.0 ± 

18.5 

53.6 ± 

18.6 

52.8 ± 

16.9 

33.8 ± 

17.5 

48.9 ± 

18.6 

45.7 ± 

12.3 

37.0 ± 

16.7 

30.5 ± 

11.4 

18.4 ± 

13.6 

35.0 ± 

17.5 

32.8 ± 

9.1 

Browsed dead 5.2 ± 

3.3 

1.9 ± 

1.9 

0 ± 0 7.1 ± 

7.1 

0 ± 0 6.3 ± 

6.3 

0 ± 0 0 ± 0 1.4 ± 

1.4 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Percentage of all B. papyrifera saplings 

Unbrowsed live 65.0 ± 

18.7 

100.0 0.0 0.0 0 ± 0 0 ± 0 0 ± 0 33.3 ± 

33.3 

0 ± 0 33.3 ± 

33.3 

66.7 ± 

33.3 

38.9 ± 

30.9 

50.0 ± 

28.9 

Lightly browsed 0 ± 0 0.0 0.0 0.0 0 ± 0 0 ± 0 33.3 ± 

33.3 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 16.7 ± 

16.7 

50.0 ± 

28.9 

Moderately browsed 20.0 ± 

20.0 

0 ± 0 100.0 0.0 0 ± 0 0 ± 0 50.0 ± 

50.0 

0 ± 0 12.5 ± 

12.5 

0 ± 0 0 ± 0 5.6 ± 

5.6 

0 ± 0 

Severely browsed 5.0 ± 

5.0 

0.0 0.0 0.0 0 ± 0 0 ± 0 16.7 ± 

16.7 

0 ± 0 25.0 ± 

25.0 

33.3 ± 

33.3 

33.3 ± 

33.3 

0 ± 0 0 ± 0 

Unbrowsed dead 0 ± 0 0.0 0.0 100.0 100.0 

± 0.0 

0 ± 0 0 ± 0 33.3 ± 

33.3 

50.0 ± 

50.0 

33.3 ± 

33.3 

0 ± 0 0 ± 0 0 ± 0 

Browsed dead 10.0 ± 

10.0 

0.0 0.0 0.0 0 ± 0 100.0 

± 50.0 

0 ± 0 33.3 ± 

33.3 

12.5 ± 

12.5 

0 ± 0 0 ± 0 38.9 ± 

30.9 

0 ± 0 

Percentage of all short (11 – 49 cm in height) saplings 

Unbrowsed live 90.0 ± 

10.0 

72.8 ± 

19.5 

60.7 ± 

39.3 

62.5 ± 

23.9 

50.0 ± 

28.9 

61.1 ± 

30.9 

5.6 ± 

5.6 

30.0 ± 

20.0 

62.5 ± 

23.9 

60.0 ± 

18.7 

80.0 ± 

20.0 

60.9 ± 

24.3 

97.7 ± 

1.6 

Lightly browsed 6.7 ± 

6.7 

11.7 ± 

11.7 

11.3 ± 

11.3 

12.5 ± 

12.5 

11.1 ± 

11.1 

5.6 ± 

5.6 

27.8 ± 

27.8 

0 ± 0 3.1 ± 

3.1 

0 ± 0 0 ± 0 9.4 ± 

9.4 

2.3 ± 

1.6 

Moderately browsed 0 ± 0 10.0 ± 

10.0 

28.0 ± 

28.0 

0 ± 0 5.6 ± 

5.6 

0 ± 0 3.3 ± 

3.3 

20.0 ± 

20.0 

0 ± 0 0 ± 0 0 ± 0 3.1 ± 

3.1 

0 ± 0 

Severely browsed 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 20.0 ± 

20.0 

9.4 ± 

9.4 

10.0 ± 

10.0 

0 ± 0 0 ± 0 0 ± 0 
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 Distance from insect-disturbed area forest edge (m) 

 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 F.R. 

