

Performance Prediction for Designing Shared Services

by

Yu Liu

A Thesis Submitted to Saint Mary's University, Halifax, Nova Scotia,

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Science

April 23, 2014, Halifax, Nova Scotia

Copyright Yu Liu, 2014

Approved: Dr. Hai Wang

 Supervisor

 Department of Finance, Computing

and Information Systems and

Management Science

Approved: Dr. Yinglei Wang

 External Examiner

 School of Business

Acadia University

Approved: Dr. Michael Zhang

 Supervisory Committee Member

 Department of Finance, Computing

and Information Systems and

Management Science

Approved: Dr. Genlou Sun

 Supervisory Committee Member

 Department of Biology

Approved: Dr. Stavros Konstantinidis

 Graduate Studies Representative

Date: April 23, 2014

Table of Content

Abstract ………………………………………………………………………… 1

Chapter 1 ………………………………………………………………………… 2

Chapter 2 ………………………………………………………………………… 6

Chapter 3 ………………………………………………………………………… 33

Chapter 4 ………………………………………………………………………… 40

Chapter 5 ………………………………………………………………………… 47

References ………………………………………………………………………… 49

1

Performance Prediction for Designing Shared Services

By Yu Liu

Abstract

Since early 1980s, shared services have been utilized by public and private organizations

with the purpose of reducing the administrative cost. Currently, shared services evolve

into an efficient and flexible tool in optimizing resources and capitals, raising service

qualities, promoting strategic growth and generating greater profits for both public and

private organizations. One important aspect of design and implementation of shared

services is to ensure the quality services delivered by a shared service center. This thesis

presents a new family of approximate Mean Value Analysis algorithm for solving

multi-class product-form queuing network models. The proposed algorithms are

capable of quickly and accurately predicting the average completion time of different

types of tasks to be delivered by a shared service center. The computational and

numerical properties of the proposed algorithms are analyzed. This thesis demonstrates

the usefulness and effectiveness of the proposed algorithms for facilitating the design and

implementation of shared services.

April 23, 2014

2

Chapter 1. Introduction

In today's world, business competition is unprecedentedly fierce. As the result, many

organizations attempt to streamline the non-core business processes and reduce the

corresponding costs so that they can focus on the core business processes. Since early

1980s, shared services have been utilized by private companies with the purpose of

reducing the administrative cost (Ask et al. 2008, Borman 2010, Janssen & Joha 2006,

Kakabadse & Kakabadse 2000, Kamal 2012, Lindvall & Iveroth 2011, McDowell 2011,

Minnaar 2013, Niehaves & Krause 2010, Ulbrich 1995, Ulbrich 2010). Currently,

shared services evolve into an efficient and flexible tool in optimizing resources and

capitals, raising service qualities, promoting strategic growth and generating greater

profits for both public and private organizations. Accordingly, the prediction and

evaluation of the appropriateness and flexibility of the shared services is highly

demanded.

There are two types of shared services, internal and external, that have been widely

spread in many government and business organizations (Gulati & Singh 1998, Kakabadse

& Kakabadse 2000, Kamal 2012, Lindvall & Iveroth 2011). For internal shared

3

services, the organization restructures its existing business processes, and common

non-core business functions are consolidated and shared by different operational units

within the organization. For external shared services, multiple partner organizations

form a strategic alliance, and common non-core business functions are standardized and

consolidated across multiple partner organizations. External shared services have been

adopted by many government and business organizations as an alternative solution to

outsourcing (Wang & Wang 2007). For both types of shared services, the services are

delivered by shared service centers. Shared service centers are the core component of

shared services. Shared service centers attempt to

1. Reduce the operational costs of non-core business functions and processes of the

organization.

2. Enable an organization to increase its focus on core business functions and processes.

3. Increase information and knowledge sharing, either within the organization (for

internal shared services) or across multiple organizations (for external shared

services).

As shared service centers in nature are complicated systems, it is important to estimate

and predict the quality of services provided by shared service centers during the design

4

stage (Rolia et al. 2006, Wang 2007, Wang & Wang 2008, Wang et al. 2014). For a

shared service center, there are multiple types of tasks from different sources with

different requirements on the completion time. It has been suggested that multi-class

product-form queuing network models are useful and applicable in predicting the

performance of complex systems like shared service centers (Rolia et al. 2006, Wang

2007, Wang & Wang 2008, Wang et al. 2014).

In this thesis, we propose a new family of algorithms that are capable of quickly and

approximately solving multi-class product-form queuing network models. These new

algorithms can be used to facilitate the design and implementation of shared service

centers by predicting the completion time of different types of tasks and examining

whether all requirements from different sources are fulfilled. We also investigate the

properties of the proposed algorithms, and demonstrate their usefulness to the design of

shared service centers.

The remaining four chapters are organized as follows. Chapter 2 is divided into two major

parts. The first part discusses the background of internal and external shared services,

and the second part discusses the background of multi-class product-form queuing

5

network models and the algorithms for solving these models. Chapter 3 presents a new

family of algorithms for solving multi-class product-form queuing network models.

Chapter 4 presents an experimental analysis of the computational and numerical

properties of the proposed algorithms. Finally, Chapter 5 presents our conclusions and

discusses the future work.

6

Chapter 2. Background

2.1. Shared Services

2.1.1. Features of shared services

Shared services are often defined as a shared service center delivering services to

different operational units within an organization or even to different organizations in a

standardized and centralized way. The delivery of shared services, which is ensured

through business processes, provides great strategic opportunities for cost saving as well

as for information and knowledge sharing (Davenport et al., 2004; Davenport and Short,

1990).

There are two types of shared services, internal and external. For internal shared

services, the shared service center delivers services to different operational units within an

organization. Large government and business organizations often have many

operational units. Each operational unit not only focuses on its core business functions,

but also supports necessary non-core business functions. Internal shared services

attempt to reduce the operational cost for such large organizations. To implement

internal shared services, the organization restructures its existing business processes, and

common non-core business functions are consolidated and shared by different operational

7

units within the entire organization. Generally, non-core business functions, such as

information system services and human resource management, are designated line of

business processes for internal shared services.

