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Abstract 

Trichomycetes are endosymbiotic fungi and protists found in the guts of arthropods. 

Aquatic insects were collected from one lotic and one lentic site in each of three 

watersheds around the Halifax Regional Municipality and the trichomycetes present were 

documented. Weekly sampling over a 17 month period resulted in identification of 64 

taxa of trichomycetes including 19 new species, five new continental and five new 

geographic records for Nova Scotia. Ecological results indicate that species richness and 

prevalence was higher at lotic sites than at lentic sites, primarily due to the presence of 

additional host types found only at lotic sites. Most trichomycete taxa occurred at 

relatively low prevalence at all sites. Watershed analyses suggested that differences in 

species richness and prevalence occur between watersheds. Several species exhibited 

seasonality and host preference over the course of the study. 
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Introduction 

Trichomycetes are an ecological group of fungi and protists that live within the 

guts of insects and other arthropods found in marine, freshwater, and terrestrial habitats 

(Lichtwardt, 1986). The name trichomycetes comes from the Greek word ‘tricho’ which 

translates to hair, alluding to thalli which appear hair-like inside the insect gut and 

‘mycetes’, also Greek for fungi. Endosymbiotic in nature, trichomycetes have eluded 

concrete classification since they were originally described as colorless algae by Joseph 

Leidy, who in 1849 isolated them from beetles and millipedes (Nelder et al., 2006). Later 

classification conducted by R.W. Lichtwardt and S.T. Moss led to the construction of the 

class Trichomycetes within the Phylum Zygomycota (Zygomycetes) and was divided into 

four fungal orders consisting of the Amoebidiales; Asellariales; Eccrinales and 

Harpellales (Lichtwardt, 1986).  A subsequent reassessment of the Kingdom Fungi 

conducted by Hibbett et al. (2007) separates the protistan orders (Amoebidiales and 

Eccrinales) from the fungal orders (Asellariales and Harpellales) assigned tentatively to 

the Kickxellomycotina and using trichomycetes (lower case –t) to describe this ecological 

group living within the guts of arthropods. Despite the deconstruction of the class 

Trichomycetes, the four orders remain intact to refer to previously and newly described 

species. 

 Under the four order system, the Harpellales are the most speciose order of 

trichomycetes and are divided into two distinct families, the Harpellaceae and 

Legeriomycetaceae (Lichtwardt et al., 2001a). The Harpellaceae possess unbranched 

thalli and is currently comprised of only six genera and 56 species contrasting with the 
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Legeriomycetaceae containing trichomycetes with branched thalli comprised of 38 

genera and 206 species. The second fungal order, the Asellariales, is much less speciose 

having only one family (Asellariaceae), two genera and 13 species. The two protistan 

orders beginning with the Amoebidiales are split into one family (Amoebidiaceae), two 

genera and 18 species while the Eccrinales consist of three families (Eccrinaeceae, 

Palavasciaceae and Parataeniellaceae) subdivided into 17 genera and 65 species.  

Worldwide, trichomycetes are reported from six of seven continents throughout 

the world (Misra 1998; Lichtwardt et al. 2001a) and as new species continue to be 

reported it is becoming clear that they are virtually everywhere.  By the end of 2011, 

there were approximately 66 genera containing 326 species of trichomycetes described in 

the literature (Lichtwardt, 2004). With a slowly increasing number of taxonomists 

studying trichomycetes, 10 new genera and 78 new species have been described between 

2000 and the end of 2011 which should continue to expand as new geographic regions 

are explored. 

Trichomycetes have been described mostly from insect hosts collected from 

freshwater lotic systems including streams, rivers, and springs (Lichtwardt et al., 2001a) 

although they have also been seen in crayfish, crabs, millipedes, isopods and amphipods 

(Lichtwardt, 2004). Despite limited, sporadic sampling there are numerous species of 

trichomycetes described from lentic habitats (standing waters such as ponds, lakes, 

swamps) and the diversity is high. Perhaps accounting in part for investigators preference 

for lotic investigations is the fact that a larger group of herbivorus insects are found in 

lotic sysytems that are prolific hosts of diverse species of trichomycetes (Lichtwardt et al. 

http://www.nhm.ku.edu/~fungi/catalog.html#PALAVASCIACEAE#PALAVASCIACEAE
http://www.nhm.ku.edu/~fungi/catalog.html#PARATAENIELLACEAE#PARATAENIELLACEAE
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2001a). 

According to Lichtwardt et al. (2001a) there are several species of Stachylina 

reported from lentic habitats such as ponds, including Stachylina chironomidarum 

Lichtw., Stachylina euthena Manier & Coste, Stachylina macrospora L. Leger & M. 

Gauthier, as well as Smittium mucronatum Manier & Mathiez ex Manier, Smittium 

phytotelmatum Lichtw.  and Smittium typhellum Manier & F. Coste, all from chironomid 

(non-biting midge) larvae. Smittium culicis Manier and Zancudomyces culisetae Y. 

Wang, Tretter, Lichtw. & M.M. White (as Smittium culisetae Lichtw.) are both widely 

distributed in mosquito larvae from lentic environments (Lichtwardt et al., 2001a). 

Strongman and White (2008) described three new species from lentic systems in 

Algonquin Park, Ontario, Legeriomyces algonquinensis Strongman & M.M. White from 

a mayfly nymph, Glotzia incilis Strongman & M.M. White from a dipteran (Dixidae) and 

Arundinula opeongoensis M.M. White & Strongman from a crayfish. Lichtwardt (1994) 

reported trichomycetes in larvae extracted from the phytotelm of plants and other lentic 

habitats in Costa Rica. However, freshwater lentic systems are understudied and they 

clearly represent a potentially abundant source of trichomycetes yet to be discovered. 

Lentic systems such as lakes and ponds present limitations in sampling not found with 

lotic sampling. Often lentic sampling is restricted to edges of the body of water and 

standing water in temperate regions are subject to ice cover making these habitats 

difficult to access for significant periods of time (winter months) although insects are 

present under the ice (Merritt and Cummins, 1996).  

The dipteran order, or true flies, is known to host up to 80% of the currently 
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described Harpellales (Valle et al., 2011) and in particular, midge larvae of the family 

Chironomidae and black flies (Simuliidae) are replete with these harpellid fungi. Two 

genera account for a large proportion of the described Harpellales: Smittium spp. with 

over 90 described species and Stachylina spp. with over 40 described species each of 

which are largely found in the hindguts and midguts, respectively, of midge larvae. 

Conversely, Plecoptera (stoneflies) and Ephemeroptera (mayflies) nymphs host a wider 

variety of much less speciose genera of harpellids (Lichtwardt et al., 2001a).  

The life cycle of Harpellales is common for the two families (Harpellaceae and 

Legeriomycetaceae) differing in subtle ways. The unbranched thalli of the Harpellaceae 

are septate and each cell functions as a generative cell producing exogenously an asexual, 

membrane bound, trichospore with a single appendage. The branched Legeriomycetaceae 

in contrast commonly produce trichospores at the terminal end of a fertile tip allowing in 

some cases for vegetative growth simultaneous with trichospore production. In both 

groups, trichospores break free from the thallus and are released to the exterior aquatic 

habitat where they are assumed to remain dormant until ingested by an appropriate host 

and attach themselves via a holdfast or hyphal surface to either the peritrophic matrix or 

hindgut. The trichospore then extrudes its contents, attaches to the lining and a new 

thallus grows. Zygospores, like trichospores perhaps extrude their contents which 

develop into individual thalli; however, to date there is no existing evidence supporting 

this hypothesis. 

 Within the Harpellales, there is variation in thallus types beginning with the 

simple unbranched thalli of the Harpellaceae that range in size from as short as 30 µm as 
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in the case of Stachylina minuta M. Gauthier ex Lichtw. or can extend up to 900 µm as 

described for Stachylina magna Indoh, Lichtw. & Kobayasi. The diameter of the 

Harpellaceae thalli have a much narrower range from 3-4 µm seen in Harpella 

amazonica Ríos-Velásquez, Lichtw., Hamada & Alencar and up to a diameter of  

14-25 µm exhibited by St. magna.  

The more complex branching patterns exhibited in the Legeriomycetaceae are 

more difficult to describe in general, but different branching patterns are recognized. In 

some instances, thalli take on a distinct verticilliate pattern of branching as observed in 

species such as Smittium brasiliense Alencar, Lichtw., Ríos-Velásquez & Hamada, 

Smittium culisetae and Smittium dipterorum Lichtw.; however, in the latter two species 

they are described as ‘often verticilliate’ in regards to their branching pattern suggesting 

it is not absolute. Other branching patterns include profusely branched, as in Smittium 

bisporum Manier & F. Coste (Manier and Coste, 1971), and sparsely branched as 

described for Smittium bulbosporophorus L.G. Valle & Santam (Valle and Santamaria, 

2004). Additionally dimorphic thalli, as seen with Smittium biforme M.M. White & 

Lichtw. (White and Lichtwardt, 2004) have been observed resulting in the production of 

two trichospore sizes and Graminelloides biconica Lichtw. in which individual sparsely 

branched thalli aggregate together in a cluster (Lichtwardt, 1997).  

Within the insect host, trichomycete thalli are found anchored on the peritrophic 

matrix (in dipterans) as well as the hindgut lining of most herbivorous insects via a 

holdfast structure or system (Lichtwardt, 2001). In certain species such as Pteromaktron 

protrudens Whisler and Pteromaktron timberleaense R.T. William & Strongman the 
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thallus is anchored to the gut via surface area by multiple short sterile branched hyphae, 

whereas in other species much more complex holdfasts are observed. In the vast majority 

of the over 40 species of Stachylina, the holdfast is either a rounded or tapered basal cell 

while only a few have holdfasts that penetrate the peritrophic matrix in dipterans. Mature 

or free trichospores have been observed with several spherical ‘apical spore bodies’ 

terminal to the trichospore full of adhesive used to anchor the newly extruded thalli (Horn 

1989a; 1989b; Moss and Lichtwardt 1976; Williams, 1983).                                                                                                                              

Trichomycetes have been documented to reproduce via sexual and asexual means 

of reproduction; however, it is much more common to observe production of asexual 

trichospores more so than zygospores resulting from sexual reproduction. Most 

trichospores are produced directly within the gut lumen of the host; although there are 

cases where the trichospores actually protrude from the anus of their insect hosts. Both 

Pteromaktron protrudens and Pteromaktron timberleaense produce trichospores 

projecting from the anus of mayfly nymphs (Whistler, 1963; William and Strongman, 

2012) as do Zygopolaris ephemeridarum Moss, Lichtw. & Manier, Zygopolaris borealis 

Lichtw. & M.C. Williams (Moss et al., 1975; Lichtwardt and Williams, 1984), Stipella 

vigilans L. Léger & M. Gauthier (Moss, 1970) and all Orphella species for instance. 

Associated with the trichospores of most observable species of the Harpellales is 

an appendage or appendages that are generally thin and much longer than the trichospore 

such as those observed in almost all Smittium trichomycetes, yet there are instances of 

shorter, thicker appendages such as those observed in Pennella hovassi Manier ex Manier 

and Legeriomyces algonquinensis. The number of appendages can range from one to 
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seven depending on the species and there are instances within the harpellids including 

species of Carouxella, Bojamyces, Caudomyces, Orphella, and Zygopolaris in which no 

appendages have been observed (Lichtwardt, 2004). 

Sexual reproduction produces thick-walled zygospores and has been described for 

many species of trichomycetes within the Harpellales (Lichtwardt, 2004). The 

Harpellales were long considered the only order to produce zygospores from a truly 

sexual process that includes conjugation, thickened walls and storage materials within the 

spore; however, Asellaria jatibonicua L.G. Valle & Cafaro is the first species from the 

Asellariales known to produce zygospores not directly from conjugation tubes as with 

Harpellales, but on contiguous cells, always next to a septum (Valle and Cafaro, 2008). 

Of the over 200 species of harpellid trichomycetes, there is an almost even split between 

those with documented zygospores and those without (Lichtwardt, 2004). Interestingly, 

there are many examples where some species in a genus have zygospores described while 

other species in the same genus do not, including; Austrosmittium, Genistelloides, 

Genistellospora, Glotzia, Legeriomyces, Pennella, Smittium, and Stachylina (Lichtwardt, 

2004). Based on how infrequently many species have been encountered, it is not 

surprising that zygospores are not observed for many species. Also, the production of 

zygospores often is limited to a short period just before the insect molts (Lichtwardt et al, 

2001a). In some scenarios such as Orphella dalhousienesis Strongman & M.M. White 

and Capniomyces celatus L.G. Valle, zygospores are produced at the same time as 

trichospores, whereas in other instances trichospore production is reduced or absent when 

zygospores are formed (Strongman and White, 2006). 
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Zygospores are mostly thick-walled structures compared to trichospores, possibly 

designed for surviving harsher environments and have also been found to have an 

associated appendage. Zygospores are produced from the zygosporophore with four 

distinct types described: Type I with zygospores that lie perpendicular to the 

zygosporophore; Type II with zygospores lying oblique to the zygosporophore; Type III 

where zygospores lay parallel to the main axis of the zygosporophore and Type IV where 

the zygospores is attached at one pole so that the zygospores and zygosporophore are 

considered to have a coaxial attachment (Moss and Lichtwardt, 1977). Recently, a fifth 

type of zygospore has been added when Valle and Santamaria (2005) found them in three 

species of Orphella (Orphella catalaunica, Santam. & Girbal Orphella coronata L. Léger 

& M.Gauthier and Orphella. helicospora Santam. & Girbal) that are produced laterally 

from a generative cell, but have shapes that are curved (O. catalaunica) or helicoidal (O. 

coronata and O. helicospora).  

Trichomycetes are classified largely based on morphology by taking microscopic 

measurements of trichospores (asexual) and zygospores (sexual); finding an average, 

maximum and minimum range, for length and width of the spores and also describing 

trichospore shape, appendage number and arrangement. To a lesser extent the holdfast 

structure and thallus characteristics are used to distinguish species, but most cannot be 

accurately identified to species without detailed trichospore morphology (Lichtwardt, 

1986). Complicating the precise identification of trichomycetes is that most are unable to 

be cultured on artificial media (Lichtwardt 1986). Molecular techniques are currently 

being employed to elucidate phylogeny and relationships among taxa (White 2002; 2006; 
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White et al., 2006a); however, these efforts are limited due to the inability to grow the 

majority of trichomycetes in axenic culture. As a consequence, the importance of 

employing accurate descriptions in conjunction with quantitative analysis becomes 

paramount to accurate trichomycete taxonomy.  

An investigation of trichomycetes in Nova Scotia has been conducted by Dr. 

Doug Strongman and Dr. Merlin M. White beginning in the early 2000’s. These 

investigations have yielded an inventory of 42 species of trichomycetes, as well as two 

unidentified species (Parataeniella sp. and Orchesellaria sp.) reported from various 

locations within Nova Scotia. Their work describes  22 new species  including three new 

genera Trifoliellum, Bactromyces and Laculus as well as 20 species of trichomycetes that 

have been previously reported from different locations outside of Nova Scotia 

(Strongman 2005; Strongman and White 2006; 2008; 2011; William and Strongman 

2012; White and Strongman 2012a; 2012b). In all cases, the hosts were aquatic insects 

from the Orders Plecoptera, Ephemeroptera or Diptera with the exception of 

Parataeniella sp. from a pill bug (Isopoda) (Strongman and White 2011) and 

Orchesellaria sp. recorded in springtails (Collembola) (White and Strongman 2012b). 

This thesis contains an inventory of trichomycetes from a lotic and a lentic site 

from each of three separate watersheds within the Halifax Regional Municipality in Nova 

Scotia, Canada. The Harpellales were the central focus of this study with a few 

Paramoebidium spp. (Amoebidiales) also recorded. The study was conducted over a 17 

month period beginning in August 2010 and ending in late December 2011 resulting in 

duplicate seasonal data collected from August to December of both 2010 and 2011. 
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Repeated collections at two sites in each of three separate watersheds over the study 

period provided data on seasonality and site specificity in trichomycetes. The prevalence 

of each taxon documented in this study is reported and comparison between lentic and 

lotic habitats are given for common (ephemeropteran and chironomid) hosts found in 

both site types. These two hosts were also used to compare prevalence, and species 

richness among watersheds. This is one of very few studies detailing new species 

recorded over a long term, multi-seasonal collection of trichomycetes and will 

supplement a larger project attempting to catalogue trichomycetes occurring in Canada 

and assist in developing an ecological understanding of these cryptic fungi. 
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Materials and Methods 

Study Design 

In undertaking a project of this nature it was imperative to find appropriate sites 

from which to draw samples and to standardize key components of the study in order to 

be able to make appropriate comparisons among sites. Initially, potential sites were 

examined for similar physical characteristics and for the presence of paired lotic/lentic 

sites within a watershed. All preliminary sites were assessed for trichomycete populations 

by collecting timed samples of aquatic insects rather than covering a standardized area 

which could be complicated by the logistics of sites that might not allow for an area of 

equal size to be covered. The stream or lake bottoms were disturbed by kicking stones 

and muddy areas (kick sampling) then sweeping a dip net into the disturbed substrate 

catching dislodged insects (Lichtwardt et al., 2001a). Initial timings used for preliminary 

samples were 20 minutes, and were stepwise reduced down to four- minute samples after 

it was demonstrated that more insects were collected after four minutes than could be 

dissected before the insects would begin to die and decompose, thus obscuring any 

trichomycetes. Similarly, when sorting the insects from each sample into target host 

groups for subsequent dissections, the amount of time spent sorting was standardized. 

Beginning with one hour sort times, this too was stepwise reduced to a duration of 30 

minutes as again, more insects than necessary for dissections were recovered in that time 

frame. 

All families of herbivorous Ephemeroptera and Plecoptera were selected while 

two families of Diptera, Simuliidae and Chironomidae, were target hosts for dissections. 
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It was determined that nine specimens each of the four target hosts were to be dissected 

from each sample in order to again ensure dissections were completed before insect death 

and decomposition began.  

 

Methodology 

Three lotic sites and three lentic sites, one pair from each of three watersheds 

located in the Halifax Regional Municipality, Nova Scotia (NS), Canada were selected as 

the permanent study sites. The three lotic sites were: a stream feeding Long Lake, 

Halifax, NS (LLLO, 44 37' 45N; 063 39' 31W; elevation 60 m); a stream draining Lake 

Mill Pond in Timberlea, NS (TLLO, 44 39' 44N; 063 44' 41W; 59 m) and a stream 

feeding Lake Micmac in Shubie Park, Dartmouth, NS (SPLO, 44 44'46N; 063 33 51W; 

27 m). Two of the lentic sites were Governor’s Lake in Timberlea, NS (GLLE, 44 38' 

36N; 063 42 19W; 54m) and Lake Micmac in Shubie Park, Dartmouth, NS (SPLE). The 

third lentic site was located at Long Lake, NS (LLLE, 44 41' 52N; 063 33 13W; 28 m) 

and was situated approximately 30 m from the mouth of a stream that emptied into the 

lake. It became evident after several months that this site was influenced by outflow from 

the stream when large rain events happened. Therefore, the LLLE site is considered an 

interphase site between the stream and lake habitats that was different from the other two 

lake sites not directly influenced by stream inputs. The types of insects collected from 

this interphase site for a part of the sampling period reflected both lentic and lotic 

communities. The stream substrates were quite similar in composition including largely  

rocky bottoms interspersed with sandy sections. The lake sites had rocky and sandy to 
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muddy substrates largely devoid of aquatic vegetation. There were 22 collections made  

from each stream site but only 19 from the lake and interphase sites due to ice cover at 

these sites from Jan-Mar 2011 (Appendix I).  

Three timed (four minute) samples were collected from the substrate at each lentic 

and lotic site by kicking stones and muddy areas (kick sampling) then sweeping a dip net 

into the disturbed substrate catching dislodged insects. Samples were taken from a pair of 

lentic/lotic sites within a specific watershed on a collection date such that sampling 

occurred approximately every three weeks at each watershed. The sampling dates are 

given in Appendix I and, except for GLLE on 3 Jan 2011, ice cover prevented collections 

at this site and Lake Micmac from January to March 2011.  

The target hosts (Ephemeroptera and Chironomidae as well as Plecoptera and 

Simuliidae when present) were sorted, counted, and then up to nine individuals from each 

host type were selected from each subsample (maximum 27 of each type per 

sample/collection date) for dissection. The numbers of insects in each of the target groups 

collected and dissected on each collection date are given in Appendix I. Guts of target 

insects were dissected in a drop of water on a glass Petri dish on the stage of a 

stereomicroscope with a transmitted light source. Guts were transferred to a drop of water 

on a microscope slide and thalli were separated from insect tissue using fine tipped 

forceps and insect pins mounted in pin vises (Grobet, Carlstadt, N.J., USA). Slides (wet 

mounts) were examined with a compound microscope equipped with phase and 

differential interference contrast (Nomarski) optics, then examined for taxonomically 

relevant characteristics including trichospores and zygospores, if present. Dimensions of 
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spores as well as holdfast structure and thallus branching patterns were recorded from 

digital micrographs. Semi-permanent voucher slides were made by infiltrating the 

specimen on the slide with a drop of lactophenol cotton blue stain placed on the edge of 

 the coverslip. After 18-24 hours excess stain was wiped away with a moistened tissue 

before sealing the edge of the cover slip with fingernail polish (Lichtwardt, 1986). 

Identifications were made from digital micrographs taken from both live (before staining) 

and stained material, using the Lucid keys accessible on the University of Kansas website 

(Lichtwardt, 2004) which are updated frequently as new species are described. 

Type specimens for all new species are deposited at the National Mycological 

Herbarium, Agriculture & Agri-Food Canada, Ottawa, Ontario (DAOM). Some 

preserved specimens are available from D. B. Strongman, Biology Department, Saint 

Mary’s University. 

 

Ecological Methodology 

Several aspects of trichomycete ecology were analyzed beginning with 

trichomycete species richness where all identified taxa from each site (three lentic sites, 

two lotic sites and one interphase site) were totaled and numerically compared to each 

other. Next, seasons were compared that included dividing collection dates into four 

discrete periods (August to December 2010, January to April 2011, May to August 2011, 

and September to December 2011), totaling the taxa identified and comparing each 

period.  Collection periods from six sites were typically conducted over three week 

intervals (one watershed per week) such that seasonal periods often overlapped from the 
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end of one month to the start of another. The actual dates of these collection periods are: 

17-August 2010 to 15 December 2010 (Aug to Dec 2010), 17 December 2010 to 24-April 

2011 (Jan to Apr 2011), 27 April 2011 to 17 August 2011 (May to Aug 2011), and 21 

August 2011 to 22 December 2011 (Sep to Dec 2011). 

Prevalence of each trichomycete taxon was examined for the four target host 

groups. For each of these host groups, the ratio of larvae colonized by each taxon to the 

number of hosts examined was used to generate trichomycete prevalence (%). An 

arbitrary number of 2% was used to separate common taxa (> 2%) from rare taxa (< 2%) 

with prevalence of each trichomycete taxon at each site recorded. Habitat preference 

based on prevalence was analyzed where the three lotic sites were compared to each 

other, two lotic sites compared to each other to assess prevalence at each site, before 

comparing prevalence at lotic sites to those from lentic. The one interphase site was 

excluded from lotic and lentic comparisons, but was considered separately in the analysis. 

 Trichomycete species composition within Ephemeroptera and Chironomidae 

hosts were generated by compiling a mean from the three lotic sites and mean from the 

two lentic sites. There was only one interphase site so actual values were given for this 

site. Assessments of each taxon were used to characterize all taxa as occurring in lotic, 

lentic, both lentic and lotic or interphase habitats. 

Finally, for each of the three watersheds (Long Lake, Woodens River and 

Shubenacadie) mean number of taxa from the lentic and lotic site in each watershed were 

combined to compare trichomycete overall community structure among the watersheds.  

The Long Lake watershed was largely excluded from the comparison due to the nature 
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of the interphase site not being a true lentic site like those in the other two watersheds. 
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Results (Taxonomy) 

There were 64 taxa of trichomycetes (61Harpellales, 3 Amoebidales) collected 

from the insect groups (Ephemeroptera, Plecoptera and Diptera (Simuliidae and 

Chironomidae) targeted in this study (Appendix II). Nineteen of these species presented 

morphological features sufficiently distinct from existing taxa to justify descriptions of 

new species including two new genera. The remaining 37 species have been previously 

described from different locations around the globe including five species establishing 

new continental records for North America and five species establishing new regional 

records for Nova Scotia. A complete list of trichomycete species recovered from all the 

collection sites can be seen in Appendix II including the insect host, and collection dates. 

All new species described herein have been validly published (William and Strongman, 

2012; 2013a; 2013b; 2013c). 

 

New Species 

Bactromyces gen.nov. R. T. William & Strongman 

Mycobank MB 561721 

Thallus compact with thick central axes branching profusely distally; the holdfast 

is a long, winding hypha with a few branches and small papillae scattered on the surface. 