Unbrowsed dead 0 ± 0 0 ± 0 0 ± 0 25.0 ± 

25.0 

33.3 ± 

33.3 

33.3 ± 

33.3 

33.3 ± 

33.3 

30.0 ± 

20.0 

25.0 ± 

25.0 

30.0 ± 

20.0 

20.0 ± 

20.0 

25.0 ± 

25.0 

0 ± 0 

Browsed dead 3.3 ± 

3.3 

5.6 ± 

5.6 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1.6 ± 

1.6 

0 ± 0 

Percentage of intermediate (50 – 99 cm in height) saplings 

Unbrowsed live 4.0 ± 

4.0 

15.6 ± 

11.8 

33.3 ± 

33.3 

0 ± 0 6.7 ± 

6.7 

20.0 ± 

20.0 

0 ± 0 0 ± 0 0 ± 0 30.0 ± 

20.0 

20.0 ± 

20.0 

12.5 ± 

12.5 

0 ± 0 

Lightly browsed 0 ± 0 0 ± 0 0 ± 0 0 ± 0 6.7 ± 

6.7 

0 ± 0 0 ± 0 0 ± 0 66.7 ± 

33.3 

10.0 ± 

10.0 

0 ± 0 0 ± 0 5.6 ± 

5.6 

Moderately browsed 5.0 ± 

5.0 

15.6 ± 

11.8 

0 ± 0 0 ± 0 10.0 ± 

10.0 

20.0 ± 

20.0 

20.0 ± 

20.0 

10.0 ± 

10.0 

11.1 ± 

11.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Severely browsed 67.0 ± 

18.4 

31.3 ± 

18.8 

33.3 ± 

33.3 

40.0 ± 

24.5 

10.0 ± 

10.0 

26.7 ± 

19.4 

20.0 ± 

20.0 

26.7 ± 

19.4 

0 ± 0 40.0 ± 

24.5 

60.0 ± 

24.5 

50.0 ± 

28.9 

36.1 ± 

17.4 

Unbrowsed dead 20.0 ± 

20.0 

37.5 ± 

23.9 

33.3 ± 

33.3 

60.0 ± 

24.5 

66.7 ± 

21.1 

20.0 ± 

20.0 

60.0 ± 

24.5 

56.7 ± 

19.4 

11.1 ± 

11.1 

20.0 ± 

20.0 

20.0 ± 

20.0 

25.0 ± 

14.4 

58.3 ± 

16.0 

Browsed dead 4.0 ± 

4.0 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 13.3 ± 

13.3 

0 ± 0 6.7 ± 

6.7 

11.1 ± 

11.1 

0 ± 0 0 ± 0 12.5 ± 

12.5 

0 ± 0 

Percentage of tall (> 99 cm in height) saplings 

Unbrowsed live 0 ± 0 0 ± 0 0 ± 0 3.3 ± 

3.3 

25.0 ± 

17.1 

18.1 ± 

12.6 

30.0 ± 

20.0 

18.1 ± 

13.7 

21.7 ± 

14.2 

10.4 ± 

6.8 

18.3 ± 

13.0 

8.3 ± 

8.3 

15.6 ± 

8.1 

Lightly browsed 0 ± 0 8.3 ± 

8.3 

11.1 ± 

11.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 11.1 ± 

8.2 

13.1 ± 

8.1 

8.3 ± 

4.2 

10.0 ± 

10.0 

15.3 ± 

12.3 

18.8 ± 

13.2 

Moderately browsed 13.3 ± 

13.3 

0 ± 0 5.6 ± 

5.6 

17.5 ± 

12.3 

12.5 ± 

12.5 

20.8 ± 

16.4 

12.5 ± 

9.7 

7.0 ± 

4.6 

8.3 ± 

8.3 

10.4 ± 

10.4 

20.0 ± 

20.0 

2.8 ± 

2.8 

6.3 ± 

6.3 

Severely browsed 63.3 ± 

22.6 

43.1 ± 

15.6 

30.6 ± 

16.3 

15.0 ± 

15.0 

16.7 ± 

16.7 

9.7 ± 

9.7 

30.0 ± 

20.0 

20.0 ± 

16.3 

11.1 ± 

8.2 

33.3 ± 

21.1 

40.0 ± 

24.5 

37.5 ± 

20.2 

12.5 ± 

12.5 

Unbrowsed dead 18.3 ± 

14.5 

48.6 ± 

18.3 

52.8 ± 

18.5 

44.2 ± 

20.7 

45.8 ± 

18.7 

34.7 ± 

16.5 

27.5 ± 

19.5 

43.8 ± 

16.3 

37.5 ± 

18.0 

37.5 ± 

14.1 

11.7 ± 

7.3 

36.1 ± 

17.4 

46.9 ± 

13.7 

Browsed dead 5.0 ± 

5.0 

0 ± 0 0 ± 0 20.0 ± 

20.0 

0 ± 0 16.7 ± 

16.7 

0 ± 0 0 ± 0 8.3 ± 

8.3 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 
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 Distance from insect-disturbed area forest edge (m) 

 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 F.R. 

Maximum sapling height (cm) 

All species 141.3 

± 24.4 

153.2 

± 12.4 

203.8 

± 50.2 

198.7 

± 21.6 

221.7 

± 38.7 

175.2 

± 15.9 

150.5 

± 15.0 

207.5 

± 43.3 

216.2 

± 47.8 

298.2 

± 88.0 

144.2 

± 15.0 

188.5 

± 28.4 

206.3 

± 27.6 

A. balsamea  128.0 

± 26.4 

153.2 

± 12.4 

203.8 

± 50.2 

181.7 

± 28.6 

222.3 

± 38.5 

165.3 

± 17.7 

147.2 

± 16.8 

207.5 

± 43.3 

216.2 

± 47.8 

298.2 

± 88.0 

154.0 

± 13.9 

188.5 

± 28.4 

183.8 

± 37.8 

B. papyrifera  46.8 ± 

10.4 

22.0 ± 

9.5 

42.0 143.0 49.0 ± 

12.8 

94.0 46.0 ± 

13.0 

92.7 ± 

43.6 

61.0 ± 

20.0 

80.0 ± 

42.3 

42.7 ± 

21.1 

35.7 ± 

12.8 

21.8 ± 

5.0 

P. glauca  167.0 84.5 ± 

61.5 

55.0 190.0 142.3 

± 18.3 

171.0 

± 0.0 

97.5 ± 

19.5 

107.5 

± 49.5 

123.5 

± 10.5 

71.5 ± 

37.5 

80.0 ± 

15.0 

133.5 

± 10.5 

149.0 

± 22.5 

Sapling density (# of individuals / 5 m) 

