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Chapter 1

Introduction

1.1 Differential Equations

A differential equation is an equation that expresses a relationship between a function

and its derivatives. This relationship is often used to describe how a quantity varies

with time and space. Differential equations arose from early attempts by scientists at

solving physical problems - a process which led to mathematical models involving an

equation in which a function and its derivatives play important roles. Mathematical

modeling presently provides widespread and essential insight into the analysis of many

real world problems ranging from chemical reactions at the molecular level to motion

of planetary bodies at the cosmic level.

The discipline of computational science represents the computer modeling of com-

plex phenomena and plays an important role is all areas of science and engineering.

Such computer models are usually based on complicated systems of differential equa-

tions. The complexity of these systems means that they often possess no analytic

solution; in other words, they cannot be solved by analytical techniques. There-

fore sophisticated and robust software packages are required for the computation of

approximate numerical solutions to these systems.
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1.1.1 Ordinary Differential Equations

An ordinary differential equation (ODE) involves a function of one independent vari-

able and its derivatives. There are two main types: initial value ODES (IVODEs)

and boundary value ODEs (BVODEs). An IVODE system consists of a set of differ-

ential equations with solution information specified at a single initial point. A simple

IVODE system can be represented as:

y′(t) = f(t, y(t)), t ≥ a, (1.1)

with initial condition(s)

y(a) = α, (1.2)

where y and f are vector functions, a is the initial point, and α is a given constant

vector.

BVODEs are systems of ordinary differential equations with boundary conditions

imposed at two or more distinct points. The solution of the BVODE is then sought in

the region between the boundary points. Two point BVODEs, (see for example [1]),

have boundary conditions imposed at two distinct points and are usually represented

as:

y′(t) = f(t, y(t)), t ∈ [a, b], f : R× Rm → Rm, y ∈ Rm, (1.3)

where y and f are vector functions, 0 is a vector of zeros and a and b are known

endpoints. Equation (1.3) is usually accompanied by a system consisting of either
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non-separated boundary conditions

g(y(a), y(b)) = 0, (1.4)

or separated boundary conditions

[g
0
(y(a)), g

1
(y(b))]T = 0, (1.5)

where g is a vector function, g0 : Rm → Rmo , g1 : Rm → Rm1 and m0 +m1 = m.

Equations (1.3) with boundary conditions (1.4), (1.5) is known as a first order system

meaning that only first derivatives of the relevant quantities appear.

As mentioned earlier, systems of ordinary differential equations are used to model

phenomena that vary with time or space and are employed in a variety of applica-

tions. These include, for example, modeling the human heart, predicting the extent

of a viral outbreak, numerical simulations of fluid dynamics, studying the motion of

celestial bodies, numerical weather forecasting, calculating the value of stocks options,

simulating car crashes, and computing the trajectory of space crafts [1].

1.2 Thesis Structure

This thesis describes software development and modification associated with the algo-

rithmic enhancement of the BVP SOLVER II [45] software package. BVP SOLVER

II is a Fortran 90/95 based solver used in the numerical solution of systems of first

order nonlinear, BVODEs, with separated boundary conditions. BVODEs are said

to have separated boundary conditions if each of the components of g is given either

at t = a or at t = b, but none involves both ends simultaneously [5].
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1.2.1 Summary of the BVP SOLVER II Software

For a given mesh of points which partition the problem domain into subintervals,

BVP SOLVER II employs a combination of discrete mono-implicit Runge-Kutta

(MIRK) formulas [17] and continuous mono-implicit Runge-Kutta (CMIRK) schemes

[40], to provide approximate solutions to BVODE systems. The discrete MIRK

schemes are used for the discretization of the ODEs leading to solution approxima-

tions at the mesh points whilst the CMIRK schemes augment the discrete solutions to

produce a continuous solution approximation over the entire problem domain. The

solver monitors the quality of the numerical solution through defect control. The

defect of a numerical solution is the amount by which that solution fails to satisfy the

ODE system. If, for instance, u(t) is the continuous approximate solution to (1.3),

(1.4), (1.5), the defect δ(t) of u(t) is defined as follows:

δ(t) = u′(t)− f(t, u(t)). (1.6)

The defect is computed by substituting the approximate solution u(t) in place of the

exact solution y(t) into the ODE system (1.3) and subtracting the right hand side of

the equation from the left hand side to see how well u(t) satisfies the ODE system.

BVP SOLVER II attempts to compute a numerical solution for which the maximum

defect on each subinterval is less than a user-defined tolerance. This requires the code

to estimate the maximum defect in an efficient and robust manner. This is currently

done in BVP SOLVER II by sampling the defect at two points per subinterval.
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1.2.2 High Level Thesis Statement

The overall robustness and efficiency of BVP SOLVER II depends on an efficient

and accurate estimate of the maximum defect on each subinterval. The two-point

sampling currently employed is efficient but can lead to significant underestimation

of the maximum defect.

The main goal of this thesis is (i) to develop and investigate the numerical perfor-

mance of new Hermite-Birkhoff interpolants, based on the existing CMIRK schemes,

that lead to an improved defect estimation technique known as asymptotically cor-

rect defect estimation [23], and (ii) to develop a new version of the BVP SOLVER II

software that implements this new approach for defect estimation.

This thesis work consists of three main phases. Phase one constitutes a review and

verification of the results of [23], for the sixth order Hermite-Birkhoff interpolation

scheme and the derivation of the fourth and second order Hermite-Birkhoff schemes.

Phase two relates to the modification of the BVP SOLVER II software package in

order to incorporate the new Hermite-Birkhoff interpolants as well as an auxiliary

process known as a validity check. The third phase is concerned with the development

of other types of CMIRK schemes which yield asymptotically correct defect estimates.

1.3 Thesis Organization

The organization of this thesis is as follows. Chapter 2 gives a review of standard

methods and related software for the numerical solution of BVODEs. Chapter 3

provides an in-depth review of Runge-Kutta based methods and software, predom-

inantly those that implement defect control. Chapter 4 details the derivation of
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Hermite-Birkhoff schemes using a boot-strapping algorithm that leads to the new

asymptotically correct approach for estimating the maximum value of the defect on

each subinterval. The suite of test problems which formed the basis of the numerical

experiments are described in Chapter 5. Chapter 6 chronicles the software modifi-

cations to BVP SOLVER II whilst Chapter 7 contains the description of the various

numerical experiments conducted as well the relevant results. In Chapter 8 a special

type of fourth order CMIRK scheme is developed that leads to an asymptotically

correct estimate of the maximum defect. Chapter 9 contains the conclusion to the

thesis and future work.



Chapter 2

Review of Numerical Solution of BVODES

2.1 Numerical Methods

2.1.1 Introduction

Numerical methods for the solution of BVODEs are generally categorized into initial

value methods and global methods. The distinction between the two method classes

depends on the computational approach as well as the manner in which the solution

approximations are computed. The basic approach shared by all initial value methods

is to compute a solution approximation by numerically integrating in a step-wise

fashion from an initial starting point to a final terminal point on the problem interval.

The global methods on the other hand, discretize the BVODE system using a given

mesh which subdivides the problem interval. This produces a system of algebraic

equations which are then solved to simultaneously produce an approximate solution

over the problem interval.

2.1.2 Shooting / Multiple Shooting Methods

The simple shooting method is one of the most popular approaches employed in the

numerical solution of BVODES. This intuitive method builds on the initial value

ordinary differential equation (IVODE) approach and is a straightforward extension

of initial value techniques. Starting with estimated initial conditions at the left end

7
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point of the problem interval, a (since we are considering BVODEs, we do not have

complete solution information at a and the missing information must be estimated),

one essentially tries to hit known boundary values at the right end point, b, by

integrating varying trajectories of the same ordinary differential equation over the

problem domain.

Consider the BVODE system comprising of equations (1.3) and (1.4). We denote

by y(t) ≡ y(t; c) the vector solution of the ODE (1.3) which satisfies the initial (or

left end point) condition y(a; c) = c. Note that since we are considering a BVODE

system, not all components of c are known. Then we can write

h(c) ≡ g(y(a; c), y(b; c)) = g(c, y(b; c)) = 0, (2.1)

which gives a set of m nonlinear algebraic equations for the m unknown initial con-

ditions c.

The intuitive simplicity of this approach and availability of excellent, robust ini-

tial value numerical software [5] makes the simple shooting method an attractive

computational approach. However a major difficulty associated with this method is

its inherent instability which is due to the conditioning of each shooting step being

dependent on the conditioning of the IVODE. This often leads to unbounded growth

in the solution error [1]. The basic issue is that a well-posed, stable BVODE may

have solution components that increase exponentially from left to right and it is dif-

ficult for an initial value solver, integrating from left to right, to compute accurate

approximations to these components.
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Multiple shooting [44, 36], is an improved variant of the simple shooting method.

Essentially this approach employs a set of mesh points to partition the problem in-

terval and on each subinterval a local initial value problem with estimated initial

conditions specified at the left end point of each subinterval is set up and solved. The

advantage of this method over simple shooting is that the local IVODE is solved over

smaller problem intervals. However requiring the local initial value solutions to match

at the internal mesh points and also satisfy the boundary conditions leads to a large

system of nonlinear equations. The effectiveness of this approach is limited to less

difficult classes of BVODES. In particular singularly perturbed problems expose the

limitations of the method because the possible presence of rapidly increasing solution

modes cannot be dealt with using an initial value solver even on smaller intervals.

2.1.3 Collocation Methods

The collocation methods are a popular type of global method for the numerical so-

lution of BVODEs. The approximate solution is represented as a linear combination

of known basis functions with unknown coefficients. Then the approximate solution

is substituted into the system of ODEs with the requirement that the ODE system

be satisfied exactly at a set of points distributed over the problem domain, called

collocation points. The number of collocation points plus the number of boundary

conditions must equal the number of unknown coefficients in the approximate solu-

tion. To achieve optimal accuracy careful consideration is placed on the choice of

an appropriate basis as well as the positioning of the collocation points. These two

criteria have been discussed in many papers; see, e.g., [7, 9]. A popular combination
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employed is a linear space of piecewise polynomial functions, called splines, for the

basis functions, and Gauss points [1] on each subinterval as the collocation points.

The collocation and boundary conditions lead to a nonlinear system which must be

solved iteratively. For each iteration, a structured linear system of equations must be

solved.

2.1.4 Finite Difference Methods

The finite difference approach represents another type of global method for solving

BVODEs. In this approach a mesh is defined on the problem interval [a,b] and the

derivative in equation (1.1) is replaced by a finite difference approximation at each

mesh point. The resulting difference equations plus the boundary conditions give a

set of algebraic equations for the solution on the mesh. These equations are generally

nonlinear. In [1] the basic steps for the use of a finite method for the solution of

BVODES are outlined as follows:

1. For a given mesh π:

a = t0<t1<t2 · · ·<tN−1<tN = b,

define approximate solution values, for i = 0, · · · , N ,

yi ≈ y(ti).

2. Replace derivatives in the differential equations and boundary conditions with

finite difference quotients

y
′
(ti) ≈

yi+1 − yi
ti+1 − ti

.
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This forms a set of algebraic nonlinear equations for the approximate solution

at the mesh points.

3. Solve this set of equations together with the boundary conditions for the ap-

proximate solution values at the mesh points.

2.1.5 Runge-Kutta Methods

The Runge-Kutta (RK) schemes are another important class of global methods for

BVODEs. Explicit Runge-Kutta (ERK) schemes were originally devised for the solu-

tion of IVODES by Runge with further development by Heun, Kutta, and Nystrom -

see, e.g., [14]. Implicit Runge-Kutta (IRK) methods for IVODEs were first proposed

by Butcher, see, e.g., [14], with a focus on methods based on Gaussian quadrature

formulae. A remarkable feature of this latter class of methods is that they are all

A-stable, making them especially suitable for stiff initial value differential problems

[14].

The Runge-Kutta schemes represent higher order generalizations of finite differ-

ence methods and have also been used in the numerical solution of BVODEs. As-

suming a given mesh and discrete approximate solution values as in section 2.1.4, the

ODE

y′ = f(t, y),

is replaced on each subinterval by an IRK scheme which discretizes the ODE at ti.

The general form of an s stage IRK method is:
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y
i+1
− y

i

hi
=

s∑
r=1

brkr, i = 0, · · · , N − 1, (2.2)

where

kr = f(ti + crhi, yi + hi

s∑
j=1

arjkj), (2.3)

r=1,· · · ,s, are called the stages of the method, hi=ti+1 - ti, and {br}sr=1, {cr}sr=1 and

{arj}sj=1 are the coefficients of the Runge-Kutta scheme. These methods are often

represented in a tableau containing their coefficients, which for the above method,

will have the structure:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
...

cs as1 as2 · · · ass

b1 b2 · · · bs

.

The equations (2.4) together with boundary conditions give a system of nonlinear

equations for the solution approximations at the mesh points.

2.1.6 Comparisons

There is a direct correlation between the knowledge gained through extensive research

into BVODE literature and the evolution of the different numerical approaches being

implemented presently. Scientific research in computational disciplines leads to the

inevitable discovery of new and more complex types of boundary value problems

and so the search for efficient numerical methods remains a continuous process. As a
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consequence, certain methods developed earlier for the numerical solution of BVODEs

are now obsolete. This section of the chapter chronicles the evolution of numerical

methods and approaches from an efficiency standpoint, highlighting the advantages

and disadvantages of implementing various numerical schemes.

