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Estimating Pore Fluid Saturation in an Oil Sands Reservoir using Ensemble Tree Machine 

Learning Algorithms  

by Gagan Kapoor 

Abstract 

This thesis aims to estimate pore fluid saturation values in an oil sands reservoir using 

ensemble tree based machine learning models. Oil sands reservoirs provide an interesting 

opportunity to explore a relatively new technique in petrophysical analysis. The specific 

reservoir used in this study has high heterogeneity with discrete muddy layers that are difficult 

and time consuming to incorporate into a conventional petrophysical model. In addition, due to 

strong well control and sufficient well log data, the reservoir is a perfect candidate to test out a 

data-driven model by using techniques in Machine Learning – a subfield of Artificial 

Intelligence. Specifically, Random Forests and Extreme Gradient Boosted Trees are combined, 

which are two different ways to implement a decision-tree based model structure. The two 

algorithms have rapidly gained popularity in the machine learning community due to their 

robustness when dealing with outliers and/or bad data combined with a comparative immunity 

against over-fitting. The final aim of this thesis is to obtain comparable or superior results to the 

Modified Simandoux Equation method and analyze the shortcomings and advantages of the two 

methods in a real petroleum field. 
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Chapter1: Introduction 

This study focusses on the Lower Cretaceous Mannville Group, which holds the majority 

of heavy oil deposits in Alberta (Hayes et al., 1994). The oil sands of the Western Canada 

Sedimentary Basin (Fig. 1) make up the largest deposits of heavy crude bitumen in the world, 

and show a high degree of heterogeneity in terms of reservoir properties such as fluid saturation 

and distribution, geometry, porosity, permeability, mineralogy and other properties (Fustic et al., 

2006). The variance in reservoir properties arises from the complex depositional history 

combined with the in-situ post-depositional diagenetic processes that these reservoirs have 

experienced (Fustic et al., 2006). The various autocyclical and allocyclical controls that have 

acted upon the complex assemblage of non-marine, marginal marine and shallow marine strata in 

the Mannville Group has encouraged extensive research to decipher the stratigraphic architecture 

of these deposits (McCrimmon & Arnott, 2002). Understanding and better estimating reservoir 

properties plays an integral role in every phase of exploration, development and production of an 

oil sands project and accurate predictions are of great economic value.  

Previous studies have established that for reservoir analysis and to combat reservoir 

heterogeneities, multi-log methods are more useful compared to methods that use single well 

logs (Helle et al., 2001; Wendt et al., 1986). These methods include multiple linear regression 

models where the correlation coefficient between predicted and actual values increases with an 

increasing number of well logs as input  (Wendt et al., 1986). The accepted workflow to 

determine agreeable oil : water fluid saturation (the fraction of pore volume occupied by water or 

oil/gas) values within the industry is to align the conventional petrophysical models with the 
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specific reserovir by using derived petrophysical parameters from laboratory testing on drill core 

samples. In cases of more complex reservoirs involving thin interbedded layers of mudstone and 

detrital clay, further well-specific adjustments need to be made to models in order to arrive at 

accurate saturation estimates at reservoir scale. These include picking unique well-specific 

‘Gamma-Clean’ and ‘Gamma-Shale’ values (often multiple values for a single well)  in order to 

align model outputs with laboratory values obtained from cores. This thesis aims to construct an 

alternate and a more streamlined model to predict fluid saturation by using Machine Learning 

techniques. Machine Learning algorithms enable the use of the maximum amount of the data 

available, thus honouring  Wendt et al. (2001)’s conclusions that multi-log methods are more 

useful than methods that use a single well log. Additionally, building more flexible models that 

are constructed from scratch using the intrinsic nature of the specific reservoir. Such an approach 

(once calibrated) will take into account the complexity and the heterogenity of specific reservoir 

without the tedious manual adjustments and without the need of using petrophysical parameters 

derived from lab results.  

There is some noteable pre-existing research that has been aimed at using Machine Learning for 

predicting reservoir properties. However, the research has been widely concentrated on 

developing Artificial Neural Networks (ANN). For instance Helle et al. (2001) used a committee 

Neural Network and Amiri et al. (2016) used a neural network optimized by imperialist 

competitive algorithm. Others include, committee neural network with weight optimization using 

genetic algorithms (Chen and Lin, 2006), observational learning algorithm on neural networks 

(Wong et al., 2000) and feed forward back propagation (Mohaghegh et al., 2002). Thus, artificial 

neural networks have gained wide-spread popularity amongst  geoscientists practicing machine 

learning. This can be attributed to the relatively early birth of ANNs as an algorithm combined 
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with the numerous optimization techniques avaialable,  and also to the extensive implementation 

of it in popular geoscientific software.  

Tree based ensemble learning algorithms, although relatively new, have witnessed an 

exponential growth in terms of popularity and success rate, and are starting to be widely used by 

data scientists working in diverse fields. For instance, use of random forests in spectral data 

(Svetnik et al., 2003; Pal, 2005), time series analysis (Shen et al., 2007) and image segmentation 

(Yao et al., 2011). However, their usage by geoscientists remains scarce to nil. This thesis uses 

Random Forest (Breiman, 2001) and Extreme Gradient Boosted Trees (Chen, 2014), both of 

which are ensemble techniques based on the decision tree algorithm. One advantage of using a 

tree based approach over neural networks is the idea of a ‘black-box model’. Neural Networks 

due to their inherent complexity have been regarded as black boxes where the reasons for their 

function are difficult to understand, whereas Random Forest and Boosted Trees give the potential 

to extract the underlying patterns between input features based on the principles of ‘information 

gain’ (discussed later). Further, the aim of this thesis is to construct a simpler model with a less 

tedious workflow compared to the traditional petrophsyical model. The goal of a simpler model 

will not be met with a Neural Network technique because of the complexity when 

tuning/optimizing it. In the process of building a Machine Learning model, ‘feature engineering’ 

has been used to aid the model with derivation of more accurate output values. Results were 

considerbaly better when feature engineering was implemented compared to when it was not 

(See Results chapter).  

