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Abstract 

Pairs Trading strategy using co-integration in pairs of stocks 

by Manda Raghava Santosh Bharadwaj 

 

The aim of this project is to implement pair trading strategy, which aims to generate profits 

in any market conditions by examining the cointegration between a pair of stocks. Pair 

Trading, also known as a relative spread trading, is a strategy that allows a trader to benefit 

from the relative price movements of two stocks. A trader can capture the anomalies, 

relative strength or fundamental differences in the two stocks to create profit opportunities. 

Pair Trading primarily involves finding correlated stocks and exploiting the volatile market 

conditions, which lead to a diversion in their correlation. A trader takes a short position in 

one stock and simultaneously takes a long position in the other. If the market goes down, the 

short position makes money. On the other hand, if the market goes up, the long position 

makes money. Creating such a portfolio enables the investor to hedge the exposure to the 

market. Furthermore, by taking a long-short position on this pair, when prices diverge, and 

then closing the position when the spread retreats to its mean or a threshold, a profit is 

earned.  

 

In this project, we implement pair trading strategy using an Ornstein-Uhlenbeck (OU) 

process based spread model, is applied on stocks from three different sectors-Energy, 

HealthCare and Banking of the NYSE. Stocks were selected based on a combination of 

Distance Test, ADF Test and Granger-Causality Test. The paper concludes by summarizing 

the performance of this strategy and offers possible future enhancements and applying it to 

more complex scenarios. 
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Chapter 1: Introduction 
 

1.1 Purpose of Study 
 

Market-neutral equity trading strategies exploit mispricing in a pair of similar stocks. 

Mispricing is more usual in a global financial crisis. Therefore, more possibilities emerge at 

bad times. Moreover, there are fewer market participants, which reduce competition. 

Therefore, it is not surprising that market-neutral trading over-performs during most severe 

market conditions.  

 

The aim of this project is to implement pair trading strategy, which aims to generate profits 

in any market conditions by examining the cointegration between a pair of stocks. 

1.2 Background 
 

The fundamental idea of pair trading comes from the knowledge that a pair of financial 

instruments has historically moved together and kept a specific pattern for their spread. We 

could take advantage of any disturbance over this historic trend. The basic understanding of 

pair trading strategy is to take advantage of a perturbation, when noise is introduced to the 

system, and take a trading position realizing that the noise will be removed from the system 

rather shortly. 

It involves picking a pair of stocks that typically move together, and deviate from their co-

integrated behaviour during small time intervals. The pairs are selected based on our co-

integration framework. Once the pairs are selected, we monitor for any deviation from the 
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stationary behaviour of the spread. Then, once the price starts diverging we short the winner 

and buy the losing stock. Finally, we close the position when the price starts converging and 

profit from the mean-reversion of the spread.  

 

This strategy was pioneered by Nunzio Tartaglia’s quant group at Morgan Stanley in the 

1980’s. Tartaglia formed a group of mathematicians and computer scientists and developed 

automated trading systems to detect and take advantage of mispricing in financial markets to 

generate profits. One such strategy was Pairs trading and it became one of the most 

profitable strategies developed by this team. With the team gradually spreading to other 

organizations, so did the knowledge of this strategy. 

1.3 Need for study 
 

With the innovation in financial markets, new instruments and securities have made 

financial markets more complex and the uncertainties and risk associated with the markets 

have exponentially increased. It is no longer easy for an uninformed investor to create 

diversified portfolio as inherent risks associated with the securities are quite intricate to 

assess. 

Statistical arbitrage techniques have become increasingly famous in their use as they are 

dependent on trading signals and are not driven by fundamentals, and information is easily 

accessible to implement a strategy. Pairs trading is one such strategy and has become 

famous because of the simplicity in its basic form. Moreover, it is a combination of short 

and long positions making it a self-financing strategy. Hence, such a strategy modified to be 
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flexible in current market conditions would provide investors with a valuable tool in aiding 

toward their investment analysis and making decisions. In this project, a systematic 

approach to Pairs Trading is designed using the existing mathematical models and 

implemented on market data to examine its performance. 

 

1.4 Statement of Purpose 

 

Though Pairs trading is classified as a market-neutral and a statistical arbitrage strategy, it is 

not risk-free. Moreover, though the strategy has evolved significantly, various models in this 

have limitations and disadvantages along with their uses. So a more robust, uniform 

analytical framework is needed to be designed and implemented. This project presents a 

systematic approach to Pairs Trading using a combination of existing models for this 

strategy. 

 

The next parts of the paper are organized as follows. Chapter 2 discusses a brief review of 

available literature on this topic. Chapter 3 outlines the methodology adopted, data selected 

and trade algorithm developed. The subsequent chapters comprise the results and 

conclusions. 
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Chapter 2: Literature Review 

  

Though Pairs Trading strategy has been in existence for about three decades, it has not been 

extensively researched. This could mainly be attributed to its proprietary nature. But 

considerable strides have been made in the development of this strategy from being a simple 

trading strategy into a comprehensive quantitative model capable of being applicable to 

wide range of securities across complex market scenarios. Major referenced works in this 

area include Gatev et al(1999 and 2006), Vidyamurthy (2004), and Elliott et al(2005).  

The paper by Gatev et al is an empirical piece of research which uses a simple standard 

deviation strategy and shows pairs trading after costs can be profitable. This is  shown by 

testing this strategy with daily data over 1962-2002.They used the “Minimum Distance” 

method to select stock pairs, where distance is measured as the sum of squared differences 

of normalized  price series.  The results show an average annualized excess return up to 11 

percent clearly exceeding the typical estimates of transaction costs and hence inferring that 

the strategy is profitable. Nath (2003) modified this method by adding a trigger that when 

distance crosses the 15 percentile, a trade is entered for that pair, and accounted for risk 

control by limiting trading period at the end of which positions have to be closed out 

regardless of the results. In addition, he adds a stop-loss trigger to close the position 

whenever the distance increases to the 5 percentile value. Though, this model is purely 

statistical and has its advantage in being free from mis-specification,   being a static model 

and assuming the price level is static through time causes limitations in its use. 

 



5 
 

Vidyamurthy(2004) suggested a co-integration based approach to select the pairs of stocks 

in an attempt to parameterize pairs trading. He reasoned that as the logarithm of two stock 

prices are typically considered to be non-stationary; there is a good chance that they will be 

co-integrated. In that case, cointegration results can be used to determine how far the spread 

is from the equilibrium value thereby quantifying the mispricing and implementing the 

strategy based on this information. 