All species  4.0 ± 

0.7 

6.8 ± 

3.6 

4.3 ± 

2.8 

1.5 ± 

0.4 

4.3 ± 

1.4 

3.5 ± 

1.3 

2.8 ± 

0.9 

3.8 ± 

1.7 

4.8 ± 

2.6 

5.3 ± 

1.2 

3.7 ± 

1.1 

6.3 ± 

2.1 

5.8 ± 

1.4 

A. balsamea  2.2 ± 

0.7 

6.0 ± 

3.3 

3.7 

±1.7 

1.5 ± 

0.4 

3.5 ± 

1.1 

3.0 ± 

1.4 

1.7 ± 

1.0 

3.0 ± 

1.2 

3.8 ± 

2.1 

4.3 ± 

1.1 

2.7 ± 

1.7 

4.7 ± 

1.7 

2.6 ± 

0.7 

B. papyrifera  1.7 ± 

0.4 

0.5 ± 

0.3 

0.7 ± 

0.7 

0 ± 0 0.7 ± 

0.3 

0 ± 0 0.8 ± 

0.5 

0.7 ± 

0.5 

0.8 ± 

0.7 

0.3 ± 

0.2 

0.5 ± 

0.3 

1.3 ± 

1.00 

0.5 ± 

0.3 

P. glauca  0.2 ± 

0.2 

0.3 ± 

0.2 

0 ± 0 0 ± 0 0.2 ± 

0.2 

0.5 ± 

0.3 

0.3 ± 

0.3 

0.2 ± 

0.2 

0.2 ± 

0.2 

0.7 ± 

0.4 

0.5 ± 

0.3 

0.3 ± 

0.2 

2.7 ± 

1.6 

Seedling density (# of individuals / 5 m) 

All species  5.0 ± 

1.8 

7.5 ± 

2.7 

10.2 ± 

6.4 

19.3 ± 

16.4 

10.3 ± 

7.0 

7.5 ± 

3.8 

4.0 ± 

2.5 

6.7 ± 

5.2 

10.0 ± 

3.0 

5.3 ± 

1.8 

5.0 ± 

4.3 

6.8 ± 

3.8 

5.8 ± 

2.0 

A. balsamea  4.7 ± 

2.0 

7.5 ± 

2.7 

10.2 ± 

6.4 

19.3 ± 

16.4 

10.0 ± 

6.7 

7.5 ± 

3.8 

4.0 ± 

2.5 

6.7 ± 

5.2 

9.8 ± 

3.0 

5.3 ± 

1.8 

5.0 ± 

4.3 

6.5 ± 

3.9 

5.8 ± 

2.0 

B. papyrifera  0.2 ± 

0.2 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

P. glauca  0.2 ± 

0.2 

0 ± 0 0 ± 0 0 ± 0 0.3 ± 

0.3 

0 ± 0 0 ± 0 0 ± 0 0.2 ± 

0.2 

0 ± 0 0 ± 0 0.3 ± 

0.3 

0 ± 0 

Overall cover (%) 

Graminoids 7.3 ± 

3.3 

0.1 ± 

0.1 

0.7 ± 

0.3 

3.1 ± 

0.9 

4.5 ± 

1.8 

4.2 ± 

1.7 

2.5 ± 

1.2 

3.2 ± 

1.2 

1.5 ± 

0.7 

0.5 ± 

0.2 

1.5 ± 

0.6 

2.2 ± 

1.2 

1.2 ± 

0.5 
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 Distance from insect-disturbed area forest edge (m) 

 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 F.R. 

