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ABSTRACT

We have developed a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and
radial pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude
in order to compare them with observed light curves. Previous multi-dimensional calculations were prevented
from reaching full amplitude because of drift in the radial coordinate system, due to the algorithm defining radial
movement of the coordinate system during the pulsation cycle. We have removed this difficulty by defining our
radial coordinate flow algorithm to require that the mass in a spherical shell remain constant for every time step
throughout the pulsation cycle. We have used our new code to perform two-dimensional (2D) simulations of the
interaction of radial pulsation and convection. We have made comparisons between light curves from our 2D
convective simulations with observed light curves and find that our 2D simulated light curves are better able to
match the observed light curve shape near the red edge of the RR Lyrae instability strip than light curves from
previous one-dimensional time-dependent convective models.

Key words: convection – hydrodynamics – methods: numerical – stars: oscillations – stars: variables: general –
stars: variables: RR Lyrae

1. INTRODUCTION

Classical variables stars such as Delta Cepheids and RR
Lyraes have long played an important role in astronomy as
distance indicators on galactic and extragalactic scales for
Population I and Population II stars, respectively. RR Lyrae
provide an independent test of the classical Cepheid distance
scales for nearby galaxies (e.g., Magellanic Clouds and M31,
Pritchet & van den Bergh 1987; Storm 2006), and are also used to
calibrate secondary distance indicators such as globular cluster
luminosity functions (Di Criscienzo et al. 2006). Combining
the location of the main-sequence turnoff in the HR diagrams of
globular clusters with evolutionary models provides estimates
of ages of globular clusters and puts constraints on stellar ages.
The age estimates of globular clusters, which are impacted by
accurate distances, place constraints on cosmological models.

Thus, understanding variable stars, and in particular RR Lyrae
variables, is important for many aspects of astronomy and for
constraining some internal characteristics of stars such as the
role of convection. To gain a full understanding of variable
stars, models must be compared with observations. Much work
toward comparing models, nearly all one-dimensional (1D), and
observations have been done and considerable progress has been
made. However, there are some issues remaining. In particu-
lar the current 1D models for the interaction between time-
dependent convection and radial pulsation have difficulties re-
producing observed properties for cool RR Lyrae variable stars
(Marconi 2009). The current work explores the interaction of
convection and radial pulsation by directly simulating the con-
vection in a manner similar to that used to hydrodynamically
study solar convection (e.g., Stein & Nordlund 1998; Nordlund
et al. 2009). We will make comparisons of our full amplitude,
multi-dimensional, convective RR Lyrae models with obser-
vations of RR Lyrae variables in M3. In the next section we
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introduce the observations of RR Lyrae stars to which we will
compare our models.

1.1. Observations of RR Lyrae Stars

The extensive observational efforts on RR Lyrae stars has
shown that they have relatively constant mean magnitudes,
and thus luminosities across the instability strip; typical values
for the luminosity of RR Lyrae stars are from 40 to 70 L�
(e.g., Cacciari et al. 2005 for the RR Lyrae variables in
M3). Cacciari et al. find an average mass for these stars of
0.71 ± 0.03 M�, however they mention that there is considerable
uncertainty associated with the masses of RR Lyrae stars and
that determining masses from double mode pulsators favor
masses on the order of 0.74 M�, while determining masses
from evolution favor masses around 0.68 M�.

There are uncertainties in measuring magnitudes and col-
ors in RR Lyrae, as for all stars, from instrumental limitations,
reddening, and atmospheric effects, for example. For variable
stars in particular there are additional uncertainties with conver-
sion of colors to effective temperatures of the equivalent static
star. Observationally measured color indices are transformed us-
ing color-effective temperature relations, which are provided by
grids of static atmosphere models. Thus, how the color-effective
temperature relations for pulsating stars relate to those of static
models is an issue. The color of an RR Lyrae variable changes
throughout the pulsation cycle; at which phase should the color
be measured or using what sort of average? The usual procedure
is to compute a mean color index. This can be done by either
computing the averages with the magnitudes themselves, the in-
tensities, or the differences between magnitudes or intensities.
Sandage (1990) and Bono et al. (1995) have both explored dif-
ferent methods for obtaining mean colors to represent those
of the static star. While Sandage approached this empirically,
and Bono et al. theoretically, both find similar methods to be
best. Intensity averages of B and V separately plus some sort
of amplitude-related correction reproduce the equivalent static
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colors reasonably well. We will be comparing mostly with ob-
servations by Cacciari et al. (2005) of M3 RR Lyrae variables,
who use the method developed by Bono et al. (1995).

Knowing the observational location of the RR Lyrae instabil-
ity strip is important for validation of theoretical models. Mov-
ing from the cool edge to the hot edge of the instability strip we
first have the fundamental red edge (FRE), followed by the first
overtone red edge (FORE), the fundamental blue edge (FBE),
and then finally the first overtone blue edge (FOBE). Sandage
(1990) studied the globular clusters M3 and M15, deriving ef-
fective temperatures from observed colors for a number of RR
Lyrae variables in the fundamental and first overtone modes and
for non-variable stars in the horizontal branch. From Sandage’s
data we deduce the locations of the edges for M3 with the FRE,
FORE, FBE, FOBE having temperatures of 6170 K, 6900 K,
6900 K, 7590 K respectively. Since the edge effective tem-
peratures can depend on luminosity, these indicative effective
temperatures were chosen near the center of the distribution in
luminosity of the variable stars at each of the edges. Estimates
of the uncertainty in these temperatures are from 150 to 200 K
with the larger uncertainty for the higher temperatures. More
recently Cacciari et al. (2005) have determined effective tem-
peratures for RR Lyrae variables in M3 from which we find very
similar effective temperatures for the instability strip as those
from Sandage’s data, of 6150 K, 6900 K, 6700 K, and 7400 K
respectively for the edges with estimates for the uncertainty in
temperature of individual stars of about 100 K. One difference
of note between Sandage and Cacciari et al. is that the variables
from Cacciari et al. form a region with a width of about 200 K
where the first overtone and fundamental modes overlap while
Sandage’s data does not clearly indicate the presence of such a
region.

Another important observation for validation of theoretical
models is the variation of pulsation amplitude of RR Lyrae
variables across the instability strip. For fundamental mode
pulsators, cooler stars have lower radial pulsation amplitudes,
and hotter stars have higher amplitudes. For first overtone mode
pulsators, the amplitude of the mode forms a “bell” shape
(see Figure 14 and also Bono et al. 1997b, Figures 9–11 for
a theoretical depiction).