Fertile terminal branches bear long, cylindrical trichospores swollen slightly above the 

mid-line and tapered at the base, with a short collar and no appendage. Zygospores are 

unknown. Attached to the hindgut lining of stonefly nymphs (Plecoptera). 
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Bactromyces fluminalis sp. nov. R. T. William & Strongman (Figs. 1–8) 

Mycobank MB 561722 

Thallus arborescent, spreading at the ends by profuse branching (Fig. 1), thick 

central hyphae about 20 µm thick (Figs. 1 and 2), secondary branches (12–16 µm wide) 

narrowing to 4.5–7 µm at the sporulating terminal branches (Fig. 2), holdfast winding, 

sparsely branched hypha with scattered papillae on the surface (Fig. 3). Immature thalli 

with branches terminating in an elongated cell tapering to a point (Fig. 4). Trichospores, 

typically 4 per terminal branch, cylindrical, 62–81 µm long, 3.5–5.5 µm wide, swollen 

slightly above the midline tapering to 2–4 µm at the base, with a short collar (1–4 µm 

wide x 2–3 µm long), no appendage (Fig. 5). No zygospores seen. Attached to the 

hindgut lining of stonefly nymphs (Capniidae). 

ETYMOLOGY: From the Greek for stick or rod baktron alluding to the long rod-like 

trichospores in this species and the Latin, fluminalis, meaning river or stream referring to 

the aquatic habitat where it was discovered. 

HOLOTYPE: Lactophenol cotton blue stained thalli and trichospores on microscope slide 

LL-4 (DAOM 241339) made from the hindgut of a stonefly nymph (Paracapnia 

angulata Hanson) collected on 2 Jan 2011 at Long Lake Provincial Park, off Route 333, 

within the Halifax Regional Municipality, NS. The holotype slide also has thalli and 

trichospores of Lancisporomyces falcatus Strongman & M.M. White and these two 

species are often found together in the same host gut. Another slide, LL-5 (DAOM 

241340), collected from the same site on 2 Jan 2011 (PARATYPE) has immature thalli  
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Figs. 1–4. Bactromyces fluminalis. Fig. 1. Thallus branching. Arrowheads show two 

thalli of Paramoebidium cassidula Strongman & M.M. White. Fig. 2. Thallus with 

trichospores attached (arrow). Fig. 3. Basal part of thallus showing winding holdfast with 

papillae (arrows). Fig. 4. Immature thallus with tapered, empty terminal cells (arrows) 

delineated by a septum (arrowheads). All images from live, unstained material. Scale bars 

= 20 μm. 
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Figs. 5–8. Bactromyces fluminalis. Fig. 5. Released trichospores with a short flared collar 

(arrows). Figs. 6 and 7. Released trichospore with amorphous material attached to the 

collar (arrow). Fig. 8. Trichospore wall (arrow) after extruding the sporangiospore. Figs. 

 5 and 8 from unstained material. Figs. 6 and 7 taken from a lactophenol cotton blue 

stained specimen. Scale bars = 20 μm, except 10 μm in Fig. 7. 
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of B. fluminalis only and shows the holdfast characteristics and the thallus branching 

pattern that are typical for the species. 

HABITAT: Dissected from the hindgut of stonefly (Paracapnia angulata) nymphs 

collected from a flowing stream in Long Lake Provincial Park on 28 Dec 2009, 6 Jan 

2010, 20 Jan 2010, 15 Mar 2010, 22 Mar 2010, 2 Jan 2011 and 23 Jan 2011. 

COMMENTARY: Sinotrichium chironomidarum J. Wang, S.Q. Xu & Strongman has 

long, cylindrical trichospores with a collar in the same size range but the spores are not 

tapered as in B. fluminalis. S. chironomidarum has one long thin appendage and the collar 

is longer, also, S. chironomidarum is found in chironomids (Wang et al., 2010) while B. 

fluminalis comes from the gut of capniid stoneflies. Bojamyces spp. have long 

trichospores with a collar, with or without an appendage, but the size and shape of the 

spores is different and the thallus branching structure is different from B. fluminalis. 

Species of Tectimyces have clavate trichospores like B. fluminalis with a short collar and 

no appendage, but the thallus in Tectimyces is pinnate or umbelliferous (Valle and 

Santamaria, 2002). Both Bojamyces and Tectimyces spp. inhabit guts of mayflies 

(Lichtwardt, 2004) while B. fluminalis colonizes the guts of stoneflies. Genistelloides 

spp. and Lancisporomyces spp. have been described from stonefly hosts and have 

cylindrical trichospores like B. fluminalis, but none of these species have a collar and 

both have two appendages on the trichospores (Lichtwardt, 2004). 
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Glotzia gemina sp. nov. R.T.William and Strongman (Figs. 9–13) 

Mycobank MB 80375 

Sparse, irregularly branched thallus (Fig. 9) emanating from basal cell with peg-

like projections (Fig. 10), producing trichospores at the end of fertile tips (Fig. 9). 

Trichospores (Fig. 11) cylindrical 40–55 µm × 2–5 µm with three appendages (2 short  

and 1 long), projecting in different directions from the base of the trichospore. 

Zygospores 25–29 µm × 8–11 µm (Fig. 13) often flattened to incurved, with a sub-

medial, oblique attachment to the zygosporophore 19–26 µm × 4.5–5.5 µm (Fig. 12). 

Detached zygospores with a short collar (Fig. 13). Attached to the hindgut lining of 

mayfly (Baetidae) nymphs. 

ETYMOLOGY: Latin geminus twin referring to the similarity between this species and  

Glotzia ephemeridarum Lichtw. 

HOLOTYPE: Microscope slide SPLO-1 (4 Sept 2010) with thalli bearing trichospores, 

attached to hindgut lining (DAOM 242389). PARATYPE: Slide SPLO-1 (12 Oct 2010) 

(DAOM 242390) containing thalli with zygospores. The baetid host containing the 

holotype specimen was collected at Shubie Park stream (SPLO) Dartmouth, NS on 4 Sept 

2010 and the paratype came from a baetid collected at the same site on 12 Oct 2010. Both 

the holotype and paratype specimens were stained with lactophenol cotton blue. 

HABITAT: Collected from hindgut lining of mayfly (Baetidae) nymphs at SPLO on 30 

Aug 2010, 19 Sep 2010, 12 Oct 2010, 13 Jul 2011, and 4 Sep 2011 (Appendix II).  

COMMENTARY: The unique feature exhibited by Glotzia gemina that places it in the 

Glotzia genus is the long cylindrical trichospores with three appendages diverging from 
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Figs. 9–13. Glotzia gemina. Fig. 9. Thallus with developing immature trichospores 

(arrows). Fig. 10. Swollen basal cell of holdfast structure with peg-like projections 

(arrows) anchoring the fungus to the hindgut lining. Fig. 11. Released trichospore 

displaying three distinct appendages (arrow). Fig. 12. Developing zygospores (arrows) 

affixed to zygosporophore (arrowhead). Fig. 13. Released zygospore with small collar 

(arrow). All Figs. from lactophenol cotton blue stained specimens. Scale bars = 20 µm. 
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one another (Lichtwardt et al. 2001a). Of the seven species in this genus only four have 

similar morphological features to G. gemina. Glotzia incilis trichospores (21.5–26.5 µm × 

3.5–4.5 µm) are smaller and a different shape while Glotzia tasmaniensis Lichtw. & M.C. 

Williams has trichospore measurements [(30–)46(–78) µm × (3.2–)4.0(–6.0) m] with a 

broader range than those in G. gemina. Additionally, both G. incilis and G. tasmaniensis 

have a simple or bulbous basal cell holdfast (Lichtwardt, 2004). The arrangement of 

trichospores on the thallus is different in Glotzia plecopterorum Lichtw. and the 

trichospore dimensions (39–50 µm × 6–8 m) are much wider than G. gemina (Williams 

and Lichtwardt, 1990). No zygospores are reported for these three described species so 

comparison with the zygospores of G. gemina is not possible. 

 At first glance, G. gemina is strikingly similar to G. ephemeridarum Lichtw., but 

upon further inspection both the trichospores and zygospores differ. Glotzia 

ephemeridarum trichospore length range (45–70 µm × 4.5–7 µm) overlaps with those of 

G. gemina (40–55 µm × 2–5 µm) but G. ephemeridarum trichospores are 2 to 3 times 

wider (Lichtwardt et al., 2001a). The average trichospore length and width for G. gemina 

(n=38 spores) was 45.5 µm × 3.3 µm which falls into the lowest end of the range for G. 

ephemeridarum. Additionally the length of mature zygospores of G. gemina (25–29 µm × 

8–11 µm) was consistently below the range described for G. ephemeridarum (28–37 µm 

× 7.5–10 µm) which can help to differentiate between the two species (Lichtwardt et al., 

2001a). 
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Laculus gen. nov. R.T. William & Strongman 

Mycobank MB 561718 

Thallus branching sparse, verticilliate with trichospores produced on terminal 

branches. Trichospores elliptical with a slight sub-medial swelling, a conspicuous collar 

and two appendages. Biconical zygospores, attached to zygosporophores obliquely (Type 

II) and submedially, with a collar and one appendage. Attached to hindgut lining of 

mayfly nymphs (Ephemeroptera). 

 

Laculus insecticola sp. nov. R. William & Strongman (Figs. 14–23) 

Mycobank MB 561719 

Thallus attached to hindgut lining by a slightly bulbous holdfast, 7.5–8.5 µm 

wide, on a pad of secreted material (Fig. 14). Sparse verticilliate branching (Fig. 15) with 

whorls of 2–3 long branches. Trichospores produced on terminal branches (Fig. 16), 

elliptical, 19–28.5 x 3.7–7 

µm with a slight sub-medial swelling and a conspicuous, straight collar 2–5 µm long, 

sometimes with a distal flare, with two appendages (Figs. 17 and 18) that often appear to 

be appressed to the collar edge where they emerge. Short zygosporophores 11.5–18 µm 

attached to a swollen basal  cell arising from conjugated hyphae (Figs. 14–16), biconical 

zygospores 47–66.5 x 6.5–9.5 µm borne on the zygosporophore obliquely (Type II) and 

submedially, (Figs. 13 and 6–18), with a collar 6–15 x 3–5.5 µm and one appendage 

(Figs. 17 and 18). Attached to the hindgut lining of mayfly nymphs (Caenidae). 

ETYMOLOGY: from the Latin lacus meaning lake, in reference to the lentic habitat 
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Figs. 14–18. Laculus insecticola. Fig. 14. Swollen basal holdfast cells (arrows) with dark 

adhesive pad attaching thallus to the hindgut lining. Fig. 15. Verticilliate branching 

pattern in the thallus at multiple nodes (arrows). Arrowhead indicates a generative cell 

that has shed a trichospore. Fig. 16. Terminal branch with immature trichospores attached 

(arrow). Fig. 17. Released trichospore with 2 appendages (arrows) and a prominent collar 

(arrowhead). Fig. 18. A released trichospore (arrow) and zygospore (arrowhead). All  

figures are from lactophenol cotton blue stained material except for Fig. 16, which was 

from unstained material. Scale bars = 20 μm. 
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Figs. 19–23. Laculus insecticola zygospore features. Fig. 19. Conjugation showing 

remains of the zygosporophore (arrow) and an immature zygospore (arrowhead). Fig. 20. 

Conjugation (arrow) of adjacent hyphae and developing zygospores attached to the 

thallus (arrowheads). Figs. 21. Fully formed zygospore attached to the thallus by the 

zygosporophore (arrow). Fig. 22. Released zygospore with a submedial collar. Fig. 23. 

Released zygospores showing long single appendage (arrows). Material in Figs. 19, 20, 

 22, and 23 stained with lactophenol cotton blue. Material in Fig. 21 unstained. Scale bars 

= 20 μm. 
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where this fungus was found and insecticola which translates into “insect inhabiting” 

reflecting the obligate association between this fungus and its insect host. 

HOLOTYPE:  The holotype for Laculus insecticola is lactophenol cotton blue stained 

thalli, trichospores and zygospores on microscope slide (GL-4) made from the hindgut of 

a mayfly nymph (Caenidae) collected at Governor Lake on 9 July 2010 (DAOM 241341).  

HABITAT:  Caenid mayfly nymph exuviae collected on 9 July 2010 had prolific 

zygospore production with some trichospores and spent thalli within the shed hindgut 

lining of the skins (exuviae). Living mayfly specimens collected from Governor Lake on 

16 Sept 2010, 27 Oct 2010, 19 Nov 2010, 8 Dec 2010 and 3 Jan 2011 had immature thalli 

in the gut resembling thallus of L. insecticola, lacking trichospores or zygospores so 

positive identification was not possible. 

COMMENTARY: Laculus insecticola most closely resembles species of Legeriomyces, 

with all these species having two-appendaged trichospores and inhabiting the hindguts of 

mayfly nymphs. However, Laculus insecticola has a very prominent collar which is 

absent in all species of Legeriomyces. Laculus insecticola can be separated from species 

of Legeriosimilis, which resemble Legeriomyces spp., by the absence of a collar and 

trichospores with three broad appendages in Legeriosimilis spp. (Lichtwardt, 2004).  

Lancisporomyces vernalis Santam., described from stonefly nymphs (Santamaria, 1997), 

and Legeriomyces algonquinensis (Strongman and White, 2008) have trichospores in the 

same size range as L. insecticola but neither have a collar. Legeriomyces rarus Lichtw. & 

M.C. Williams has trichospore (25–31 x 5.5–8 µm) and zygospore (42–51 x 6–9 µm) 

(Lichtwardt, 2004) sizes which overlap with L. insecticola (trichospores 19–28 x 3.7–7 
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µm and zygospores 47–66.5 x 6.9–9.5 µm). This species is also described from Caenid 

mayflies and has been collected in Canada by Strongman and White (2008) but L. rarus 

trichospores have no collar, distinguishing them from L. insecticola. Legeriomyces 

ramosus Pouzar has Type II zygospores in the same size range and is known from mayfly 

hosts, like L insecticola; but the trichospores in L. ramosus are larger and have a sub-

medial swelling and no collar (Lichtwardt, 2004). 

 

Pteromaktron timberleaense sp. nov. R.T. William & Strongman (Figs 24–30) 

Mycobank MB 561720 

Pteromaktron timberleaense R.T. William and Strongman in William and Strongman, 

Botany 90:101-111. 2012 (Figs. 24–28). Emend. R.T. William and Strongman. in 

William and Strongman, Botany 91:368-381. 2013 (Figs. 24–28) Figs. 29 and 30. 

 Thalli aseptate, up to 1100 μm long × 19–33 μm wide, attached basally to hindgut 

lining by multiple short sterile branched hyphae (holdfast). Thallus terminating apically 

in a sporulating head composed of basal cells (37–49 μm × 7–9.5 μm), each producing 4–

6 clavate generative cells (28–42 μm × 5–7 μm), each with a cylindrical trichospore 

(145–180 μm × 6–9 μm); released trichospores with a fine basal appendage much longer 

than trichospore. Zygospores (Type I) produced heterothallically, perpendicular to the 

zygosporophores 25–31 μm × 4–6 μm, arising from densely branched hyphae. Detached 

zygospores 46–58 μm × 6–7 μm with a long narrow collar 17–23 μm × 4 μm. Attached to 

hindgut lining of mayfly nymphs (Heptageniidae). 

ETYMOLOGY: Named for the type location; a stream in Timberlea, NS. 
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Compact trichospore-producing head with basal cells (arrows) producing generative cells 

(arrowheads). All trichospores are released. Fig. 28. Basal end of a trichospore showing 

the “knot-like” structure near where the long single appendage emerges from the 

trichospore. All images made from slides stained with lactophenol cotton blue. Scale bars 

= 20 μm, except 50 μm in Fig. 24. 

 

Figs. 24–28. Pteromaktron 

timberleaense. Fig. 24. Whole 

aseptate thallus showing 

holdfast at the base (arrow) 

and trichospore-producing 

terminal head (arrowhead) 

with all trichospores shed. Fig. 

25. Enlarged view of a 

branched basal holdfast. Fig. 

26. Trichospores attached to 

generative cells (arrowhead) 

arising from a basal cell on a 

terminal sporulating head. 

Note the spent branches 

(arrow) at the base of the 

sporulating heads. Fig. 27. 
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Figs. 29–30. Pteromaktron timberleaense. Fig. 29. Thalli (white arrowheads) and 

attached zygospores (black arrows) atop zygosporophores (black arrowheads). Fig. 30. 

Zygospore (arrow) and long collar (arrowhead), which remains attached to the zygospore 

after release from the zygosporophore. Fig. 29 from lactophenol cotton blue stained 

material. Fig. 30 is unstained. Scale bars = 20 µm. 
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HOLOTYPE: Thalli and trichospores of Pteromaktron timberleaense stained with 

lactophenol cotton blue on microscope slide TLLO-1 (DAOM 241342) made from the 

hindgut of a mayfly nymph (Heptageniidae) collected at the outflow of Mill Pond, 

Timberlea, NS on 3 Oct 2010. Zygospores were discovered from the same host and same 

site on 8 Oct 11. Slides with zygospores were submitted to national herbarium (DAOM). 

HABITAT: Pteromaktron timberleaense was common at one site sampled, the outflow 

from Mill Pond in Timberlea, NS, where it was collected from mayfly (Heptageniidae) 

nymphs on 17 Aug 2010, 13 Sep 2010, 3 Oct 2010, 24 Oct 2010, 6 Jul 2011, 27 Jul 2011, 

28 Aug 2011, 17 Sep 2011, 8 Oct 2011. 

COMMENTARY: Originally described without zygospores (William and Strongman, 

2012), these sexual spores were described in William and Strongman, 2012b.The 

trichospores of P. timberleaense are much longer, 145–180 x 6–9 um, than those in the 

only other described species, Pteromaktron protrudens (85–97 x 4–6 um) (Whisler 

1963). Otherwise, the characteristics of the holdfast and thallus are very similar in both 

species. The long straight trichospores in P. timberleaense resemble those in Orphella 

catalaunica, which are shorter, and the arrangement and structure of the cells forming the 

sporulating head in Orphella spp. is different compared to Pteromaktron.spp. 

(Lichtwardt, 2004).  

 

Smittium adaiosporum sp. nov. R.T.William and Strongman (Figs. 31–35) 

Mycobank MB 801379 

 Thalli with profuse branching (Fig. 31) emerging from a simple inconspicuous 
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holdfast (Fig. 35), trichospores developing on the tips of long hyphae, up to 4 

trichospores per fertile tip. Trichospores ellipsoidal with slight medial swelling 20–27 µm 

× 3–4 µm, with a conspicuous collar 3–6 µm × 1–3 µm and a single long appendage after 

detachment from the thallus (Fig. 33). Zygospores (Type II), 70–90 µm × 7–10 µm, 

attached submedially and obliquely to the zygosporophore (Fig. 34). Zygospores with a 

short collar 8–9 µm × 4–5 µm after release from the zygosporophore (Fig. 35). Attached 

to the hindgut lining of midge (Chironomidae) larvae. 

ETYMOLOGY: From the Greek, adaio (abundant) and spora (spore), as this species 

produces an abundance of trichospores.  

HOLOTYPE: Microscope slide LLLE-1 (DAOM 242391) with lactophenol cotton blue 

stained thalli and spores attached to hindgut lining. The midge host was collected at Long 

Lake (LLLE), Halifax, NS on 28 Sep 2010. 

HABITAT: Collected at the Long Lake-stream interface site (LLLE), from the hindgut 

lining of midge (Chironomidae) larvae on 28 Sep 2010 (Appendix II). 

COMMENTARY: The trichospore dimensions of Smittium adaiosporum (20–27 µm × 

3–4 µm) overlap with over 15 different Smittium spp. (Lichtwardt, 2004).but none of 

these share zygospore characteristics with Sm. adaiosporum. For instance, Smittium 

rarum Lichtw. trichospores are 20–26 µm × 3–4 m and have a collar comparable to that 

in Sm. adaiosporum, but the zygospores (100 µm × 10 m) are outside the range for 

those described for Sm. adaiosporum (70–90 µm × 7–10 µm). Smittium angustum M.C. 

Williams & Lichtw. has trichospores that are smaller (17–26 µm × 2.3–2.8 m) with a 

slightly shorter collar (Lichtwardt, 2004). Also, Sm. angustum thalli exhibit verticilliate 
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Figs. 31–35. Smittium adaiosporum. Fig. 31. Densely branching thalli with attached and 

released trichospores (arrows). Fig. 32. Multiple branches arising from holdfast (arrow). 

Fig. 33. Released trichospore with a collar (arrow) and single appendage (arrowhead). 

Fig. 34. Zygospore (black arrow) attached to zygosporophore (white arrow) arising from 

a conjugation tube (black arrowhead). Released trichospores also present. Fig. 35. Mature 

detached zygospore (arrow) with a short collar (arrowhead). Figures 31, 32, and 35 are  

from lactophenol cotton blue stained material; Figs. 33 and 34 are images from unstained 

specimens. Scale bars = 20 µm. 
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branching patterns not observed in Sm. adaiosporum. Smittium gronthidium Strongman & 

M.M. White tends to have a slightly broader trichospore range [15–31 (–40) µm × 3–

5µm] while also exhibiting shorter and wider zygospore dimensions (61–74.5 µm × 7.5–8 

collar 9–12) than Sm. adaiosporum (White and Strongman, 2012a).  

 Smittium gracilis L.G. Valle & Santam. and Smittium urbanum López Lastra, 

Mazzucchelli & Lichtw. trichospore measurements [(18–)20–26(–29) µm × 2–3.5 µm 

and 19–27 µm × 3–4 m respectively] are well within the range described for Sm. 

adaiosporum, however, in both cases zygospores have not been described (Lichtwardt, 

2004) so comparison of the sexual spore features with Sm. adaiosporum is not possible. 

The thallus branching patterns and holdfast structure in Sm. gracilis differ from Sm. 

adaiosporum and Sm. gracilis also has been reported to produce 2–8 generative cells on a 

fertile branch (Valle and Santamaria, 2004) in contrast to the 2–4 generative cells 

produced in Sm. adaiosporum. Smittium urbanum has a much less prominent collar and 

also exhibits compact, verticilliate branched thalli (Lichtwardt et al., 2000) not observed 

in Sm. adaiosporum. 

                                                                          

Smittium ampliboja sp. nov. R.T.William and Strongman (Figs. 36–37) 

Mycobank MB 801376 

 Densely branched thalli (Fig. 36), attached to hindgut lining of the host by an 

inconspicuous holdfast. Trichospores long ellipsoidal with a medial swelling, 16–23 µm 

× 3.5–5.5µm, a long campanulate collar 5–8 µm × 2–3 µm and single appendage (Fig.  

37). No zygospores observed. Attached to the hindgut lining of midge (Chironomidae) 
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Figs. 36–37. Smittium ampliboja. Fig. 36. Heavily sporulating thallus with trichospores 

(arrows) and released trichospore (arrowhead). Fig. 37. Detached trichospores (arrows) 

each with a long campanulate collar (arrowhead) and single fine appendage (white 

arrowhead). All Figs. from unstained material. Scale bars = 20 µm. 
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and black fly (Simuliidae) larvae. 

ETYMOLOGY: A combination of the Latin, amplus (large) and boja (collar) referring to 

the large collar on the trichospores. 

HOLOTYPE: Thalli and trichospores, stained with lactophenol cotton blue, attached to 

the hindgut lining on microscope slide TLLO-3 (DAOM 242392). The midge host was 

collected at Mill Pond stream, Timberlea, NS (TLLO) on 3 Oct 2010. 

HABITAT: Collected at Mill Pond Stream (TLLO) Timberlea, NS from the hindgut 

lining of midge (Chironomidae) and black fly (Simuliidae) larvae on 3 Oct 2010 

(Appendix II). 

COMMENTARY: Smittium ampliboja has an inconspicuous holdfast and trichospore 

dimensions (16–23 µm × 3.5–5.5 µm) that overlap to varying degrees with 17 other  

Smittium spp. but only three, Smittium tipulidarum M.C. Williams & Lichtw., Smittium 

culicis  and Smittium papillum Strongman & M.M. White, have very similar 

characteristics overall (Lichtwardt et al., 2001a). The short collar length of Sm. 

tipulidarum (2–3.2 m) distinguishes it from Sm. ampliboja (collar 5–8 m) otherwise, 

the trichospores [(15–)17.5(–20) µm × (3.5–)4.5(–5) m] are within the range. The broad 

trichospore size range of Sm. culicis (15–)20(–32) µm × (4–)6(–8) µm extends through 

the range for Sm. ampliboja but the ovoid shape of Sm. culicis trichospores is different 

from the long ellipsoidal shape described for trichospores of Sm. ampliboja. Another 

species, Sm. papillum, has similar trichospore (20–28 µm × 3–4.5 m) and collar (6–

12.5 m) dimensions but it has a small papilla on the tip of the trichospore (White and 

Strongman, 2012a) not observed in Sm. ampliboja. 
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Smittium cryptancora sp. nov. R.T.William and Strongman (Figs. 38–40) 

Mycobank MB 801380 

 Thalli with sparse divergent branching (Fig. 38), attached to hindgut by a simple 

swollen basal holdfast cell (Fig. 7), producing 1–8 (typically 4) trichospores at the end of 

long fertile branches (Fig. 38). Trichospores ellipsoidal 15–19 µm × 2.5–4.5 µm, with a 

tightly appressed sleeve-like collar 2–4 µm × 1–2 µm (Fig. 40). No zygospores observed. 