 

Elliot et al presented a stochastic spread model to describe the mean reversal process and 

estimated a parametric model of the spread thereby overcoming the weakness of Minimum 

Distance method. 

 

In the case of Do et al(2006) , they conducted a comprehensive analysis of all existing 

methods in detail and formulated a general approach. In their own words:  

“This paper analyzes these existing methods in detail and proposes a general approach to 

modeling relative mispricing for pairs trading purposes, with reference to the mainstream 

asset pricing theory. Several estimation techniques are discussed and tested for state space 

formulation, with Expectation Maximization producing stable results.”  

                                                                                                              {Page 1} 

                                                                                                 

This project follows a similar approach by combining a few of the methods from the 

literature, thereby forming a uniform algorithm for Pairs Trading. It implements this 

algorithm on stock data for the three sectors: banking, healthcare and energy from the New 

York stock exchange market 
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Chapter 3: Methodology 
 

 The following steps are performed as a part of implementing the strategy: 

 Selection of Asset Type  

 Stocks Selection based on Distance Test, ADF Test, Granger-Causality Test 

 Parameter estimation for the Ornstein-Uhlenbeck  model  

 Implementation of code to enter and exit the position based on stock prices 

 Perform back-testing on in sample data and run final code on out of sample data 

3.1 Selection of the Trading Universe 

 

To obtain accurate results, the strategy must be implemented keeping certain things in mind. 

This strategy is sector neutral. A pair in our strategy always belongs to the same sector. This 

is done so because pairs from different sectors are highly susceptible to unpredictable sector-

specific variations and the co-integration of the pair can be lost in the process. For 

implementation, I chose three sectors. 

 Banking  

 Healthcare  

 Energy  

 

From the New York stock exchange, 15 stocks
*
 were chosen from each sector and we chose 

pairs among them using our selection strategies. 
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Table 3.1: Stocks chosen from each sector 
 
 

Energy 
  

Banking 
  

Healthcare 
  

      
 

 ACI  BAC  ABT 
 

 AEM  BNS  JNJ 
 

 BTU  C  LLY 
 

 CAM  CM  PFE 
 

 CNQ  CS  AMGN 
 

 CNX  DB  AZX 
 

 FST  FITB  BAX 
 

 COG  HBC  BMY 
 

 GG  HDB  GSK 
 

 HAL  IBN  NVO 
 

 NOV  MS  PFE 
 

 OXY  PNC  RHHBY 
 

 PEO  RBS  SNY 
 

 SLB  RY  WCRX 
 

 TLM  WFC  MTEX 
 

 
* Full description of stocks is available in  Appendix B. 

 
 
The data have been selected with careful consideration of the nature of stocks in each sector 

and highly dynamic relationship. 

 

There are primarily two ways to select the data: 

 Constant Universe 

 Dynamic Universe  

Constant pairs can be selected based on the initial co-integration and we can keep trading on 

them throughout the trading window. However, it was observed that this may lead to 

selection-bias because stocks may come in and out of the universe of stocks. Also this 

strategy assumes that the co-integration of the stocks remains same. But during the 
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implementation of the algorithm co-integration was found to be highly dynamic. Hence I 

looked at another strategy where we selected dynamic pairs based on a rolling window to 

check for co-integration. I took all the stocks in the universe without using any future 

information. For example, stocks may come in and go out of the universe that will not 

significantly affect the algorithm. Hence, this strategy has an advantage of being a forward-

looking algorithm as well as removing the selection bias. 

 

The in-sample data used were from 2001–2005 for testing the algorithm and optimization of 

parameters. For selection of the pairs for in-sample data, I started with a 5 year rolling 

window from 1996. The out-of-sample data were from 2006–2010. Finally, to keep the 

portfolio sector neutral, I looked at banking, health care, and energy. 
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3.2 Selection Strategies 
 
 
To select pairs from our universe of stocks, three tests were applied: Distance Matrix, 

Augmented Dickey-Fuller (ADF) Test, and Grander Causality. Pair is selected if it passes all the 

three tests. 

Minimum Distance Method 

The distance matrix looks for the historical price movements between pairs. The stocks should 

have similar price movements. The main idea is to select pairs that have had similar historical 

price moves. According to law of one price theory (Coleman, 2009), similar securities would 

have similar prices. To start the process, it is assumed that all the prices are equal to 1.00 for the 

starting day. Then, a cumulative return index is generated for all stocks. To select pairs from this 

data set, the sum of squared deviations is used: 

 

  ∑ (           )
 

   

2   
  ………………..         3.1 

 

where γ =distance;   

      = Normalized cumulative return index of stock x over time t; 

      = Normalized cumulative return index of stock y over time t. 

 

ADF Test 

 

In the ADF test, the ratio between two stocks must have constant mean and volatility. It also tests 

for unit root in the stocks returns and checks for stationarity. In order to generate a profit in a 

pair-trade, the ratio of the prices, Rt, needs to have both a constant mean and a constant volatility 
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over time. For an autoregressive process AR(1) such as δXt = (φ – 1)Xt-1 + εt, and defining a = 

φ1– 1, the unit root test can be written as follows  

Null Hypothesis: H0 : a = 0 

Alternate Hypothesis: H1 : a < 0 

 

The number of lagged difference terms to include is determined empirically, the idea being to 

include enough terms so that the error term in the tested equation is serially uncorrelated. 

 

ADF Test Combined with Two-way Granger Causality 

 

The Granger causality test determines if price of one stock can be used to predict another. Our 

top concern is the risk that one takes when entering a pair-trade, which is the possibility of a 

structural breakdown of the mean-reverting-price-ratio property. 

 

Because there were too many pairs that passed the ADF test, and because some of the selected 

pairs did perform poorly the year after they were selected, we decided that we needed additional 

testing. This is where the Granger causality test in both directions comes in. 

 

As mentioned above, our pairs will be selected dynamically year over year. Below is result of all 

three tests for healthcare sector. It shows how pairs are changing from 2006-2010. 

 

Sector Neutrality and Beta Neutrality 

Stocks from three different sectors were studied for selecting pairs. Successful pairs trading must 
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have a portfolio that is sector and beta neutral. To avoid sector bias, pairs from different sectors  

 

were considered (banking, healthcare, and energy). 

 

To avoid beta bias, stock pairs with similar market exposure or beta were selected. Also, stocks 

with a beta less than or equal to 0.1 were chosen to ensure least correlation with the market. 

