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Performance Prediction for Designing Shared Services 

 

By Yu Liu  

 

Abstract 

 

Since early 1980s, shared services have been utilized by public and private organizations 

with the purpose of reducing the administrative cost.  Currently, shared services evolve 

into an efficient and flexible tool in optimizing resources and capitals, raising service 

qualities, promoting strategic growth and generating greater profits for both public and 

private organizations.  One important aspect of design and implementation of shared 

services is to ensure the quality services delivered by a shared service center.  This thesis 

presents a new family of approximate Mean Value Analysis algorithm for solving 

multi-class product-form queuing network models.  The proposed algorithms are 

capable of quickly and accurately predicting the average completion time of different 

types of tasks to be delivered by a shared service center.  The computational and 

numerical properties of the proposed algorithms are analyzed.  This thesis demonstrates 

the usefulness and effectiveness of the proposed algorithms for facilitating the design and 

implementation of shared services. 
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Chapter 1. Introduction 

 

In today's world, business competition is unprecedentedly fierce. As the result, many 

organizations attempt to streamline the non-core business processes and reduce the 

corresponding costs so that they can focus on the core business processes. Since early 

1980s, shared services have been utilized by private companies with the purpose of 

reducing the administrative cost (Ask et al. 2008, Borman 2010, Janssen & Joha 2006, 

Kakabadse & Kakabadse 2000, Kamal 2012, Lindvall & Iveroth 2011, McDowell 2011, 

Minnaar 2013, Niehaves & Krause 2010, Ulbrich 1995, Ulbrich 2010).  Currently, 

shared services evolve into an efficient and flexible tool in optimizing resources and 

capitals, raising service qualities, promoting strategic growth and generating greater 

profits for both public and private organizations.  Accordingly, the prediction and 

evaluation of the appropriateness and flexibility of the shared services is highly 

demanded. 

 

There are two types of shared services, internal and external, that have been widely 

spread in many government and business organizations (Gulati & Singh 1998, Kakabadse 

& Kakabadse 2000, Kamal 2012, Lindvall & Iveroth 2011).  For internal shared 
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services, the organization restructures its existing business processes, and common 

non-core business functions are consolidated and shared by different operational units 

within the organization.  For external shared services, multiple partner organizations 

form a strategic alliance, and common non-core business functions are standardized and 

consolidated across multiple partner organizations.  External shared services have been 

adopted by many government and business organizations as an alternative solution to 

outsourcing (Wang & Wang 2007).  For both types of shared services, the services are 

delivered by shared service centers.  Shared service centers are the core component of 

shared services.  Shared service centers attempt to 

1. Reduce the operational costs of non-core business functions and processes of the 

organization. 

2. Enable an organization to increase its focus on core business functions and processes. 

3. Increase information and knowledge sharing, either within the organization (for 

internal shared services) or across multiple organizations (for external shared 

services). 

 

As shared service centers in nature are complicated systems, it is important to estimate 

and predict the quality of services provided by shared service centers during the design 



 

4 

 

stage (Rolia et al. 2006, Wang 2007, Wang & Wang 2008, Wang et al. 2014).  For a 

shared service center, there are multiple types of tasks from different sources with 

different requirements on the completion time.  It has been suggested that multi-class 

product-form queuing network models are useful and applicable in predicting the 

performance of complex systems like shared service centers (Rolia et al. 2006, Wang 

2007, Wang & Wang 2008, Wang et al. 2014).   

 

In this thesis, we propose a new family of algorithms that are capable of quickly and 

approximately solving multi-class product-form queuing network models.  These new 

algorithms can be used to facilitate the design and implementation of shared service 

centers by predicting the completion time of different types of tasks and examining 

whether all requirements from different sources are fulfilled.  We also investigate the 

properties of the proposed algorithms, and demonstrate their usefulness to the design of 

shared service centers. 

 

The remaining four chapters are organized as follows. Chapter 2 is divided into two major 

parts.  The first part discusses the background of internal and external shared services, 

and the second part discusses the background of multi-class product-form queuing 
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network models and the algorithms for solving these models.  Chapter 3 presents a new 

family of algorithms for solving multi-class product-form queuing network models.  

Chapter 4 presents an experimental analysis of the computational and numerical 

properties of the proposed algorithms.  Finally, Chapter 5 presents our conclusions and 

discusses the future work. 
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Chapter 2. Background 

2.1. Shared Services  

2.1.1. Features of shared services 

Shared services are often defined as a shared service center delivering services to 

different operational units within an organization or even to different organizations in a 

standardized and centralized way. The delivery of shared services, which is ensured 

through business processes, provides great strategic opportunities for cost saving as well 

as for information and knowledge sharing (Davenport et al., 2004; Davenport and Short, 

1990).  

 

There are two types of shared services, internal and external.  For internal shared 

services, the shared service center delivers services to different operational units within an 

organization.  Large government and business organizations often have many 

operational units.  Each operational unit not only focuses on its core business functions, 

but also supports necessary non-core business functions.  Internal shared services 

attempt to reduce the operational cost for such large organizations.  To implement 

internal shared services, the organization restructures its existing business processes, and 

common non-core business functions are consolidated and shared by different operational 
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units within the entire organization.  Generally, non-core business functions, such as 

information system services and human resource management, are designated line of 

business processes for internal shared services. 