For external shared services, multiple partner organizations form a strategic alliance and

establish a shared service center to deliver services to these partner organizations. The

shared service center is capable of reducing operational cost and increasing information

and knowledge sharing among the partner organizations. External shared services

usually standardize and consolidate common non-core business functions across multiple

partner organizations so that the partner organizations can increase their focus on the core

business functions. The information and knowledge sharing aspect of external shared

services enable the partner organizations to gain extra competitive advantages over other

competitors in addition to cost reduction. External shared services have been widely

implemented by many government and healthcare organizations as an alternative solution

to outsourcing (Kamal 2012, McDowell 2011, Niehaves & Krause 2010, Ulbrich 2010).

With the wide adoption of both internal and external shared services, the range of shared

services have also been expanding, which include accounting and financial services,

8

information system services, customer relationship management, human resource

management.

2.1.2. Major goals of shared services

The major goals of internal shared services are:

1. To reduce the operational costs of non-core business functions and processes through

business process re-engineering (BPR) and business process optimization (BPO).

2. To Increase focus on core business functions and processes.

3. To increase information and knowledge sharing among different operational units

within the organization.

4. To improve the quality of the services delivered by the shared service centers through

business process re-engineering (BPR) and business process optimization (BPO) as

well as information and knowledge sharing.

The goals of external shared services are similar:

1. To establish a mutual beneficial and long-term strategic relationship with other

partner organizations to share the governance, costs and risks of the shared service

centers.

9

2. To reduce the operational cost of non-core business processes through standardizing

and consolidating the non-core business processes across multiple partner

organizations.

3. To increase information and knowledge sharing among the partner organizations to

enable these organizations to gain extra competitive advantages over other

competitors in addition to cost reduction.

4. To improve the quality of the services delivered by the shared service centers through

business process re-engineering (BPR) and business process optimization (BPO) as

well as information and knowledge sharing.

2.1.3. Distinctions between external shared services and outsourcing

External shared services are often mistreated as outsourcing. As a matter of fact, there

lies a fundamental difference between them. For external shared services, the shared

service center is formed and governed by the partner organizations (Gulati & Singh 1998,

Kakabadse & Kakabadse 2000). The partner organizations establish a long-term

strategic alliance, and share the governance, cost and risks of the shared service center.

For outsourcing, the relationship between the outsourced organization and the third-party

10

service provider is defined by a bilateral contract, which involves an exchange of services

and payments (King 2006). Outsourcing provides the outsourced organization a great

financial flexibility. The outsourced organization can pay for only the services it needs,

at the time it really needs them. However, outsourcing often associates with many

potential risks, such as lack of transparency, loss of control of data and business

knowledge, failure to maintain the service quality.

External shared services can be viewed as an alternative solution to outsourcing. The

cost saving of external shared services is long-term and stable, while that of outsourcing

is often short-term. An important advantage of external shared services over

outsourcing is that external shared services increase the information and knowledge

sharing among multiple partner organizations while the organizations still have control

over the information and knowledge to be shared. The information and knowledge

sharing aspect of external shared services gives the partner organizations an extra

competitive advantage over other competitors.

2.1.4. Design and implementation of shared services

Both internal and external shared services require organizational structure changes.

11

During the design and implementation of internal or external shared services, business

process reengineering (BPR) and business process optimization (BPO) are often used to

re-examine the existing business processes, and identify the business processes and

business functions for shared service centers (Ulbrich 2006, Wang & Wang 2007, Wang &

Wang 2014). In fact, as previous research indicates, a new organizational structure is

highly needed to ensure the success of shared services (Gulati & Singh 1998, Kakabadse

& Kakabadse 2000). With the assistance of shared services, the organizations are able to

shift non-core business process to the shared service center, and centralize their efforts

and focus on the core business processes to win the fierce competitions. One important

aspect of successful design and implementation of internal and external shared services is

to ensure the quality of services delivered by the shared service center.

For internal shared services, the shared service center delivers services to different

operational units within an organization which may have different requirements about the

levels and qualities of services. For external shared services, the shared service center

delivers services to different partner organizations which may have different requirements

about the levels and qualities of services. Hence, regardless of the types of shared

services, the services delivered by the shared service center generally have different

12

requirements about the levels and qualities of services. It is necessary to ensure all these

requirements are fulfilled when designing and implementing shared services. In the next

subsection, we discuss an analytical tool for predicting and evaluating the performance of

shared service centers.

2.2.Queuing Network Modelling for Shared Services

2.2.1. Queuing network modelling

Modelling a real-life system by nature is an abstraction. Queuing network models are

simple models at a high level of abstraction. It avoids the unnecessary figures and

concentrates on the core details. Performance measures such as system throughput and

response time can be defined, parameterized and evaluated. Queuing network models

have been recognized as a powerful and versatile tool in the design and implementation of

computer and communication systems (Buzen 1973, Cremonesi et al. 2002, Pattipati et al.

1990).

Since 1970s, the rapid evolvement and increasing complexity of the computer systems

have given rise to the increasing need for analytical tools to predict and evaluate the

performance and behavior of these systems. Among various analytical tools, queuing

13

network models have been widely used for performance modeling of computer systems

due to a favorable balance between their accuracies and efficiencies (Cremonesi et al.

2002, Pattipati et al. 1990, Rolia et al. 2006). In this thesis, we will use queuing

network models to predict the performance of shared service centers during the design of

shared services.

A queuing network model consists of a collection of customers (users) and service centers

(servers). The service centers represent the resources for providing services to

customers. The customers' competition for the resource service can be interpreted as

queuing to the service center. After being served at a service center, the user will depart

from it and may join another queue.

A solution of a queuing network model is a set of performance measures such as system

throughput and customer response time. While there is no exact solution available for

the general class of queuing network models, exact solutions can be computed for a

special type of queuing network models, called multi-class product-form queuing network

models. Many other types of queuing network models can be accurately approximated

by larger and more complex multi-class product-form queuing network models (Bolch et

14

al. 2006).

2.2.2. Multi-class product-form queuing network models

In 1975, Baskett, Chandy, Muntz and Palacios presented the multi-class product-form

queuing network models involving multiple classes of customers (Baskett et al. 1975).

Since then, multi-class product-form queuing network models have been widely used for

performance prediction and evaluation of the complex computer systems.

A multi-class product-form queuing network model is a queuing network model that

meets the following three conditions:

1. The queues in the queuing network model can hold an infinite number of

customers.

2. The customer service time at a service center is non-deterministic, which means

the actual service time of a customer follows a probability distribution.

Customers in the same class share the same probability distribution for the service

time at a particular service center.