Finally, observed light curves can be compared with model
light curves. A large number of high quality RR Lyrae light
curves are available form Corwin & Carney (2001) which have
been previously studied by Marconi (2009) who, using their
1D nonlinear code, matched some of the available light curves.
Thus the choice of comparison with M3 allows us to compare
our observed light curves with many observed curves, and at
the same time with 1D models. The comparison of light curves
and in particular those of the cooler RR Lyrae variables near the
red edge of the instability strip will help to verify our approach
to modeling time-dependent convection as convection plays a
larger role in these stars.

1.2. Previous Models of RR Lyrae Variables

In our previous paper (Geroux & Deupree 2011, hereafter
referred to as Paper I) we outlined the current state of modeling
RR Lyrae variables, we will briefly touch on some of the more
important points here.

Gehmeyr (1992) used a version of Stellingwerf’s time-
dependent convective model (Stellingwerf 1982) with an adap-
tive scheme and was able to produce a red edge at roughly the
observed effective temperature. He notes that the effective tem-
perature of the red edge is dependent on the parameters used for

the convective model, and that the predicted temperature of the
red edge could vary by a few hundred degrees Kelvin depend-
ing on the values used for the convective model parameters. He
did have some difficulties, however; for example the theoretical
light amplitude-rise time relation he found was different in both
slope and zero point from the observed relation.

More recently Marconi et al. (2003) used the 1D, Lagrangian,
hydrodynamics code described by Bono & Stellingwerf (1994)
and Bono et al. (1997a, 1997b) to compute RR Lyrae models
to compare with the RR Lyrae stars observed in M3. In order
to fully specify the problem Marconi et al. needed to choose
a mixing-length parameter, and adopted both l/Hp = 1.5
and 2.0. They found that in order to match the boundaries of
the RR Lyrae gap in M3, they required two different mixing-
length parameters, one to obtain the observed blue edge location
(l/Hp ≈ 1.5) and the other to obtain the observed red edge
location (l/Hp ≈ 2.0). In addition the observed visual amplitude
as a function of B–V displays nonlinear characteristics, while
theoretical relations predict linear relationships. Marconi et al.
also mention that a mixing-length parameter of 2.0 produces
luminosities for horizontal-branch models that are brighter than
is observed by ≈0.08 ± 0.05 mag. Marconi (2009) finds that
their model light curves are unable to match simultaneously the
shape and amplitude of a cool RR Lyrae variable near the red
edge in M3.

The distillation of multi-dimensional convective phenomenon
to 1D is always accompanied by extra equations and/or pa-
rameters to approximate the effects of convective motions of
material in more than one spatial dimension. Deupree (1977a)
approached the interaction of convection and stellar pulsation
in a fundamentally different way using a two-dimensional (2D)
hydrodynamic code to directly following the convective flow
patterns. While Deupree (1977b, 1977c, 1980, 1985) was able
to successfully determine the observed edges of the RR Lyrae
instability strip, he was unable to compute full amplitude so-
lutions because his algorithm for moving the radial coordinate
allowed the radial zoning to drift over time. Consequently at
later times, the radial zoning did not cover the hydrogen ion-
ization zone adequately and the calculations were eventually
numerically unreliable. The algorithm Deupree employed for
the moving radial coordinate used the horizontal average of
the radial velocities at a particular radius as the grid velocity.
There has been some multidimensional work on the interaction
between convection and radial pulsation since then (Muthsam
et al. 2011; Mundprecht 2009; Gastine & Dintrans 2008, 2011),
but to date no models have been computed capable of producing
light curves which could be directly compared to observations.
The current work is designed to correct this. In Paper I we pre-
sented our moving grid algorithm which allows us to use the
interior mass as the radial independent variable while still using
the normal angular Eulerian coordinates of a multi-dimensional
spherical coordinates system.

2. ADDITIONS FOR NON-ADIABATIC MODELS

In Paper I we performed only adiabatic calculations to prove
the principle of forcing the radial coordinate system to move
in such a way to keep the mass in a given spherical shell the
same throughout the calculation. To perform full amplitude RR
Lyrae simulations for comparison with observations, we must
add radiative transport (using the diffusion approximation), a
more realistic equation of state, Rosseland mean opacities, and
a sub-grid scale model to our numerical code, SPHERLS. In
this section we will describe how these, as well as a few other
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minor changes and additions were made to SPHERLS since
Paper I.

2.1. Radiation Diffusion

Like most 1D codes, we include heating and cooling from
radiation using the radiation diffusion approximation. This ap-
proximation is used in linear and nonlinear codes alike. The
radiation diffusion approximation is valid when the changes in
density and temperature are small over the mean free path of
a photon. Near the surface however, the validity of the diffu-
sion approximation is questionable. However, Bendt & Davis
(1971) found a basic similarity between multi-frequency trans-
port and the transport from the diffusion approximation. More
recently Feuchtinger et al. (2000) compared a calculation which
used the diffusion approximation against a calculation which
used time-dependent radiative transfer and found only small
differences in the pulsation amplitude. In addition Kolláth et al.
(2000) explored the use of the radiation diffusion approximation
near the surface and concluded that differences between obser-
vations and models are not a result of this inadequate treatment
of the radiation transport. Because we are performing calcula-
tions that have large computational requirements, including any-
thing more sophisticated than radiation diffusion would likely
appreciably increase the computational requirements of an al-
ready highly computationally intensive simulation.

The radiation terms are converted to finite difference expres-
sions in the manner discussed in Paper I Section 3.2, and, ex-
cept for the opacity, use straight averages to compute interface
quantities from zone center quantities and vice versa. To ob-
tain the opacities at interfaces, an average between adjacent,
zone centered opacities weighted by the inverse of the flux
(Christy 1964) as

1

κi+1/2
=

T 4
i+1

κi+1
+ T 4

i

κi

T 4
i+1 + T 4

i

(1)

is used, where i indicates the radial zone. Another exception to
the method described in Section 3.2 of Paper I is that various
quantities used in the energy equation are now properly time
centered. In particular, T n+1/2 = (1/2)(T n+1 + T n) is used
instead of Tn, where n denotes the time step, and the pressure,
opacity, and energy, which depend on the temperature through
the equation of state (described in Section 2.3), are treated in
the same way. The use of T n+1, as it is initially unknown, is
made possible by an implicit solution described in Section 2.4.
Finally these terms also affect how the initial model is generated,
as presented in the next section.

