
A Knowledge Analytics Portal for Agile Programming

by

Shijun Ding

A Thesis Submitted to

Saint Mary’s University, Halifax, Nova Scotia,

in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Applied Science

December 12, 2016, Halifax, Nova Scotia

Copyright Shijun Ding, 2016

Approved: Dr. Hai Wang

 Supervisor

Department of Finance, Information

Systems and Management Science

Approved: Dr. Yinglei Wang

 External Examiner

School of Business

Acadia University

Approved: Dr. Zoey Wan

 Supervisory Committee Member

Department of Finance, Information

Systems and Management Science

Approved: Dr. Genlou Sun

Supervisory Committee Member

Department of Biology

Approved: Dr. Roby Austin

 Graduate Studies Representative

 Date: December 12, 2016

A Knowledge Analytics Portal for Agile Programming i

Abstract

A Knowledge Analytics Portal for Agile Programming

by Shijun Ding

Abstract: Agile programming has been widely adopted for software development. One

criticism on agile programming is the lack of documentation and knowledge sharing in

the software development process. This thesis proposes a novel knowledge management

approach for creating, managing, and sharing various types of documents for agile

software development. The proposed approach divides software developers into two

groups, masters and apprentices. Masters are senior software developers who are

primarily responsible for agile software development. Masters avoid document writing

as advocated in the agile manifesto for software development. Apprentices are junior

software developers who are mainly responsible for creating, managing and sharing

various types of documents for the agile software development process. The

effectiveness of the proposed approach is investigated and validated through a prototype

of a knowledge analytics portal. This thesis concludes that the proposed knowledge

analytics portal increases the knowledge sharing for the agile software development

process.

 December 12, 2016

A Knowledge Analytics Portal for Agile Programming ii

Table of Contents

Abstract ... i

Table of Contents... ii

Chapter 1 ... 1

1.1 Thesis Contributions .. 3

1.2 Thesis Organization ... 4

Chapter 2 ... 5

2.1 Agile Software Development ... 5

2.1.1 The Scrum Framework ... 8

2.1.2 KANBAN ... 11

2.1.3 Scrumban ... 12

2.1.4 Extreme Programming ... 14

2.1.5 Pair Programming .. 16

2.2 Knowledge management.. 18

2.3 Extensible Markup Language (XML) .. 21

2.4 Version Control for Software Source Code ... 27

Chapter 3 ... 31

3.1 A Knowledge Management Framework for Agile Software Development 31

3.2 System Overview ... 32

3.3 System Architecture ... 34

3.3.1 System Requirements ... 34

3.3.2 Prgramming Languages ... 35

3.3.3 System Components ... 35

3.4 Version Control ... 39

Chapter 4 ... 43

4.1 Database Design .. 43

4.1.1 Data Model ... 44

4.1.2 Database Schema ... 45

4.2 User Interface Design .. 48

4.2.1 Login and Registration ... 48

4.2.2 User Dashboard .. 51

4.2.3 Kanban Board... 52

A Knowledge Analytics Portal for Agile Programming iii

4.2.4 Task Management .. 55

4.2.5 Task Information .. 58

4.2.6 Version Control .. 59

4.2.7 File Upload & Edit ... 62

4.2.8 XML Online Viewer .. 66

Chapter 5 ... 70

5.1 Conclusions .. 70

5.2 Future Work ... 71

References .. 72

A Knowledge Analytics Portal for Agile Programming 1

Chapter 1

Introduction

At the beginning of 2000’s, 17 software programmers met together and published a

new group of lightweight software development methods called Agile Software

Development. Before the term “Agile Software Development” was laid out, some

important components of the agile software development process like Scrum (Schwaber

1997), Extreme Programming (Beck 2000) and Dynamic Systems Development (Stapleton

1997) had already been introduced, implemented and extensively studied. Nowadays, the

growth of the IT industry is in an incredible speed. In the last decades, the adoption of the

agile software development process has increased dramatically. It has achieved success in

different perspectives, including banking systems (Bossi 2003), universities systems

(Muller 2001) and government systems (Fruhling et al. 2008).

The agile software development process can delivery early version of software,

support frequent communication, and respond rapidly to the changes from the customer

by changing the software in next iteration. This process has overcome the limits of

traditional methodologies for software development. As a result, more and more

programmers show interest in the agile software development process.

Among all agile methodologies, Extreme Programming is absolutely the most famous

one in last years (Mannaro 2008). The benefits of Extreme Programming compared to

traditional software development are in “extreme” level.

 Continuously code review: Intensive on-time code review can avoid a lot of time

waste for finding and fixing mistakes in code.

A Knowledge Analytics Portal for Agile Programming 2

 Simplicity and clarity in code: The goal of extreme programming is writing

simple and reusable code for achieving basic function. This will make fewer

mistakes.

 Frequent communication with customer: According to the feedback from

customers, with the time passes, the entire project is better understood.

 Less paperwork: Extreme Programming suggests face-to-face communications to

produce smaller amount of high-value documentation.

Extreme programming means faster development and less comprehensive

documentation. There is an ideal level for documentation in the agile software

development process called “Just Barely Good Enough” (Ambler 2008). There is no exact

template for the documentation. The best amount of documentation is just enough for the

next iteration. Because too comprehensive documentation is a waste of precious time, and

developers don’t rely too much on detail documentation which might out of sync with the

latest version of code (Ambler 2011). However, the lack of documentation may cost big

loss for companies using Extreme Programming.

With the rapid changing environment of the IT industry, programmers turn to be a

resource. As employees, turnover is also possible among programmers. Especially for

experienced programmers, they have unique skills and are strongly demand in market.

Retaining programmers is always a very important thing for an organization. In addition,

every organization pays attention to the importance of training employees - both new and

experienced.

While for extreme programming, less paperwork will make turnover much more

expensive. Writing documents spends precious development time. In order to achieve

A Knowledge Analytics Portal for Agile Programming 3

rapid release, documentation is often left to the last. The early releases are without

documentation. Once a programmer is gone, he might leave multi-million lines of codes

and nobody knows what exactly he has already done. It is very likely that new

programmers will rewrite a part of or the whole program. As a result, using Extreme

Programming, it is likely to cost the organization much more with high employee

turnovers and to supply less documented knowledge for new programmers.

Like Extreme Programming, other agile software development methods also suffer

similar problems with the lack of documentation and knowledge management during

software development.

1.1 Thesis Contributions

As agile software development projects generally suffer problems with the lack of

documentation and knowledge sharing, this thesis proposes a novel knowledge

management approach for creating, managing, and sharing various types of documents

during the agile software development process. The proposed approach divides software

developers involved in an agile software development project into two groups, masters

and apprentices. Masters are senior software developers who are primarily responsible

for agile software development. Masters avoid document writing as advocated in the

agile manifesto for software development. Apprentices are junior software developers

who are mainly responsible for creating, managing and sharing various types of

documents for the agile software development process. With the existence of

documentation, knowledge management and sharing become plausible for agile software

development projects. Thus, our proposed approach enables knowledge management

A Knowledge Analytics Portal for Agile Programming 4

for agile software development. The effectiveness of our proposed approach is also

investigated and validated through the implementation of the prototype of a knowledge

analytics portal for agile software development. Our web portal has two layers, the front

end and the back end. The front end is actually a presentation layer, which includes all

User Interfaces and a Kanban Display system. The back end is a data access layer. It

includes a server-side XML transformation system and a database which is under version

control.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 reviews the related

work and research literature. Chapter 3 presents the proposed knowledge management

approach for the agile software development process. Chapter 4 describes the features

of the prototype of a knowledge analytics portal for the proposed knowledge management

approach. This prototype demonstrates the effectiveness the proposed knowledge

management approach for the agile software development process. Chapter 5

summarizes the conclusions and future work.

A Knowledge Analytics Portal for Agile Programming 5

Chapter 2

Background and Literature Review

2.1 Agile Software Development

Agile Methodologies(AMs), which were proposed in 2001, now become a widely

adopted software development approach (Silva et al. 2008). These time-efficient

methodologies respond faster to changing requirements comparing to the traditional ways.

AM connects programmers and customers closely and allows early releases of product

(Mannaro 2008). As very efficient and effective processes, the adoption rate for AMs is

more than 60% (Ambler 2008). The “Manifesto for Agile Software Development”

declared a common guideline for using Agile Methodologies. The following twelve

principles were specified to support the manifesto (Beck et al. 2001):

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

A Knowledge Analytics Portal for Agile Programming 6

8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity – the art of maximizing the amount of work not done – is essential.

11. The best architectures, requirements, and designs emerge from self-organizing

teams.

12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

The most important part for agile programming is iteration. Iteration is actually a

time period during which programmers finish the development. Usually the duration of

iterations vary in different projects, from two weeks to four weeks (Ge et al. 2010).