 

For external shared services, multiple partner organizations form a strategic alliance and 

establish a shared service center to deliver services to these partner organizations.  The 

shared service center is capable of reducing operational cost and increasing information 

and knowledge sharing among the partner organizations.  External shared services 

usually standardize and consolidate common non-core business functions across multiple 

partner organizations so that the partner organizations can increase their focus on the core 

business functions.  The information and knowledge sharing aspect of external shared 

services enable the partner organizations to gain extra competitive advantages over other 

competitors in addition to cost reduction.  External shared services have been widely 

implemented by many government and healthcare organizations as an alternative solution 

to outsourcing (Kamal 2012, McDowell 2011, Niehaves & Krause 2010, Ulbrich 2010).  

 

With the wide adoption of both internal and external shared services, the range of shared 

services have also been expanding, which include accounting and financial services, 
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information system services, customer relationship management, human resource 

management. 

 

2.1.2. Major goals of shared services 

The major goals of internal shared services are: 

1. To reduce the operational costs of non-core business functions and processes through 

business process re-engineering (BPR) and business process optimization (BPO). 

2. To Increase focus on core business functions and processes. 

3. To increase information and knowledge sharing among different operational units 

within the organization. 

4. To improve the quality of the services delivered by the shared service centers through 

business process re-engineering (BPR) and business process optimization (BPO) as 

well as information and knowledge sharing. 

 

The goals of external shared services are similar: 

1. To establish a mutual beneficial and long-term strategic relationship with other 

partner organizations to share the governance, costs and risks of the shared service 

centers. 
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2. To reduce the operational cost of non-core business processes through standardizing 

and consolidating the non-core business processes across multiple partner 

organizations. 

3. To increase information and knowledge sharing among the partner organizations to 

enable these organizations to gain extra competitive advantages over other 

competitors in addition to cost reduction. 

4. To improve the quality of the services delivered by the shared service centers through 

business process re-engineering (BPR) and business process optimization (BPO) as 

well as information and knowledge sharing. 

 

2.1.3. Distinctions between external shared services and outsourcing 

External shared services are often mistreated as outsourcing.  As a matter of fact, there 

lies a fundamental difference between them.  For external shared services, the shared 

service center is formed and governed by the partner organizations (Gulati & Singh 1998, 

Kakabadse & Kakabadse 2000).  The partner organizations establish a long-term 

strategic alliance, and share the governance, cost and risks of the shared service center. 

 

For outsourcing, the relationship between the outsourced organization and the third-party 
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service provider is defined by a bilateral contract, which involves an exchange of services 

and payments (King 2006).  Outsourcing provides the outsourced organization a great 

financial flexibility.  The outsourced organization can pay for only the services it needs, 

at the time it really needs them.  However, outsourcing often associates with many 

potential risks, such as lack of transparency, loss of control of data and business 

knowledge, failure to maintain the service quality. 

 

External shared services can be viewed as an alternative solution to outsourcing.  The 

cost saving of external shared services is long-term and stable, while that of outsourcing 

is often short-term.  An important advantage of external shared services over 

outsourcing is that external shared services increase the information and knowledge 

sharing among multiple partner organizations while the organizations still have control 

over the information and knowledge to be shared.  The information and knowledge 

sharing aspect of external shared services gives the partner organizations an extra 

competitive advantage over other competitors. 

 

2.1.4. Design and implementation of shared services 

Both internal and external shared services require organizational structure changes.  
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During the design and implementation of internal or external shared services, business 

process reengineering (BPR) and business process optimization (BPO) are often used to 

re-examine the existing business processes, and identify the business processes and 

business functions for shared service centers (Ulbrich 2006, Wang & Wang 2007, Wang & 

Wang 2014).  In fact, as previous research indicates, a new organizational structure is 

highly needed to ensure the success of shared services (Gulati & Singh 1998, Kakabadse 

& Kakabadse 2000).  With the assistance of shared services, the organizations are able to 

shift non-core business process to the shared service center, and centralize their efforts 

and focus on the core business processes to win the fierce competitions.  One important 

aspect of successful design and implementation of internal and external shared services is 

to ensure the quality of services delivered by the shared service center. 

 

For internal shared services, the shared service center delivers services to different 

operational units within an organization which may have different requirements about the 

levels and qualities of services.  For external shared services, the shared service center 

delivers services to different partner organizations which may have different requirements 

about the levels and qualities of services.  Hence, regardless of the types of shared 

services, the services delivered by the shared service center generally have different 
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requirements about the levels and qualities of services.  It is necessary to ensure all these 

requirements are fulfilled when designing and implementing shared services.  In the next 

subsection, we discuss an analytical tool for predicting and evaluating the performance of 

shared service centers. 

 

2.2.Queuing Network Modelling for Shared Services 

2.2.1. Queuing network modelling 

Modelling a real-life system by nature is an abstraction.  Queuing network models are 

simple models at a high level of abstraction. It avoids the unnecessary figures and 

concentrates on the core details.  Performance measures such as system throughput and 

response time can be defined, parameterized and evaluated.  Queuing network models 

have been recognized as a powerful and versatile tool in the design and implementation of 

computer and communication systems (Buzen 1973, Cremonesi et al. 2002, Pattipati et al. 

1990). 

 

Since 1970s, the rapid evolvement and increasing complexity of the computer systems 

have given rise to the increasing need for analytical tools to predict and evaluate the 

performance and behavior of these systems.  Among various analytical tools, queuing 
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network models have been widely used for performance modeling of computer systems 

due to a favorable balance between their accuracies and efficiencies (Cremonesi et al. 

2002, Pattipati et al. 1990, Rolia et al. 2006).  In this thesis, we will use queuing 

network models to predict the performance of shared service centers during the design of 

shared services. 