The intuitive simplicity of the shooting methods and relative ease of implementa-

tion makes this a popular numerical scheme. In fact, in an earlier survey of existing

numerical methods, Keller [31] argued that for a first order system, the simple shoot-

ing method was superior to certain collocation methods. The main reasoning behind

this assertion was the relatively low computational cost in implementing this approach

especially in cases where the boundary conditions are separated. Simple shooting

methods are generally very efficient in the numerical solution of easy BVODEs; how-

ever this class of BVODEs constitute only a small proportion of all BVODEs. The

inherent instability of the shooting methods is a consequence of its inability in dealing

with the dichotomy of solution modes commonly present in more complex BVODE

systems. Essentially the shooting approach involves integrating an ODE system over

a problem interval in the forward direction. However integrating ODEs that have

solutions which grow exponentially from left to right, leads to unbounded growth

in solution error. The multiple shooting method does limit this undesirable trait to

some extent by reducing the problem interval; however it is ineffective for difficult

BVODEs. Subsequent research to improve upon the multiple shooting approach by

decoupling solution modes proved very costly to implement prompting researchers to

explore other more efficient alternatives [1].
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The limitations of the shooting method required a shift in direction of the research

into numerical approaches. Rather than adapt existing initial value based approaches,

more emphasis was placed on the derivation of methods possessing qualities suited to

the numerical solution of BVODEs. This led to the use of finite difference schemes for

BVODEs. The finite difference methods are based on an intuitively simple concept

of discretizing ODE systems. However as a global method, they are more suited to

handling the dichotomy of solution modes in BVODE systems and are therefore more

efficient than the shooting methods. Keller observed in his survey of existing numeri-

cal methods [31], that the finite difference method called the centered Euler (or Box)

scheme [32], was superior to the shooting methods as well as certain collocation meth-

ods. The main disadvantage of this scheme however was that it produced only second

order solution approximations; that is, the error is O(h2), where h is the maximum

subinterval size. More research into the derivation of higher order finite difference

schemes culminated in the derivation of a computationally efficient and stable one-

step finite difference method of order four by Cash and Moore [17] which required

only about twice as much computational effort as the box scheme. The emergence of

the Runge-Kutta methods as a viable approach in the numerical solution of BVODEs

generalized the finite difference schemes, thereby making it easier to derive higher or-

der one-step (i.e., one subinterval) formulas. More importantly, the implicit subclass

of these one-step methods has further extended the range and capability of the finite

difference methods in efficiently solving difficult classes of BVODEs. Implementation



15

of the finite difference and Runge-Kutta schemes produces discrete approximate so-

lution values only at the mesh points; however, the derivation of interpolants which

augment the discrete solutions and produce a continuous solution approximation has

successfully overcome this limitation.

A specific type of IRK methods, the collocation methods, have proven to be very

popular for BVODEs. There are two main advantages of implementing the collocation

approach in software packages. Firstly, these schemes are suited to handling types of

BVODE systems known as mixed order systems in which varying orders of the solu-

tion derivatives occur, and secondly, unlike the finite difference methods, they possess

a natural implementation which produces a continuous solution approximation. It is

well-known [48, 47] that for every collocation method there is an equivalent implicit

Runge-Kutta method. They are equivalent in the sense that the discrete solution

of the implicit Runge-Kutta method agrees exactly with the piecewise polynomial

approximation generated by the collocation method, evaluated at the mesh points.

Given a collocation method it is a reasonably straightforward procedure to obtain

the corresponding implicit Runge-Kutta method. Weiss [47] also showed that the Lo-

batto quadrature points were the most efficient, giving an accuracy of O(h2s−2) when

s collocation points were used in each subinterval. The major disadvantage with the

collocation approach is the necessity to solve a system of m × s nonlinear algebraic

equations on each subinterval, which is a significant computational expense. (Recall

that m is the number of ODEs).
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2.2 Numerical Software

2.2.1 Introduction

The development of high quality general purpose software for the solution of BVODEs

started with the initial value approach since the underlying mathematical theory for

IVPs was much better understood and extensive research had already been under-

taken to develop the associated software. BVODES were also originally regarded as

specific types of IVODES and so software designed to solve IVODEs was adapted

and applied to this problem class. However the inherent instability of the initial

value method as well as the realization that BVODES were a separate and indeed

more complicated class of problems led researchers to seek more efficient alternate

strategies.

Numerical software packages for BVODEs implement various types of error con-

trol to measure solution quality. Common measures of solution quality are (i) local

truncation error (LTE), which is the error incurred on each subinterval, (ii) Global

Error (GE) - the difference between the exact and approximate solutions, and (iii)

the defect, the amount by which the computed solution fails to satisfy the system of

differential equations and the boundary conditions.

The remaining sections in this chapter chart the development of general purpose

BVODE software based primarily on the first two error controls described above. A

more detailed examination of defect control software is done in the next chapter.
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2.2.2 Shooting Method Software

Shooting software generally consists of an IVODE solver working together with a

nonlinear equation solver. One of the earliest shooting codes for BVODES was that

of Riley et al.[44], called SUPORT. Shooting methods were also implemented by

England, Nichols and Reid [21], and then in the software package BOUNDS developed

by Bulirsch, Stoer and Deuflhard [12].

Multiple shooting has been implemented in many software packages, a number

of which constitute components of standard libraries for numerical software. Keller

popularized the method by developing both a simple shooting code (SSM) [31] and a

multiple shooting variant (MSM) [32]. The MUSN package [36] developed by Mattheij

and Staarink is based on a more recent version of the multiple shooting method

designed for non-stiff nonlinear BVODEs whilst MUSL [44] is the multiple shooting

variant designed for non-stiff linear BVODEs.

2.2.3 Deferred Correction Based Software

TWPBVP [35] is a deferred correction based software package which employs A-

stable, symmetric, MIRK schemes. This software is designed for the numerical solu-

tion of first order systems of nonlinear BVODEs and implements a deferred correction

method based on MIRK schemes of orders 4, 6, and 8. The first step of the deferred

correction approach involves the computation of a 4th order solution approximation

using the 4th order scheme. Then the 6th and 8th order methods are employed to

generate two subsequent corrections of the approximate solution to 6th and 8th order

respectively. The code controls a LTE estimate of the solution at the mesh points.
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Deferred correction has also been the basis for a number of other codes; notably

the PASVA3 solver developed by Lentini and Pereyra [35] which implements deferred

correction based on the box scheme. An experimental solver, generalizing the ap-

proach employed in PASVA3 through the use of MIRK methods is discussed in [29].

MIRK methods and Lobatto collocation methods are implemented within a deferred

correction framework in the BVODE solvers TWPBVP [35] and ACDC [19], and the

related solver, TWPBVPL [15]. All of these solvers control estimates of the LTE and

base mesh refinement on these estimates. Extensions that consider mesh refinement

based on the LTE estimates and on estimates of the conditioning constant of the

BVODE have led to new versions of TWPBVP and TWPBVPL, called TWPBVPC

and TWPBVPLC [16].

2.2.4 Collocation Based Software

The collocation based numerical software package COLSYS (COLocation for SYS-

tems) [2, 3] was one of the earliest BVODE solvers to implement GE control. Several

modifications of this solver have been developed to improve its capabilities; examples

include COLNEW[4, 8], COLDAE [6], and COLMOD [19]. These solvers are capable

of handling mixed order nonlinear BVODE systems. The method of spline collocation

at Gaussian points is implemented using a B-spline basis [2, 3] in COLSYS. COL-

NEW employs the same spline collocation approach but uses a monomial basis. The

modifications in COLDAE significantly extend the range of the COLSYS/COLNEW

solvers. Nonlinear systems of semi-explicit differential algebraic equations (DAEs) as

well as some fully implicit boundary value DAE problems can be efficiently solved.
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COLMOD, an extension to COLNEW employs an automatic continuation strategy,

which is an approach where a sequence of progressively more difficult problems is

solved by using information from one problem to solve for the next.

Error estimation in these solvers is implemented in two ways. The computed

estimate of the discretization error is used for mesh refinement and a preliminary

assessment of the acceptability of the numerical solution. This estimate may be

unreliable for crude tolerances or high order so an estimate of the GE is computed

using Richardson Extrapolation [10]. Only after this second estimate satisfies the

user tolerance is the numerical solution accepted.



Chapter 3

Runge-Kutta Methods and Defect Control Software Packages

3.1 Runge-Kutta Methods

3.1.1 Explicit and Implicit Runge-Kutta Methods

The Runge-Kutta methods, as mentioned in the previous chapter, are generaliza-

tions of the finite difference schemes, commonly used for the numerical solution of

the IVODE system (1.1), (1.2). Explicit Runge-Kutta (ERK) schemes have excellent

efficiency properties because each stage is explicitly defined in terms of quantities

that are already known. Therefore all the stages of the method can be computed

without the necessity of solving linear or non-linear systems. The efficiency of the

ERK schemes however is offset by inherent stability issues which make them gener-

ally unsuitable for use in the solution of difficult BVODEs. ERK methods can be

represented as follows,

y
i+1

= y
i
+ hi

s∑
r=1

brkr (3.1)

with stages,

k1 = f(ti, yi),

20
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kr = f(ti + crh, yi + hi

r−1∑
j=1

ar,jkj) 2 ≤ r ≤ s, (3.2)

where s is the number of stages, and {ar,j}r−1,sj=1,r=1 and {br}sr=1 are the internal and

external weights, respectively. The abscissa cr are defined by cr =
r−1∑
j=1

ar,j and the

length of the subinterval is hi = ti+1 − ti. The coefficients of the ERK schemes are

usually expressed in a Butcher tableau of the form:

c1 0 0 0 · · · 0

c2 a21 0 0 · · · 0

...
...

. . . · · · · · · ...

cs as1 as2 · · · as,s−1 0

b1 b2 · · · · · · bs

.

The Implicit Runge-Kutta (IRK) methods described in section 2.1.5 constitute the

other major half of the Runge-Kutta class of schemes. These methods were first pre-

sented by Butcher [14] for use in the numerical solution of initial value ODEs. These

schemes, unlike their explicit counterparts, can possess excellent stability properties;

however from (2.5), it is evident that each stage, kr, is defined implicitly in terms of

itself and the other stages. Therefore in order to obtain approximate stage values,

it is necessary to solve a system of m× s coupled nonlinear equations where m rep-

resents the number of differential equations and s represents the number of stages

of the Runge-Kutta method. The most popular approach for solving this system of
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nonlinear equations is to use some form of a modified Newton iteration which makes

the stage calculations a somewhat computationally expensive process.

Consider the initial value ODE system consisting of equations (1.1) and (1.2). The

Runge-Kutta method (3.1) with stages (2.3), computes a sequence of discrete approx-

imation vectors yi ≈ y(ti) in a step-wise fashion, starting with t0 = a and y0 = ya. On

a general step with yi available, a step size hi is chosen and the next approximation

is computed at ti+1 := ti + hi.

In the two point BVODE system described by (1.3) and (1.4), given a mesh

which subdivides the problem interval, the basic approach is to use the IRK formulas

to form a discrete algebraic system consisting of the boundary conditions and m

more equations per subinterval, which can then be solved with a Newton iteration to

obtain a discrete solution Y having the form Y = [y0, y1, · · · , yN ]T , where N is the

number of subintervals in the current mesh. When an IRK scheme is employed as

the discretization scheme, the set of m equations associated with the ith subinterval

has the form:

φ(yi+1, yi) = y
i+1
− y

i
− hi

s∑
r=1

brkr = 0, (3.3)

where

kr = f(ti + crh, yi + hi

s∑
j=1

arjkj). (3.4)

The boundary value ODEs to be solved are assumed to be expressible in the general

form described by equations (1.3) and (1.4).
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3.1.2 Mono Implicit Runge-Kutta Methods

Due to the considerable attention devoted to the IRK schemes in the research lit-

erature, a number of interesting subclasses have been identified and investigated.

These methods attempt to trade-off the higher accuracy of the fully IRK methods

for methods that can be implemented more efficiently. The parameterized implicit

Runge-Kutta (PIRK) methods presented by Muir and Enright [42], is an alternate

representation of the IRK schemes having the form

y
i+1

= y
i
+ hi

s∑
r=1

brkr. (3.5)

with stages,

kr = f(ti + crh, (1− vr)yi + vryi+1
+ hi

s∑
j=1

xr,jkj). (3.6)

The scheme is defined by the number of stages, s, the coefficients {v}sr=1 and {xr,j}s,sj=1,r=1

and the weights {br}sr=1. The abscissa cr are defined by cr = vr +
s∑
j=1

xr,j and the

length of the step is hi = ti+1 − ti. The coefficients of the PIRK schemes are usually

represented in a modified tableau of the form:
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c1 v1 x11 x12 · · · x1s

c2 v2 x21 x22 · · · x2s

...
...

...
...

...

cs vs xs1 xs2 · · · xss

b1 b2 · · · bs

.

The added restriction that the matrix X (whose (i,j)th component is xij) in the PIRK

schemes be strictly lower triangular results in the MIRK schemes which are a popular

subclass of the IRK methods. The MIRK schemes are essentially a compromise

between fully explicit RK methods and fully implicit RK methods, derived to achieve

some of the computational efficiency of the former as well as some of the higher

accuracy and stability characteristics of the latter. Cash and Singhal [18] and Van

Bokhoven [11], discussed certain subclasses of IRK methods in the IVODE context.

In the IVP context, when the underlying discretization RK scheme is a MIRK

scheme the set of m equations associated with the ith subinterval has the form (3.1),

with stages,

kr = f(ti + crh, (1− vr)yi + vryi+1
+ hi

r−1∑
j=1

xr,jkj), r = 1, · · · , s. (3.7)

Note that the rth stage depends only on stages 1, · · · , r − 1 and yi+1. When a

MIRK scheme is the underlying discretization scheme for a BVODE system, the set

of equations associated with the ith subinterval has an identical form to (3.3):
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φ(yi+1, yi) = y
i+1
− y

i
− hi

s∑
r=1

brkr = 0, (3.8)

where the stages kr are identical to those in (3.7).

A modified Butcher tableau is used to represent the coefficients of the MIRK

formulas and has the following structure:

c1 v1 0 0 0 · · · 0

c2 v2 x21 0 0 · · · 0

...
...

...
. . . · · · · · · ...

cs vs xs1 xs2 · · · xs,s−1 0

b1 b2 · · · · · · bs

.

The introduction of the additional parameters vr, r = 1, · · · , s, allow for an explicit

dependence on yi+1 in each stage. Gupta [29] discussed their use in the solution of

BVODEs. Because the stages are defined explicitly in terms of yi and yi+1, in the

BVODE context, these methods have approximately the same efficiency as the ERK

methods. Burrage et al. [13], determine the maximum order for an s-stage MIRK

scheme as well as a complete characterization of those methods having a number of

stages s ≤ 5. The derivation of optimal MIRK schemes from multi-parameter families

is addressed by Muir [40] with several optimization criteria identified and applied in

the derivation process.

A MIRK method is of pth order if the numerical solution at the ith mesh point

obtained by solving (3.5) satisfies,
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|yi(ti+1)− yi+1| = O(hp+1
i ), (3.9)

where yi(t) is the exact solution of the local IVODE,

y(t) = f(t, y(t)), y(ti) = y
i
. (3.10)

A family of MIRK schemes of a particular order p is derived by requiring its coefficient

to satisfy a set of equations called order conditions, see e.g., Burrage et al. [13].

3.1.3 Continuous Runge-Kutta Methods

The use of the IRK methods as discretization schemes in the numerical solution of

BVODEs produces discrete solution approximations at the mesh points. A continuous

solution approximation can be very useful not just when the user requires solution

information at off-mesh points, but also in certain processes within a BVODE code

itself, for example, for error estimation, defect control, provision of initial estimates

for Newton iterates, or mesh refinement and redistribution.