Bryophytes 20.3 ± 

3.9 

14.3 ± 

2.6 

19.1 ± 

4.2 

29.1 ± 

5.5 

33.9 ± 

5.6 

38.4 ± 

6.3 

35.2 ± 

5.9 

27.6 ± 

4.9 

35.8 ± 

5.7 

24.9 ± 

5.6 

24.6 ± 

4.7 

34.1 ± 

5.0 

40.1 ± 

3.3 

Fine woody debris 8.1 ± 

1.3 

10.7 ± 

2.0 

11.8 ± 

1.7 

13.1 ± 

2.2 

14.1 ± 

1.7 

8.2 ± 

1.5 

9.5 ± 

1.4 

10.9 ± 

2.0 

15.1 ± 

2.9 

13.1 ± 

2.5 

8.3 ± 

1.5 

9.2 ± 

1.0 

13.0 ± 

1.4 

Litter 58.0 ± 

4.1 

64.7 ± 

4.5 

66.8 ± 

5.5 

57.5 ± 

5.5 

59.8 ± 

5.7 

53.2 ± 

6.1 

52.9 ± 

5.9 

58.6 ± 

5.5 

54.8 ± 

5.9 

59.0 ± 

5.4 

60.3 ± 

5.6 

49.8 ± 

4.6 

57.6 ± 

3.2 

Moose pellet 1.5 ± 

0.4 

0.7 ± 

0.4 

0.9 ± 

0.4 

0.6 ± 

0.2 

1.0 ± 

0.6 

1.9 ± 

0.9 

1.5 ± 

0.7 

1.1 ± 

0.5 

0.03 ± 

0.03 

0.4 ± 

0.2 

1.6 ± 

0.6 

0.5 ± 

0.2 

0.2 ± 

0.1 

Shrub layer 2.3 ± 

0.7 

5.7 ± 

2.4 

2.6 ± 

0.7 

2.7 ± 

0.5 

1.7 ± 

0.4 

4.8 ± 

1.6 

3.5 ± 

1.3 

9.0 ± 

2.3 

6.7 ± 

1.7 

7.4 ± 

2.0 

8.7 ± 

1.7 

8.8 ± 

1.4 

8.7 ± 

1.1 

Herb layer 29.3 ± 

2.2 

26.8 ± 

3.9 

20.4 ± 

3.9 

21.2 ± 

4.2 

19.2 ± 

5.2 

22.5 ± 

5.3 

18.3 ± 

4.2 

21.2 ± 

3.6 

17.3 ± 

3.3 

30.9 ± 

4.3 

35.8 ± 

2.8 

31.2 ± 

3.4 

24.6 ± 

2.8 

Fern 31.5 ± 

5.1 

22.3 ± 

4.2 

12.7 ± 

3.3 

5.0 ± 

1.7 

5.7 ± 

1.5 

16.1 ± 

4.4 

11.7 ± 

3.7 

19.7 ± 

4.9 

12.9 ± 

4.0 

19.7 ± 

4.0 

36.2 ± 

5.0 

21.6 ± 

3.8 

9.7 ± 

1.8 

Shrub layer species cover (%) 

Amelanchier spp. 0.2
 
± 

0.1 

1.3 ± 

0.4 

0.5 ± 

0.3 

0.6 ± 

0.2 

0.4 ± 

0.2 

2.9 ± 

1.1 

1.8 ± 

0.9 

1.4 ± 

0.5 

2.0 ± 

0.6 

0.8 ± 

0.4 

1.3 ± 

0.4 

1.6
 
± 

0.4 

1.7 ± 

0.4 

Nemopanthus 

mucronatus 

0.03 ± 

0.03 

0 ± 0 0.1 ± 

0.1 

0.1 ± 

0.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.1 ± 

0.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Kalmia angustifolia 0 ± 0 0 ± 0 0.5 ± 

0.2 

0.8 ± 

0.3 

0.3 ± 

0.2 

1.4 ± 

0.6 

1.1 ± 

0.7 

3.1 ± 

1.0 

2.9 ± 

0.9 

4.7
 
± 

1.6 

4.7 ± 

1.4 

2.5
 
± 

0.6 

3.5 ± 

0.7 

Kalmia polifolia 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.1 ± 

0.1 

0.1 ± 

0.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Myrica gale 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.2 ± 

0.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Prunus pensylvanica 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Rhododendron 

canadense 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.2 ± 

0.2 

0 ± 0 0 ± 0 0.2 ± 

0.1 

0.3 ± 

0.2 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 
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 Distance from insect-disturbed area forest edge (m) 

 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 F.R. 

Rhododendron 

groenlandicum 

0 ± 0 0 ± 0 0.03 ± 

0.03 

0.1 ± 

0.1 

0 ± 0 0 ± 0 0 ± 0 0.1 ± 

0.1 

0.2 ± 

0.2 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Ribes glandulosum 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Rosa nitida 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.1 ± 

0.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Rubus idaeus 0.1
 
± 

0.1 

0
 
 ± 0 0

 
 ± 0 0

 
 ± 0 0

 
 ± 0 0

 
 ± 0 0

 
 ± 0 0

 
 ± 0 0

 
 ± 0 0

 
 ± 0 0

 
 ± 0 0

 
 ± 0 0

 
 ± 0 

Rubus pubescens 0.03 ± 

0.03 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.03 ± 

0.03 

0 ± 0 

Sambucus racemosa 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.1 ± 

0.1 

0.2 ± 

0.2 

0.2 ± 

0.2 

0 ± 0 

Sorbus americana 0.5 ± 

0.4 

1.0 ± 

0.6 

0.5 ± 

0.2 

0.6 ± 

0.3 

0.6 ± 

0.3 

0.4 ± 

0.3 

0.2 ± 

0.2 

1.2 ± 

0.4 

0.3 ± 

0.2 

0.6 ± 

0.2 

0.9 ± 

0.3 

0.7 ± 

0.3 

0.5 ± 

0.2 

Vaccinium 

angustifolium 

1.1
 
± 

0.4 

3.0 ± 

1.9 

0.4 ± 

0.2 

0.1 ± 

0.1 

0.2 ± 

0.1 

0 ± 0 0.4 ± 

0.2 

2.6 ± 

1.0 

0.4 ± 

0.2 

0.8 ± 

0.4 

1.0 ± 

0.4 

2.3 ± 

1.1 

2.4 ± 

0.7 

Viburnum nudum 0.2 ± 

0.1 

0.2 ± 

0.2 

0.7 ± 

0.4 

0.4 ± 

0.2 

0.2 ± 

0.1 

0.03 ± 

0.03 

0.03 ± 

0.03 

0.1 ± 

0.1 

0.1 ± 

0.1 

0 ± 0 0.2 ± 

0.1 

0.7 ± 

0.3 

0.3 ± 

0.1 

Herbaceous layer species cover (%) 