 

A queuing network model consists of a collection of customers (users) and service centers 

(servers).  The service centers represent the resources for providing services to 

customers.  The customers' competition for the resource service can be interpreted as 

queuing to the service center.  After being served at a service center, the user will depart 

from it and may join another queue. 

 

A solution of a queuing network model is a set of performance measures such as system 

throughput and customer response time.  While there is no exact solution available for 

the general class of queuing network models, exact solutions can be computed for a 

special type of queuing network models, called multi-class product-form queuing network 

models.  Many other types of queuing network models can be accurately approximated 

by larger and more complex multi-class product-form queuing network models (Bolch et 
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al. 2006). 

 

2.2.2. Multi-class product-form queuing network models 

In 1975, Baskett, Chandy, Muntz and Palacios presented the multi-class product-form 

queuing network models involving multiple classes of customers (Baskett et al. 1975). 

Since then, multi-class product-form queuing network models have been widely used for 

performance prediction and evaluation of the complex computer systems. 

 

A multi-class product-form queuing network model is a queuing network model that 

meets the following three conditions: 

1. The queues in the queuing network model can hold an infinite number of 

customers.   

2. The customer service time at a service center is non-deterministic, which means 

the actual service time of a customer follows a probability distribution.   

Customers in the same class share the same probability distribution for the service 

time at a particular service center.   

3. Any resource service center in the queuing network model must belong to one of 

the following four types: 
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1) Type I: Service centers with only one server. Customers are served with 

the First Come First Served scheduling. Customer service time at the 

service center follows an exponential distribution, and different classes of 

customers all have this customer service time distribution. 

2) Type II: Service centers with only one server. Customers are served with 

the Processor Sharing scheduling at the server center.  Customer service 

time distribution can be an arbitrary distribution. 

3) Type III: Service centers with only one server. Customers are served with 

the Last Come First Served with Pre-emption scheduling. Customer 

service time distribution can be an arbitrary distribution. 

4) Type IV: Service centers with an infinite number of servers. Customers are 

served immediately without waiting.  Customer service time distribution 

can be an arbitrary distribution. 

The first three types of service centers, all customers are served solely by one server, and 

the customers need to wait in the queues for services. This is not the case of the last type 

of service centers, where there is no queuing and all customers are served immediately 

upon their arrival.  The first three types of service centers represent a single resource 

required by different customers.  The last type of service centers represents the infinity 
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resources that are always available.  For all four types of service centers, the customer 

service time at a service center is non-deterministic, which means the actual service time 

of a customer follows a probability distribution. 

 

Multi-class product-form queuing network models have be used to model shared service 

centers for both internal and external shared services (Rolia et al. 2006, Wang 2007, Wang 

& Wang 2008, Wang et al. 2014).  For instance, a shared service center with two 

employees, A and B, offers house renting services to two different apartments, X and Y.  

Apartment X has two types of tasks. The first one requires A to offer house renting 

service, while the second one involves both A and B, with A offering house renting 

service first and B performing house cleaning next. Apartment Y has one type of tasks 

that require B to perform house cleaning service. Hence, there are three different types of 

tasks for this shared service center, two for apartment X (requiring A and A + B 

respectively), and one for apartment Y (requiring B).  As shown in Figure 1, this shared 

service center can be modeled by a multi-class product-form queuing network with two 

service centers which represent two employees A and B respectively (service center A and 

service center B) and three classes of customers which represent the three different types 

of tasks respectively (class 1, class 2, and class 3).  In this simple example, the nature of 
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the shared service center is not important, and it can be either internal or external.  If 

both apartments X and Y belong to the same owner, then the shared service center in 

Figure 1 is internal.  If apartments X and Y belong to different owners, then the shared 

service center in Figure 1 is external. 

 

 

 

Figure 1. A Multi-Class Product-Form Queuing Network Model for the House Renting 

Shared Service Center 

 

2.2.3. The MVA algorithm 

One major reason of the popularity of multi-class product-form queuing network models 

is that their performance can be computed by various algorithms.  Among these 

algorithms, the Mean Value Analysis (MVA) algorithm enjoys the widest popularity 
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(Reiser & Lavenberg 1980). 

 

Suppose that a multi-class product-form queuing network model has C customer classes 

and M service centers.  These M service centers can be any of Type I, II, III service 

centers described in Section 2.2.2.  The customer classes are indexed as classes 1 

through C, and the service centers are indexed as centers 1 through K.  The customer 

population in the queuing network model is denoted by the vector P = [P1, P2, ..., PC], 

where Pc is the number of customers of class c for c=1,2,...,C.  The average service time 

of a class c customer at center k is denoted by Xc,k for c=1,2,...,C, and k=1,2,...,K.  The 

sum of the average service time of all Type IV service centers for class c is denoted by Yc. 

 

Given the customer population vector P, the performance measures of the multi-class 

product-form queuing network model are as follows: 

 Rc,k(P) = the average response time of a class c customer at center k. 

 Rc(P) = the average response time of a class c customer in the network. 

 Qc,k(P) = the average queue length of class c at center k. 

 Qk(P) = the average total queue length at center k. 
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Intuitively, Rc,k(P) is the sum of the average service time and queuing waiting time of a 

class c customer at center k, and Rc(P) is the sum of Rc,k(P) for all centers in the queuing 

network model. 