The idea of extending the discrete solution approximation to get a continuous

solution first gained traction in the area of initial value ODE problems, with a number

of authors (see, for example, [27]), having demonstrated the possibility of generating

inexpensive interpolants for ERK formulas. A natural way to do this, which ties

in with the one-step nature of the ERK method, is to construct a local solution

approximation ui(t) on the step from ti to ti+1. A global approximation is obtained

by joining these local continuous approximations in a piecewise fashion. The basic

form of a continuous Runge-Kutta (CRK) scheme on the ith step, [ti, ti+1], is a
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polynomial in θ of the form:

ui(ti + θhi) = y
i
+ hi

s∗∑
r=1

br(θ)kr, i = 0, · · · , N − 1, (3.11)

where 0 ≤ θ ≤ 1 and s∗ ≥ s is the total number of required stages. The stage values

are defined in the same way as the IRK schemes in (3.5) above. If s∗ > s, which

is usually the case, then extra stages are computed in order to form the continuous

extension. Observe that ui(ti+θhi) can be regarded as the result of step of length θhi

with an ERK scheme whose coefficients are {cr/θ}s
∗
r=1, {arj/θ}

r−1,s∗
j=1,r=1 and {br(θ)}s

∗
r=1.

The conditions br(1) = br for r = 1, · · · , s, and br(1) = 0 for r = s+ 1, · · · , s∗, ensure

that (3.13) reduces to the basic formula (3.5) at θ = 1.

3.1.4 Continuous Mono Implicit Runge-Kutta Methods

The CMIRK methods are a particular subclass of the CRK schemes. In [41], the

class of CMIRK schemes is investigated. A summary of the authors work is done in

Enright and Muir [26] who also discuss the application of CMIRK schemes to obtain

continuous solution approximations to BVODE problems. The CMIRK interpolant is

constructed by requiring it to satisfy the interpolatory conditions, u(ti) = yi, u
′(ti) =

f(ti, yi), and u′(ti+1) = f(ti+1, yi+1) thus giving the scheme C1 continuity over [a, b].

For the ith subinterval, the basic form of a CMIRK scheme is a polynomial in θ,

ui(ti + θhi) = y
i
+ hi

s∗∑
r=1

br(θ)kr, 0 ≤ θ ≤ 1, s∗ ≥ s, (3.12)

with stages kr, of the same form as those in (3.10). The remaining s∗ − s stages are

defined by determining new coefficients vr and xr,j, r = s+1, · · · , s∗, j = 1, · · · , r−1.



28

The functions, br(θ), r = 1, ..., s∗, are weight polynomials of a certain degree related

to the order of the CMIRK scheme. The coefficients are usually represented in a

tableau having the structure:

c1 v1 0 0 0 · · · 0

c2 v2 x21 0 0 · · · 0

...
...

...
. . . · · · ...

...

cs∗ vs∗ xs∗1 xs∗2 · · · xs∗,s∗−1 0

b1(θ) b2(θ) · · · bs∗−1(θ) bs∗(θ)

.

A CMIRK scheme is of order p if we have

max
0≤θ≤1

|y
i
(ti + θhi)− ui(ti + θhi)| = O(hp+1

i ), (3.13)

where y
i
(t) is the exact solution to the local initial value ODE,

y′(t) = f(t, y(t)), y(ti) = y
i
.

To derive a pth order CMIRK scheme, the stages and weight polynomials are required

to satisfy continuous versions of the MIRK order conditions, as described in Muir

and Owren [41]. The derivation of optimal CMIRK schemes from multi-parameter

families was carried out by Muir [40], with the author identifying several optimization

criteria which are then applied in the derivation process.
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3.1.5 Brief Review of the BVP SOLVER II Algorithm

This section briefly reviews the basic algorithm implemented in BVP SOLVER II

which employs MIRK and CMIRK schemes as the underlying discretization and in-

terpolation schemes in the numerical solution of systems of BVODEs. The basic

approach is to use the MIRK methods to determine a non-linear discrete algebraic

system which can then be solved with a Newton iteration to obtain a discrete solution.

Once this solution is obtained, a CMIRK scheme is employed to provide a continu-

ous C1 solution approximation over the problem interval for use in the computation

of defect estimates, mesh redistribution, and initial guesses for subsequent Newton

iterates. The boundary value ODEs to be solved are assumed to be expressible in the

general form defined in section 2.1.1.

The standard approach involves a two level iteration scheme to describe the solution

process [10]:

(0) Prior to beginning the two level iteration, a suitable initial mesh and associated

initial guess for the discrete solution approximation is provided by the user.

(1) The first step of the upper level iteration is the setup and solution of a discrete

system Φ(Y ) = 0 where Φ is the residual function (to be defined shortly) and Y =

[y
0
, y

1
, · · · , y

N
].T The residual function has N + 1 components each of size m. There

are N components, (3.8), associated with the N subintervals and one component

corresponding to the boundary conditions. This discrete system is solved using a
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modified Newton iteration which constitutes the lower level iteration.

(2) Upon convergence of the Newton iteration, we obtain the discrete solution {yi}Ni=0

which serves as a basis for the continuous solution approximations {ui(t)}N−1i=0 based

on a CMIRK scheme. The CMIRK scheme is used on each mesh subinterval to aug-

ment the discrete solution, leading to a C1-continuous interpolant over the whole

problem interval. The continuous solution approximation, u(t), is then the piece-

wise polynomial defined by the collection of local continuous solution approximations

{ui(t)}N−1i=0 and has the same order of accuracy as the underlying discrete solution.

The defect on each subinterval is sampled in order to obtain an estimate of the

maximum defect in a given mesh. The algorithm terminates if the estimate of the

maximum defect on each subinterval is within a given user defined tolerance, TOL.

(3) If the above criterion isn’t met, the algorithm determines a new mesh, with

redistributed mesh points and possibly a different number of points, to attempt to

ensure that the maximum defect estimates will be approximately the same on each

subinterval and that they will each be less than the user tolerance.

(4) After a new mesh is determined, the continuous solution approximation is used

to compute an initial iterate for the next Newton iteration.



31

3.2 Defect Control BVODE Software

3.2.1 MIRKDC

MIRKDC [26] is a FORTRAN 77 defect control code which implements MIRK and

CMIRK schemes in the numerical solution of BVODEs. The basic algorithm em-

ployed in the software package uses MIRK formulas to discretize the ODE system, a

process which together with the boundary conditions gives a nonlinear system for the

solution approximations at the mesh points. Once this solution is obtained, a CMIRK

scheme is used to provide a polynomial solution approximation over each subinterval.

MIRKDC provides the option of second, fourth and sixth order, symmetric MIRK

methods as discretization schemes. Symmetric methods are those which are invariant

regardless of the sign of h. The stages of the MIRK schemes are embedded within the

CMIRK scheme in the construction of the continuous solution. Reusing the stages

of the MIRK scheme is computationally efficient. MIRKDC implements a hybrid

damped Newton and fixed Jacobian iteration combination, with a switching scheme,

to solve the nonlinear system obtained from the discretization process. The Jacobian

matrices arising from the nonlinear system possess a special sparsity structure known

as almost block diagonal [20] and specialized software COLROW [20], designed to

handle these type of structures, is employed. Both the termination criterion for the

overall computation and the mesh selection algorithm require an estimate of the max-

imum defect on each subinterval. In MIRKDC this is done by sampling the defect at

two points within each subinterval. The estimate of the maximum defect is required

to satisfy a user provided tolerance.
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3.2.2 Defect Control MATLAB Software: bvp4c, bvp5c, bvp6c

The MATrix LABoratory or MATLAB numerical codes bvp4c by Kierzenka and

Shampine [33], bvp5c by Kierzenka and Shampine [34], and bvp6c by Hale and Moore

[30], are other examples of defect control solvers. The bvp4c and bvp6c codes are

based on MIRK schemes and do not attempt to directly control the global error

(GE), while bvp5c is based on a four point Lobatto collocation formula. All three

codes control an estimate of the maximum defect in the computed solution as a

measure of solution quality, although, as is shown in [33], bvp5c also simultaneously

controls an estimate of the global error (GE) as well. The relationship between the

defect and GE is considered in [33], where it is shown that a scaled norm of the defect

asymptotically approaches the norm of the GE.

3.2.3 BVP SOLVER

BVODE codes such as MIRKDC and other numerical software packages such as

PASVA3/BVPFD [35], COLSYS/COLNEW [2, 3, 8], and TWPBVP [19] possess

very complex user interfaces that often deter most potential users from investing the

time needed to learn how to use them properly. In order to broaden their appeal to

a larger audience, these interfaces (consisting mainly of argument lists and subrou-

tine) through which the user communicates with the software, must be drastically

simplified. Drawing upon their experience in writing user interfaces for ODE solvers

in Matlab and Fortran 90/95, Shampine, Muir and Xu [45] developed a user-friendly

Fortran 90/95 BVP solver based on an extensive modification of MIRKDC. This

project was related to earlier work by Kierzenka and Shampine [33], which exploited
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the capabilities of the MATLAB programming environment to obtain solvers with

greatly simplified BVODE solver interfaces. The authors, in the course of developing

a completely new user interface, also added significantly to the algorithmic capabili-

ties of MIRKDC by taking advantage of certain properties of the Fortran 90/95 pro-

gramming language. Their effort culminated in the production of the BVP SOLVER

software which features a substantial reduction in the number of user supplied sub-

routines, as well as a vastly simplified argument list. The latter was achieved by

exploiting features of the Fortran 90/95 such as dynamically allocated arrays and

modules which replaced static work arrays and common blocks in MIRKDC. In ad-

dition, all low level linear algebra subroutines were replaced with calls to intrinsic

array functions thus improving greatly the maintainability of the code for future de-

velopment. BVP SOLVER I also extends the class of BVPs solved by MIRKDC to

problems with unknown parameters and singular coefficients. This extended problem

class has the form,

y′(t) =
1

t− a
Sy(t) + f(t, y(t), p), (3.14)

subject to general nonlinear separated boundary conditions,

g
a
(y(a), p) = 0, g

b
(y(b), p) = 0, (3.15)

where S is an optional m×m matrix and p is an optional vector of unknown parame-

ters. It also uses improved MIRK and CMIRK formulas [40]. In particular, the sixth

order case is an improvement on the corresponding formula employed in MIRKDC

because it requires one less stage evaluation. The solver also provides a global error
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estimate based on Richardson extrapolation and a conditioning constant estimate as

well. The software package has the additional convenience of auxiliary routines which

evaluate the solution and its derivative, save and retrieve solution information, and

facilitate continuation in the length of the problem interval.

3.2.4 BVP SOLVER II

The BVODE software package BVP SOLVER II, by Boisvert, Muir, Spiteri [10],

represents an expansion in the error controlling capabilities of BVP SOLVER. It pro-

vides the user with the possibility of computing a defect controlled numerical solution

as well as an option for controlling an estimate of the GE of the numerical solution.

This software upgrade modifies the BVP SOLVER I code to include hybrid defect

control/GE control by introducing implementations of three GE estimation schemes

as alternatives to Richardson extrapolation for the a posteriori estimate of the GE.

These schemes are based on (i) the direct use of a higher order discretization formula,

(ii) the use of a higher order discretization formula within a deferred correction frame-

work, and (iii) the product of an estimate of the maximum defect and an estimate

of the BVODE conditioning constant. The BVP SOLVER II code also possesses an

option for the estimation and control of the GE meaning that this new version pro-

vides options for GE control, defect control, as well as hybrid combinations of both

of these measures of solution accuracy.



Chapter 4

Derivation and Analysis of Asymptotically Correct Defect

Estimation Schemes

4.1 Detailed Description of Maximum Defect Estimation Process

The defect δ(t) described in the previous chapter is a continuous function over the

problem interval and provides a measure of the quality of the computed solution.

The central idea behind all defect control solvers is to adaptively choose a mesh

which approximately equidistributes the defect across all subintervals so that, for the

final accepted numerical solution, an estimate of the maximum defect over the entire

problem domain is bounded by a user-provided tolerance. It is an essential require-

ment, therefore, for defect control based solvers to accurately and efficiently estimate

the maximum defect on each subinterval. It is straightforward to compute δ(t) at

any point in the domain; however the bigger challenge is to determine, in an efficient

manner, the maximum value of the defect on each subinterval. When a standard

CMIRK interpolant is employed for u(t), the usual approach is to simply sample the

defect at a small number of points on each subinterval with the hope that one of the

points will be close enough to the location of the true maximum defect. In order

for the estimation process to be reasonably efficient the number of sample estimates

35
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must be kept reasonably small. Given that the maximum value of the defect can be

located anywhere within a given subinterval, there is no particular justification that

any of the sampling points selected will coincide with the location of the maximum

defect. It was observed in Enright and Muir [23], that the true maximum defect in

some cases exceeded the estimated maximum defect by an order of magnitude. The

implication of this observation is that a defect control code, employing standard de-

fect sampling for the estimation process, may accept a numerical solution for which

the defect is in fact substantially larger than the user tolerance. This underestimate

of the maximum defect can impact negatively on the performance of the rest of the

computation because the mesh selection algorithm will not have access to a good

profile of the defect over the subintervals of the mesh.

Since the continuous solution approximation, u(t), is based on a continuous Runge-

Kutta scheme (3.11), (3.4), it is possible to express the defect in terms of the coef-

ficients of the scheme. Let ui(t) be an approximation to the exact solution, zi(t), of

the local initial value problem (IVP)

z′i = f(t, zi), zi(ti) = yi, t ∈ [ti, ti+1]. (4.1)

The continuous error of ui(t) on the ith subinterval is (see equation (3.13))

ui(t)− zi(t) = O(hp+1
i ). (4.2)

Similarly, the derivative of this numerical solution satisfies
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u′i(t)− z′i(t) = O(hpi ), (4.3)

since the variables t and θ are related by the equations t = ti + θh , θ = 1
h
(t− ti) and

dθ
dt

= 1
h
. Hence the right hand side of (4.9) is reduced by a factor of h.