The projects’ source codes may change largely in order to meet customer’s review result

between two iterations. At the end of each iteration, there will be an available release

(Beck 2000). Multiple iterations might be required to release a product or new features.

As shown in Figure 2.1, agile software development projects can minimize overall risk of

project failure.

A Knowledge Analytics Portal for Agile Programming 7

Figure 2.1 Time-Risk for Agile Life Time

Compare to the traditional plan-driven model for software development, the iterative

development model shown in Figure 2.1 is generally the main component of software

development projects involving extreme programming and other agile methodologies.

In every iteration, it includes planning, implementation, evaluation and testing. After each

iteration, it releases a code version for customer to examine during the part

Implementation.

Figure 2.2 Iterative Development Model

The goal of using iterative development model is to have a working release to

stakeholders after each iteration. The output of one iteration might not be a fully

functioned market release. However, this function minimizes total risks and gets

customers’ feedback in a short period. As for the traditional plan-driven development

method, even though the developers did all their best for gathering all requirements, the

A Knowledge Analytics Portal for Agile Programming 8

well-designed plan is always need to go back and make a change. The most importance

value of accepting AMs is that can get rid of the cost of regret.

2.1.1 The Scrum Framework

Scrum is one of the most popular Agile Methodologies due to its favorable results.

Scrum is actually a framework for managing software development projects. According to

its iterative and incremental features, individuals can address all kinds of complex issues

for delivering the most noteworthy conceivable quality of results (Schwaber & Sutherland

2013).

Scrum encourages a development team to collaborate as a single unit to fulfill its goal

from a project management point of view (Schwaber & Sutherland 2013). In Scrum, the

entire project is broken down into mini tasks referred to as “Sprints”. A Sprint is a

period box of one month or less amid which a finished, useable, and conceivably software

component is developed. The Scrum team adopts an iterative and incremental way to

achieve streamline consistency and control hazard. The Scrum team aims to deliver the

highest customer value and develop most flexible working software.

The followings are the key features of the Scrum framework:

The Scrum team: The Scrum team consists of a product owner, a development team,

and a scrum master:

1) Product Owner: The product owner a single person who is in charge of

amplifying the estimation of the software product for the development team. The

product owner represents the customer and communicates the needs of the

customer to the scrum master and the development team. It is the product owner

A Knowledge Analytics Portal for Agile Programming 9

who guarantees the development team complete customer requirements to the

level required.

2) Scrum Master: The scrum master works with development team, whose duties are

supervising, motivating, and training the development team. The scrum master

also acts as an intermediary to interpret and guide the development team to

completely fulfill the product owner’s requirements.

3) Development Team: The development team comprises of programmers

responsible for the actual development of a conceivably, releasable software

component called “increment” toward the end of every Sprint. Team members are

organized and sort out to deal with their own particular work. The subsequent

collaboration enhances the development team’s general efficiency and

transparency. Ideal development team size is usually five to nine (Schwaber &

Sutherland 2013).

Scrum Artifacts: There are four main artifacts of Scrum: product backlog, Sprint

backlog burndown chart and increment.

1) Product Backlog: The product backlog is a requested rundown of everything that

required for completing the software product, and is the single source of

prerequisites for any progressions to be made to the software product. It is

produced by the product owner. The product backlog can be continually changed

and updated.

2) Sprint Backlog: A Sprint backlog consists of a filtered version of the product

backlog. Items inside of the Sprint backlog are chosen by the scrum master and

A Knowledge Analytics Portal for Agile Programming 10

development team in order to set the goal of a Sprint. The Sprint backlog

represents all functionalities that will be achieved in the next increment. Only the

development team can modify the Sprint backlog during a Sprint.

3) Burndown Chart: The burndown chart is used to show the progress of the project,

what has been accomplished accompanying with the time frame.

4) Increment: The increment is a functional, usable and releasable version of the

software product at the end of each Sprint. Each Increment is completely tested

to work additively with all past increments.

The Sprint: The heart of the Scrum framework is a Sprint, which is an iteration of

software development life cycle to deliver a functional, usable and releasable version of

the software product. The goal of a Sprint is determined by the consensus between the

product owner and development team before the Sprint. The duration of each Sprint is

determined by the scrum master. Typically, a Sprint lasts about 30 days (Layton 2015).

One criticism of the Scrum framework is that continuous changes of system

requirements and instability with respect to the exact way of the completed product make

for a somewhat extreme venture to life cycle for the project (Schwaber & Sutherland

2013). Also, the assumption that development team can reasonably estimate the time for

finishing tasks is a risk. The Scrum project may suffer a risk of scope creep that unless

there is a clear end date of the current project, otherwise, the project management

stakeholders will be enticed to continue requesting new useful functions after each Sprint.

However, the advantages of Scrum are also obvious:

1. Easy to respond to changes,

A Knowledge Analytics Portal for Agile Programming 11

2. Early identification of problems,

3. Easy to deliver quality product in a predictable time.

2.1.2 KANBAN

Kanban is a Japanese word that literally means signboard or billboard. It was

originally designed as a solution for improving producing management, which was

adopted by Toyota for streamlining its car manufacturing plants; for manufacturing, its

main strengths are reductions in inventory with a focus on Just-In-Time (JIT) inventory

control (Monden 1983). The strengths of Kanban made it a good candidate for adaption as

an IT development model, where it helps reduce work-in-progress (WIP) and increases

collaboration and efficiency. It is then applied to software development and becomes a

framework of Agile Methodologies (Hurtado 2013).

Kanban illustrates workflow to team members by using visual representations, such

as Kanban Boards, dashboards, and other graphics. Most of the works done on a project

(such as designing or programming) are visible to all project participants. Team members

receive new tasks from a queue. Development teams focus on a strictly limited number of

tasks (i.e., work-in-progress) at a time. In a Kanban, several vertical lanes can be set on

the Kanban board to represents different working phrases such as: To-Do, In Progress,

Done, or extra steps like Plan, Develop, Test, etc. Development teams are encouraged to

customize the board in order to fulfill different needs (Scotland 2010, Ahmad et al. 2013).

Currently, Kanban broads have been integrated with many other Agile methodologies,

such as Scrum and XP (Kniberg & Skarin 2010).

A Knowledge Analytics Portal for Agile Programming 12

2.1.3 Scrumban

Scrumban is a management technology and also a framework for development

progress. As the name “Scrumban” represents, it is a hybrid of “Scrum” and “Kanban”.

It encourages companies adopting principles of Agile Methodologies and simple

innovations can help enhance productivity and eliminate waste.

Development teams using Scrumban looking for simple solutions on comprehended

project. Scrum helps development team work “in flow”, and Kanban inspires changes and

improvement to the work in progress. Scrumban is not a simple combination of Scrum

and Kanban, but a new method applying Kanban for Scrum technology (Reddy 2015).

The essential idea of Scrumban is relatively simple. The basic element is a board with

three columns “To Do”, “Work In Progress”, and “Done” (Ladas 2008). Movable notes

through columns within board representing different tasks indicate the work progress of

the software development. All tasks of the project are placed in the “To Do” column at

first. Then development team members pull tasks according to its priorities to work.

Developers focus on numbered tasks at the same time according to their abilities. The

limited number of tasks working at one time allows development team avoids distraction

of multitasking. Furthermore, as the benefit from Kanban, the noticing board makes the

working progress transparent for every team member (Ladas 2008).

Following the strategy of Scrum, planning meeting can be used to discuss tasks

prioritization and pull the most urgent tasks to the “Work In Progress” column. In

addition, a certain number of tasks left in the “To Do” column stimulate the holding of

planning meeting.

Another feature coming from Scrum is encouraging feedback and self-improvement.

A Knowledge Analytics Portal for Agile Programming 13

It includes creating empty slots in “Work In Progress” column. Given a development

team having productivity of ten tasks per work cycle, three empty slots are emerged if

only seven tasks were pulled into “Work In Progress” column. Three new tasks with

higher priority should be arranged to progressing. In this way, works finished in a project

are finished by cycles of short iterative terms, and within each iteration development

teams work on a limited amount of tasks. Without setting different due date for each

individual task, tasks selected in an iteration share a same deadline, which means they

have equal priority. If the length of iterations and team capability within an iteration are

certain, development team can finish project at an estimated rate. Team members can

work effectively with reduced stress (Ladas 2008).

For a detailed solution, “Work In Progress” column in Scrumban board can be

divided to sub-columns like, “Analyzing”, “Developing”, “Testing” or “Ready to release”.

With sub-columns function, team can minimize the influence of facing “bottleneck”.

Development team members can dynamically focus more on “Testing” if some

circumstances slowing a task from “Developing”. Until the problem solved, development

team members are still fully functional without stopping the whole project.