In summary, the present work aims to build a pore fluid saturation model using Machine 

Learning, trained by using well logs as input, to predict fluid saturation values equivalent to 
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values dervied using the ‘Dean Stark Laboratory Analysis’ from core as output. The algorithms 

to be used are a modified Random Forest (Breiman, 2001) and Extreme Gradient Boosted Trees 

(Chen, 2014). The results from these two algorithms will be compared with the values from the 

Modified Simandoux Equation (Bardon and Peid, 1969) which is currently one of the standard 

petrophysical models within the industry for shaly sandstone sequences. 

The present work will attempt to answer the following questions using the Random Forest and 

Extreme Gradient Boosted Trees algorithms: 

1. Can a Machine Learning pore fluid saturation model, trained by using well logs as input, 

accurately predict 'Dean Stark Laboratory Analysis' fluid saturation values from core? 

2.  Do the results from the Random Forests and Extreme Gradient Boosted Trees algorithms 

outperform  the results from the standard Modified Simandoux Equation petrophysical model? 

An important constraint on this project and its presentation is the matter of confidentiality of data 

and the ongoing assistance that has been provided by an unnamed industry partner.  For this 

reason the exact location and dataset employed for this project can not be disclosed.  Several 

details that would be routinely provided in a geological study of this type (e.g., a detailed 

location map showing wells) also can not be shown. However, in general the study is located in 

the Cold Lake area of Alberta, and published maps from other sources are provided as a proxy of 

the scale and type of data that was typically used for the project here. 
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Chapter 2: Background 

 

The following chapter comprises the necessary information required to understand the objectives 

and the results of this thesis. The general geological setting of the study area is described, 

followed by an explanation of the conventional petrophysical models used to estimate fluid 

saturation. Lastly, the necessary techniques in Machine Learning are described with an aim to 

describe the workings of the underlying algorithms in the proposed models. As mentioned in the 

Introduction, the exact formation studied can not be specified for reasons of confidentiality, but 

the regional geology and the general character of the Mannville Group in the study area (Cold 

Lake) can be (see below). 

2.1: Geological Setting 

 

2.1.1: The Western Canada Sedimentary Basin  

 

The study is focussed in the Western Canada Sedimentary Basin (WCSB; Fig. 1), which consists 

of Mesozoic sediments unconformably overlying Paleozoic carbonate-dominated successions 

and Precambrian granitic and metamorphic rocks (Cant and Stockmal, 1989). The overall dip 

direction of the basin is towards the southwest, expanding to the south and connecting with the 

cratonic Williston Basin to the southeast (Cant and Stockmal, 1989). 

Due to tectonic compression at the western margins of the Western Canada Sedimentary Basin in 

the Jurassic and Early Cretaceous, older rocks were thrusted onto the continental margin (Hayes 

et al., 1994). The thrust loading on the craton edge led to basin subsidence, which provided 

accommodation space for the deposition of sediments (Hayes et al., 1994). Sediment supply 

during the Jurassic to Early Cretaceous was a mix of material from the erosion of the rising 



 

 

6 

Rocky Mountains in the west and the continued erosion of the craton of North America in the 

east (Hayes et al., 1994). Basin deposition eventually ceased later in the Cenozoic towards the 

end of the Laramide Orogeny and became dominated by erosion in the post-Eocene to the 

present day. 

Variation in the deposition of the Early Cretaceous Mannville Group (see below) across the basin 

is due to multiple tectonic/structural elements (Hayes et al., 1994). These are the Rocky 

Mountain foredeep in the west, the Liard Basin and the Peace River Arch in the northwest, and 

the Sweetgrass Arch to the southeast, separating the foredeep from the Williston Basin further to 

the southeast (Hayes et al. 1994). Each of the structural arches separated thicker basin 

depocentres within this part of the WCSB during the Early Cretaceous. The thickest Mannville 

succession is recorded at the convergence of the southern flank of the Peace River Arch and the 

foredeep in addition to the relatively unexplored fault-bounded Liard Basin on the north flank of 

the Peace River Arch (Hayes et al., 1994).  

The Punnichy Arch, located at the northeastern edge of the Williston Basin and joining with the 

Sweetgrass Arch further to the west, formed due to the dissolution of the Devonian Prairie 

Evaporite on either side of its flanks (Hayes et al., 1994). This dissolution provided additional 

accommodation space north of the Punnichy Arch, resulting in extensive clastic deposition in the 

Early Cretaceous that was sourced from the Precambrian Shield (Jackson, 1984; Hayes et al., 

1994). The western edge of the Williston Basin, the Sweetgrass Arch, remained structurally high 

until late Mannville deposition (Hayes et al., 1994). Thus, the Mannville strata over the 

Sweetgrass Arch, including in the Cold Lake area, remained relatively thin compared to the 

adjacent Punnichy Arch or the main WCSB depocentres. 
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2.1.2: The Mannville Group 

 

The formation of interest consists of poorly consolidated sands occurring in stacked incised 

valley fill complexes, in a brackish to marine, tide-dominated deltaic setting, and is a part of the 

Mannville Group (Fig.2). Figure 3 shows an analogous formation with similar stacked incised 

valley fill sequences.  