 

The Mean Value Analysis algorithm (Reiser and Lavenberg, 1980) involves repeated 

applications of four recursive equations: 

Rc,k(p) = Xc,k ∙ [1 + Qk(p-1c)]        (1) 

Rc(p) = 


K

1k

)(R kc, p           (2) 

Qc,k(p) = 
)(R  Y

)(R 

cc

kc,c

p

pp




          (3) 

Qk(p) = 


C

1c

)(Q kc, p           (4) 

with initial conditions Qk(0) = 0 for k=1,2,...,K, where p = [p1, p2, ..., pC] is a population 

vector ranging from 0 = [0, 0, …, 0] to P, and 1c is a C-dimensional vector whose c
th

 

element is one and whose other elements are zeroes.  In Equation (1), p-1c is the 

population vector p with one class c customer removed.  This recursive dependence 

indicates that the performance measures for one population can be computed from those 

for lower population levels.   
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The implementation of the Mean Value Analysis algorithm is as follows: 

Algorithm Input: 

C: the number of classes of customers 

K: the total number of all Type I, II, III service centers 

P: the customer population vector 

Y: the vector of the sum of the average service time of all Type IV service centers for 

each customer class 

X: the matrix for the average service time for each customer class and for each 

service center  

 

Algorithm Output: 

Rc,k(P) = the average response time of a class c customer at center k 

Rc(P) = the average response time of a class c customer in the network 

Qc,k(P) = the average queue length of class c at center k 

Qk(P) = the average total queue length at center k 

 

The MVA algorithm: 

 

 // initialization 

FOR k = 1 TO K 

     Qk(p) = 0 
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 END FOR 

  

 FOR p1 = 0 TO P1 

  FOR p2 = 0 TO P2 

        …… 

   FOR pC = 0 TO PC 

    p = the population vector [p1, p2, ..., pC] 

FOR c = 1 TO C  

FOR k = 1 TO K 

      IF p = = 0 THEN 

Rc,k(p) = 0 

Qc,k(p) = 0 

      ELSE 

Rc,k(p) = Xc,k ∙ [1 + Qk(p-1c)] 

Qc,k(p) = 
)(R  Y

)(R 

cc

kc,c

p

pp




 

      END IF 

     END FOR 

    END FOR 

    FOR k = 1 TO K 

Qk(p) = 


C

1c

)(Q kc, p  

    END FOR 

    FOR c = 1 TO C 

Rc(p) = 


K

1k

)(R kc, p  

    END FOR 

   END FOR 

         ..…. 

  END FOR 

 END FOR 

 

 

2.2.4. Approximate MVA algorithms 
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The recursive Equation (1) cause both the space and time complexity of the MVA 

algorithm to be θ(KC



C

c

cP
1

)1( ) (Reiser & Lavenberg 1980).  For the large models 

with C > 5 and K > 20, the computational time of the MVA algorithm will be 

prohibitively long, which means it is not practical to use it to compute the performance 

measures of the queuing models. 

 

Under such circumstances, researchers turned to the approximate Mean Value Analysis 

(AMVA) algorithms (Bard 1979, Chandy & Neuse 1980, Eager & Sevcik 1984, Eager & 

Sevcik 1986, Cremonesi et al. 2002, Wang & Sevcik 2000, Pattipati et al. 1990, Wang et 

al. 2008). By using approximation instead of exact computation, the AMVA algorithms 

trade the solution accuracy for a lower computational complexity.  The algorithm input 

and output of the AMVA algorithms are the same as those of the MVA algorithm.  The 

only difference is that the MVA algorithm yields the exact solution while the AMVA 

algorithms yield an approximate solution with reduced computational time. 

 

Among various AMVA algorithms, Proportional Estimation (PE) algorithm (Bard 1979) 

and the Linearizer algorithm (Chandy & Neuse 1980) are two most popular algorithms 

that have gained wide acceptance.  
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2.2.4. 1 The PE algorithm 

The Proportional Estimation (PE) algorithm is based on the approximation 

Qk(P-1c) = Qk(P) – Qc,k(P) / Pc         (5) 

and it computes the average performance measures by solving the following system of 

nonlinear equations iteratively until convergence: 

Rc,k(P) = Xc,k ∙ [1 + Qk(P) – Qc,k(P) / Pc]       (6) 

Rc(P) = 


K

1k

)P(R kc,            (7) 

Qc,k(P) = 
(P)R  Y

(P)R P

cc

kc,c




           (8) 

Qk(P) = 


C

1c

)P(Q kc,            (9) 

 

The Proportional Estimation algorithm is as follows: 

Algorithm Input: 

C: the number of classes of customers 

K: the total number of all Type I, II, III service centers 

P: the customer population vector 
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Y: the vector of the sum of the average service time of all Type IV service centers for 

each customer class 

X: the matrix for the average service time for each customer class and for each 

service center  

 

Algorithm Output: 

Rc,k(P) = the average response time of a class c customer at center k 

Rc(P) = the average response time of a class c customer in the network 

Qc,k(P) = the average queue length of class c at center k 

Qk(P) = the average total queue length at center k 

 

The PE algorithm: 

 

 // initialization 

FOR k = 1 TO K 

  FOR c = 1 TO C 

       Qc,k(P) = Pc / K 

  END FOR 

Qk(P) = 


C

1c

)P(Q kc,  

 END FOR 

 

 // iterations 

REPEAT 

 FOR c = 1 TO C 

  FOR k = 1 TO K 

Rc,k(P) = Xc,k ∙ [1 + Qk(P) – Qc,k(P) / Pc] 

  END FOR 
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Rc(P) = 


K

1k

)P(R kc,  

 END FOR 

 FOR c = 1 TO C 

  FOR k = 1 TO K 

Qc,k(P) = 
(P)R  Y

(P)R P

cc

kc,c




 

  END FOR 

Qk(P) = 


C

1c

)P(Q kc,  

 END FOR 

 UNTIL Qc,k(P) ARE ALL STABLE (i.e., the changes in Qc,k(P) are small enough) 

 

 

The PE algorithm is able to yield fairly accurate solutions. The errors of the approximate 

solutions are typically less than 10% with respect to the exact solution (Wang et al. 2008).  