Scrumban has several advantages over Scrum and Kanban techniques. First, it adopts

planning on demand which save time by neither often meetings nor complexed estimation

procedures. The saved time enables development teams pay more attention on completing

tasks on time. Second, it uses continuous workflow with short cycles for planning. If

some circumstances happened to a task, it could be returned to queue and to be finished in

a new iteration without interrupt the working progress. Third, Scrumban allows

development teams remove all wastes which contribute no value to the final product.

A Knowledge Analytics Portal for Agile Programming 14

2.1.4 Extreme Programming

Extreme Programming (XP) is a popular agile methodology. One of the most

important characters of XP is fast and efficient communication. XP development includes

Pair Programming, continuous integration and unit testing. Continuous Integration means

frequent release of software versions within fixed duration. Instead of testing after the

development, unit testing during coding can let customer involved to satisfy the changing

requirement. It can also guarantee the high quality of the source code. In addition,

face-to-face communication is actually the most efficient and informational method

(Wright & Webb 2011). As a more adaptive, iterative and evolutionary method, XP allows

early and frequent feedback from customers and discovers high risks earlier. Several

important elements called XP values demonstrate how to do a successful extreme

programming:

 Communication: XP encourages face-to-face interaction. This is the most

important value to creating best solution to customers’ requirements. XP is mainly

based on oral communication, and lack of documented knowledge sharing.

 Simplicity: The code for the software must be the simplest thing that could

match all the requirements. The simplicity of the code can make it easily to

understand and change in the future.

 Feedback: XP is designed to meet the customers’ frequently changed

requirements. The requirements for different iterations could be different based on

customers’ ideas. Both the customers and unit tests can supply useful feedback.

 Courage: The team is fearless because no one works alone. No need to

document excuses for failures and the team is capable for any change to the project.

A Knowledge Analytics Portal for Agile Programming 15

 Respect: Development team members respect each other and their work.

These values are only fundamental values used by XP teams. Teams can add their

own values to these if making changes is necessary for developing efficiently. The

features that differ Extreme Programming from traditional software development

methodologies are as follows.

 Continuously code review: As using pair programming, one of the programmers

is doing the code review all the time. Intensive on-time code review can avoid a lot

of time waste for finding and fixing mistakes in code.

 Simplicity and clarity in code: All of the codes are finish by two programmers.

The goal of extreme programming is to achieve the basic function with simple code.

It can make code reusable and reduce the risk of facing mistake.

 Frequent communication with customer: Extreme Programming is designed for

frequent changing requirements from customers. With time passes the entire project

will be better understood.

 Pair programming: All codes for a project finished by XP teams are completed

by two programmers working together. Pair programming increases development

speed. Developers focus on coding instead of unnecessary documentation and

meetings. The goal is to create faster software with fewer software bugs. Pair

programming will be described in details in the next section.

The disadvantages of XP are as follows.

 Detailed planning: XP is a plan-driven development method. It requires a

detailed planning since the beginning because of the potential changing requirements

and project scope. Time spends on detailed planning affects the efficiency of XP.

A Knowledge Analytics Portal for Agile Programming 16

 High cost developer turnover: Extreme Programming encourages developers

focus on coding instead of redundant documents. However, lack of paperwork will

make turnover much more expensive.

 Code based: As a code based technique, XP don’t have perfect performance on

complex project as design based method do. It can be frustrated on larger project as

requiring too much time on refactoring. Also, codes testing are difficult due to neither

detailed structure nor well documented defects.

2.1.5 Pair Programming

Pair programming means two software developers who work together in a same

workstation. This method has been demonstrated to improve software quality and

minimize the time to market (Jensen 2003, Williams & Kessler 2002). Pair

programming increases teams’ collaboration by sharing joint responsibilities to the

developers.

Sitting side by side is the best way of pair programming. Both programmers

concentrating on the same task and using face-to-face communication can make code

quality much higher.

The relationship between these two programmers is similar to the relationship

between driver and navigator. The programmer worked as driver focuses on typing codes

and system design. The other programmer reviews the code concurrently to fix any

defects that might affect the project like syntax errors, mistyping and class malfunctions

(Lui & Chan 2008). They constantly communicate on best approaches and switch roles

frequently during developing the project.

A Knowledge Analytics Portal for Agile Programming 17

Remote pair programming is becoming a more popular mothed. It allows

programmers writing codes from anywhere have Internet access, which even enables

programmers from different countries working together. However the unique feature of

face-to-face communication occurs side by side must remain, in order to keeping

efficiency of remote pair programming. With the rapid development speed of Internet,

remote pair programming is a natural innovation of traditional pair programming.

Techniques supporting remote pair programming like desktop sharing, collaborative code

editing tools and web-based terminal are adopted to guarantee the efficiency.

The basic idea of pair programming is two programmers make better decisions in

comparison to working individually. For general consideration, it’s hard to believe that

Pair Programming is more effective than Solo Programming. Different opinions come

from both sides, as: (Beck 2000)

PROS CONS

Programmers as a scarce resource, is

wasteful by letting two people develop on

a piece of code at the same time.

Experienced pair programmers support

working together in pairs as "more than

twice as fast"

Programming is traditionally considered

as a private activity. Many programmers

think their code is "personal". Working

with a partner will face trouble on

deadlines or code versions.[Subversion]

Several famous programmers prefer

working in pairs. The resulting design is

better. Simpler code is suggested, which

is easier to extend.

Many programmers feel reluctant to work

with another person.

According to some surveys, even junior

developers contribute to a senior's

programming.

Table 2.1 Pros and Cons of Pair Programming

From an economical point of view, adding the second person only increase a small

development cost. However, pair programming will decrease the probability of software

bugs. Also, according to the feedback from the programmers after using Pair

Programming, they found it is more enjoyable to work in pairs than working alone using

A Knowledge Analytics Portal for Agile Programming 18

traditional approaches (Williams et al. 2000, Denny et al. 2009). Moreover, pair

programming suggests side-by-side programming and rapid oral communications, which

save time for code review. Pair programming also provides a channel for knowledge

sharing. Even junior developers contribute to a senior's programming (Cockburn 2000).

Actually, pair programming can accelerate the speed of learning from each other.

Pair programming does not always work and may not be effective in all cases. Two

programmers have different personalities could cause conflicts. If one programmer is lack

of experience, another programmer may spend all of the time tutoring. Such situation

could be very effective is learning is the main purpose. However, this could cause time

waste and frustrated programmers who cannot focus on development only. Research

(Dybå et al. 2007) suggested senior programmers should work alone unless the project is

too complex to be solved completed by an individual senior programmer.

2.2 Knowledge management

Knowledge is stored in human’s mind as a precious asset. As it is in human memory,

when facing knowledge sharing, knowledge must be presented by some information.

Programmers communicating with each other which is a knowledge-sharing example. In

order to transfer the data, there should be a media like programming language. The

knowledge provider must use the media to represent the knowledge he wants to send. If

the knowledge receiver knows the same media, this communication is success, otherwise,

this may result misunderstanding. During communication, the source and target

information storage are people.

Knowledge can be shared in a network is divided by two types: tacit knowledge and

A Knowledge Analytics Portal for Agile Programming 19

explicit knowledge (Nonaka & Takeuchi 1995). Tacit knowledge is personal knowledge

embedded in individual (Salis & Williams 2010). Tacit knowledge is too deeply rooted in

mind to code and transfer. Explicit knowledge is tacit knowledge that has been

documented in a particular form that can be easily shared and learned (Salis & Williams

2010). The process of transforming tacit knowledge into explicit knowledge is called

externalization, and the process of learning explicit knowledge and transforming it into

tacit knowledge is called internalization (Palmieri 2002). The externalization process

involves codifying tacit knowledge into the form of documents, databases, tools, etc. The

internalization process consists of training, processing, and practicing to learn explicit

knowledge.

The knowledge embedded in employees is known as knowledge stocks (Jackson et al.

2003). Knowledge stocks are the basement of an organization for knowledge sharing.

Effective management of the knowledge flow (Collins & Clark 2003) determines the key

advantage of an organization. This relies on a social network including strongly related

individuals who trust each other (Lepak & Snell 2007). In pair programming, the

programmers are willing to share knowledge with the rest of the organization. The

knowledge is constantly sharing among employees. In addition, two experienced

knowledge workers combining in dyadic ties are more likely to achieve career success

(Fliaster & Schloderer 2010).

Tacit knowledge sharing is more difficult than explicit knowledge. First is the willing

of employees. Some employees resist sharing information with other people. Second, the

most efficient way for sharing tacit knowledge is face-to-face communication. And

communication becomes a key successful element to software industry (Stapel &

A Knowledge Analytics Portal for Agile Programming 20

Schneider 2012). The core benefit of tacit knowledge sharing can’t be replaced by other

method. Face-to-face communication is actually the most efficient and informational

method (Wright & Webb 2011). Furthermore, the mutual responsiveness of dyadic

partners is a critical success factor to workers using pair programming for creative

performance (Fliaster & Schloderer 2010).