The Mannville Group in the Cold Lake area consists of the McMurray, the Clearwater and the 

Grand Rapids formations in stratigraphic order, with the McMurray Formation in the lower 

Mannville consisting mainly of quartz arenite compared to the feldspathic litharenite of the 

Clearwater Formation (Hayes et al., 1994). This change in overall sand composition reflects 

variations in depositional settings (McCrimmon and Arnott, 2002). Differences in provenance, as 

inferred from detrital zircon dating (Benyon et al., 2014; Blum and Pecha, 2014), is thought to be 

the main driver of the variations in mineralogy of the Mannville sands.  

These divisions within the Mannville are the result of previous work, starting with Naus (1945) 

who coined the term ‘Mannville Formation’, followed by Badgley’s (1952) proposal to group the 

sediments above the Paleozoic unconformity and overlain by the Colorado Group shales as the 

‘Mannville Group’ (McCrimmon, 1996). Glaister (1959), Loranger (1951), Rudkin (1964) and 

Jackson (1984) contributed more detailed work to subdivide the Mannville into upper, middle 

and lower based on different depositional settings (McCrimmon, 1996). This was followed by 

the combined efforts of Vigrass (1965) and Clack (1967) that gave rise to the formal labels that 

are used today both within the industry and academia. For example, in the oil sands area, the 

McMurray Formation was initially labelled as unit D, the Clearwater Formation was previously 
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called unit C and the Grand Rapids Formation was informally referred to as units A and B 

(McCrimmon, 1996; Fig. 2). 

The McMurray Formation is dominated by fluvial-point-bar and channel-fill deposits 

consisting mainly of very fine- to fine-grained, mature quartz sandstone unconformably 

overlying the Devonian carbonates (Jardine, 1974; McCrimmon, 1996).  These units are overlain 

by inter-bedded sandstones and shales deposited in a tidal flat setting when the Boreal sea 

transgressed from the north (Jardine, 1974; Harrison et al., 1981; McCrimmon, 1996). This was 

followed by sea-level fall that marked the end of the McMurray deposition. The McMurray 

Formation is unconformably overlain by the basal Wabiskaw Member (0-10 metres thick) which 

is dominated by glauconitic sandstone with a small fraction of shale interbeds. The Wabiskaw is 

in-turn overlain by the deltaic deposits of the Clearwater Formation under a transgressive regime 

(McCrimmon, 1996). 

 

Figure 1: The Western Canada Sedimentary Basin. A SW-NE cross-section depicting the major stratigraphic units. 

Modified from Mossop & Shetsen (1994). Arrows represent generalized direction of petroleum migration from the 

petroleum kitchen in the west towards the eventual emplacement in the Cold Lake Oil Sands area. 
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The Clearwater Formation is dominated by fine-to medium-grained, moderate-to poorly 

consolidated, feldspathic litharenite and ranges from 40 to 104 metres in thickness (McCrimmon, 

1996).  The Clearwater sands are capped by a relatively thin shale unit in the Cold Lake area 

where the Clearwater Formation is the main bitumen reservoir (McCrimmon, 1996).  

The Grand Rapids Formation varies from 75 to 134 metres in thickness and unconformably 

overlies the Clearwater Formation, in turn being overlain by the Colorado Group shales 

(McCrimmon, 1996). The Grand Rapids Formation consists of well-to poorly-consolidated, fine- 

to medium-grained, feldspathic and lithic sandstone interbedded with shale (McCrimmon, 1996).  

The Lower Grand Rapids as described by Milken (1974) consists of sediments deposited in a 

deltaic setting prograding towards the north into the Boreal Sea (McCrimmon, 1996). It is 

primarily comprised of thick sandstone and siltstone strata with shale and minor coal interbeds. 

The Upper Grand Rapids Member, again described by Minken (1974), was said to be deposited 

in a beach and shallow-marine environment under a transgressive regime. However, more recent 

sedimentological, ichnological and palynological studies have inferred a restricted to brackish 

environment (Benyon and Pemberton, 1992). 

The top of the Grand Rapids Formation is marked by an erosion surface due to the fall of relative 

sea level (McCrimmon, 1996). This was later followed by a period of transgression and the 

formation of the Western Continental Seaway which led to the deposition of the Joli Fou Shales 

(Jackson, 1984). 
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Figure 2: Lower Cretaceous Stratigraphy in the Cold Lake Area, northeastern Alberta (McCrimmon and Arnott, 2002). 
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Figure 3: Schematic cross section of an analogous geological formation – Clearwater Formation in the Mannville Group. 

White: Proximal estuarine fill; Diagonal hachured: Distal Estuarine; Heavily stippled: Open Marine (Hein et al., 2007; 

Cheadle et al., 1995). 

 

2.1.3: The Petroleum System 

 

The petroleum system of the Western Canada Sedimentary Basin is complex and consists of 

multiple discrete systems linked to a number of different source rocks. Mature source rocks are 

primarily found in the western margins of the basin, where burial depth has led to optimal 

pressure and temperature conditions for maturation/generation. The Western Canada 

Sedimentary Basin is said to be a supercharged, laterally drained, low impedance basin (Creaney 

et al., 1994). 

The source rocks of the heavy oil within our study area have been a matter of debate. The sheer 

volume of the reserve in place makes it impossible to be linked with one source rock. 
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Additionally, the high amount of biodegradation has made geochemical correlation difficult. 

However, the two prime candidates for source rocks are the Upper Devonian-Lower 

Mississippian Exshaw Formation and the Lower Jurassic Nordegg Member of the Fernie Group 

(Creaney and Allan, 1992). The Exshaw Formation is a black, laminated, slightly phosphatic 

organic rich mudshale (Meijer Dries and Johnston, 1996). It is classified as a type II source rock 

with a total organic content up to 14 weight percent (Meijer Dries and Johnston, 1996). The 

Exshaw is interpreted to be deposited in an offshore, outer continental shelf anoxic setting 

(Meijer Dries and Johnston, 1996). The Nordegg is a fine grained, organic rich, fossil rich, 

phosphatic calcareous mudstone deposited in deep anoxic restricted bottom water conditions 

(Riedieger et al., 1990). It is classified as type I/II source rock with total organic carbon content 

near 28 weight percent (Riedieger et al., 1990). 