Attached to the hindgut lining of midge (Chironomidae) larvae. 

ETYMOLOGY: From the combination of the Greek, crypto (hidden) and ancoralis 

(anchor), in reference to the inconspicuous holdfast attaching the thalli to the host gut. 

HOLOTYPE: Microscope slide GLLE-7 (DAOM 242393) with thalli and spores, stained 

with lactophenol cotton blue, attached to the hindgut lining. The midge host was 

collected at GLLE on 21 September 2011. 

HABITAT: Collected at GLLE from the hindgut lining of midge (Chironomidae) larvae 

on 21 September 2011 (Table 4). 

COMMENTARY: Based upon trichospore dimensions, Smittium cryptancora (15–19 _m 

× 2.5–4.5 µm; collar 2–4 µm × 1–2 µm) bears close resemblance to Smittium insulare 

Strongman (15–20 µm × 3–4 µm collar 2.5–4 µm), however, zygospores have not been 

observed in Sm. cryptancora preventing comparison to those of Sm. insulare. The simple, 

swollen holdfast structure described for Sm. cryptancora is absent in Sm. insulare. 

Trichospore arrangement on the thalli also separates the two as Sm. insulare typically 

produces few trichospores, generally one or two per fertile branch (Strongman, 2007), 
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Figs. 38–40. Smittium cryptancora. Fig. 38. Branched thalli with attached trichospores 

(arrows) at the end of a fertile branchlet. Fig. 39. Holdfast comprised of slightly swollen 

basal cell (arrow). Fig. 40. Trichospore with a sleeve-like collar (arrow) and appendage 

(arrowhead). Fig. 38 is from an unstained preparation. Specimens in Figs. 39 and 40 were 

stained with lactophenol cotton blue. Scale bars = 20 µm. 
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whereas Sm. cryptancora produces up to eight trichospores per fertile branch. 

 Smittium tipulidarum trichospores ((15–) 17.5(–20) µm × (3.5–)4.5(–5) µm with a 

collar 2–3.2 µm × ca. 2 µm) are also in the range for Sm. cryptancora, but tend to be 

wider and Sm. tipulidarum has up to 14 or more trichospores per fertile branch compared 

to a maximum of eight observed in Sm. cryptancora. The tipulid host of Sm. tipulidarum 

(Williams and Lichtwardt, 1987) differs from the chironomid host of Sm. cryptancora 

further distinguishing these two species. 

 Trichospore dimensions of Smittium imitatum Lichtw. & Arenas ((16–)19(–21) 

µm× (3–)5(–6) µm and a collar ~2 µm) resemble those described for Sm. cryptancora, 

but are wider, with a shorter collar. Similarly, Smittium precipitiorum M.M. White & 

Lichtw. trichospores (14–22 × 2.5–3 µm and collar 2–3.5 µm × 1.2–1.5 µm) match Sm. 

cryptancora, but are consistently narrower (Lichtwardt , 2004). The thallus branching is 

more compact in Sm. precipitiorum contrasting with the long sparsely branched thallus 

seen in Sm. cryptancora. 

 

Smittium guttisporum sp. nov. R.T.William and Strongman (Figs. 41–44) 

Mycobank MB 801372 

A tapering basal cell (Fig. 41) anchors the immature thallus to the hindgut lining, 

atop a small amorphous globule (Fig. 42). Immature thalli branch from a central axis, 

developing trichospores on the ends of short terminal branches (Fig. 41). Mature thalli 

profusely branched (Fig. 44), developing trichospores on the tips of long fertile branches. 

Trichospores elongate-ellipsoidal, 26–34 µm × 4–6 µm, swollen medially, with a minute  
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Figs. 41– 44. Smittium guttisporum. Fig. 41. Thallus with trichospores (arrows) attached 

to hindgut via tapering basal cell (arrowhead). Fig. 42. Immature holdfast with small 

globule of adhesive (arrows). Fig. 43. A detached trichospore with a papilla at tip 

(arrow), collar (arrowhead), and fine appendage (white arrow). Fig. 44. Mature, profusely  

branching thallus with trichospores (arrows) developing on fertile tips. All figures are 

from fungi stained with lactophenol cotton blue. Scale bars = 20 µm 
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apical papilla, long, cylindrical to campanulate collar, 8–13 µm × 2–4 µm and a single 

fine appendage (Fig. 43). No zygospores observed. Attached to the hindgut lining of 

midge (Chironomidae) larvae.  

ETYMOLOGY: Derived from the combination of the Latin, gutta (drop) and sporum 

(spore), in reference to the small papilla associated with the tip of the trichospores. 

HOLOTYPE: Microscope slide GLLE–1 (DAOM 242394) containing thalli with 

trichospores, stained with lactophenol cotton blue, attached to hindgut linings. The midge 

host was collected at Governor’s Lake, Timberlea, NS (GLLE) on 5 Oct 2010. 

HABITAT: Collected at Governor’s Lake (GLLE) from the hindgut lining of midge 

(Chironomidae) larvae on 5 Oct 2010 and 8 May 2011 (Appendix II). 

COMMENTARY: The central defining feature of Smittium guttisporum is an apical 

papilla on the tip of the trichospores. This feature is found in only two other Smittium 

spp., Smittium mucronatum (Lichtwardt et al., 2001a) and Smittium papillum (White and 

 Strongman, 2012a). Smittium mucronatum trichospores (33–37 µm × 6.5–7 µm) are both   

longer and wider than Sm. guttisporum (26–34 µm × 4–6 µm) and have a shorter collar  

(7.5– 9 µm). In contrast, Sm. papillum trichospores (20–28 µm × 3–4.5 µm) are shorter 

and thinner than Sm. guttisporum, but the collar length (6–12.5 µm) is about the same. 

Smittium prostratum L.G.Valle & Santam. has trichospores (26–30 µm × 3.5–4.5 µm) 

within the range for Sm. guttisporum, but lacks the distinctive apical papilla and has a 

shorter collar 4.5–5.5 µm (Valle and Santamaria, 2004).  
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Smittium insolitum sp. nov. R.T.William and Strongman (Figs. 45 –47) 

Mycobank MB 801377 

Compact, densely branched thallus (Fig. 45) emanating from a large swollen basal cell 

(16.5 × 11 µm) attached to the hindgut lining by a disk-like holdfast (Fig. 46) and 

secreted material. Trichospores cylindrical to slightly clavate 27–30 µm × 3–6 µm with a 

short wide collar 2–3 µm × 2–3 µm (Fig. 47). No zygospores observed. Attached to the 

hindgut lining of midge (Chironomidae) larvae. 

ETYMOLOGY: From the Latin insolitus (unusual), referring to this species unusual 

holdfast structure. 

HOLOTYPE: Microscope slide TLLO-15 (DAOM 242395) with thalli and spores 

attached to hindgut lining, stained with lactophenol cotton blue. The midge host was 

collected at Mill Pond Stream (TLLO) Timberlea, NS on 10 Mar 2011. 

HABITAT: Collected at TLLO from the hindgut lining of midge (Chironomidae) larvae 

on 10 March 2010 midge (Chironomidae) larvae on 10 Mar 2010 (Appendix II).  

COMMENTARY: Despite the narrow range in trichospore dimensions found in Smittium 

insolitum (27–30 µm × 3–6 µm), there are 14 species with trichospore morphology that 

are similar (Lichtwardt, 2004). The combination of trichospore measurements, collar 

dimensions, and holdfast characteristics sets Sm. insolitum apart from all other Smittium 

spp. Trichospores in Smittium acutum Lichtw. & Grigg [(21–)28–30 µm × 4–6 µm] and 

the collar length (Lichtwardt and Grigg 1998) are a close match but Sm. acutum lacks the 

large disk-like holdfast structure in Sm. insolitum. Trichospores of Smittium fastigatum 

Lichtw. & M.C. Williams are similar in length (23–32 µm × 3.5–4 µm) to those of Sm. 
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Figs.45–47. Smittium insolitum. Fig. 45. Overview of thallus including attached 

trichospores (arrows) and conspicuous holdfast (arrowhead). Fig. 46. Holdfast with 

swollen basal cell (arrow) and mucilage (arrowhead). Fig. 47. Released trichospore with 

short collar (arrow) and single fine appendage (arrowhead). Figures 45 and 46 are  

stained with lactophenol cotton blue. Figure 47 unstained specimen. Scale bars = 20 µm 
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insolitum, but they are typically thinner and are anchored to the host with a pointed basal 

cell (Lichtwardt et al., 2001a) much different than that seen in Sm. insolitum. The 

undifferentiated holdfast and trichospore collar length described for Smittium prostratum 

separate it from Sm. insolitum despite overlap in trichospore dimensions (26–30 µm × 

3.5–4.5 µm) (Valle and Santamaria, 2004). 

 

Smittium peculiare sp. nov. R.T.William and Strongman Figs. 48–52. 

Mycobank MB 801382 

 Thalli verticilliate with a thick main axis and thick branches (Fig. 48). Distal 

hyphal branches producing 2–6 generative cells per fertile branch, shorter than the 

trichospores (Fig. 52). Holdfast structure of immature thalli (Fig. 49) is a thickened basal 

cell affixed to the hindgut lining by a small blob of amorphous material. Mature thalli 

have a thickened blunt basal cell. Trichospores cylindrical (26–)31(–37) µm × 2–4 µm 

with a conspicuous collar 2–3 µm × 1–2 µm and a single fine appendage (Figs. 50 and 

51). No zygospores observed. Attached to the hindgut lining of midge (Chironomidae) 

larvae. 

ETYMOLOGY: From the Latin peculiaris (peculiar) in reference to the perfectly 

cylindrical shape of the trichospores which is unusual for Smittium spp. 

HOLOTYPE: Microscope slide LLLE-2 (DAOM 242396) with lactophenol cotton blue 

stained thalli and spores attached to the hindgut lining. The midge host was collected 

from Long Lake (LLLE) in Long Lake Provincial Park, Halifax, NS on 12 Jun 2011. 

HABITAT: Collected from the hindgut lining of midge (Chironomidae) larvae at the 
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specimens. Scale bars = 20 µm. 

Figs. 48–52. Smittium 

peculiare. Fig. 48. 

Verticilliately branched thalli 

with thick main axis, thick 

branches and attached 

trichospore (arrow). Fig. 49. 

Thick basal cell (white arrow) 

affixed to hindgut by small 

blob of amorphous material 

(arrowhead). Fig. 50. 

Detached trichospore with a 

collar (arrow). Fig. 51. 

Released trichospore 

(unfocussed) showing its 

single appendage (arrow). 

Fig. 52. Developing 

trichospore (arrowhead) on 

the apex of the generative cell 

(arrow). Figs. 48 and 49 are 

from stained material, Figs. 

50–52 are from unstained  
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Long Lake interface site (LLLE) on 12 Jun 2011 (Appendix II). 

COMMENTARY: The distinctly cylindrical trichospores of Smittium peculiare 

distinguishes this species from most other Smittium spp., but it is compared to six species 

that have trichospore size and shape in the same range as Sm. peculiare [(26–)31(–37) 

µm × 2–4 µm]. Trichospore dimensions of Smittium kansense Lichtw. & Grigg, [(17–

)23(–32) µm × (1.5–)2.7(–3.5) m], Smittium phytotelmatum [(14–)17–25(–30) µm × 2–

3 µm] and Smittium simulii Lichtw. [(16–)23(–30) µm × (3–)5(–7) µm] are all described 

as sub-cylindrical or cylindrical with a slight median swelling in the case of Sm. simulii, 

but also have average trichospore sizes much shorter than those described for Sm. 

peculiare (Lichtwardt, 2004). The trichospore length range for Smittium gravimetallum 

Lichtw., Ferrington & Hayford is broader [(20–)27–30(–45) µm × 2.5–3.5(–4.5) m] but 

spans the range for Smittium peculiare (Ferrington et al., 2000). However, the 

trichospores of Sm. gravimetallum are described as ellipsoidal with a median bulge, not 

observed in Sm. peculiare. Smittium georgense Strongman has sub-cylindrical 

trichospores [34–45 µm × 5–7 µm] (Strongman, 2010) that are longer and wider than Sm. 

peculiare and the thallus of Sm. georgense features a knobby holdfast unlike the blunt 

holdfast of Sm. peculiare. Finally, Smittium typhellum possesses cylindrical trichospores 

(25–30 µm × 3–3.5 m) with a slight median swelling produced on short generative cells 

(Manier and F. Coste, 1971). Both the trichospores and generative cells are shorter than 

those in Sm. peculiare. 

 Furculomyces, with two species described from Australia Furculomyces 
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boomerangus M.C. Williams & Lichtw., Furculomyces westraliensis M.C. Williams & 

Lichtw. and one from the Rocky Mountains in Colorado, USA, Furculomyces 

septentrionalis Misra, M.M. White & Lichtw., have strongly cylindrical trichospores and 

a single appendage like those described for Sm. peculiare (Lichtwardt, 2004). 

Furculomyces boomerangus thalli are anchored to the host gut via a horseshoe shaped 

holdfast not seen in Sm. peculiare and have trichospores [(20–)25(–30) µm × (3.0–)3.6(–

4.2) µm] shorter and thicker than Sm. peculiare while the trichospores of F. westraliensis 

[36–40 µm × 2.3–3.0 m] are much longer than Sm. peculiare. Furculomyces 

septentrionalis trichospores are described as subcylindrical, [(26–)33(–39) µm × (4.6–

)4.9(–5.5) m] that are the same length as those in Sm. peculiare but are almost twice as 

wide. Wishbone-shaped conjugation cells and characteristically bent zygospores are also 

found in Furculomyces spp. and are a defining feature of the genus (Lichtwardt, 2004) 

but no zygospores were seen in my collections of Sm. peculiare so no comparison of this 

feature was possible. Overall, the trichospores of Sm. peculiare are more like those of 

Furculomyces spp. than Smittium so the discovery of zygospores for Sm. peculiare is 

necessary to confidently assign it to a genus. 

 

Smittium petilum sp. nov. R.T.William and Strongman (Figs. 53–56) 

Mycobank MB 801381 

 Long sparsely branched thalli (Fig. 53) with weakly verticilliate (Fig. 54) 

branching from thickened central axes, attached to the hindgut lining by a conspicuously  

swollen, basal cell (Figs. 53 and 55). Subcylindrical to ellipsoidal trichospores (Fig. 56) 
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17–22 µm × 2–4 µm, with a small cylindrical collar 2–4 µm, produced in clusters of up to 

8 on the end of fertile branchlets (Fig. 54). No zygospores observed. Attached to the 

hindgut lining of midge (Chironomidae) larvae. 

ETYMOLOGY: From the Latin, petilus (thin), alluding to the narrow trichospores 

described for this species. 

HOLOTYPE: Microscope slide LLLE-2 (DAOM 242397) with thalli and spores, stained 

with lactophenol cotton blue, attached to the hindgut lining. The midge host was 

collected at Long Lake (LLLE), Halifax, NS on 12 Sep 2010. 

HABITAT: Collected at LLLE on 12 Sep 2010, TLLO on 3 May 2011 and GLLE on 30 

Aug 2011 from the hindgut lining of midge (Chironomidae) and black fly (Simuliidae) 

larvae (Appendix II).  

COMMENTARY Smittium petilum has trichospore dimensions (17–22 µm × 2–4 µm, 

collar 2–4 µm) similar to five other species from this genus (Smittium angustum, 

Smittium fasciculatum Lichtw., Smittium hecatei L.G. Valle & Santam., Smittium 

radiculans Strongman & M.M. White, and Smittium insulare) but is distinguished from 

four of the five based on the conspicuous holdfast in Sm. petilum comparable only to one 

species, Sm. radiculans (Lichtwardt, 2004). Trichospores (15–23 µm × 2–4 µm; collar 1–

3 µm) of Sm. radiculans are indistinguishable from Sm. petilum, but Sm. radiculans has a 

unique mature holdfast constructed of three or more fingerlike projections surrounded by 

mucilage (White and Strongman, 2012) while Sm. petilum has a swollen, basal cell 

holdfast structure. Smittium angustum produces trichospores (17–26 µm × 2.3–2.8µm) 

Trichospore with a collar (arrow) and appendage (arrowhead). Figs 53, 55, and 56 are 
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Figs. 53–56. Smittium petilum. Fig. 53. Profusely branched thalli with developing 

trichospores (arrows) and holdfasts with swollen basal cells (arrowheads). Fig. 54. 

Thallus fragment demonstrating weakly verticilliate branching with attached trichospores 

(arrow). Fig. 55. Holdfast (arrow) structure comprised of swollen basal cell. Fig. 56. from 

stained specimens and Fig. 54 is unstained. Scale bars = 20 µm. 
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that are both slightly longer and narrower than Sm. petilum resulting in a much more 

elongated trichospore shape. Smittium angustum also displays profuse, radiating, strongly 

verticilliate thalli (Lichtwardt et al. 2001a) not observed in Sm. petilum. Trichospore 

dimensions of Sm. fasciculatum are much longer [18–24(–29) µm × 2–3.5 m] 

(Lichtwardt, 2004) resulting in a more elongated trichospore shape with a much less 

prominent collar (<1µm) than that described for Sm. petilum (2–4 µm). The dimorphic 

species Sm. hecatei produces small trichospores (14.5–24 µm × 2.5–3.5 µm) with a collar 

(1.5–2.5 µm) (Valle and Santamaria, 2004) that have a broader range, and with a less 

conspicuous collar than that described for Sm. petilum. No evidence of dimorphism was 

observed in Sm. petilum and the holdfast is different than the “leg-like” mature basal cell 

holdfast in Sm. hecatai (Valle and Santamaria, 2004). Smittium insulare has trichospore 

dimensions (15–20 µm × 3–4 µm) and a collar (2.5–4µm) that is very close to Sm. 

petilum, but has a holdfast described as inconspicuous and undifferentiated from the 

thallus (Strongman, 2007), contrasting with the prominently swollen, basal cell of Sm. 

petilum. 

 

Stachylina abundans sp. nov. R.T.William and Strongman (Figs. 57–59) 

Mycobank MB 801383 

Thalli short, 84–156(–197) µm × 5–10 µm (Fig. 57), producing 2–4 (rarely 8) 

trichospores (Fig. 58) attached to peritrophic matrix by a tapering basal cell atop a small  

amount of amorphous adhesive material (Fig. 57). Trichospores ellipsoidal 20–27 µm × 

3–4 µm with a collar 3–6 µm × 1–3 µm (Fig. 59). No zygospores observed. Attached to 
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Figs. 57–59. Stachylina abundans. Fig. 57. Conjugation tubes (arrows) forming between 

thalli anchored to peritrophic matrix by tapering basal cell atop small amount of 

amorphous material (white arrow) and a released trichospore (arrowhead). Fig. 58. 

Thallus with four attached trichospores (arrows). Fig. 59. Released trichospore with short 

 collar (arrow) and single appendage (arrowhead). Fig. 57 is from a stained specimen. 

Figs. 58 and 59 are unstained. Scale bars = 20 µm. 
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the peritrophic matrix of midge (Chironomidae) larvae. 

ETYMOLOGY: This species name derives from the Latin, abundatus (abundance), in 

reference to the high abundance of this species in collections. 

HOLOTYPE: Microscope slide LLLO-2 (DAOM 242398) with thalli and spores, stained 

with lactophenol cotton blue, attached to peritrophic matrix. The midge host was 

collected at Long Lake stream (LLLO), Halifax, NS on 11 Aug 2010. 

HABITAT: Collected from peritrophic matrix of chironomid larvae at LLLO 11 Aug, 7 

Sep, 2010, 21 Aug 2011; TLLO 17 Aug, 21 Sep, 24 Oct, and 15 Nov 2010, 17 Sept, 15 

Jun and 11 Dec 2011; GLLE 24 Aug 2010, 10 Aug, 30 Aug, 21 Sep, and 11 Nov 2011; 

LLLE 12 Sep 2010; SPLO 13 Jul 2011 (Appendix II).  

COMMENTARY: The small trichospore size of Stachylina abundans (20–27 µm × 3–4 

µm) is shared by only Stachylina queenslandiae Lichtw. (20–30 µm × 8–9 m), 

Stachylina gravicaudata Siri, M.M. White & Lichtw., (25–31 µm × 4–5 µm) and 

Stachylina manicata M.C. Williams & Lichtw. (17.5–20 µm × 4.5 m). Stachylina 

queenslandiae trichospores are wider and lack a collar whereas St. gravicaudata bears 

trichospores that are slightly longer and are borne on much longer thalli and St. manicata 

produces shorter trichospores that have an inconspicuous collar (Lichtwardt, 2004). 

Stachylina nana Lichtw. thalli typically produce 2-4 trichospores [(25-)30(-40) x  

(7-)8.5(-10) µm] so are much larger and lack a collar, distinguishing it from St. 

abundans. 
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Stachylina extensiva sp. nov. R.T.William and Strongman (Figs. 60–62) 

Mycobank MB 801384  

 Thalli long, 500–800 µm × 8–11 µm, with a basal cell tapering to a point, 

producing as many as 60 trichospores (Fig. 61 and 62). Basal cell attached to peritrophic 

matrix by a small amount of amorphous material. Trichospores ellipsoidal 20–25 µm × 

4–5.5 µm, with small collar 2–3 µm × 1.5–2 µm and one thin appendage (Fig. 60).  

Generative cells on thallus less than half as long as trichospore length (Fig. 61). No 

zygospores found. Attached to the peritrophic matrix of midge (Chironomidae) larvae. 

ETYMOLOGY: From the Latin, extensivus (long), in reference to the long thalli of this 

species. 

HOLOTYPE: Thalli and trichospores stained with lactophenol cotton blue attached to 

peritrophic matrix, on slide LLLE-8 (DAOM 242399). The midge host was collected at 

Long Lake (LLLE), Halifax, NS on 3 July 2011. 

HABITAT: Collected from peritrophic matrix of chironomid larvae at the Long lake 

interface site (LLLE) on one date, 3 July 2011 (Appendix II).  

COMMENTARY: Stachylina extensiva is distinguished from other species in the genus 

by virtue of the very long thalli (500–800 µm) typical for the species. Based solely on 

trichospore dimensions, 9–10 other species overlap with St. extensiva, however, there are 

no other described species in the genus with this combination of extreme thallus length, 

and trichospore shape, size, and collar length. Stachylina magna  has thalli (400–900 µm) 

as long as St. extensiva, but the trichospores are longer and wider [(30–)56(–80) µm × 

(6.5–)11(–15) m] and are without a collar. Stachylina prolifica Lichtw., Kobayasi &  
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Figs. 60–62. Stachylina extensiva. Fig. 60. Trichospores with collar (arrows) and single 

appendage (arrowheads). Fig. 61. Fertile thallus with many attached trichospores 

(arrows) and tapering basal cell (arrowhead) holdfast. Fig. 62. Typical long thalli inside 

peritrophic matrix (arrow) dissected from the midge host. Figs. 61 and 62 are from 

lactophenol cotton blue stained material, Fig. 60 unstained. Fig. 60, scale bar = 20 µm; 

Figs. 61 and 62, scale bars = 50 µm. 
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Indoh thalli measure up to 450 µm but the trichospores are considerably larger  

(22–36 µm × 5–5.5 µm) and also lack a collar (Lichtwardt et al., 1987). Stachylina 

tianensis J. Wang, S. Q. Xu & Strongman thalli can reach 350 um, but the trichospores 

are much longer and wider and the holdfast penetrates the peritrophic matrix (Wang et 

al., 2010), while the holdfast in St. extensiva does not. 

 

Stachylina infrequens sp. nov. R.T.William and Strongman (Figs. 63–64) 

Mycobank MB 801385 

 Thalli producing up to 16 trichospores, tapered basal cell attached to peritrophic 

matrix by a small amount of adhesive (Fig. 63). Trichospores elongate-ellipsoidal 30–36 

µm × 5–7 µm with small knot-like collar 3–4 µm × 2 µm (Fig. 64). No zygospores 

observed. Attached to the peritrophic matrix of midge (Chironomidae) larvae. 

ETYMOLOGY: From the Latin, infrequens (not frequent) referring to the scarcity of this 

species in the collections. 

HOLOTYPE: Microscope slide LLLE-4 (DAOM 242400) with thalli and spores, 

attached to the peritrophic matrix. The specimen is stained with lactophenol cotton blue. 

The midge host was collected at Long Lake (LLLE), Halifax, NS on 1 May 2011. 

HABITAT: Collected on the peritrophic matrix of chironomid larvae at the Long Lake 

interface site (LLLE) on 1 May 2011 and 24 Jul 2011 (Appendix II).  

COMMENTARY: Three other Stachylina species exhibit similar trichospore features like 

Stachylina infrequens. Stachylina platensis López Lastra, Lichtw. & Ferrington (30–37 

µm × 8–9 µm) and Stachylina robusta Lichtw. & M.C. Williams (30–37 µm × 8–9 µm)  
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appendage (arrowhead). Fig. 63 from stained material, Fig. 64 is unstained. Scale bars = 

20µm 

Figs. 63 and 64. 

Stachylina 

infrequens. Fig. 