Recall that the defect of the numerical solution, ui(t), on the ith subinterval is

described by the equation

δi(t) = u′i(t)− f(t, ui(t)). (4.4)

Taking advantage of the fact that zi(t) is the exact solution of (4.1), (4.4) can be

written as

δi(t) = u′i(t)− f(t, ui(t)) + f(t, zi(t))− z′i(t). (4.5)

A slight rearranging of (4.5) gives

δi(t) = u′i(t)− z′i(t)− (f(t, ui(t))− f(t, zi(t))) . (4.6)

Imposing a Lipschitz assumption [1] on f , the second term in (4.6) then can be seen

to be of O(hp+1
i ) and the defect can hence be written as

δi(t) = u′i(t)− z′i(t) +O(hp+1
i ). (4.7)

The leading term in the defect (4.7) is thus O(hpi ) from (4.3). Furthermore the leading

order term in the defect can be seen to be equal to the leading order term in the error

for u′i(t). When ui(t) is based on a CMIRK scheme, the leading error term is known

from the theory of Runge-Kutta methods [14].
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On the ith subinterval the defect, denoted by δi(t), can be expressed in an expansion

that is related to the local error expansion of the appropriate solution. It has the

form,

δi(t) =

(
ρ∑
j=0

qj(θ)Fj

)
hpi +O(hp+1

i ), (4.8)

where p is the order of the Runge-Kutta scheme, the qj(θ)’s are polynomials of degree

p dependent on the continuous Runge-Kutta (CRK) scheme but independent of the

problem or hi, the Fj’s are elementary differentials [14] which depend only on the

problem and ρ + 1 > 1 is the number of elementary differentials of (p + 1)st order.

As hi → 0, it is evident from (4.1) that the value of the defect will approach a

linear combination of the qj(θ) values, where the coefficients of this linear combination

depend on the values of the elementary differentials, Fj. Since the Fj values depend on

the problem, it is impossible to predict on each subinterval which of these elementary

differentials is the largest in value. The location of the maximum will hence vary from

subinterval to subinterval depending on the problem. This means that on any given

subinterval it is virtually impossible to make an a priori determination of where the

maximum value of the leading term of the defect will occur. Figure 4.1 is a graphical

illustration of the typical behavior of the defect in this case. In order to produce

this plot, the defect estimates in each subinterval across all meshes considered in the

computation of the numerical solution by BVP SOLVER II were scaled (normalized)

by dividing through by the maximum defect for that subinterval. This was done to

ensure that the maximum defect peaks at 1 or -1. The curves of the normalized defect
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for each subinterval (the total number of subintervals considered is denoted by n) are

then superimposed on each other on the interval [0,1].

Figure 4.1: Plot of the results for test problem IV with ε = 10−2 using BVP SOLVER
II with fourth order schemes and TOL = 10−7.

4.2 Hermite - Birkhoff Interpolants Derived Via Bootstrapping Process

The discussion at the end of the previous section demonstrates precisely why defect

estimation using the standard CMIRK schemes isn’t a good idea. Since the defect of

the numerical solution is the measure of solution quality and control in the BVODE

solvers MIRKDC, and BVP SOLVER I, it was imperative therefore to derive new

types of interpolants capable of providing inexpensive and accurate estimations of

the maximum defect. A particularly promising line of research was the derivation
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of interpolants with vastly simplified expressions for the defect expansion. The in-

tuitiveness of this approach is based on the fact that since the continuous solution

approximations are based on Runge-Kutta schemes (3.4),(3.5), the defect (4.1) on

each subinterval can be expressed in an expanded form as:

δi(t) = (q0(θ)F0 + q1(θ)F1 + · · ·+ qρ(θ)Fρ)h
p
i +O(hp+1

i ). (4.9)

Let the coefficient of hpi in the leading order term be

G(t) = q0(θ)F0 + q1(θ)F1 + · · ·+ qρ(θ)Fρ. (4.10)

A careful examination of (4.3) reveals a strong correlation between the number of

terms and the ease with which the term contributing the maximum value to the

leading term of the defect expansion can be identified. This relationship provided

an avenue of research into ways by which the expression G(t) can be simplified.

The authors Enright and Muir [23] describe one approach in which an interpolant

with a greatly simplified expression corresponding to (4.3) is derived. Starting with

a standard CMIRK scheme, they employ a boot-strapping algorithm developed by

Enright et al. [27] to derive a special type of interpolant expressed in the form of a

Hermite-Birkhoff interpolant [27]. These special interpolants yield a defect for which

the location of the maximum defect on each subinterval can be determined (at least

asymptotically) in an a priori manner. The estimate of the maximum defect obtained

in this case is said to be asymptotically correct.
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The general form of a Hermite- Birkhoff scheme on the subinterval [ti, ti+1] , with

0 ≤ θ ≤ 1 is:

ũi(ti + θhi) = d0(θ)yi + d1(θ)yi+1 + hi

s̃∗∑
r=1

b̃r(θ)kr, (4.11)

where the kr’s have the same general form as (3.6), d0(θ), d1(θ), {b̃r(θ)}s̃
∗
r=1, are

polynomials in θ and s̃∗ is the total number of required stages. The determination

of the required stages and weight polynomials as described by Enright and Muir

[23], is done by requiring the interpolant (4.4) and its derivative to satisfy certain

interpolation conditions at a number of points within the ith subinterval. This process

is detailed in sections 4.2.1 and 4.2.3, during the derivation of fourth and sixth order

Hermite-Birkhoff schemes.

The asymptotically correct quality possessed by the Hermite-Birkhoff interpolants

is essentially a consequence of the vast simplification of the coefficient function, G(t)

(4.3). Guided by work done earlier in Enright and Hayes [28], Enright and Muir

[23], derived a sixth order Hermite-Birkhoff interpolant (leading to an asymptotically

correct maximum defect estimate) by employing a bootstrapping process. This led

to an interpolant with only a single term contributing to the leading coefficient in the

expansion of the associated defect. The problem of locating the maximum defect was

now essentially one of locating the maximum of the polynomial in the leading term

of the defect expansion which is relatively easy to compute. We discuss the process

through which this special interpolant was obtained, in detail, in Section 4.2.1.
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It is a relatively straightforward process to convert Hermite-Birkhoff form of ũ(t)

to its CMIRK equivalent. By substituting for y
i+1

in the discrete formula

y
i+1

= y
i
+ hi

s∑
r=1

brkr, (4.12)

in (4.4) and noting the interpolation condition d0(θ) + d1(θ) = 1, the CMIRK form

of ũ(t) can be written as:

ũi(ti + θhi) = y
i
+ hi

s̃∗∑
r=1

(brd1(θ) + b̃r(θ))kr. (4.13)

Given the relative ease of conversion, and also that the changes to BVP SOLVER

II will be minimal in comparison, the implementation of (4.6) as the primary in-

terpolant in the BVP SOLVER series seemed a forgone conclusion. However, it is

pointed out in [23] that the lack of an explicit dependence on yi+1 in (4.6) means that

ũ(t) may have discontinuities that are the size of the Newton tolerance (used to solve

the nonlinear system for the {y
i
}Ni=0) at the mesh points. Furthermore, it introduces

an additional error of O(hp+1) associated with the error for yi+1 from the discrete

formula. On the other hand, since ũ(t) in (4.4) has an explicit dependence on yi+1,

the interpolant and its first derivative will be continuous across each internal mesh

point.

The remainder of this chapter provides a detailed account of the approach imple-

mented by Enright and Muir [23] in the derivation of a sixth order Hermite-Birkhoff
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scheme. This is then followed by the development of second and fourth order Hermite-

Birkhoff schemes using the boot-strapping scheme, that lead to asymptotically correct

estimates of the maximum defect on each subinterval.

4.2.1 Derivation of a Sixth Order Hermite-Birkhoff Interpolant

In the course of deriving ũi(t), several considerations were taken into account by the

authors [23].

1. The standard sixth order interpolant, ui(t), computed by BVP SOLVER II is

of degree six and involves the two stages k1 = f(ti, yi), k2 = f(ti+1, yi+1), the

three stages computed for use with the MIRK scheme, k3, k4, k5 and the three

additional stages k6, k7, k8 needed for the CMIRK method.

2. The new interpolant involves the same yi, yi+1, k1, and k2 values and the boot-

strapping process is employed to define four new stages based on evaluations

of the standard interpolant. The new stages are assigned the corresponding

abscissa c9, c10, c11 and c12 and are constructed based on the evaluations of ui(t)

at these abscissas. On the ith subinterval, they are of the form

k8+j = f(ti + c8+jhi, ui(ti + c8+jhi)), (4.14)

where j = 1, 2, 3, 4. The abscissa values, 7
100

, 14
100

, 86
100

, 93
100

for c9, c10, c11, c12, are

chosen so that the size of leading coefficient of the defect expansion is signifi-

cantly larger than the coefficients in the next higher order term.

3. Next, eight interpolatory conditions are imposed in order to determine ũi(t):
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ũi(t) is the unique polynomial of degree at most seven that satisfies ũi(ti) = yi,

ũi(ti+1) = yi+1, ũ
′
i(ti) = f(ti, yi) = k1, ũ

′
i(ti+1) = f(ti+1, yi+1) = k2 and for

j = 1, 2, 3, 4,

ũ′i(ti + c8+jhi) = f(ti + c8+jhi, ui(ti + c8+jhi)) = k8+j. (4.15)

Then the Hermite-Birkhoff representation of this interpolant has the form

ũi(ti + θhi) = d0(θ)yi + d1(θ)yi+1 (4.16)

+hi

(
b̃1(θ)k1 + b̃2(θ)k2 + b̃9(θ)k9 + b̃10(θ)k10

+b̃11(θ)k11 + b̃12(θ)k12

)
,

where d0(θ), d1(θ), b̃1(θ), b̃2(θ), b̃9(θ), · · · b̃12(θ) are weight polynomials of degree

seven obtained in a straightforward fashion from the interpolation conditions.

4. Since ui(t) is a sixth order CMIRK scheme, each evaluation has an error that is

O(h7i ) and with a Lipschitz assumption on f , the error in each of the stages k2,

k9, · · · , k12 defined in (4.15) is O(h7i ) as well. Given that the yi and k1 terms

are assumed to be exact and do not contribute to the local error, every other

term in (4.16) with the exception of the d1(θ)yi+1 term contributes an error of

O(h8i ) to the Hermite-Birkhoff scheme, since all stages are multiplied by hi.

5. We also note from standard interpolation theory that the interpolation error

associated with ũi is O(h8i ). Hence d1(θ)yi+1 is the term contributing the largest
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data error, of O(h7i ), to ũi(t). Therefore, the continuous error of ũi(t) is

ũi(t)− zi(t) = d1(θ)Cihi
7 +O(h8i ), (4.17)

where Ci is associated with the error in yi. Thus from (4.7) the defect of ũi(t)

satisfies

δ̃(t) = ũ′i(t)− z′i(t) = d′1(θ)Cih
6
i +O(h7i ) = q̃1(θ)Cih

6
i +O(h7i ), (4.18)

where q̃1(θ) = d′1(θ) is a polynomial of degree six. Hence, for this scheme

(referring to (4.10)), we have G̃(t) = q̃1(θ)Ci. The simplification of G̃(t) to a

single term means that, assuming that Ci 6= 0, the defect for any t ∈ [ti−1, ti] will

be a multiple of the polynomial d′1(θ) for sufficiently small hi. This means that

an asymptotically correct estimate of the maximum magnitude of the defect

can be obtained on each subinterval at the extremum of d′1(θ) for θ ∈ [0, 1].

The implication of this is that as hi → 0, the maximum defect will occur at the

same place within every subinterval for every problem. In the sixth order case,

the local maximum of d′1(θ) occurs at θ = 1
2
. Figure 4.2 illustrates the typical

behavior of the defect for both ui(t) and ũi(t) when hi is sufficiently small.
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Figure 4.2: Plot of the normalized defect for problem V over all subintervals for sixth
order CMIRK and Hermite-Birkhoff schemes.

4.2.2 Derivation of a Fourth Order Hermite-Birkhoff Scheme

As mentioned earlier, the methodology implemented in the derivation of the fourth

order Hermite-Birkhoff scheme closely mirrors the approach employed by Enright and

Muir [23] in the development of the sixth order scheme.

1. The fourth order Hermite-Birkhoff scheme is developed using the standard

fourth order CMIRK interpolant as a basis. The latter scheme depends on

yi, yi+1, the stages k1 = f(ti, yi) and k2 = f(ti+1, yi+1), the third stage k3, com-

puted for use with the discrete MIRK scheme and one additional stage, k4, for

the CMIRK method.

2. The fourth order Hermite-Birkhoff scheme utilizes yi, yi+1, k1, k2, and two

additional stages constructed using the boot-strapping algorithm described in
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[27]. The extra stages associated with the abscissa values c5 = 86
100

and c6 = 93
100

,

are based on evaluations of the underlying CMIRK scheme and are of the form,

k4+j = f(ti + c4+jhi, ui(ti + c4+jhi)), (4.19)

where j = 1, 2.

3. Imposing the appropriate interpolatory conditions makes ũi(t) the unique poly-

nomial of degree at most five which satisfies ũi(ti) = yi, ũi(ti+1) = yi+1,

ũ′i(ti) = f(ti, yi), ũ
′
i(ti+1) = f(ti+1, yi+1) and, for j = 1, 2,

ũ′i(ti + c4+jhi) = f(ti + c4+jhi, ui(ti + c4+jhi)). (4.20)

Note that the right hand side of (4.20) involves evaluations of the CMIRK

scheme.

Then the Hermite-Birkhoff representation of this interpolant has the form,

ũi(ti + θhi) = d0(θ)yi + d1(θ)yi+1 (4.21)

+hi

(
b̃1(θ)k1 + b̃2(θ)k2 + b̃5(θ)k5 + b̃6(θ)k6

)
,

where d0(θ), d1(θ), b̃1(θ), b̃2(θ), b̃5(θ), and b̃6(θ) are weight polynomials of degree

five, obtained from the interpolation conditions.

4. Since ui(t) is a fourth order CMIRK scheme, each evaluation of this scheme as

well as the stages k2, k5, and k6 (with a Lipschitz assumption on f) has an error
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that is O(h5i ). Therefore the error contributions of the terms hik2, hik5, and

hik6 are O(h6i ) while the yi and k1 terms are considered exact and so contribute

no data error to ũi(t) .

5. We note also that, from standard interpolation theory, the interpolation error

associated with ũi is O(h6i ). Thus the term d1(θ)yi+1 contributes the largest

data error of O(h5i ) to the new interpolant ũi(t). The continuous local error is

ũi(t)− zi(t) = d1(θ)Cihi
5 +O(h6i ), (4.22)

where Ci is associated with the error for yi, and from (4.7) the defect of ũi(t)

satisfies

δ̃(t) = ũ′i(t)− z′i(t) = q̃1(θ)Cih
4
i +O(h5i ), (4.23)

where q̃1(θ) = d′1(θ) is a polynomial of degree four. Hence G̃(t) = q̃1(θ)Ci. As

in the sixth order case, an asymptotically correct estimate of the maximum

magnitude of the defect will coincide on each subinterval with the extremum of

d′1(θ) for θ ∈ [0, 1]. The implication of this is that as hi → 0, the maximum

defect will occur at the same place within every subinterval for every problem.