3.3 Model and Parameter Estimation 

 

For spread modeling, Ornstein-Uhlenbeck (OU) was used. It is a Stochastic Spread Method to 

model the spread between the two stocks in a pair. This model can be viewed as the continuous 

time version of the discrete time AR (1) process. It satisfies the following stochastic differential 

equation: 

 

                                                                                             …………………………          3.2 

 

The Process reverts to µ = a/b with strength b and the above equation can be written as 

  ……………………………           3.3 

 

                                                                                           ……………………………         3.4 

where 

                                                                                                           ……………………     3.5 
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There are three known methods to estimate the parameters for A, B and C: 

Method of Maximum Likelihood Estimation (MLE) 
 

Method of Moments (MOM) 
 

Least Squares Method (LSM)  

 Maximum Likelihood method has been used to estimate the parameters because of its 

consistency even in situations when the data are not normally distributed which is not the case 

with Least squares method.  

 

3.4 Trading Algorithm 

The algorithm for trading enters a trade when a pair of stocks deviates significantly from its co-

integrated behaviour (2 standard deviations from stationary mean). 

For the time frame, a 5-year rolling window was used to check for the long-term co-integration 

behaviour of a pair. To check for short term changes in co-integration a 120 day rolling window 

was used.Pairs come in and out based on the behaviour of the universe. For example, Enron 

bankruptcy would result in it leaving the universe and Google IPO would represent a stock 

coming in the universe after it had become co-integrated to other tech stocks. 

 

If stocks in the pair continue to diverge, and do not revert back to the mean, we stop the trading 

after a control-window of 40 days.  The parameters of the model have been optimized by running 

simulations for different rolling and control windows. Optimization is performed to get the 

parameters for a maximum Sharpe ratio and net profit.      
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3.5 Back-testing 
 

 

The back-testing prototype was built based on the trading rules and risk management strategy as 

discussed in the previous sections. It is built fully in MATLAB, all the pairs trading, account 

balance updating and parameters estimation are programmed in MATLAB. 

Pair selection: 

The pairs for in sample data were selected based on data from 1-Jan 1995 to 31-Dec 2000. 

Because we are assuming a dynamic universe, this work was done every year and new pairs were 

generated for the next year of trading. Pair selection for the out of sample was based on data 

from 2001 to 2005 and pairs were newly generated for every subsequent year of trading. The 

results for the healthcare sector are illustrated below in Figures 3.1 and 3.2. 

Figure 3.1: Beta and ADF Test results for Healthcare Sector     -   2006-2010 
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Figure 3.2: ADF and Granger Test at 95% confidence limit for Healthcare sector – 2006-2010 

 
 

 

 

 

After running all the three tests, we get below pairs in each sector for 2006, 2008 and 2010 as shown in 

Figure 3.3. 

Figure 3.3: Pairs selected for the trading algorithm 

 

  Banking  Healthcare  Energy  
 

        
 

  DB-CS      
 

  HBC-C    NOV-CNX  
 

2006  HBC-DB  PG-J&J  CNQ-BTU  
 

  PNC-C    ACI-TLM  
 

  WFC-BAC      
 

        
 

        
 

  CS-CM  
ABT-UL 

 
OXY-FST 

 
 

2008  
DB-CS    

 

  
PG-JNJ  

PEO-FST  
 

  
PNC-HBC    

 

       
 

        
 

      CNQ-CAM  
 

2010 
 CS-CM  UL-ABT  COG-CAM  

 

 
WFC-PNC  

PG-JNJ  
COG-CNQ  

 

     
 

OXY-COG 
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3.6 In Sample testing 

The algorithm was tested on in-sample data from 2001 to 2005. We used this period to find out 

optimized values for several of the parameters. Pairs selected from previous 5 years were traded 

for the subsequent year. 

 

Below Figure 3.4 shows a few of the pairs which were used in our trading algorithm. It can be 

seen that the individual stocks move together for long periods, however deviate from their co-

integrated behaviour during some small time-windows. 

Figure 3.4: Movement of few pairs from our Universe 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   Figure 3.5: Total Account – Initial Investment + Realized Returns 
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Returns from Pairs Trading Algorithm: 5.2% 
 
Returns from S&P 500: -.55% 
 
We obtain significantly better results than our benchmark 
 
 

Figure 3.6: Realized gain/loss for each trade vs. trade time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Optimization of Parameters: After creating the initial algorithm for the strategy, further back-

testing was performed for optimizing the parameters of the model. Two key time-windows in our 

model are the control-windows, which take care of the stop-loss strategy and rolling window, 

during which we check the short-term co-integration of the pairs. Hence, optimizing these two 

time-windows gave the maximum Sharpe Ratio and Risk-adjusted Return. The optimal 

parameters were fixed after the back-testing results were obtained. Same parameters were used to 

obtain final results for our out-of-sample data. 
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Figure 3.7 shows the plot for the variation of Sharpe Ratio with respect to rolling window and 

control window. 

 
Figure 3.7: Plot of Sharpe Ratio vs. Rolling Window vs. Number of Control Days 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Optimal Parameters: 

 

Control-window: 40 days 

 

Rolling Window: 120 days 

 

Further, Figure 3.8 shows the variation of Risk-adjusted Return on Capital with rolling window 

and control-window. However, the parameters were chosen based on the maximization of the 

Sharpe Ratio. 
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Figure 3.8: Plot of Risk Adjusted Return vs. Rolling Window vs. Number of Control Day 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 

 

After the in-sample testing has concluded successfully, the algorithm was implemented on the 

out of sample data and the results and further discussions are included in the subsequent 

chapters. 
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Chapter 4: Results 
 
 
Our out of sample window was from 2006-2010. We ran our algorithm in this period based on 

parameters optimized using in-sample data. 

 

Figure 4.1: Total Account: Initial Investment + Realized Returns 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Returns from Pairs Trading Algorithm: ~8.4% 
 
Returns from S&P 500: -0.18% 
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Figure 4.2: Frequency Distribution of Returns 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the above figure, we can see that returns from each time period are mostly distributed 

around the mean return value and abnormal returns are very rare and hence do not affect the 

mean. Also, we can observe that there are very few cases of abnormal negative returns which 

indicates our strategy has been successful in hedging. The next two figures (Figures 4.3 and 4.4) 

show the performance of each pair and realized gain/loss at different points of time. From the 

first we can clearly see that almost all of the pairs yield positive returns. The second figure shows 

realized gain/loss during each trade. 