Explicit knowledge sharing is easily achieved because the knowledge provider can

describe the knowledge properly. The storage container which contains explicit

knowledge can be called a document. To capture and reuse knowledge is a problem to any

organizations. Explicit knowledge is re-usable and much easier to manage.

Knowledge management involves people and technology. It focuses on how an

organization identifies, creates, captures, values, shares and applies knowledge. The

objective of knowledge management is to improve the organization’s performance by

delivering needed knowledge to the right place at the perfect time (Levy & Hazzan 2009).

Knowledge in a software company comprise of project documentation, software

development strategies, employees’ working experience, communication between

employees and current market need. With well knowledge management, the organization

is able to take the benefits of using new developing technology, and reusing existing

knowledge (Palmieri 2002, Desouza et al. 2006, Willem & Scarbrough 2006).

Knowledge management systems are computerized tools for sharing and managing

knowledge in organizations (Kankanhalli & Tan 2004). The main role of a knowledge

management system is to help employees share knowledge. There are two different

approaches for designing and utilizing knowledge management systems. Each model

adopts a different knowledge management approach, codification for explicit knowledge

A Knowledge Analytics Portal for Agile Programming 21

and personalization for tacit knowledge. The codification approach focuses on the

codification and reuse of explicit knowledge. Alavi & Leidner examined the use of

Electronic Knowledge Repositories (EKR) for coding and sharing stored information

(Alavi & Leidner 1999). A recent study shows the adoption of EKR depends on the users’

motivation to knowledge sharing (He & Wei 2009). Another example is the

Organizational Memory Information System (OMIS) that relates past explicit knowledge

to the present in order to increase the efficiency of the organization (DeLone & McLean

1992). The personalization approach enhances the link between people to accelerate the

transfer and sharing of tacit knowledge. An example is to provide contact information of

expertise in an organization. Another example is to provide electronic forms for people

who are dealing with similar projects or with similar interests to share knowledge with

each other.

2.3 Extensible Markup Language (XML)

The eXtensible Markup Language (XML) is a formal and systematic rule for

describing structured data. It is a standard framework used for data interchange over

Internet (Abiteboul et al. 2000). Like HTML, this language is a subset of the Standard

Generalized Markup Language (SGML). On 1998, XML (1.0) started to become a World

Wide Web Consortium (W3C) recommendation (Yen et al. 2002). Nowadays a lot of

open source tools combined with XML are available. The implementation of XML can

even help verifying software and testing source code (Friedman-Hill 2001).

XML can annotate text in a distinguishable way. It uses character ‘<’ in the beginning

and ‘>’ at the end to separate the markup from contents, which is also called a tag. For

A Knowledge Analytics Portal for Agile Programming 22

each data element, there is usually a pair of tags to consist it, start-tag and end-tag.

Besides the empty element, the pair of tags with the content they enclose constitute an

element. An empty element can be represented either by A data element can have

attributes and corresponding values stored in the start-tag. XML tags can be customized

by programmers and all elements in XML files are required using end-tag. Furthermore,

quotation marks are necessary for attributes values in XML files. Figure 2.3 shows an

example of a simple XML file.

Figure 2.3 XML File Sample

By using XML, programmers can document information efficiently. As illustrated in

Figure 2.3, both Code and Comment elements are nested in File element. The editors of

two elements are shown in the attributes part of these two elements. With this format,

XML can provide clearly descriptive markup to make the information more readable even

for human user. On the other hand, compare to HTML, rendering the document content

from a XML file will take more time, because the program must convert the descriptive

markup at first. XML is good at data independence and data description. The stored data

A Knowledge Analytics Portal for Agile Programming 23

with procreate attribute can easily extract by programmers.

XML elements are nested in a hierarchical format following a Document Type

Definition (DTD). All allowed tags and the relationships between tags of a XML file are

listed in the corresponding DTD file. Figure 2.4 is an example of DTD file to XML file in

Figure 2.3.

Figure 2.4 DTD File Sample

Although the tags of XML files are not limited, all the tags are controlled by rules

illustrated in DTD files. The most significant function of DTD is leading programmers

creating proper new elements in XML. There are four kinds of markup declarations in

DTD, element declaration, attribute declaration, entity and notation declaration. The

element and attribute are important. In Figure 2.4, the elements correspond to all tags in

Figure 2.3. This DTD defines the structure of allowed element name. In addition, DTD

defines the contents of these elements. The root element is File, and only the element

names File, Code, Line, Comment and Content are allowed in the XML file. In Figure 2.4,

the attribute declarations (ATTLIST) define the data type of values correspond to attribute

names. The value for attribute version can only be character string (CDATA). The

notation #PCDTA stands for Parsed Character Data, which indicate the content enclosed

A Knowledge Analytics Portal for Agile Programming 24

in this tag is simply text. The value to attribute version is required for element File, which

can add necessary illustration to this whole XML file. DTD files are created mainly for

validating declarations of element type, attribute, entity and notation. DTD can declare an

attribute name and the attribute value to it, but DTD files can’t do specific constraint.

Sometimes if the length of a value is limited, the syntax #PCDATA is too ambiguous to

define that data type.

An alternative technique to DTD is XML Schema. XML schema is more expressive

than DTD. Basically, DTD can define the relationship between elements, and XML

Schema extents it to allow the detailed definition of the attribute types. Moreover, XML

processor can also use XML Schema to validate XML document. Compare to DTD,

XML Schema allows the programmer define the attribute values and element contents. It

has a rich type system, which allows programmers to define restricted values for each of

the elements and attributes in the XML file. It allows regular expression for constrain the

format of a single value.

When to connect a schema file to the original XML file, the <!DOCTYPE> element

in Figure 2.3 should be removed, and the <File> element should be substituted to:

Figure 2.5 Changed XML Header

The extension to an XML schema file is “xsd”. At the end of the element<File>

indicate the name of the schema file used for constrain this XML file. Figure 2.6 is a

schema file to the XML file in Figure 2.3. As shown in Figure 2.6, XML Schema can

specify detailed type for attribute.

A Knowledge Analytics Portal for Agile Programming 25

Figure 2.6 An Example of the XML Schema

XML files are a useful tool for storing and illustrating data. To display the data

properly, XML transducers is needed (Salminen & Tompa 2012). One of the technologies

called XSLT can help programmer extract and render only the needed elements. XML

Stylesheet Language (XSL) was developed for rendering XML files by W3C. The XSL

Transformation language (XSLT) established in 1999 is used to transform XML

documents into other format (Wadler 1999). XML files are well-formed tree structured

A Knowledge Analytics Portal for Agile Programming 26

files. The source file can be considered as a tree. An XSLT program is capable of pushing

fragments from source tree to any location in the target tree or extracting it back. In this

way, XSLT can even convert the XML syntax to a new HTML file, which can be seen on

the webpage directly and have different structure.

Figure 2.7 An Example of the XSLT File

Figure 2.7 is an XSLT file for displaying XML file in Figure 2.3. After rendering the

original file, the file version, code editor and comment editor are displayed in a table. And

A Knowledge Analytics Portal for Agile Programming 27

the content of code is displayed in a blue font while the comment is green. As data stored

in XML can be easily extracted, using XML for documentation can let the encoded file be

easily examined by applications.

Figure 2.8 Web-based XML Editing System

2.4 Version Control for Software Source Code

Version control refers to technologies that help a software development team manage

changes to source code over time. Version control system keeps track of every

modification to the source code in a special kind of database. Programmers can compare

earlier versions of the source code to help fix the mistake while minimizing disruption to

all team members. For software development projects, the source code is a repository of

the invaluable knowledge and understanding about the problem domain that the

programmers have collected and refined through careful effort. Version control is able to

protect source code from both catastrophe and the casual degradation of human error and

unintended consequences. Moreover, version control is also able to help software

development teams prevent concurrent work from conflicting. Changes made in one part

of the software can be incompatible with those made by another programmer working at

the same time. A good version control system facilitates a smooth and continuous flow

of changes to the source code rather than locking and preventing changes to the source

A Knowledge Analytics Portal for Agile Programming 28

code at the expense of blocking the progress of others. Software development teams

that do not use version control often run into problems of not knowing which changes that

have been made or the creation of incompatible changes between two unrelated pieces of

code. Hence, programming without using version control is risky, like not having

backups.

The use of version control for source code enables the traceability of a complete

long-term change history of every program. The history record often includes the author,

date and written documents on the purpose of each change. Having the complete history

enables going back to previous versions for debugging purposes. Having the annotated

history of the source code can enable programmers to make correct and harmonious

changes that are in accord with the intended long-term design of the system.

There are two different approaches for version control, the centralized model and

distributed model.

In a centralized model, a central repository is used for users reading and writing files.

The only central repository is actually a data server stored all tracked files and their

history (Collins-Sussman et al. 2004). The newest revision of central repository is often

called HEAD and is the most convenient file to read (Otte 2009). User can retrieve a

working copy to their local computers range from single files to the entail repository.

