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ABSTRACT

We analyze the recent ground-based p-mode oscillation observations of � Boo by Kjeldsen and his collaborators
using a large and dense grid of stellar model oscillation spectra parameterized by mass, age, and metallicity. The
differences between the model and observed oscillation spectra are quantified by a �2 formulation. Based on the
seismic data alone we determine two possible solutions for � Boo’s mass, age, and metallicity. One solution
exhibits mode bumping and is within 1 � of � Boo’s observed luminosity, effective temperature, and metallicity,
and the other solution does not exhibit mode bumping and is within 2 � of � Boo’s observed luminosity, effective
temperature, and metallicity. We show how mode bumping (also associated with the terms ‘‘mixed modes’’ and
‘‘avoided crossings’’) can be used to fine-tune the age determination. We also show that the nonadiabatic model
frequencies are in better agreement with the observed frequencies than the adiabatic frequencies.

Subject headinggs: stars: individual (� Bootis) — stars: interiors — stars: oscillations

1. INTRODUCTION

Over the past decade observers have made remarkable
progress in detecting the low-amplitude signature of nonradial
oscillations of stars. Although stellar modeling has also im-
proved over the same period, especially in the area of opacities
(Iglesias & Rogers 1996), the methodology used to analyze a
star with an observed spectrum of nonradial oscillation fre-
quencies has not changed. One begins by constructing a va-
riety of stellar evolutionary tracks that have masses and
compositions close to currently accepted values. Sometimes
other parameters are also varied, such as the mixing-length
parameter. Those models along the tracks that fall within the
target star’s observed position in the H-R diagram are selected
and their nonradial oscillation mode frequencies computed.
The frequencies of the modes are matched to the observed
modes and a subjective assessment is made as to how good
the match is. If the match is good, one concludes that the
corresponding model is a close match to the structure of the
star. The methodology suffers a number of limitations that
include the following:

1. The models are coarsely spaced, and as a consequence
the corresponding oscillation spectra are themselves coarsely
spaced, making it difficult, if not impossible, to interpolate
between the spectra to determine optimum model parameters.
Basically, one cannot follow trends in the individual mode
frequencies as a function of mass, age, or composition. This is
especially true for oscillation spectra that have mixed modes,
i.e., irregularly spaced modes.

2. The quality of the match is commonly assessed by eye-
balling echelle-style plots where the frequency of the mode is
plotted against the frequency of the mode modulo the large
frequency separation. The difference between the observed and
model spectrum are not quantified in any way.

3. The model selection itself is based on the star’s H-R
diagram position and not on the observed oscillation spectrum;
hence, the set of models selected for pulsation are biased
toward existing observational constraints. The analysis may not
include all possible models that have closely matching oscil-
lation spectra.

4. For evolved stars the frequency spacings of the p-modes
are significantly perturbed from the regular picket-fence–like
spacing predicted by asymptotic theory, so much so that iden-
tifying and matching modes by eye in an unbiased yet syste-
matic manner is difficult.

In order to address these and other issues, Guenther &
Brown (2004) developed a new strategy (hereafter referred to
simply as the QDG method for ‘‘quantified dense grid’’
method) to analyze nonradial oscillation data. In their method
they compare the star’s spectrum one by one to the oscillation
spectra from a very dense multiparameter grid of stellar
models. The differences between the model and the observed
spectra are quantified by a simple �2 formulation, where
minima in �2 correspond to model spectra that match the
observed spectrum the best. The grid is fine enough and the
parameter space large enough to ensure that all standard stellar
models are given equal consideration. The grid is also fine
enough to allow interpolation in the model parameters.
Guenther & Brown (2004) have tested the method with pos-
itive results on the Sun and � Cen A.
A key component of our strategy is to isolate how well the

oscillation spectrum by itself constrains the models indepen-
dent of the other observable constraints, such as mass, lumi-
nosity, composition, and effective temperature. This enables
us to better judge the quality of the oscillation spectrum. We
do not ignore the nonoscillation constraints but also compute
�2
model, which quantifies how well the other observable con-

straints fit the models. If the oscillation data and the other
observable constraints are consistent with each other, the
location of the minima in the oscillation �2 and the model �2

should coincide within the uncertainties. If the location of
the minima in the model and oscillation �2 do not match, then
we must investigate further why they do not match: re-
examining the oscillation data, reexamining the nonoscillation
observables, and, of course, reexamining the analysis stream.
In the classical approach to analyzing the oscillation spec-
trum, one typically examines only models within the uncer-
tainty box specified by the nonoscillation observables; hence,
one never learns whether or not the oscillation data actually fit
better models that lie outside the uncertainty box.
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Recently, Kjeldsen et al. (2003) combined data from both
equivalent width and Doppler velocity observations of the
p-mode spectrum of � Boo to identify 21 l ¼ 0, 1, and 2
p-mode frequencies. From existing stellar models we know
that � Boo is more massive than the Sun by half and has nearly
or completely exhausted its core of hydrogen fuel. From the
perspective of asteroseismology � Boo is an especially inter-
esting star because it is in an advanced phase of evolution;
hence, its oscillation spectrum should show signs of mixed
modes.