The space complexity of the algorithm is O(KC), and the time complexity of the 

algorithm is O(KC) per iteration.  In most cases, the Proportional Estimation algorithm 

converges quickly (Wang et al. 2008).   

 

2.2.4.2. The Linearizer Algorithm 

Compared with the PE algorithm, the solutions computed by the Linearizer algorithm, 

though at a comparatively higher computational cost, are much more accurate than those 

of the PE algorithms (Chandy & Neuse 1980).  The Linearizer is based on the 

approximation 
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Qk(P-1c) = ()(P ,

C

1i

i 


ci Qi, k(P) / Pi ) + λc,k(P)      (10) 

where 










cifor

cifor
ci

1

0
,   

and the λc,k(P) term is an unknown error term.  Theoretically, Equation (10) holds 

exactly when 

λc,k(P) =  ()(P ,

C

1i

i 


ci  Qi, k(P-1c) / (Pi ci, ) – Qi, k(P) / Pi  ) 

The Linearizer algorithm approximates the λc,k(P) term as 

λc,k(P) = λc,k(P-1j)               (11) 

for all j = 1, 2, … C. 

 

The Linearizer algorithm employs the Core algorithm as a subroutine which involves 

solving the following system of nonlinear equations iteratively until convergence: 

Rc,k(P) = Xc,k ∙ [1 + ()(P ,

C

1i

i 


ci Qi, k(P) / Pi ) + λc,k(P) ]    (12) 

Rc(P) = 


K

1k

)P(R kc,              (13) 
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Qc,k(P) = 
(P)R  Y

(P)R P

cc

kc,c




             (14) 

Qk(P) = 


C

1c

)P(Q kc,              (15) 

The Core algorithm is similar to the PE algorithm.  If the λc,k(P) term in Equation (12) is 

zero, then the Core algorithm is exactly the same as PE algorithm.  The Linearizer 

algorithm iteratively solves the Core algorithm at the original and reduced customer 

population levels, and estimates and updates the λc,k(P) term using Equation (11) for the 

next round of iteration.  Hence, the Linearizer algorithm involves two kinds of iterations, 

inner iterations and outer iterations.  The iterations of the Core algorithm are called the 

inner iterations, and the iterations for estimating and updating the λc,k(P) terms are 

referred to as the outer iterations.  The time complexity of the inner iterations is O(KC
2
), 

and the space complexity of the inner iterations is O(KC).  Each outer iteration involves 

O(C) executions of the inner iterations.  The overall time complexity of the Linearizer 

algorithm is O(KC
3
) and the space complexity remains O(KC). 

 

The Linearizer algorithm is as follows: 

Algorithm Input: 

C: the number of classes of customers 
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K: the total number of all Type I, II, III service centers 

P: the customer population vector 

Y: the vector of the sum of the average service time of all Type IV service centers for 

each customer class 

X: the matrix for the average service time for each customer class and for each 

service center  

 

Algorithm Output: 

Rc,k(P) = the average response time of a class c customer at center k 

Rc(P) = the average response time of a class c customer in the network 

Qc,k(P) = the average queue length of class c at center k 

Qk(P) = the average total queue length at center k 

 

The Linearizer algorithm: 

 

// initialization 

FOR k = 1 TO K 

  FOR c = 1 TO C 

       λc,k(P) = 0 

  END FOR 

 END FOR 

 

 // iterations 

 REPEAT 

  // solving the Core algorithm at the original population level 

:, kc Qc,k(P) = Core (C, K, P, Y, X, λ) 
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// solving the Core algorithm at the reduced population levels 

FOR j=1TO C 

:, kc Qc,k(P-1j) = Core (C, K, P-1j, Y, X, λ) 

  END FOR 

   

// updating the λ matrix 

FOR k = 1 TO K 

   FOR c = 1 TO C 

    λc,k(P) = ()(P ,

C

1i

i 


ci  Qi, k(P-1c) / (Pi ci, ) – Qi, k(P) / Pi  ) 

where 










cifor

cifor
ci

1

0
,   

 

   END FOR 

  END FOR 

 UNTIL Qc,k(P) ARE ALL STABLE (i.e., the changes in Qc,k(P) are small enough) 

 

The Core algorithm employed in the above Linearizer algorithm is as follows: 

Algorithm Input: 

C: the number of classes of customers 

K: the total number of all Type I, II, III service centers 

P: the customer population vector 

Y: the vector of the sum of the average service time of all Type IV service centers for 

each customer class 
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X: the matrix for the average service time for each customer class and for each 

service center  

λ: the matrix for the λc,k(P) term in Equation (12) for c=1,2,…,C and k=1,2,…,K 

 

Algorithm Output: 

Qc,k(P) = the average queue length of class c at center k 

 

The Core algorithm: 

 

 // initialization 

FOR k = 1 TO K 

  FOR c = 1 TO C 

       Qc,k(P) = Pc / K 

  END FOR 

Qk(P) = 


C

1c

)P(Q kc,  

 END FOR 

 

// iterations 

REPEAT 

 FOR c = 1 TO C 

  FOR k = 1 TO K 

Rc,k(P) = Xc,k ∙ [1 + ()(P ,

C

1i

i 


ci Qi, k(P) / Pi ) + λc,k(P) ]  

  END FOR 

Rc(P) = 


K

1k

)P(R kc,  

 END FOR 

 FOR c = 1 TO C 

  FOR k = 1 TO K 

Qc,k(P) = 
(P)R  Y

(P)R P

cc

kc,c




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  END FOR 

Qk(P) = 


C

1c

)P(Q kc,  

 END FOR 

 UNTIL Qc,k(P) ARE ALL STABLE (i.e., the changes in Qc,k(P) are small enough) 

 

 

 

2.3. Performance Prediction for Designing Shared Services 

Various AMVA algorithms have been proposed for performance prediction for designed 

shared services (Rolia et al. 2006, Wang 2007, Wang et al. 2008, Wang & Wang 2008, 

Wang et al. 2014).  Tasks from different operational units or different organizations can 

be represented as different classes of customers in the queuing network model.  