3. Any resource service center in the queuing network model must belong to one of

the following four types:

15

1) Type I: Service centers with only one server. Customers are served with

the First Come First Served scheduling. Customer service time at the

service center follows an exponential distribution, and different classes of

customers all have this customer service time distribution.

2) Type II: Service centers with only one server. Customers are served with

the Processor Sharing scheduling at the server center. Customer service

time distribution can be an arbitrary distribution.

3) Type III: Service centers with only one server. Customers are served with

the Last Come First Served with Pre-emption scheduling. Customer

service time distribution can be an arbitrary distribution.

4) Type IV: Service centers with an infinite number of servers. Customers are

served immediately without waiting. Customer service time distribution

can be an arbitrary distribution.

The first three types of service centers, all customers are served solely by one server, and

the customers need to wait in the queues for services. This is not the case of the last type

of service centers, where there is no queuing and all customers are served immediately

upon their arrival. The first three types of service centers represent a single resource

required by different customers. The last type of service centers represents the infinity

16

resources that are always available. For all four types of service centers, the customer

service time at a service center is non-deterministic, which means the actual service time

of a customer follows a probability distribution.

Multi-class product-form queuing network models have be used to model shared service

centers for both internal and external shared services (Rolia et al. 2006, Wang 2007, Wang

& Wang 2008, Wang et al. 2014). For instance, a shared service center with two

employees, A and B, offers house renting services to two different apartments, X and Y.

Apartment X has two types of tasks. The first one requires A to offer house renting

service, while the second one involves both A and B, with A offering house renting

service first and B performing house cleaning next. Apartment Y has one type of tasks

that require B to perform house cleaning service. Hence, there are three different types of

tasks for this shared service center, two for apartment X (requiring A and A + B

respectively), and one for apartment Y (requiring B). As shown in Figure 1, this shared

service center can be modeled by a multi-class product-form queuing network with two

service centers which represent two employees A and B respectively (service center A and

service center B) and three classes of customers which represent the three different types

of tasks respectively (class 1, class 2, and class 3). In this simple example, the nature of

17

the shared service center is not important, and it can be either internal or external. If

both apartments X and Y belong to the same owner, then the shared service center in

Figure 1 is internal. If apartments X and Y belong to different owners, then the shared

service center in Figure 1 is external.

Figure 1. A Multi-Class Product-Form Queuing Network Model for the House Renting

Shared Service Center

2.2.3. The MVA algorithm

One major reason of the popularity of multi-class product-form queuing network models

is that their performance can be computed by various algorithms. Among these

algorithms, the Mean Value Analysis (MVA) algorithm enjoys the widest popularity

18

(Reiser & Lavenberg 1980).

Suppose that a multi-class product-form queuing network model has C customer classes

and M service centers. These M service centers can be any of Type I, II, III service

centers described in Section 2.2.2. The customer classes are indexed as classes 1

through C, and the service centers are indexed as centers 1 through K. The customer

population in the queuing network model is denoted by the vector P = [P1, P2, ..., PC],

where Pc is the number of customers of class c for c=1,2,...,C. The average service time

of a class c customer at center k is denoted by Xc,k for c=1,2,...,C, and k=1,2,...,K. The

sum of the average service time of all Type IV service centers for class c is denoted by Yc.

Given the customer population vector P, the performance measures of the multi-class

product-form queuing network model are as follows:

 Rc,k(P) = the average response time of a class c customer at center k.

 Rc(P) = the average response time of a class c customer in the network.

 Qc,k(P) = the average queue length of class c at center k.

 Qk(P) = the average total queue length at center k.

19

Intuitively, Rc,k(P) is the sum of the average service time and queuing waiting time of a

class c customer at center k, and Rc(P) is the sum of Rc,k(P) for all centers in the queuing

network model.

The Mean Value Analysis algorithm (Reiser and Lavenberg, 1980) involves repeated

applications of four recursive equations:

Rc,k(p) = Xc,k ∙ [1 + Qk(p-1c)] (1)

Rc(p) = 


K

1k

)(R kc, p (2)

Qc,k(p) =
)(R Y

)(R

cc

kc,c

p

pp




 (3)

Qk(p) = 


C

1c

)(Q kc, p (4)

with initial conditions Qk(0) = 0 for k=1,2,...,K, where p = [p1, p2, ..., pC] is a population

vector ranging from 0 = [0, 0, …, 0] to P, and 1c is a C-dimensional vector whose c
th

element is one and whose other elements are zeroes. In Equation (1), p-1c is the

population vector p with one class c customer removed. This recursive dependence

indicates that the performance measures for one population can be computed from those

for lower population levels.

20

The implementation of the Mean Value Analysis algorithm is as follows:

Algorithm Input:

C: the number of classes of customers

K: the total number of all Type I, II, III service centers

P: the customer population vector

Y: the vector of the sum of the average service time of all Type IV service centers for

each customer class

X: the matrix for the average service time for each customer class and for each

service center

Algorithm Output:

Rc,k(P) = the average response time of a class c customer at center k

Rc(P) = the average response time of a class c customer in the network

Qc,k(P) = the average queue length of class c at center k

Qk(P) = the average total queue length at center k

The MVA algorithm:

 // initialization

FOR k = 1 TO K

 Qk(p) = 0

21

 END FOR

 FOR p1 = 0 TO P1

 FOR p2 = 0 TO P2

 ……

 FOR pC = 0 TO PC

 p = the population vector [p1, p2, ..., pC]

FOR c = 1 TO C

FOR k = 1 TO K

 IF p = = 0 THEN

Rc,k(p) = 0

Qc,k(p) = 0

 ELSE

Rc,k(p) = Xc,k ∙ [1 + Qk(p-1c)]

Qc,k(p) =
)(R Y

)(R

cc

kc,c

p

pp





 END IF

 END FOR

 END FOR

 FOR k = 1 TO K

Qk(p) = 


C

1c

)(Q kc, p

 END FOR

 FOR c = 1 TO C

Rc(p) = 


K

1k

)(R kc, p

 END FOR

 END FOR

 ..….

 END FOR

 END FOR

2.2.4. Approximate MVA algorithms

22

The recursive Equation (1) cause both the space and time complexity of the MVA

algorithm to be θ(KC



C

c

cP
1

)1() (Reiser & Lavenberg 1980). For the large models

with C > 5 and K > 20, the computational time of the MVA algorithm will be

prohibitively long, which means it is not practical to use it to compute the performance

measures of the queuing models.