Mixed modes are oscillation modes that have g-mode–like
characteristics in the interior and p-mode–like characteristics
near the surface. An oscillation spectrum containing mixed
modes is easily identified by the irregular frequency spacings
between adjacent modes. Mixed modes occur when the upper
range of frequencies (lowest radial order) of the g-mode
spectrum encroaches on the lower range of frequencies (also
lowest radial order) of the p-mode spectrum. Because g-modes
are effectively trapped inside the inert helium core of post–
main-sequence stars, the evolution of their spectrum is gov-
erned by the ever increasing mass of the helium core. One by
one the g-modes cross through the p-modes, first affecting the
lowest radial order p-modes then higher order p-modes as the
helium core grows and the g-mode spectrum spreads to higher
frequencies.

Christensen-Dalsgaard et al. (1995), Guenther & Demarque
(1996), and most recently Di Mauro et al. (2003) all note the
existence and stress the significance of mixed modes (also
identified by the terms ‘‘mode bumping’’ and ‘‘avoided cross-
ings’’) in their conventional asteroseismic analyses of � Boo.
Unfortunately, they are unable to use the mode bumping to any
advantage in their modeling of the star because their grids of
models are too coarse and the oscillation data not yet of high
enough quality.

We present in this paper a test of our new analysis strategy
on � Boo and its 21 observed p-mode frequencies. We com-
pare our results to the conventional analysis of Di Mauro et al.
(2003), whose analysis is of the highest standard. We are able
to show that the QDG method is able to extract from the
oscillation data more quantified information about � Boo than
the conventional method. Even though the primary purpose of
the paper is to describe the application of the QDG method to
an evolved field star, we also take advantage of the dense grid
of models to show in detail the effects of mode bumping on
the frequency spectrum of a star as it evolves.

2. OBSERVATIONAL CONSTRAINTS

For our analysis of � Boo we use the observational
constraints on composition, luminosity, and effective temper-
ature adopted by Di Mauro et al. (2003). We also accept
without modification the p-mode frequency determinations
of Kjeldsen et al. (2003), which were also used by Di Mauro
et al. (2003).

The star � Boo (HD 5235) is nearby (�Hipparcos ¼ 88:17�
0:75 mas), with spectral type G0 IV star. Following Di Mauro
et al. (2003), we take the luminosity of � Boo to be L=L� ¼
9:02 � 0:22 and its effective temperature to be TeA ¼ 6028�
45 K. The star is believed to be metal-rich, having approxi-
mately twice the metal abundance of the Sun, ½Fe=H� ¼
0:305 � 0:051. We therefore take Z ¼ 0:04 � 0:005.

The oscillation spectrum of � Boo determined by Kjeldsen
et al. (2003) was obtained by combining four separate ground-
based observational sets, two of which are based on Kjeldsen’s
equivalent width measurements and two of which are based

on Doppler shift measurements, one by Kjeldsen and one by
Brown et al. (1997). The oscillation mode frequencies, when
plotted in an echelle diagram, fall along three distinct vertical
curves corresponding to l ¼ 0, 1, and 2 p-modes. Two l ¼ 1
modes, 749.3 and 753.4 �Hz, if distinct and real are evidence
for mode bumping since the observed average large spacing
is approximately 41 �Hz.

Based on the scatter seen in their echelle diagram (Fig. 9 of
Kjeldsen et al. 2003), we adopt their 2 � frequency uncer-
tainties for our analysis. The observational uncertainty for
each mode was derived by Kjeldsen et al. from the signal-to-
noise ratio of the mode’s peak in the power spectrum.

3. MODEL GRID

The QDG method (Guenther & Brown 2004) employs
dense and extensive grids of stellar models. The resolution of
the grid (i.e., grid density) is set by the need to be able to
compute oscillation spectra of models in between mass-age
grid points using linear interpolation. The models themselves
are constructed using the Yale stellar evolution code (his-
torically referred to as YREC; Guenther et al. 1992). The
physics of the models, described in Guenther & Brown
(2004), are current and include OPAL98 (Iglesias & Rogers
1996) and Alexander & Ferguson (1994) opacity tables,
Lawrence Livermore equation-of-state tables (Rogers 1986;
Rogers et al. 1996), and nuclear reaction cross sections from
Bahcall et al. (2001). For all the models of � Boo considered
here, diffusion is turned off. Our existing diffusion imple-
mentation, based on the Bahcall et al. (1995) formulation, is
not adequate to follow correctly the effects of diffusion in
thin convective envelopes (Morel & Thévenin 2002; Sills &
Deliyannis 2000). When we include diffusion (gravitational
settling) in our models of stars that have thin convective
envelopes, we find that all of the helium and heavy elements
are drained out of the convective envelope, a result that is
inconsistent with observation. To improve the model of the
outer layers it will be necessary minimally to follow the
effects of levitation (i.e., radiative accelerations), which are
not included in our diffusion computation, and the effects of
the high convective velocities that are associated with shallow
convective envelopes. Michaud and his collaborators have
carried out much more physically realistic diffusion models
(Richer et al. 2000). Accurate asteroseismic observations may
be able to discern not only the limitations of our current
models but also guide us in refining our models of the outer
layers.