2.2. Changes to Starting Model Generation

In Section 3.1 of Paper I we described the procedure for gen-
erating the starting model considering hydrostatic equilibrium
for the adiabatic case. With the addition of the radiation diffu-
sion terms to the energy equation an additional constraint can
be applied to the starting model, by requiring that it also be
in thermal equilibrium so that the luminosity is constant. This
additional constraint removes the requirement for an energy pro-
file from an outside source and greatly changes the procedure
for generating the spherical starting model. To create a starting
model including this new constraint the hydrostatic and thermal
equilibrium constraints are applied to the conservations laws,
resulting in

GMr

4πr4
+

∂P

∂Mr

= 0 (2)

and
−64π2σr4

3κ

∂T 4

∂Mr

− L = 0, (3)

where L is the static model luminosity. These two equations
are used to define the structure of the static, fully radiative
initial model by starting at the surface with boundary conditions
and integrating inward in a way that is consistent with the
conservation equations. The temperature in the surface zone
is determined using the relation T 4 = (3/4)T 4

eff(τ + 2/3) at an
optical depth τ = 0 so that

TN = 2−1/4Teff, (4)

where the subscript N indicates the surface zone. The mass
zoning is specified by choosing an initial ΔMr . The ΔMr

for the next zone is then the initial ΔMr increased by a
chosen percentage. This percentage can be changed at various
temperatures within the model to achieve a zoning tailored to
capture the steep gradients in the hydrogen ionization zone while
keeping the total number of radial zones reasonable. Our models
typically have about 150 radial zones, about 10 of which are
above the photosphere (τ < 2/3). We performed a few cases
with about 300 radial zones and found little difference. One
might be tempted to set the mass outside the model to zero,
(ΔMr )N+1 = 0; in practice the starting models have densities
of about 10−10–10−11 gm cm−3 in the surface zone, while real
stars have atmospheres with densities profiles that fall off with
exponential tails toward zero, so that there is some additional
mass outside the model at densities lower than the surface zone.
To account for this, (ΔMr )N+1 = α(ΔMr )N with α = 0.2,
similar to 1D nonlinear calculations by Stellingwerf (1975) and
Gehmeyr (1992).

The surface radius is calculated using the Stefan–Boltzmann
law from the temperature and luminosity. The pressure in the
surface zone, PN , is calculated from Equation (2). Since r and
Mr are known at the outer boundary and ∂Mr = (1/2)[(ΔMr )N +
(ΔMr )N+1] is known, the only unknown is ∂P . PN is determined
from ∂P by setting the pressure at the outer interface to zero. At
the outer interface of the surface zone, with our finite difference
scheme, PN+1/2 = (1/2)(PN + PN+1) = 0 so that PN = −PN+1
and ∂P = PN−PN+1 = 2PN . We determine the density from the
known temperature and pressure in the surface zone by iterating
in the equation of state. The specific internal energy is obtained
from the equation of state table and the opacity is obtained from
another table for the known density and temperature.

Once the surface zone is fully specified, Equations (2) and (3)
are integrated into the star until the desired depth is reached,
determined by reaching a chosen temperature (usually 3 million
K, about r = 0.1RN+1/2).

2.3. Equation of State and Opacities

This work primarily uses the OPAL opacities (Iglesias &
Rogers 1996) in combination with low temperature opacities
from Alexander & Ferguson (1994). For comparison purposes
the King Ia table (Cox & Tabor 1976) opacities are also used.
The equation of state in all cases is from Rogers et al. (1996).
2D cubic spline interpolation in the log is used to create a fine
rectangular grid of opacities and equation of state variables to
facilitate fast linear interpolation by SPHERLS.

2.4. Implicit Solution

The first nonlinear calculation of an initial value problem for
a radially pulsating RR Lyrae star was performed by Christy
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(1964), who solved the energy equation implicitly. Christy
realized that the implicit solution of the energy equation was
required for the calculations to be run stably with a reasonable
time step. For an explicit calculation, which involves only the
nearest neighboring zones, the time step must be sufficiently
small that energy change physically comes from only those
nearest neighbors. With our use of the radiation diffusion
approximation, this means that energy flow due to radiation
can traverse only one zone in a time step. In the optically thin
zones, the diffusion rate is high because the opacity is so low,
producing an impractically short time step. The way around this
serious restriction is to use an implicit method which couples
the changes in a particular zone to the changes in all zones by
solving the coupled set of finite difference energy conservation
equations for all zones simultaneously.

The procedure for the implicit method is described in detail in
Geroux (2013) but in summary we are using a Newton–Raphson
technique to solve for the temperatures at the new timestep. We
start with a guess for the temperature at the new time step,
expand the finite difference expression in a Taylor series in the
new temperature in every zone, keeping only the linear terms,
solve the linearized equations, and repeat the process until the
linear corrections are below some threshold. We have chosen
the threshold so that all the relative corrections are smaller than
5 × 10−14, near machine precision. Solving the linear equations
is done using the Krylov subspace method, implemented in the
PETSc library (Balay et al. 2012). This allows one to solve a
large system of linear equations, quickly and accurately utilizing
the message passing interface (MPI) to solve a single system
using many processors at once.

2.5. Subgrid Scale Turbulence Model

A subgrid scale turbulence model is used to convert kinetic
energy at the small scale back into thermal energy. In nature
this is done by intermolecular forces or viscosity. In stars this
conversion would happen on scales far smaller than those of
the computational grid by many orders of magnitude. Subgrid
scale turbulence models make the assumption that the large
scale flows can be used to model how the subgrid scale feeds
back to the large scale. In practice there are many variations on
how one can do this. Since our calculations are computationally
limited we choose to use a simple model based on work by
Cloutman (1991) and described in Deupree (1996) and similar
to Scannapieco & Brüggen (2008). Scannapieco & Brüggen
used a similar model in a completely different regime to model
active galactic nucleus driven turbulence in galaxy clusters, with
the main difference between his model and that of Cloutman
being the addition of a transport equation for the eddy length
scale.

With these assumptions, the final forms of the momentum and
energy conservation equations, including the radiation diffusion
and the sub-grid-scale model, in spherical coordinates are
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Figure 1. The upper panel shows the log of peak kinetic energy while the lower
panel shows the periods in hr. This figure is for the calculation set using OPAL
opacities, a mass of M = 0.7 M�, and with the radial pulsation initiated at
2 km s−1.

and

μt = C2l2ρ√
2

(∇v : [∇v + (∇v)T ])1/2. (15)

In the above equations 〈ρ〉 denotes the horizontal average
density and K is the subgrid scale turbulent kinetic energy
density. Equation (15), from Smagorinsky (1963), is the simplest
method to calculate an eddy viscosity coefficient where l is the
length scale of a grid zone, and C is a constant of approximately
0.17 based on comparison between calculations and experiments
by Deardorff (1971). The expression μt = AtρLK1/2 from
Cloutman (1991), where L = 3.75 × l and At is a constant
of 0.117, is used to solve for K from μt . The values of the
constants Dt = 1.4, Prt = 0.7 (the turbulent Prandtl number)
are from Cloutman (1991). Equations (5)–(8) with the mass
conservation equation given in Paper I represent the final form
of the conservation equations used.