Anaphalis 

margaritacea  

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Aralia nudicaulis 2.8 ± 

0.6 

2.2 ± 

0.4 

2.3 ± 

0.7 

1.7 ± 

0.5 

0.7
b
 ± 

0.3 

0.8 ± 

0.3 

0.9 ± 

0.4 

1.5 ± 

0.4 

1.1 ± 

0.3 

3.1 ± 

0.7 

3.6 ± 

0.6 

1.8 ± 

0.3 

2.0 ± 

0.3 

Aster acuminatus 0.9 ± 

0.4 

0.6 ± 

0.3 

0.4 ± 

0.2 

0.7 ± 

0.5 

1.8 ± 

1.1 

0.7 ± 

0.4 

0.2 ± 

0.1 

0.1
b 
± 

0.1 

0.3 ± 

0.2 

0.3 ± 

0.2 

0.3 ± 

0.2 

0.2 ± 

0.1 

0.2 ± 

0.1 

Aster spp. (except A. 

acuminatus) 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.1 ± 

0.1 

0 ± 0 0 ± 0 0.1 ± 

0.1 

0.3 ± 

0.2 

0 ± 0 

Clintonia borealis 1.0 ± 

0.3 

1.5
 
± 

0.5 

1.8 ± 

0.5 

1.5 ± 

0.7 

1.1 ± 

0.4 

1.2 ± 

0.4 

0.3 ± 

0.2 

0.03 ± 

0.03 

0.5 ± 

0.3 

2.0 ± 

0.7 

0.7 ± 

0.3 

2.2
 
± 

0.7 

2.1
 
± 

0.5 
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 Distance from insect-disturbed area forest edge (m) 

 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 F.R. 

Coptis trifolia 1.2 ± 

0.4 

1.3 ± 

0.6 

0.6 ± 

0.3 

0.5 ± 

0.2 

0.3 ± 

0.1 

0.5 ± 

0.2 

0.4 ± 

0.2 

0.5 ± 

0.3 

0.9 ± 

0.4 

1.3 ± 

0.6 

0.8 ± 

0.3 

1.7 ± 

0.6 

0.3 ± 

0.1 

Cornus canadensis 17.5 ± 

2.0 

16.8 ± 

2.6 

12.4 ± 

2.6 

14.0 ± 

3.7 

12.1 ± 

3.8 

16.6 ± 

4.4 

14.1 ± 

3.9 

13.9 ± 

3.3 

9.9 ± 

2.6 

20.3 ± 

3.2 

22.7
b
 

± 3.1 

17.2 ± 

2.7 

14.1 ± 

1.8 

Cypripedium acaule 0 ± 0 0 ± 0 0.1 ± 

0.1 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Epigaea repens 0.1 ± 

0.1 

1.2 ± 

0.6 

0 ± 0 0 ± 0 0.3 ± 

0.2 

0.4 ± 

0.2 

0 ± 0 0.1 ± 

0.1 

0 ± 0 0.2 ± 

0.1 

0.03 ± 

0.03 

0.1 ± 

0.1 

0.2 ± 

0.1 

Gaultheria hispidula 0.1 ± 

0.1 

0.2 ± 

0.1 

0.4 ± 

0.2 

0.2 ± 

0.1 

0.1 ± 

0.1 

0.1 ± 

0.1 

0.3 ± 

0.2 

1.1 ± 

0.5 

0.7 ± 

0.3 

0.6
b 
± 

0.2 

1.3b ± 

0.5 

2.0
b 
± 

0.6 

0.5 ± 

0.2 

Linnaea borealis 1.8 ± 

0.3 

2.0 ± 

0.8 

1.0
 
± 

0.5 

1.2
 
± 

0.4 

0.6 ± 

0.2 

1.0 ± 

0.4 

0.6
 
± 

0.3 

1.8 ± 

0.6 

2.2 ± 

0.6 

1.6
 
± 

0.5 

3.2 ± 

1.1 

2.4
 
± 

0.6 

1.8
 
± 

0.4 

Maianthemum 

canadense 

1.3 ± 

0.3 

0.6 ± 

0.2 

0.6 ± 

0.2 

0.5 ± 

0.2 

0.6 ± 

0.3 

1.1 ± 

0.3 

1.0 ± 

0.2 

0.8 ± 

0.2 

0.8 ± 

0.3 

1.2 ± 

0.3 

1.9 ± 

0.4 

1.1 ± 

0.3 

1.5 ± 

0.3 

Mitchella repens 0.4 ± 

0.3 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Oxalis spp. 0.1 ± 

0.1 

0.2 ± 

0.1 

0.3 ± 

0.1 

0.2 ± 

0.1 

0.4 ± 

0.2 

0.03 ± 

0.03 

0.2 ± 

0.1 

0.1 ± 

0.1 

0.03 ± 

0.03 

0.1 ± 

0.1 

0.03 ± 

0.03 

0.1 ± 

0.1 

0.3 ± 

0.1 

Rubus chamaemorus 0.7 ± 

0.5 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Rumex acetosella 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Smilacina trifolia 0 ± 0 0 ± 0 0.1 ± 

0.1 

0.7 ± 

0.4 

1.0 ± 

0.6 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.03 ± 

0.03 

0 ± 0 

Solidago 

macrophylla 

0.1 ± 

0.1 

0.03
 
± 

0.03 

0.1 ± 

0.1 

0.1 ± 

0.1 

0.03
 
± 

0.03 

0
 
± 0 0.1 ± 

0.1 

0
 
± 0 0.03 ± 

0.03 

0
 
± 0 0.1

 
± 

0.1 

0.1 ± 

0.1 

0.1 ± 

0.1 

Solidago spp. 