They commit changes to and update working copies from an online repository, without

manually keeping too many copies of files locally.

A Knowledge Analytics Portal for Agile Programming 29

Figure 2.9 Centralized Version Control System Model

As the example of Figure 2.9, by using LAN and WAN, the central repository can be

accessed from anywhere of the world by different groups of developers.

In a distributed model, a central sever contains repository to programmers are not

necessary. As a new approach to Version Control Systems, every user has a complete

repository on their own development terminal. A local repository reduces the

development teams’ reliance on Internet. Users are able to work more flexible and

completely offline (Otte 2009). However, sharing between different workstations still

needs communication through Internet.

Figure 2.10 shows an example of the distributed model. Every local repository on

programmers’ computer is independent from all other local repositories. As a result,

communicating between local and remote repositories is much more complicated than

centralized version control system. By systematic recording the entire editing history and

branches information, distributed version control systems have better merge capacity.

According to its flexibility, it is suitable for many development methods (Otte 2009).

A Knowledge Analytics Portal for Agile Programming 30

Figure 2.10 Distributed Version Control System Model

A Knowledge Analytics Portal for Agile Programming 31

Chapter 3

The System Architecture and System Requirements

3.1 A Knowledge Management Framework for Agile Software Development

As Agile software development lacks of documentation and knowledge sharing in the

software development process, we propose a knowledge management framework for

creating, managing and sharing various types of documents for agile software

development. In our knowledge management approach, programmers are divided into

two groups, masters and apprentices. Masters are senior software developers who are

primarily responsible for programming. Masters avoid document writing as advocated

in the agile manifesto for software development. Apprentices are junior software

developers who are mainly responsible for creating, managing and sharing various types

of documents for the agile software development process.

The advantages of our proposed knowledge management are obvious. First, various

types of documents will be produced and sharing in the agile software development

process. In case of an employee turn-over, the new employee will be able to learn the

existing work through the documents. Moreover, valuable knowledge will be able to

easily searched and shared among all team members of the software development team.

Furthermore, as apprentices are normally expected to acquire more experience, code

reviews and documentation can improve the learning experience. Document sharing

also help apprentices and other junior programmers get familiar with the software

development process. We strongly believe that the costs associated with apprentices can

be well justified by the benefits associated with knowledge sharing in the agile software

development process.

A Knowledge Analytics Portal for Agile Programming 32

Using the aforementioned framework, we developed a system called “Unite Portal” is

the name for knowledge management for agile software development. It integrates the

Kanban and Subversion technologies for software development, uses XML and

object-relation databases to store and share data. As designed as a web portal, this

system is easily accessed through web browsers and is helpful to user management.

3.2 System Overview

The main idea of this system is to build a user-friendly, management-conveniently

and access-easily web portal that could help managing version and support collaboration

for development teams adopting Agile Software Development. The hardware and

software system architectures of Unite Portal are illustrated in Figure 3.1 and Figure 3.2

respectively. The system includes a user management module, a Kanban system module,

a version control module and an XML file management module.

The users of this system are supposed to be programmers involved in agile

programming projects. This system emphasizes communications and collaborations

between programmers (i.e., users). It allows the programmers in a same team access to

and edit same project easily and simultaneously. With the file management module, the

system is able to display all available versions of programs and documents to different

users.

A Knowledge Analytics Portal for Agile Programming 33

User1

User2

User3

Web

Server

Application

Server

Database

File System
(Kanboard &

Subversion Program)

(User Interface)

Figure 3.1 Hardware System Architecture of Unite Portal

Figure 3.2 Software System Architecture of Unite Portal

A Knowledge Analytics Portal for Agile Programming 34

The major features of this system are listed as follows:

 Customizable Kanban boards for different groups of user: Each user can

select preferred templates for displaying their own Kanban boards and customize the

status of Kanban boards.

 Task management: Programmers are able to create, edit and share tasks among

development teams. After sharing, multiple programmers can contribute to single

task at the same time. Tasks can also be deleted if needed.

 File version control: All versions of documents and programs related to a

project can be retrieved once they are stored on Unite Portal.

 XML file management: All documents stored on Unite Portal are converted to

XML files and dynamically displayed on web browser.

3.3 System Architecture

3.3.1 System Requirements

The functional requirements of Unite Portal are listed in Table 3.1.

Functional Requirements

The system can be visited online through web browser.

The system should be fitted to mainly used web browsers.

The users’ information and projects’ content should be store in a secure database.

The users need to go through registration and login function to visit our system.

The system must support version control tool.

The system must embed a Kanban Board creating and storing system.

A Knowledge Analytics Portal for Agile Programming 35

Functional Requirements

The users can create, edit, share or delete their projects.

The users can personize their Kanban Board’s outlook.

The users can edit and share their boards.

A user management system should be added in order to support different levels of

authorizations of project contents.

This system should be easily and efficiently to use.

This system can enable users transform the original source code to XML style files

and display those files on browser.

This system can allow users modify the displayed XML files and save the changed

XML files to version control system.

A mail server and online chat room for communication between team members.

Table 3.1 Functional Requirements

3.3.2 Prgramming Languages

We used HTML, CSS, JavaScript, jQuery, PHP for implementing Unite Portal.

HTML and CSS were used for interface design. JavaScript and jQuery were used for

client-side programming. PHP was used for server-side programming

3.3.3 System Components

Unite Portal is composed by four main parts, Kanban board system, version control

system, User management system and XML file management system. The portal

displayed information in two ways, static HTML web page and dynamic HTML web page.

The static parts of our web portal are directly written in HTML format. These parts of

A Knowledge Analytics Portal for Agile Programming 36

code are delivered to users as it is stored in server. For the dynamic contents, our portal

uses PHP language to retrieve, store data and dynamic display.

Figure 3.3 illustrates the workflow of these four components. The Kanban board

module displays the visualized tasks and allowed user to concurrently modify. It enabled

users to optimize tasks efficiency. The version control module helps users store current

and history versions of documents and programs. The user management module is used

for managing users’ authorization and authentication. It enables administrators to change

users’ authorization level in order to guarantee the security to our portal. The XML file

management module is designed for displaying, editing and storing documents and

programs.

A Knowledge Analytics Portal for Agile Programming 37

Start

UI Login

Is client role expert
programmer?

Kanban for
Comments

No

Kanban for
Coding

Yes

Submit?

No

Subversion
Commit

Yes

Version Control
Database Store

End

UI Logout

Subversion
Merge

Submit?

Yes

XML Online
Viewer

No

Figure 3.3 The workflow of Unite Portal

A Knowledge Analytics Portal for Agile Programming 38

Different types of users can be identified by the user management module through

the login process. Two types of Kanban Board with default setting are displayed to

corresponding groups of users. For masters, version control can help users to create local

working copies and project commitments. For apprentices, XML online viewer together

with the version control module help project comments editing and version merging

operations.

Figure 3.4 illustrates the overall system architecture.

Figure 3.4 Overall System Architecture

A Knowledge Analytics Portal for Agile Programming 39

3.4 Version Control

All current commercial and open-source version control systems use delta encoding

to store different versions of a file. Unite Portal also uses delta encoding instead of

wasting space on duplicated contents between versions. It means our system only store

the difference between the current version and the previous latest version.

Figure 3.5 shows an example of delta encoding.

Figure 3.5 An example of delta encoding

In Figure 3.5, this difference between the two versions is represented as “Δ1”. The

delta encoding method can save a lot of space to store different versions of files.

Our system includes a branch-based versioning model. It is based on a popular

version control system called Apache Subversion (SVN) (Collins-Sussman et al. 2004).

Our system enables several programmers to work with same program source code file at

the same time. In order to achieve this functionality, the repositories to each project must

A Knowledge Analytics Portal for Agile Programming 40

have one or more branches for users collaborating at the same time.

As a well-defined branch-based versioning model, user can create a new branch as a

specific version from an existing branch. This new branch could be still in the same

project or be saved as a primary branch in a new project (Ekanayake et al., 2011). The

primary branch includes the first version and the versions come after the first version

created in a project. Non-primary branches of a project are branches derived from and

paralleling with the primary branch. One important element of version control system

called current version is the latest version of a branch.

When a user is editing with an existing version, once she saves the modification, a

new version is created and store in the same branch. The saved version becomes the

current version. With the project name, branch name and version number, the version

control module can easily find out the wanted version. The model of our system is shown

in Figure 3.6 and Figure 3.7, as a project using our proposed knowledge management

framework for agile programming.