Resources in a shared service center can be represented as service centers in the queuing 

network model.  Once an AMVA algorithm solves the queuing network model, we can 

check whether all specific requirements about the average completion time of different 

types of tasks are fulfilled.  In case that any requirement was not fulfilled, the shared 

service center should be redesigned by adding more resources.  Figure 2 illustrates the 

flowchart of the aforementioned design process (Wang et al. 2014). 
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Identifying all classes of tasks and identify all 

resources of the shared services 

Modeling using the multi-class product-form 

queuing network 

Computing the performance measures using an 

approximate Mean Value Analysis algorithm 

Whether all requirements 

are fulfilled? 

Adding more 

resources to the 

system 

No 

Yes 

Start 

End 

 

Figure 2. Flowchart for Designing Shared Serviced using AMVA algorithms (Source: 

(Wang et al. 2014) )
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Chapter 3. A New Family of AMVA Algorithms 

 

In this chapter, we present a new family of AMVA algorithms which we refer to as the 

Generalized Linearizer algorithms.  The Generalized Linearizer algorithms attempt to 

improve the Linearizer algorithm by achieving better accuracy with the same 

computational complexities. 

 

The Generalized Linearizer algorithms are based on the approximation 

Qk(P-1c) = ()(P ,

C

1i

i 


a

ci Qi, k(P) / Pi
b

 ) + τc,k(P)      (16) 

where both a and b are real numbers, and 










cifor

cifor
ci

1

0
,   

and the τc,k(P) term is an unknown error term.  Different values of a and b result in 

different Generalized Linearizer algorithms.  The Linearizer algorithm is a special case 

of the Generalized Linearizer algorithms where a=b=1. 

 

Theoretically, Equation (16) holds exactly when 
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τc,k(P) =  ()(P ,

C

1i

i 


a

ci  Qi, k(P-1c) / (Pi ci, )
a
 – Qi, k(P) / Pi

b
  ) 

Intuitively, Equation (16) is just a rewritten form of Equation (10) of the Linearizer 

algorithm.  While the Linearizer algorithm approximates the λc,k(P) term in Equation 

(10), the Generalized Linearizer algorithms approximate the τc,k(P) term in Equation (16) 

as 

τc,k(P) = τc,k(P-1j)               (17) 

for all j = 1, 2, … C. 

 

Like the Linearizer algorithm, all Generalized Linearizer algorithms employ the Core 

algorithm as a subroutine which involves solving the following system of nonlinear 

equations iteratively until convergence: 

Rc,k(P) = Xc,k ∙ [1 + ()(P ,

C

1i

i 


a

ci  Qi, k(P) / Pi
b

 ) + τc,k(P) ]    (18) 

Rc(P) = 


K

1k

)P(R kc,              (19) 

Qc,k(P) = 
(P)R  Y

(P)R P

cc

kc,c




             (20) 

Qk(P) = 


C

1c

)P(Q kc,              (21) 
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If the τc,k(P) term in Equation (18) is zero and a=b=1, then the Core algorithm is exactly 

the same as PE algorithm.   

 

Like the Linearizer algorithm, all Generalized Linearizer algorithms iteratively solve the 

Core algorithm at the original and reduced customer population levels, and estimates and 

updates the τc,k(P) term using Equation (17) for the next round of iteration.  As with the 

Linearizer algorithm, there are two kinds of iterations in a Generalized Linearizer 

algorithm, inner iterations and outer iterations.  The iterations of the Core algorithm are 

called the inner iterations, and the iterations for estimating and updating the τc,k(P) terms 

are referred to as the outer iterations.   

 

The computational complexities of all Generalized Linearizer algorithms are the same.  

For all Generalized Linearizer algorithms, the time complexity of the inner iterations is 

O(KC
2
), and the space complexity of the inner iterations is O(KC).  Each outer iteration 

involved O(C) executions of the Core algorithm.  Hence, the overall time complexity of 

a Generalized Linearizer algorithm is O(KC
3
) and the space complexity is O(KC). 

 

The pseudo-code of the Generalized Linearizer algorithms is as follows.  Note that a and 
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b are not the input parameters of Generalized Linearizer algorithms.  Their values are 

fixed for a given Generalized Linearizer algorithm.  Different Generalized Linearizer 

algorithms employ different values of a and b. 