(except S. macroph.) 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Trientalis borealis 1.1 ± 

0.2 

0.6 ± 

0.2 

0.2 ± 

0.1 

0.3 ± 

0.1 

0.3 ± 

0.1 

0.4
 
± 

0.1 

0.5 ± 

0.2 

1.0
 
± 

0.3 

0.9 ± 

0.3 

0.7 ± 

0.2 

1.2
 
± 

0.2 

0.8 ± 

0.2 

1.2 ± 

0.3 
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 Distance from insect-disturbed area forest edge (m) 

 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 F.R. 

Vaccinium 

oxycoccos 

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.6 ± 

0.4 

1.1 ± 

0.6 

0.02 ± 

0.02 

Veronica officinalis 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.02 ± 

0.02 

Fern species cover (%) 

Dryopteris spp. 3.4 ± 

1.2 

4.7 ± 

1.7 

1.1 ± 

0.4 

1.5 ± 

0.6 

2.9 ± 

1.2 

1.7 ± 

0.8 

1.7 ± 

0.5 

1.6 ± 

0.5 

2.7 ± 

1.6 

4.0 ± 

1.7 

7.5 ± 

2.7 

3.9 ± 

1.8 

2.3 ± 

0.7 

Osmundastrum 

cinnamomeum 
17.3 ± 

3.7 

12.2 ± 

3.5 

4.9 ± 

1.9 

3.2 ± 

1.7 

2.5 ± 

1.2 

6.0 ± 

2.2 

3.8 ± 

1.7 

7.4 ± 

2.9 

4.5 ± 

1.9 

11.8 ± 

3.1 

12.1 ± 

3.7 

9.8 ± 

3.6 

3.7 ± 

1.2 

Pteridium aquilinum 10.6 ± 

4.2 

5.4 ± 

2.2 

4.8 ± 

2.0 

0.1 ± 

0.1 

0.03 ± 

0.03 

2.3 ± 

1.2 

0.8 ± 

0.8 
0 ± 0 

0.2 ± 

0.2 

3.1 ± 

1.9 

4.8 ± 

2.5 

3.9 ± 

1.5 

2.8 ± 

1.1 

Thelypteris 

noveboracensis 
1.2 ± 

0.4 

1.2 ± 

0.9 

1.8 ± 

1.2 
0 ± 0 

0.1 ± 

0.1 

5.4 ± 

2.7 

5.3 ± 

3.0 

10.9 ± 

4.5 

5.5 ± 

2.6 

1.5 ± 

1.2 

11.7 ± 

4.7 

4.0 ± 

1.8 

0.5 ± 

0.3 
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Appendix 3-C: Generalized additive mixed model results for individual secondary 

and tertiary response variables.   

Variables are grouped according to family of tests that were analyzed collectively.  

Estimated degrees of freedom = 1 when pattern is linear and higher values correlate 

positively with more non-linear curves. Bolded p-values indicate significance at the 0.05 

significance level after sequential Bonferroni correction.  

 

Response variable p-value 

Estimated 

degrees 

of 

freedom 

R
2
adj 

Moose pellet cover 0.12 1 0.00167 

% of unbrowsed live AB saplings 0.13 1 0.0059 

% of lightly browsed AB saplings 0.03 1 0.0244 

% of moderately browsed AB saplings 0.27 1 -0.00445 

% of severely browsed AB saplings < 0.0001 3.115 0.227 

% of unbrowsed dead AB saplings < 0.0001 3.46 0.296 

% of browsed dead AB saplings < 0.001 2.67 0.052 

% of unbrowsed live BP saplings 0.17 1 -0.0166 

% of lightly browsed BP saplings 0.07 1 -0.0245 

% of moderately browsed BP saplings 0.87 1 -0.0123 

% of severely browsed BP saplings < 0.0001 2.879 0.17 

% of unbrowsed dead BP saplings 0.01 1 0.042 

% of browsed dead BP saplings 0.14 1 0.021 

% of short unbrowsed live saplings < 0.001 4.678 0.214 

% of short lightly browsed live saplings 0.85 1 -0.00948 

% of short moderately browsed live 

saplings 
0.02 1 0.0545 

% of short severely browsed live saplings < 0.001 1 0.126 

% of short unbrowsed dead saplings < 0.0001 1 0.102 

% of short browsed dead saplings 0.02 1 0.0433 

% of int. unbrowsed live saplings 0.10 2.417 0.116 

% of int. lightly browsed live saplings 0.08 1 -0.00837 

% of int. moderately browsed live 

saplings 
0.16 1 0.0203 

% of int. severely browsed live saplings 0.03 1 0.0877 

% of int. unbrowsed dead saplings < 0.00011  0.194 

% of int. browsed dead saplings 0.12 1 0.0291 

% of tall unbrowsed live saplings < 0.001 4.077 -0.027 

% of tall lightly browsed live saplings < 0.001 1 0.078 

% of tall moderately browsed live 

saplings 
0.16 1 -0.000154 

% of tall severely browsed live saplings < 0.001 1 0.114 

% of tall unbrowsed dead saplings 0.01 2.306 0.128 
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Response variable p-value 