3. 1D MODELS

As a precursor to the multi-dimensional calculations we
have calculated a number of 1D (radiation only) models.
These models serve two major purposes. They were helpful
in examining the parameter space or model properties, and
they provide a fiducial point to compare with the 2D and
three-dimensional (3D) convective models. A basic set of 1D
calculations used for general information is summarized in
Table 1. Further 1D models were computed to compare with
specific 2D and 3D calculations as needed and are presented
in the next section. Each calculation set in Table 1 contains a
number of models computed at temperatures of 6000, 6100,
6200, 6300, 6500, 6700, and 6900 K. All calculations have the
same composition of X = 0.7 and Z = 0.001, which was chosen
to match the composition of the King Ia opacity table (Cox &
Tabor 1976). All calculations use the OPAL equation of state
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Figure 2. Similar to Figure 1 except the radial pulsation was initiated at
10 km s−1 instead of 2 km s−1.

Table 1
One-dimensional Calculation Set Parameters

(u0)surf.init. Opacity Table Mass
(km s−1) (M�)

2 KING Ia 0.575
2 OPAL 0.575
2 KING Ia 0.7
2 OPAL 0.7
10 OPAL 0.7

Note. Each set has models calculated at temperatures of 6000,
6100, 6200, 6300, 6500, 6700, and 6900 K and a composition
of X = 0.7, and Z = 0.001.

from Rogers et al. (1996). The calculations were computed at
two different masses (0.575 and 0.7 M�), with two different
opacity tables (King Ia opacity table and the OPAL opacity
table; Iglesias & Rogers 1996), and with two different initial
surface velocities for the radial pulsation velocity profiles. The
relative radial velocity profiles were taken form linear, adiabatic
calculations of the radial eigenfunctions made with the LNA
code (Castor 1971).

The peak kinetic energy of the radial pulsation is generally
used for measuring the growth or decay of a mode. The cessation
of peak kinetic energy growth indicates when the radial pulsation
reaches full amplitude. Figures 1 and 2 show the growth of the
peak kinetic energy for models starting at a low initial pulsation
amplitude and at relatively large initial pulsation amplitude,
respectively. The top panels of these figures show the growth
of the peak kinetic energy averaged over three fundamental
periods. The average is meant to remove variations due to
contamination from the first overtone mode as this time interval
is approximately four first overtone periods (Christy 1964).
Though these calculations are initiated in the fundamental
mode, the initial linear mode is not strictly correct at higher
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nonlinear amplitudes and contamination from the first overtone
and probably from higher overtones occurs. High frequency
contamination usually disappears quickly as evident by the loss
of the high frequency noise in the light curves.

The bottom panels of Figures 1 and 2 show the period
as a function of time, as determined from the time between
every other peak in kinetic energy (there are two peaks in
the kinetic energy per period, one for expansion and one for
contraction). Interestingly we find that the models switch radial
pulsation modes. From the periods it is clear when the mode
changes from the fundamental to the first overtone, as there is
a large drop in the period to about 0.72 times the fundamental
period. The mode can also be discerned from the magnitude
of the peak kinetic energy when it levels off, although this
is not as direct an indicator as the period. It should be noted
that many models, particularly those at low temperature, that
change from the fundamental to the first overtone also change
back to the fundamental at later time. The time at which
this second transition begins is later for higher temperature
models.

From examining these figures and similar figures for the other
simulation sets listed in Table 1, three main observations are
noted. First, for 0.575 M� models growing from a low ampli-
tude radial pulsation, the King Ia and OPAL tables have very
different temperatures at which they switch from the funda-
mental to the first overtone mode. The radial pulsation calcu-
lations using the OPAL tables all grew into the first overtone
in the range of temperatures explored, while the calculations
using the King Ia table grew into either the fundamental or first
overtone with the switch between the two modes occurring be-
tween 6500 (fundamental) and 6700 (first overtone). Second, at
higher mass, for models started at low amplitude, the switch be-
tween the first overtone and fundamental modes occurs at about
the same temperature between 6200 (fundamental) and 6300
(first overtone) for both the King and OPAL opacity tables.
Finally, for models starting at a higher amplitude, which en-
courages the mode to remain the fundamental mode it started in
more than the low amplitude calculations, the temperature at
which the mode switches is increased (compare Figures 1 and 2).
For the OPAL tables with a mass of 0.7 M� starting with an
initial surface radial velocity of 2 km s−1, the switch between
modes occurs between 6100 (fundamental) and 6200 (first over-
tone). For the calculations initiated at 10 km s−1 the switch oc-
curs between 6500 and 6700 K. If calculations are initiated at
even higher radial velocities of 20 km s−1, the 6700 K model re-
mains in the fundamental mode, while the 6900 K model decays
and would likely end up in the first overtone if given enough
time.

The causes for these various mode switches depend at least on
the model effective temperature, model mass, the model initial
velocity amplitude, and the details of the opacity table. There is
no reason to believe, while interesting, that these are the only
properties which influence this behavior. Further exploration of
this phenomenon is beyond the scope of this work. However,
these studies do allow us to determine the radial pulsation
amplitude to begin with for each temperature and opacity to
arrive at full amplitude in the least amount of computational
time, something of interest in the 2D and 3D simulations.

4. INTERACTION OF CONVECTION AND PULSATION

Here we extend the work to 2D models. These models include
convection using 2D versions of the conservation equations
together with the constitutive and radial grid flow equations

(see Paper I for details of the radial grid flow equation). This
formulation of convection allows the convective flow to arise
naturally from the conservation equations, albeit only in two
spatial dimensions. The convective motions grow in regions
unstable to convection from small deviations from the spherical
model resulting from machine round off errors. In regions stable
to convection and which are sufficiently far from convectively
unstable regions, the gas motions, other than radial pulsation,
remain small, near machine precision. The convective velocities
discussed in this and the proceeding sections are measured from
the radial and θ velocities with the radial grid velocity subtracted
from the radial velocity. The intent of defining the convective
velocity in this way is to obtain a measure of the convective
motion without including the radial pulsation motion; however,
this definition of the convective motion may not strictly measure
actual convective velocities because none of the motion is
strictly Lagrangian.

Our computational domain covers a pie slice of 6◦ and extends
down to more than 90% of the star by radius. The angular
size of this region was chosen from an examination of 3D
simulations (to be presented in an upcoming paper) of various
angular extents in which we found that 6◦ is large enough for
more than one 3D convective cell to form, ensuring that the
convective cells may grow to their preferred size and are not
limited by the extent of the simulation. In these simulations
we use 20 angular zones and approximately 150 radial zones.
The choice of 20 angular zones is for later comparison with 3D
calculations which will have 20 angular zones in both angular
directions. The number of angular zones in the 3D calculations
was a compromise between completing the calculations in a
reasonable amount of time and resolution. The radial zoning
was chosen so that there was at least one zone in the hydrogen
ionization region at all times which in turn requires quite fine
zoning. As a result the cell aspect ratio at the surface is about 65.
This coarse angular zoning will not be adequate to model the fine
detail of the convection but appears to be adequate for modeling
the net effects of convection on the radial pulsation. The radial
extent was chosen so that the details of the nuclear reactions
could be ignored while still producing the correct observational
radial pulsation periods.