The principle phase of oil generation occurred during the Late-Cretaceous to Early Tertiary, 

resulting from the Cordilleran tectonism or the Laramide orogeny (Creaney et al., 1994). The 

thrusting and faulting led to basin subsidence and clastic loading which provided optimal 

pressure and temperature conditions for oil generation. An up-dip directed dynamic pressure was 

created which led to the migration of these hydrocarbons towards the east (Fig.4; Creaney et al., 

1994).  
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Figure 4: Petroleum migration direction in the WCSB with the Nordegg and Exshaw subcrop.  Modified from Mossop & 

Shetsen (1994). 

The majority of the oil was emplaced into shallow lower Cretaceous reservoirs like the 

McMurray Formation in the Athabasca region and the Clearwater Formation in the Cold Lake 

area. The oil was trapped with the help of a combination of structural and stratigraphic traps as 

described by Fustic (2013). Additionally, the bitumen also plays a part in acting as a seal itself 

due to its high viscosity that restricts flow at shallow subsurface temperatures.  

2.2: Oil Sands Development in the Western Canada Sedimentary Basin 

 

The oil sands are considered to be an amalgamation of sand, water clay and bitumen – a type of 

oil that is similar to the viscosity of molasses at room temperature. The occurrence of this natural 
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resource is primarily in the subsurface which comprises 97% of the total oil sands surface area, 

the remaining 3% is accounted by mining operations where the oil sands occur as outcrops 

(CAPP, 2017). 

The Athabasca oil sands are described by the Canadian Association of Petroleum Producers 

(2017) as the world’s largest, most developed and the most technologically advanced operation 

of its kind. 

In the last 50 years, Canadian Oil Sands have witnessed exponential growth which is credited to 

a parallel increase in technological development and economic factors. Quantifiably, daily 

production has increased from 30,000 barrels of oil per day in the 1970s to over 1.7 million 

barrels a day (Paskey et al., 2013). 

Without a doubt, the oil sands have become an integral part of Canada’s economy by 

spearheading its energy sector while accounting for more than half of the total crude oil 

produced in the country (Paskey et al., 2013). 

In-situ production is mainly done through a process called Steam Assisted Gravity Drainage 

(SAGD) (Fig. 5). In this technique, a pair of horizontal wells is drilled into the reservoir of 

interest with a vertical spacing of about 4 to 6 metres (Energy Alberta, 2017). The pair consists 

of an injector well through which steam is injected into the formation in order to heat up the 

bitumen in the pore-space and decrease its viscosity making it flow into the producer well placed 

below the injector (Energy Alberta, 2017). SAGD has become the most widely used recovery 

method in Alberta and has a considerably smaller environmental footprint compared to surficial 

mining (Energy Alberta, 2017). 
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Figure 5: Steam Assisted Gravity Drainage (SAGD) (Energy Alberta, 2017). 

 

In-situ oil sands projects have a relatively high level of well control, which suits the construction 

of a data driven model. Fig. 6 shows an analogous oil sands project in a different area with a 

similar well control to the area of the present study, and showing the typical scale of fluvial and 

estuarine channel systems. 
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Figure 6: Analogous Oil Sands Project in terms of well control. Based on a 3D seismic time slice from the Long Lake 

Lease area, about 8ms (~8m) below the top of the McMurray Formation. Modified from Hubbard et al. (2011). 

 

2.3: Modified Simandoux Equation for Water Saturation Estimation from Well 

Logs 

 

Archie (1942) coined the term ‘formation factor’ (F), which was found to be a constant ratio of 

the resistivity of brine-saturated rock (Ro) to the resistivity of the brine (Rw) for a given rock 

(Archie, 1942). And it was further shown by Archie (1942) that: 

   
 

  
 



 

 

17 

Where, ϕ = Porosity, and m depends on the consolidation of the rock and is thus called the 

cementation factor. 

Archie also proposed that the resistivity of a rock partially saturated with brine (Rt) over the 

resistivity of the same rock fully saturated with brine (  ) could be equated to the water 

saturation (the fraction of water versus hydrocarbon in the pore space - Sw) with the following 

relationship: 

  
    

  

  
 

Where, n is called the saturation exponent. From the above equations, one can find the value for 

water saturation, which is called the Archie Equation: 

   √
    

     

 

 

The ‘a’, which is called the ‘tortuosity index’ has been developed from the works of Winsauer et 

al. (1952). 

Several water saturation models exist and are used in the industry, the selection of the 

appropriate model depending on the nature of the reservoir. The different models are all derived 

from the basic Archie model, which works well for a completely ‘clean’ sand reservoir with little 

or no clay present (Archie, 1942). This is because Archie’s equation assumes that the electrical 

conductivity due to the rock itself is negligible, an assumption violated by the presence of clays 

due to their cation exchange capacity. Thus, when clay is present, the Archie Equation over-

estimates water saturation values. One of the methods typically used for shaly-sand systems is 
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the Modified Simandoux Equation to calculate water saturation from well logs, proposed by 

Bardon and Peid (1969): 

 

  
  

  
 

    
  

     

   
 

Or, 

   {(
    

  
)     (

    

    
)}

 
 ⁄

     (
    

    
) 

Where, 

Rsh = Shale Resistivity, Vsh = Volumetric Fraction of Shale. The Modified Simandoux Equation 

is a member of a group of water saturation models that assume shale as a homogeneous 

conductive material, and formulises equations between the resistivity of shale and the volumetric 

fraction of shale present.  