63. Thalli with 

trichospores 

(arrows) on short 

generative cells, 

anchored to the 

peritrophic matrix 

via a tapered basal 

cell holdfast 

(arrowheads). One 

trichospore is 

released (white 

arrow). Fig. 64. 

Detached 

trichospore 

with short, sleeve-

like collar (arrow) 

and single  

 



58 
 

both produce trichospores similar in length to St. infrequens (30–36 µm × 5–7 µm), but 

are wider and lack collars (Lichtwardt, 2004). Stachylina paludosa Lichtw. trichospores  

(31–40 µm × 6–8 m) are on average wider than St. infrequens and also have a shorter 

collar. To date, St. paludosa has only been described from hosts in water trapped in 

tropical plants (phytotelm) in Costa Rica (Lichtwardt, 1994), which is a unique habitat. 

 The collar of St. infrequens is described as “knot-like” because it looks rounded 

and somewhat amorphous (Fig. 25). Spartiella barbata Tuzet & Manier ex Manier and 

Pteromaktron protrudens both are described as having a “knob” on the appendage near 

the base of the trichospore and some Legeriosimilis spp. have a knob near the end of the 

appendages (Lichtwardt, 2004). The morphology and the consistent tight adherence of 

the knot-like collar to the base of the trichospore in St. infrequens differentiates this collar 

from the knobs on the appendages of these other species. 

 

Stachylina serpula sp. nov. R.T.William and Strongman (Figs. 65 – 67) 

Mycobank MB 801373 

Thalli long, 300–450 µm × 8–16 µm (Fig. 65), often with more than 20 flattened 

generative cells with some swollen and rounded (Figs. 65 and 66). Basal cell tapering 

to a small blunt holdfast (Fig. 66). Trichospores (Fig. 67) tapered at both ends with 

sub-medial swelling, 29–38 µm × 6–9 µm, very short collar 1.5–2.5 × 1.5–2.5 µm, and 

one fine appendage. No zygospores observed. Attached to the peritrophic matrix of 

midge (Chironomidae) larvae. 

ETYMOLOGY: From the Latin, serpula (little snake), in reference to the snake-like 
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Figs. 65–67. Stachylina serpula. Fig. 65. Prolific sporulating thalli, each producing more 

than 24 trichospores (arrows). One trichospore (arrowhead) is detached. Fig. 66. Tapering 

holdfast attached to chironomid peritrophic matrix by a small globule of adhesive 

(arrows). Fig. 67. Trichospore with short collar (arrow) and single fine appendage  

(arrowhead). Figs. 65 and 67 are from lactophenol cotton blue stained material. Fig. 66 is 

from an unstained specimen. Scale bars = 20 µm. 
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appearance of the thallus. 

HOLOTYPE: Microscope slide GLLE-2 (DAOM 242401) with thalli bearing 

trichospores, attached to the peritrophic matrix. The holotype is stained with lactophenol  

cotton blue. The midge host was collected at Governor’s Lake, Timberlea, NS (GLLE) on 

30 Aug 2011. 

HABITAT: Collected from the midgut lining of chironomid larvae at Governor’s Lake 

 (GLLE) on 30 Aug 2011 and 21 Sep 2011 (Appendix II).  

COMMENTARY: Stachylina serpula is characterized by having long thalli  (300–450 

µm × 8–16 µm) which is a feature seen in only five other species of Stachylina 

(Lichtwardt et al., 2001a; William and Strongman, 2013a; 2013b). Stachylina prolifica 

trichospores are generally smaller (22–36 µm × 5–5.5 µm) and lack a collar. Stachylina 

magna has trichospores [(30–)56(–80) µm × (6.5–)11(–15) µm] that are larger than St. 

serpula and lack a collar. Stachylina tianensis possesses thalli about the same length but 

with a penetrating holdfast and much larger trichospores (55–90 µm × 7–10 µm) than St. 

serpula. Two other species described in my NS collections, Stachylina tanysoma with 

trichospores 23–30 µm × 4.5–6 µm and Stachylina extensiva (20–25 µm × 4–5.5 µm) 

both possess long thalli but produce smaller trichospores (William and Strongman, 

2013a; 2013b).  

 Based on trichospore size alone, St. serpula overlaps with five other Stachylina 

species (Lichtwardt, 2004), but none of these species have thalli as long as St. serpula. 

Stachylina platensis has trichospores similar in size 25–36 µm × 5–7.8 µm, but are 

generally smaller and thinner than those in St. serpula. Stachylina paucispora Lichtw. 
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and Stachylina robusta have trichospore dimensions in the same range (29–40 µm × 6–8 

µm and 30–37 × 8–9 µm respectively) as St. serpula, but both lack collars on the 

trichospores (Lichtwardt, 2004). Stachylina euthena trichospores measure 25–35 µm × 7–

8 m, but are fusiform with a more prominent collar (Lichtwardt, 2004) than St. serpula. 

Stachylina paludosa also has similarly sized trichospores (31–40 µm × 6–8 m) but the 

thallus typically has only 8 generative cells (Lichtwardt, 2004), whereas St. serpula 

usually has more than 20 cells per thallus. 

Stachylina somnisimilis sp. nov. R.T.William and Strongman Figs. 68–69. 

Mycobank MB 801386 

 Thalli 90–140 µm × 6–11 µm, attached to peritrophic matrix via rounded basal 

cell and secreted material (Fig. 68). Trichospores ellipsoidal with a slight median bulge 

29–49 µm × 6–11µm, bearing a short collar 2–3 µm × 3–4 µm and single long appendage 

when detached from the thallus (Fig. 69). No zygospores observed. Attached to the 

peritrophic matrix of midge (Chironomidae) larvae. 

ETYMOLOGY: From the Latin, somnium (dream) and similis (like). Name chosen 

because of how it sounded when spoken; it had a dream-like quality. 

HOLOTYPE: Microscope slide GLLE-4 (DAOM 242402) with lactophenol cotton blue 

stained thalli and spores attached to peritrophic matrix. The midge host was collected at 

Governor’s Lake (GLLE), Timberlea, NS on 30 Aug 2011. 

HABITAT: Collected from the peritrophic matrix of chironomid larvae at GLLE on 19 

Jun 2011, 30 Aug 2011, 13 Oct 2011 and from LLLO on 22 Oct 2011 (Appendix II).  

COMMENTARY: There are six Stachylina spp., Stachylina penetralis Lichtw., 
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Figs. 68 and 69. Stachylina somnisimilis. Fig. 68. Thallus comprised of eight generative 

cells and attached trichospores (arrows), anchored to the peritrophic matrix by a blunt 

holdfast (arrowhead). Fig. 69. Released trichospores showing collar (arrows) and single  

unfurling appendage on each one (arrowheads). Figs. from unstained material. Scale bars 

= 20µm. 
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Stachylina jujuyensis Mazzucchelli, López Lastra & Lichtw., Stachylina litoralis Lichtw., 

M.M. White & Colbo , St. robusta, St. paludosa, and St. platensis, that produce similarly 

sized trichospores (Lichtwardt, 2004) as in St. somnisimilis. Stachylina penetralis has an 

almost identical trichospore range (30–50 µm × 8–12 µm) as St. somnisimilis  

(29–49 µm × 6–11µm) but St. penetralis trichospores lack a collar and it has a holdfast 

that penetrates the peritrophic matrix  (Lichtwardt, 2004) which is not the case in St. 

somnisimilis. St. jujuyensis, St. litoralis, and St. robusta all have trichospores (30–37 µm  

× 8–9 m, 39–47 µm ×10–12 µm, and 30–37 µm × 8–9 µm, respectively) that overlap 

somewhat with the size range for St. somnisimilis trichospores, but all lack collars 

(Lichtwardt, 2004). Stachylina paludosa and St. platensis both have short collars, but also 

produce trichospores (31–40 µm × 6–8 m and 25–36 µm × 5–7.8 m, respectfully) 

which are generally shorter and narrower than St. somnisimilis (Lichtwardt, 2004; 

Lichtwardt et al., 2000). 

 

Stachylina tanysoma sp. nov. R.T.William and Strongman (Figs. 70–73) 

Mycobank MB 801427 

 Thalli 200–450 µm × 8–12 µm, elongated tapering basal cell attached to 

peritrophic matrix by a small bulbous holdfast (Fig. 73), producing 40–50 trichospores 

per thallus (Fig. 72).  

Generative cells short, 3–10 µm × 9–11 µm (Fig. 70). Trichospores ellipsoidal, tapered at 

both ends, 23–30 µm × 4.5–6 µm with small flared collar (Fig. 71). No zygospores 

observed. Attached to the midgut lining of midge (Chironomidae) larvae. 
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Figs. 70–73 Stachylina tanysoma. Fig. 70. Trichospores (arrows) attached to septate 

thallus with developing appendages (arrowheads) inside generative cells. Fig. 71. 

Trichospore detached from thallus, revealing a collar (arrow) and a single fine appendage 

(arrowhead). Fig. 72. Whole, long thalli, with attached trichospores (arrows). Fig. 73. 

Enlarged view of holdfast showing strongly tapered basal cell (arrowheads) attached to 

the midgut lining. Fig. 70 unstained; Figs. 71–73 stained with lactophenol cotton blue. 

Scale bars = 20 µm. 
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ETYMOLOGY: From the Greek, tany (long) and soma (body), referring to the long thalli 

of this species. 

HOLOTYPE: Slide TLLO-4 (DAOM 242403) with thalli and spores, stained with 

lactophenol cotton blue, attached to host midgut lining. The midge host was collected at 

Mill Pond stream (TLLO) Timberlea, NS on 17 Sep 2011. 

HABITAT: Collected from midgut lining of chironomid larvae at TLLO on 17 Sep 2011 

(Appendix II).  

COMMENTARY: Stachylina tanysoma is another species in this genus demonstrating 

thallus length in excess of 300 µm. There are three known species (Stachylina prolifica , 

Stachylina magna, and Stachylina tianensis) and two new species, Stachylina extensiva 

and Stachylina serpula R.T. William & Strongman, described elsewhere in this issue 

(William and Strongman, 2013b), that have particularly long thalli like St. tanysoma. The 

closest match to St. tanysoma is Stachylina prolifica but the trichospores lack a collar 

(Lichtwardt, 2004) while St. tanysoma has a short collar. Stachylina magna trichospores 

[(30–)56(–80) µm × (6.5–)11(–15) µm] are larger than St. tanysoma (23–30 µm × 4.5–6 

µm) and lack a collar (Lichtwardt, 2004). Stachylina tianensis trichospores are much 

larger (55–90 µm × 7–10 µm) and the thallus holdfast penetrates the peritrophic matrix 

(Wang et al., 2010) differentiating it from St. tanysoma. Stachylina extensiva and St. 

serpula both possess long thalli, but trichospores of St. extensiva are smaller (20–25 µm 

× 4–5.5 µm) and are a slightly different shape while St. serpula trichospores (29–38 µm × 

6–9 µm) are longer and thicker (William and Strongman, 2013b). 

 Trichospore dimensions for St. tanysoma overlap with three other species: St. 
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euthena, Stachylina longa L. Léger & M.Gauthier and St. gravicaudata.  Stachylina 

euthena trichospores (25–35 µm × 7–8 µm) are generally wider and longer than St. 

tanysoma, St. gravicaudata trichospores are 25–31 µm × 4–5 µm but only 4–8 

trichospores are typically produced on a thallus and St. longa trichospores are 25 µm × 5–

6 µm but lack a collar and thalli are shorter.   

 

Stachylina uranus sp. nov. R.T.William and Strongman (Figs. 74–76) 

Mycobank MB 801387 

 Thalli 150– 210 µm × 6–12 µm, basal cell rounded and attached to the peritrophic 

matrix by a thin pad of secreted material (Fig. 74). Trichospores ellipsoidal with a slight  

medial bulge, 22–29 µm × 5–7 µm, with small knot-like collar closely adhering to the  

base of the trichospore and with a single appendage (Figs. 75 and 76). No zygospores 

observed. Attached to the peritrophic matrix of midge (Chironomidae) larvae. 

ETYMOLOGY: From Uranus in reference to the sixth planet in our solar system and the 

first planet discovered that was not known in ancient times. 

HOLOTYPE: Thalli and spores stained with lactophenol cotton blue, attached to 

peritrophic matrix, on slide LLLE-3 (DAOM 242404). The midge host was collected at 

Long Lake (LLLE), Halifax, NS on 3 Jul 2011. 

HABITAT: Collected from peritrophic matrix of chironomid larvae at LLLE 10 Apr and 

3 Jul 2011; SPLO 13 Jul 2011 and GLLE 21 on Sept 2011 (Appendix II).  

COMMENTARY: There are trichospore characteristics of Stachylina uranus that overlap 

with five other Stachylina spp. Stachylina tanysoma has trichospores (23–30 µm ×  
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Figs. 74–76. Stachylina 

uranus. Fig. 74. Thalli 

and developing 

trichospores (arrows), 

attached to the 

peritrophic matrix via 

tapering basal cell 

holdfast (arrowhead). 

Fig. 75. Thallus with 

attached trichospores 

(arrows). Fig. 76. 

Released trichospores 

with knot-like collar 

(arrows) and 

single appendage 

(arrowheads). Specimen 

in Fig. 74 is stained, 

Figs. 75 and 76 are 

unstained. Scale bars = 

20 µm. 
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4.5–6 µm) that are ellipsoidal with a small conical collar and are almost the same length 

and width (William and Strongman, 2013b), however, St. uranus trichospores (22–29 µm 

× 5–7 µm) differ in shape and the collar is knot-like. Stachylina platensis trichospore 

length range (25– 36 µm × 5–7.8 m) is  longer (Lichtwardt et al., 2000) than St. uranus, 

whereas Stachylina lotica M.C. Williams & Lichtw. and St. longa  have trichospore 

dimensions (24–32 µm × 8–10 µm and 25 µm × 5–6 m, respectively) comparable to St.  

uranus, but both lack collars (Lichtwardt, 2004). Trichospores of St. gravicaudata tend to 

be slightly longer and thinner than St. uranus and have been reported to produce only 4–8 

trichospores per thallus (White et al. 2005).  

 

Stachylina zeppelin sp. nov. R.T.William and Strongman (Figs. 77 and 78) 

Mycobank MB 801374 

Short thalli attached to peritrophic matrix by a thin flat pad at the base (Fig. 77). 

Generative cells 40–60 µm long producing 2–4 trichospores (Fig. 77) and 10–25 µm 

when producing 8 trichospores per thallus. Trichospores large, ellipsoidal 42–52 µm × 9–

11 µm with a conspicuous collar 3–6 µm × 3.5–4 µm (Fig. 78). No zygospores observed. 

Attached to the peritrophic matrix of midge (Chironomidae) larvae. 

ETYMOLOGY: This species name is in reference to the trichospores resembling the 

zeppelin airships of old.  

HOLOTYPE: Microscope slide GLLE-5 (DAOM 242405) containing thalli and 

trichospores stained with lactophenol cotton blue, attached to peritrophic matrix. The 

midge host was collected at Governor’s Lake, Timberlea, NS (GLLE) on 21 Sep 2011. 
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Figs.77 and 78. 

Stachylina zeppelin. 

Fig. 77. Short thallus 

affixed to chironomid 

peritrophic matrix by a 

small disk (arrowhead) 

with mature, 

trichospores attached 

but showing a single 

appendage (arrow) 

inside the long 

generative cells. Fig. 

78. Released 

trichospore with 

conspicuous collar 

(arrow) and long 

unfolding appendage 

(arrowhead). All Figs. 

taken from unstained 

preparations. Scale 

bars = 20 µm. 
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HABITAT: Collected from the midgut lining of chironomid larvae at GLLE on 21 Sep 

2011 and 13 October 2011 (Appendix II).  

COMMENTARY: The relatively large trichospores of Stachylina zeppelin is a feature 

shared by six other species in this genus. However, St. litoralis , St. macrospora, St. 

magna and St. penetralis all lack the conspicuous collar seen in St. zeppelin (Lichtwardt, 

2004). Stachylina stenospora Siri, M.M. White & Lichtw. trichospores (42–70 µm × 4.5–

7 µm) can be longer and thinner than St. zeppelin (42–52 µm × 9–11 µm) with a less 

prominent collar (White et al., 2006b). Stachylina grandispora Lichtw. also has  

trichospores [(40–72 µm × 6–10 µm (or more)] that are generally longer, thinner and 

have a smaller collar than St. zeppelin (Lichtwardt, 2004). 

 

Other Species 

There were 45 taxa of trichomycetes in addition to the 19 new species described 

in this section and a detailed list of taxa including host, collection dates and sites are 

given in Appendix II. Also presented here are five species representing new continental 

records for North America and five species as new geographic records for Nova Scotia. 

The five species occurring as new continental records include: Smittium 

bulbosporophorus Valle and Santam. (Figs. 79–80); Smittium hecatei Valle and Santam. 

(Fig. 95); Smittium pusillum Manier and F. Coste (Figs. 88 and 89); St. euthena Manier 

and F. Coste (Figs. 90 and 91) and Sm. nodifixum Strongman and Xu (Figs. 86 and 87). 

These five species were reported from chironomid hosts by others (Valle and Santamaria, 
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2004; Manier and Coste, 1971; Strongman and Xu, 2006), and were reported from the 

same hosts in my study as well. 

Three of the five species occurring as new geographic records were isolated from 

chironomid hosts including: Smittium dipterorum (Figs. 81 and 82); Smittium 

minutisporum Lichtw., Siri and M.M.White (Figs. 92–94) and Smittium mucronatum  

(Figs. 96 and 97) (Lichtwardt, 1997; Valle and Cafaro, 2010; Valle et al., 2011; White, 

Siri and Lichtwardt, 2006b; Lichtwardt, 2004). Capniomyces sasquachoides M.M. White 

& Bench (Figs. 98-101) was isolated from plecopteran hosts (Bench and White, 2012)  

while Pennella arctica Lichtwardt & Williams (Figs. 83–85) isolated from simuliid hosts 

(Lichtwardt, 1984). 
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Figs. 79–82. Other species. Figs. 

79 and 80. Smittium 

bulbosporophorus. Fig. 79. 

Mature sporulating thalli with 

attached and two detached 

(arrows) trichospores. Fig. 80. 

Hyphae emanating from central 

point of attachment forming an 

inconspicuous holdfast (arrow). 

Two detached trichospores 

(arrowheads). Figs. 81 and 82. 

Smittium dipterorum. Fig. 81. 

Thallus demonstrating sparse 

verticilliate branching with 

developing trichospores (arrows) 

on the ends of fertile branchlet. 

Fig. 82. Detached trichospore 

with short collar (arrow). All 

figures are from unstained 

specimens. Scale bars = 20 µm. 
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trichospore (arrow) with campanulate collar (arrowhead). Fig. 87. Trichospores (arrows) 

attached to fertile tip of thallus. Figs. 88 and 89. Smittium pusillum. Fig 88. Elongated, 

biconical zygospores (arrows). Fig. 89. Released trichospore (arrow) with short collar 

(arrowhead) and single appendage (white arrowhead). Figs. 90 and 91. Stachylina 

euthena. Fig. 90. Thallus with attached trichospores (arrows). Fig. 91. Released  

trichospore (arrow) with single long appendage (arrowhead). All figures are from 

unstained specimens. Scale bars = 20 µm. 

Figs. 83–91. Other 

species. Figs. 83–85. 

Pennella arctica. Fig. 

83. Holdfast (arrow) 

with short bifurcated 

basal cell. Fig. 84. 

Released mature  

trichospore (arrow) 

with multiple 

appendages 

(arrowheads). Fig. 85. 

Trichospores (arrows) 

attached to the thallus. 

Figs. 86 and 87. 

Smittium nodifixum. 

Fig. 86. Released 
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branched thallus with attached trichospores (arrows) on the apex of a terminal branch 

(arrowhead). Figs. 96 and 97. Smittium mucronatum. Fig. 96. Branching thalli with 

attached trichospores (arrows). Fig. 97. Detached trichospore displaying apical papilla 

(white arrow), long collar (black arrow) and single appendage (arrowhead). Figs 98–101. 

Capniomyces sasquachoides. Fig. 98. Holdfast basal cell (arrow). Fig. 99. Thallus 

anchored to host via holdfast cell (arrow). Fig. 100. Released trichospores (arrow) with 

two appendages (arrowheads). Fig. 101. Released zygospore (black arrow) with  

prominent collar (arrowhead). Free trichospore (white arrow). All Figs. from unstained 

material except Fig. 99, which was stained. Scale bars = 20 µm. 

Figs. 92–101. Other 

species. Figs. 92–94. 

Smittium 

minutisporum. Fig. 92. 

Released trichospore 

(arrow) with collar 

(arrowhead). Fig. 93. 

Zygospore (arrow). 

Fig. 94. Thalli with 

attached trichospores 

(arrows). Fig. 95. 

Smittium hecatei.  

Verticilliately 
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Discussion (Taxonomy) 

After 17 months of data collection at six sites within three watersheds, a total of 

64 taxa of trichomycetes were documented including 19 new species described in the 

Results (Taxonomy) section. Aside from these new species, 45 previously described taxa 

were observed during this study (Appendix II).  Of particular interest were reports of  five 

species appearing in Nova Scotia as new continental records including: Smittium 

bulbosporophorus and Sm. hecatei originally reported from Spain (Valle and 

Sanatamaria, 2004), Sm. nodifixum from China (Strongman and Xu, 2006) and Sm. 

pusillum and Stachylina euthena both described previously from France (Lichtwardt, 

2004).  

Additionally, another five species (Capniomyces sasquachoides, Pennella arctica, 

Smittium dipterorum, Sm. minutisporum and Sm. mucronatum) collected during this study 

established new regional records for Nova Scotia. Recently described from Idaho, USA, 

(Bench and White, 2012) Capniomyces sasquachoides was also collected in this study 

now extending its range to Nova Scotia while Sm. dipterorum was previously collected 

from tropical locations in Costa Rica, the Dominican Republic and Mexico (Lichtwardt, 

1997; Valle and Cafaro, 2010; Valle et al., 2011). Pennella arctica has been collected in 

Sweden and Montana, USA (Lichtwardt, 1984), Sm. minutisporum has only been 

described from the Great Smoky Mountains National Park, USA (White et al., 2006b) 

and Sm. mucronatum is known from France, Norway, Colorado, USA, and Ontario, 

Canada (Lichtwardt, 2004).  

The collection of these new regional and continental records along with other 
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studies from Nova Scotia, indicate that at least certain species of trichomycetes have a 

widespread distribution. These large extensions in geographic distribution for some 

species and 19 new species reported from this study make it exceedingly difficult to 

address the biogeography, speciation and evolutionary aspects of trichomycetes that 

would allow us to understand the mechanisms that drive present day geographical 

distributions. Future documentation of these symbionts from around the world will 

continue to shed light on their distribution so that a clearer understanding might emerge. 

The accumulated taxa were predominantly harpellid trichomycetes with the 

exception of three taxa (Paramoebidium spp., Paramoebidium cassidula and 

Paramoebidium curvum Lichtw.) that are from the Amoebidiales. Currently there are 40 

species of trichomycetes derived from ephemeropteran hosts, 26 from plecopteran, 25 

from simuliid and the vast majority of taxa (149) are from chironomid hosts (Lichtwardt, 

2004). The abundance of chironomid-associated trichomycetes in the published literature 

was reflected in this study as well. Smittium ampliboja and Sm. culicis occurred in both 

chironomid and simuliid hosts and Paramoebidium sp. was recorded from three host 

types. There were 37 taxa collected from chironomids, 8 from ephemeropterans, 13 from 

plecopteran and 10 taxa from simuliid hosts (Appendix II). 

 Chironomid trichomycetes include nine genera and 149 species with Smittium by 

far the most speciose with over 94 described species (Lichtwardt et al., 2001a), many of 

which are only distinguishable based on precise measurements of trichospores and, if 

present, zygospores. The emphasis on measurements arises from difficulties in growing  

trichomycetes outside of their host and a general inability to obtain enough material, 
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when encountered, for DNA extraction and sequencing. Fortunately, a substantial number 

(approximately 40%) of Smittium species are culturable and Wang et al. (2013) recently 

published a review of the genus identifying several clades within it. Consequently, they 

removed Sm. culisetae and constructed a new genus, Zancudomyces, to accommodate this 

species that was the only Smittium species with trichospores that have a submedial 

swelling. Zancudomyces culisetae also was separated from other Smittium species based 

on molecular analysis (Wang et al., 2013). Another complicating factor when using spore 

morphology alone to discriminate among similar Smittium species is the wide range of 

trichospore lengths and widths and, to a lesser extent, these dimensions for zygospores. 

There are examples within Smittium (Lichtwardt, 2004) of trichospore lengths spanning 

20 µm or more in one species. Dimorphism, where asexual trichospores in some species 

have two discrete size ranges on the same thallus, sometimes with only one size present, 

also presents further difficulties when attempting to identify members of this 

confounding genus. 