For a given composition and mixing-length parameter,
evolutionary tracks from 0.81 to 2.0 M� spaced 0.01 M� apart
are constructed. Along each track, equally spaced in log TeA
and log L=L�, the l ¼ 0, 1, 2, and 3 p-mode oscillation spectra
of the models are computed. The computed frequencies of the
modes range from the lowest p-mode frequency at n ¼ 1 to the
acoustic cutoff frequency.

We have over the past year constructed grids for a variety
of compositions. For this study on � Boo, the (X ; Z ) ¼
(0:71; 0:03) and (0.71, 0.04) grids are used. We note that the
Di Mauro et al. models were computed at X ¼ 0:70. Each
composition grid consists of 10,000–20,000 models.

Guenther’s nonradial nonadiabatic stellar pulsation program
(Guenther 1994) was used to compute the adiabatic and
nonadiabatic p-mode frequencies of each of the models in the
grid. The code uses the Henyey relaxation method to solve
the linearized nonradial nonadiabatic pulsation equations. The
nonadiabatic component includes radiative energy gains and
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losses as formulated in the Eddington approximation but does
not include coupling of convection to the oscillations.

4. QDG METHOD

We wrote a computer program to search through the grids of
model oscillation spectra and seek out spectra that closely
match the observed spectrum. The difference between the
observed and model spectrum is quantified by the following
�2 definition:

�2 � 1

N

XN
i¼1

�obs; i � �mod; i

� �2
�2
obs; i þ �2

mod; i

;

where �obs, i is the observed frequency for the ith mode, �mod, i

is the corresponding model frequency for the ith mode, �obs, i is
the observational uncertainty for the ith mode, �mod, i is the
model uncertainty for the ith mode, and N is the total number
of matched modes. Details of the searching and mode match-
ing procedure are described in Guenther & Brown (2004). This
model uncertainty originates primarily from uncertainties in
the modeling of the surface layers of the stars and increases
from a tenth of a percent to a half a percent as the frequencies
of the modes approach the acoustic cutoff frequency (see Fig. 1
of Guenther & Brown 2004). This is clearly a systematic effect.
Rather than trying to correct for the shift, we choose at this
time to treat it as a statistical uncertainty so that we can more
easily recognize similar systematic shifts in other stars. We
note that the irregularities in the curves in Figure 1 of Guenther
& Brown correspond to observational rather than model
uncertainties.

The search program not only looks at the spectra of models
at mass-age grid points but also looks at interpolated spectra
between the model grid points. Two-dimensional linear in-
terpolation is performed in mass and age to obtain a 10-fold
increase in effective grid resolution along each dimension.
The higher effective resolution enables one to follow more
smoothly the changes in �2, for example, as one approaches,
in mass and age, a model whose spectrum closely matches the
observed spectrum. The total number of model spectra actu-
ally searched within each composition grid is approximately
1–2 million.

Although the search program computes �2 values for all of
the models, only low values of �2 are normally output. For
convenience the lowest value of �2 along each mass track is
identified and output by the code to a separate file. When �2

falls below a specified threshold the search code will also
output the interpolated spectra of the model.

In addition, the search program computes �2
model from the

known model observables, such as mass, luminosity, effective
temperature, and composition. For this analysis of � Boo, we
use

�2
model �

1

3

"
(Zobs � Zmod; i)

2

�2
Z

þ (Tobs � Tmod; i)
2

�2
T

þ (Lobs � Lmod; i)
2

�2
L

#
;

where Z and �Z are the mass fraction metal abundance and its
uncertainty, T and �T are the effective temperature and its un-
certainty, and L and �L ¼ 0:22 L� are the luminosity and its
uncertainty.

For main-sequence stars like the Sun we find that �2 varies
smoothly as a function of mass, age, Z, Teff , and L/L�, dipping
to well-defined minima. For more evolved stars our tests show
that the �2 curves are not as smoothly varying as for main-
sequence stars, primarily because of mode bumping. The mode
frequencies can change abruptly between adjacent models in
the grid because of mode bumping, and as a consequence, the
computed �2 will also change abruptly. The abrupt changes can
only be resolved by increasing the grid resolution. In antici-
pation of future studies on post–main-sequence stars, we are in
the process of constructing higher resolution grids.