As this is the standard technique, water saturation values for the wells used in this study were 

calculated using the above equation as a comparison, in order to assess the relative performance 

of the machine-learning model.  

2.4: Dean Stark Analysis 

 

To determine pore fluid saturation from core samples, the Dean-Stark extraction method (Dean 

& Stark, 1920) was used in the lab, where fluid saturations are calculated using distillation 

extraction. The method is usually adopted for unconsolidated sediments such as oil sands. The 

cores are kept frozen during transport and cut in two halves. One is kept for descriptions and 

photography while the other half is sent for analyses. Water is driven off by applying heat 
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through a boiling solvent (e.g. Toluene), condensed and then collected. The volume of water is 

thus measured, followed by sending the condensed solvent to flow back over the sample to 

extract the oil. Once all the fluid is driven off, usually after a time period of approximately two 

days, the difference in the initial weight of the rock/sample and the final weight of the sample 

plus the weight of the water is calculated to find out the volume of oil, with adjustments for oil 

and water density as part of the calculation. In this study, values of water saturation and bitumen 

weight determined by Dean-Stark analysis are assumed to be the ‘accurate’ values for the cored 

intervals. 

2.5: Machine Learning and Workflow 

 

Data analysis has witnessed a paradigm shift in the last couple of decades with the advent of 

advanced processing systems with superior storage capabilities. Statistical algorithms which 

have existed for almost a century have now been combined with machines to iteratively learn 

from the vast amounts of data being produced today.  

This coupling of robust statistics with equally robust processing machines/computers has given 

rise to the idea of Machine Learning. Machine Learning, which is a sub-field of artificial 

intelligence, not only paves the way to develop intelligent machines and thus promoting 

automation, but also gives us the ability to explore hidden patterns in data.  

The area where machines and computers hold a clear advantage over their human counterparts is 

the realm of ‘multi-dimensionality’. Human beings are typically restricted to or are comfortable 

working in three dimensions or less. Add a fourth dimension or more, and things start getting 

complicated. Thus there exists a large number of real world problems, which are addressed 

through old theoretical models that are restricted to a limited number of dimensions.  
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By contrast, the real world is messy and multidimensional, thus constraining any natural model 

in theory to one or two dimensions often does not do it justice.  

Machine learning has come forward as a tool to break down these dimensionality barriers, and 

various fields of science such as Biology, Astronomy, and Medical Sciences to name a few, are 

reaping the benefits of adopting Machine Learning techniques (Marsland, 2009). Marsland 

(2009) gives a good illustration in Fig. 7 of how not just the sheer scale and size of contemporary 

data but also how it is stored (i.e. numerical rows and columns) leaves the human mind at a 

disadvantage, the numerical data can be represented efficiently on a 2D Cartesian plane as long 

as the dimensions are less than or equal to three, however, interpretations become exponentially 

hard as the dimensions increase beyond the scope of simple visual representation. 

 

Figure 7: Numerical data points in rows and columns on the left, plotted as a graph on the right. The human mind finds it 

much easier to visually analyze data (Marsland, 2009). 

 

The approach to constructing a machine learning algorithm is essentially derived from the 

learning techniques of animals i.e. learning from experience. The three pillars of successful 

learning are – remembering, adapting and generalising. Shwartz and David (2014) draw 
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wonderful parallels from animal behaviour experiments to explain how these key segments have 

been demonstrated to be integral to learning, and how they form the basis of developing 

‘intelligent’ machines.  

From here on, the focus will be on the general workflow of producing a machine learning model 

and the different components associated with it. Assuming the data has been collected and 

digitized, from then on, the broad steps of the workflow are pointed out in Fig. 8. 

 

Figure 8: Overview of the steps of building a Machine Learning Model 

 

Data Setup: Data setup is important for two broad reasons: understandably, machine learning 

models are data-driven, and the success of one’s model lies on the strength of one’s data, 

strength being proportional to how representative the data is to the end goal and also how clean 

and consistent the data is. Another important reason for data setup is from the programmer’s 
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point of view. It is extremely essential to understand one’s own data. The more extensively one 

studies the data the more one learns about it and discovers things that were previously unseen, 

including features that could make or break a predictive model. The specific steps that were 

followed in the data setup process for this study are discussed in Chapter 3 of this thesis.  

Train, Validate and Test:  

According to Ripley (1996), when model selection has to be simultaneously computed along 

with true error estimates, the dataset needs to be split into three disjoint sets, namely: 

1. Training Set: This is a subset of the dataset that contains your predictor variables (e.g. the 

different geophysical well logs in our study) along with the output variable i.e. the value 

to be predicted (pore fluid saturation). The training set forms the foundation of the 

‘learning’, and is a set of examples that help the algorithm to formulate a function that 

will lead it to predict the outcome variable using the inputs provided. To prevent training 

the algorithm on erroneous data such as parts of the logs with hole condition problems or 

cased versus uncased parts of the hole, data cleaning is a vital step and should be done 

before the data is split into a training set. 

2. Validation Set: Validation set is essentially a subset of the training set, which is used to 

tune the parameters of an algorithm. These parameters differ depending on the algorithm 

being used, for instance in a multi-layered perceptron, one might use a validation set to 

find the optimal number of hidden layers (Rumelhart et al., 1985). In the case of an 

ensemble tree algorithm (Section 2.5.2), the number of trees to be used is optimized using 

a validation set. The random forest algorithm employed in this thesis project inherently 

creates ‘out-of-bag’ validation sets and thus, the manual creation of validation sets was 
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deemed not necessary because it is automatically addressed in the R package (Breiman, 

2001); see Chapter 3: Methods. 