Under such circumstances, researchers turned to the approximate Mean Value Analysis

(AMVA) algorithms (Bard 1979, Chandy & Neuse 1980, Eager & Sevcik 1984, Eager &

Sevcik 1986, Cremonesi et al. 2002, Wang & Sevcik 2000, Pattipati et al. 1990, Wang et

al. 2008). By using approximation instead of exact computation, the AMVA algorithms

trade the solution accuracy for a lower computational complexity. The algorithm input

and output of the AMVA algorithms are the same as those of the MVA algorithm. The

only difference is that the MVA algorithm yields the exact solution while the AMVA

algorithms yield an approximate solution with reduced computational time.

Among various AMVA algorithms, Proportional Estimation (PE) algorithm (Bard 1979)

and the Linearizer algorithm (Chandy & Neuse 1980) are two most popular algorithms

that have gained wide acceptance.

23

2.2.4. 1 The PE algorithm

The Proportional Estimation (PE) algorithm is based on the approximation

Qk(P-1c) = Qk(P) – Qc,k(P) / Pc (5)

and it computes the average performance measures by solving the following system of

nonlinear equations iteratively until convergence:

Rc,k(P) = Xc,k ∙ [1 + Qk(P) – Qc,k(P) / Pc] (6)

Rc(P) = 


K

1k

)P(R kc, (7)

Qc,k(P) =
(P)R Y

(P)R P

cc

kc,c




 (8)

Qk(P) = 


C

1c

)P(Q kc, (9)

The Proportional Estimation algorithm is as follows:

Algorithm Input:

C: the number of classes of customers

K: the total number of all Type I, II, III service centers

P: the customer population vector

24

Y: the vector of the sum of the average service time of all Type IV service centers for

each customer class

X: the matrix for the average service time for each customer class and for each

service center

Algorithm Output:

Rc,k(P) = the average response time of a class c customer at center k

Rc(P) = the average response time of a class c customer in the network

Qc,k(P) = the average queue length of class c at center k

Qk(P) = the average total queue length at center k

The PE algorithm:

 // initialization

FOR k = 1 TO K

 FOR c = 1 TO C

 Qc,k(P) = Pc / K

 END FOR

Qk(P) = 


C

1c

)P(Q kc,

 END FOR

 // iterations

REPEAT

 FOR c = 1 TO C

 FOR k = 1 TO K

Rc,k(P) = Xc,k ∙ [1 + Qk(P) – Qc,k(P) / Pc]

 END FOR

25

Rc(P) = 


K

1k

)P(R kc,

 END FOR

 FOR c = 1 TO C

 FOR k = 1 TO K

Qc,k(P) =
(P)R Y

(P)R P

cc

kc,c





 END FOR

Qk(P) = 


C

1c

)P(Q kc,

 END FOR

 UNTIL Qc,k(P) ARE ALL STABLE (i.e., the changes in Qc,k(P) are small enough)

The PE algorithm is able to yield fairly accurate solutions. The errors of the approximate

solutions are typically less than 10% with respect to the exact solution (Wang et al. 2008).

The space complexity of the algorithm is O(KC), and the time complexity of the

algorithm is O(KC) per iteration. In most cases, the Proportional Estimation algorithm

converges quickly (Wang et al. 2008).

2.2.4.2. The Linearizer Algorithm

Compared with the PE algorithm, the solutions computed by the Linearizer algorithm,

though at a comparatively higher computational cost, are much more accurate than those

of the PE algorithms (Chandy & Neuse 1980). The Linearizer is based on the

approximation

26

Qk(P-1c) = ()(P ,

C

1i

i 


ci Qi, k(P) / Pi) + λc,k(P) (10)

where










cifor

cifor
ci

1

0
,

and the λc,k(P) term is an unknown error term. Theoretically, Equation (10) holds

exactly when

λc,k(P) = ()(P ,

C

1i

i 


ci Qi, k(P-1c) / (Pi ci,) – Qi, k(P) / Pi)

The Linearizer algorithm approximates the λc,k(P) term as

λc,k(P) = λc,k(P-1j) (11)

for all j = 1, 2, … C.

The Linearizer algorithm employs the Core algorithm as a subroutine which involves

solving the following system of nonlinear equations iteratively until convergence:

Rc,k(P) = Xc,k ∙ [1 + ()(P ,

C

1i

i 


ci Qi, k(P) / Pi) + λc,k(P)] (12)

Rc(P) = 


K

1k

)P(R kc, (13)

27

Qc,k(P) =
(P)R Y

(P)R P

cc

kc,c




 (14)

Qk(P) = 


C

1c

)P(Q kc, (15)

The Core algorithm is similar to the PE algorithm. If the λc,k(P) term in Equation (12) is

zero, then the Core algorithm is exactly the same as PE algorithm. The Linearizer

algorithm iteratively solves the Core algorithm at the original and reduced customer

population levels, and estimates and updates the λc,k(P) term using Equation (11) for the

next round of iteration. Hence, the Linearizer algorithm involves two kinds of iterations,

inner iterations and outer iterations. The iterations of the Core algorithm are called the

inner iterations, and the iterations for estimating and updating the λc,k(P) terms are

referred to as the outer iterations. The time complexity of the inner iterations is O(KC
2
),

and the space complexity of the inner iterations is O(KC). Each outer iteration involves

O(C) executions of the inner iterations. The overall time complexity of the Linearizer

algorithm is O(KC
3
) and the space complexity remains O(KC).