5. BEST-FITTING MODEL SPECTRA

Of all of the models in the grid, only a small fraction of the
models have oscillation spectra that are a relatively close
match, where we loosely define a close match to have �2 < 100.
In the case of � Boo this corresponds to models whose oscil-
lation frequencies are within approximately �2 �Hz of the
observed frequencies. The search program failed to find any
models that were a close match to all 21 observed p-modes.
The search program, though, did find close matches for 20
of the 21 p-modes, with either the l ¼ 1 749.3 �Hz mode or
the l ¼ 1 753.4 �Hz mode failing to be matched.
In Figure 1 we show a three-dimensional plot of �2 versus

mass and age for the Z ¼ 0:04 model grid. The values of �2

were calculated from the real component of the nonadiabatic
frequencies. The models that have spectra that are a close
match to the observed spectrum of � Boo lie close to a two-
dimensional sheet (only the lower portion of this sheet is
shown in Fig. 1). Even by only evoking the loose constraint
that �2 < 100, one significantly constrains the mass and ages
of the possible models.
To simplify more detailed analysis of the �2 results, we

project the three-dimensional plot of �2 versus mass and age
onto the age versus �2 plane and only plot the lowest values of
�2 for each age. The result is shown in Figure 2, where we also

Fig. 1.—Values of �2 < 20 for � Boo are plotted as a function of mass and
age. Each point corresponds to a unique stellar model. The value of �2 is
determined from nonadiabatic model frequencies for models with Z ¼ 0:04.
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show the model �2
model values. These values are only computed

for models with �2 < 100. Recall that �2
model is a measure

of how well the corresponding model’s luminosity, effective
temperature, and metal abundance match the observed values
for � Boo and that �2 is a measure of how well the corre-
sponding model’s oscillation spectrum matches the observed
spectrum, independent of the luminosity, effective temperature,
and metallicity of the model. The oscillation �2 dips below 5
near 1.65, 2.1, and 2.4 Gyr. The corresponding model �2

model

dips below 5 near 1.65 and 2.4 Gyr but not 2.1 Gyr. If the

observed oscillation spectrum is valid, then we expect that
models that match the spectrum best should also fall within the
observed constraints on L, Teff , and Z. In the case of � Boo, we
clearly have consistent results in two regions, one at 1.65 Gyr
and the other at 2.4 Gyr.

Next we project the three-dimensional plot of �2 versus
mass and age onto the mass versus �2 plane and only plot the
lowest values of �2 for each mass, as shown in Figure 3. The
two regions of best-fitting spectra and L, Teff , and Z, corre-
sponding to minima in �2 and �2

model, respectively, are clearly
defined, one near 1.71 M� (which corresponds to the mini-
mum near 2.4 Gyr) and the other near 1.88 M� (which cor-
responds to the minimum near 1.65 Gyr).

Finally, we project the lowest values of �2 onto the mass
versus age plane to obtain Figure 4. In Figure 4 the size of the
plot symbol is proportional to the value of �2, with the
smallest circles corresponding to �2 < 5 and the largest circles
corresponding to �2 > 50. As previously noted, by con-
straining the models to match closely the observed spectrum
one restricts the allowed mass and ages of the models, as
shown in Figure 4. We note that if we were to project all
�2 < 100 points onto the mass-age plane in Figure 4, we
would still obtain the well-defined mass-age constraint.

We computed �2 values for models with Z ¼ 0:03. In
Figure 5 we plot �2 versus mass for both the Z ¼ 0:03 and
Z ¼ 0:04 models. We also plot the �2

model values corre-
sponding to the Z ¼ 0:03 models. The Z ¼ 0:04 models have
lower �2 than the Z ¼ 0:03 models. Furthermore, only the
models near 1.65 M� have �2

model values below 20.1 This
implies not only that the oscillation spectra of the Z ¼ 0:04
models fit � Boo’s observed spectrum better than the Z ¼ 0:03
models, but also that the corresponding model parameters of
L, Teff , and Z are a better match to the observed values.

 
 

Fig. 2.—Values of �2 determined from the oscillation spectra and values of
�2
model determined from the luminosity, effective temperature, and metallicity

of the models are plotted as a function of age. Only the lowest values of �2 are
plotted.

 
 

Fig. 3.—Values of �2 and �2
model are plotted as a function of mass.

Fig. 4.—Lowest values of �2 shown in Fig. 1 are projected onto the mass-
age plane. The size of the symbol is scaled to the size of �2, with the smallest
symbols corresponding to �2 < 5 and the largest symbols to �2 > 50.