 

 

 

 

 



21 
 

Figure 4.3: Net Profit Loss for each Pair 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 4.4: Realized gain/loss for each trade vs. trade time 
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4.1 Risk Management: 

 
Risk management has become significantly important in recent years and our strategy has 

implemented a few methods to minimize the risk. The selection of pairs is sector-neutral and bet-

neutral as stated before. Stop loss strategy has been used that will close the trade after 40 days if 

the trade has not yet been closed. We also will close out an open position if the spread between 

two stocks continues to deviate instead of converging beyond a certain threshold. This 

sometimes happens if there is change in the fundamental behaviour within the pair. In addition 

we calculate the Sharpe ratio to measure the risk adjusted performance. It is computed through 

the following formula: 

 

                                                                                                               ………………….           4.1 

 

Our portfolio was optimized to obtain the maximum Sharpe ratio, which was nearly 4.18. 

Finally, to get an understanding of how much our portfolio can lose during 10 days with 99 

percent probability we calculated the value at risk (VAR) to be $15,422.00. The conditional 

value at risk (CVar) was also computed to get the expected loss greater than Var: $20,676.00. 

These metrics help us to understand how much our portfolio stands to lose.
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Chapter 5: Conclusions & Further work 

 

5.1 Conclusions 

 
After conducting these experiments, we have concluded that changing pairs dynamically helps us 

in removing selection biases. The strategy makes about 8.4 percent profit per annum for the 5 

year period. While the percentage of profit is not very high, the time frame includes the market 

crash during the subprime crisis. The strategy also out performs the S&P 500, which made -0.18 

percent per annum for the 5 year period. Since we implemented a low risk strategy with small 

positions, profits can be increased by implementing a more risky strategy with larger positions. 

By using a dynamic universe, we were able to remove the selection bias, and our trading 

algorithm was forward looking without using any future information. Finally, the in and out of 

sample testing helped to create a profitable low risk strategy during one of the biggest crashes of 

the US Equities market. Hence, our algorithm has been successful in achieving a positive return 

with considerably less risk consistently for a period of four to five years. 
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5.2 Further Work 
 
 
Pair Trading is slowly but surely evolving as a highly flexible strategy inviting almost endless 

possibilities for improvements and variants. Looking forward, our strategy could be implemented 

on higher frequency data such as tick-data or minute data. We could select pairs of stocks from 

different market sectors or even different markets. To make the strategy even more dynamic we 

could optimize the parameters based on the performance of the algorithm till date.  

 

Presently, there are newer tests of co-integration that are more precise such as the KPSS Test and 

Johansen’s Test. Another idea would be to not have balanced long and short positions but to 

weigh them according to the current market behaviour: in a up (down) trending market the long 

(short) position would be larger in the expectation that the two assets will converge at a higher 

(lower) price. While in a stable market long and short would be roughly equal. Finally, we can 

model the risk and performance of a strategy using alternative ways that can incorporate skewed 

distributions.
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Appendix A: Strategy Code 
 

Code.m: File which calls Pair Trading main function. 

 

PairsTrading.m: It calls all the other function. 

 

SimulateOrnsteinUhlenbeck.m: Simulates OU estimates. 

 

Spreads_Calculation.m: Calculates spread. 

 

OU_est.m: Calculates OU estimates. 

 

Output.m: Generates Output 

 

SelectionStrategies.r: Checks all tests for selection process. 
 

Code.m 
 
 
clear all; 

close all;  
load Pairs.mat; 
 
Stock_Price=Pairs_Price_Matrix;  
Stock_Price = flipud(Stock_Price); 
window = 120; %Size of moving window for defining pairs  
Risk_Free_Rate = 0.03;  %Risk free rate 
Capital = 1000000; %Ammount of capital traded in each position taken 
(same unit as C)  
Control_Days = 40; %Control day is  the longest hold period for each 
pair  
[Days Pairs] = size(Stock_Price); 
Pair_Number = Pairs/2; 
Stop_ Loss = -0.10; %Stop loss control  
i=1; 

 
for i = 1:Pair_Number 

figure  
plot(Stock_Price(:,[(i*2 -1) i*2]),'LineWidth',2) 
xlabel('Time(days)') 
ylabel('Stock Price') 
title(strcat('Stock Price Movement for Pair #',num2str(i))) 

 
end 
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[Account Trade_Time Cumulative UL LL] =PairsTrading(Stock_Price, Capital,  
...  
window, Risk_Free_Rate,Control _Days,Pair_Number,Stop_Loss); % This funciton 
performs the traidng strategy 

 
figure 

plot(Cumulative,'LineWidth',2) 

legend('Profits for each pair')  
xlabel('Testing(In sample): From Jan.1 2001 -- Dec.31 2005') 
ylabel('Total Profit/Lost by Pair') 

 
figure 

plot(Account,'LineWidth',2) 

legend('Account Balance')  
xlabel('Testing(In sample): From Jan.1 2001 -- Dec.31 2005') 

ylabel('Total Account: Initial Investment and Realized Profit/Lost') 
 

 

PairsTrading.m 

 
function [Account Trade_Time Cumulative_Profit_Each_Pair UL LL] = 
PairsTrading(Stock_Price, ... 

Capital, window, Risk_Free_Rate, Control_Days, Pair_Number, 
Stop_Loss ) 

 
Risk_Free = Risk_Free_Rate/252; 

Stock_Price_Matrix = Stock_Price; 
Backtesting_Days = length(Stock_Price_Matrix) ; %Total Number of Test Days 
Expected_ Return = 2*Risk_Free_Rate; %Used to control trading  
position 

 
[Spreads_Matrix]= Spreads_Calculation(Stock_Price_Matrix, Pair_Number); % 
Calculates the spreads matrix 

 
% Defining all the matrix we need to use to perfrom our trading 

Pairs_Status_Matrix = zeros(1,Pair_Number + 1); 

Pairs_Monitor_Matrix = zeros(1,Pair_Number + 1); 

Pairs_Last_Matrix = ones(1,Pair_Number + 1); 

Position_Shares_Matrix = zeros(2,Pair_Number); 

Stock_Update_Matrix = zeros(2,Pair_Number); 

Position_Shares_Update_Matrix = zeros(2,Pair_Number); 

Account_Balance_Matrix =[zeros(1,Pair_Number) Capital]; 

 
Position_Matrix= zeros(2,Pair_Number); 
Original_Spread_Matrix = zeros(1,Pair_Number);  
Original_Stock_Matrix =zeros(2,Pair_Number); 
 
Cumulative_Profit =0; 
 