The local maximum for d′1(θ) occurs at θ ≈ 0.231, which corresponds to the

maximum of the polynomial q̃1(θ) = d′1(θ). Figure 4.3 illustrates the typical

behavior of the defect for ui(t) and ũi(t) when hi is sufficiently small.



49

Figure 4.3: Plot of the normalized defect for problem I over all subintervals for fourth
order CMIRK and Hermite-Birkhoff schemes.

4.2.3 Second Order

The second order CMIRK scheme by default already possesses the characteristics

which yield an asymptotically correct estimate of the maximum defect, hence the

boot-strapping process isn’t required in its derivation. However, it does not explicitly

depend on yi meaning that the interpolant has a discontinuity at right hand mesh

point of each subinterval that will be of the order of the Newton tolerance applied

in the computation of the discrete solution. Thus a Hermite-Birkhoff interpolant is

preferred and it is derived directly as follows.

1. The second order Hermite-Birkhoff scheme utilizes the yi, yi+1, k1 and k2 and

imposing the appropriate interpolatory conditions makes ũi(t) the unique poly-

nomial of at most degree three which satisfies the conditions, ũi(ti) = yi,

ũi(ti+1) = yi+1, ũ
′
i(ti) = f(ti, yi), and ũ′i(ti+1) = f(ti+1, yi+1).
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ũi(ti + θhi) = d0(θ)yi + d1(θ)yi+1 + hi

(
b̃1(θ)k1 + b̃2(θ)k2

)
(4.24)

where d0(θ), d1(θ), b̃1(θ), and b̃2(θ) are weight polynomials of degree three

obtained by requiring ũi(t) to interpolate yi, yi+1 and ũ′i(t) to interpolate k1

and k2.

2. The terms yi and k1 are considered to be exact for the local solution and so

contribute no data error. The error contribution from the stage k2 is also O(h3i ),

hence the term hik2 contributes an error of O(h4i ).

3. We note also that, from standard interpolation theory, the interpolation error

associated with ũi is O(h4i ). Therefore the largest contributor of data error to

ũi(t) is the d1(θ)yi+1 term with an error of O(h3i ). The continuous local error is

thus

ũi(t)− zi(t) = d1(θ)Cihi
3 +O(h4i ), (4.25)

where C1 is associated with the error in yi.

The defect of ũi(t) satisfies

δ̃(t) = ũ′i(t)− z′i(t) = d′1(θ)Cih
2
i +O(h3i ). (4.26)

Therefore as hi becomes sufficiently small, the location of the maximum defect on each

subinterval for any problem will coincide with the extremum of the polynomial, q̃1(θ)
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= d′1(θ). The local maximum of this polynomial is at θ = 1
2
. Figure 4.4 illustrates

the typical defect behavior for ũi(t) for sufficiently small hi values.

Figure 4.4: Plot of the normalized defect for problem III over all subintervals for the
second order Hermite-Birkhoff scheme.

4.2.4 Validity Check

In this subsection we discuss the implementation of the auxiliary process called a

validity check. This process monitors the accuracy and robustness of the new defect

sampling process by checking the value of the defect estimate at a point known as
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validity check sampling point. The value of the defect estimate evaluated at this point

should be half the value of the defect sampled at the asymptotically correct sample

point where we expect the defect to have its maximum value, in the same subinterval.

Put in other words, the defect of the interpolant ũi(t) is also computed at a second

predetermined spot within each subinterval. If the subinterval size is sufficiently

small that we are within the asymptotic regime of the formula, then the value of the

defect at this location should be half that of the value of the maximum defect for the

same subinterval. The auxiliary validity check process was discussed in Enright and

Muir [23], who observed that the successful defect estimation rate of the sixth order

Hermite-Birkhoff for the final converged mesh was around 83% for a collection of test

problems. Closer examination revealed that the subintervals where the estimation

failed were relatively large and thus the associated computation wasn’t within the

asymptotic regime for the formula. Hence the error contribution from the higher

order terms was significant enough to interfere with the dominance of the leading

order term in the defect expansion. The validity check process implemented in our

software (optionally) allows the user to check, for the final converged mesh, which

subintervals satisfy the validity check and flag suspect subintervals. The validity

check routine provides an additional layer of confidence for the defect sampling and

control process.

4.3 Chapter Comments

In the course of constructing the Hermite-Birkhoff scheme only the left and right

discrete solution values yi and yi+1 together with the stages, k1 = f(ti, yi) and
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k2 = f(ti+1, yi+1) from the standard interpolant are utilized. Therefore the weight

polynomials br(θ) corresponding to the discrete and continuous MIRK schemes are all

zero in the Hermite-Birkhoff scheme. Only the Hermite-Birkhoff weight polynomials

{dj(θ)}2j=1 and {b̃r(θ)}s̃
∗
r=s∗+1 are used to define the Hermite-Birkhoff scheme.



Chapter 5

Test Problems

This thesis utilizes a set of five test boundary value problems in the conduction of

various numerical experiments on the software package. The five test problems have

been chosen from a suite of test problems used consistently in testing earlier versions

of BVP SOLVER II. They are a typical mixture of scientific or engineering oriented

problems and, unless otherwise stated, have no known closed form solution. Though

each problem is described in its original form here, each was rewritten in the first

order form required by BVP SOLVER II.

5.1 Test Problem I

Test problem I is from Ascher et al. [1], Example 1.20. The problem considers the

steady flow of a viscous incompressible axisymmetric (swirling flow) fluid between

two rotating coaxial disks located at x = 0 and at x = 1. The BVODE is described

by two equations and a total of six boundary conditions:

εf ′′′′ + ff ′′′ + gg′ = 0, 0 < x < 1, (5.1)

εg′′ + fg′ + f ′g = 0, 0 < x < 1, (5.2)
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with boundary conditions

f(0) = f(1) = f ′(0) = f ′(1) = 0, (5.3)

g(0) = Ω0, g(1) = Ω1, (5.4)

where Ω0 and Ω1 are the angular velocities of the infinite disks, |Ω0| + |Ω1| 6= 1 and

ε is a viscosity parameter, 0 < ε << 1.

5.2 Test Problem II

Test problem II, from Ascher et al. [1], Example 1.17, describes a shock wave in a

one-dimensional nozzle flow. The BVODE is governed by a second order steady state

Navier-Stokes equation:

εA(x)uu′′ −
[

1 + γ

2
− εA′(x)

]
uu′ +

u′

u
+
A′(x)

A(x)

(
1− γ − 1

2
u2
)

= 0, (5.5)

where 0 < x < 1 is the normalized downstream distance from the throat of the nozzle,

u is a normalized velocity, A(x) = 1 + x2, is the area of the nozzle at x, γ = 1.4 and

ε is a parameter, 0 < ε << 1. The boundary conditions are,

u(0) = 0.9129, u(1) = 0.375. (5.6)
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5.3 Test Problem III

The third test problem is Problem 20 from Jeff Cash’s BVP Test Set [49]. This

problem is described by a single second order differential equation and two boundary

conditions. It possesses an exact closed form solution. The BVODE is outlined below:

εy′′ + (y′)2 = 1, (5.7)

y(0) = 1 + ε ln

(
cosh

(
−0.745

ε

))
, (5.8)

y(1) = 1 + ε ln

(
cosh

(
0.255

ε

))
, (5.9)

and ε is a problem parameter. The true solution is

y(x) = 1 + ε ln

(
cosh

(
x− 0.745

ε

))
. (5.10)

5.4 Test Problem IV

Test problem IV is Problem 21 also from Jeff Cash’s BVP Test Set [49]. It consists

of a single second order differential equation with two boundary conditions. The

problem has an exact closed form solution. The BVODE is outlined below:

εy′′ = y + y2 − e
(
−2x√
ε

)
. (5.11)
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with boundary conditions

y(0) = 1, y(1) = e

(
−1√
ε

)
, (5.12)

where ε is a problem parameter. The analytic solution is

y(x) = e

(
−x√
ε

)
. (5.13)

5.5 Thesis Test Problem V

The fifth test problem is Example 4.17 from Ascher et al. [1]. The problem is used to

illustrate the use of the MUSN solver described in [1]. The BVODE consists of five

first order ODEs and matching boundary conditions. These are

y′1(t) = α
y1(t)

y2(t)
(y3(t)− y1(t)) , y′2(t) = −α(y3(t)− y1(t)), (5.14)

y′3(t) =
1

y4(t)
(B − C(y3(t)− y5(t))− αy3(t)(y3(t)− y1(t)), (5.15)

y′4(t) = α(y3(t)− y1(t)), y′5(t) = −C
D

(y5(t)− y3(t)), (5.16)

with boundary conditions,

y1(0) = y2(0) = y3(0) = 1, y4(0) = 10, y3(1) = y5(1), (5.17)

where B = 0.9, C = 1000, D = 10 and α = 1.0.



Chapter 6

Software Modifications - BVP Solver III

6.1 Introduction

The introduction of the sixth, fourth, and second order Hermite-Birkhoff schemes into

the BVP SOLVER II software package to replace the current CMIRK interpolants

required some modification to a number of components of the existing software. This

thesis chapter focuses on the software engineering effort associated with the modifi-

cation of BVP SOLVER II to extend an existing component or add a new one whilst

attentively ensuring that the interfaces, memory management, and software documen-

tation are in proper order and remain so after the changes have been implemented.

This chapter chronicles the major changes to the BVP SOLVER II software pack-

age. Each narrative begins with a header naming the particular component being

modified and a simplified description of its original function. This is then followed by

a detailed description of the modifications implemented and their impact.

The sampling points TAU and θ referred to in this chapter are the same and are

used interchangeably in this chapter. TAU is the name given to the evaluation point

in the BVP SOLVER II code while it is denoted by θ in other parts of this thesis. In

a similar manner, the asymptotically correct sampling point C TAU is also denoted

by Cτ elsewhere in this thesis.
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6.2 Description of the Software Modifications

6.2.1 SUBROUTINE DEFECT ESTIMATE

This routine contains an argument list of ten entities which are defined as follows:

NEQN: The sum of the number of differential equations and unknown parameters,

NSUB: The number of subintervals in the current mesh,

MESH: The current mesh,

Y: The discrete solution associated with the current mesh,

DEFECT: The maximum defect for the current solution approximation on each subin-

terval,

DEFECT NORM: Estimated norm of the maximum defect,

INFO: Communication flag that monitors the status of the computation,

K DISCRETE: Storage for the discrete Runge-Kutta stages,

K INTERP: Storage for the continuous Runge-Kutta stages,

FSUB: User supplied routine which defines the right hand side of the ODEs.

This routine utilizes the discrete approximate solution, Y, together with the weight

polynomials and the discrete and continuous Runge-Kutta stages associated with a

MIRK and CMIRK scheme in order to construct a continuous approximate solution

on the problem domain. The next step is the computation of an estimate of the de-

fect of the CMIRK interpolant on each subinterval for each solution component. For
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the symmetric relative sampling points TAU and (1-TAU) within each subinterval,

the routine calls subroutine INTERP WEIGHTS to evaluate the weight polynomi-

als at the two sampling points. Then, for the ith subinterval a call to the routine

SUM STAGES gives the value of the CMIRK interpolant ui(t) at the aforementioned

sampling points. The routine P FSUB is next called to provide function evaluations

of these interpolant values. Next, the defect of the solution is computed at the two

sample points and whichever value is larger is taken to be the estimate of the max-

imum defect for the subinterval. These steps are repeated over all the subintervals

of the current mesh. The maximum of these defect estimates is then computed and

determines the suitability of the current solution.

Software Modification

Phase 1 : Since the extra stages of the Hermite-Birkhoff scheme are constructed

through evaluations of the CMIRK scheme, the first major extension to subroutine

DEFECT ESTIMATE is designed to implement the boot-strapping mechanism in the

computation of these new stages. The steps are outlined as follows:

1. The process starts by making s̃∗− s∗ calls to the routine INTERP WEIGHTS.

During each call to the latter routine, information, which includes the Hermite-

Birkhoff abscissas, is transferred from the former. Subroutine INTERP WEIGHT

then evaluates the CMIRK weight polynomials b1(θ) · · · · · · bs(θ) for θ equal to

each Hermite-Birkhoff abscissa value. (The quantity s̃∗−s∗ represents the num-

ber of additional boot-strap stages required to construct the Hermite-Birkhoff

scheme).
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2. Next, for the ith subinterval, the subroutine DEFECT ESTIMATE makes s̃∗−

s∗ calls to the subroutine SUM STAGES. This routine utilizes the previously

computed discrete and continuous Runge-Kutta stages together with the weight

polynomials evaluated above to compute the value of the CMIRK interpolant

at each of the Hermite-Birkhoff abscissa.

3. The final stage of the boot-strapping process consists of s̃∗ − s∗ calls to the

subroutine P FSUB to obtain function evaluations corresponding to the CMIRK

interpolant evaluations at each Hermite-Birkhoff abscissa. These are the extra

stages required for the Hermite-Birkhoff interpolant.

Steps 2. and 3. are performed for each subinterval of the current mesh.

Having constructed the extra boot-strapped derived stages {kr}s̃
∗
r=s∗+1, the Hermite-

Birkhoff interpolant can now be assembled. On the ith subinterval it has the form:

ũi(ti−1 + θhi) = d0(θ)yi−1 + d1(θ)yi + hi

s̃∗∑
r=1

b̃r(θ)kr (6.1)

where d0(θ), d1(θ), and b̃r(θ) are known polynomials obtained from the interpolation

conditions. Recall that since the Hermite-Birkhoff interpolant makes use only of the

new Hermite-Birkhoff stages and the first two stages k1 and k2, we have b̃r = 0 for

r = 3, · · · , s∗.

Phase 2 : The next step in the process computes the defect of the continuous solution

on each subinterval by evaluating the Hermite-Birkhoff interpolant and its derivative
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at the predetermined asymptotically correct sample point. The defect of the continu-

ous solution is also evaluated at a second spot (the validity checking sampling point).

The next set of modifications to the DEFECT ESTIMATE routine are as follows.

1. The first step in this phase is the evaluation of weight polynomials of the

Hermite-Birkhoff scheme at the location of the expected maximum defect (θ =

Cτ ). within each subinterval. This is accomplished by a call to the subrou-

tine INTERP HB TAU (a new routine described later in this section) which

evaluates the Hermite-Birkhoff weight polynomials for a given value of θ.