The addition of Sm. guttisporum to the genus indicates how narrow the 

morphological differences can be between certain species. There are now three species 

with papillate trichospores and long collars, Sm. mucronatum, Sm. papillum, and Sm. 

guttisporum with remarkably similar thallus morphology. Zygospores have been 

described for Sm. mucronatum, but not observed in either Sm. papillum or Sm. 

guttisporum. The inability to compare the morphology of sexual spores emphasizes the 

importance of differences in the trichospore dimensions, which are distinct, but overlap: 

Sm. guttisporum (26–34 µm × 4–6 µm; collar 8–13 µm); Sm. mucronatum (33–37 µm × 
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6.5–7 µm; collar: 7.5–9 µm); and Sm. papillum (20–28 µm × 3–4.5 µm; collar: 6–12.5 

µm). The addition of Sm. guttisporum to the genus based on trichospore size ranges 

between those of the two other species, Sm. mucronatum and Sm. papillum, demonstrates 

how crucial precise measurements are for making accurate identifications. Future efforts 

to culture and obtain sufficient material for DNA extraction and sequencing might 

provide more clarity on the distinctiveness of these species. The description of another 

species with papillate trichospores is timely since Lichtwardt and White (2011) have 

designated Sm. mucronatum a lectotype for the genus. It would be interesting to 

determine if Sm. mucronatum, Sm. guttisporum, and Sm. papillum are all 

phylogenetically related. 

A feature of Sm. guttisporum, that is not uncommon in other species of Smittium, 

is the small amount of adhesive anchoring immature thalli to the host gut. The adhesive is 

clearly documented in the early stages of thallus development, but it becomes largely 

obscured in mature thalli by the profuse branching that occurs in later stages of Sm. 

guttisporum growth. Similar developmental changes in the holdfast were illustrated by 

White and Strongman (2012a) for other Smittium spp. It appears that key morphological 

features could go undetected, depending on the developmental phase observed when the 

trichomycete is encountered. This also applies to the development of zygospores that in 

many species develop generally after there has been sufficient growth of the fungus, or in 

the latter stages of host development. 

As investigations into trichomycetes continue, Smittium and other genera with 

many species (Stachylina, Enterobryus) will likely add more to their accumulating lists. 
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Accurate measurements will continue to be vital to identifications of trichomycetes; 

however with advances in molecular techniques and with continuing attempts to culture  

newly or previously encountered taxa, elucidation of these cryptic organisms should 

progress. 
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Introduction (Ecological) 

There have been few ecological studies on trichomycetes in part due to the 

immense effort required to inventory trichomycetes from sites around the globe and the 

relatively few people working in the field. The accumulation of these studies in different 

parts of the world is beginning to shed light on the worldwide distribution of 

trichomycetes indicating that many species are not limited to certain geographic areas. 

Reports from this study alone include five new continental records of species previously 

reported only from France (Smittium pusillum, Stachylina euthena), Spain (Smittium 

hecatei, Smittium bulbosporophorus) and China (Smittium nodifixum) (William and 

Strongman, 2013a; 2013b; 2013c). 

Smaller scale distribution studies have been conducted in Cambridge, New York 

(Labeyrie et al., 1996) with trichomycetes from black flies, and distribution of Smittium 

culisetae within pitcher plants has been reported (Reeves, 2004). Other ecological aspects 

of trichomycetes have been explored such as seasonality (Beard and Adler, 2002; Nelder 

et al., 2010; Hernandez Roa and Cafaro, 2012) and host specificity (Nelder, 2005). The 

relationships between black fly larvae and symbiotic organisms including distribution, 

diversity and scale have been discussed by McCreadie et al., 2011. Also, Beard and Adler 

et al. (2003), Nelder et al. (2010) and Labeyrie et al. (1996) have presented some data on 

the prevalence of trichomycetes found associated with black fly larvae. 

The majority of ecological studies has been conducted with trichomycetes 

occurring in black fly larvae from streams, and thus is comprised of sampling 

disproportionally from lotic habitats. Trichomycetes have largely been reported from  
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lotic habitats (moving waters such as streams, rivers, and brooks), but as investigations 

from lentic habitats (still waters such as lakes, ponds, seeps) increase, they are proving to 

be a rich source of trichomycetes including new species and warrant further study 

(Lichtwardt et al., 2001a). 

Despite the distinction of lentic from lotic habitats as separate and distinct it is 

understood that habitats do not exist in isolation from one another as there is significant 

recognition of cross habitat flow of nutrients, matter and energy and the importance of 

this for recipient species and ecosystems (Polis et al., 1997). For example, terrestrial 

carbon has been implicated in playing a central role in support of lake food webs (Pace et 

al., 2004) and aquatic insects found in freshwater streams and lakes often emerge into 

terrestrial environments creating a cross habitat linkage between aquatic and surrounding 

terrestrial ecosystems (Power et al., 2004). The mosaic flow of nutrients, energy, and 

populations of vertebrate and invertebrate communities throughout ecosystems is difficult 

to assess in terms of overall effect on an ecosystem; however, the fact that there is an 

influence is undeniable. 

Within watersheds streams can receive high amounts of leaf detritus from the 

terrestrial or riparian zones that get carried downstream and may be deposited into lakes. 

Addition or elimination of detritus has been implicated in causing quick changes in 

freshwater invertebrate community structure and density of functional feeding groups 

(Wallace et al., 1999; Rowe and Richardson, 2001). 

Most fresh water insects are adapted to either lentic or lotic habitats but overlap of 

invertebrate communities in these habitats is common, such as in the floodplain of large 
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rivers (Merritt and Cummins, 1996). Extreme rain events or snow melt can often create 

torrential stream flow within watershed systems that can potentially carry lotic insects 

from the stream, depositing them into a lotic-lentic interphase for which their oxygen and 

other resource requirements may or may not be sufficient. A recent study from the 

University of British Columbia suggests that there is a littoral zone where streams flow 

into lakes that has resident invertebrate populations not  found in either the lake or stream 

habitats, but only in this littoral zone (Klemmer, 2011). 

The majority of stonefly species are primarily associated with clean, cool running 

waters (Merritt and Cummins, 1996). Oxygen diffuses rapidly through the air but the rate 

can be slowed down 324,000 times in water such that availability of oxygen is heavily 

dependent on the velocity of the stream (Merritt and Cummins, 1996) and this factor can 

strongly affect the species composition of insect communities in aquatic habitats. 

 This study compares the community structure of trichomycetes occurring in lentic 

and lotic habitats within three separate watersheds. Comparisons between these two 

habitats are examined for species richness (number of taxa at each site) and prevalence 

(percentage occurrence of each species within host type). Months into the study, an 

extreme rain event occurred flushing normally stream dwelling plecopteran insects into 

the lentic site chosen at the Long Lake watershed. This site was eliminated from 

lotic/lentic comparisons and is designated as an interphase site since it was comprised of 

both lotic and lentic insects on nine of 22 separate collection dates. 

There were four target hosts examined for trichomycetes including mayflies 

(Ephemeroptera), stoneflies (Plecoptera), and both chironomids and simuliids (Diptera). 
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Since lentic sites generally only draw from ephemeropteran and chironomid hosts, closer 

examination of trichomycetes occurring in only these hosts is examined more in depth. 

To a lesser extent, both seasonality and host specificity were observed in several species 

and are investigated further. Finally, the community structure occurring in three 

watersheds ( Long Lake, Woodens River and Shubenacadie) were examined, but 

comparisons are limited to two (Woodens River and Shubenacadie) due to the loss of a 

true lentic site at Long Lake. 
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Results (Ecological) 

Hosts Collected and Dissected 

 In this section, the aim is to consider several ecological aspects of trichomycetes 

including species richness, seasonality, and prevalence; however, before addressing the 

ecological aspects both the number of insects collected and dissected needs to be 

examined. The insect data are important to understand trichomycete ecology because they 

are obligate colonizers of insect guts in all aquatic habitats (Lichtwardt, 1986). 

The total number of insect hosts collected at each site (Table 1) demonstrates that 

there was an abundance of insects available at each of the six sites providing substantial 

numbers for dissection.  Insect collection numbers were similar from all sites with the 

exception of TLLO which had nearly twice the number of insects than any of the other 

five sites (Table 1). Lotic sites drew from ephemeropteran, plecopteran, and dipteran 

(both chironomids and simuliids) hosts whereas the lentic sites had only ephemeropterans 

and chironomids, and yet total insect collection numbers were similar. The interphase site 

(LLLE) contained mostly ephemeropterans and chironomids, but also had plecopterans 

on occasion due to these otherwise lotic-dwelling hosts being flushed from an adjoined 

stream after heavy rain events.  

 The largest number of insects was collected from TLLO, (6839), while LLLO 

and SPLO reported fewer yet substantial numbers, 3284 and 3728 respectively. Insects 

dissected were a subset of the insects collected at each of the three sites and similar 

numbers of insects were dissected from each site ranging from a low of 1222 at SPLO, 

1404 at LLLO to a high of 1487 at TLLO (Table 1). Insect collections from the two lentic 
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sites were similar to lotic sites with 3231 collected at GLLE and 2844 collected at SPLE 

leading to comparable numbers dissected (806 and 577 at GLLE and SPLE respectively) 

at each lentic site. Similar numbers of insects (3685) were collected from the interphase 

site (LLLE) and 855 were dissected (Table 1). The insect collections and dissections for 

each site have been broken down into four time periods roughly representing seasons in 

Nova Scotia and are shown in Figs.102-104.  

 

Table 1. Total Mayflies (Ephem.), Stoneflies (Plec.), Midges [Dip. (Ch)], and 

Black flies [Dip. (Si)] collected and dissected at lotic, lentic and interphase 

sites from watersheds around the Halifax Regional Municipality, NS.   

       

Site 

Total 

number 

collected 

Ephem. 

collected 

Plec. 

collected 

Dip. (Ch) 

collected 

Dip. (Si) 

collected 

Total number 

dissected 

 Lotic sites 

       1
LLLO 3284 825 671 1054 734 1404 

 TLLO 6839 4423 919 352 1145 1487 

 SPLO 3728 1585 338 446 1359 1222 

 Lentic sites 

       GLLE 3231 2646 1 584 0 806 

 SPLE 2844 2600 1 242 1 577 

 Interphase 

site 

       LLLE 3685 2881 247 557 0 855 

 1
 Site abbreviations are Long Lake Provincial Park stream (LLLO), Timberlea stream 

(TLLO), Shubie Park stream (SPLO), Governor’s Lake, Timberlea (GLLE), Shubie Park 

lake (SPLE) and  Long Lake Provincial Park lake (LLLE) 

 

The insect data show that fewer insects were collected and dissected from the 

lentic sites compared to the lotic sites among the time periods (seasons), with the 

exception of Sep to Dec 2011. There were 2412 insects collected from GLLE during this 

time period, higher than any other period at any site and 1681 insects collected from 

SPLO, higher than all other time periods or sites aside from TLLO and SPLO during the  
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Figure 102. Insects collected and dissected by date range at lotic sites.
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Figure 103. Insects collected and dissected by date range at lentic sites.
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Figure 104. Insects collected and dissected by date range at the interphase site. 
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Jan to Apr 2011 period (Figs. 102 and 103). Despite this spike in insects collected from 

lentic sites for this period, dissection numbers were only slightly higher compared to  

dissections of lentic insects from the other three periods (Figs. 102 and 103). Insect 

collections and dissections for each of the two lentic sites were similar for the other three 

date ranges (Fig 103). 

The interphase site (LLLE) was intermediate in terms of insects collected in 

comparison to the lotic and lentic sites (Fig. 104). Insect density at this interphase site 

was higher than from lentic sites, with the exception of the Sep to Dec 2011 period where 

again a spike in collection numbers (1396 specimens) was observed, but not to the degree 

in either lentic site over this time period (Fig. 104). The intermediate numbers of insects 

collected and dissected at this interphase site is due to capniid stoneflies as well as 

ephemeropterans and chironomids likely being flushed from the stream into this site. The 

introduction of capniid stoneflies into the interphase was not an isolated incident as there 

were nine occasions when stoneflies were retrieved ranging in numbers from 1 to over 80 

per collection. 

A maximum of 27 insects of each of the four host types; ephemeropterans, 

plecopterans and dipterans (simuliids and chironomids) were dissected on each collection 

date. This was an arbitrary number set at the outset of the study (See Materials and 

Methods) in order to process the maximum number of each host type before 

decomposition began to obscure the contents of the insect guts. This translated to a 

somewhat uniform number of host dissections at the lotic sites (1404, 1487, and 1222 at 

LLLO, TLLO, and SPLO respectively), lower numbers at the lentic sites (806 and 577 at 
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GLLE and SPLE) largely due to the fact that two of the four groups of insects did not 

occur in this habitat type (Table 1) and 855 dissections at LLLE, the interphase site 

drawing from three of four host types, excluding simuliids. Additionally, mayfly and 

stonefly dissections could include multiple families which occurred at different densities 

at different times at each site. If certain host types (or Families) typically are colonized by 

more trichomycetes, the trichomycete species richness could reflect, in part, the specific 

host available (e.g. stonefly vs. mayfly). 

The number of insects collected (density) may also affect the types and densities 

of trichomycetes simply because larger numbers of insects should translate to a higher 

spore load in aquatic habitats increasing the potential to recover trichomycetes. The 

insect densities and dissections processed during this study are high compared to other 

studies where this type of information is provided (Beard and Adler 2002; Beard et al., 

2003; Nelder et al., 2010) and thus should make the data on trichomycete ecology 

representative of the trichomycete communities present. 

 

Trichomycete Species Richness and Seasonality 

This section examines the trichomycete species richness (number of species 

recovered)  at each of  three lotic, two lentic and the one interphase site over four 

different periods, broadly representing the different seasons in Nova Scotia. Replicate 

data are presented for Sep to Dec in 2010 and Sept to Dec 2011 (Figs. 105-107).  

Examining total trichomycete taxa (species richness) recovered at each of the six 

sites, TLLO was found to have the greatest number of trichomycetes with 34 taxa,  
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Figure 105. Trichomycete species from lotic sites (LLLO, TLLO, and SPLO). 

 



92 
 

Figure 106. Trichomycete taxa from lentic sites (GLLE and SPLE). 
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Figure 107. Trichomycete taxa from the interphase site (LLLE). 
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followed by LLLO (29), LLLE (28), GLLE (21), SPLO (16) and SPLE (12) (Figs. 108-

113). These data indicate a higher number of taxa reported from the three lotic sites with 

a mean of 26.3 ± 9.3 taxa per site, than the two lentic sites (16.5 ± 6.4). The 28 taxa 

reported from the interphase site LLLE was higher than either of the two lentic sites as 

well as one lotic site (SPLO). Included in these data was a group, unidentifiable spp., 

which was treated as one taxon. Clearly this represents many different species and it 

occurred in all insect types but was included only to record the presence of 

trichomycetes, otherwise the occurrence of gut symbionts would be substantially 

underestimated. 

The species richness data were considered over four time periods to detail any 

evidence of seasonality in trichomycete abundance. Species richness per site was 

considerably higher at the lotic sites than at the lentic sites for each of the time periods 

(Figs 105-107). Overall there were 44 species from (three) lotic sites and 15 from (two) 

lentic sites for the period of Aug to Dec 2010 followed by ratios of 47:10; 46:24 and 

39:18 over the periods of Jan to Apr, May to Aug and Sep to Dec 2011 respectively. 

Considering the distribution of taxa over the four time periods, there was an average of 

14.7 ± 6.1 trichomycete species reported from each of the three lotic sites over the four 

time periods compared to 8.4 ± 4.6 per lentic site/time period and 13 ± 6.2 from the 

single interphase site/time period. 

The stream site in Timberlea (TLLO) was the most speciose of the three lotic sites 

with 18 to 23 different taxa of trichomycetes from the four seasonal time periods (Fig. 

105). LLLO was the next richest source of trichomycetes ranging from 15 to 18 taxa 
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while SPLO reported the fewest taxa, 4 to 11 (Fig. 105). Of the two lentic sites, a range 

of 6 to 16 taxa were reported from GLLE during each of the four seasonal categories 

while 4 to 8 taxa were reported from SPLE during the same time period (Fig. 106). 

Trichomycetes collected from the interphase site within the Long Lake watershed  

(LLLE) ranged from 6 to 20 taxa (Fig. 107) where the high for any period occurred 

during the May to Aug 2011 period. 

The insect data (Figs. 102-104) show that the numbers of insects dissected in each 

time period (season) was similar within each habitat type (lotic, lentic and interphase), 

but generally there were fewer insects dissected from the lentic and interphase sites than 

from the lotic sites except for Sep to Dec 2011 (Figs. 102-104).  

In summary, there are more taxa of trichomycetes found within lotic sites 

compared to either lentic or the interphase sites. The initial date ranges (Aug to Dec 2010 

and Jan to Apr 2011) saw a clear distinction between lentic and lotic taxa numbers; 

however became less distinct for the latter date ranges (May to Aug and Sep to Dec 

2011). The interphase site had its highest recovery of trichomycetes during the May to 

Aug 2011 date range and the second highest for Aug to Dec 2010. 

 

Prevalence 

Prevalence of trichomycetes (percentage occurrence of each species within host 

type) was examined as a way to measure the abundance of trichomycete taxa among the 

site types (lentic/lotic and interphase). A trichomycete prevalence value greater than 2 % 

of the hosts dissected at a site was arbitrarily chosen to differentiate between frequently  
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Figure 108. Prevalence of Trichomycete species at LLLO 
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Figure 109. Prevalence of Trichomycete species at TLLO 

 



98 
 

Figure 110. Prevalence of Trichomycete species at SPLO 
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occurring species and those considered rare. The rationale for this is that species 

occurring in 2% or less of the hosts dissected were so rare that they possibly were at other 

sites, but could have been missed. 

At all three lotic sites (Fig. 108-110), Harpella melusinae L. Léger & Duboscq 

was by far the most common trichomycete encountered with prevalence values of 76.9% 

(LLLO), 67.2% (TLLO), and 51.1% (SPLO). These values eclipse all other species of 

trichomycetes by a considerable margin at each site.  

Apart from the high prevalence of H. melusinae at lotic sites, the next most 

common taxa were Stachylina spp., Pennella spp. and Paramoebidium spp. Unable to be 

identified beyond the genus level, these taxa undoubtedly represent a number of species, 

and probably include species already recorded from the site, explaining their high 

prevalence. Stachylina spp. had prevalence values of 23.7% (LLLO), 23.2% (SPLO) and 

12.3%, at TLLO (Fig 108-110). Interestingly Stachylina spp. and Harpella melusinae 

were by far the most common at all three sites and both colonize the peritrophic matrix of 

chironomid and simuliid insect hosts respectively. The peritrophic membrane is a unique 

environment in the insect gut and the species found here are likely specifically adapted to 

this environment. Pennella spp. was quite common at TLLO 

 (14.7%) and LLLO (9.7%), but was rarely encountered at SPLO (0.4%) while 

Paramoebidium spp. was common at all sites, TLLO (13.7%), LLLO (10.0%) and SPLO 

(5.9%) (Figs. 108-110). Paramoebidium spp. differ from most other trichomycetes as 

they are found in three host orders; Ephemeroptera, Plecoptera and Diptera (Simuliidae).  
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Capniomyces sasquachoides and Stachylina nana were species collected from all 

three lotic sites. Capniomyces sasquachoides was common at TLLO (2.8%) and SPLO 

(5.2%), but rare at LLLO (0.3%). St. nana had a prevalence of 4.6% at LLLO and 4.1% 

at SPLO, but was rare at TLLO (0.3%) (Figs. 108-110). Taxa occurring at all three lotic 

sites and with prevalence values lower than 2% include Sm. radiculans, Sm. simulii, and 

St. grandispora (Figs. 108-110). 

The lotic site SPLO had many fewer trichomycetes overall than either TLLO or 

LLLO (Figs. 108-110) and thus shared fewer common species with the other sites. 

Twelve of the 16 taxa from SPLO were also reported at both LLLO and TLLO (Figs. 

108-110). Prevalent taxa shared by LLLO and TLLO only (Figs. 108 and 109), were 

Orphella spp. (LLLO 10.4%; TLLO 9.1%), Pennella arctica (LLLO 2.9%; TLLLO 

5.5%) and Simuliomyces microsporus Lichtw. (LLLO 3.6%; TLLO 2.6%). 

Paramoebidium cassidula (LLLO 3.4%; TLLO 0.4%), and Legeriosimilis halifaxensis 

Strongman & M.M.White (LLLO 1.5%; TLLO 0.3%) were found at both these sites less 

frequently. TLLO and SPLO had only Sm. gronthidium in common at 3.9% and 0.9% 

respectively from chironomids dissected at these sites (Figs. 108 and 110). 

There were 12 taxa at LLLO, 12 at TLLO, and 3 at SPLO that were unique to one 

of these three lotic sites with varying prevalence (Figs. 108-110). Of these taxa, seven 

were newly described species with Pteromaktron timberleaense at 8.1%, but Sm. 

insolitum, St. tanysoma, and Sm. ampliboja all occurred at < 2% and were collected only 

from TLLO. Bactromyces fluminalis and Glotzia gemina were found only at LLLO and 

SPLO respectively, but were rare (<2%). The most common taxa at both GLLE and  
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Figure 111. Prevalence of Trichomycete species at GLLE 
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Figure 112. Prevalence of Trichomycete species at SPLE 
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Figure 113. Prevalence of Trichomycete species at LLLE 
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SPLE were Stachylina spp. and Paramoebidium spp. (Figs. 111 and 112). The prevalence 

of Stachylina spp. was 22.9% at GLLE and 14.9% at SPLE while Paramoebidium spp. 

was 4.3% at GLLE and 15.1% at SPLE (Figs. 111 and 112).  

The next most common species at both sites was Sm. papillum with prevalence 

values of 9.2% at GLLE and 3.1% at SPLE. Laculus insecticola was prevalent (9.2%) at 

GLLE which is the type locality (William and Strongman, 2011), but was also found at 

SPLE at a much lower prevalence (0.2%). Interestingly, this species is also reported from 

 one lotic site (TLLO) and the interphase site (LLLE) (Fig. 109 and 113). Smittium spp. 

from chironomids was described from both sites with a prevalence of 5.4% and 0.5% at  

GLLE and SPLE respectively (Figs. 111 and 112). Sm. bulbosporophorus was rare (> 

2%), but found at both GLLE (0.3%) and SPLE (1.6%) (Figs.111 and 112).  

There were five taxa unique to GLLE (Fig. 111) all collected with rare 

prevalences including three newly described species Sm. guttisporum (2.0%), St. serpula 

(1.4%) and St. zeppelin (1.1%). Sm. dipterorum (0.9%); and Sm. insulare (0.6%) were the 

other two taxa collected only at this site. There were no new species reported only from 

SPLE, but seven of the twelve taxa collected here had frequencies < 2% (Fig. 112). 

The interphase site (LLLE) is distinctive because it contained a mixture of insect 

hosts from both lentic and lotic environments. There were 28 trichomycetes reported 

from this site (Fig. 113); eight of which were recovered from stoneflies, likely originating 

from the stream flowing into the lake at this site. Orphella spp. (22.3%), O. avalonensis 

(19.4%) Genistelloides hibernus Peterson, Lichtw. & Horn (7.8%) and C. saquatchoides 

(2.3%) were prevalent in these hosts, while Ejectosporus sp. (1.6%), L. falcatus (0.8%) 
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and O. dalhousiensis (0.8%) were rare. Two taxa (Ejectosporus sp. and O. avalonensis) 

were collected only from this interphase site. Five other taxa were found only at this site 

including four newly described species from chironomid larvae: Sm. adaiosporum 

(3.5%), Sm. peculiare (2.6%), St. obviorarus (0.3%), St. extensiva (0.3%) and Sm. hecatei 

(0.6%) reported previously only from Spain (Valle and Santamaria, 2004) (Fig. 113). The 

remaining 15 taxa reported from LLLE were also reported from at least one or more lotic 

or lentic sites with Paramoebidium spp. (12.1%) and Stachylina spp. (7.8%) encountered 

frequently while the rest were collected rarely (Figs.111-113). 

 

Habitat Preference 

There were a total of 57 taxa reported from the combined investigations of three 

lotic and two lentic sites with 7 taxa isolated from the interphase site only. Based on data 

from this study, these taxa can be separated into three categories, species only reported 

from lotic sites, species reported from only lentic sites and finally species that were 

collected from at least one lotic and one or more lentic sites. Stachylina spp., Smittium 

spp. and Paramoebidium spp. were all prevalent at each of the lotic and lentic sites (Figs 

108-112). These three genera contain the most common trichomycete species known 

(Lichtwardt et al., 2001a). 

There were 34 taxa collected from lotic sites only (Figs. 108-110) including the 

new genus Bactromyces fluminalis and five new species (G. gemina, P. timberleaense, 

Sm. ampliboja, Sm. insolitum, and St. tanysoma) as well as four species Sm. nodifixum, 

St. euthena, Sm. pusillum and Sm. hecatei previously known from Asia or Europe 
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(Lichtwardt et al., 2001a).  Pennella arctica, and C. sasquachoides from the USA were 

also collected at lotic sites. Six species were reported from lentic habitats only (Figs. 111-

112) consisting of a new genus for Laculus insecticola, three new species (Sm. 

guttisporum; St. serpula; and St. zeppelin) as well as Smittium bulbosporophorus 

previously described from Spain (Valle, 2004) and Sm. dipterorum with reports from 

Costa Rica, Dominican Republic and Mexico (Lichtwardt, 1997; Valle and Cafaro, 2010; 

Valle et al., 2011). 