We have computed a number of 2D models at effective
temperatures ranging from 6200 to 6900 K in steps of 100 K.
These models all have a mass of 0.7 M�, a static model
luminosity of 50 L�, and use the OPAL opacities and equation
of state. The composition of all 2D models was chosen to be
X = 0.7595, Z = 0.0005. The models had radial pulsation
initiated in the fundamental mode from the linear eigenfunctions
scaled to have a surface radial velocity of either 10 km s−1 or
20 km s−1. The mass, luminosity, and composition were chosen
to be representative of RR Lyrae variables in M3 as follows.
The mass and luminosity were selected by taking an average
of RR Lyrae masses and luminosities in M3 as determined by
Cacciari et al. (2005). The composition’s helium mass fraction,
Y = 0.24, is the same value used by Marconi & Degl’Innocenti
(2007) for comparison of 1D models to M3’s observed RR Lyrae
light curves. The metal mass fraction selected was slightly larger
than that assumed by Bono et al. (1997b) of Z = 0.0004 for M3
while lower than the value used by Marconi & Degl’Innocenti
(2007) of 0.001. The goal is to compare the full amplitude
light curves obtained with this multi-dimensional approach to
convection with both the observed light curves and the light
curves previously computed using the mixing length theory
of convection. For such a comparison modest composition
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Figure 3. Convective time dependence of 6300 K effective temperature model.
From top to bottom: the maximum of the convective flux through out the model,
the maximum over all radial shells of the ratio of the convective luminosity to
the total luminosity, the absolute visual magnitude, and the surface radial grid
velocity.

variations such as these play only a minor role. Ideally one would
like to compute a number of models at various compositions,
masses, and luminosities for comparison with observations.
However, the computational requirements to cover this large
parameter space with even modest resolution (e.g., all possible
combinations of two values of the four parameters of mass,
luminosity, Y, and Z results in 16 effective temperature sets)
with this approach to convection is prohibitive, and beyond the
scope of the present work.

Early work by Tuggle & Iben (1973) theorized that even
the presence of time independent convection would quench
pulsation, although their work did not obtain negative growth
rates even at very low effective temperatures. While time
independent convection greatly reduced the growth rate near
the red edge, it did not become negative (which is required for
the decay of a mode). Later work by Deupree (1977a) showed
it was not that convection carried a large portion of the flux all
the time, negating the kappa mechanism, but instead it is the
time dependence of convection that is important for damping
pulsation. This time dependence of convection on pulsation
phase does more than simply remove the driving mechanism
from the ionization zone, it turns this zone into a damping region
if convection carries a sufficient amount of the total flux at the
right pulsation phases.

The present work also explores the time dependence by
computing the convective flux, the amount of energy carried
radially by convection per unit area. The approach to calculating
this quantity is to assume that the amount of energy carried by
convection is related to the difference between the temperature
of a given cell and the horizontal average of the temperature,
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Figure 4. Similar to Figure 3 except for the 6700 K effective temperature model.

ΔT, multiplied by the specific heat at constant pressure, cP, and
the mass flux across the outer radial interface of the shell. This
results in

Fconv. = cP ρ(vr − vr0)ΔT . (16)

Equation (16) may not be entirely correct as it assumes that
the energy deposited or removed from the surroundings by
the rising or falling material is a result of the material reach-
ing thermal equilibrium with the surroundings. This may not
be true if the material rises or falls again before it equilibrates
to the horizontal average temperature. It is also assumed that
the horizontal pressure variation is negligible, which, while not
exact, is not a bad approximation. While Equation (16) may not
be exact it should provide a good relative measure of the energy
carried by convection for comparisons among the various mod-
els. It should be noted that this equation is used in analysis only
and is not part of the numerical simulation.

Figures 3 and 4 show how the maximum convective flux
throughout the model varies with time for the 6300, and
6700 K models respectively. In the second pane from the top
is plotted the maximum value over all radial shells of the ratio
of convective luminosity to the total luminosity. Also shown
in the bottom two panels are the light and velocity curves. The
determination of the bolometric corrections required to make the
light curve will be discussed in the next section. As the model
contracts to minimum size, the convective flux grows. While
the model begins to expand the maximum convective flux drops
steeply. This is the same time dependence that Deupree found
to quench pulsation at the red edge of the RR Lyrae instability
strip. It is also clear when comparing the two figures that the
maximum convective flux is greatly reduced in the hotter model
so that the role of convection becomes less important as the
model’s effective temperature increases. It is noted from the
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Figure 5. The top panel shows the six period average of the peak convective
flux for 6500 K model. The bottom panel shows the growth of the log of the
peak kinetic energy averaged over three periods, for the same model.

second panel from the top of Figures 3 and 4 that the largest
fraction of the energy transported by convection is about 64%
and 40% for the 6300 K and 6700 K models respectively. This
is significantly less than the nearly 99% that one would infer
from the standard mixing length theory. This division of the
energy flow into convective and radiative components is quite
different from that predicted by the local mixing length theory
because the horizontally averaged opacity can be far from the
opacity of the horizontally averaged temperature (Deupree &
Varner 1980), as assumed in the local mixing length theory.

Interestingly, we find the strength of convection increases
with increasing pulsation amplitude. We show this in Figure 5
for the 6500 K model. The flux in Figure 5 is computed in
the following manner: for each time we compute the maximum
convective flux in the mesh, then we find the highest value of
this maximum convective flux over a single pulsation period,
and finally we compute one point in Figure 5 by taking the
average of the highest values for six consecutive periods. The
average in the convective flux is mainly to remove contamination
from the first overtone mode, as done in the calculation of the
average peak kinetic energies. From Figure 5 it is obvious that
as the pulsation amplitude increases, so too does the strength of
convection. This is possibly a result of the hydrogen ionization
zone sweeping through more of the star as the pulsation
amplitude increases. Convection can then penetrate deeper and
include more mass and thus convection is able to carry more
energy. However, the interaction of convection and pulsation is
complex and this relationship may be more complex than such
a simple explanation. The maximum convective flux displayed
in Figure 5 is the maximum throughout the model, occurring in
only one radial zone, which is maintained for only a small part
of the pulsation cycle (see Figure 3 or 4) and remains very low
throughout the rest of the pulsation cycle.