1 Because we have assumed that Z ¼ 0:04 � 0:005 for � Boo, �2
model for a

Z ¼ 0:03 model will be +1.33 larger than the same model at Z ¼ 0:04.
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We also carried out all our oscillation spectra comparisons
using nonadiabatic model frequencies. The nonadiabatic
nonradial oscillation mode computation has only been tested,
to date, for the Sun, where it is well established that the
nonadiabatic model frequencies fit the Sun’s observed spec-
trum better than the adiabatic model frequencies. Here we
are considering a more massive star in a more advanced phase
of evolution and with probably a very shallow convection
zone. To test whether or not the nonadiabatic computation
also provides a better fit for � Boo, we compare in Figure 6

�2 values computed from adiabatic frequencies to �2 values
computed from nonadiabatic frequencies. The nonadiabatic
mode frequencies for models near 1.71 and 1.88 M� have
lower �2 and are clearly a better fit to the observed frequencies
than the adiabatic mode frequencies. We note that because
� Boo has a very shallow convective envelope with high
convective velocities, the nonadiabatic corrections due to tur-
bulence, which are not included in our nonadiabatic formula-
tion, may have a significant impact on mode amplitudes and
lifetimes (the imaginary component of the frequency). The
layer is small and hence should not affect the real component of
the frequencies used here. Regardless, if discrepancies between
our models and more detailed observations were seen, we
would first look to this limitation in our models.
In Figure 7 we plot the evolutionary tracks for the 1.71 and

the 1.88 M� models, which correspond to the two model grid
masses closest to the local minima in �2 (see Figs. 3 and 4).
The actual minima occur at interpolated model grid points.
The 1 � error box for � Boo’s H-R diagram position is plotted.
Filled circles denote the position of models with �2 < 100. We
see here that the two regions where �2 and �2

model are both less
than 5 correspond to two distinct phases of evolution, that is,
main-sequence evolution for the 1.88 M� model and subgiant
branch evolution for the 1.71M� model. The oscillation
spectra of models from these two regions are distinct. The
subgiant models have an inert helium core that traps g-modes
and produces mixed or bumped p-modes. Their frequency
spectra are characterized by irregularly spaced modes. Mode
bumping in the main-sequence models is not as advanced and
only the very lowest radial order modes (not observed) are
mixed modes. Their frequency spectra are characterized by
regularly spaced modes.
The two local minima in �2 for the Z ¼ 0:04 grid are lo-

cated at interpolated mass-age points of 1.706 M�, 2.393 Gyr
and 1.884 M�, 1.663 Gyr. In Figures 8 and 9 we plot the
frequency spectra for these two model solutions along with the
observed frequencies in an echelle diagram. The error bars on

 

 
 

Fig. 5.—Values of �2
04, �

2
03, and �2

model 03 are plotted as a function of mass,
where �2

04 is computed from the frequency spectrum of models with Z ¼ 0:04,
�2
03 is computed from the frequency spectrum of models with Z ¼ 0:03,

and �2
model 03 is computed from the luminosity, effective temperature, and

metallicity of models with Z ¼ 0:03.

Fig. 6.—Values of �2 computed from adiabatic and nonadiabatic model
frequencies are compared as a function of model mass.

Fig. 7.—H-R diagram showing the evolutionary tracks for a 1.71 and a
1.88 M� model, both with Z ¼ 0:04. The error box marks � Boo’s position in
the H-R diagram. The filled symbols mark the location of all models within
the Z ¼ 0:04 grid that have �2 < 100.
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the observed frequencies are 2 � values. The folding fre-
quency is 41 �Hz. In Figure 8, corresponding to the main-
sequence model, the oscillation frequencies of the model lie
along three distinct vertical curves corresponding to l ¼ 0, 1,
and 2 p-modes. In Figure 9, corresponding to the subgiant
branch model, the oscillation frequencies also lie along three
distinct curves, but between 750 and 800 �Hz along the l ¼ 1
curve, one of the modes is bumped far off the l ¼ 1 curve onto
the l ¼ 0 curve. We discuss the significance of this in x 6. Both
fits look good. The 1.706 M� model has �2 ¼ 1:7816 and the
1.884 M� model has �2 ¼ 3:0259.

We stated earlier that the search program failed in all cases
to match all 21 observed p-modes, matching only 20 of the
21 modes. The two modes that could not be simultaneously
matched are the l ¼ 1 modes at 749.3 and 753.4 �Hz. The two
modes are separated by much less than the average large
spacing. Some possible interpretations are as follows:

1. One or both of the two modes are erroneous.
2. One of the modes is a bumped l ¼ 1 mode.
3. One of the modes is a bumped l ¼ 2 mode.
4. One of the modes is an l ¼ 3 mode.

Needless to say, additional observations are required to con-
firm the existence of the two modes. We note that the two
modes were identified in two of the four distinct data sets used
by Kjeldsen et al. (2003). If the mode is an l ¼ 3 p-mode, then
we expect that other l ¼ 3 modes would also be observable. If
one of the two modes is a bumped mode, then we can rule out
the main-sequence solution at 1.884 M� because its oscillation
spectrum does not contain any bumped modes in the observed
frequency range.