2. Next, for the ith subinterval, using the boot-strapped stages derived in step (3)

of the previous section, together with the discrete solution at the left and right

endpoints of the subintervals and their corresponding stages, and the weight

polynomials evaluated in step (1) above, the Hermite-Birkhoff scheme and its

first derivative are both constructed in three steps. The first step involves the

multiplication of the stages k1 = f(ti−1, yi−1), k2 = f(ti, yi), and the discrete

end point solutions yi−1, yi by the appropriate weight coefficients b̃1(θ = Cτ ),

b̃2(θ = Cτ ), d0(θ = Cτ ) and d1(θ = Cτ ) respectively. The second step takes

care of the multiplication of the extra s̃∗− s∗ Hermite-Birkhoff stages and their

corresponding weight polynomials, whilst the third stage assembles the various

components of the interpolant together. The derivative is also assembled in the

same manner.

3. The next step is a call to the subroutine P FSUB which performs a function
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evaluation corresponding to the Hermite-Birkhoff interpolant value at Cτ . The

defect of the continuous solution is then computed using:

δ̃i(t) = ũ′i(t)− f(t, ũi(t)), (6.2)

where t = ti−1 + Cτhi represents the location of the expected maximum defect

sampling point within each subinterval.

4. Steps (1-3) are repeated for the validity check sampling point in order to im-

plement the validity check auxiliary process. The defect evaluation for each

subinterval, obtained in Step 3., is compared with the defect evaluation ob-

tained in this step to confirm that the former is about twice as large as the

latter, in magnitude.

5. The final major change to the subroutine DEFECT ESTIMATE is the addition

of an extra parameter FLAGGED SUBS to the argument list. This variable

stores information about subintervals which do not satisfy the validity check

criterion.

6.2.2 SUBROUTINE INTERP TABLEAU

This subroutine defines the extra coefficients for the Runge-Kutta stages associated

with the CMIRK scheme. It also defines the sample points for the defect associated

with the CMIRK interpolant and its order. The changes to this routine are relatively

minimal and include introducing: (1) the extra abscissas for the boot-strap stages,
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(2) the maximum defect sample point, and (3) the validity check sampling point. The

associated variable names are as follows:

1. C C TILDE STAR: The Hermite-Birkhoff abscissa.

2. C TAU: The maximum defect sampling point.

3. C TAU VALIDITY: The validity check sampling point.

The changes and extensions to the routine are listed in terms of the order of the

particular interpolant being considered.

Second Order Hermite-Birkhoff scheme:

1. C C TILDE STAR: None

2. C TAU = 0.5

3. C TAU VALIDITY = 0.14645

Fourth Order Hermite-Birkhoff scheme:

1. C C TILDE STAR (1) = 86
100

2. C C TILDE STAR (2) = 93
100

3. C TAU = 0.23133

4. C TAU VALIDITY = 0.49822
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Sixth Order Hermite-Birkhoff scheme:

1. C C TILDE STAR (1) = 7
100

2. C C TILDE STAR (2) = 14
100

3. C C TILDE STAR (3) = 86
100

4. C C TILDE STAR (4) = 93
100

5. C TAU = 0.5

6. C TAU VALIDITY = 0.31078

6.2.3 SUBROUTINE INTERP HB WEIGHTS

This is a new routine added to perform evaluations of the Hermite-Birkhoff interpolant

weight polynomials (d0(θ), d1(θ) and {b̃r(θ)}s̃
∗
r=1) and, optionally, their first derivatives

at the relative point θ within a subinterval. The subroutine has six arguments which

are defined as follows:

1. S TILDE STAR : The number of stages used to construct the Hermite-Birkhoff

scheme.

2. DD : An array which stores evaluations of the weight polynomials d0(θ) and

d1(θ).

3. DDp: An array which contains evaluations of first derivatives of the weight

polynomials d0(θ) and d1(θ).

4. B: Array which contains evaluations of the weight polynomials {b̃r(θ)}s̃
∗
r=1.
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5. Bp: Array in which the corresponding evaluations of first derivatives of {b̃r(θ)}s̃
∗
r=1

are stored.

6. θ: The specific sampling point at which the weight polynomials are to be eval-

uated.

6.2.4 SUBROUTINE SOL EVAL

This auxiliary routine has seven arguments and evaluates the interpolant at any given

point T within the problem interval [a,b]. The entities in the argument list are as

follows:

1. NODE : Number of ODEs.

2. NEQN : Sum of NODE and the number of unknown parameters.

3. IWORK : Array which contain relevant information about the number of stages

and the order of the method that was used to compute the solution.

4. WORK: Array containing the Runge-Kutta and Hermite-Birkhoff stages, the

mesh, and the corresponding discrete solution.

5. T: The evaluation point.

6. Z: Storage for the value of the interpolant at T.

7. Z PRIME: Storage for the value of the first derivative of the interpolant at T.

The first major modification to this routine is that the call to the subroutine IN-

TERP WEIGHTS which evaluates the weight polynomials in the CMIRK scheme
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is replaced by a call to the newly constructed subroutine INTERP HB WEIGHTS

described earlier. Subroutine INTERP HB WEIGHTS then evaluates the weight

polynomials for the Hermite-Birkhoff interpolant for a given value of TAU (corre-

sponding to the input T). The subsequent call to subroutine SUM STAGES which

completes the evaluation process for the CMIRK scheme is eliminated. Instead, using

the information stored in the arrays IWORK and WORK, the Hermite-Birkhoff inter-

polant is evaluated in a similar manner to what is done in the DEFECT ESTIMATE

subroutine.



Chapter 7

Numerical Experiments

7.1 Introduction

The modifications to the BVP SOLVER II software package described in Chapter 6

led to the development of a new version of the code. The purpose of this chapter is

to investigate the impact of these modifications on the overall computational perfor-

mance of the code. This investigative process consists of the conduction of a series

of machine dependent and independent numerical experiments based on the suite of

test problems described in chapter five. These numerical experiments are designed

to provide a direct comparison between the performances of the standard CMIRK

schemes and their Hermite-Birkhoff counterparts. The results of the various tests

will be presented across a variety of quality measures which include:

• Percentage success of each scheme in estimating the maximum defect.

• Normalized plots of the defect curves.

• Kernel density plots of the defect curves. (These plots illustrate the distribution

of the location of the maximum defect.)

• Measurement of the work aggregate,
∑

j Nj ×NIj. (Nj is the number of subin-

tervals used in the jth mesh employed by BVP SOLVER II to solve a given

68
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problem; NIj is the number of Newtons iteration required to obtain a solution

to the nonlinear system constructed based on the jth mesh. See Section 3.15.

• Computational time.

Prior to performing the numerical experiments described here, the first suite of nu-

merical tests conducted on the newest version of BVP SOLVER, in the early exper-

imentation phase, were specifically designed in order for the code to replicate the

numerical results, produced by an experimental version of the software, which were

published in [23]. The success of this first set of tests, in reproducing comparable

numerical results for the sixth order Hermite-Birkhoff interpolant, paved the way for

the experiments conducted in this chapter.

All non-graphical numerical results will be presented in a tabular form followed

by a descriptive analysis and discussion of important points.

7.2 Maximum Defect Estimates

7.2.1 Experimental Setup

The numerical experiments conducted on each test problem are performed across a

range of tolerances from 10−4 to 10−10, for specified values of the problem depen-

dent parameter(s) occurring in a given problem. As discussed in section 3.1.5, the

determination of the numerical solution of each problem involves computations over

a sequence of meshes. We compare the estimated maximum defect based on the stan-

dard interpolant with the estimated maximum defect based on the new interpolant

for each subinterval of each mesh employed in the computation process. This com-

parison is expressed in terms of the number of subintervals (NSI) and percentage of
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subintervals (%SI) in each mesh in which the maximum defect estimate is accurate

to within 90%, 95%, and 99% of the true maximum defect. An estimate of the true

maximum defect over each subinterval is determined by sampling the defect at a

thousand (1000) uniformly distributed points within each subinterval and selecting

the largest value to be the true maximum defect. Ratio is the estimated maximum

defect over the true maximum defect. We also report how well the maximum defect

is estimated through the values min ratio and max ratio. These represent, in

ratio form, how accurate the worst and best estimates of the maximum defect are in

comparison to the their respective true maximums, over all subintervals.

We also measure the computational costs in a machine independent fashion, in-

curred by BVP SOLVER II during the construction and factorization of the Newton

matrices which arise from the discretization of the ODEs on a given mesh. This is

the most significant cost incurred by the solver and represents a good machine in-

dependent measure of the overall computational cost for a given problem. This is

represented through the sum of terms
∑

j Nj ×NIj, where j ranges over the meshes

employed in the solution of a given problem. Nj is the number of subintervals of

the mesh that is associated with the jth mesh and NIj is the number of Newton

iterations needed to solve the nonlinear system associated with this mesh.

We start with the presentation of some of the results based on numerous tests

conducted to investigate the effectiveness of the asymptotically correct interpolants

in providing a more robust defect estimation procedure. These results provide a

numerical comparison of defect estimation based on the standard fourth and sixth
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order CMIRK interpolants versus the fourth and sixth order asymptotically correct

Hermite-Birkhoff interpolants. The criterion for success in these numerical experi-

ments is that estimates of the maximum defect produced by the Hermite-Birkhoff

and CMIRK schemes should underestimate the true maximum defect by less than

1%. In other words the accuracy of the maximum defect estimates yielded by a scheme

should be greater than 99%. The inclusion of the two additional ranges (95% and

90%) provides a slightly different yet insightful perspective (in the Hermite-Birkhoff

context) on the analysis of the auxiliary validity check process.

Table 7.1: Results using fourth order schemes for test problem IV with ε = 10−2 and
TOL = 10−7.

Hermite-Birkhoff Scheme CMIRK Scheme
Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
1 9 Ratio>0.99 3 33% 1 9 Ratio>0.99 0 0%

Ratio >0.95 6 67% Ratio>0.95 0 0%
Ratio >0.90 9 100% Ratio>0.90 0 0%

min ratio = 0.9430 min ratio = 0.4904
max ratio = 0.9926 max ratio = 0.6646

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
2 36 Ratio >0.99 36 100% 2 37 Ratio>0.99 0 0%

Ratio >0.95 36 100% Ratio>0.95 0 0%
Ratio >0.90 36 100% Ratio>0.90 0 0%

min ratio = 0.9979 min ratio = 0.4900
max ratio = 0.9990 max ratio = 0.6805

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
3 109 Ratio >0.99 109 100% 3 108 Ratio>0.99 0 0%

Ratio >0.95 109 100% Ratio>0.95 0 0%
Ratio >0.90 109 100% Ratio>0.90 0 0%

min ratio = 0.9996 min ratio = 0.4898
max ratio = 0.9999 max ratio = 0.6794∑

j Nj ×NIj=154
∑

j Nj ×NIj=152
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Table 7.2: Results using sixth order schemes for test problem III with ε = 10−2 and
TOL = 10−7.

Hermite-Birkhoff Scheme CMIRK Scheme
Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
1 36 Ratio>0.99 6 17% 1 36 Ratio>0.99 0 0%

Ratio >0.95 11 31% Ratio>0.95 0 0%
Ratio >0.90 14 39% Ratio>0.90 6 17%

min ratio = 0.5438 min ratio = 0.0184
max ratio = 0.9997 max ratio = 0.9468

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
2 72 Ratio >0.99 14 19% 2 72 Ratio>0.99 4 6%

Ratio >0.95 15 21% Ratio>0.95 4 6%
Ratio >0.90 19 26% Ratio>0.90 14 19%

min ratio = 0.6157 min ratio = 0.2855
max ratio = 0.9994 max ratio = 1.0000

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
3 79 Ratio >0.99 69 87% 3 79 Ratio>0.99 3 4%

Ratio >0.95 73 92% Ratio>0.95 9 11%
Ratio >0.90 74 94% Ratio>0.90 63 80%

min ratio = 0.7384 min ratio = 0.2238
max ratio = 0.9999 max ratio = 0.9941∑

j Nj ×NIj=2095
∑

j Nj ×NIj= 2095
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Table 7.3: Results using fourth order schemes for test problem V with ε = 1.0 and
TOL = 10−8.

Hermite-Birkhoff Scheme CMIRK Scheme
Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
1 9 Ratio>0.99 8 89% 1 9 Ratio>0.99 0 0%

Ratio >0.95 9 100% Ratio>0.95 0 0%
Ratio >0.90 9 100% Ratio>0.90 0 0%

min ratio = 0.9873 min ratio = 0.4582
max ratio = 1.0000 max ratio = 0.5623

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
2 36 Ratio >0.99 36 100% 2 36 Ratio>0.99 0 0%

Ratio >0.95 36 100% Ratio>0.95 0 0%
Ratio >0.90 36 100% Ratio>0.90 0 0%

min ratio = 0.9986 min ratio = 0.4634
max ratio = 1.0000 max ratio = 0.5693

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
3 91 Ratio >0.99 91 100% 3 91 Ratio>0.99 0 0%

Ratio >0.95 91 100% Ratio>0.95 0 0%
Ratio >0.90 91 100% Ratio>0.90 0 0%

min ratio = 0.9997 min ratio = 0.4710
max ratio = 1.0000 max ratio = 0.5795∑

j Nj ×NIj=163
∑

j Nj ×NIj= 163
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Table 7.4: Results using sixth order schemes for test problem V with ε = 1.0 and
TOL = 10−8.

Hermite-Birkhoff Scheme CMIRK Scheme
Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
1 9 Ratio>0.99 8 89% 1 9 Ratio>0.99 0 0%

Ratio >0.95 9 100% Ratio>0.95 0 0%
Ratio >0.90 9 100% Ratio>0.90 6 67%

min ratio = 0.9973 min ratio = 0.7735
max ratio = 1.0000 max ratio = 0.9297

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
2 20 Ratio >0.99 20 100% 2 20 Ratio>0.99 1 5%

Ratio >0.95 20 100% Ratio>0.95 3 15%
Ratio >0.90 20 100% Ratio>0.90 14 70%

min ratio = 0.9944 min ratio = 0.1624
max ratio = 1.0000 max ratio = 0.9914∑

j Nj ×NIj=56
∑

j Nj ×NIj=56
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Table 7.5: Results using sixth order schemes for test problem I with ε = 10−2 and
TOL = 10−9.