The Linearizer algorithm is as follows:

Algorithm Input:

C: the number of classes of customers

28

K: the total number of all Type I, II, III service centers

P: the customer population vector

Y: the vector of the sum of the average service time of all Type IV service centers for

each customer class

X: the matrix for the average service time for each customer class and for each

service center

Algorithm Output:

Rc,k(P) = the average response time of a class c customer at center k

Rc(P) = the average response time of a class c customer in the network

Qc,k(P) = the average queue length of class c at center k

Qk(P) = the average total queue length at center k

The Linearizer algorithm:

// initialization

FOR k = 1 TO K

 FOR c = 1 TO C

 λc,k(P) = 0

 END FOR

 END FOR

 // iterations

 REPEAT

 // solving the Core algorithm at the original population level

:, kc Qc,k(P) = Core (C, K, P, Y, X, λ)

29

// solving the Core algorithm at the reduced population levels

FOR j=1TO C

:, kc Qc,k(P-1j) = Core (C, K, P-1j, Y, X, λ)

 END FOR

// updating the λ matrix

FOR k = 1 TO K

 FOR c = 1 TO C

 λc,k(P) = ()(P ,

C

1i

i 


ci Qi, k(P-1c) / (Pi ci,) – Qi, k(P) / Pi)

where










cifor

cifor
ci

1

0
,

 END FOR

 END FOR

 UNTIL Qc,k(P) ARE ALL STABLE (i.e., the changes in Qc,k(P) are small enough)

The Core algorithm employed in the above Linearizer algorithm is as follows:

Algorithm Input:

C: the number of classes of customers

K: the total number of all Type I, II, III service centers

P: the customer population vector

Y: the vector of the sum of the average service time of all Type IV service centers for

each customer class

30

X: the matrix for the average service time for each customer class and for each

service center

λ: the matrix for the λc,k(P) term in Equation (12) for c=1,2,…,C and k=1,2,…,K

Algorithm Output:

Qc,k(P) = the average queue length of class c at center k

The Core algorithm:

 // initialization

FOR k = 1 TO K

 FOR c = 1 TO C

 Qc,k(P) = Pc / K

 END FOR

Qk(P) = 


C

1c

)P(Q kc,

 END FOR

// iterations

REPEAT

 FOR c = 1 TO C

 FOR k = 1 TO K

Rc,k(P) = Xc,k ∙ [1 + ()(P ,

C

1i

i 


ci Qi, k(P) / Pi) + λc,k(P)]

 END FOR

Rc(P) = 


K

1k

)P(R kc,

 END FOR

 FOR c = 1 TO C

 FOR k = 1 TO K

Qc,k(P) =
(P)R Y

(P)R P

cc

kc,c





31

 END FOR

Qk(P) = 


C

1c

)P(Q kc,

 END FOR

 UNTIL Qc,k(P) ARE ALL STABLE (i.e., the changes in Qc,k(P) are small enough)

2.3. Performance Prediction for Designing Shared Services

Various AMVA algorithms have been proposed for performance prediction for designed

shared services (Rolia et al. 2006, Wang 2007, Wang et al. 2008, Wang & Wang 2008,

Wang et al. 2014). Tasks from different operational units or different organizations can

be represented as different classes of customers in the queuing network model.

Resources in a shared service center can be represented as service centers in the queuing

network model. Once an AMVA algorithm solves the queuing network model, we can

check whether all specific requirements about the average completion time of different

types of tasks are fulfilled. In case that any requirement was not fulfilled, the shared

service center should be redesigned by adding more resources. Figure 2 illustrates the

flowchart of the aforementioned design process (Wang et al. 2014).

32

Identifying all classes of tasks and identify all

resources of the shared services

Modeling using the multi-class product-form

queuing network

Computing the performance measures using an

approximate Mean Value Analysis algorithm

Whether all requirements

are fulfilled?

Adding more

resources to the

system

No

Yes

Start

End

Figure 2. Flowchart for Designing Shared Serviced using AMVA algorithms (Source:

(Wang et al. 2014))

33

Chapter 3. A New Family of AMVA Algorithms

In this chapter, we present a new family of AMVA algorithms which we refer to as the

Generalized Linearizer algorithms. The Generalized Linearizer algorithms attempt to

improve the Linearizer algorithm by achieving better accuracy with the same

computational complexities.

The Generalized Linearizer algorithms are based on the approximation

Qk(P-1c) = ()(P ,

C

1i

i 


a

ci Qi, k(P) / Pi
b

) + τc,k(P) (16)

where both a and b are real numbers, and










cifor

cifor
ci

1

0
,

and the τc,k(P) term is an unknown error term. Different values of a and b result in

different Generalized Linearizer algorithms. The Linearizer algorithm is a special case

of the Generalized Linearizer algorithms where a=b=1.

Theoretically, Equation (16) holds exactly when

34

τc,k(P) = ()(P ,

C

1i

i 


a

ci Qi, k(P-1c) / (Pi ci,)
a
 – Qi, k(P) / Pi

b
)

Intuitively, Equation (16) is just a rewritten form of Equation (10) of the Linearizer

algorithm. While the Linearizer algorithm approximates the λc,k(P) term in Equation

(10), the Generalized Linearizer algorithms approximate the τc,k(P) term in Equation (16)

as

τc,k(P) = τc,k(P-1j) (17)

for all j = 1, 2, … C.

Like the Linearizer algorithm, all Generalized Linearizer algorithms employ the Core

algorithm as a subroutine which involves solving the following system of nonlinear

equations iteratively until convergence:

Rc,k(P) = Xc,k ∙ [1 + ()(P ,

C

1i

i 


a

ci Qi, k(P) / Pi
b

) + τc,k(P)] (18)

Rc(P) = 


K

1k

)P(R kc, (19)

Qc,k(P) =
(P)R Y

(P)R P

cc

kc,c




 (20)

Qk(P) = 


C

1c

)P(Q kc, (21)

35

If the τc,k(P) term in Equation (18) is zero and a=b=1, then the Core algorithm is exactly

the same as PE algorithm.

Like the Linearizer algorithm, all Generalized Linearizer algorithms iteratively solve the

Core algorithm at the original and reduced customer population levels, and estimates and

updates the τc,k(P) term using Equation (17) for the next round of iteration. As with the

Linearizer algorithm, there are two kinds of iterations in a Generalized Linearizer

algorithm, inner iterations and outer iterations. The iterations of the Core algorithm are

called the inner iterations, and the iterations for estimating and updating the τc,k(P) terms

are referred to as the outer iterations.

The computational complexities of all Generalized Linearizer algorithms are the same.

For all Generalized Linearizer algorithms, the time complexity of the inner iterations is

O(KC
2
), and the space complexity of the inner iterations is O(KC). Each outer iteration

involved O(C) executions of the Core algorithm. Hence, the overall time complexity of

a Generalized Linearizer algorithm is O(KC
3
) and the space complexity is O(KC).

The pseudo-code of the Generalized Linearizer algorithms is as follows. Note that a and

36

b are not the input parameters of Generalized Linearizer algorithms. Their values are

fixed for a given Generalized Linearizer algorithm. Different Generalized Linearizer

algorithms employ different values of a and b.