3. Testing Set: Another subset of the dataset, with the same input and output variables as the 

training subset, which is used to assess the performance of the now tuned model. The 

final performance metrics reported in this thesis will be based on the test set/sets (cross-

validation). 

To further describe the process of creating a machine learning model, assume a dataset 

containing: 

Input variables X = x1, x2,…. xn  

Response Variables Y = y1,y2,…yn 

The definition of a model refers to the mathematical workflow of making a prediction xi → yi 

(Chen, 2014). The prediction is usually governed on the ability to learn previously undetermined 

parameters   (Chen, 2014). 

To find the best parameters from a set of examples in the training set, one needs to define a cost 

function or an objective function (Chen, 2014). The objective function  ( ), consists of ‘training 

loss’ and ‘regularization’ and can be defined as (Chen, 2014): 

 ( )   ( )    ( ) 

Where, L = Training Loss Function, Ω = Regularization Term 

The training loss function varies depending on the need of the task and the nature of the data.  

The training loss function is a measure of the prediction accuracy of the model on the training 

set, whereas the regularization term controls the ‘complexity’ of the model. If a model is too 
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complex it gets prone to over-fitting, i.e. high accuracy on the training set and a very low 

accuracy on the test set, analogous to rote-memorization for an exam as opposed to constructive 

learning. 

Chen (2014) presents a good explanation of Training loss and regularization in Fig. 9. 

 

 

Figure 9: Visual Representation by Chen (2014) of the bias-variance trade-off: Visually fitting a line, given the data points 

provided (Chen , 2014). 

 

 

2.5.1: The Decision Tree Algorithm 

 

Decision Trees or prediction trees aim to predict an outcome or class Y from inputs or features 

X1, X2, X3, ….. Xp. The tree is grown by travelling from a root node of a tree to a leaf (Shalev-
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Shwartz & Ben-David, 2014). At each node in a tree, a test is applied to Xp which determines the 

direction of travel, i.e. right sub-branch or the left sub-branch. This is done iteratively, until a 

leaf is reached where the prediction can be made (Shalev-Shwartz & Ben-David, 2014).  

There are different implementations to achieve the above mentioned goal, for example: the 

‘Iterative Dichotomizer 3’ (ID3) (Quinlan, 1986) , C4.5 (Quinlan, 1996) and CART (Breiman et 

al., 1984).  The ‘test’ described in the former paragraph is essentially a quantifiable measure of 

the improvement due to a certain split. It is essential to understand the concept of how this is 

done. The pseudocode for the ID3 algorithm taken directly from Shalev-Shwartz & Ben-David 

(2014) is shown in Figure 10, where the ID3 returns a decision tree after taking an input of 

training set S and an index i. 

 

Figure 10: Pseudocode for the 'Iterative Dichotomizer 3' (ID3) (Shalev-Shwartz & Ben-David , 2014). 

 

The Gain (S,i) function used above differs with the implementation of the algorithm used. ID3 

uses ‘Information Gain’, while CART uses ‘Gini Index’. However, for this study’s particular 
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problem, which is a regression problem (where the output variable takes continuous values), 

Information Gain and Gini Index do not apply and are both restricted to classification type 

problems containing discrete output classes. 

When the output variable is continuous, i.e. response vector Y for each observation in variable 

matrix X, regression trees are used. The Gain (S,i) is based on squared residuals minimization 

algorithm which essentially aims to reduce the standard deviation of the outcome variable after a 

split is made using a feature. 

It should be noted that the concept of how a decision tree works remains consistent if one is 

dealing with a classification or a regression problem. Gain (S, i) for classification aims to reduce 

the entropy/randomness of the outcome variable, while Gain (S,i) in a regression problem aims 

to reduce the standard deviation, thus both are essentially  trying to converge towards a point of 

homogeneity in the target variable, although the method of measuring said homogeneity is 

different.   

In summary, decision trees partition the data space into smaller discrete regions, and then apply a 

separate function to each region as opposed to polynomial regression methods that aim to build a 

global function and smooth it over the complete dataspace.  

 

2.5.2: Random Forests 

 

Assuming the concepts that govern the workings of a single decision tree are now clear, we can 

move ahead to Random Forests. The basic idea behind a random forest or for that matter any 

other ‘ensemble learning method’ in Machine Learning and Statistics comes from the approach 
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that a group of weak models when combined together can produce a more robust model that 

produces stronger predictive performance (Opitz & Maclin, 1999). The reason a single decision 

tree is considered a weak predictor is because of the concept of the bias-variance trade-off 

(James et al., 2013). 

Random Forests, as the name implies, is a group of decision trees that work towards achieving a 

common predictive task. The first algorithm for this approach of grouping multiple decision trees 

was developed by Tim Kam Ho (1995), which was a method to implement the ‘stochastic 

discrimination’ approach as proposed by Eugene Kleinberg (1996).  

Leo Breiman and Adele Cutler (2001) developed an extension to the algorithm (now formally 

known as Random Forests) which has become the most widely used form of the algorithm today, 

and is also the algorithm that has been used in this thesis.  

To get to the next step of Random Forests from decision trees, one needs to understand the 

technique of bootstrap aggregation. Bootstrap aggregation or ‘bagging’ proposed by Leo 

Breiman (1994), aims to improve the accuracy of Machine Learning models:  

Assuming a training set of:  

Input variables X = x1, x2,…. xn  

Response Variables Y = y1,y2,…yn 

A random subset of the training set is selected M times, and a decision tree is fit to each M 

subset. If the training set M contains a subset of X and Y, namely Xm, Ym, and if a regression 

tree called fm is fitted to M. The prediction of the overall model that combines the output of M 
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regression trees on the samples that were left out (‘out-of-bag’ samples) M* from M subsets, will 

be the average of each tree: 

 ̂  
 

 
∑   (  )

 

   

 

Random Forests (Breiman, 2001) differs from the above algorithm of combining trees in that it 

uses a subsample of the input features at each split in the learning workflow. The number of 

features to be used at each split can be varied, however, the documentation of the algorithm 

recommends using p/3 (at each tree) features if the total number of features in the input space is 

p.  