6. EVOLUTION OF BEST-FITTING MODEL

The QDG method relies heavily on the resolution of the
grid. If the grid is too coarse then it is possible to miss or skip
over important and subtle features observed in the oscillation
spectrum of a star, such as mode-bumping details. The QDG
method quickly and unambiguously identifies models that

have closely matching oscillation spectra. Once such models
have been identified, more refined models can be constructed
to study the star’s oscillation spectrum in more detail. Our
analysis of � Boo in x 5 using the QDG method left us with
two distinct possible solutions for � Boo.

The fact that � Boo appears to have bumped modes has
already ready been noted in the literature by Christensen-
Dalsgaard et al. (1995) and Guenther & Demarque (1996). The
existence of mode bumping was further commented on by
Di Mauro et al. (2003). Although all of these papers conclude
that with more accurate observations one could use the mode
bumpings to further constrain the models, none of the authors
describe exactly how the bumped modes can be used to en-
hance the analysis of � Boo. In this section we show by the
example of � Boo one way in which the mode bumpings can be
used to fine-tune our models. We stress that this is a demon-
stration only since the evidence for mode bumping is tentative.

We evolved a Z ¼ 0:04, 1.706 M� model from the zero-age
main sequence (ZAMS) to the giant branch (GB) with 4 times
the temporal resolution as used in our grid. We then computed
oscillation spectra of the models along this track.

In Figures 10, 11, and 12 we plot the l ¼ 0, 1, and 2 p-mode
frequencies of the 1.706 M� models as they evolve from the
ZAMS to the GB. As the models evolve and their radii during
most stages of evolution increase, the frequency spacing be-
tween the models decreases since the frequency spacing to first
order is inversely proportional to the 3/2 power of the radius.
The modes range from n ¼ 1 to the acoustic cutoff frequency.
The mode frequencies are plotted against k to better follow the
evolution of the modes. The term k is a dimensionless quantity
that approximates the arc length distance from the ZAMS
to the model’s position along its evolutionary track in the
H-R diagram. It is computed by integrating dk defined by
dk2 / ½d(log L=L�)�2 þ ½c d(log TeA)�2 along the evolutionary
path of the star in the H-R diagram (from its ZAMS location to
its current location). The models in our grids are computed
with c¼10, a constant that can be adjusted according the
specific evolutionary phase being studied; k scales nonlinearly

Fig. 8.—Echelle diagram comparing the Z ¼ 0:04, 1.884 M� model non-
adiabatic frequencies to the observed frequencies for � Boo. The error bars on
the observations are 2 � values. The folding frequency is 41 �Hz.

Fig. 9.—Echelle diagram comparing the Z ¼ 0:04, 1.706 M� model non-
adiabatic frequencies to the observed frequencies for � Boo. The error bars on
the observations are 2 � values. The folding frequency is 41 �Hz.
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with age. By using k we can select models that are relatively
equally spaced along the evolutionary track and thereby better
resolve changes in the star’s structure and its effect on the
p-mode frequencies during rapid phases of evolution, such as
the subgiant branch phase. For reference, the evolutionary
track of the 1.706 M� model with values of k identified along
the track is shown in Figure 13. The error box of � Boo and the
location of the minimum �2 model are indicated. In Figures 10,
11, and 12 a vertical line is drawn through the modes where �2

for � Boo reaches a minimum. The first couple of avoided
crossing ridges are labeled ‘‘g1,’’ ‘‘g2,’’ etc., in the l ¼ 1 and
l ¼ 2 plots.

To the left of the g1 avoided-crossing ridge, the modes are
pure p-modes with no g-mode component. Modes between
the g1 ridge and the g2 ridge are mixed modes, with their
centermost radial node having the phase characteristics of a
g-mode (Unno et al. 1989) and the rest of their nodes having
p-mode phase characteristics. Note that throughout our dis-
cussion of mode bumping we use the nomenclature of Scuflaire
(1974), where the radial order n is computed as the difference
between the number of p-mode–like nodes and the number of
g-mode–like nodes. This nomenclature provides a unique
radial-order identification for most modes. In the region be-
tween the g1 and g2 ridges, for example, an n ¼ 3 mode has
one g-mode–like node, nG ¼ 1, and four p-mode–like nodes,

Fig. 11.—Similar to Fig. 10, except for l ¼ 1 p-mode frequencies.

Fig. 12.—Similar to Fig. 10, except for l ¼ 2 p-mode frequencies.
Fig. 10.—Nonadiabatic l ¼ 0 p-mode frequencies for the models along the

1.706 M�, Z ¼ 0:04 evolutionary track are plotted as a function of k, where k
is a parameter, defined in the text, that is related to the arc length distance the
star travels in an H-R diagram (see Fig. 13). The vertical line corresponds to
the model that has the lowest �2.