Algorithm Input:

C: the number of classes of customers

K: the total number of all Type I, II, III service centers

P: the customer population vector

Y: the vector of the sum of the average service time of all Type IV service centers for

each customer class

X: the matrix for the average service time for each customer class and for each

service center

Algorithm Output:

Rc,k(P) = the average response time of a class c customer at center k

Rc(P) = the average response time of a class c customer in the network

Qc,k(P) = the average queue length of class c at center k

Qk(P) = the average total queue length at center k

The Generalized Linearizer algorithms:

37

 // initialization

FOR k = 1 TO K

 FOR c = 1 TO C

 τc,k(P) = 0

 END FOR

 END FOR

 // iterations

 REPEAT

 // solving the Core algorithm at the original population level

:, kc Qc,k(P) = Core (C, K, P, Y, X, λ)

// solving the Core algorithm at the reduced population levels

FOR j=1TO C

:, kc Qc,k(P-1j) = Core (C, K, P-1j, Y, X, λ)

 END FOR

 // updating the τ matrix

FOR k = 1 TO K

 FOR c = 1 TO C

 τc,k(P) = ()(P ,

C

1i

i 


a

ci Qi, k(P-1c) / (Pi ci,)
a
 – Qi, k(P) / Pi

b
)

where










cifor

cifor
ci

1

0
,

 END FOR

 END FOR

 UNTIL Qc,k(P) ARE ALL STABLE (i.e., the changes in Qc,k(P) are small enough)

The Core algorithm involved in the above code is as follows:

38

Algorithm Input:

C: the number of classes of customers

K: the total number of all Type I, II, III service centers

P: the customer population vector

Y: the vector of the sum of the average service time of all Type IV service centers for

each customer class

X: the matrix for the average service time for each customer class and for each

service center

τ: the matrix for the τc,k(P) term in Equation (12) for c=1,2,…,C and k=1,2,…,K

Algorithm Output:

Qc,k(P) = the average queue length of class c at center k

The Core algorithm:

 // initialization

 FOR k = 1 TO K

 FOR c = 1 TO C

 Qc,k(P) = Pc / K

 END FOR

Qk(P) = 


C

1c

)P(Q kc,

 END FOR

 // iterations

REPEAT

39

 FOR c = 1 TO C

 FOR k = 1 TO K

Rc,k(P) = Xc,k ∙ [1 + ()(P ,

C

1i

i 


a

ci Qi, k(P) / Pi
b

) + τc,k(P)]

 END FOR

Rc(P) = 


K

1k

)P(R kc,

 END FOR

 FOR c = 1 TO C

 FOR k = 1 TO K

Qc,k(P) =
(P)R Y

(P)R P

cc

kc,c





 END FOR

Qk(P) = 


C

1c

)P(Q kc,

 END FOR

 UNTIL Qc,k(P) ARE ALL STABLE (i.e., the changes in Qc,k(P) are small enough)

40

Chapter 4. Experimental Analysis

We experimentally evaluated the actual execution time and accuracy of several

Generalized Linearizer algorithms. We compared the new algorithms against the PE

and Linearizer algorithms because they are the most popular and most widely used in

practice.

Since all Generalized Linearizer algorithms are iterative, their accuracies are affected by

the stopping criterion for the iterations. As with the previous studies (Wang & Sevcik

1998, Wang et al. 2008), we used the stopping criterion that the maximum change in

queue lengths is less than a tolerance, i.e.

| Qc,k
[i+1]

 (P) – Qc,k
[i]

 (P)

| < ε,

where ε is the specified tolerance, and the superscript [i] and [i+1] indicates the i
th

and

i+1
th

 iteration respectively.

The error measure for the accuracy of the algorithms that we used in the experiments is

the tolerance error defined as

41

where
 is the exact queue length of class c customers at server k computed by the

MVA algorithm, and is the approximate value computed by a Generalized

Linearizer algorithm.

4.1.Experiment Settings

In our experiments, five hundred multi-class product-form queuing network models were

randomly generated for each C=1, 2, 3, and 4. The parameters for generating these

models are shown in Table 1. These randomly generated models were solved by the

MVA algorithm and the Generalized Linearizer algorithms.

We could not choose larger values for K and C in our experiments which require solving

the queuing network models using the MVA algorithm. It is not practical to solve larger

queuing network models using the MVA algorithm as it could take more than a month to

compute the solution.

42

Parameters Distributions / Values

Number of queuing network models 500

K Uniform (2,30)

X (all entries in this matrix) Uniform (0.1, 20.0)

Y (all entries in this vector) Uniform (0.0, 100.0)

C 1, 2, 3, 4

P (all entries in this vector) C=1 P1: Uniform (3,30)

C=2

P1: Uniform (3,30)

P2: Uniform (3,30)

C=3

P1: Uniform (3,30)

P2: Uniform (3,30)

P3: Uniform (3,30)

C=4 P1: Uniform (3,30)

P2: Uniform (3,30)

P3: Uniform (3,30)

P4: Uniform (3,30)

ε (tolerance for iterations) 0.0001

Table 1. Parameters for generating multi-class product-form queuing network models

4.2.Experiment Results on Accuracy of the Algorithms

4.2.1. Different values of a and b

The Generalized Linearizer algorithms are a family of algorithms. Different values of a

and b result in different instances of the algorithms. Clearly, the choice of the values of

a and b affects the accuracy of the Generalized Linearizer algorithm. As shown in

Figure 3, we found that the Generalized Linearizer algorithms with b close to a are more

43

accurate than those with b much larger than a. Figure 3 shows the mean tolerance errors

of different Generalized Linearizer algorithms with a=1 and different values of b. The

reason is because when the difference between a and b is small, the absolute value of the

τc,k(P) term in Equation (16) is small. As the result, the difference between the exact

value of the τc,k(P) term and the approximated value also tends to be small, which

translated into a small error. Hence, the Generalized Linearizer algorithms with a=b are

likely to be more accurate than those with a≠b.

b

Figure 3. The mean tolerance errors for the Generalized Linearizer algorithms with a=1

and different values of b.