Cumulative = zeros(Backtesting_Days-window+1,Pair_Number); %Store Everyday 
Return  
Cumulative_Profit_Each_Pair = zeros(Backtesting_Days-window+1,Pair_Number); 
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Trade_Time = zeros(1,Pair_Number); 

Close_Time = zeros(1,Pair_Number);  
Original_Sigma = zeros(1,Pair_Number); % Store the parameters for opening 
new pairs  
Original_Mu = zeros(1,Pair_Number); % Store the parameters for opening 
new pairs 
 
for pairs = 1: Pair_Number 
 

eval(['Trade_Return_' num2str(pairs) '=[];']); 

eval(['Trade_Gain_' num2str(pairs) '=[];']);  
end 
 
for day = window: Backtesting_Days % Start trading based on a rolling window 

 
%fprintf(1,['\nObservation #',num2str(day),'------------------------------ 

-']); 
 

%fprintf(1,['-----Cumulative Profit 
= ',num2str(Cumulative_Profit)],'\n'); 

 
Account_Balance_Matrix(1,Pair_Number + 1) = 

Account_Balance_Matrix(1,Pair_Number + 1)*exp(Risk_Free); %Invest extra 

money at risk free rate  
Pairs_Open_Matrix = [zeros(1,Pair_Number) 1]; %Before updating 

everyday trading, the open position are assumed to be closed  
Return_Matrix = zeros(1,Pair_Number); 

 
for pairs = 1:Pair_Number 

 
Spread_Now = Spreads_Matrix(day,pairs);  
Price_A = Stock_Price_Matrix(day,2*pairs-1); 
Price_B = Stock_Price_Matrix(day,2*pairs); 
Stock_Update_Matrix(1,pairs) = Price_A;  
Stock_Update_Matrix(2,pairs) = Price_B; 

 
[Mu Sigma]=OU_est(Spreads_Matrix((day-

window+1):day,pairs)); %Estimate the parameters  
%Mu = mean(Spreads_Matrix((day-window+1):day,pairs)); 

%Sigma = std(Spreads_Matrix((day-window+1):day,pairs)); 
Return = 0.5*(abs(Spread_Now - Mu) - 0.5*Sigma);  %Return 

UL(day,pairs)= Mu + 2*Sigma;   
LL(day,pairs)= Mu - 2*Sigma;   

Check = abs(Spread_Now - Mu) - 2*Sigma ; % Check whether the 
Return satisfies the requirement   

Check_Out = abs(Spread_Now - Mu) -0.5*Sigma; % Check the closing 
position   

Check_Risk = abs(Spread_Now - Mu) - 3*Sigma; % Risk management 
 

Moniter = Pairs_Monitor_Matrix(1,pairs);  
Status = Pairs_Status_Matrix(1,pairs); 
Last_Days = Pairs_Last_Matrix(1,pairs); 
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RiskFree_Account = Account_Balance_Matrix(1,Pair_Number + 1); 

 
Shares_Pair_A = Position_Shares_Matrix(1,pairs); 
Shares_Pair_B = Position_Shares_Matrix(2,pairs); 

 

 
if Status == 0  

if Check >= 0 && Moniter >= 1 && Return >= Expected_Return 

 
%Pairs_Status_Matrix(1,pairs) =1; 

Pairs_Open_Matrix(1,pairs) =1; 

Return_Matrix(1,pairs) = Return; 

%fprintf(1,['\n-----------Find  
Pairs','Pair#',num2str(pairs)]); 
 

%fprintf(1,[' Check = ',num2str(Check),'.  Expected_Return 
 
= ',num2str(Return)]);  

%fprintf(1,['\n','Price_Now_A = ',num2str(Price_A),'. 

Position: ',num2str(Position_Matrix(1,pairs)),'\n', ...  
% 'Price_Now_B = ',num2str(Price_B),'. Position: 

',num2str(Position_Matrix(2,pairs)),'\n']); 

 
if Spread_Now - 

mean(Spreads_Matrix((day-window+1):day,pairs)) >= 0 
Position_Matrix(1,pairs)=-1; 
Position_Matrix(2,pairs)=1;  

else 
Position_Matrix(1,pairs)=1;  
Position_Matrix(2,pairs)=-1; 

end 

 
Original_Stock_Matrix(1,pairs) = Price_A; 
Original_Stock_Matrix(2,pairs) = Price_B; 

 
Original_Sigma(1,pairs) = Sigma; 
Original_Mu(1,pairs) = Mu; 
Original_Spread_Matrix(1,pairs) = Spread_Now;  
Pairs_Monitor_Matrix(1,pairs)= 0; 

 
else 

if Check >=0 

 
Pairs_Monitor_Matrix(1,pairs)=1+Pairs_Monitor_Matrix(1,pairs); 

end  
end 

else 
if Status == 1 

 
Profit = Shares_Pair_A*(Price_A - 

Original_Stock_Matrix(1,pairs))*Position_Matrix(1,pairs) + ...  
Shares_Pair_B*(Price_B - 

Original_Stock_Matrix(2,pairs))*Position_Matrix(2,pairs); 
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Closing_Position = Profit + 
Account_Balance_Matrix(1,pairs); Trade_Return =  

0.995*Closing_Position/Account_Balance_Matrix(1,pairs) - 1; 
 

if Check_Out <= 0 || Trade_Return <= Stop_Loss || Last_Days 
>= Control_Days %|| Trade_Return >= abs(Stop_Loss) 

 
Pairs_Monitor_Matrix(1,pairs) = 0; 

eval(['Trade_Return_' num2str(pairs)  
'=[eval([''Trade_Return_'' num2str(pairs)]) Trade_Return];']); 

eval(['Trade_Gain_' num2str(pairs)  
'=[eval([''Trade_Gain_'' num2str(pairs)]) Profit];']); 

Pairs_Status_Matrix(1,pairs) =0; 

Close_Time(1,pairs) = Close_Time(1,pairs) + 1; 

Cumulative_Profit = Cumulative_Profit + Profit; 

Cumulative(day-window+1,pairs) = Profit; 

 
Account_Balance_Matrix(1,Pair_Number + 1) = 

RiskFree_Account + 0.995*Closing_Position;  
Account_Balance_Matrix(1,pairs) = 0; 
Position_Shares_Matrix(1,pairs) = 0; 

 
Position_Shares_Matrix(2,pairs) = 0; 
Pairs_Last_Matrix(1,pairs) = 0; 

 
fprintf(1,['\n-----------Close Position','Pair# 

',num2str(pairs),' . ', 'Profit = ',num2str(Profit),' .']);  
fprintf(1,['\n','Check_Out = ',num2str(Check _Out),'. 