 There were 18 taxa reported from what were considered ‘lentic/lotic species’ as 

they were collected from at least one lotic and one lentic site (Figs 108-112). These taxa 

included five new species: Sm. cryptancora, Sm. petilum, St. abundans, St. somnisimilis 

and St. uranus. Additionally, Sm. mucronatum reported from Nova Scotia for the first 

time was also collected at both site types. 

Finally, a group of five species could not definitely be assigned to any of the 

previous three categories and thus habitat preference does not exist or is unknown. These 

include four new species Sm. adaiosporum, Sm. peculiare, St. extensiva and St. 

infrequens and the fifth species, Sm. minutisporum. 

 

Species composition in Ephemeroptera and Chironomidae  

This section deals with trichomycete species composition and prevalence in 

mayflies (Ephemeroptera) and chironomids (Diptera). These hosts were selected because 

of their ubiquitous distribution at all site types (lotic, lentic, and interphase) whereas the 

Plecoptera and simuliids (Diptera) were not found at any lentic habitats during this study. 
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 Seven taxa of trichomycetes (Paramoebidium spp., L. insecticola, L. halifaxensis, 

T. bioblitzii, G. gemina, P. timberleaense, and Sm. aurensis) were found in 

ephemeropteran hosts from one or more habitat (lotic, lentic or interphase). A Spartiella 

sp. was also recorded that is likely S. aurensis, but lacked mature spores so species 

identification could not be confirmed (Table 2). Laculus insecticola, Paramoebidium spp. 

and L. halifaxensis are the only species found in all three site types. Three species Glotzia 

gemina, Pteromaktron timberleaense, and Spartiella aurensis were only reported from 

lotic sites. Spartiella sp. was the only taxon reported solely from lentic sites and T. 

bioblitzii was the only species collected at both a lotic and the interphase site (Table 2). 

Table 2. Prevalence of trichomycetes in ephemeropteran hosts at lotic, lentic and 

interphase sites within Halifax and Dartmouth, NS.  

Species Lotic Lentic Interphase 

Paramoebidium spp. 9.5 ±12.9 9.5 ± 7.3 5.2 

Laculus insecticola 0.1 ± 0.1 4.7 ± 6.4 0.8 

Legeriosimilis halifaxensis 0.6 ± 0.8 2.5 ± 3.5 0.5 

Trifoliellum bioblitzii 0.0 0.1± 0.1 1.0 

Glotzia gemina 0.6 ± 1.0 0.0 0.0 

Pteromaktron timberleaense 2.7 ± 4.7 0.0 0.0 

Spartiella aurensis 1.0 ± 1.8 0.0 0.0 

Spartiella sp. 0.0 0.9 ± 1.2 0.0 
1
 Site abbreviations are Long Lake stream (LLLO), Long Lake (LLLE), Timberlea stream 

(TLLO), Governor’s Lake (GLLE), Shubie stream (SPLO) and Shubie Park lake (SPLE). 

See Appendix I for details. 

 The second group of insect hosts examined in this section was midge 

(Chironomidae) larvae also found in lentic, lotic and interphase habitats. They contained 

37 different taxa (Table 3). All were fungal trichomycetes belonging either to the genus 

Smittium (24 taxa) or Stachylina (13 taxa) with some taxa isolated from all three site  
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types (lotic, lentic and interphase) while others were recorded from a single type or a 

combination of two. Seven of the 24 Smittium spp. and 8 of the 13 Stachylina spp. were 

newly described species from Nova Scotia (William and Strongman, 2013a; 2013b; 

2013c).  

There were a total of eight taxa (Stachylina spp., St. abundans, St. uranus, 

Smittium spp., Sm. cryptancora, Sm. gronthidium, Sm. papillum, and Sm. petilum) of 

trichomycetes reported from all three habitat types (lotic, lentic, and interphase) and four 

species (St. nana, St. subgrandis, St. grandispora, and St. somnisimilis) reported from 

both lentic and lotic habitats (Table 3). Eleven species (Sm. ampliboja, Sm. brevisporum,  

 

Sm. colboi, Sm. insolitum, Sm. nodifixum, Sm. pavocaudatum, Sm. pusillum, Sm.  

radiculans, Sm. simulii, St. euthena and St. tanysoma) were collected from lotic sites only 

while there were seven species (Sm. bulbosporophorus, Sm. culicis, Sm. dipterorum,  

Sm. guttisporum, Sm. insulare, Stachylina serpula, and St. zeppelin) reported from lentic 

habitats only (Table 3).  

Trichomycetes reported from only the interphase habitat consisted of five species 

Sm. adaiosporum, Sm. hecatei, Sm. peculiare, St. extensiva and St. infrequens. Smittium 

mucronatum and Sm. microsporum were both collected from the interphase site, but were 

also found in one other site type: lentic in the case of Sm. mucronatum and lotic for Sm. 

microsporum (Table 3). All species found in chironomids occurred at relatively low 

frequency (< 2%) except for unidentified Stachylina and Smittium spp., St. abundans, 
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Table 3. Prevalence of harpellids in chironomids from lotic, lentic and interphase sites in 

Halifax and Dartmouth, NS.  

Species Lotic Lentic Interphase 

In 3 Habitats 
   

Stachylina spp. 19.7 ± 6.4 18.9 ± 5.7 7.8 

Smittium spp. 2.5 ± 2.4 3.0 ± 3.4 5.8 

Stachylina abundans  4.5 ± 3.8 2.2 ± 3.0 1.1 

Smittium papillum 0.4 ± 0.8 3.9 ± 1.2 1.7 

Smittium gronthidium 1.6 ± 2.0 0.6 ± 0.8 1.2 

Smittium cryptancora  0.2 ± 0.4 0.7 ± 1.0 0.6 

Stachylina uranus 0.2 ± 0.3 0.2 ± 0.2 0.9 

Smittium petilum  0.1 ± 0.2 0.2 ± 0.2 0.6 

Both lotic and lentic habitats       

Stachylina nana 3.0 ± 2.4 0.3 ± 0.4 0 

Stachylina subgrandis 0.7 ± 0.7 0.9 ± 1.2 0 

Stachylina grandispora 0.4 ± 0.1 1.0 ± 1.4 0 

Stachylina somnisimilis 0.1 ± 0.2 1.0 ± 1.4 0 

Lotic only       

Smittium radiculans 1.0 ± 0.8 0 0 

Smittium nodifixum 0.5 ± 0.8 0 0 

Smittium simulii 0.4 ± 0.1 0 0 

Smittium pusillum 0.3 ± 0.6 0 0 

Smittium pavocaudatum 0.2 ± 0.4 0 0 

Smittium ampliboja  0.1 ± 0.2 0 0 

Smittium brevisporum 0.1 ± 0.2 0 0 

Smittium colboi 0.1 ± 0.2 0 0 

Smittium insolitum  0.1 ± 0.2 0 0 

Stachylina euthena 0.1 ± 0.2 0 0 

Stachylina tanysoma  0.1 ± 0.2 0 0 

Lentic only       

Smittium guttisporum  0 1.0 ± 1.4 0 

Smittium bulbosporophorus 0 0.9 ± 0.9 0 

Stachylina serpula 0 0.7 ± 1.0 0 

Stachylina zeppelin 0 0.6 ± 0.8 0 

Smittium culicis 0 0.6 ± 0.8 0 

Smittium dipterorum 0 0.5 ± 0.6 0 

Smittium insulare 0 0.3 ± 0.4 0 

Interphase        

Smittium mucronatum 0 0.5 ± 0.8 1.1 
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Smittium minutisporum 0.5 ± 0.9 0 0.3 

Smittium adaiosporum  0 0 3.5 

Smittium peculiare 0 0 2.6 

Stachylina infrequens  0 0 0.6 

Smittium hecatei 0 0 0.6 

Stachylina extensiva  0 0 0.3 
1
 Site abbreviations are Long Lake stream (LLLO), Long Lake (LLLE), Timberlea 

stream (TLLO), Governor’s Lake, Timberlea (GLLE), Shubie Park stream (SPLO) and 

Shubie Park lake (SPLE).  

 

St. nana and Sm. papillum (Table 3). 

In summary, trichomycetes from ephemeropteran and chironomid hosts were 

collected from each habitat type (lotic, lentic, and interphase) with some species found in 

only a single site type, whereas others were found in two or three site types. The 

interphase habitat, considered different than either the lotic or lentic habitats due to the 

presence of lotic insects found in an  otherwise lentic habitat, had a mixture of 

trichomycetes including some reported only from this site, but also species found in  

either a lotic, lentic, or both habitats as well. 

 

Watershed Comparisons 

The study was designed to sample in equivalent lentic and lotic sites within three 

replicate watersheds, two in Halifax (Woodens River and Long Lake) and the other in 

Dartmouth (Shubenacadie). Since these taxa occurred in all site types, comparison of 

trichomycetes in Ephemeroptera and Chironomidae from combined habitat types should 

shed light on the nature of trichomycete distribution at the watershed level. Overall, Long 



111 
 

Lake with 57 taxa and Woodens River (55) were numerically similar and had nearly 

twice the species richness than that seen in the Shubenacadie watershed, with 28 taxa.  

Watershed distribution of trichomycete taxa from ephemeropteran hosts consisted 

of five taxa reported from Shubenacadie, four taxa from Woodens River and three taxa 

from Long Lake (Table 4). Laculus insecticola and L. halifaxensis were the only two 

species collected from all three watersheds. Trifoliellum bioblitzii was isolated from both 

Long Lake and Shubenacadie while the remaining two taxa, G. gemina and Spartiella sp. 

occurred at only one watershed (Table 4). 

In the chironomid hosts dissected, the distribution of trichomycete taxa among 

watersheds revealed 26 taxa isolated from Woodens River that included ten taxa common 

to all three watersheds and ten collected only at Woodens River (Table 4).  There were 

five species shared between Woodens River and Long Lake and one species shared with  

 

Table 4. Prevalence by watershed of ephemeropteran harpellids 

Species Long Lake  Woodens River Shubenacadie 

Laculus insecticola 0.4 ± 0.6 4.7 ± 6.4 0.1 ± 0.1 

Legeriosimilis halifaxensis 1.0 ± 0.7 0.2 ± 0.2 2.5 ± 3.5 

Paramoebidium spp. 14.9  ± 0.6 4.3 ± 0.1 7.3 ± 10.3 

Trifoliellum bioblitzii 0.5 ± 0.7  0.0 0.1 ± 0.1 

Glotzia gemina 0.0 0.0 0.9 ± 1.2 

Pteromaktron timberleaense 0.0 4.1 ± 5.8 0.0 

Spartiella aurensis 0.0 1.6 ± 2.2  0.0 

Spartiella sp. 0.0 0.0 0.9 ± 1.2 
1
 Site abbreviations are Long Lake stream (LLLO), Long Lake (LLLE), Timberlea 

stream (TLLO), Governor’s Lake (GLLE), Shubie Park stream (SPLO) and Shubie Park 

lake (SPLE). See Appendix I for details. 
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the Shubenacadie watershed (Table 5). Twenty-four taxa were recovered from the Long 

lake watershed including eight species only from that system, and one species (Sm. 

mucronatum) found at both 

Shubenacadie and Woodens River (Table 5). The 14 taxa reported from Shubenacadie 

represented the fewest reported from any of the three watersheds. There were only two 

species (Sm. culicis and Sm. nodifixum) reported exclusively from Shubenacadie. 

 To summarize the watershed distribution of trichomycetes, ephemeropteran 

derived trichomycetes displayed a somewhat consistent degree of taxa found in each of 

the three watersheds with four taxa collected from Long Lake, five taxa from Woodens 

River and six from Shubenacadie. In contrast, analysis of trichomycetes from chironomid 

hosts  in each of the watersheds suggests a close association between Woodens River (26 

species) and Long lake (24 species) watersheds in terms of overall taxa, with 15 shared 

species but only five in common exclusively at these two watersheds. The Shubenacadie 

watershed reported close to 50 % fewer taxa collected from chironomids (14 species) but 

ten of these were also found in both the Woodens River and Long Lake watersheds. 
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Table 5. Prevalence by watershed of chironomid harpellids 

 
Species Long Lake Woodens River Shubenacadie 

Stachylina spp. 15.7 ± 11.3 17.6 ± 7.5 19.0 ± 5.9 

Smittium spp. 3.5 ± 3.2 5.3 ± 0.1 0.7 ± 0.3 

Stachylina abundans  4.9 ± 5.2 4.2 ± 0.2 0.5 ± 0.6 

Stachylina nana 2.3 ± 3.3 0.5 ± 0.2 2.0 ± 2.9 

Smittium radiculans 1.0 ± 1.4 0.4 ± 0.5 0.2 ± 0.3 

Smittium papillum 0.9 ± 1.2 2.2 ± 1.3 2.4 ± 3.4 

Smittium gronthidium 0.6 ± 0.8 2.5 ± 2.0 0.5 ± 0.6 

Stachylina uranus 0.4 ± 0.6 0.2 ± 0.2 0.2 ± 0.3 

Stachylina grandispora 0.2 ± 0.2 1.2 ± 1.2 0.2 ± 0.3 

Smittium simulii 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.3 

Smittium cryptancora  0.3 ± 0.4 1.1 ± 0.5 0.0 

Smittium petilum  0.3 ± 0.4 0.3 ± 0.0 0.0 

Stachylina subgrandis 0.3 ± 0.5 1.5 ± 0.3 0.0 

Smittium minutisporum 0.1 ± 0.2 0.8 ± 1.1 0.0 

Stachylina somnisimilis 0.2 ± 0.2 1.0 ± 1.4 0.0 

Smittium mucronatum 0.6 ± 0.8 0.0 0.5 ± 0.8 

Smittium bulbosporophorus 0.0 0.2 ± 0.2 0.8 ± 1.1 

Smittium colboi 0.2 ± 0.2 0.0 0.0 

Smittium pusillum 0.5 ± 0.7 0.0 0.0 

Stachylina euthena 0.2 ± 0.2 0.0 0.0 

Smittium adaiosporum  1.7 ± 2.4 0.0 0.0 

Smittium hecatei 0.3 ± 0.4 0.0 0.0 

Smittium peculiare 1.3 ± 1.8 0.0 0.0 

Stachylina extensiva  0.1 ± 0.2 0.0 0.0 

Stachylina infrequens  0.3 ± 0.4 0.0 0.0 

Smittium pavocaudatum 0.0 0.4 ± 0.5 0.0 

Smittium insolitum  0.0 0.2 ± 0.2 0.0 

Stachylina tanysoma  0.0 0.2 ± 0.2 0.0 

Smittium ampliboja  0.0 0.2 ± 0.2 0.0 

Smittium brevisporum 0.0 0.2 ± 0.2 0.0 

Smittium dipterorum 0.0 0.5 ± 0.6 0.0 

Smittium insulare 0.0 0.3 ± 0.4 0.0 

Smittium guttisporum  0.0 1.0 ± 1.4 0.0 

Stachylina serpula 0.0 0.7 ± 1.0 0.0 

Stachylina zeppelin 0.0 0.6 ± 0.8 0.0 

Smittium nodifixum 0.0 0.0 0.7 ± 1.0 

Smittium culicis 0.0 0.0 0.6 ± 0.8 
1
 Site abbreviations are Long Lake stream (LLLO), Long Lake (LLLE), Timberlea stream (TLLO), 

Governor’s Lake, Timberlea  (GLLE), Shubie Park stream (SPLO) and Shubie Park lake (SPLE).  
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Discussion (Ecological) 

The initial intent of this study was to survey the trichomycete population existing 

within three watersheds, comparing trichomycete presence and community structure in 

lentic and lotic habitats in three replicate watersheds. Several months into data collection 

the lentic site (LLLE) within the Long Lake watershed was sampled and found to have 

plecopteran (stoneflies) hosts not normally associated with lentic habitats; therefore, this 

site was treated as unique in the data analysis and designated an ‘interphase’ site due to 

the flushing of stream dwelling insects into this otherwise lentic site. 

The insect abundance collected from all six sites was comparable with the 

exception of TLLO where roughly twice the numbers of insects were collected. The 

discrepancy between this site and the other six is due largely to vastly more 

ephemeropteran hosts collected at this site (Table 1). The insect dissections from all six 

sites were relatively uniform so an overabundance of hosts from any particular site would 

not skew the trichomycete numbers of taxa at any given site.  

The trichomycetes reported from each site over time periods (seasons) are a 

conservative estimate of taxa based on the incidence of unidentifiable species and the 

taxa only identified to genus. These unidentifiable species and taxa were detected in 0.4 

to 23.7 percent of examined hosts (Figs. 108-113).  

The lotic taxa reported within seasons (Fig. 105) clearly indicate that both LLLO 

and TLLO were considerably richer in trichomycete taxa than SPLO, which at times had 

five times fewer taxa. Considering that there were actually more insects collected at 

SPLO than at LLLO and with dissection numbers at SPLO only slightly lower (Table 1) 
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than either LLLO or TLLO, the discrepancy is likely not related to host availability. The 

physical make-up of all three sites was similar and there were 19 collections taken at all 

three sites, so the difference in richness in LLLO and TLLO compared to SPLO is 

obvious, but unexplained by these parameters. 

In terms of consistency, both LLLO and TLLO maintained somewhat consistent 

numbers of taxa over each time period of the study with 14-17 taxa at LLLO and 16-21 

taxa at TLLO whereas SPLO displayed a wider range with fewer taxa (4-11). The slight 

variability in taxa numbers at both LLLO and TLLO was not enough to suggest a level of 

seasonality over the course of the four seasons with one duplicate season; however, taxa 

numbers at SPLO exhibited a steady increase of four to eight, then 11 taxa over the 

course of the first three seasons before returning to five taxa for the duplicate season 

(Figs. 105-107). Seasonality has been demonstrated in trichomycetes (Hapsari et al., 

2009; Siri et al., 200; López Lastra et al., 2003; Beard and Adler, 2002) but in this study, 

with only one of the sites demonstrating fluctuations in taxa numbers over four seasons, 

there is not enough data to suggest there is seasonal distribution of trichomycete taxa at 

the three watersheds studied. 

The consistent numbers of trichomycetes in all hosts at the TLLO and LLLO sites 

over the seasons was unexpected because both plecopteran and simuliid hosts were much 

more prevalent in the fall, winter and spring time periods. The absence of these insect 

species during summer months did not influence the overall number of taxa at these times 

perhaps indicating an increase in chironomid or ephemeropteran borne taxa over this 

period. 
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Comparison of the two lentic sites (GLLE and SPLE) clearly shows that GLLE 

had significantly more taxa than SPLE during all time periods. Total insect dissections 

were slightly higher at GLLE (806) compared to SPLE (577), but this is not considered to 

be enough to account for the discrepancy between the sites. Three of the four seasonal 

time periods reported twice the trichomycete taxa at GLLE than at SPLE, with one 

season (Jan-Apr 2011) where taxa numbers were closer (six and four taxa at GLLE and 

SPLE respectively). This time period also happened to have the fewest taxa at both lentic 

sites, most likely due to ice cover reducing lentic collections for most of that season. For 

both GLLE and LLLE, May to Aug 2011 was the period of highest trichomycete 

richness. The data suggest differences in total trichomycete taxa, but no evidence exists 

that demonstrates seasonality in the occurrence of trichomycetes in general. 

The interphase site, also subject to ice cover followed a similar pattern of taxa 

accumulation during the course of the study. The highest number of taxa was reported 

from May to Aug 2011 as with the lentic sites while the second least amount of taxa were 

collected during Jan to Apr 2011 corresponding to the lowest taxa numbers at the lentic 

sites. This result could be due to restricted insect sampling over the winter months. 

Direct comparison of species richness at individual sites indicated a much higher 

number of trichomycete taxa recovered from lotic sites compared to the lentic sites. Three 

lotic sites (LLLO, TLLO, and SPLO) produced an average of 26.3 ± 9.3 taxa per site 

where the two lentic sites (GLLE and SPLE) averaged 16.5 ± 6.4 over the course of the 

17 month study.  

The overall picture of trichomycete distribution among individual sites over four 
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time periods, suggests lotic sites are considerably richer than lentic sites; however, further 

examination indicates that the discrepancy between lotic and lentic may not be as 

pronounced as initially suggested by taxa numbers. Both the LLLO and TLLO sites were 

far more replete with trichomycetes than either of the two lentic sites (GLLE and SPLE) 

despite the lotic site at SPLO reporting far fewer taxa that either LLLO or TLLO. In 

addition, the lotic sites displayed a much more consistent level of taxa occurring during 

each time period with LLLO and TLLO maintaining a minimum of 15 taxa over all 

periods, while SPLO demonstrated a much higher degree of inconsistency much like the 

lentic sites. The lowest taxa reported from the lentic sites (Jan-Apr-2011) at least in part 

could be due to reduced sampling effort in winter months. A contributing factor to lower 

numbers of trichomycetes reported from lentic sites may be that lotic sites drew from four 

groups of hosts (Ephemeroptera, Plecoptera, Simuliidae and Chironomidae) whereas 

lentic sites only drew from two groups (Ephemeroptera and Chironomidae). Chironomids 

were by far the richest source of trichomycetes contributing 37 taxa while 

ephemeropterans were quite low containing only eight taxa. Plecopteran and Simuliidae 

derived trichomycetes contributed a total of 12 and eight taxa respectively to the lotic 

sites that are excluded from the number of lentic trichomycetes (Figs. 108-113).  

The average number of trichomycete taxa reported from the three lotic sites over 

the four time periods was 14.7 ± 1.1 compared to the average from two lentic sites of 8.4 

± 2.9. Since the site at LLLE is considered an interphase site, comparisons between lentic 

and lotic sites only considered data from the Woodens River and Shubenacadie 

watersheds. The taxa numbers from these two watershed sites lowers the ratio of lotic 
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versus lentic taxa to slightly closer numbers, 13.8 ± 1.7 vs. 8.4 ± 2.9 for lotic and lentic 

sites respectively. Additionally, subtracting the 20 taxa reported from plecopteran and 

simuliid hosts closes the gap between lotic and lentic ratios significantly to a much more 

similar 9.7 ± 1.8 from lotic sites vs. 8.4 ± 2.9 from lentic. 

Lentic trichomycete taxa have been collected from many sites worldwide 

(Lichtwardt, 2004); however many more taxa have been reported from lotic sites which is 

largely due to the fact that lotic sites have been explored more than lentic habitats 

(Strongman and White, 2007). The appeal of lotic habitats to investigators can be 

attributed to the presence of plecopteran and simuliid hosts that are not normally found in 

lentic habitats (Merritt and Cummins, 1996) and also because it is generally easier to 

sample from streams rather than lakes where sampling is often relegated to collections 

close to shore. Lotic dwelling plecopteran and simuliid hosts have contributed 26 and 25 

species respectively to harpellid trichomycetes described to date (Lichtwardt, 2004). 

Ephemeropteran trichomycetes have contributed 40 species (Lichtwardt, 2004), but do 

not seem to colonize their hosts nearly as frequently as those in plecopterans and 

simuliids. Chironomid hosts have contributed 136 species (Lichtwardt, 2004) of 

trichomycetes and are by far the most prolific of the four hosts targeted in this study. It 

seems clear that assessment of trichomycete diversity and inventory should include as 

many host types as possible over extended periods of time to capture all the hosts 

exploiting the habitat. 

In terms of prevalence, the sites were originally chosen to compare lotic to lentic 

systems, but introduction of non-resident insects into the LLLE site slightly skews the 
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study by eliminating one of the original lentic sites. Despite losing a direct comparison 

from this site, it is apparent from taxa collected at the two true lentic sites that both lentic 

and lotic habitats have a resident flora of trichomycetes present at varying levels of 

prevalence. The data also suggest that there are taxa of trichomycetes with an ability to 

populate all three site types (lentic, lotic and interphase) while other taxa were found 

specifically in either a lotic or a lentic or the interphase habitat only, with other taxa still 

found in some combination of two different site types. For the sake of this discussion, 

taxa are assigned to one of three categories, those only observed in lotic habitats 

(including those from plecopteran hosts found in the interphase site), those only from 

lentic, or those observed in both habitat types. In total, 32 of the 64 taxa of trichomycetes 

were reported from lotic habitats only, six from lentic habitats only and 26 reported as 

taxa found in both lotic and lentic habitats.  

Beginning with taxa considered as ‘lotic only’ it is apparent that these 

trichomycetes existed in these habitats with varied prevalence values. In some cases, taxa 

occurred with a very high prevalence such as the case of Harpella melusinae encountered 

at all three lotic sites in 50 to 75% of all simuliid hosts dissected at a particular site. On 

the other end of the spectrum, Smittium simulii was also recovered at all three lotic sites, 

but with much lower prevalence ranging between 0.3 - 0.5% at each of the three lotic 

sites. Intermediate to these two extremes of prevalence, the bulk of taxa were recovered 

in this study were below 2% of dissected hosts. Specifically, 16 of 29 taxa recovered at 

LLLO, 19 of 34 at TLLO and 10 of 16 at SPLO were considered rare.  