The above method is called ‘feature bagging’ as an extension to the general bagging or bootstrap 

aggregation, and this is done so that the correlation between the trees in the ensemble model is 

reduced. The reader is referred to Ho (2002) for an explanation as to why correlation between 

predictive trees is harmful to the final accuracy and the reason for using random subspace 

projection. 

 

2.5.3: Extreme Gradient Boosted Trees 

 

Extreme Gradient Boosted Trees (XGBoost) is a machine learning algorithm developed by 

Tianqi Chen (2014) that provides a framework for gradient boosting (Friedman, 2001) and was 

one the main tools used in this study. 

The simplest way to think about the difference in Gradient Boosted Trees and Random Forests is 

that Random Forests essentially builds individual trees in parallel whereas in Boosted Trees the 
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trees were built in a linear sequence. The learning method of Gradient Boosted Trees is slightly 

more complicated compared to Random Forests, and thus it re-ignites the concern about ‘black-

boxes’. With that in mind, an attempt at a simple explanation is made here by mostly following 

Chen’s documentation (2014) of XGBoost. 

Coming back to our objective function and assuming our learning parameters ( ) are a function 

of two variables i.e. the real outputs in our dataset yi, and the prediction of our model  ̂. The 

regularization term is dependent on the prediction function   . Thus the objective function 

   ( ) (as defined in section 2.5: Machine Learning and Workflow) can be re-written as (Chen, 

2014):  

   ( )   ∑ (    ̂)

 

 

  ∑  (  )

 

   

 

Where, L = Training Loss Function, Ω = Regularization Term 

As previously stated, gradient boosted trees are built in a sequential order, they thus assume a 

method of ‘additive training’ (Chen, 2014). At step ‘t’ of the sequence the prediction of the 

model is said to be  ̂ 
( )

 , thus we have (Chen, 2014): 
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Thus the objective function becomes (Chen, 2014):  
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      ∑ (    ̂ 

(   )
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As mentioned, before L can vary and can take different forms ranging in complexity. For 

instance an MSE function will assume an easy form after a differential with a first order term and 

a quadratic term. However, there might be more complex functions such as the logistic loss 

function below, and according to Chen (2014) XGBoost has the flexibility to deal with a variable 

loss function.  

 ( )   ∑     (      ̂ 

 

)  (     )   (     ̂ ̂)  

Converting a general loss function ‘l’ into a Taylor series of the second order (Chen, 2014): 
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Removing the constants, the objective function at a specific step ‘t’ becomes: 

 

∑   
       (  )  

 

 
    

 (  )   (  )] 

 

Thus the objective function simplifies and only depends on    and    (first and second order 

derivatives of the loss function) . This enables xgboost to deal with custom loss functions by 
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only taking    and    as input (Chen, 2014). For a more detailed description and the deduction of 

the complexity term (  ), the reader is referred to Chen (2014) and Friedman (2001). 

 

2.5.4: Combining Mixed Effects with Random Forest 

 

As noted before, the reservoir in the study area consists of stacked incised valley fills. During the 

process of building the model, it was realized that the well logs had slightly different responses 

based on the different valley fills and varying depositional settings. There have been three 

distinct valley fills recognized in the study area. The lower two valleys have comparatively 

cleaner sands and have been deposited in a high energy tidal flat setting near the margin of the 

channels, whereas the topmost valley has been interpreted to be deposited in a tidal channel with 

more interbedded mud. 

It was important for the model to recognize this facies difference. Thus another feature was 

created that would categorize from which valley fill the log readings were derived. The values 

ranged from 1-3 for each valley fill category. However, as the model depends on the variance of 

an input variable to determine its importance, a categorical input feature with only three distinct 

values would rank the lowest in terms of variable importance within the model, and thus would 

be useless. Tree based models fail to recognize the clustered nature of longitudinal data.  

In order to combat this problem, it was decided to implement a Linear Mixed Effect Model with 

the Random Forest algorithm. The inspiration for this approach came from the field of biology 

with the work of Wang et al. (2016), where they combined a mixed effect model with random 

forests in order to impute uncollected gene expression data in multi-tissues taken from different 
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populations. The different populations in their study are analogous to our different valley fills in 

terms of their effect on the algorithm. 

Mixed-effects models in a broad sense value the relationship between the target/output variable 

and the inputs, with coefficients that depend on the grouping of the data thus honouring the 

clustered nature of the data. Thus, Mixed-Effects models have two parts: 1) random effects, 

which are associated with data units drawn at random from a population i.e. the valley fills, and 

2) fixed effects, associated with the input variables or well logs.  

The Random Forest algorithm will inherently eliminate inputs that have high correlation, thus the 

need for a dimensionality reduction technique – e.g. Principal Component Analysis, is often 

deemed unnecessary in the case of Random Forests. The mixed effect model used here 

essentially becomes a random effects model. The reader is encouraged to read Pinherio and 

Bates (2004) for a detailed description on Mixed Effects modelling.  