44

4.2.2. Different Generalized Linearizer algorithms

Based on the experiment results of the previous subsection, the Generalized Linearizer

algorithms with a=b are likely to be more accurate than those with a≠b. As the

Linearizer algorithm is a Generalized Linearizer algorithm with a=b=1, we investigated

the accuracy of various Generalized Linearizer algorithms in order to find a more

accurate algorithm than the Linearizer algorithm. Table 2 shows the mean tolerance

errors and max tolerance errors for various algorithms. As shown in Table 2, we found

that the Generalized Linear algorithms with a=b=1.5, a=b=2.0, a=b=3.0, a=b=4.0 are

more accurate than the Linearizer algorithm and PE algorithm. We also found that as

the number of customer classes increases, the superiority of these Generalized Linearizer

algorithms over the Linearizer algorithm in terms of accuracy increases. Our results are

consistent with the previous results (Wang et al. 2008).

45

Algorithms Tolerance

Errors

Models

C=1 C=2 C=3 C=4

PE Mean(e) 0.011 0.019 0.023 0.031

Max(e) 0.054 0.056 0.059 0.062

Linearizer

(a=b=1)

Mean(e) 0.003 0.006 0.007 0.008

Max(e) 0.019 0.023 0.026 0.033

Generalized Linearizer

(a=b=1.5)

Mean(e) 0.002 0.004 0.004 0.004

Max(e) 0.014 0.014 0.014 0.017

Generalized Linearizer

(a=b=2.0)

Mean(e) 0.002 0.002 0.003 0.003

Max(e) 0.008 0.010 0.010 0.011

Generalized Linearizer

(a=b=3.0)

Mean(e) 0.001 0.002 0.003 0.004

Max(e) 0.011 0.017 0.015 0.015

Generalized Linearizer

(a=b=4.0)

Mean(e) 0.001 0.004 0.006 0.007

Max(e) 0.021 0.017 0.020 0.048

Table 2. Mean tolerance errors and maximum tolerance errors for different Generalized

Linearizer algorithms and the PE algorithm

4.3.Experiment Results on Computation Time of the Algorithms

One important advantage of the AMVA algorithms is that they can compute the solutions

quickly. We measured the total execution time of each algorithm in Table 2 for the 500

multi-class product-form queuing network models in Table 1. The experiments were

conducted on a PC with 4GB memory running Windows XP. Table 3 shows the total

execution time of the algorithms in terms of the CPU seconds. As shown in Table 3, we

found that the Generalized Linearizer algorithms achieve similar execution time to the

46

Linearizer algorithm. We expect that as the number of service centers and the number of

classes increase, the execution time of the MVA algorithm will increase exponentially and

the AMVA algorithms will be much faster than the MVA algorithm. The PE algorithm is

faster than the Generalized Linearizer algorithms as expected as it is much less accurate.

Algorithms Models

C=1 C=2 C=3 C=4

MVA 0.10 2.26 30.32 650.86

PE 0.09 1.34 3.48 5.61

Linearizer (a=b=1) 2.12 5.13 28.37 420.15

Generalized Linearizer (a=b=1.5) 2.02 4.83 21.69 354.97

Generalized Linearizer (a=b=2.0) 2.08 3.56 20.18 331.01

Generalized Linearizer (a=b=3.0) 3.81 5.05 19.84 329.79

Generalized Linearizer (a=b=4.0) 4.01 4.98 28.12 301.28

Table 3. The execution time of the algorithms for the 500 randomly generated models

47

Chapter 5 Conclusions and Future Work

In this thesis, we have discussed two types of shared services, internal and external shared

services. We have examined the important issues with the design and implementation of

shared services. One of the issues is to ensure all requirements of the completion time

of different types of tasks are fulfilled. We have proposed to use multi-class

product-form queuing network models to predict the performance of shared service

centers during the design of shared services. As various AMVA algorithms had been

proposed to predict the completion time of different types of tasks in a shared service

center, we have proposed the Generalized Linearizer algorithms. The Generalized

Linearizer algorithms are a family of AMVA algorithms. The previously proposed

Linearizer algorithm is just a special instance of this family. The Generalized Linearizer

algorithms are capable of effectively predicting the performance of shared service centers,

and ensuring all requirements of the completion time of different types of tasks are

fulfilled during the design of shared services. We have also examined the computational

time of the Generalized Linearizer algorithms as well as their accuracies. Based on our

experimental results, we have suggested various algorithms in the family of the

48

Generalized Linearizer algorithms that can achieve better accuracy than the Linearizer

algorithm with comparable computational time.

In the future, we plan to extend our study and conduct further experiments to explore the

properties of the Generalized Linearizer algorithms. We plan to identify the best

algorithm in the family of the Generalized Linearizer algorithms in terms of

computational time and accuracy.

49

References

Ask, A., Hatakka, M., & Gronlund, A. (2008). The Orebro city citizen-oriented

e-government strategy. International Journal of Electronic Government Research,

4(4), 69-88.

Balbo, G., & Serazzi, G. (1996). Asymptotic analysis of multiclass closed queueing

networks: Common bottleneck, Performance Evaluation, 26 (1), 51-72.

Balbo, G., & Serazzi, G. (1997). Asymptotic analysis of multiclass closed queueing

networks: Multiple bottlenecks, Performance Evaluation, 30 (3), 115-152.

Bard, Y. (1979). Some extensions to multiclass queueing network analysis, in: M. Arato,

A. Butrimenko, E. Gelenbe (Eds.), Performance of Computer Systems, pp.51-62,

North-Holland, Amesterdam, Netherlands.

Baskett, F., Chandy, K. M., Muntz, R. R., & Palacios, F. G. (1975). Open, closed, and

mixed networks of queues with different classes of customers, Journal of the ACM,

22(2), 248-260.

Bolch, G., Greiner, S., Meer, H., & Trivedi, K. S. (2006). Queueing Networks and Markov

Chains: Modeling and Performance Evaluation with Computer Science Applications,

50

2
nd

 edition, Wiley-Interscience, Hoboken, New Jersey.

Borman, M. (2010). Characteristics of a successful shared services centre in the

Australian public sector. Transforming Government: People, Process and Policy, 4(3),

220-231.

Buzen, J. P. (1973). Computational algorithms for closed queueing networks with

exponential servers, Communications of the ACM, 16 (9), 527-531.

Chow, W. M. (1983). Approximations for large scale closed queueing networks,

Performance Evaluation, 3(1), 1-12.

Chandy, K. M. & Neuse, D. (1980). Linearizer: A heuristic algorithm for queueing

network models of computing systems, Communications of the ACM, 23(10),

573-583.