The collection and prevalence of the new species Stachylina abundans serves as 
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an indication that trichomycete prevalence can fluctuate from one site to the next despite 

an abundance of hosts. The prevalence of St. abundans ranged from a high of 8.6% at 

LLLO to a low of 0.9% at SPLO (Figs.108-113) This species is particularly useful as it 

was the only species to be collected from five of the six sites aside from taxa identified 

only to genus. At LLLO and TLLO there were an almost identical number of chironomid 

dissections conducted (304 and 302 respectively) with St. abundans reported in 26 

hindguts at LLLO and only 12 at TLLO. At SPLO, 202 chironomid dissections were 

conducted with only two hindguts containing St. abundans. Finally, this species was also 

collected at LLLE where it only appeared in four of 384 chironomid hindguts and also at 

GLLE in 15 of 350 dissections. 

The collection of Stachylina abundans at these five sites represents one of only 

seven species collected from all habitat types (lotic, lentic and interphase) while also 

suggesting a varied rate of prevalence across all site types. Of particular interest is that 

the prevalence at the interphase site was quite similar to the low observed at SPLO, while 

both GLLE and TLLO representing a lentic and a lotic site exhibited an intermediate 

prevalence between the high and low ratios. In this case, implications suggest that St. 

abundans is capable of existence in either  

lotic or lentic habitats including the interphase habitat and exists with varied prevalence 

seemingly irrespective of the nature of the habitat. 

Harpella melusinae was reported with an extremely high prevalence and this 

confirms published records of high prevalence of this species in simuliid hosts (Labeyrie 

et al., 1996; Hapsari et al., 2009). Considered to have a worldwide temperate distribution 
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(Lichtwardt, 2004), H. melusinae has been previously documented in Nova Scotia (White 

and Strongman, 2012a) and from my study where it was reported from 558 simuliid hosts 

of 844 examined, so strengthens the notion that it is widespread and frequently 

encountered. Further support comes from a study from Northern Thailand (Hapsari et al., 

2009) that documented H. melusinae in 80 to 100% of 1260 simuliid hosts examined.  

Aside from the high incidence of H. melusinae at the three lotic sites the 

prevalence of any particular species occurring at any site was markedly lower. The next 

highest prevalence at lotic sites was for Orphella avalonensis and Lancisporomyces 

falcatus at 19.4 and 14.1 % respectively. Both of these taxa were isolated from 

plecopteran hosts and are considered to be species found only in lotic habitats despite the 

fact that O. avalonensis was reported only from the interphase site (LLLE).   

Unlike H. melusinae with worldwide distribution, O. avalonensis has been 

described previously from streams in Newfoundland (Lichtwardt et al., 2001b) Ontario 

(Strongman and White, 2008) and Nova Scotia (Strongman and White, 2006) in Canada 

and from the Great Smoky Mountains in Tennessee, USA (White, et al., 2006) while L. 

falcatus has only been reported previously from streams in Nova Scotia (Strongman and 

White, 2006).  In this study, O. avalonensis was reported from only one site (LLLE) and 

L. falcatus was collected from two (LLLO and LLLE). Interestingly, the prevalence of L. 

falcatus at both sites was extremely different, reported frequently from LLLO at 14.1% 

and at only 0.9% from LLLE. The incidence at LLLE was likely due to overflow from a 

connected stream, where appropriate hosts were flushed into the system. Upon further 

inspection, it was recorded that the plecopteran hosts of L. falcatus were flushed into 
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LLLE on at least nine occasions that led to 129 dissections, and yet it was recovered only 

once contrasting with the incidence at LLLO where 384 hosts were dissected with 54 

positive for the presence of L. falcatus. There were no collections made from the stream 

inundating LLLE so the incidence of trichomycetes in stoneflies there is unknown. 

Despite numerous reports of taxa from lentic sites (21 from GLLE and 12 from 

SPLE), it is difficult to assign any particular species as strictly occurring in lentic 

habitats. From the combined reports of trichomycetes at the two lentic sites (including 

records of the same taxa at each site) there were 26 individual taxa to consider. Sixteen of 

these taxa were also reported from lotic sites in this study (Figs. 108-112), while five taxa 

(Sm. bulbosporophorus, Sm. culicis Sm. dipterorum Sm. insulare, and Sm. mucronatum,) 

although not seen at the lotic sites sampled, have previously been reported from lotic 

habitats in other studies (Valle and Santamaria, 2004; Valle and Santamaria, 2010; 

Strongman, 2007; Strongman and White, 2008). These 16 species include Laculus 

insecticola which is a special case discussed later.  Three species (St. serpula, St. zeppelin 

and Sm. guttisporum) with prevalence ranging between 0.3 to 2.0% were described as 

new from these lentic sites so it is unknown if they are exclusively found in lentic 

habitats. 

The only taxa found exclusively in lentic sites was Spartiella sp., a genus which 

currently has three described species, all collected previously in lotic systems 

(Lichtwardt, 1997; Strongman, 2010; White and Strongman, 2012b), and Trifoliellum 

bioblitzii, originally described from Kearney Lake in Nova Scotia (Strongman and White, 

2011). This study presents a second record confirming T. bioblitzii is a lentic species. 
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To truly assess species for their preference for lotic, lentic or both habitat types 

taxa that occurred only at the interphase were examined. The introduction of stream 

dwelling stoneflies recovered from the interphase site at LLLE contributed seven taxa at 

this site considered to be lotic based solely on the fact that their plecopteran hosts are 

almost exclusively found only in lotic systems. Since these taxa (Ejectosporus sp., 

Capniomyces sasquachoides, Genistelloides hibernus, Lancisporomyces falcatus, 

Orphella spp., O. avalonensis, and O. dalhousiensis) were not found in either of the two 

lentic sites, it is probable that collection at this interphase site was a direct result of their 

hosts being flushed from the adjoining stream. It is also likely that taxa documented from 

some ephemeropteran and chironomid hosts at this site may also have originated from the 

stream. Fifteen taxa (Paramoebidium spp., unidentifiable spp., Smittium spp., Sm. 

cryptancora, Sm. culicis, Sm. gronthidium, Sm. hecatei, Sm. minutisporum Sm. 

mucronatum, Sm. papillum, Sm. petilum, Stachylina spp. St. abundans, St. uranus and 

Legeriosimilis halifaxensis) have all been either described from a lotic site in this study or 

have been reported from different lotic sites (Lichtwardt, 2004), and four taxa (Sm. 

adaiosporum, Sm. peculiare, St. infrequens, and St. extensiva) are newly described 

species lacking sufficient information to confidently assign them exclusively to one 

habitat. The final two species found at the interphase site were T. bioblitzii which is 

reported only from a lake (Strongman and White, 2011) and L. insecticola, also known 

only from lakes in Nova Scotia (William and Strongman, 2012). 

Laculus insecticola, reported from both lentic sites (GLLE and SPLE) and the 

interphase site (LLLE) had a high prevalence at GLLE (collected in 41 of 441 hindguts 
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examined) which was not observed in any of the other two sites where it was found. 

Laculus insecticola was also collected at one lotic site (TLLO), but only from one 

hindgut (a Caenid) of 590 mayflies  (several families) so might indicate a rare drift from a 

connected lake into the stream given the host (a caenid mayfly) was not collected from 

this site again. 

As well as having a high prevalence at GLLE, L. insecticola was found 

exclusively in caenid mayflies and was collected year round at this site. The apparent 

persistence of L. insecticola at GLLE throughout all sampled months is potentially 

connected to the persistence of caenid mayflies at this site. The species might be host 

specific since other ephemeropteran hosts (Baetidae, Heptageniidae, Leptophlebiidae and 

Ephemerellidae) were collected without any reports of L. insecticola. Most trichomycetes 

have only ordinal host specificity according to Lichtwardt (2004) so perhaps this species 

shows host specificity at the family level.  Reports of trichomycetes exhibiting host 

specificity must be prefaced with the fact that in general, insufficient collections and lack 

of studies of related arthropod species may be responsible for the presumed restricted 

host range (Lichtwardt, 2004).  

Some insects can be multivoltine which could create a constant habitat for 

particular species of trichomycetes. Stable year-round populations of trichomycetes have 

been observed in Harpella melusinae and Stipella vigilans both from black flies (Taylor, 

1992). Hosts with this life cycle feature may house trichomycetes adapted more 

specifically to the host genus or species. 

The potential of taxa being present at any particular site and simply not 
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encountered from hosts selected for dissection is a distinct possibility. This phenomena 

becomes more tangible upon review of the majority of taxa reported having prevalence 

values below 2% of hosts dissected. Many more hosts were collected than were able to be 

dissected and in some cases less than 5% of one of the four target hosts from any one 

collection date were examined. Compounding this low prevalence of taxa reported with 

the often low percentage of hosts actually dissected could easily result in some taxa 

simply being missed. 

For example, Smittium simulii was documented at all three lotic sites; however, at 

a very low prevalence ranging from 0.3-0.5%. At each site, Sm. simulii was isolated from 

only one hindgut accounting for only three reports from over 836 chironomid hindguts 

examined from the three lotic sites. Previously described worldwide from lentic and lotic 

systems (Lichtwardt et al., 2001), Sm. simulii was not found in any lentic collections in 

this study. With such a low prevalence exhibited from lotic sites, it is possible this 

species and others were present in lentic habitats and missed. Smittium simulii has been 

observed infrequently from chironomid hosts (Lichtwardt, 2004), displaying ordinal 

specificity and indicating a stronger host preference for simuliid guts perhaps. This 

ordinal specificity with a perceived preference may account for the particular low 

prevalence of S. simulii in my collections. 

Pteromaktron timberleaense was collected at only one lotic site (TLLO) and is 

representative of a large number of trichomycete species (32) that were only found at one 

particular site (Appendix II). In contrast to L. insecticola, P. timberleaense displayed a 

seasonal trend rather than the persistent presence observed for L. insecticola despite also 
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having a steady supply of heptageniid hosts available year round. Collections of P. 

timberleaense from TLLO were reported on only five dates during mid-summer to early 

fall (July to October) at TLLO in both 2010 and 2011, but were observed in many 

heptageniid guts at these times. Despite the lack of seasonality in terms of overall taxa at 

each site of this study, individual trichomycete species can display seasonality in their 

presence at particular sites. Beard and Adler (2002) described the changes in abundance 

in three harpellid trichomycetes from black fly larvae collected at streams in South 

Carolina, and Nelder et al. (2010) showed that several harpellids exhibited seasonality 

and some degree of species preference in the black fly hosts they colonized. Seasonality 

was also seen in an eccrinid endobiont (Enterobryus halophilus Cronin & Johnson) of 

mole crabs  (Hernández Roa and Cafaro, 2012).  

The prevalence of all trichomycete taxa at the six individual sites sampled during 

this study was calculated. The taxa from ephemeropteran and chironomid hosts were 

selected because these hosts were present at all sites. Only collected at lotic sites 

normally, trichomycetes from plecopteran and simuliid hosts were excluded from the 

analysis.  

There were 45 taxa recovered from chironomid and ephemeropteran hosts and 

these were used to compare trichomycete community structure in these two habitat types. 

The data collected from this study (Tables 2 and 3) in tandem with habitat reports from 

the current literature (Lichtwardt, 2004) show these taxa separate into 22 species now 

documented from both habitat types, ten from lotic only, three from lentic only and ten 

newly described species isolated from only one site type. It is likely the majority of 
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harpellid trichomycetes from non-predaceous dipteran and ephemeropteran hosts may 

have the ability to live in both habitats but often species may be better adapted to either a 

lotic or lentic system. It is also possible that some trichomycetes might show host 

specificity such that they are restricted to a habitat type based on restrictions in host 

distribution. 

Ephemeropteran hosts contributed eight taxa to the inventory. Three taxa were 

collected from all three site types (lentic, lotic, and interphase) with Paramoebidium spp. 

the most prevalent of any taxon and is likely a collection of species contributing to this 

high incidence. Of particular interest is the almost identical prevalence observed from 

both lotic and lentic environments 9.5 ±12.9 and 9.5 ± 7.3 respectively, suggesting no 

habitat preference, but the data were variable. Legeriosimilis halifaxensis, also reported 

from all three site types, was collected commonly at lentic sites, but rarely from lotic 

sites. Originally reported from a lake in Nova Scotia (Strongman and White, 2011), this 

species was detected in 20 different mayfly hindguts at the Shubie Park stream (SPLO) 

expanding the range for L. halifaxensis into lotic systems. Laculus insecticola, as 

discussed previously, is considered a lentic only species based on its host, despite it being 

reported from one hindgut at a lotic site and from the interphase site (Figs. 109 and 113).  

Three other trichomycetes from ephemeropteran hosts were collected only in lotic 

sites, two considered rare Glotzia gemina (0.6 ± 1.0) and Spartiella aurensis (1.0 ± 1.8) 

while the third; Pteromaktron timberleaense at 2.7 ± 4.7 was more common. In each 

case, these taxa were collected from only one of the three lotic sites perhaps indicating a 

level of site specificity within lotic systems.  
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 The remaining two taxa, Spartiella sp. and Trifolielum bioblitzii were both rarely 

encountered in lentic sites. Trifolielum bioblitzii was also collected at the interphase site 

more frequently than in lentic sites suggesting that this otherwise lentic species might be 

part of the lentic flora of trichomycetes at LLLE and not necessarily flushed from the 

adjoining stream. Spartiella sp. was collected rarely and  only at lentic sites. This may in 

fact be Spartiella aurensis which was found at lotic sites and this suggests that it can exist 

in both lentic and lotic habitats. Spartiella aurensis was described from Nova Scotia in 

Baetidae and Ephemerellidae hosts (White and Strongman, 2012b) from both streams and 

lakes respectively. In my study, S. aurensis from Baetidae hosts was collected from 

streams, while Spartiella sp. from Ephemerellidae hosts was collected only in lakes. 

Since Baetidae hosts are usually collected only from streams, and Ephemerellidae are 

found in both, S. aurensis displays an ability to select hosts perhaps related to what type 

of system (lotic or lentic) they are found in. 

There were many more taxa of trichomycetes (37) collected from chironomids 

hosts, with varying levels of prevalence, that were subdivided into five different 

categories (Table 3). The predominant observation was that these taxa were rare. There 

were 11 species collected from lotic sites only and seven species from lentic only that all 

had prevalence values < 2%. The seven trichomycetes from the interphase site only had 

two species considered common (Smittium adaiosporum and Smittium peculiare), but the 

uncertainty of whether or not they were lentic or lotic in nature is compounded by the fact 

they are new species without previous information. 

 Of the 37 taxa in chironomids, 24 were observed from lotic habitats and an 
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additional six species, independent of this study, have been reported from lotic habitats in 

other parts of the world (Lichtwardt, 2004). The remaining seven species not reported 

from lotic sites in this study are all new species that were largely infrequently 

encountered and thus there is limited ecological information. These new species in some 

cases were observed from only one hindgut. With such low prevalence, these species 

might have been present in lotic waters as well but missed. The three new species 

reported from lentic sites only (Smittium guttisporum, Stachylina serpula and Stachylina 

zeppelin) ranged in prevalence from 0.6-1.0% while the other four were observed only at 

the interphase site and thus their habitat preference is unknown.  

Three of the four species collected from both lentic and lotic sites were rare with 

only Stachylina nana considered common, but only from lotic collections while rarely 

seen in lentic collections. Stachylina nana has been reported worldwide from France, 

Thailand, Ontario, Prince Edward Island and Nova Scotia (Lichtwardt, 1984; Hapsari et 

al., 2009; Strongman and White, 2008; Strongman, 2007; Strongman, 2010; White and 

Strongman, 2012a) but data on prevalence was not reported. 

Lentic sites had 20 taxa and an additional two more have been observed from 

lentic habitats from around the globe (Stachylina euthena and Smittium minutisporum) 

for a total of 22 of 37 with an additional three new species with identical 0.1% prevalence 

values observed only in lotic environments. The 22 taxa reported from lentic sites are 

only drawn from two sites whereas the 30 taxa from lotic drew from three sites. Simple 

division in this case suggests that the lentic sites actually might have slightly more taxa. 

Finally, eight taxa were reported from all three site types (lotic, lentic and 
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interphase) with only four collected frequently. Stachylina spp. and Smittium spp. were 

common at all three site types, but likely represent a collection of species leaving only St. 

abundans and Sm. papillum as common species from this category. Stachylina abundans, 

a new species known only from this study was found in five of the six sites and may be 

the most common trichomycete species from chironomids regardless of habitat type. 

Smittium papillum, recently described from streams in Nova Scotia (White and 

Strongman, 2012a) was collected commonly at lentic sites, but was rarely encountered 

from lotic hosts in my study. 

Reports of trichomycetes from chironomid and ephemeropteran hosts were used 

to compare the taxa distribution among the three watersheds. Like the comparison of 

prevalence in ephemeropteran and chironomid hosts only, plecopteran and simuliid hosts 

were excluded from consideration since they normally are not associated with lentic sites. 

The flushing of plecopteran hosts was observed at the interphase site from the Long Lake 

watershed thus making direct comparison between this watershed and either 

Shubenacadie or Woodens River difficult.  

The eight taxa of trichomycetes reported from ephemeropteran hosts displayed a 

distribution of taxa with five from Woodens River and six from Shubenacadie. The even 

distribution of these few taxa suggests that ephemeropteran trichomycetes are evenly 

distributed in both watersheds, but there were relatively few taxa so it is difficult to draw 

any firm conclusions on their distribution. 

The 37 trichomycetes taxa from chironomid hosts (less the eight species collected 

only from the Long lake watershed) suggest that Woodens River was a much richer 
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source of taxa than Shubenacadie. A direct comparison between these two watersheds 

reported 26 taxa from Woodens River and only 14 from Shubenacadie (Table 5).  Since 

the substrates at each watershed were similar, the sampling effort identical and available 

hosts (Table 1) were comparable; the observation that Shubenacadie was less species rich 

than the Woodens River watershed seems obvious, but is difficult to explain. The two 

groups (Ephemeroptera and Chironomidae) examined had many species of trichomycetes 

with more similarity in ephemeropteran numbers as well as species composition than 

chironomids, but perhaps the fact that many species were rare explains the differences. In 

general, the two watersheds shared similar species, but also reported species found in 

only one or the other suggesting that trichomycete community structure and distribution 

varies among watersheds. 

The identification of so many different taxa of trichomycetes from this study 

expands the previously known distribution of these organisms and adds to the 

accumulating data from Nova Scotia. Currently there are 262 harpellid trichomycetes 

(Lichtward, 2004) reported worldwide and since 2006 when initial reports from Nova 

Scotia began, 67 species have been reported from this small province in Canada, 37 of 

which are new species. The identification of so many new 

species within a short time span in Nova Scotia suggests that the current number of 

worldwide trichomycete taxa may only be a small proportion of what is actually there.  
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Conclusion 

As a consequence of intensive sampling over 17 months, 19 new species of 

trichomycetes have been added to the growing inventory of taxa along with identification 

of an additional 45 previously described taxa. The distribution of taxa within lotic and 

lentic systems indicates that there are more trichomycete taxa from lotic sites based 

largely on the fact that these systems draw from more families of hosts. Though the 

species composition may differ, taxa drawn only from hosts found in both systems 

suggest that the number of trichomycete species found in lotic and lentic systems is the 

same. 

The prevalence of the documented taxa varied, but in most cases trichomycetes 

should be considered rare with many species in < 2 % of hosts dissected and very few 

species eclipsed  

10 %. Seasonality and host specificity was observed in several species and could 

contribute to the low prevalence of most species. Varied prevalence among sites was also 

observed for trichomycetes found in more than one site, often occurring commonly in one 

site and rarely in others. 

Trichomycetes were present year round in all three watersheds sampled, but 

indications are that species richness within different watersheds can fluctuate. 
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Appendix I. Sampling dates, numbers of insects collected and number dissected  

 (brackets) from the lotic sites (LLLO, TLLO, SPLO) lentic sites (GLLE, SPLE) and 

 interphase site (LLLE) from the Halifax Regional Municipality. 

Long Lake lotic site (LLLO)       
            Date Ephemeroptera Plecoptera Chironomidae Simuliidae 
            11 Aug 2010 0 (0) 0 (0) 150 (27) 19 (17) 
            7 Sep 2010 46 (27) 11 (11) 75 (27) 11 (11) 
            27 Sep 2010 92 (27) 12 (12) 23 (15) 1 (1) 
            17 Oct 2010 82 (27) 7 (7) 79 (27) 0 (0) 
            12 Nov 2010 73 (27) 15 (15) 12 (11) 7 (7) 
            28 Nov 2010 75 (27) 46 (27) 3 (3) 13 (13) 
            17 Dec 2010 43 (27) 16 (16) 0 (0) 16 (16) 
            23 Jan 2011 3 (3) 36 (27) 1 (1) 123 (27) 
            21 Feb 2011 49 (27) 53 (27) 4 (4) 144 (27) 
            2 Mar 2011 7 (7) 18 (18) 0 (0) 22 (18) 
            7 Apr 2011 20 (20) 45 (27) 0 (0) 117 (27) 
            27 Apr 2011 66 (27) 28 (24) 7 (7) 36 (25) 
            18 May 2011 26 (23) 28 (26) 19 (19) 3 (3) 
            8 Jun 2011 25 (25) 62 (27) 151 (27) 45 (26) 
            29 Jul 2011 20 (19) 35 (27) 123 (27) 5 (5) 
            20 Jul 2011 0 (0) 4 (4) 131 (27) 41 (27) 
            21 Aug 2011 1 (1) 0 (0) 166 (27) 4 (4) 
            10 Sep 2011 25 (23) 7 (7) 9 (9) 3 (3) 
            1 Oct 2011 37 (27) 52 (27) 2 (2) 2 (2) 
            22 Oct 2011 6 (6) 6 (6) 11 (11) 0 (0) 
            10 Nov 2011 16 (16) 57 (27) 24 (24) 4 (4) 
            7 Dec 2011 24 (23) 22 (18) 32 (23) 23 (15) 
            Totals 736 (408) 568 (384) 1030 (318) 639 (278) 
            Timberlea lotic site (TLLO) 

               Date Ephemeroptera Plecoptera Chironomidae Simuliidae 
            17 Aug 2010 21 (21) 0 (0) 11 (11) 71 (27) 
            13 Sep 2010 109 (27) 0 (0) 7 (7) 40 (27) 
            3 Oct 2010 199 (27) 1 (1) 3 (3) 5 (5) 
            24 Oct 2010 295 (27) 0 (0) 16 (16) 2 (2) 
            15 Nov 2010 361 (27) 2 (2) 29 (22) 1 (1) 
            5 Dec 2010 326 (27) 25 (25) 18 (17) 32 (26) 
            28 Dec 2010 272 (27) 98 (27) 73 (27) 52 (27) 
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30 Jan 2011 192 (27) 133 (27) 15 (15) 167 (27) 
            16 Feb 2011 138 (27) 156 (27) 36 (27) 239 (27) 
            10 Mar 2011 122 (27) 177 (27) 25 (22) 182 (27) 
            13 Apr 2011 66 (27) 243 (27) 11 (11) 301 (27) 
            3 May 2011 251 (27) 37 (25) 20 (20) 24 (23) 
            25 May 2011 231 (27) 2 (2) 15 (15) 29 (25) 
            15 Jun 2011 371 (27) 1 (1) 20 (19) 0 (0) 
            6 Jul 2011 171 (27) 4 (4) 35 (26) 24 (20) 
            27 Jul 2011 105 (27) 1 (1) 10 (10) 0 (0) 
            28 Aug 2011 64 (27) 0 (0) 7 (7) 4 (4) 
            17 Sep 2011 98 (27) 0 (0) 15 (15) 7 (7) 
            8 Oct 2011 191 (27) 0 (0) 2 (2) 1 (1) 
            29 Oct 2011 298 (27) 4 (4) 1 (1) 6 (6) 
            19 Nov 2011 288 (27) 56 (27) 9 (9) 21 (18) 
            11 Dec 2011 343 (27) 81 (27) 4 (4) 32 (23) 
            Totals 4512 (590) 1021 (254) 382 (306) 1240 (347) 
            Shubie Park lotic site (SPLO)       
            Date Ephemeroptera Plecoptera Chironomidae Simuliidae 
            30 Aug 2010 30 (24) 0 (0) 55 (27) 0 (0) 
            19 Sep 2010 53 (27) 0 (0) 10 (10) 1(1) 
            12 Oct 2010 59 (27) 1(1) 0 (0) 0 (0) 
            31 Oct 2010 45 (27) 0 (0) 2 (2) 0 (0) 
            21 Nov 2010 125 (27) 12 (12) 4 (4) 4 (4) 
            12 Dec 2010 77 (27) 18 (18) 4 (4) 12 (12) 
            11 Jan 2011 79 (27) 50 (26) 7 (6) 116 (27) 
            11 Feb 2011 79 (27) 72 (26) 11 (11) 244 (27) 
            25 Feb 2011 71 (27) 61 (27) 13 (13) 469 (27) 
            23 Mar 2011 74 (27) 38 (26) 4 (4) 356 (27) 
            20 Apr 2011 156 (27) 8 (8) 14 (14) 27 (19) 
            11 May 2011 57 (27) 6 (6) 5 (5) 1 (1) 
            1 Jun 2011 50 (27) 7 (7) 54 (27) 57 (27) 
            22 Jun 2011 40 (26) 0 (0) 8 (8) 7 (7) 
            13 Jul 2011 9 (9) 0 (0) 184 (27) 1 (1) 
            14 Aug 2011 59 (27) 0 (0) 86 (27) 0 (0) 
            4 Sep 2011 74 (27) 0 (0) 7 (7) 0 (0) 
            24 Sep 2011 127 (27) 0 (0) 15 (15) 2 (2) 
            14 Oct 2011 85 (27) 0 (0) 0 (0) 1 (1) 
            5 Nov 2011 81 (27) 1 (1) 0 (0) 5 (5) 