Hermite-Birkhoff Scheme CMIRK Scheme
Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
1 9 Ratio>0.99 5 56% 1 9 Ratio>0.99 1 11%

Ratio >0.95 9 100% Ratio>0.95 5 56%
Ratio >0.90 9 100% Ratio>0.90 7 78%

min ratio = 0.9578 min ratio = 0.2660
max ratio = 1.0000 max ratio = 0.9997

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
2 36 Ratio >0.99 31 86% 2 36 Ratio>0.99 1 3%

Ratio >0.95 36 100% Ratio>0.95 5 14%
Ratio >0.90 36 100% Ratio>0.90 27 75%

min ratio = 0.9811 min ratio = 0.3249
max ratio = 1.0000 max ratio = 0.9935

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
3 67 Ratio >0.99 65 97% 3 67 Ratio>0.99 0 0%

Ratio >0.95 67 100% Ratio>0.95 3 4%
Ratio >0.90 67 100% Ratio>0.90 54 81%

min ratio = 0.9837 min ratio = 0.4334
max ratio = 1.0000 max ratio = 0.9666∑

j Nj ×NIj=112
∑

j Nj ×NIj= 112
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Table 7.6: Results using fourth order schemes for test problem I with ε = 10−2 and
TOL = 10−9.

Hermite-Birkhoff Scheme CMIRK Scheme
Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
1 9 Ratio>0.99 2 22% 1 9 Ratio>0.99 0 0%

Ratio >0.95 6 67% Ratio>0.95 2 22%
Ratio >0.90 7 78% Ratio>0.90 2 22%

min ratio = 0.5675 min ratio = 0.3453
max ratio = 0.9984 max ratio = 0.9526

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
2 36 Ratio >0.99 27 75% 2 36 Ratio>0.99 0 0%

Ratio >0.95 33 92% Ratio>0.95 0 0%
Ratio >0.90 35 97% Ratio>0.90 0 0%

min ratio = 0.8573 min ratio = 0.2750
max ratio = 1.0000 max ratio = 0.6835

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
3 144 Ratio >0.99 138 96% 3 144 Ratio>0.99 0 0%

Ratio >0.95 144 100% Ratio>0.95 0 0%
Ratio >0.90 144 100% Ratio>0.90 0 0%

min ratio = 0.9583 min ratio = 0.2614
max ratio = 1.0000 max ratio = 0.8864

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
4 410 Ratio >0.99 410 100% 4 410 Ratio>0.99 0 0%

Ratio >0.95 410 100% Ratio>0.95 0 0%
Ratio >0.90 410 100% Ratio>0.90 1 0%

min ratio = 0.9932 min ratio = 0.2878
max ratio = 1.0000 max ratio = 0.9061

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
5 506 Ratio >0.99 506 100% 5 506 Ratio>0.99 0 0%

Ratio >0.95 506 100% Ratio>0.95 0 0%
Ratio >0.90 506 100% Ratio>0.90 1 0%

min ratio = 0.9919 min ratio = 0.2882
max ratio = 1.0000 max ratio = 0.9031∑

j Nj ×NIj=1105
∑

j Nj ×NIj= 1105
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Table 7.7: Results using fourth order schemes for test problem II with ε = 0.5 and
TOL = 10−9.

Hermite-Birkhoff Scheme CMIRK Scheme
Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
1 36 Ratio>0.99 7 19% 1 36 Ratio>0.99 1 3%

Ratio >0.95 18 50% Ratio>0.95 3 8%
Ratio >0.90 27 75% Ratio>0.90 3 8%

min ratio = 0.5525 min ratio = 0.0790
max ratio = 0.9934 max ratio = 0.9993

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
2 72 Ratio >0.99 35 49% 2 72 Ratio>0.99 2 3%

Ratio >0.95 61 85% Ratio>0.95 6 8%
Ratio >0.90 70 97% Ratio>0.90 11 15%

min ratio = 0.6388 min ratio = 0.0474
max ratio = 0.9998 max ratio = 0.9978

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
3 288 Ratio >0.99 260 90% 3 288 Ratio>0.99 8 3%

Ratio >0.95 287 100% Ratio>0.95 20 7%
Ratio >0.90 287 100% Ratio>0.90 30 10%

min ratio = 0.7563 min ratio = 0.2133
max ratio = 1.0000 max ratio = 0.9999

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
4 1065 Ratio >0.99 1061 100% 4 1065 Ratio>0.99 27 3%

Ratio >0.95 1064 100% Ratio>0.95 66 6%
Ratio >0.90 1065 100% Ratio>0.90 102 10%

min ratio = 0.9079 min ratio = 0.1772
max ratio = 1.0000 max ratio = 1.0000

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
5 1384 Ratio >0.99 1375 99% 5 1384 Ratio>0.99 35 3%

Ratio >0.95 1382 100% Ratio>0.95 85 6%
Ratio >0.90 1383 100% Ratio>0.90 131 9%

min ratio = 0.8978 min ratio = 0.1771
max ratio = 1.0000 max ratio = 1.0000∑

j Nj ×NIj=4969
∑

j Nj ×NIj= 4969
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Table 7.8: Results using sixth order schemes for test problem II with ε = 0.5 and
TOL = 10−9.

Hermite-Birkhoff Scheme CMIRK Scheme
Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
1 36 Ratio>0.99 21 58% 1 36 Ratio>0.99 4 11%

Ratio >0.95 28 78% Ratio>0.95 14 39%
Ratio >0.90 29 81% Ratio>0.90 26 72%

min ratio = 0.6209 min ratio = 0.0043
max ratio = 1.0000 max ratio = 0.9992

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
2 144 Ratio >0.99 136 94% 2 144 Ratio>0.99 6 4%

Ratio >0.95 140 97% Ratio>0.95 24 17%
Ratio >0.90 140 97% Ratio>0.90 100 69%

min ratio = 0.8332 min ratio = 0.0452
max ratio = 1.0000 max ratio = 0.9999

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
3 204 Ratio >0.99 194 95% 3 204 Ratio>0.99 8 4%

Ratio >0.95 202 99% Ratio>0.95 34 17%
Ratio >0.90 202 99% Ratio>0.90 147 72%

min ratio = 0.8734 min ratio = 0.3325
max ratio = 1.0000 max ratio = 0.9999

Mesh N Ratio NSI %SI Mesh N Ratio NSI %SI
4 224 Ratio >0.99 215 96% 4 224 Ratio>0.99 11 5%

Ratio >0.95 220 98% Ratio>0.95 35 16%
Ratio >0.90 221 99% Ratio>0.90 164 73%

min ratio = 0.9580 min ratio = 0.2397
max ratio = 1.0000 max ratio = 1.0000∑

j Nj ×NIj=1400
∑

j Nj ×NIj= 1400

Based on the results presented in Tables 7.1 to 7.8, a number of general observations

can be made. Firstly, employing the standard CMIRK interpolants rarely leads to

a successful estimate of the maximum defect. The numerous experiments conducted

on all five test questions reveal that over all subintervals of all meshes treated, the

estimated maximum defect was within 1% of the true maximum defect in only an
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average 5% of all subintervals. In contrast the maximum defect estimates yielded by

the Hermite-Birkhoff schemes are generally very close to the true maximum defects.

This fact is evident in most of tables in which the number of subintervals in the

terminal mesh yielding estimates of the maximum defect within 99% of the true

maximum defect, is approaching a 100% success rate. The lowest success rate on a

converged mesh was recorded at 87% in Table 7.3. Enright and Muir [23] point out

that this lower success rate occurs in relatively larger sized subintervals where the

leading term in the defect expansion doesn’t dominate the higher order terms. Similar

behavior is observed in numerical experiments conducted at lower tolerances of about

10−4 and 10−5. This can be explained as follows: sharper tolerances say, 10−9, require

the code to make repeated mesh adaptations until the maximum defect estimate on

each subinterval is less than the tolerance. By this time most of the subintervals are

already small enough for the leading term to dominate in the asymptotic expansion

of the defect. However in the case of coarser tolerances, say around 10−4, the size

of a significant number of subintervals may not be small enough to justify one point

sampling.

7.3 Plots of the Normalized Defect

7.3.1 Experimental Setup

There are two graphical representations in which plots of the defect curves are pre-

sented. The first type of graphic represents plots of the normalized defect on [0,1].

For a given subinterval, the defect is normalized by dividing through (or scaling) it by
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the maximum defect, which ensures that the maximum curve value will be 1, in mag-

nitude. The defect curves on each subinterval over all meshes are then superimposed

on [0,1]. The kernel density plots of the defect are the second visual representation

in which certain numerical results are presented. These are obtained by determining

the location of the maximum defect on each subinterval over all meshes. This type of

graphic illustrates the frequency distribution of the location of the maximum defect

throughout the computation process.

In this section we present some numerical results for the two types of graphical

representations described above. Each of the plots presented here will provide a vi-

sual perspective on a particular experiment considered in the previous section. Our

choice of presentation layout is a side by side comparison of the normalized defect

plots for both the Hermite-Birkhoff and CMIRK schemes immediately followed by a

similar comparison of their kernel density plots. The term scaled defect in the plots

headings is an alternative phrase for normalized defect. The plots for the normal-

ized defects closely mirror the information presented in tabular form in the previous

section. Rather than only plotting the normalized defect curves for each subinterval

in the final converged mesh, we plot the defect curves for every subinterval from the

first mesh to the converged mesh. (The total number of subintervals considered is n).

The defect plots for the Hermite-Birkhoff interpolant will be much cleaner if only the

last converged mesh results are considered.
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Figure 7.1: Plot of the results for test problem IV using fourth order schemes with
ε = 10−2 and TOL = 10−7.



82

Figure 7.2: Plot of the results for test problem III using sixth order schemes with
ε = 10−2 and TOL = 10−7.
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Figure 7.3: Plot of the results for test problem V using fourth order schemes with
ε = 1.0 and TOL = 10−8.
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Figure 7.4: Plot of the results for test problem V using sixth order schemes with
ε = 1.0 and TOL = 10−8.
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Figure 7.5: Plot of the results for test problem I using sixth order schemes with
ε = 10−2 and TOL = 10−9.
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Figure 7.6: Plot of the results for test problem I using fourth order schemes with
ε = 10−2 and TOL = 10−9.
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Figure 7.7: Plot of the results for test problem II using fourth order schemes with
ε = 0.1 and TOL = 10−9.



88

Figure 7.8: Plot of the results for test problem II using fourth order schemes with
ε = 0.1 and TOL = 10−9.

7.3.2 Comments and Discussion

Figures 7.1-7.8 provide further visual corroboration of the tabulated results discussed

earlier. In Figure 7.1 the fact that all the subintervals in the terminal mesh yield

estimates of the defect which successfully meet our accuracy criterion is transmitted

via a smooth normalized defect plot for the Hermite-Birkhoff scheme. The location of

the true maximum (θ ≈ 0.24) in [0,1] is also accurately pinpointed by both the neat

overlay of the vertical lines in the normalized defect plot as well as the spike in the
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kernel density plot which represents its frequency distribution. The defect plot for the

CMIRK interpolant on the other hand isn’t as smooth and the parallel vertical lines

depict multiple locations of the maximum defect. Whilst the kernel plot indicates

an optimal frequency distribution of the maximum defect’s location at (θ ≈ 0.50) on

[0,1], the density mapping is substantially less than in the Hermite-Birkhoff case -

a fact illustrated by a more rounded kernel plot. Although these observations have

been made for Figure 7.1, they can be extended to the remaining plots in this section.

It was observed during the experimental phase, that there were some instances

in which both Hermite-Birkhoff and CMIRK interpolants yielded poor estimates of

the maximum defect. These situations occurred at lower tolerances of about 10−4,

when it is likely that many subintervals aren’t small enough to justify the one point

sampling criterion. Graphical representation of this situation is shown in Figures

7.9 - 7.10. The kernel density plot for the fourth order Hermite Birkhoff in the first

graphic, pinpoints the location of the maximum defect within each subinterval at θ =

0.25. In actuality the location of the maximum defect for fourth order asymptotically

correct Hermite-Birkhoff schemes is at θ = 0.23. The second set of plots provide an

even better illustration of the situation. Here the actual location of the maximum

defect for a majority of the curves is at θ = 1.00 while the theoretical asymptotically

correct location of the maximum defect for sixth order Hermite-Birkhoff schemes is

at θ = 0.50. This means that in both cases the leading term in the defect expansion

isn’t the dominant term.

The two sets of graphics also illustrate the importance of the kernel density plots
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in indicating the location of the maximum defect for a particular experiment. Unlike

in the previous graphics, where a neat overlay of vertical lines in the normalized plots

indicated the location of the maximum defect, the situation here is quite different.

Multiple parallel lines in the plots make it very difficult to identify exactly where the

maximum defect is located.

We emphasize that this situation arises when the subinterval sizes are large and

thus we are not in the asymptotic regime where the use of one-point sampling is

justified. In such cases, the validity check flags the issue. See section 7.5.

Figure 7.9: Plot of the results for test problem III using fourth order schemes with
ε = 10−2 and TOL = 10−4.
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Figure 7.10: Plot of the results for test problem V using sixth order schemes with
ε = 10−1 and TOL = 10−4.

7.4 Machine Dependent Numerical Tests

The next set of numerical experiments conducted measure the time it takes the

BVP SOLVER code to compute a numerical solution to a particular problem. We

specifically report the elapsed CPU time after the successful solution of a problem.

In this section we conduct a series of benchmarking comparisons between the ver-

sion of the BVP SOLVER software package which employs the standard CMIRK and
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the new version which employs the Hermite-Birkhoff schemes. These tests specifi-

cally measure the time (real time in micro seconds) required by both codes to

successfully compute a numerical solution to each of the five test problems. The

FORTRAN90 intrinsic SYSTEM CLOCK function which measures real time is the

principal tool used to conduct the experiments.

7.4.1 Computational Time

The execution time was measured for both versions of the BVP SOLVER code and

the results recorded for each numerical solution computed by the pair.

Table 7.9: Execution time results for the two versions of the BVP SOLVER code

Time µs
Test Problem TOL Hermite-Birkhoff Scheme CMIRK Scheme

IV TOL = 10−7 1.0× 10−3 1.0× 10−3

III TOL = 10−9 1.38× 10−1 1.03× 10−1

V TOL = 10−9 1.7× 10−2 1.7× 10−2

I TOL = 10−8 1.0× 10−3 1.0× 10−3

II TOL = 10−7 1.0× 10−3 1.0× 10−3

Table 7.10: Both codes required identical execution timing in almost all the test
problems with the exception of test problem three where the CMIRK code recorded
a slightly faster execution time

7.5 Validity Checking

The numerical results for the auxiliary validity check process were recorded for the

final converged mesh in the eight numerical experiments described in earlier sections.

The term Suspect subintervals in the table below means subintervals in which the

validity check failed. It was observed during the tests that the subintervals which
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failed the validity check process corresponded to subintervals with poor defect esti-

mates. Table 7.11 gives a summary of the results.