Fig. 13.—H-R diagram showing the evolution of a 1.706 M�, Z ¼ 0:04
model. The location of � Boo and the model with the minimum �2 are indi-
cated. Numbers label the corresponding values of k along the track.
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nP ¼ 4, where n � nP � nG. As the star evolves, nG increases
and the g-mode mixing extends to higher frequencies.

Figure 11 shows that as the star evolves its acoustic cutoff
frequency decreases. We also see that as the star evolves its
nonradial (i.e., l > 0) n ¼ 1 mode frequency increases.

In Figure 14 we show an enlarged section of Figure 11
(l ¼ 1). The avoid-crossing ridges are now fully resolved.
Following a mode as k increases, the frequency of a mode
decreases as the radius of the star increases. Nearing an
avoided-crossing ridge, the mode’s frequency quickly in-
creases (is bumped by a mode below) and approaches the fre-
quency of the next higher (frequency) mode. It narrowly
avoids crossing through the frequency of the next mode and
veers sharply away, resuming its move toward lower fre-
quencies. The next higher mode is now itself bumped and
quickly increases in frequency. The avoided-crossing ridges
propagate in this manner upward to higher frequencies. As
the mode evolves through an avoided-crossing ridge the
character of the nodes changes while the radial order remains
constant: the number of g-mode–like and p-mode–like nodes
both increase by one.

In the region to the left of the g1 ridge the spacing between
the modes for a given model is relatively even, and to the
right of the g1 ridge the spacing becomes more and more
irregular as one crosses more avoided-crossing ridge lines.
The frequencies of modes near the avoided-crossing ridges
are squeezed together.

Mode bumping adds a unique and identifiable signature to
the oscillation spectra of evolved models. Unless a very fine
grid of models is computed, the quickly changing frequencies
of the modes as they are bumped are difficult to track. This is
especially true of the l ¼ 2 modes for stars near main-sequence
turnoff, where the avoided-crossing ridge lines are very steep.

Returning to Figure 14 and our analysis of � Boo, the age
corresponding to the model with the minimum �2 (2.393 Gyr)
is marked by a vertical line. The minimum �2 was determined
from the models in our grid and not from the models along the
1.706 M� track. Horizontal lines through the vertical line mark
the frequencies of all of the observed l ¼ 1 p-modes. The l ¼ 1
modes fall very close to the model values. The match is not
perfect, although shifting to a slightly lower age (2.388 Gyr)
does improve the match. The small discrepancy in age
(0.005 Gyr) between the best �2 age determined from the
model grid and the best age as estimated from Figure 14 is due
to the smaller time steps used to construct the 1.706 M� track
and represents the approximate age error in these stellar
models. It also demonstrates the need for high grid resolutions
when tracking and comparing model spectra to observed
spectra.

We would expect the two closely spaced l ¼ 1 p-modes in
� Boo’s observed spectrum to be located in frequency near
where an avoided-crossing ridge passes through the spectrum.
Extraordinarily, the frequency location of the two closely
spaced l ¼ 1 p-modes is indeed very close to where the g1
ridge passes through this model’s spectrum. The oscillation
spectra fit best a model that not only falls within 1 � of the
observed L, Teff , and Z values but also has a g1 ridge cutting
through the oscillation spectrum very close (within 0.005 Gyr!)
to where the two closely spaced l ¼ 1 p-modes are observed.
Although this is an exciting result, one notes quite clearly that
the observed spacing between these modes is much closer than
the models predict.

To summarize, based on Kjeldsen et al. (2003) mode
frequencies and our application of the QDG method, � Boo

is either a Z ¼ 0:04, 1.71M� star near 2.393 Gyr in age (post–
main-sequence phase) or a Z ¼ 0:04, 1.88 M� star near
1.663 Gyr in age (late–main-sequence phase). If mode bumping
is confirmed, then only the former solution can be valid. As-
suming that the uncertainties in the frequencies are approxi-
mately �1 �Hz, we estimate, from Guenther & Brown (2004),
that the mass and age determinations are accurate to 3%. Our
results are consistent with Di Mauro et al. (2003), who deter-
mine a mass range of 1.64–1.75M�. We obtain a slightly higher
age than Di Mauro et al., who get ages ranging from 2.37 to
2.39 Gyr, partly because we have compared the observed fre-
quencies to nonadiabatic model frequencies rather than adia-
batic frequencies and partly because our models have a slightly
lower helium abundance. The 1.71 M� solution is within 1 �
of the observed constraints on luminosity, effective tempera-
ture, and metallicity, and the 1.88 M� solution is within 2 �.