Estimated 

degrees 

of 

freedom 

R
2
adj 

% of tall browsed dead saplings < 0.0001 1 0.0969 

Max. sapling height (all species) < 0.0001 1 0.117 

Max. sapling height (AB) < 0.0001 1 0.187 

Max. sapling height (BP) 0.72 1 -0.0133 

Max. sapling height (PG) 0.09 1 0.0384 

Sapling density (all species) 0.87 1 -0.00685 

Sapling density (AB) < 0.01 1 0.053 

Sapling density (BP) < 0.0001 1 0.1039 

Sapling density (PG) 0.08 1.97 0.00047 

Seedling density (all species) < 0.0001 3.60 0.0756 

Seedling density (AB) < 0.0001 3.58 0.075 

Seedling density (BP) 0.68 1 -0.0069 

Seedling density (PG) 0.28 1 -0.0001 

Graminoids cover < 0.0001 4.632 0.344 

Bryophytes cover < 0.0001 2.811 0.132 

Fine woody debris cover < 0.0001 3.789 0.0641 

Litter cover 0.35 1 -0.000779 

Shrub layer cover < 0.0001 3.771 0.0489 

Herb layer cover < 0.0001 4.947 0.0364 

Fern cover < 0.0001 6.594 0.0926 

Sapling diversity 0.08 1 0.003 

Seedling diversity 0.48 1 -0.000705 

Understorey diversity  < 0.0001 6.135 0.0968 

Shrub diversity < 0.001 2.362 0.0258 

Herb diversity < 0.0001 6.252 0.0759 

Fern diversity < 0.0001 6.969 0.0967 
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Chapter 4: Conclusion 

 

 

1.  Summary and ecological implications of insect disturbed area-forest edge 

characteristics 

 

 The varying patterns and extents of edge influence for individual responses to 

edge creation emphasize the complexity of forest edges.  The spruce budworm-induced 

forest edges in Cape Breton Highlands National Park were structural zones of transition 

approximately 10 m wide between disturbed area and intact forest.  The disturbed side of 

the edge was characterized by lower values of canopy cover, stem density, tree height, 

and overall structural diversity compared to the forest side of the edge.  Even though 

decomposition rate did not vary significantly across the disturbed area-forest gradient, 

more recently decayed deadwood was found on the forest side of the edge, which most 

likely resulted from self-thinning.  A greater abundance of logs on the disturbed side of 

the edge probably formed from snags falling to the ground after insect-caused tree 

mortality.   

While naturally created edges tend to regenerate after the disturbance agent has 

subsided, the forest edges in Cape Breton were rather unique because they were 

maintained by moose browse.  Moose browse activity decreased from the disturbed area 

into the forest and the majority of saplings were severely browsed.  Browsing may be 

influencing species composition as spruce, one of the three main tree species in the study 

area, was never browsed and therefore appeared much healthier than browsed saplings 

that were suffering from abnormal growth forms.  Furthermore, relatively high cover of 

graminoids in the disturbed area may prevent overall seedling germination.  The distinct 
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structural and compositional contrast between disturbed area and forest remains, a 

characteristic that is usually lost at regenerating edges over time (Harper et al. 2005).  

Moose browsing may ultimately affect the cyclic pattern of the spruce budworm 

outbreak in the Cape Breton Highlands.  For instance, the lack of regeneration in 

previously disturbed areas may delay the insect population from reaching outbreak levels 

due to the absence of continuous tracts of mature host trees.  Alternatively, the next 

outbreak may result in less damage than prior outbreaks due to a lower number of 

adequate host trees.  Even if herbivory pressure is reduced, forests may become less 

vulnerable to spruce budworm outbreaks because mortality rates are lower in stands 

comprised mainly of Picea and in immature stands of Abies (MacLean 1980).  

Furthermore, the spruce budworm, which normally feeds on mature Abies balsamea, may 

instead alter its feeding behavior to target the less preferred unpalatable food source of 

Picea spp..  Predictions of future spruce budworm epidemics are difficult because they 

cannot be based solely on assessments of past outbreaks in the area (Blais 1968).  The 

indirect effect of moose herbivory on forest succession will most likely make predictions 

even more challenging.  

 

2.  Comparison of the extent of edge influence among different responses to edge 

creation. 

 
Overall, distance of edge influence was greater when variables were compared to 

the disturbed area reference as opposed to the forest reference (Figure 4-1).  When 

compared to the forest reference, edge influence did not even extend past 0 m into the 

forest for any of the primary response variables (Figure 4-1a).  Meanwhile, significant 
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edge effects resulting directly from edge creation extended up to 40 m into the disturbed 

area when compared to the disturbed area reference (Figure 4-1b).  A sampling design 

that considers the relationship between the edge and both adjacent ecosystems reveals 

greater insight into the influence of edge creation on ecological processes across the 

entire disturbed area-forest gradient.  Edge movement into the forest since time of edge 

creation (Gascon et al. 2000) could explain the greater similarity between characteristics 

at the edge and in the forest reference compared to the disturbed area reference.  If the 

edge is receding and continues to recede, the study area could be at risk for additional 

forest loss.    