Last_Days = ',num2str(Last_Days),' Check = ',num2str(Check)]); 
 

Original_A = Original_Stock_Matrix(1,pairs);  
Original_B = Original_Stock_Matrix(2,pairs); 

Original_Spread = Original_Spread_Matrix(1,pairs); 

%fprintf(1,['\n','Original_Price_A = 
',num2str(Original_A),'; Price_Now = ',num2str(Price_A),' ; Shares =  
',num2str(Shares_Pair_A),'\n', ...  

% 'Original_Price_B = 
',num2str(Original_B),'; Price_Now = ',num2str(Price_B),' ; Shares = 
',num2str(Shares_Pair_B),'\n', ...  

% 'Original_Spread  =  
',num2str(Original_Spread),'; Spread _Now = ',num2str(Spread_Now),'\n']); 

 
else  

Pairs_Last_Matrix(1,pairs) = Last_Days + 1; 
end 

end  
end 

end 

 
%This part is for updating investment account. 

 
Investment = Account_Balance_Matrix(1,Pair_Number + 1); % Take the money 

from risk free account  
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Account_Balance_Matrix(1,Pair_Number + 1) = 0 ; % Clear the risk free 
account 

 
Account_Update_Matrix = 

Investment*Pairs_Open_Matrix*1/(sum(Pairs_Open_Matrix)); % Reinvest equally 

into each pair account including risk free account 
Account_Balance_ Matrix = Account_Balance_Matrix + Account_Update_Matrix; 
%Update the account 

 
for pairs = 1:Pair_Number 

if Account_Update_Matrix(1,pairs) > 0 && Pairs_Open_Matrix(1,pairs) >  
0 
 

Pairs_Status_Matrix(1,pairs) = 1; 

Trade_Time(1,pairs) = Trade_Time(1,pairs) +1; 
end 

end 
 
 
 
 

% Update the everyday stock share position through closing or opening  
% pairs  

 
for pairs = 1:Pair_Number 

Position_Shares_Update_Matrix(1,pairs) =  
1/2*0.995*Account_Update_Matrix(1,pairs)/Stock_Update_Matrix(1,pairs); 

Position_Shares_Update_Matrix(2,pairs) =  
1/2*0.995*Account_Update_Matrix(1,pairs)/Stock_Update_Matrix(2,pairs); 

Cumulative_Profit_Each_Pair(day-window+1,pairs)  
=sum(Cumulative(:,pairs)); 

end 
 

Position_Shares_Matrix = Position_Shares_Matrix + 
Position_Shares_Update_Matrix; 

 
Account(1,day-window +1) = sum(Account_Balance_Matrix); 

 
end 
 
% Based on the trading result, calculate the sharpe ratio through risk free   
% rate, anuual trading return and trading return volatility  

 
Sharpe_Ratio = zeros(1, Pair_Number); 
 
for pairs = 1: Pair_Number 

 
Sharpe_Ratio(1,pairs) = (1/5*sum(eval(['Trade_Return_' num2str(pairs)])) - 

Risk_Free_Rate)/(sqrt(1/5)*std(eval(['Trade_Return_' num2str(pairs)]))); 
 
end 
 

 
[r c] = size(Cumulative); 
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Returns_array_temp 
=zeros(r,1); iter = 1; 
 
for rows = 1:r 
 

sum_row = sum(Cumulative(rows,:)); 

if sum_row ~= 0 

 
Returns_array_temp(iter,1) = 
sum_row; iter = iter +1; 

end  
end 

 
Return_Vector = Returns_array_temp(1:iter-1); 

 
Sharpe_Ratio_Portfolio = (((((sum(Return_Vector)+ Capital)/(Capital)^(1/5))-1)-

Risk_Free_Rate))/(sqrt(1/5)*std(Return_Vector)); 
 
display(Sharpe_Ratio_Portfolio); 

 
VaR_Portfolio = std(Return_Vector)*1.65 - mean(Return_Vector); 

 
display(VaR_Portfolio); 

 
CVaR_Portfolio = std(Return_Vector)*2.063 - 
mean(Return_Vector); display(CVaR_Portfolio); 
 
 
 
%Summarizing the overall trading information for each pair 

fprintf(1,['\n~~~~~The end of the Pairs Trading.','The current Balance 

= ',num2str(Account(1,end)),'~~~~~~~~~~\n'])  
fprintf(1,['Pair # ; Trade Times ; Cumulative Profit ($); Average Realized 
Profit/Loss ($); Maximum Gain; Maximum Loss; Sharpe Ratio']) 
 
for pairs = 1: Pair_Number  

fprintf(1,['\n ',num2str(pairs),'; ',num2str(Trade_Time(1,pairs)),'; 
',num2str(sum(Cumulative(:,pairs))), ...  

'; ',num2str(sum(Cumulative(:,pairs))/Trade_Time(1,pairs)),'; 
',num2str(max(Cumulative(:,pairs))), ...  

'; ',num2str(min(Cumulative(:,pairs))),'; 
', num2str(Sharpe_Ratio(1,pairs)),'\n']);  
end 

 
plot(Cumulative); 

xlabel('Trade Time')  
ylabel('Realized Gain/Loss for Each Trade ') 

 
for pairs = 1: Pair_Number 

figure 

plot(Cumulative(:,pairs));  
title(strcat('Realized Returns for Pair 
#',num2str(pairs))) xlabel('Trade Time')  
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ylabel('Realized Gain/Loss for Each Trade ') 
end 

 
x = ((-(max(Return_Vector)-min(Return_Vector))/50) + 

min(Return_Vector)):(max(Return_Vector)-

min(Return_Vector))/50:(((max(Return_Vector)-min(Return_Vector))/50) 

+ max(Return_Vector));  
hist(Return_Vector,x); 

xlabel('Profits') 

ylabel('Frequency') 

 
title(strcat('Frequency Distribution of Returns')) 
 

 

SimulateOrnsteinUhlenbeck.m 
 
function [S] = SimulateOrnsteinUhlenbeck(S0, mu, sigma, lambda, deltat, t) 

 
periods = floor(t / deltat); S 

= zeros(periods, 1); 
S(1) = S0; 

 
exp_minus_lambda_deltat = exp(-lambda*deltat); 

 
if (lambda == 0) % Handle the case of lambda = 0 i.e. no mean reversion. 