The models along the 1.706 M� evolution track have a very
thin convective envelope up through the model that best fits
the oscillation data. The star is evolving very quickly at this
phase of evolution and the convective envelope grows very
rapidly afterward, with models only 25 Myr farther along the
track having convective envelopes already reaching a depth of
0.81 radius fraction (i.e., a depth that is consistent with the
envelope depths of the models of Di Mauro et al.). The models
in our grid, which are based on the standard mixing-length
approximation, assume a mixing-length parameter (� ¼
1:633) calibrated to models of the Sun using the same basic
model physics as used to construct the models in our grid.

7. SUMMARY AND CONCLUSIONS

We have compared the oscillation spectra of a wide range of
stellar models to the observed oscillation spectrum of � Boo
and isolated two potential model solutions, one with Z ¼ 0:04,
M ¼ 1:706 M�, age ¼ 2:393 Gyr, and �2 ¼ 1:78, and the
other with Z ¼ 0:04, M ¼ 1:884 M�, age ¼ 1:663 Gyr, and
�2 ¼ 3:03. The 1.706 M� model has exhausted its hydrogen
core and is beginning its evolution toward the giant branch.

Fig. 14.—Enlarged section of Fig. 11. The vertical line marks the age of the
model with the minimum �2. The horizontal lines mark the frequencies of the
observed l ¼ 1 p-modes.
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The 1.884 M� model is still on the main-sequence but is
approaching hydrogen exhaustion. Uncertainties in the mass
and age determinations are estimated to be of the order of 3%
based on an uncertainty of �1 �Hz for the observed fre-
quencies. The 1.706 M� model solution is consistent with the
findings of Di Mauro et al. (2003).

The solution models, that is, their mass, age, and metal-
licity, were obtained using only the oscillation modes as
constraints. Both solutions, though, are consistent with the
observed constraints on luminosity, effective temperature, and
metallicity to within 1 � for the 1.706 M� model and to within
2 � for the 1.884 M� model.

Of the two possible models the 1.706 M� is the only valid
model if the observed mode bumping in two of the l ¼ 1 modes
(at 749 and 753 �Hz) is real. The lowest order avoided-crossing
ridge passes through the frequency spectrum of the l ¼ 1
p-modes for 1.706 M� models very near the frequencies of
the two suspected bumped modes. None of the frequencies of
the 1.884 M� model, within the observed range, are bumped.

Our 1.706 M� model of � Boo does not have a convection
zone, while a slightly more evolved model along the track
does. We speculate that � Boo does have a shallow convection
zone (under the assumption that its existence is necessary to
drive the oscillations) unresolved by our models owing to
uncertainties in the mixing-length approximation, the surface
abundances, and the low-temperature opacities. This in turn
suggests that the nonadiabatic corrections to the frequencies
due to turbulence, which are not included in our p-mode
calculation, may be small compared to the nonadiabatic cor-
rections due to radiation, which are included. Needless to say,
� Boo offers a critical test for models of stellar convection.

We show for � Boo that the nonadiabatic model frequencies
match the observed frequencies better than the adiabatic fre-
quencies. This result supports the physics of the nonadiabatic
calculation, which prior to our analysis of � Boo has only been
tested on the Sun, where it is known to improve the match
between the oscillation frequencies of the solar model and the
observations.

Our analysis of � Boo demonstrates the advantages of the
QDG method, which can quickly and unambiguously isolate
those models whose oscillation spectra closely match the
observed spectrum from within a multidimensional grid in
mass, age, and metallicity. The success of the method depends
on both the quantification of the differences between an ob-
served and model spectrum via our �2 formulation and the
existence of a very dense grid of models that allow interpo-
lation between model grid points.
The extensive and detailed grid enables us to study model-

to-model variations in the oscillation spectra of stars. The
avoided-crossing ridges, for example, are clearly discernible
in frequency versus age plots. The first avoided-crossing
ridge, in a nonradial oscillation frequency versus age plot,
separates modes that are unmixed to the left from modes that
are mixed. The frequency spacing between adjacent mixed
modes is not as even as for unmixed modes. As we demon-
strate for � Boo in this paper, by observing the irregular
spacings and their frequency position within the observed
spectrum and comparing their positions to the avoided-
crossing ridges, one can fine-tune the age determination.
We are looking forward to future seismic observations from

MOST (Walker et al. 2003; Green et al. 2003) and COROT
(Baglin et al. 2002). At the time of this writing MOST has
already begun collecting seismic data on Procyon and is
scheduled to collect data on � Boo later in 2004. COROT is
scheduled to be launched sometime after 2005. With the suc-
cessful application of even the limited stellar oscillation data
obtained from the ground, we hope future satellite missions of
increased sensitivity and duration will be proposed to tackle
what we believe is the next important step in asteroseismology,
the study of the oscillation spectra of stars in clusters.

This work was supported in part by an NSERC grant to
D. B. G. The computations were carried out at Saint Mary’s
University’s Institute for Computational Astrophysics.
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