Indirect effects to edge creation extended further into the forest than direct effects 

when compared to the forest reference (Figure 4-1a).  Since secondary responses to edge 

creation are influenced by primary effects on vegetation, the former type of response is 

hypothesized to begin later, last longer, and occur farther from the edge compared to the 

latter (Harper et al. 2005).  Greater extent of edge influence for understorey variables 

compared to primary response variables has been noted in prior studies (e.g., Palik & 

Murphy 1990; Harper & Macdonald 2001) and reflects the ongoing effects of edge 

creation decades after the insect disturbance ceased.  
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Figure 4-1.  Percentage of primary, secondary, and tertiary response variables with 

significant distance of edge influence compared with the (a) forest reference and (b) 

disturbed area reference at spruce budworm disturbed area-forest edges.  Primary 

responses include all variables examined in the second chapter, secondary responses 

include structural and compositional variables examined in the third chapter, and tertiary 

responses include all moose-related variables.  Black circles indicate distances from the 

edge at which primary response variable data were collected.  Data collection for 

secondary and teriary responses occurred continuously along the gradient. 

 

3.  Methods for assessing edge influence 

Differences between findings on edge influence among separate studies may be 

attributed to inconsistent methods of data analysis.  For example, nonparametric analysis 

(a) 

(b) 
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methods usually result in reduced estimates of DEI compared to other methods of 

analysis (Harper & Macdonald 2011), which may explain the lack of significant edge 

influence on moose browse activity found in prior studies (Hamilton et al. 1980; Andren 

& Angelstam 1993).  Future research should attempt to determine the most accurate 

methods of data analysis and collection to facilitate more effective comparisons of results.  

Another important concept to consider when interpreting the results gained from 

this study is that statistical significance may not necessarily imply biological significance.  

Although RTEI indicated a numerical significant difference between the edge and the 

reference ecosystems, the effects of these differences on overall forest dynamics are 

unknown.  Therefore, additional research is required to determine the biological impact of 

RTEI results to ultimately interpret the ecological meaning of DEI for each individual 

response variable. 

 

4.  Research directions 

Future studies could address direct effects of moose on vegetation other than 

browsing, such as trampling or the rubbing of antlers.  Trampling by ungulates can uproot 

vegetation, which causes a loss of insulation and change in species composition (Pegau 

1970).  Despite being distasteful to moose, Picea glauca is heavily selected by moose for 

scent marking (Bowyer et al. 1994).  Consequently, the effects of different moose 

behaviour on selected species should be addressed when considering the overall impacts 

of high moose densities on ecosystem dynamics.  Furthermore, specific species of 

invertebrates and fungi may benefit from moose carcasses, pellets, or urine patches, yet 

the impact of high moose densities on these organisms is unknown.  
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The future state of the moose population in the Cape Breton Highlands is difficult 

to predict.  As a forest approaches a climax stage, decreases in the quantity and quality of 

forage cause a decline in the carrying capacity for moose (Cowan et al. 1950; Krefting 

1974).  Furthermore, time since disturbance plays a role in habitat quality.  For example, 

area disturbed by fire is considered beneficial for moose habitat up to 50 years post-

disturbance but moose densities peak 20-25 years following the burn (LeResche et al. 

1974).  While the last spruce budworm outbreak ceased over three decades ago, moose 

densities in the Cape Breton Highlands are still relatively high but may eventually 

decline.  Therefore, edge influence on herbivory may vary depending on the disturbance 

responsible for edge creation as well as ungulate population densities prior to the 

disturbance.  

Future studies could evaluate moose browse activity at other types of natural 

edges and over longer time periods.  The overall value of a disturbed area to moose 

habitat depends on various abiotic variables (soil conditions, temperature, moisture), the 

severity and duration of the disturbance, as well as the size of the created open area 

(LeResche et al. 1974).  In addition to different edge types, future research could address 

the relationship between edge function and temporal dynamics pertaining to seasonal and 

annual changes in species palatability and availability.  Dietary preferences change 

depending on the season and year (Peek et al. 1976), so studies designed to evaluate 

moose browse activity constantly throughout the year would provide us with a better 

understanding of edge influence on herbivory.   

Even though long-term implications of herbivory can take a long time to detect, 

research could be invested into monitoring forest succession in the Cape Breton 
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Highlands because the interplay between the insect outbreak and moose herbivory on the 

island is relatively unique.  Cape Breton Highlands National Park currently maintains two 

moose exclosures that are being used to evaluate forest regeneration in the absence of 

browsing pressure.  Perhaps it would be useful to test browsing pressure with densities of 

low, moderate, and high ungulate densities as moose exclosures represent extreme and 

arguably unrealistic conditions.  Moreover, future studies could establish exclosures 

across forest edges to investigate browse activity across ecosystem boundaries and 

monitor the structural development of the moose-browsed forest edges over time.    
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