            26 Nov 2011 231 (27) 11 (11) 2 (2) 18 (18) 
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19 Dec 2011 110 (27) 53 (25) 7 (7) 30 (20) 
            Totals 1771 (574) 338 (194) 492 (220) 1353 (226) 
            Long Lake interphase site (LLLE)     

            Date Ephemeroptera Plecoptera Chironomidae Simuliidae 
            11 Aug 2010 0 (0) 0 (0) 23(19) 0 (0) 
            12 Sep 2010 2 (2) 0 (0) 9 (9) 0 (0) 
            28 Sep 2010 10 (10) 1 (1) 31 (25) 0 (0) 

            20 Oct 2010 35 (26) 2 (2) 19 (19) 0 (0) 

            14 Nov 2010 9 (9) 4 (4) 0 (0) 0 (0) 

            1 Dec 2010 353 (27) 26 (26) 23 (22) 0 (0) 

            22 Dec 2010 539 (27) 71 (27) 4 (4) 0 (0) 

            Jan 2011 NC NC NC NC 
            Feb 2011 NC NC NC NC 
            Mar 2011 NC NC NC NC 
            10 Apr 2011 197 (27) 80 (27) 30 (23) 0 (0) 

            1 May 2010 316 (27) 47 (27) 10 (10) 0 (0) 

            22 May 2011 142 (27) 0 (0) 48 (27) 0 (0) 

            12 Jun 2011 69 (27) 0 (0) 86 (27) 0 (0) 

            3 Jul 2011 27 (26) 0 (0) 45 (27) 0 (0) 

            24 Jul 2011 19 (15) 0 (0) 11 (11) 0 (0) 

            23 Aug 2011 3 (3) 0 (0) 10 (10) 0 (0) 

            13 Sep 2011 30 (23) 0 (0) 7 (7) 0 (0) 

            4 Oct 2011 41 (27) 0 (0) 57 (27) 0 (0) 

            25 Oct 2011 186 (27) 0 (0) 32 (25) 0 (0) 

            16 Nov 2011 364 (27) 4 (4) 76 (27) 0 (0) 

            9 Dec 2011 539 (27) 12 (12) 35 (27) 0 (0) 

            Totals 2881(384) 247 (130) 556(347) 0 
            Governor's Lake lentic site (GLLE)  

              Date Ephemeroptera Plecoptera Chironomidae Simuliidae 
            24 Aug 2010 14 (14) n/a 31 (24) n/a 

            16 Sep 2010 11 (11) n/a 6 (6) n/a 

            5 Oct 2010 5 (5) n/a 6 (6) n/a 

            27 Oct 2010 21 (21) n/a 1 (1) n/a 

            19 Nov 2010 38 (23) n/a 15 (14) n/a 

            8 Dec 2010 31 (25) n/a 15 (15) n/a 

            3 Jan 2011 31 (25) n/a 19 (19) n/a 

            Jan 2011 NC NC NC NC 
            Feb 2011 NC NC NC NC 
            Mar 2011 NC NC NC NC 
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17 Apr 2011 109 (27) n/a 8 (8) n/a 

            8 May 2011 69 (27) n/a 27 (25) n/a 

            29 May 2011 62 (27) n/a 14 (14) n/a 

            19 Jun 2011 68 (27) n/a 37 (23) n/a 

            10 Jul 2011 39 (27) n/a 47 (25) n/a 

            10 Aug 2011 71 (26) n/a 24 (23) n/a 

            30 Aug 2011 71 (27) n/a 67 (27) n/a 

            21 Sep 2011 344 (27) n/a 69 (27) n/a 

            13 Oct 2011 506 (27) n/a 36 (27) n/a 

            1 Nov 2011 440 (27) n/a 55 (27) n/a 

            22 Nov 2011 380 (27) n/a 44 (27) n/a 

            15 Dec 2011 336 (27) n/a 64 (27) n/a 

            Totals 2646 (447) n/a 584 (365) n/a 
            Shubie Park lentic site (SPLE)       
            Date Ephemeroptera Plecoptera Chironomidae Simuliidae 
            27 Aug 2010 1 (1) n/a 9 (9) n/a 

            22 Sep 2010 26 (25) n/a 6 (5) n/a 

            13 Oct 2010 72 (27) n/a 6 (5) n/a 

            3 Nov 2010 102 (27) n/a 3 (3) n/a 

            24 Nov 2010 240 (27) n/a 12 (12) n/a 

            15 Dec 2010 115 (27) n/a 5 (5) n/a 

            15 Jan 2011 NC NC NC NC 
            Jan 2011 NC NC NC NC 
            Feb 2011 NC NC NC NC 
            Mar 2011 NC NC NC NC 
            24 Apr 2011 172 (27) n/a 12 (12) n/a 

            15 May 2011 106 (27) n/a 14 (14) n/a 

            5 Jun 2011 64 (27) n/a 12 (10) n/a 

            26 Jun 2011 33 (25) n/a 41 (27) n/a 

            17 Jul 2011 1 (1) n/a 32 (25) n/a 

            17 Aug 2011 1 (1) n/a 11 (11) n/a 

            7 Sep 2011 53 (27) n/a 5 (5) n/a 

            28 Sep 2011 116 (27) n/a 0 (0) n/a 

            15 Oct 2011 145 (27) n/a 8 (8) n/a 

            9 Nov 2011 209 (27) n/a 3 (3) n/a 

            1 Dec 2011 565 (27) n/a 19 (19) n/a 

            22 Dec 2011 560 (27) n/a 15 (15) n/a 

            Totals 2581 (404) n/a 213 (188) n/a 

            NC = no collections due to ice cover. n/a = no hosts collected 
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                Appendix II. Harpellales and Amoebidales collected from lentic, lotic and interphase habitats. 

    

Species Host Location Collection dates 

Bactromyces 

fluminalis 

Plecoptera LLLO
 1

 23 Jan 11; 10 Nov 11 

**Capniomyces 

sasquatchoides 

Plecoptera TLLO 16 Feb 11; 13 Apr 11 

  SPLO 23 Mar 11 

  LLLO 7 Apr 11 

  LLLE 1 Dec 10 

Ejectosporus sp. Plecoptera LLLE 1 Dec 10 

Genistelloides 

hibernus 

Plecoptera LLLE 1 Dec 10; 22 Dec 10 

  TLLO 16 Feb 11 

Glotzia gemina Plecoptera SPLO 30 Aug 10; 19 Sep 10; 12 Oct 10; 13 Jul 11; 4 Sep 11 

Harpella melusinae Diptera: 

Simuliidae 

LLLO 12 Nov 10; 28 Nov 10; 17 Dec 10; 23 Jan 11; 21 Feb 11; 2 Mar 11;  

7 Apr 11; 27 Apr 11; 18 May 11; 8 Jun 11; 29 Jun 11; 20 Jul 11; 21 

Aug 11; 10 Sep 11; 7 Dec 11 

  TLLO 17 Aug 10; 3 Oct 10; 5 Dec 10; 28 Dec 10; 30 Jan 11; 16 Feb 11;  

10 Mar 11; 13 Apr 11; 25 May 11; 6 Jul 11; 17 Sep 11; 19 Nov 11;  

11 Dec 11 

  SPLO 11 Jan 11; 11 Feb 11; 25 Feb 11; 23 Mar 11; 22 Jun 11; 13 July 11;  

5 Nov 11; 26 Nov 11; 19 Dec 11 

Laculus insecticola Ephemeroptera GLLE 9 Jul 10; 24 Aug 10; 8 Dec 10; 17 Apr 11; 8 May 11; 29 May 11;  

19 Jun 11; 10 Jul 11; 10 Aug 11; 30 Aug 11; 21 Sep 11; 13 Oct 11 
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  LLLE 3 Jul 11; 24 Jul 11 

  SPLE 5 Jun 11 

  TLLO 13 Sep 10 

Lancisporomyces 

anguilliformis 

Plecoptera LLLO 22 Oct 11 

Lancisporomyces 

falcatus 

Plecoptera LLLO 17 Oct 10; 12 Nov 10; 28 Nov 10; 17 Dec 10; 23 Jan 11; 2 Mar 11; 

7 Apr 11; 10 Nov 11; 7 Dec 11 

  LLLE 9 Dec 11 

Lancisporomyces 

nemouridarum 

Plecoptera LLLO 18 May 11; 8 Jun 11 

Lancisporomyces sp. Plecoptera LLLO 7 Sep 10; 27 Sep 10; 1 Oct 11; 7 Dec 11 

Legeriosimilis 

halifaxensis 

Ephemeroptera LLLO 7 Sep 10; 17 Dec 10; 7 Apr 11; 7 Dec 11 

  LLLE 10 Apr 11; 12 Jun 11 

  TLLO 5 Dec 10; 13 Apr 11 

  SPLE 22 Sep 10; 15 Dec 10; 24 Apr 11; 15 May 11; 9 Nov 11; 3 Nov 10;  

26 Jun 11 

Orphella avalonensis Plecoptera LLLE 1 Dec 10; 22 Dec 10; 10 Apr 11; 1 May 11 

Orphella 

dalhousiensis 

Plecoptera LLLO 17 Oct 10; 23 Jan 11; 1 Oct 11; 10 Nov 11 

  LLLE 1 Dec 10 

Orphella sp. Plecoptera LLLO 7 Sep 10; 27 Sep 10; 17 Oct 10; 12 Nov 10; 28 Nov 10; 21 Feb 11;  

2 Mar 11; 10 Sep 11; 1 Oct 11; 22 Oct 11; 10 Nov 11; 7 Dec 11 

  LLLE 20 Oct 10; 1 Dec 10; 22 Dec 10; 10 Apr 11; 1 May 11; 9 Dec 11 

  TLLO 5 Dec 10; 28 Dec 10; 30 Jan 11; 16 Feb 11; 10 Mar 11; 6 Jul 11;  

19 Nov 11; 11 Dec 11 
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Paramoebidium 

cassidula 

Plecoptera LLLO 7 Sep 10; 1 Oct 11; 10 Nov 11; 7 Dec 11 

  TLLO 19 Nov 11 

Paramoebidium 

curvum 

Diptera: 

Simuliidae 

TLLO 25 May 11 

Paramoebidium spp. Ephemeroptera, 

Plecoptera,  

LLLO 7 Sep 10; 27 Sep 10; 17 Oct 10; 12 Nov 10; 28 Nov 10; 17 Dec 10;  

23 Jan 11; 21 Feb 11; 2 Mar 11; 7 Apr 11; 27 Apr 11; 8 Jun 11;  

29 Jun 11; 10 Sep 11; 1 Oct 11; 22 Oct 11; 10 Nov 11; 7 Dec 11 

 Diptera: 

Simuliidae 

LLLE 1 Dec 10; 22 Dec 10; 10 Apr 11; 1 May 11; 12 Jun 11; 3 Jul 11;  

9 Dec 11 

  TLLO 3 Oct 10; 24 Oct 10; 15 Nov 10; 5 Dec 10; 28 Dec 10; 30 Jan 11;  

16 Feb 11; 10 Mar 11; 13 Apr 11; 3 May 11; 25 May 11; 15 Jun 11; 

6 Jul 11; 27 Jul 11; 29 Oct 11; 19 Nov 11; 11 Dec 11 

  GLLE 5 Oct 10; 27 Oct 10; 19 Nov 10; 8 Dec 10; 3 Jan 11; 17 Apr 11;  

22 Nov 11; 15 Dec 11 

  SPLO 21 Nov 10; 12 Dec 10; 11 Jan 11; 11 Feb 11; 25 Feb 11; 23 Mar 11;  

5 Nov 11; 26 Nov 11; 19 Dec 11 

  SPLE 13 Oct 10; 3 Nov 10; 24 Nov 10; 15 Dec 10; 24 Apr 11; 5 Jun 11;  

26 Jun 11; 9 Nov 11; 1 Dec 11; 22 Dec 11 

**Pennella arctica Diptera: 

Simuliidae 

TLLO 5 Dec 10; 28 Dec 10; 30 Jan 11; 10 Mar 11 

  LLLO 21 Feb 11; 7 Apr 11; 27 Apr 11 

Pennella digitata Diptera: 

Simuliidae 

LLLO 7 Apr 11; 27 Apr 11 

Pennella simulii Diptera: 

Simuliidae 

TLLO 5 Dec 10; 16 Feb 11; 25 May 11; 19 Nov 11; 11 Dec 11 
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Pennella sp. Diptera: 

Simuliidae 

LLLO 21 Feb 11; 7 Apr 11; 27 Apr 11; 21 Aug 11; 10 Nov 11; 7 Dec 11 

 Diptera: 

Simuliidae 

TLLO 17 Aug 10; 13 Sep 10; 3 Oct 10; 5 Dec 10; 28 Dec 10; 30 Jan 11;  

16 Feb 11; 10 Mar 11; 13 Apr 11; 25 May 11; 6 Jul 11; 28 Aug 11; 

17 Sep 11; 19 Nov 11; 11 Dec 11 

 Diptera: 

Simuliidae 

SPLO 25 Feb 11 

Pteromaktron 

timberleaense 

Ephemeroptera TLLO 17 Aug 10; 13 Sep 10; 3 Oct 10; 24 Oct 10;  6 Jul 11; 27 Jul 11; 

28 Aug 11; 17 Sep 11; 8 Oct 11 

Simuliomyces 

microsporus  

Diptera: 

Simuliidae 

LLLO 16 Feb 11; 7 Apr 11; 27 Apr 11 

  

TLLO 30 Jan 11; 10 Mar 11; 11 Dec 11 

Smittium 

adaiosporum 

Diptera: 

Chironomidae 

LLLE 28 Sep 10 

Smittium ampliboja Diptera: 

Simuliidae; 

Chironimidae 

TLLO 3 Oct 10 

Smittium brevisporum Diptera: 

Chironomidae 

TLLO 17 Aug 10 

*Smittium 

bulbosporophorus 

Diptera: 

Chironimidae 

SPLE 22 Sep 10 

 Diptera: 

Chironomidae 

GLLE 8 May 11 

Smittium colboi Diptera: 

Chironomidae 

LLLO 10 Sep 11 



 

155 
 

Smittium 

cryptancora 

Diptera: 

Chironomidae 

LLLE 11 Aug 10 

  TLLO 25 May 11 

  GLLE 30 Aug 11; 21 Sep 11 

Smittium culicis Diptera: 

Simuliidae; 

Chironomidae 

LLLE 3 Jul 11 

  

SPLO 1 Jun 11 

**Smittium 

dipterorum 

Diptera: 

Chironomidae 

GLLE 29 May 11 

Smittium gronthidium Diptera: 

Chironomidae 

LLLE 3 Jul 11; 24 Jul 11 

  TLLO 5 Dec 10; 28 Dec 10; 30 Jan 11; 16 Feb 11; 13 Apr 11; 3 May 11 

  GLLE 19 Jun 11 

  SPLO 1 Jun 11 

Smittium 

guttisporum 

Diptera: 

Chironomidae 

GLLE 5 Oct 10; 8 May 11 

*Smittium hecatei Diptera: 

Chironomidae 

LLLE 10 Apr 11 

Smittium insolitum  Diptera: 

Chironomidae 

TLLO 10 Mar 11 

Smittium insulare Diptera: 

Chironomidae 

GLLE 24 Aug 10 

**Smittium 

minutisporum 

Diptera: 

Chironomidae 

LLLE 12 Jun 11 
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  TLLO 15 Jun 11; 27 Jul 11 

**Smittium 

mucronatum 

Diptera: 

Chironomidae 

SPLE 24 Apr 11 

  LLLE 1 May 11 

*Smittium nodifixum Diptera: 

Chironomidae 

SPLO 23 Mar 11 

Smittium papillum Diptera: 

Chironomidae 

LLLE 11 Aug 10; 23 Aug 11 

  SPLE 15 May 11; 5 Jun 11; 26 Jun 11 

  GLLE 10 Jul 11; 10 Aug 11; 30 Aug 11; 21 Sep 11 

  TLLO 27 Jul 11; 17 Sep 11 

Smittium 

pavocaudatum 

Diptera: 

Chironomidae 

TLLO 13 Sep 10 

Smittium peculiare Diptera: 

Chironomidae 

LLLE 12 Jun 11; 16 Nov 11; 9 Dec 11 

Smittium petilum Diptera: 

Chironomidae 

LLLE 12 Sep 10 

  TLLO 3 May 11 

  GLLE 30 Aug 11 

*Smittium pusillum Diptera: 

Chironomidae 

LLLO 7 Sep 10 

Smittium radiculans Diptera: 

Chironimidae 

TLLO 15 Nov 10; 30 Jan 11 

  LLLO 2 Mar 11; 27 Apr 11; 7 Apr 11 

  SPLO 1 Jun 11 
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Smittium simulii Diptera: 

Chironomidae 

LLLO 23 Jan 11 

  SPLO 20 Apr 11 

  TLLO 3 May 11 

Smittium spp. Diptera: 

Chironomidae 

LLLO 7 Apr 11; 27 Apr 11 

  LLLE 11 Aug 10; 28 Sep 10; 10 Apr 11; 1 May 11; 12 Jun 11; 3 Jul 11 

  TLLO 13 Sep 10; 28 Dec 10; 16 Feb 11; 10 Mar 11; 13 Apr 11; 3 May 11;  

17 Sep 11 

  GLLE 19 Nov 10; 3 Jan 11; 8 May 11; 19 Jun 11; 10 Jul 11; 10 Aug 11;  

30 Aug 11 

  SPLO 11 Feb 11; 25 Feb 11 

  SPLE 26 Jun 11 

Spartiella aurensis Ephemeroptera TLLO 17 Aug 10; 13 Sep 10; 3 Oct 10; 28 Aug 11; 17 Sep 11 

Spartiella sp. Ephemeroptera SPLE 22 Dec 11 

Stachylina abundans Diptera: 

Chironomidae 

LLLO 11 Aug 10; 7 Sep 10; 21 Aug 11 

  LLLE 12 Sep 10 

  TLLO 17 Aug 10; 13 Sep 10; 24 Oct 10; 15 Nov 10; 15 Jun 11; 17 Sep 11;  

   11 Dec 11 

  GLLE 24 Aug 10; 10 Aug 11; 30 Aug 11; 21 Sep 11; 1 Nov 11 

  SPLO 13 Jul 11 

*Stachylina euthena Diptera: 

Chironomidae 

LLLO 7 Sep 10 

Stachylina extensiva Diptera: 

Chironomidae 

LLLE 3 Jul 11 
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Stachylina 

grandispora 

Diptera: 

Chironomidae 

LLLO 17 Oct 10 

  TLLO 30 Jan 11 

  GLLE 3 Jan 11; 29 May 11; 19 Jun 11; 10 Aug 11; 1 Nov 11; 15 Dec 11 

  SPLO 13 Jul 11 

Stachylina 

infrequens 

Diptera: 

Chironomidae 

LLLE 1 May 11; 24 Jul 11 

Stachylina nana Diptera: 

Chironomidae 

LLLO 11 Aug 10; 20 Jul 11; 21 Aug 11 

  TLLO 24 Oct 10 

  GLLE 21 Sep 11 

  SPLO 19 Sep 10; 13 Jul 11; 24 Sep 11 

Stachylina serpula Diptera: 

Chironomidae 

GLLE 30 Aug 11; 21 Sep 11 

Stachylina 

somnisimilis 

Diptera: 

Chironomidae 

GLLE 19 Jun 11; 30 Aug 11; 13 Oct 11 

  LLLO 22 Oct 11 

Stachylina 

subgrandis 

Diptera: 

Chironomidae 

GLLE 16 Sep 10; 10 Jul 11; 10 Aug 11 

  LLLO 11 Aug 10; 8 Jun 11 

  TLLO 13 Sep 10; 13 Sep 10; 3 May 11; 27 Jul 11 

Stachylina tanysoma Diptera: 

Chironomidae 

TLLO 17 Sep 11 

Stachylina uranus Diptera: 

Chironomidae 

LLLE 10 Apr 11; 3 Jul 11 
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  GLLE 21-Sep-11 

  SPLO 13 Jul 11 

Stachylina zeppelin Diptera: 

Chironomidae 

GLLE 21 Sep 11; 13 Oct 11 

Stachylina spp. Diptera: 

Chironomidae 

LLLO 11 Aug 10; 7 Sep 10; 27 Sep 10; 17 Oct 10; 21 Feb 11; 18 May 11; 

8 Jun 11; 29 Jun 11; 20 Jul 11; 21 Aug 11; 10 Sep 11; 22 Oct 11;  

10 Nov 11 

  LLLE 11 Aug 10; 28 Sep 10; 20 Oct 10; 1 Dec 10; 10 Apr 11; 1 May 11;  

22 May 11; 12 Jun 11; 3 Jul 11; 24 Jul 11; 13 Sep 11; 25 Oct 11 

  TLLO 17 Aug 10; 13 Sep 10; 3 Oct 10; 24 Oct 10; 15 Nov 10; 28 Dec 10;  

30 Jan 11; 16 Feb 11; 10 Mar 11; 13 Apr 11; 3 May 11; 25 May 11;  

15 Jun 11; 27 Jul 11; 28 Aug 11; 19 Nov 11 

  GLLE 24 Aug 10; 5 Oct 10; 8 Dec 10; 3 Jan 11; 8 May 11; 29 May 11;  

19 Jun 11; 10 Jul 11; 10 Aug 11; 30 Aug 11; 21 Sep 11; 13 Oct 11; 

1 Nov 11; 22 Nov 11; 15 Dec 11 

  SPLO 30 Aug 10; 19 Sep 10; 11 Jan 11; 11 Feb 11; 25 Feb 11; 23 Mar 11;  

11 May 11; 1 Jun 11; 22 Jun 11; 13 Jul 11; 14 Aug 11; 4 Sep 11;  

24 Sep 11; 5 Nov 11; 26 Nov 11; 19 Dec 11 

  SPLE 22 Sep 10; 26 Jun 11; 17 Jul 11 

Trifoliellum  

bioblitzii 

Ephemeroptera LLLE 12 Jun 11; 3 Jul 11 

  SPLE 26 Jun 11 

unidentifiable  spp.
2
 

Ephemeroptera, 

Chironomidae,  

Plecoptera, 

LLLO  7 Sep 10; 27 Sep 10; 17 Oct 10; 21 Feb 11; 2 Mar 11; 7 Apr 11;  

27 Apr 11; 18 May 11; 8 Jun 11; 29 Jun 11; 1 Oct 11; 10 Nov 11;  

7 Dec 11 
 Simuliidae LLLE  11 Aug 10; 28 Sep 10; 20 Oct 10; 1 Dec 10; 22 Dec 10; 10 Apr 11;  

1 May 11; 22 May 11; 12 Jun 11; 3 Jul 11; 24 Jul 11; 23 Aug 11;  
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13 Sep 11; 25 Oct 11; 16 Nov 11; 9 Dec 11 

  TLLO  17 Aug 10; 13 Sep 10; 3 Oct 10; 24 Oct 10; 15 Nov 10; 5 Dec 10;  

28 Dec 10; 30 Jan 11; 16 Feb 11; 10 Mar 11; 13 Apr 11; 3 May 11;  

25 May 11; 6 Jul 11; 28 Aug 11; 17 Sep 11; 11 Dec 11 
  GLLE 24 Aug 10; 16 Sep 10; 27 Oct 10; 19 Nov 10; 8 Dec 10; 3 Jan 11;  

17 Apr 11; 8 May 11; 29 May 11; 19 Jun 11; 10 Jul 11; 10 Aug 11;  

30 Aug 11; 21 Sep 11; 13 Oct 11; 1 Nov 11; 22 Nov 11; 15 Dec 11 
  SPLO 19 Sep 11; 11 Jan 11; 11 Feb 11; 25 Feb 11; 23 Mar 11; 20 Apr 11;  

1 Jun 11; 22 Jun 11; 24 Sep 11 

   SPLE 13 Oct 10; 24 Nov 10; 24 Apr 11; 15 May 11; 5 Jun 11; 17 Jul 11;  

15 Oct 11 
1
 Site abbreviations are Long Lake Provincial Park stream (LLLO), Long Lake Provincial Park lake (LLLE), Timberlea stream 

(TLLO), Governor’s Lake, Timberlea (GLLE), Shubie Park stream (SPLO) and Shubie Park lake 

(SPLE). See Appendix I for details.  
2
 unidentifiable spp. were fungi that could not be identified due to lack of spore morphological characteristics. 

Bolded taxa names are new species described from this study. 
* 
new continental record 

** 
new geographical record 

 

 