Chandy, K. M., & Sauer, C. H. (1986). Computational algorithm for the exact analysis of

multiple-chain closed queueing networks, Journal of the ACM, 33(4), 768-791.

Coway, A. E. & Georganas, N. D. (1986). RECAL -- a new efficient algorithm for the

exact analysis of multiple-chain closed queueing networks, Journal of the ACM, 33(4),

768-791.

51

Conway, A. E. & De Souza e Silva, E., & Lavenberg, S. S. (1989). Mean value analysis

by chain product form queueing networks, IEEE Transactions on Computers, C-38(3),

432-442.

Cremonesi, P., Schweitzer, P. J., & Serazzi, G. (2002). A unifying framework for the

approximate solution of closed multiclass queueing networks, IEEE Transactions on

Computers, C-51(12), 1423-1434.

Davenport, T. H., Harris, J. G., & Cantrell, S. (2004). Enterprise systems and ongoing

process change. Business Process Management Journal, 10(1), 16-26.

Davenport, T. H., & Short, J. (1990). The new industrial engineering. Sloan Management

Review, 31(4), 11-27.

Denning, P. J., & Buzen, J. P. (1978). The operational analysis of queueing network

models, Computing Surveys, 10 (3), 225-261.

Eager, D. L. & Sevcik, K. C. (1984). Analysis of an approximation algorithm for

queueing networks, Performance Evaluation, 4(4), 275-284.

Eager, D. L. & Sevcik, K. C. (1986). Bound hierarchies for multiple-class queueing

networks, Journal of the ACM, 33(1), 179-206.

52

Gulati, R., & Singh, H. (1998). The architecture of cooperation: managing coordination

costs and appropriation concerns in strategic alliance. Administrative Science

Quarterly, 43(4), 781-814.

Hoyme, K. P., Bruell, S. C., Afshari, P. V., & Kain, R. Y. (1986). A tree-structured mean

value analysis algorithm, ACM Transactions on Computer Systems, 4(2), 178-185.

Hsieh, C. T., & Lam, S. S. (1988). PAM -- a noniterative approximate solution method for

closed multichain queueing networks, ACM SIGMETRICS Performance Evaluation

Review, 16(1), 261-269.

Janssen, M., & Joha, A. (2006). Motives for establishing shared service centers in public

administrations. International Journal of Information Management, 26(2), 102-112.

Kakabadse, A., & Kakabadse, N. (2000). Sourcing: New face to economies of scale and

the emergence of new organizational forms. Knowledge and Process Management,

7(2), 107-118.

Kamal, M. M. (2012). Shared services: lessons from private sector for public sector

domain. Journal of Enterprise Information Management, 25(5), 431-440.

King, D. R. (2006). Implications of uncertainty on firm outsourcing decisions. Human

53

Systems Management, 25(2), 115-124.

Lam, S. S. (1983). A simple derivation of the MVA and LBANC algorithms from the

convolution algorithm, IEEE Transactions on Computers, C-32(11), 1062-1064.

Lam, S. S., & Lien, Y. L. (1983). A tree convolution algorithm for the solution of

queueing networks, Communications of the ACM, 26(3), 203-215.

Lavenberg, S. S. & Reiser, M. (1980). Stationary state probabilities of arrival instants for

closed queueing networks with multiple types of customers, Journal of Applied

Probability, 17(4), 1048-1061.

Lindvall, J., & Iveroth, E. (2011). Creating a global network of shared service centres for

accounting. Journal of Accounting & Organizational Change, 7(3), 278-305.

McDowell, J. (2011). Shared services centers can drive significant savings. Healthcare

Financial Management, 65(6), 118-124.

Minnaar, R. A. (2013). Shared service centres and management control structure change.

Journal of Accounting & Organizational Change, 9(1), 74-98.

Niehaves, B., & Krause, A. (2010). Shared service strategies in local government - a

multiple case study exploration. Transforming Government: People, Process and

54

Policy, 4(3), 266-279.

Pattipati, K. R., Kostreva, M. M. & Teele, J. L. (1990). Approximate mean value analysis

algorithms for queueing networks: Existence, uniqueness, and convergence results,

Journal of the ACM, 37(3), 643-673.

Reiser, M. & Kobayashi, H. (1975). Queueing networks with multiple closed chains:

Theory and computational algorithms, IBM journal of Research and Development,

19(3), 283-294.

Reiser, M. & Lavenberg, S. S. (1980). Mean value analysis of closed multichain queueing

networks, Journal of the ACM, 27(2), 313-322.

Rolia, J., Cherkasova, L., Arlitt, M., & Machiraju, V. (2006). Supporting application

quality of service in shared resource pools. Communications of the ACM, 49(3),

55-60.

Ulbrich, D. (1995). Shared services: From vogue to value. Human Resource Planning,

18(3), 12-23.

Ulbrich, F. (2006). Improving shared service implementation: Adopting lessons from the

BPR movement. Business Process Management Journal, 12(2), 191-205.

55

Ulbrich, F. (2010). Adopting shared services in a public-sector organization.

Transforming Government: People, Process and Policy, 4(3), 249-265.

Wang, H. (2007). Performance Analysis for Shared Services. Communications of the

International Information Management Association, 7(2), 61-68.

Wang, H., & Sevcik, K. C. (2000). Experiments with improved approximate mean value

analysis algorithms. Performance Evaluation, 39(1-4), 189-206.

Wang, H., & Wang, S. (2008). An Approximate Queuing Network Analysis Method for

Capacity Planning of Shared Services. Proceedings of the 29
th

 Annual Conference of

the Administrative Sciences Association of Canada, Management Science Division,

pp.6-15. Halifax, NS: Administrative Sciences Association of Canada.

Wang, H., & Wang, S. (2014). Ontological Map of Service Oriented Architecture for

Shared Services Management. Expert Systems with Applications, 41(5): 2362-2371.

Wang, H., Liu. Y., Jiang, Y., and Wang, S. (2014). Queuing Networks for Designing

Shared Services. In: Wang, J. (Ed.), Encyclopedia of Business Analytics and

Optimization, pp. 256-261. Hershey, PA: IGI Global.

Wang, S., & Wang, H. (2007). Shared services beyond sourcing the back offices:

56

Organizational design. Human Systems Management, 26(4), 281-290.