Growth rates of the peak kinetic energy of pulsation were
calculated for all 2D models and their 1D model counterparts.
These rates are compared in Table 2. Models used to calculate
growth rates were all initiated at the same surface radial velocity
of 10 km s−1. The 1D models given in this table were computed
to match the 2D models in all respects except that the 1D models

Table 2
Peak Kinetic Energy Growth Rates in % Increase per Period for

1D Fully Radiative Models, η1D, and 2D Convective Models,
η2D, and Their Difference

Teff η1D η2D (η1D − η2D)
(K)

6200 2.43 1.27 1.16
6300 2.23 1.15 1.08
6400 1.98 0.98 1.00
6500 1.67 0.74 0.93
6600 0.79 0.30 0.49
6700 0.93 0.32 0.61
6800 0.24 0.04 0.20

Table 3
Properties of 2D Models

Model Tteff L M Π AV Mode
(K) (L�) (M�) (hr)

T6300 6300 50 0.7 15.09 0.56 RRab
T6400 6400 50 0.7 14.32 0.64 RRab
T6500 6500 50 0.7 13.57 0.75 RRab
T6600 6600 50 0.7 12.89 0.83 RRab
T6700 6700 50 0.7 12.24 1.01 RRab
T6800 6800 50 0.7 11.63 0.86a RRab
T6900 6900 50 0.7 8.26 0.51 RRc

Note. a This is a lower bound for AV as the 6800 K model has not yet reached
full amplitude.

are fully radiative while the 2D models allow hydrodynamic
convection. As the effective temperature becomes cooler the
difference in growth rates between the fully radiative 1D models
and the 2D convective models becomes larger.

We had hoped to clearly show that convection quenches
pulsation at the red edge of the instability strip by noting a
decrease in the peak kinetic energy (negative growth rate) of
models cooler than some temperature. However, as the models
became cooler convection became stronger, and eventually
the convectively unstable region penetrated well below the
hydrogen and helium ionization regions. Once this happened
there was a net change in the global model structure and
hence in the potential energy of the model. This change in
potential energy would require a large amount of time (at least
relative to the times covered by these simulations) to return the
model to some sort of equilibrium underlying the pulsation.
This adjustment significantly affects the use of the peak kinetic
energy as a measurement of the growth or decay of a pulsation
mode. The 6200 K model did not reach full amplitude before
the convectively unstable region penetrated below the ionization
zones. The 6300 K model appeared to be at nearly full amplitude
just before the convection penetrated below the ionization zones,
as the growth of the peak kinetic energy of the pulsation mode
had slowed considerably. Models with effective temperatures
6400 K and hotter reached full amplitude modes without this
deeper penetration.

5. FULL AMPLITUDE SOLUTIONS

We have computed a number of 2D models to full amplitude
for the fundamental mode. These are listed in Table 3. The initial
velocities were determined from the 1D calculation for the same
static model as indicated in the previous section.

Models hotter than 6400 K were initiated with 20 km s−1

surface pulsation velocity while models at temperatures of
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Figure 6. A comparison of 1D fully radiative and 2D convective model peak
kinetic energies for 6500 K models.

6400 K and cooler were initiated at the 10 km s−1 surface
velocity. The higher initial radial pulsation velocity was chosen
because it shortened the time required to reach full amplitude,
and was required by hotter models to remain pulsating in the
fundamental mode. If models closer to the FBE (6600 K and
hotter) are initiated at the lower velocity, then their pulsation
amplitude decays and eventually the pulsation mode switches
into the first overtone pulsation mode. We note that the mode
may switch back to the fundamental given sufficiently long
computational time for these hotter models. This was illustrated
in the 1D models in Section 3 and is also seen in the 2D
simulations.

Even when initiated with a surface pulsation velocity of
20 km s−1 the pulsation amplitude of the 6900 K model
decayed, and presumably it would eventually switch to the
first overtone mode. At 10 km s−1 the pulsation amplitude also
decayed and the pulsation mode switched to the first overtone
mode and remained at full amplitude. The 6900 K model
referenced in Table 3 was initialized with the linear fundamental
eigenfunction mode scaled to a surface velocity of 5 km s−1.
The mode slowly switched from the fundamental mode to the
first overtone as the pulsation amplitude grew until it reached
full amplitude in the first overtone mode.

Models cooler than 6500 K were initiated at the lower,
10 km s−1 velocity to ensure that their pulsation amplitude
would grow to the full amplitude rather than decay from
higher amplitude to their equilibrium pulsation amplitude or
full amplitude. If started at a pulsation amplitude higher than
the equilibrium pulsation amplitude, the assumption of a linear
eigenfunction for the mode is less valid, and contamination from
other modes is more of a concern. An example of the growth
of the peak kinetic energy with time is shown in Figure 6 for
a 2D convective model along with a 1D fully radiative model
with otherwise similar model parameters, both with an effective
temperature of 6500 K. It is clear that convection limits the
amplitude of pulsation as compared to the fully radiative models.

The main reason for computing full amplitude radial pulsa-
tions is to compare computed model results with observations.
To this end we have computed visual light curves from model
absolute bolometric light curves using a table of bolometric
corrections as functions of log10 g and Teff from Bessell et al.
(1998) model atmospheres. Our model’s absolute bolometric
magnitudes are converted to the absolute visual magnitude at

Table 4
Properties of Choice M3 Variables as Given in Cacciari et al. (2005)

and the Models for Which They are the Best Match

Star Tteff L M Π AV Mode Model
(K) (L�) (M�) (hr) Matched

v120 6300 49.9 0.68 15.36 0.44 RRab T6300
v19 6266 49.3 0.70 15.17 0.45 RRab T6300
v48 6283 58.7 0.67 15.07 0.61 RRab T6400
v93 6446 50.2 0.67 14.46 0.73 RRab T6500
v10 6469 51.4 0.73 13.67 0.88 RRab T6600
v92 6712 49.9 0.71 12.07 1.14 RRab T6700
v125 6829 49.4 0.71 8.40 0.41 RRc T6900

individual points in the light curve by linearly interpolating in
the table of bolometric corrections to the effective temperature
and gravity of our model at that point in the light curve. Spot
checks in the models show that horizontal variations in the ef-
fective temperature tend to be less than 30 K. This effectively
assumes that the bolometric correction in the pulsating model is
the same as in a static model at the same effective temperature
and gravity. Applying the bolometric correction acts to increase
the amplitude of the visual light curve over the bolometric light
curve, as the bolometric correction is largest at maximum light,
and smallest at minimum light. This was also found by Kovacs
& Kanbur (1998, see their Figure 3). We have not included the
acceleration from the surface velocity, as it occasionally leads to
unrealistic values of the effective gravity. We have checked the
difference between including and not including this acceleration
in cases where it does not result in unrealistic effective gravities,
and omitting it does not substantially effect the results. Kovacs
& Kanbur have shown that the error introduced by neglecting
even the variation of the effective gravity with pulsation phase
is negligible as the effective temperature plays the largest role
in determining the variation of the bolometric correction over a
pulsation cycle.