Table 7.11: Summary results for the auxiliary validity check process.

Subintervals
Test Problem Method TOL Total Number Suspect

IV (ε = 0.02) 4 TOL = 10−7 109 0
III (ε = 0.02) 6 TOL = 10−7 79 10
V (ε = 1.0) 4 TOL = 10−8 91 0
V (ε = 1.0) 6 TOL = 10−8 20 0
I (ε = 0.02) 6 TOL = 10−9 67 2
I (ε = 0.02) 4 TOL = 10−9 506 0
II (ε = 0.1) 4 TOL = 10−9 1375 9
II (ε = 0.1) 6 TOL = 10−9 224 9

Table 7.12: The highest percentage of suspect subintervals was 13% recorded for test
problem III. In the other cases the percentages ranged between zero and four percent.

7.6 Overall Observations and Conclusions

The results presented in this chapter clearly demonstrate the superiority of the asymp-

totically correct Hermite-Birkhoff schemes in yielding high quality estimates of the

maximum defect. We use these results to make a number of general observations.

• For the Hermite-Birkhoff interpolants, the lowest percentage of subintervals

within 1% of the true maximum defect observed for tolerances of 10−7 and

sharper was 87%. In the overwhelming majority of cases this percentage ap-

proaches a hundred percent for the converged mesh.

• The defect estimates produced by the Hermite-Birkhoff schemes are closer to the

true maximum. This demands more from the code to compute an acceptable
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numerical solution since smaller subinterval sizes (hi) are normally required.

This supports the findings made in the first observation.

• Despite the previous observation,the number of subintervals per mesh and the

number of Newton iterations required by both versions of BVP SOLVER are

about the same. Hence the machine independent measure of computation cost,∑
j Nj × NIj, and measurements of actual computer time, produced almost

identical results.

The conclusion we can make having conducted numerous tests across a variety of

platforms is that the asymptotically correct Hermite-Birkhoff schemes are vastly su-

perior to their CMIRK counterparts and together with the validity check routine,

provide the BVP SOLVER III package with a more robust defect estimation process.



Chapter 8

Analysis of Directly Derived Asymptotically Correct Defect

Control Schemes

8.1 Introduction

This chapter provides a detailed description of the derivation of a new fourth order

CMIRK interpolant capable of yielding asymptotically correct estimates of the max-

imum defect. The CMIRK scheme is constructed through the approach of requiring

the coefficients and weight polynomials of a standard fourth order CMIRK scheme to

satisfy an additional order condition.

The more general approach for developing interpolants with the special asymp-

totically correct defect quality is via the boot-strapping approach implemented by

Enright and Muir [23] in the derivation of a sixth order Hermite-Birkhoff scheme

and considered in chapter four of this thesis. The boot-strap algorithm is intrinsi-

cally linked to interpolation theory. By using the relationship between the number

of data points and degree of the corresponding unique interpolating polynomial, the

contribution of some of the higher order terms to the error can be eliminated (in an

asymptotic context). The end result is an interpolant leading to a defect expansion

dominated by a single error term whose maximum value can be determined a priori,

95
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at least asymptotically. However, the boot-strapping algorithm isn’t the most optimal

approach. This is because the extra sampling points within each subinterval generate

extra stages which increase the cost of the overall computation, on a per subinterval

basis.

The search for a more efficient approach (in terms of the number of stages required

to obtain an interpolant leading to an asymptotically correct maximum defect esti-

mate) has led to the investigation of interpolants developed via the direct approach

alluded to at the beginning of this chapter. The next section of this chapter describes

this process.

8.2 Directly Derived Fourth Order CMIRK Schemes

The groundwork for the development of the special fourth order CMIRK scheme is

provided in Muir [40] who employs three optimization criteria, namely: (1) Mini-

mization of the number of stages, (2) Maximization of the stage order of individual

stages and (3) Minimization of the local error coefficient, in the derivation of optimal

CMIRK schemes. This section first provides a brief background to the main concepts

of that paper. The first criterion relates directly to the computational cost associ-

ated with the use of a CMIRK scheme and is dependent on the number of stages,

which should be as small as possible. Maximizing the stage order is dependent on

the availability of sufficient free parameters and leads to a simpler derivation and

simpler expressions for the weight polynomials. Criterion three relates the accuracy

of the scheme to the principal error coefficient of O(hp+1) in the local truncation error

(assuming a method of order p). This coefficient depends on the parameters of the
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Runge-Kutta scheme and is expressed in terms of the appropriately weighted unsat-

isfied conditions for order p+ 1. (In the fourth order case, this criterion is applied to

the principal error coefficient of the O(h5) term which has coefficients expressed in

terms of the unsatisfied fifth order conditions). Assuming that the two-norm of the

parameters in the principal error coefficient for order five is Cp+1 and the two-norm of

the corresponding parameters in the principal error coefficient for order six is Cp+2,

then the requirement is that Cp+1 is minimized subject to the condition that the ratio

of Cp+1 to Cp+2 isn’t too small. The idea is that a scheme with a smaller Cp+1 value

has a lower local error and may be more accurate than another scheme of the same

order with a larger Cp+1 value, but the Cp+1 value should still be sufficiently large

with respect to the Cp+2 value so that the p+ 1 order term dominates.

A pth order MIRK scheme (see, e.g. [40]) has stage order q, (q ≤ p) if its coeffi-

cients satisfy the stage order conditions,

Xcj−1 +
v

j
=
cj

j
, j = 1, · · · , q, (8.1)

where cj = (cj1, · · · , cjs)T , where s is the number of stages of the method. We note that

(8.1) is actually a set of s equations for each value of j and that there is one equation

for each stage, for a given j. The maximum q for which (8.1) holds is the stage order

of the method. However, it is possible for individual stages of a method to satisfy

additional stage order conditions. The usual notation for recording the stage order

conditions satisfied by each of the stages of a CMIRK scheme employs a stage order

vector, SOV = (q1, q2 · · · , qs), and this notation is adopted in this thesis chapter as
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well. (Note that min j qj = q).

To obtain the directly derived fourth order CMIRK scheme that leads to an asymp-

totically correct defect estimate, we start with the unique three stage, fourth order,

stage order three, MIRK scheme with c1 = v1 = 0 , c2 = v2 = 1 , x2 ,1 = 0 , c3 = v3 = 1
2

and x3 ,1 = −x3 ,2 = 1
8

. This method is representable as a Butcher tableau of structure,

0 0 0 0 0

1 1 0 0 0

1
2

1
2

1
8
−1

8
0

1
6

1
6

2
3

.

The next step in the derivation process is to embed the MIRK scheme above into the

family of five stage, fourth order, stage order three CMIRK schemes with stage order

vector, SOV = (4, 4, 3, 3, 4). The resulting Butcher tableau is

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
2

1
2

1
8

−1
8

0 0 0

c4 v4 x41 x42 x43 0 0

c5 v5 x51 x52 x53 x54 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ)

,

where the weight polynomials {bj(θ)}5j=1 are required to satisfy the usual continuity
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and order conditions, Muir [40], and the fourth and fifth order stages are required to

satisfy the stage order three and stage order four respectively.

After imposing the appropriate stage order conditions on stages four and five

(this gives x41, x42, and x43 in terms of c4 and v4, and x51, x52, and x53, and x54 in

terms of c5 and v5), we then require that the weight polynomials and remaining free

coefficients, c4, v4, c5, v5, satisfy the standard fourth order continuous conditions:

b(θ)T e = θ, b(θ)T c = 1
2
θ2, b(θ)T c2 = 1

3
θ3 and b(θ)T c3 = 1

4
θ4. This is sufficient to

guarantee that the CMIRK scheme will be of fourth order.

There are nine unsatisfied fifth order conditions associated with the principal er-

ror coefficient term of O(h5) in the continuous local error expansion and these are

expressed as nine unique polynomials. The imposition of the stage order three con-

ditions effectively reduces the number of fifth order conditions from the nine unique

polynomials to multiples of just two unique polynomials. The remaining free pa-

rameters are chosen to satisfy one or the other of the two fifth order conditions:

b(θ)T c4 = 1
5
θ5 and b(θ)T (Xc3 + v

4
) = 1

20
θ5. (To satisfy both would create a fifth order

CMIRK scheme). Specific choices of the free parameters collapse the five multiples

of one of the two polynomials to zero and four nonzero multiples of the one remain-

ing polynomial. The Butcher tableau below, for the choices of c4 = v4 = 1/4 and

c5 = v5 = 7/8, gives an example of such a method:
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0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
2

1
2

1
8

−1
8

0 0 0

1
4

1
4

1
8

− 1
16

− 1
16

0 0

7
8

7
8

7
2048

− 455
6144

7
1024

49
768

0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ)

,

where

b̂1(θ) =
1

210
θ(210− 855θ + 1540θ2 − 1260θ3 + 384θ4),

b̂2(θ) =
1

90
θ2(−105 + 500θ − 780θ2 + 384θ3),

b̂3(θ) =
2

45
θ2(−105 + 430θ − 510θ2 + 384θ3),

b̂4(θ) = − 16

225
θ2(−105 + 290θ − 285θ2 + 96θ3),

b̂5(θ) = − 256

1575
θ2(−15 + 70θ − 105θ2 + 48θ3).

The nine simplified polynomials appearing in the principal error coefficient for the

fifth order are :

q1(θ) = q3(θ) = q4(θ) = q7(θ) = q9(θ) = 0, (8.2)
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q2(θ) = q6(θ) = q8(θ) = − 1

86400
θ2(−105 + 1690θ − 2535θ2 + 1056θ3),

q5(θ) = − 1

28800
θ2(−105 + 1690θ − 2535θ2 + 1056θ3). (8.3)

It is obvious from the above expressions for q2(θ), q6(θ), q8(θ), and q5(θ), that the

leading principal error coefficient in the local error expansion has contributions only

from four multiples of a single polynomial. We could have chosen coefficients to satisfy

the second order condition leading to a different asymptotically correct scheme but we

haven’t pursued that further here. Preliminary investigations along this line indicate

a similar collapse to an identical polynomial to that shown above. In the defect control

context, the polynomial of interest is q′2(θ), which is associated with the single O(h4)

term in the defect expansion. Therefore as hi → 0 the location of the maximum defect

on each subinterval coincides with the maximum of the q′2(θ) polynomial, which in

this case occurs when θ ≈ 0.47645.

The basic form of the directly derived asymptotically correct CMIRK scheme on

the ith subinterval, is a polynomial in θ of the form,

ûi(t) = ûi(ti + θhi) = yi + hi

5∑
r=1

b̂r(θ)kr, 0 ≤ θ ≤ 1, (8.4)

with stages kr of the form given in (3.7). The parameters b̂r(θ), r = 1, ..., ŝ, are

weight polynomials of degree five. This new CMIRK scheme can be used as the basis

to implement defect control within BVP SOLVER III.

However this method (like all CMIRK schemes) lacks an explicit dependence on

yi+1, and so has discontinuities in the defect, of the order of Newton tolerance at the
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right hand end point of each subinterval. A standard approach which overcomes this

limitation, is to convert the CMIRK scheme into its Hermite-Birkhoff form. However

this involves introducing a polynomial (say d1(θ)) multiple of yi+1 into the expression

for the interpolant and this in turn involves introducing an error term of the form

d1(θ)O(h5i ) since the yi+1 value involves an error that is O(h5i ). Thus the error for

the interpolant become (d1(θ)C1 + q2(θ)C2)h
5, where C1 and C2 are constants that

depend on the error associated with yi+1 and the CMIRK scheme, respectively. The

error term for this interpolant is therefore a linear combination of two polynomials

and thus does not lead to a scheme which yields an asymptotically correct estimate

of the defect.

Further investigation of this approach is required and is left for future work.



Chapter 9

Conclusion And Future Work

9.1 Conclusions

The thesis makes a number of contributions:

• Second and fourth order Hermite-Birkhoff interpolants leading to asymptoti-

cally correct maximum defect estimation schemes have been derived using the

boot-strapping algorithm. The standard second order CMIRK scheme leads to

an asymptotically correct estimate of the maximum defect, but this thesis de-

scribes how to obtain a smoother Hermite-Birkhoff interpolant that also leads

to an asymptotically correct estimate of the maximum defect.

• Software modifications to the BVP SOLVER II package were implemented to

incorporate these schemes together with the sixth order case derived in Enright

and Muir[23]. Numerical experiments conducted on both the standard schemes

and the new interpolants demonstrate the latter’s superiority and by extension

the subsequent algorithmic enhancement of the software package.

• The software package was also modified to incorporate an auxiliary process

known as validity checking. This optional routine provides an additional layer

of confidence in the computed solution as well as in the defect control process
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implemented by the solver.

• A fourth order CMIRK scheme leading to an asymptotically correct defect has

also been developed using an alternative approach.

9.2 Future Work

The main direction of future work following on from this thesis is the development of

alternative strategies for defect estimation in subintervals which are flagged during the

validity check process. In such cases the sampling point occurs outside the formula’s

asymptotic regime meaning that the leading term in the expansion does not dominate

the higher order terms, a necessary criterion for the one-point sampling process to be

valid.

There are a number of possibilities presently under investigation in the devel-

opment of such auxiliary computations that will improve the quality of the defect

estimate. A simple approach under consideration is:

• Sampling the defect at several additional points on each subinterval and choos-

ing the maximum of these as the estimate of the maximum defect.

More sophisticated approaches involve a closer examination of the leading terms in

the defect expansion from a number of different perspectives which include:

• Identifying the dominant term in the defect expansion and locate the maximum

point of its polynomial. The maximum defect is then sampled at this new

location in all subintervals initially flagged in the validity check process. The

viability of this idea is due to the fact that validity check fails when the sampling
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point is outside the asymptotic regime of the formula and the leading term is

no longer the dominant contributor to the defect expansion.

.

• Identifying the dominant term in the defect expansion and employ the boot-

strapping process again in order to compute enough stages necessary to elim-

inate the error contributions due to the inherent polynomial interpolation er-

ror. In a similar manner to the discussions in chapter four of this thesis, the

boot-strapping algorithm raises the error contributions of the error inherent in

polynomial interpolation by an order leaving an interpolant dominated by data

error. In this case the first two terms of the defect expansion will now be dom-

inated by data error contribution from a single term each. The defect estimate

process in the suspect subintervals now simplifies into locating the maximum of

a single polynomial.

A second direction for future work involves further investigation of the direct, i.e.

non-boot-strapping, approach for the determination of CMIRK schemes leading to

asymptotically correct maximum defect estimates. A related investigation would

consider how to obtain Hermite-Birkhoff forms for these schemes.
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