A Knowledge Analytics Portal for Agile Programming 41

Figure 3.6 Delta Encoding for the Version Control of Our Proposed Knowledge

Management Framework for Agile Programming

Figure 3.6 shows the delta encoding of the version control of our proposed

knowledge management framework for agile programming, and Figure 3.7 shows the

versions from a user’s point of view. In Figure 3.6 and Figure 3.7, the branches are

defined as “Master”, “Apprentice” and “Documentation”. In our model, the primary

branch belongs to the master. The apprentice and documentation branches are secondary

A Knowledge Analytics Portal for Agile Programming 42

branches. Version 1.2 which derived from version 1.1 is the first version of the apprentice

branch. Version 2.0 and Version 3.0 are completed iteration outputs, which are also

well-documented and ready to release. Masters are mainly doing programming work in a

primary branch. Meanwhile, apprentices are able to check out working copy from the

primary branch and focusing the documentation task on their own branch. Then version

control system will automatically merge the apprentices’ work into the primary branch.

Figure 3.7 Actual Versions of Our Proposed Knowledge Management Framework for

Agile Programming

A Knowledge Analytics Portal for Agile Programming 43

Chapter 4

System Design

In this chapter, we explain the design of our prototype Unite Portal, which enables

knowledge management and sharing for the agile software development process. The

chapter is divided in two parts. The first part states the design of the database used for our

system, and explains the detailed data model adopted for storing important data for

different users. The second part illustrates important sections of our web portal, including

user interface design and dynamic system responses to different user inputs.

The main purpose of our web portal is to build a collaboration tool supporting an

agile software developing team working in a unique platform. The portal must be easily

accessed from any web browser and all mobile screens.

4.1 Database Design

A fully functional database is the key to a successful web portal. A good database is

able to store large amount of user information and project data in an organized format,

allowing users easily access data through operations from web browser. In addition, the

database must be able to extend easily when additional application requirements added.

We chose MySQL as our Database management system to build our web portal

infrastructure, which is the most popular open source database and is compatible with all

operating systems.

A Knowledge Analytics Portal for Agile Programming 44

4.1.1 Data Model

The tool used in this section to illustrate the conceptual model of our database is

“Entity – Relationship model”; it uses graphical diagrams showing flow of data and

information. Our web portal works as a tool supporting communication between

programmers and customers. All data used for our portal are separated in three parts,

developing programmers, project owners and projects in progress. The design of our

database is shown in Figure 4.1.

Figure 4.1 Database Schema

Our database contains seven tables. The “UserData” and “OwnerData” tables are

used to store registration information for two groups of users, programmers and project

owners. The “DeveloperResource” table helps users distinguishing junior and senior

programmers and arranging different authorities to each programmer. For letting different

groups of users access wanted Kanban Boards, The “Group” and “Board” tables are used

to store development teams’ and Kanban boards’ information. These two joint tables help

system managing multiple development teams and setting access authorization for

A Knowledge Analytics Portal for Agile Programming 45

Kanban boards. The “Task” table stores information of minor projects on work and has a

relationship with the “Board” table. The “OwnerData” table has a “one-to-many”

relationship with the “Order” table, which has also has a “one-to-many” relationship with

the “Task” table. These relationships enable project owners checking working status

easily.

4.1.2 Database Schema

 The “UserData” table stores registration information for all developers, which has

five fields, User_ID, Username, Password, Email and UserType. This table is used to

identify developers. For example, the UserType field is used for distinguish junior

programmers, senior programmers and Scrum masters. In the “UserData” table, all fields

can’t have NULL value.

Table 4.1 UserData Table

The “Board” table stores all Kanban boards’ information and status, including

personized settings like preset WIP numbers for different working phrases. This table

helps developers check working status of projects on work. Each Kanban board can be

visited by multiple users. Boards could also be shared among users and even groups. The

A Knowledge Analytics Portal for Agile Programming 46

User_ID and Group_ID fields help managers define whether a user or a group of users is

allowed to visit a Kanban board.

Table 4.2 Board Table

Each Kanban board represents a project in progress, which may contain many mini

tasks. The “Task” table is used for storing all tasks’ information. This table has five

attributes corresponding tasks’ ID, content, creating date, due date and the belonging

board. The TaskContent field stores all important information of each task, like creator

information, latest version and user who modify this task most recently.

Table 4.3 Task Table

For convenient management, users are grouped with unique Group_ID. Two more

tables “Group” and “DeveloperResource” are used for grouping developers. These two

A Knowledge Analytics Portal for Agile Programming 47

tables also help managers assigning authorization to general users. Only authorized users

can see certain web portal sections.

Table 4.4 Group Table

Table 4.5 DeveloperResource Table

Apart from these tables designed for programmers, two more tables are prepared only

for project owners. The “Customer” table stores clients’ information. This table has a

one-to-many relationship with the “Order” table, which stores all orders’ status.

Table 4.6 Customer Table

A Knowledge Analytics Portal for Agile Programming 48

Table 4.7 Order Table

4.2 User Interface Design

For building our web portal, we chose HTML to create web pages; CSS to define

web page style and JavaScript to perform client-side validation. The language used to

connect database is PHP 5, which is a server-side scripting language, ideally for web

portal development. In the following section, we are going to illustrate how our web

portal works.

4.2.1 Login and Registration

A login form is the only available window displayed to the first time user. In order to

access other functions in this system, users must successfully log in. The back-end

database, which stores users’ registration information, automatically validate user’s input

and direct user to main page - dashboard.

A Knowledge Analytics Portal for Agile Programming 49

Figure 4.2 Login Form

For first time users, there is a button for them to sign up. The registration form asks

user type in necessary information, including real name, username, email address, and

personalized password.

Figure 4.3 Registration Form

A Knowledge Analytics Portal for Agile Programming 50

If a user forgot his login password, our system supplies a password reset function.

Users are able to reset their password in a new web page by clicking “Forget Password”

button at the login form. After entering the email address used for registration, the user

will receive an email with instructions if the entered email address is the same as the one

stored in system database. The validation and email sending functions are running at the

back-end server side.

Figure 4.4 Password Retrieving

The login process is illustrated in Workflow 4.1.

Workflow 4.1 Login Process

A Knowledge Analytics Portal for Agile Programming 51

4.2.2 User Dashboard

The web page displayed after successful login is the Unite Portal dashboard; it

contains navigation buttons, message center, personal setting and status of projects in

progress.

Figure 4.5 Dashboard

The “Display” and “User” buttons are located at the top right corner of the dashboard.

The “Display” button enables users to set web portal display templates. The “User”

button is designed for user profile management and logout. Users are able to close the

current session by clicking the “Logout” button. Then they will be directed to the initial

login form.

Figure 4.6 User Profile Figure 4.7 Reset Password

A Knowledge Analytics Portal for Agile Programming 52

Changing password regularly is a helpful way to keeping security. This function is

hidden in the “Profile” button of the showing dropdown list in the “User” button.

The functions for the user dashboard are illustrated in Workflow 4.2.

Workflow 4.2 Dashboard Features

4.2.3 Kanban Board

Following is an important part of our thesis, the Kanban board.

The table “My boards” shows up after users clicking the “Kanban Board” button in

the left-side menu of dashboard. This table lists all the boards’ information the user

involved in. These boards are ordered by their names. The current working status of each

board is also displayed in this table.

A Knowledge Analytics Portal for Agile Programming 53

Figure 4.8 Board Preview

The “New Kanban” window only shows on Scrum masters’ web browser. Only

Scrum masters are authorized to create new Kanban boards and make changes to Kanban

boards’ settings.

Figure 4.9 Create New Kanban Board

After selecting a board from the previous “My Board” table, users will be directed to

a new web page vender by our web portal. Figure 4.10 is a sample of the Kanban board

for project “File Merge”. In this Kanban board, there are six columns representing six

different working phases. Tasks in this project are named as “Items” followed by

sequential numbers. Different types of tasks are marked with different colors. Another

feature of our Kanban board system is the preset WIP numbers. These numbers locate

beneath to the name of different working phases and restrict the number of items allowed

in corresponding columns.

A Knowledge Analytics Portal for Agile Programming 54

Figure 4.10 Kanban Board Sample

The board management process is illustrated in Workflow 4.3.

Workflow 4.3 Board Management System

A Knowledge Analytics Portal for Agile Programming 55

4.2.4 Task Management

As mentioned in the previous section, tasks are displayed as small colorful blocks in

Kanban board viewer. When users move their mouse over a task, a larger block will

toggle out, containing further information about this item. For additional tasks’

management, users are able to move or share tasks by right-click on their icons. The

popped out “Share With” window help developers sharing tasks with each other.

Figure 4.11 Task Management Figure 4.12 Share with window

After choosing “Move To” option, the selected task block is dragged out from the

original place. Users can relocate the selected task by moving mouse. After reaching

preferred location, the moved task can be dropped to the designated column with a single

left-click.

A Knowledge Analytics Portal for Agile Programming 56

Figure 4.13(a) Move Task Figure 4.13(b) Drop Task

System can automatically arrange Kanban boards’ contents, calculate the new WIP

load and detect whether overloads happened. If a user accidentally making a column

exceeds its WIP limit, an alert will show up and the previous operation will be cancelled.