 

Algorithm Input: 

C: the number of classes of customers 

K: the total number of all Type I, II, III service centers 

P: the customer population vector 

Y: the vector of the sum of the average service time of all Type IV service centers for 

each customer class 

X: the matrix for the average service time for each customer class and for each 

service center  

 

Algorithm Output: 

Rc,k(P) = the average response time of a class c customer at center k 

Rc(P) = the average response time of a class c customer in the network 

Qc,k(P) = the average queue length of class c at center k 

Qk(P) = the average total queue length at center k 

 

The Generalized Linearizer algorithms: 
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 // initialization 

FOR k = 1 TO K 

  FOR c = 1 TO C 

       τc,k(P) = 0 

  END FOR 

 END FOR 

 

 // iterations 

 REPEAT 

  // solving the Core algorithm at the original population level 

:, kc Qc,k(P) = Core (C, K, P, Y, X, λ) 

// solving the Core algorithm at the reduced population levels 

FOR j=1TO C 

:, kc Qc,k(P-1j) = Core (C, K, P-1j, Y, X, λ) 

  END FOR 

 

  // updating the τ matrix 

FOR k = 1 TO K 

   FOR c = 1 TO C 

     τc,k(P) = ()(P ,

C

1i

i 


a

ci  Qi, k(P-1c) / (Pi ci, )
a
 – Qi, k(P) / Pi

b
  ) 

where 










cifor

cifor
ci

1

0
,   

 

   END FOR 

  END FOR 

 UNTIL Qc,k(P) ARE ALL STABLE (i.e., the changes in Qc,k(P) are small enough) 

 

The Core algorithm involved in the above code is as follows: 



 

38 

 

Algorithm Input: 

C: the number of classes of customers 

K: the total number of all Type I, II, III service centers 

P: the customer population vector 

Y: the vector of the sum of the average service time of all Type IV service centers for 

each customer class 

X: the matrix for the average service time for each customer class and for each 

service center  

τ: the matrix for the τc,k(P) term in Equation (12) for c=1,2,…,C and k=1,2,…,K 

 

Algorithm Output: 

Qc,k(P) = the average queue length of class c at center k 

 

The Core algorithm: 

 

 // initialization 

 FOR k = 1 TO K 

  FOR c = 1 TO C 

       Qc,k(P) = Pc / K 

  END FOR 

Qk(P) = 


C

1c

)P(Q kc,  

 END FOR 

 

 // iterations 

REPEAT 



 

39 

 

 FOR c = 1 TO C 

  FOR k = 1 TO K 

Rc,k(P) = Xc,k ∙ [1 + ()(P ,

C

1i

i 


a

ci  Qi, k(P) / Pi
b

 ) + τc,k(P) ]  

  END FOR 

Rc(P) = 


K

1k

)P(R kc,  

 END FOR 

 FOR c = 1 TO C 

  FOR k = 1 TO K 

Qc,k(P) = 
(P)R  Y

(P)R P

cc

kc,c




 

  END FOR 

Qk(P) = 


C

1c

)P(Q kc,  

 END FOR 

 UNTIL Qc,k(P) ARE ALL STABLE (i.e., the changes in Qc,k(P) are small enough) 
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Chapter 4. Experimental Analysis 

 

We experimentally evaluated the actual execution time and accuracy of several 

Generalized Linearizer algorithms.  We compared the new algorithms against the PE 

and Linearizer algorithms because they are the most popular and most widely used in 

practice. 

 

Since all Generalized Linearizer algorithms are iterative, their accuracies are affected by 

the stopping criterion for the iterations.  As with the previous studies (Wang & Sevcik 

1998, Wang et al. 2008), we used the stopping criterion that the maximum change in 

queue lengths is less than a tolerance, i.e. 

| Qc,k
[i+1]

 (P) – Qc,k
[i]

 (P)
 
| < ε, 

where ε is the specified tolerance, and the superscript [i] and [i+1] indicates the i
th 

and 

i+1
th

 iteration respectively. 

 

The error measure for the accuracy of the algorithms that we used in the experiments is 

the tolerance error defined as 
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where     
     is the exact queue length of class c customers at server k computed by the 

MVA algorithm, and           is the approximate value computed by a Generalized 

Linearizer algorithm. 

 

4.1.Experiment Settings 

In our experiments, five hundred multi-class product-form queuing network models were 

randomly generated for each C=1, 2, 3, and 4.  The parameters for generating these 

models are shown in Table 1.  These randomly generated models were solved by the 

MVA algorithm and the Generalized Linearizer algorithms. 

 

We could not choose larger values for K and C in our experiments which require solving 

the queuing network models using the MVA algorithm.  It is not practical to solve larger 

queuing network models using the MVA algorithm as it could take more than a month to 

compute the solution. 
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Parameters Distributions / Values 

Number of queuing network models 500 

K Uniform (2,30) 

X (all entries in this matrix) Uniform (0.1, 20.0) 

Y (all entries in this vector) Uniform (0.0, 100.0) 

C 1, 2, 3, 4 

P (all entries in this vector) C=1 P1: Uniform (3,30)  

C=2 

 

P1: Uniform (3,30)  

P2: Uniform (3,30)  

C=3 

 

P1: Uniform (3,30)  

P2: Uniform (3,30) 

P3: Uniform (3,30) 

C=4 P1: Uniform (3,30)  

P2: Uniform (3,30) 

P3: Uniform (3,30) 

P4: Uniform (3,30) 

ε (tolerance for iterations) 0.0001 

Table 1. Parameters for generating multi-class product-form queuing network models 

 

4.2.Experiment Results on Accuracy of the Algorithms 

4.2.1. Different values of a and b 

The Generalized Linearizer algorithms are a family of algorithms.  Different values of a 

and b result in different instances of the algorithms.  Clearly, the choice of the values of 

a and b affects the accuracy of the Generalized Linearizer algorithm.  As shown in 

Figure 3, we found that the Generalized Linearizer algorithms with b close to a are more 
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accurate than those with b much larger than a.  Figure 3 shows the mean tolerance errors 

of different Generalized Linearizer algorithms with a=1 and different values of b.  The 

reason is because when the difference between a and b is small, the absolute value of the 

τc,k(P) term in Equation (16) is small.  As the result, the difference between the exact 

value of the τc,k(P) term and the approximated value also tends to be small, which 

translated into a small error.  Hence, the Generalized Linearizer algorithms with a=b are 

likely to be more accurate than those with a≠b. 