dWt = sqrt(deltat) * randn(periods,1); 
else  

dWt = sqrt((1-exp(-2*lambda* deltat))/(2*lambda)) * randn(periods,1); 
end 

 
for t=2:1:periods 
 

S(t) = S(t -1)*exp_minus_lambda_deltat + mu*(1-exp_minus_lambda_deltat) 
+ sigma*dWt(t); 
end 
 
 
 

Spreads_Calculation.m 

 
function [Spreads_Matrix]= Spreads_Calculation(Stock_Price_Matrix, 
Pair_Number)  
%SPREADS_CALCULATION Summary of this function goes here 
%Detailed explanation goes here 
 
for pairs = 1 : Pair_Number  

Spreads(:,pairs)= log(Stock_Price_Matrix(:,2*pairs-1)) - 
log(Stock_Price_Matrix(:,2*pairs));  

%Calculates the spreads between the log of the two stock prices in a 
%pair  

end 
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Spreads_Matrix = Spreads; 
end 

 

OU_est.m 
 
function [mu,sigma] = OU_est(S) 

 
n = length(S)-1; 
delta=1; 

 
Sx = sum( S(1:end-1) );  
Sy = sum( S(2:end) ); 
Sxx = sum( S(1:end-1).^2 ); 

 
Sxy = sum( S(1:end-1).*S(2:end) ); 
Syy = sum( S(2:end).^2 ); 

 
mu = (Sy*Sxx - Sx*Sxy) / ( n*(Sxx - Sxy) - (Sx^2 - Sx*Sy) );  
lambda = -log( (Sxy - mu*Sx - mu*Sy + n*mu^2) / (Sxx -2*mu*Sx + n*mu^2) ) 

/ delta; 
a = exp(-lambda*delta);  
sigmah2 = (Syy - 2*a*Sxy + a^2*Sxx - 2*mu*(1-a)*(Sy - a*Sx) + 

n*mu^2*(1-a)^2)/n; 
sigma = sqrt(sigmah2*2*lambda/(1-a^2)); 

 
%forecast=S(n+1)*exp(-lambda)+mu*(1-exp(-lambda)); 

%stdev=sigma*sqrt((1-exp(-2*lambda))/(2*lambda));  
end 

 

Output.m 
 
[Spreads_Matrix ]= Spreads_Calculation(Stock_Price, Pair_Number); 
 
 
 
figure 

plot(Spreads_Matrix)  
legend('Pair#1','Pair#2','Pair#3','Pair#4','Pair#5') 

xlabel('Backtesting: From Jan.1 2006 -- Nov.29 

2011') ylabel('Daily fluctuation of Pair Spread') 

 
figure 

plot(Account,'LineWidth',2) 

legend('Account Balance')  
xlabel('Backtesting: From Jan.1 2006 -- Nov.29 2011') 
ylabel('Total Account: Initial Investment and Realized Profit or Lost ') 

 
figure 

plot(Cumulative)  
legend('Pair#1','Pair#2','Pair#3','Pair#4','Pair#5') 

xlabel('Backtesting: From Jan.1 2006 -- Nov.29 

2011') ylabel('Cumulative Realized Gain/Loss') 
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figure 

OU_S0= 0; 

OU_mu = 0; 
OU_sigma = 0.3; 
 
OU_lambda = 

0.1; OU_deltat 

= 1; OU_t=500;  
OU_Process =OU_Simulation( OU_S0, OU_mu, OU_sigma, OU_lambda, OU_deltat, 
OU_t );  
OU_UL = [ones(500,2)*0.3*diag([ -0.5 

0.5])]; OU_LL = [ones(500,2)*0.3*diag([2 -2 

])]; hold on  
plot(OU_Process,'b') 

plot(OU_UL, 'r') 

plot(OU_LL, 'g') hold 

off 

 
legend('Ornstein-Uhlenbeck','2*sigma','-2*sigma','0.5*sigma','-

0.5*sigma') xlabel('Ornstein-Uhlenbeck Simulation: S_0=0, mu=0, 

sigma=0.3, lambda=0.1, deltat=1, t=500')  
ylabel('Ornstein-Uhlenbeck MOdel') 
 

SR_Simulation.m 
 
% Simulation of the windows and control days 

 
max_SR = 0; 

max_window = 0; 

max_control = 

0; multiplier = 

1; increments = 

29; gap = 150; 
 
k = 1; %less than or equal to 
1; max_inc = increments + gap;  
max_w = ((max_inc - 
increments)/multiplier)+1; max_c = k*max_w;  
wind = zeros(max_w,1); 

cont = zeros(max_c,1); 
Profit_Simulation=zeros(max_w,max_c); 

 
for window = 1:max_w 

for control_days = 1:window 
 

wind(window, 1) = (multiplier*window)+increments; 

cont(control_days,1) = (5*control_days)+increments; 

 
fprintf(1,['\nSimulation_Window_',num2str(window*multiplier+increments),'_Con 

trol_', num2str(control_days*multiplier+increments)]);  
Sharpe_it = SR_sim(window, control_days, 
multiplier,increments); display(Sharpe_it);  
SR_Simulation(window,control_days) = Sharpe_it; 

 
if SR_Simulation(window,control_days) > max_SR 
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max_SR = SR_Simulation(window,control_days); 

max_window = multiplier*window + increments; 
max_control = multiplier*control_days +increments;  

end 

 
end 

end  
fprintf(1,['\n Matrix with the Simulated 
Results']); display(SR_Simulation);  
fprintf(1,['\nWindow with Maximum Sharpe 

Ratio:',num2str(max_window),'\nControl Days for Maximum Sharpe 

Ratio:', num2str(max_control)]);  
fprintf(1,['\nMaximum Sharpe Ratio:',num2str(max_SR)]); 

surf(cont,wind,SR_Simulation);  
xlabel('Number of Control Days'); 

ylabel('Rolling Window'); 

zlabel('Sharpe Ratio'); 
title('Sharpe Ratio - Variation with Control Days and Window'); 
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SR_Sim.m 

 
function SR_sim = SR_ sim(w, cd, m, i) 
SR_sim = zeros(m,i); 
load Pairs.mat; 

 
window = (m*w)+i; 

Control_Days = (m*cd)+i;  
Stock_Price=Pairs_Price_Matrix; 

Stock_Price = flipud(Stock_Price); 

Risk_Free_Rate = 0.01; %Risk free rate  
Capital = 1000000; %Ammount of capital traded in each position taken  
(same unit as C)  

[Days Pairs] = size(Stock_Price); 
Pair_Number = Pairs/2;  

Stop_Loss = -0.10; %Stop loss control 
 
 
 