We have computed a number of synthetic visual light curves in
the way described above. The 2D models provide absolute bolo-
metric magnitudes at regularly spaced time intervals of 600 s,
as this is when we take model dumps in our simulations. We
then applied bolometric corrections to these absolute bolomet-
ric magnitudes over approximately seven pulsation cycles at
full amplitude. We then phased these regularly spaced absolute
bolometric magnitudes in a manner similar to the processing
of the observed light curves. This produces a number of points
from the seven different cycles of pulsation all overlaid on the
same cycle of pulsation. The vertical spread of light curve points
indicates the extent of variation of the light curve over the se-
lected cycles. Figures 7–13 show these synthetic light curves
as compared to observational light curves of selected RR Lyrae
variables from M3 listed in Table 4.

The variables in Table 4 were selected from 89 observed
light curves provided by Cacciari et al. (2005) of both RRab
and RRc variables and phased. The phased light curves where
then duplicated for a second cycle for easier visual compar-
ison with the model light curves. These variables were se-
lected by comparing the individual model light curves directly
to all the observed variable light curves and selecting the best
match as determined from a Bayesian analysis conducted by
Michael Gruberbauer considering only the light curve shapes
and no model parameters (see Gruberbauer et al. 2012 for a
discussion of this technique with application to fitting solar os-
cillation modes and Gregory 2005 for a general introduction
to Bayesian analysis). To accomplish the fits, only two free
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Figure 7. 6300 K effective temperature model’s light curve compared to variable
star v120’s light curve using a distance modulus of 15.34. The vertical scale was
chosen to match the scale of the light curve figures of Marconi & Degl’Innocenti
(2007).
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Figure 8. 6300 K effective temperature model’s light curve compared to variable
star v19’s light curve using a distance modulus of 15.35.

parameters were allowed, the distance modulus and a phase
shift, and the parameter space was sampled using nested sam-
pling (e.g., Feroz et al. 2009). All variables in Table 4 were
chosen as best matches to the models except v120, which was
chosen to compare with a fit by Marconi & Degl’Innocenti
(2007) to the same observed light curve with their 1D convec-
tive models. Marconi & Degl’Innocenti adjusted several free
parameters (luminosity, mass, effective temperature, and mix-
ing length parameter) in an attempt to match the observed light
curve. In comparing their Figure 17 to our Figure 7, one can
see that our approach to modeling convection produces a sig-
nificantly better reproduction of the observed light curve for
v120. The 1D calculations have difficulty obtaining the rising
slope correctly, and when they do they do not provide a good
match to the falling light curve. We have not adjusted any of the
free parameters (luminosity, mass, or effective temperature) and
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Figure 9. 6400 K effective temperature model’s light curve compared to variable
star v48’s light curve using a distance modulus of 15.16.
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Figure 10. 6500 K effective temperature model’s light curve compared to
variable star v93’s light curve using a distance modulus of 15.32.

merely chose representative values of the variable stars in M3
as a whole. While covering this parameter space would be de-
sirable, the computational requirements of our method together
with time constraints place this beyond the scope of the current
work. Included in these figures are the magnitude differences be-
tween the averaged observed light curves and the simulated light
curves. The horizontal lines denote differences of 0, ±0.05, and
±0.08 mag. For reference, Marconi & Degl’Innocenti (2007)
used ±0.05 and ±0.08 mag to denote the extrema of their agree-
ment with the observed light curves, although their agreement
with observed light curves falls far outside this range for cooler
models. Interestingly, the light curves for the cooler 2D mod-
els, in which convection is very important, match the observed
light curves much more closely than do those of the hotter 2D
models.

10



The Astrophysical Journal, 771:113 (13pp), 2013 July 10 Geroux & Deupree

14.75

15.00

15.25

15.50

15.75

16.00

16.25

V
v10

T6600

0.0 0.5 1.0 1.5 2.0
phase

−0.1

0.0

0.1

V
ob

.
−

V
th

.

Figure 11. 6600 K effective temperature model’s light curve compared to
variable star v10’s light curve using a distance modulus of 15.27.
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Figure 12. 6700 K effective temperature model’s light curve compared to
variable star v92’s light curve using a distance modulus of 15.32.

Particularly good fits are achieved for the cooler models,
6300 K and 6400 K (Figures 8 and 9 respectively). Hotter models
are reasonably good fits given that we have not tuned any of the
model parameters to match the observed light curves. There are
some features of the light curves that are not matched as well
as one might like. In particular the model T6700 fit to variable
v92 (Figure 12) does not reproduce the dip at minimum light or
obtain the slope during descending light quite correct. However,
adjusting model parameters may be able to account for at least
some of the discrepancy. In Figure 13 we have compared the
light curve of our 6900 K first overtone model with that of v125
and find fairly good agreement, although the model light curve
shows a slightly less sinusoidal shape than the observed light
curve.

In addition we can compare pulsation amplitude as a function
of effective temperature with that derived from observations.
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Figure 13. 6900 K effective temperature model’s light curve compared to
variable star v125’s light curve using a distance modulus of 15.32.
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Figure 14. Visual pulsation amplitude, AV , across the RR Lyrae instability strip.
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correspond to observations. Black symbols with solid lines are for our 2D
convective calculations, and gray symbols with dashed lines are for the 1D
convective models of Marconi et al. (2003).

Figure 14 shows the observed visual pulsation amplitudes for
fundamental pulsators (open circles) and first overtone pulsators
(open squares) in M3 as compared to our model results for
fundamental (black filled circles and solid lines) and first
overtone modes (filled black square). This figure also contains
results from 1D convective models by Marconi et al. (2003)
for the fundamental (filled gray circles with dashed line) and
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first overtone modes (filled gray squares dashed line). The 1D
convective models were for a mass of 0.65 M�, Z = 0.001,
and log10(L/L�) = 1.61, while our models were for a mass
of 0.7 M�, a metallicity of Z = 0.0005, and a luminosity of
log10(L/L�) = 1.7. At least some of the differences between
our visual amplitudes and those of Marconi et al. result from
the differences in mass and luminosity, and to a lesser extent
metallicity. Figure 10 of Bono et al. (1997b) shows that as the
mass is increased in their 1D convective models, the amplitude
of the first overtone mode increases for a given effective
temperature. This effect is less pronounced for the fundamental
mode. Bono et al.’s Figures 9 and 10 show that as the luminosity
is increased the pulsation amplitude of the fundamental mode
increases. In the case of the first overtone pulsators however, as
the luminosity is increased the pulsation amplitude decreases
and the characteristic “bell” shape flattens. Based on the trends
mentioned for the pulsation amplitude from Bono et al. (1997b)
one might expect that 1D models for the same luminosity and
mass as our models would have a flatter “bell” shape for the first
overtone mode models, and perhaps a slightly larger amplitude
for the fundamental mode. Both our calculations and the 1D
calculations of Marconi et al. produce similar slopes for the
relation between the visual amplitude of the fundamental mode
as a function of effective temperature. However, to make a direct
comparison between the 2D and 1D calculations they would
need to be calculated for the same set of model parameters.