Figure 4.13(c) Automatic Relocation Figure 4.13(d) Warning of Over WIP Limit

As additional requirements may come out from customers, our system must be

enabling to let programmers creating new tasks. For easy management, only senior

A Knowledge Analytics Portal for Agile Programming 57

programmers are authorized to use this function. By right-click at the blank area of a

working phase, the “New Task” window jumps out. In this window, users can enter the

name of the new task and select types of this task.

 Figure 4.14 Create Task Figure 4.15 New Task Window

The task management process is illustrated in Workflow 4.4.

Workflow 4.4 Task Management System

A Knowledge Analytics Portal for Agile Programming 58

4.2.5 Task Information

Every task can be easily open or edited by left-click on its icon. The “Task

Information” window (Figure 4.16) shows up, displaying basic information of the

selected task and enabling users edit or open this task. Users can only change the task’s

name, type and due date at the “Task Edit” window (Figure 4.17). Further editing to the

selected task can be finished by selecting the “Open Task” button.

 Figure 4.16 Task Info Figure 4.17 Edit Task

The task editing process is illustrated in Workflow 4.5.

Workflow 4.5 Task Editing

A Knowledge Analytics Portal for Agile Programming 59

4.2.6 Version Control

A large project always contains a lot of folders and files. After selecting the “Project

Content” button in dashboard, users are able to see a new window in which all authorized

projects are listed. In order to store, read, edit and copy files efficiently, our system uses a

version control system to help users managing project contents. Figure 4.18 lists the brief

information of all projects on progress.

Figure 4.18 Current Projects

Figure 4.19 shows all available versions of the “Stock Trading Competition” project.

Our system also shows the current working status of each version. In addition, the User IP

address is detected by the system. If changes are made to a version, user IP address will

be documented. As the contents are currently viewed from the local server, the current IP

address is 127.0.0.1.

A Knowledge Analytics Portal for Agile Programming 60

Figure 4.19 Versions of Project

Users can review a specific version by clicking its name. Our system will

automatically list all available project contents for users. Compare to Figure 4.20, Figure

4.21 displays the hidden files which support online version control system. The

“.index.php” file retrives all contents of the selected version and is the file used to display

infomation on web browsers. The “.svn” folder contains the command lines for our

version control system.

Figure 4.20 Version Content

A Knowledge Analytics Portal for Agile Programming 61

Figure 4.21 Version Content (Show Hidden Files)

The version control system is illustrated in Workflow 4.6.

Workflow 4.6 Version Control System

A Knowledge Analytics Portal for Agile Programming 62

4.2.7 File Upload & Edit

Our system is aim to support collaboration among developers. A key function of this

portal is a web-based, code file management system. It allows users easily upload files to

the web server and check out from it.

XML is a formal and systematic format for describing structured data. Our system

uses XML files to manage source code files and document files. Thus, a XML format files

management system is needed to our system.

Firstly, a fundamental function - converting code files to XML format is functioned.

This function can automatically detect source code types including C, C++, Java, Python,

Ruby, and convert the source code files to XML-format files.

Figure 4.22 shows the process of file uploading.

Figure 4.22 File Management Upload

A Knowledge Analytics Portal for Agile Programming 63

By clicking the “Select Files” button, a window pops out allowing user to choose and

upload code files to server. The “Validate” button below helps users validating their files.

As file contents are displayed in textbox, users are able to edit the original file directly if

mistakes were found by online validation.

Figure 4.23 File Uploading Animation

After validation, our system helps users converting original source code files to XML

format. A pop-out window will show up after successful conversion, which helps users

uploading the file to database, downloading to local computer or checking on the web

browser.

A Knowledge Analytics Portal for Agile Programming 64

Figure 4.24 Conversion Confirm Window

The core component of our system is the XML file merge function. As source code

files and corresponding document files are both converted in XML format, these files can

be easily edited, merged, displayed and converted back to the original format. Figure 4.25

shows the view of online merge function for source code files and document files.

A Knowledge Analytics Portal for Agile Programming 65

Figure 4.25 File Merge

The file management process is illustrated in Workflow 4.7.

Workflow 4.7 File Management System

A Knowledge Analytics Portal for Agile Programming 66

4.2.8 XML Online Viewer

Our system allows users read and edit source code files dynamically online.

This online, extendible source code viewer supports online collaboration among

programmers. This viewer helps apprentices merging source code files and documents

files together. Figure 4.26 is a sample for our XML viewer.

Figure 4.26 XML Online Viewer

. In the “Database Normalization” project, all three functions are displayed in

extendible blocks. In addition, the function “Normalization_To_1NF_Table” has three sub

functions “Eliminate_redundant_values”, “Define_dependencies” and “Identify

primary_key”.

A Knowledge Analytics Portal for Agile Programming 67

Figure 4.27 Web View – Function View

By using the XML online viewer, users are able to select the “Edit” button to add

comments to XML files online through Textbox.

Figure 4.28 XML File Edit

Unlike source codes, all comments are displayed in another color, in order to make

the whole file more readable.

A Knowledge Analytics Portal for Agile Programming 68

Figure 4.29 XML File with Comments Merged

Our system has two different ways displaying XML files. In addition to the web view,

the other one is the tree view. As mentioned in Chapter 3, our system uses tags’ attributes

to store editors’ information. The tree view can display the attributes’ contents for certain

tags of an XML file. In Figure 4.30, the current version number and all editors’

information are shown in the tree view window.

Figure 4.30 Tree View

The XML files management process is illustrated in Workflow 4.8.

A Knowledge Analytics Portal for Agile Programming 69

Workflow 4.8 XML Files Management System

A Knowledge Analytics Portal for Agile Programming 70

Chapter 5

Conclusions & Future Work

5.1 Conclusions

Agile programming has been widely adopted for software development. It consists of

several software development methodologies based on iterative and incremental

developing. Although the efficiency of agile programming has already been proven, the

lack of documentation and knowledge sharing requires improvements. Unite Portal is

designed not only support communication and collaboration between developers, but also

manage knowledge in an explicit format.

Unite Portal is intended to provide an alternative knowledge management method to the

agile developing teams. Developers are divided into two groups. Senior developers, who

are referred to as the Masters, focus on agile software development mainly and leave all

documentation jobs to junior developers, who are referred to as the Apprentices. With a

specified group of developers assigned to create, manage, and share various types of

documents, the whole development teams can achieve high quality project with proper

documentations. In addition, knowledge management can help make development

progress well-organized.

Unite Portal supports collaboration among development team at various levels. In a

software development lifecycle, junior software developers are mainly responsible for

creating, managing and sharing various types of documents for the agile software

development process. Unite Portal works as a platform for junior programmers working

with and learning from senior programmers through reading code and writing

documentation.

A Knowledge Analytics Portal for Agile Programming 71

5.2 Future Work

It would be simple and necessary to add multiple language user interface support

(such as English/French) to the current Unite Portal system. We will use XML for the

implementation of multiple language user interface support. In future, we plan to

conduct real experiments to study the effectiveness of Unite Portal on knowledge

management for agile software development. Moreover, we will conduct a detailed

cost-benefit analysis on the proposed Master-Apprentice model for knowledge

management of Agile Programming. Firstly, we need to examine the efficiency of our

knowledge analytics portal for experienced programmers who are familiar with Agile

Programming. Within a software development organization, we can randomly divide

programmers to two groups. By letting one group use our system and the other group

work in the original way, we can have our control groups for experienced programmers.

Secondly, as Unite Portal may also help undergraduate students to learn programming

skills, the value of such a knowledge analytics portal will be investigated in the university

settings. This can be another control group for testing the efficiency of our system for

unexperienced user.

A Knowledge Analytics Portal for Agile Programming 72

References

[1] Abiteboul, S., Buneman, P., & Suciu, D. (2000). Data on the Web: from relations to

semistructured data and XML. Morgan Kaufmann.

[2] Ahmad, M. O., Markkula, J., & Oivo, M. (2013, September). Kanban in software

development: A systematic literature review. In 2013 39th Euromicro Conference on

Software Engineering and Advanced Applications(pp. 9-16). IEEE.

[3] Alavi, M., & Leidner, D. E. (1999). Knowledge management systems: issues,

challenges, and benefits. Communications of the AIS, 1(2es), 1.

[4] Alavi, M., & Leidner, D. E. (2005). Review: knowledge management and knowledge

management systems: conceptual foundations and research issues. Knowledge

Management: Critical Perspectives on Business and Management, 163-202.

[5] Ambler, S. W. (2008). Agile adoption rate survey results. available on-line at

http://www.ambysoft.com/surveys/agileFebruary2008.html.

[6] Ambler, S. W. (2011). Agile/lean documentation: Strategies for agile software

development.

[7] Anderson, D. J. (2010). Kanban: successful evolutionary change for your technology

business. Blue Hole Press.