[Account Sharpe_Ratio_Portfolio Net_Profit VaR_Portfolio CVaR_Portfolio] 
=PairsTrading_Sim(Stock_Price, Capital, ...  
window, Risk_Free_Rate,Control _Days,Pair_Number,Stop_Loss); % This funciton 
performs the traidng strategy 

 
SR_sim = Sharpe_Ratio_Portfolio; 
end 
 
 

Profit_Simulation.m 
 
 
% Simulation of the windows and control days 

 
max_profit = 0; 

max_window = 0; 

max_control = 0; 

multiplier = 1; 

increments = 29; 

gap = 150; 
 
k = 1; %less than or equal to 1; 
max_inc = increments + gap;  
max_w = ((max_inc - increments)/multiplier)+1; 
max_c = k*max_w;  
wind = zeros(max_w,1); 

cont = zeros(max_c,1); 
Profit_Simulation=zeros(max_w,max_c); 

 
for window = 1:max_w 

for control_days = 1:window 
 

wind(window, 1) = (multiplier*window)+increments; 

cont(control_days,1) = (5*control_days)+increments; 
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fprintf(1,['\nSimulation_Window_',num2str(window*multiplier+increments),'_Con 

trol_', num2str(control_days*multiplier+increments)])  
prof_it = PT_sim(window, control_days, 
multiplier,increments); display(prof_it);  
Profit_Simulation(window,control_days) = prof_it; 

 
if Profit_Simulation(window,control_days) > max_profit 

max_profit = Profit_Simulation(window,control _days); 

max_window = multiplier*window + increments; 

max_control = multiplier*control_days +increments;  
end 

 
end 

end 
 
fprintf(1,['\n Matrix with the simulated 
Results']); display(Profit_Simulation);  
fprintf(1,['\nWindow with Maximum Profit:',num2str(max_window),'\nControl 

Days for Maximum Profit:', num2str(max_control)]);  
fprintf(1,['\nMaximum Profit:',num2str(max_profit)]); 

surf(cont,wind,Profit_Simulation);  
xlabel('Number of Control Days'); 

ylabel('Rolling Window'); 

zlabel('Realized Profit'); 
title('Risk Adjusted Return - Variation with Control Days and Window'); 

 

PT_Sim.m 

 
function Prof_sim = PT_ sim(w, cd, m, 
i) Prof_sim = zeros(m,i);  
load Pairs.mat; 

 
window = (m*w)+i; 

Control_Days = (m*cd)+i;  
Stock_Price=Pairs_Price_Matrix; 

Stock_Price = flipud(Stock_Price); 

Risk_Free_Rate = 0.01; %Risk free rate  
Capital = 1000000; %Ammount of capital traded in each position taken  
(same unit as C)  

[Days Pairs] = size(Stock_Price); 
Pair_Number = Pairs/2;  

Stop_Loss = -0.10; %Stop loss control 
 
 
 
[Account Sharpe_Ratio_Portfolio Net_Profit VaR_Portfolio CVaR_Portfolio] 
=PairsTrading_Sim(Stock_Price, Capital, ...  
window, Risk_Free_Rate,Control _Days,Pair_Number,Stop_Loss); % This 
funciton performs the traidng strategy 

 
Prof _sim = 
Net_Profit; end 



41 
 

 

Selection Strategies.R 
 
distance <- function(x) 

{ 
 
distance_matrix<-matrix(nrow=(NCOL(x)-1),ncol=(NCOL(x)-1)) for(i in 

1:(ncol(distance_matrix)-1))  
{ 

for(j in (i+1):(ncol(distance_matrix))) 

{  
price1=x[,i+1] 

price2=x[,j+1]  
price1=price1/price1[1] 

price2=price2/price2[1]  
sum=0  
for (k in 1:NROW(x)) 

{  
sum=sum+(price1[k]-price2[k])^2 

} 

distance_matrix[i,j]=sum  
}  
} 

return(distance_matrix) 

} 

 

-----------------------------------------------------------------------------

-------------------- 

beta <- function(x) 

{ 
 
beta_matrix<-matrix(nrow=(NCOL(x)-2),ncol=(NCOL(x)-2)) 

beta_array<-matrix(nrow=1,ncol=(NCOL(x)-2))  
for(i in 1:(ncol(beta_array))) 

{ 
 
y<-lm(x[,ncol(x)]~x[,i+1]) 

y=coef(y) 
 
y=as.matrix(y) 

beta_array[1,i]=y[2,1];  
} 
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Appendix B: Stocks used in strategy 
 

Energy Sector 

ACI   Arch Coal Inc. 

AEM   Agnico Eagle Mines Ltd 

BTU   Peabody Energy Corporation 

CAM   Cameron International Corp 

CNQ   Canadian Natural Resource Ltd  

CNX   CONSOL Energy Inc 

FST   Forest Oil Corporation 

COG   Cabot Oil & Gas Corporation 

GG   Goldcorp Inc. 

HAL   Halliburton Company 

NOV   National-Oilwell Varco, Inc. 

OXY   Occidental Petroleum Corporation 

PEO   Petroleum & Resources Corporation 

SLB   Schlumberger Limited 

TLM   Talisman Energy Inc. 
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Banking sector 

BAC   Bank of America Corp. 

BNS   Bank of Nova Scotia 

C   Citigroup Inc. 

CM   Canadian Imperial Bank of Commerce 

CS   Credit Suisse Group AG (ADR) 

DB   Deutsche Bank AG 

FITB   Fifth Third Bancorp 

HBC   Home Bancorp, Inc 

HDB   HDFC Bank Limited (ADR) 

IBN   ICICI Bank Ltd (ADR) 

MS   Morgan Stanley 

PNC   PNC Financial Services Group Inc 

RBS   Royal bank of Scotland 

RY   Royal Bank of Canada 

WFC   Wells Fargo & Co 

 

Healthcare sector 

ABT Abbott Laboratories 

JNJ Johnson & Johnson 

LLY Eli Lilly and Co 

PFE Pfizer Inc 

AMGN Amgen, Inc 

AZX 
Alexandria Minerals 

Corporation 

BAX Baxter International Inc 

BMY Bristol-Myers Squibb Co 

GSK GlaxoSmithKline plc (ADR) 

NVO Novo Nordisk A/S (ADR) 

PFE Pfizer Inc 

RHHBY Roche Holding Ltd. (ADR) 

SNY Sanofi SA (ADR) 

WCRX Warner Chilcott Plc 

MTEX Manntech Inc. 

 