To complicate things further, in addition to the mass, lumi-
nosity, and metallicity, the helium abundance can also play a
role in determining the amplitude of the pulsation, though less
substantially than the mass or luminosity (see Bono et al. 1997b,
Figure 9). Finally, the pulsation amplitude in 1D models is also
influenced by the choice for the mixing length parameter (see
Marconi et al. 2003, Figure 14), the correct choice of which may
vary for different models based on many different variables such
as the pulsation mode and the effective temperature.

In our models the eddy viscosity parameter (C in
Equation (15)) is a free parameter. We have preformed test
calculations where C has been increased and decreased by a
factor of two, thus modifying the eddy viscosity, μt , by a fac-
tor of four. Increasing C by a factor of two decreases both the
visual amplitude and growth rate of the test model by 10%. Con-
versely the decrease in the eddy viscosity parameter produced
an increase in both the growth rate and visual amplitude by
about 10%. We note that a reasonably small change in effective
temperature (100 K) can measurably change the visual ampli-
tude (0.2 mag as seen in Figure 14) and that measurements of
effective temperature have uncertainties of this order.

Given these considerations, we would argue that we have done
well in matching the observed visual amplitude dependence on
the effective temperature, and perhaps some adjustment of our
free parameters of mass and luminosity and composition would
give an even better match in individual cases.

The reasonable agreement between the observed and model
light curves as well as the good agreement between the ob-
served and model visual amplitude dependence on the effective
temperature indicate that our use of 2D convective radial pulsa-
tion models using large eddy simulations produce light curves
that match those of real RR Lyrae stars reasonably well. One
should note that this does not necessarily mean that we have
a great model for turbulent convection. We believe it is likely
that the time-dependent behavior of the convective flux shown
in Figures 3 and 4 is a key component in determining the effect
of convection on pulsation, and this behavior may result with
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Figure 15. Logarithmic gradient of the horizontally averaged temperature with
respect to the horizontally averaged pressure vs. the horizontally averaged
temperature. Four models are represented: Teff = 6300 K, radiation only (solid);
Teff = 6700 K, radiation only (dotted); Teff = 6300 K with convection (dashed);
and Teff = 6700 K with convection (dash-dot). The locations of some discrete
points have been added for clarity.

an approach to convection which need not be correct in every
detail.

6. MODEL STRUCTURE WITH CONVECTION ONLY

While the emphasis of this research is on the interaction be-
tween convection and stellar pulsation, we can also compute
the horizontally averaged structure of a model which is not pul-
sating. This structure will still retain some time dependence
because it is a hydrodynamic calculation, but the variation is
relatively slight over the 40 day time period between the time
when convection had grown large enough to begin affecting the
structure to when pulsation, as indicated by periodic variation
of the stellar radius, began to affect the structure. We have per-
formed such calculations for models with effective temperatures
of 6300 K and 6700 K. The results are presented in Figure 15
in the form of the logarithmic derivative of the horizontally av-
eraged temperature with respect to the horizontally averaged
pressure versus the horizontally averaged temperature. We have
included the structure of both the initial radiation only model
and a model when the changes in the structure due to convection
appear to be rather stable. The decrease in the gradient in the
hydrogen and first helium ionization regions when convection is
included is clear. Furthermore, there are some differences in the
gradient from that of the radiation only models up to tempera-
tures of about 3 × 104 K. The effects are larger for the cooler
model, as would be expected.

Radiative models of RR Lyrae and Cepheid variables have
very steep temperature gradients in the hydrogen ionization
zone because the high opacity requires these steep gradients
to deliver the flux. As seen in Figure 15, convection decreases
the horizontally averaged temperature gradient and spreads out
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the hydrogen ionization region. In any given angular zone, the
radial transition through a temperature of about 1 × 104 K
remains relatively abrupt, but the transition occurs in different
radial zones for different angular zones so that the horizontally
averaged gradient is smoothed out.

7. SUMMARY

While the detailed aspects of turbulent convection may not be
necessarily correct because of the horizontal extent, the resolu-
tion of the problem, the use of a specific subgrid scale model for
convective effects on scales we do not resolve, and most impor-
tantly because of the 2D nature of the computations, we believe
these calculations represent a reasonable compromise between
numerical resolution and the ability to perform the calculations
for the length of time required on present day computers. The
goal is not so much to present a detailed model of convection as
to produce a reasonable model of the interaction of convection
and large amplitude radial pulsation. A key ingredient appears
to be that the pulsation phase dependence of convection carry
the right amount of flux in the right place at the right phase. This
phase dependence appears to be independent of the strength of
convection in our simulations. An exception may be the first
overtone model, T6900, in which the convective flux is quite
small and relatively noisy. The amount of flux carried can de-
pend on the physical extent of the simulation, the parameters
of the subgrid-scale turbulence model, and the structure of the
initial model, while the location of convection is dictated by
the steepness of the temperature gradient which depends on the
equation of state and opacities.

A comparison of 2D full amplitude light curves to observed
light curves in M 3 indicates that 2D convective simulations
agree as well as 1D time-dependent mixing length convective
models at higher effective temperatures, while they appear to
be better at lower effective temperatures near (but not at) the
red edge. We note that our 2D models have not produced a red
edge because the convection zone penetrates sufficiently deep to
change the potential energy of the stellar model, thus interfering
with the growth of the peak kinetic energy as a pulsational
stability discriminant.

The new 2D calculations presented here have been made
possible by two key advances—faster computers in larger
clusters and the use of a “Lagrangian” coordinate in the radial
direction made possible by introducing a radial grid velocity
that maintains a constant net mass in a given radial shell while
allowing natural convective flow through the inner and outer
boundaries of the radial shells, as described in Paper I.

In a future paper the results for 3D calculations will be
compared to these 2D results, including how the 2D and 3D
convective flow patterns differ and how they affect the radial
pulsation.

These calculations were performed in part on high
performance computer clusters provided by ACEnet. ACEnet is
funded by the Canada Foundation for innovation and provincial
funding agencies, including the Nova Scotia Research Innova-
tion Trust. C.M.G. was supported by Canada Research Chair
funds provided to R.G.D. and through an ACEnet Research

Fellowship. C.M.G. received partial financial support during
writing from a Consolidated STFC grant (ST/J001627/1).
Thanks go to Michael Gruberbauer for his Bayesian analysis.
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