[8] Beck, K. (2000). Extreme programming explained: embrace change. addison-wesley

professional.

[9] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,

M., ... & Kern, J. (2001). Manifesto for agile software development.

[10] Bossi, P. (2003, January). eXtreme Programming applied: a case in the private

banking domain. In Proceedings of OOP.

[11] Cockburn, A., & Williams, L. (2000). The costs and benefits of pair programming.

Extreme programming examined, 223-247.

[12] Collins, C. J., & Clark, K. D. (2003). Strategic human resource practices, top

management team social networks, and firm performance: The role of human

resource practices in creating organizational competitive advantage. Academy of

management Journal, 46(6), 740-751.

[13] Collins-Sussman, B., Fitzpatrick, B., & Pilato, M. (2004). Version control with

A Knowledge Analytics Portal for Agile Programming 73

subversion. " O'Reilly Media, Inc.".

[14] DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for

the dependent variable. Information systems research, 3(1), 60-95.

[15] Denny, N., Crk, I., Nadella, R. S., & Gupta, A. (2009). Agile software processes for

the 24-hour knowledge factory environment. Available at SSRN 1017184.

[16] Desouza, K. C., Awazu, Y., & Baloh, P. (2006). Managing knowledge in global

software development efforts: Issues and practices. IEEE software, 23(5), 30.

[17] Dybå, T., Arisholm, E., Sjøberg, D. I., Hannay, J. E., & Shull, F. (2007). Are two

heads better than one? On the effectiveness of pair programming. IEEE

software, 24(6), 12-15.

[18] Fliaster, A., & Schloderer, F. (2010). Dyadic ties among employees: Empirical

analysis of creative performance and efficiency. Human Relations, 63(10),

1513-1540.

[19] Friedman-Hill, E. J. (2001, January). Software verification and functional testing

with XML documentation. In System Sciences, 2001. Proceedings of the 34th Annual

Hawaii International Conference on (pp. 8-pp). IEEE.

[20] Fruhling, A., McDonald, P., & Dunbar, C. (2008, January). A case study: introducing

extreme programming in a US government system development project. In Hawaii

International Conference on System Sciences, Proceedings of the 41st Annual (pp.

464-464). IEEE.

[21] Ge, X., Paige, R. F., & McDermid, J. A. (2010, August). An iterative approach for

development of safety-critical software and safety arguments. In Agile Conference

(AGILE), 2010 (pp. 35-43). IEEE.

[22] He, W., & Wei, K. K. (2009). What drives continued knowledge sharing? An

investigation of knowledge-contribution and-seeking beliefs. Decision Support

Systems, 46(4), 826-838.

[23] Hurtado, J. (2013). Open Kanban-An Open Source. Ultra Light, Agile & Lean

Method.[Online] Available from: http://agilelion. com/[Accessed: 7 June 2015].

[24] Jackson, S. E., DeNisi, A., & Hitt, M. A. (Eds.). (2003). Managing knowledge for

sustained competitive advantage: Designing strategies for effective human resource

A Knowledge Analytics Portal for Agile Programming 74

management (Vol. 21). John Wiley & Sons.

[25] Jensen, R. (2003). A pair programming experience. CrossTalk, 16(3), 22-24.

[26] Kankanhalli, A., & Tan, B. C. (2004, January). A review of metrics for knowledge

management systems and knowledge management initiatives. In System Sciences,

2004. Proceedings of the 37th Annual Hawaii International Conference on (pp. 8-pp).

IEEE.

[27] Kniberg, Henrik, and Mattias Skarin. Kanban and Scrum-making the most of both.

Lulu. com, 2010.

[28] Ladas, C. (2008). Scrumban. Lean Software Engineering-Essays on the Continuous

Delivery of High Quality Information Systems.

[29] Layton, M. C. (2015). Scrum for Dummies. John Wiley & Sons.

[30] Lepak, D., & Snell, S. A. (2007). Employment Subsystems and the 'HR

Architecture'. Oxford Handbook of Human Resource Management, The, 210.

[31] Levy, M., & Hazzan, O. (2009, May). Knowledge management in practice: The case

of agile software development. In Cooperative and Human Aspects on Software

Engineering, 2009. CHASE'09. ICSE Workshop on (pp. 60-65). IEEE.

[32] Liker, J. K. (2005). The toyota way. Esensi.

[33] Lui, K. M., & Chan, K. C. (2008). Software process fusion by combining pair and

solo programming. IET software, 2(4), 379-390.

[34] Mahnic, V. (2014). Improving Software Development through Combination of Scrum

and Kanban. Recent Advances in Computer Engineering, Communications and

Information Technology, Espanha.

[35] Mannaro, K. (2008). Adopting agile methodologies in distributed software

development.

[36] Monden, Y. (1983). Toyota production system: practical approach to production

management. Engineering & Management Press.

[37] Muller, M. M., & Tichy, W. F. (2001, May). Case study: extreme programming in a

university environment. In Software Engineering, 2001. ICSE 2001. Proceedings of

the 23rd International Conference on (pp. 537-544). IEEE.

[38] Nonaka, I., & Takeuchi, H. (1995). The knowledge creation company: how Japanese

A Knowledge Analytics Portal for Agile Programming 75

companies create the dynamics of innovation. Oxford University Press. New York,

USA, 304.

[39] Otte, S. (2009). Version Control Systems. Computer Systems and Telematics.

[40] Ovais, M., Markkula, J., Oivo, M., Kuvaja, P., Ahmad, J., Markkula, M., & Oivo, P.

(2014, October). Usage of Kanban in Software Companies An empirical study on

motivation, benefits and challenges. In 9th International Conference on Software

Engineering Advances.

[41] Palmieri, D. W. (2002). Knowledge management through pair programming.

[42] Reddy, A. (2015). The Scrumban [r] evolution: Getting the Most Out of Agile, Scrum,

and Lean Kanban. Addison-Wesley Professional.

[43] Salis, S., & Williams, A. M. (2010). Knowledge Sharing through Face-to-Face

Communication and Labour Productivity: Evidence from British Workplaces. British

Journal of Industrial Relations, 48(2), 436-459.

[44] Salminen, A., & Tompa, F. (2012). Communicating with XML. Springer Science &

Business Media.

[45] Schneider, K. (2009). Experience and knowledge management in software

engineering (Vol. 235). Berlin: Springer.

[46] Schneider, K., Stapel, K., & Knauss, E. (2008, September). Beyond documents:

visualizing informal communication. In Requirements Engineering Visualization,

2008. REV'08. (pp. 31-40). IEEE.

[47] Schwaber, K. (1997). Scrum development process. In Business Object Design and

Implementation (pp. 117-134). Springer London.

[48] Schwaber, K., Sutherland, J., & Beedle, M. (2013). The definitive guide to scrum: the

rules of the game. Recuperado de: http://www. scrumguides.

org/docs/scrumguide/v1/scrum-guide-us. pdf.

[49] Scotland, K. (2010). Aspects of kanban. Method and Tools-Summer, 2010.

[50] Silva, L., Santana, C., Rocha, F., Paschoalino, M., Falconieri, G., Ribeiro, L., ... &

Gusmão, C. (2008, June). Applying XP to an Agile–Inexperienced Software

Development Team. In International Conference on Agile Processes and Extreme

Programming in Software Engineering (pp. 114-126). Springer Berlin Heidelberg.

A Knowledge Analytics Portal for Agile Programming 76

[51] Stapel, K., & Schneider, K. (2012). Managing knowledge on communication and

information flow in global software projects. Expert Systems.

[52] Stapleton, J. (1997). DSDM, dynamic systems development method: the method in

practice. Cambridge University Press.

[53] Turner, R., Ingold, D., Lane, J. A., Madachy, R., & Anderson, D. (2012).

Effectiveness of kanban approaches in systems engineering within rapid response

environments. Procedia Computer Science, 8, 309-314.

[54] Wadler, P. (1999, December). A formal semantics of patterns in XSLT. In Markup

technologies (Vol. 99).

[55] Willem, A., & Scarbrough, H. (2006). Social capital and political bias in knowledge

sharing: An exploratory study. Human relations, 59(10), 1343-1370.

[56] Williams, L., & Kessler, R. (2002). Pair programming illuminated. Addison-Wesley

Longman Publishing Co., Inc..

[57] Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening

the case for pair programming. IEEE software, 17(4), 19.

[58] Wright, K. B., & Webb, L. M. (Eds.). (2011). Computer-mediated communication in

personal relationships. Peter Lang.

[59] Yen, D. C., Huang, S. M., & Ku, C. Y. (2002). The impact and implementation of

XML on business-to-business commerce. Computer Standards & Interfaces, 24(4),

347-362.

[60] Zholudev, V., & Kohlhase, M. (2009, July). TNTBase: a versioned storage for XML.

In Proceedings of Balisage: The Markup Conference (Vol. 3, p. 64).