 

b 

Figure 3. The mean tolerance errors for the Generalized Linearizer algorithms with a=1 

and different values of b. 
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4.2.2. Different Generalized Linearizer algorithms 

Based on the experiment results of the previous subsection, the Generalized Linearizer 

algorithms with a=b are likely to be more accurate than those with a≠b.  As the 

Linearizer algorithm is a Generalized Linearizer algorithm with a=b=1, we investigated 

the accuracy of various Generalized Linearizer algorithms in order to find a more 

accurate algorithm than the Linearizer algorithm.  Table 2 shows the mean tolerance 

errors and max tolerance errors for various algorithms.  As shown in Table 2, we found 

that the Generalized Linear algorithms with a=b=1.5, a=b=2.0, a=b=3.0, a=b=4.0 are 

more accurate than the Linearizer algorithm and PE algorithm.  We also found that as 

the number of customer classes increases, the superiority of these Generalized Linearizer 

algorithms over the Linearizer algorithm in terms of accuracy increases.  Our results are 

consistent with the previous results (Wang et al. 2008). 
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Algorithms Tolerance 

Errors 

Models 

C=1 C=2 C=3 C=4 

PE Mean(e) 0.011 0.019 0.023 0.031 

Max(e) 0.054 0.056 0.059 0.062 

Linearizer 

(a=b=1) 

Mean(e) 0.003 0.006 0.007 0.008 

Max(e) 0.019 0.023 0.026 0.033 

Generalized Linearizer 

(a=b=1.5) 

Mean(e) 0.002 0.004 0.004 0.004 

Max(e) 0.014 0.014 0.014 0.017 

Generalized Linearizer 

(a=b=2.0) 

Mean(e) 0.002 0.002 0.003 0.003 

Max(e) 0.008 0.010 0.010 0.011 

Generalized Linearizer 

(a=b=3.0) 

Mean(e) 0.001 0.002 0.003 0.004 

Max(e) 0.011 0.017 0.015 0.015 

Generalized Linearizer 

(a=b=4.0) 

Mean(e) 0.001 0.004 0.006 0.007 

Max(e) 0.021 0.017 0.020 0.048 

 

Table 2. Mean tolerance errors and maximum tolerance errors for different Generalized 

Linearizer algorithms and the PE algorithm 

 

 

4.3.Experiment Results on Computation Time of the Algorithms 

One important advantage of the AMVA algorithms is that they can compute the solutions 

quickly.  We measured the total execution time of each algorithm in Table 2 for the 500 

multi-class product-form queuing network models in Table 1.  The experiments were 

conducted on a PC with 4GB memory running Windows XP.  Table 3 shows the total 

execution time of the algorithms in terms of the CPU seconds.  As shown in Table 3, we 

found that the Generalized Linearizer algorithms achieve similar execution time to the 
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Linearizer algorithm.  We expect that as the number of service centers and the number of 

classes increase, the execution time of the MVA algorithm will increase exponentially and 

the AMVA algorithms will be much faster than the MVA algorithm.  The PE algorithm is 

faster than the Generalized Linearizer algorithms as expected as it is much less accurate. 

 

Algorithms Models 

C=1 C=2 C=3 C=4 

MVA 0.10 2.26 30.32 650.86 

PE 0.09 1.34 3.48 5.61 

Linearizer (a=b=1) 2.12 5.13 28.37 420.15 

Generalized Linearizer (a=b=1.5) 2.02 4.83 21.69 354.97 

Generalized Linearizer (a=b=2.0) 2.08 3.56 20.18  331.01 

Generalized Linearizer (a=b=3.0) 3.81 5.05 19.84 329.79 

Generalized Linearizer (a=b=4.0) 4.01 4.98 28.12 301.28 

 

Table 3. The execution time of the algorithms for the 500 randomly generated models 
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Chapter 5 Conclusions and Future Work 

 

In this thesis, we have discussed two types of shared services, internal and external shared 

services.  We have examined the important issues with the design and implementation of 

shared services.  One of the issues is to ensure all requirements of the completion time 

of different types of tasks are fulfilled.  We have proposed to use multi-class 

product-form queuing network models to predict the performance of shared service 

centers during the design of shared services.  As various AMVA algorithms had been 

proposed to predict the completion time of different types of tasks in a shared service 

center, we have proposed the Generalized Linearizer algorithms.  The Generalized 

Linearizer algorithms are a family of AMVA algorithms.  The previously proposed 

Linearizer algorithm is just a special instance of this family.  The Generalized Linearizer 

algorithms are capable of effectively predicting the performance of shared service centers, 

and ensuring all requirements of the completion time of different types of tasks are 

fulfilled during the design of shared services.  We have also examined the computational 

time of the Generalized Linearizer algorithms as well as their accuracies.  Based on our 

experimental results, we have suggested various algorithms in the family of the 
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Generalized Linearizer algorithms that can achieve better accuracy than the Linearizer 

algorithm with comparable computational time. 

 

In the future, we plan to extend our study and conduct further experiments to explore the 

properties of the Generalized Linearizer algorithms.  We plan to identify the best 

algorithm in the family of the Generalized Linearizer algorithms in terms of 

computational time and accuracy. 
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