In summary, the water saturation values are predicted using Random Forest and Mixed Effects 

model combined. These predicted water saturation values are then used as an input to XGboost 

to estimate bitumen weight (Fig. 11). The reader is referred to Schlumberger (1991) and Crain 

(2017) for more details on the various well logs listed as inputs (Fig.11) 
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Figure 11: Algorithm workflow, showing the inputs for the model and the location of each algorithm in the overall 

workflow. GR: Gamma Ray, Vsh Gamma: Vshale from Gamma Ray. ResD: Deep Resistivity, ResS: Shallow Resistivity, 

ResM: Medium Resistivity, RHOB: Bulk Density, NPSS: Neutron Porosity, Vsh Porosity: Vshale from Neutron-Density 

Porosity, Vsh SP: Vshale from Spontaneous Potential 
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Chapter 3: Methods 
 

3.1: Data Preparation and Normalization 

 

After data cleaning, 40 wells were used in this study. There were 3724 Dean-Stark sample data 

points for comparison to the well log data. The well logs were visually inspected initially using 

depth plots, and any discrepancies in formation top picks were fixed. Average gamma ray log 

values in three different marine shale formations were computed by picking representative 

depths and averaging the corresponding values. The three shale units are: Fish Scale Formation 

shale, Joli Fou shale and the Clearwater capping shale (Fig. 12). 

 

Figure 12: Stratigraphic location of the marine shales used for Gamma Log normalization. Modified from McCrimmon 

and Arnott (2002). 
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The wells were then ranked for all the three formations separately. The median well in the 

average gamma distribution getting a rank of zero, wells having an average gamma value less 

than the median received negative ranks from -1, -2, -3,…n. Wells with gamma average values 

above the median received positive ranks from 1, 2, 3…n (Fig. 13). 

Rankings for all the three sets of wells (based on the 3 formations/intervals) were combined 

together and the well with lowest cumulative rank was labelled as the ‘type well’ that 

hypothetically represents a roughly ‘median’ sample of the variations in the area.  

Once the type well was selected, ‘Gamma Clean’ and ‘Gamma Shale’ values were selected for 

each well in the project. ‘Gamma Clean’ is a value in the reservoir sands that corresponds to the 

lowest gamma log value. The ‘Gamma Shale’ value corresponds to the gamma value recorded in 

the shale unit (caprock) just above the reservoir. This normalization process ensures that 

discrepancies in log values from a well-to-well basis due to various reasons are taken out. These 

reasons could be due to wells having logs of different vintages, difference in logging parameters 

used by different companies while drilling, variations in hole condition, drilling mud or mud 

cake development that are not properly corrected etc. 

 

Figure 13: Ranking Method based on Average Gamma Values in three different marine shales. Exact well identification 

labels have been removed for reasons of confidentiality. 
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Once all the gamma clean and gamma shale values were picked, the next step was to apply the 

‘Stretch and Squeeze’ method for log normalization, as defined by Crain (2017):  

 

 

            (         )  
(      )

(          )
 

 

Where,  

NGamma = Normalized Gamma Log Value 

minG = Gamma Clean in Type Well 

maxG = Gamma Shale in Type Well 

lowG = Gamma Clean in Well to be normalized 

highG = Gamma Shale in Well to be normalized 

 

The same approach was applied to the Spontaneous Potential log, which was also used an input 

to the model. Figure 14 shows SP log distribution before and after normalization. A flooding 

surface at the top of the reservoir was chosen as a common datum, and the original depth values 

were offset according it. 
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Figure 14: Distribution of Spontaneous Potential log before (left) and after (right) 'Stretch and Squeeze' normalization. 

 

3.2: Feature Engineering 

 

Shale volume estimation is one of the key steps for correcting porosity and water saturation due 

to the effects of clay bound water (Crain, 2017). 

Once the logs were normalized, features for the data model were generated. These included 

Volume Shale (Vshale) calculations based on three different well logs: 

1. Gamma Ray Log 

2. Spontaneous Potential 

3. Neutron Porosity – Density Porosity 
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The reason for using three different logs was to capture different sets of information. The Vshale 

values were calculated using the following equations: 

 

   (         )  
                 

        (     )          (     )
 

   (     )  
                       

                   
 

   (  )  
                       

                   
 

 

In addition, SP shale values were picked from the interbedded muds within the reservoir sands.  

This was done to designate the interbedded sands because the interbedding increases the variance 

of the SP log near the muds, and the algorithm is directly affected by the variance of the inputs. 

This step will make it easier for the model to pick up the muddy interbeds that are often 

blanketed out in the traditional Vshale calculations. Figure 15 shows the calculated Vshale 

values derived from the logs, compared to visual core facies description. The same technique 

was applied for Vsh (neutron, density) by picking neutron-shale and neutron-density values from 

the type well. 
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Figure 15: Comparison of the different Volume Fraction of Shale calculated versus Depth, using different well logs (left) 

against core facies descriptions (right). Calcite refers to intervals of sand cemented by calcite. 

 

It is essential to capture the maximum amount of information on the volume of shale present in 

the reservoir. Vshale values greatly affect prediction accuracy, as shown in Figure 16. Average 

Vshale values calculated from SP log (picked on the mud interbeds) for each well were plotted 

against R-squared values for water saturation from the Modified Simandoux Equation versus 

core values (Dean Stark Analysis) in Figure 16.  There are two clusters of values: wells with high 
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Vshale values have a lower prediction accuracy compared to wells with lower Vshale values. 

This shows that that the Modified Simandoux Equation has lower prediction accuracy for wells 

with higher amounts of mud interbeds (Vshale from SP was picked on the mud interbeds).  

 

 

Figure 16: Vshale-SP plotted against R-Squared values for Water Saturation (Modified Simandoux compared to Dean 

Stark Analysis). 

 

3.3: Optimization  

 

For Random Forest optimization, the number of variables randomly sampled as candidates at 

each split was held constant at P/3 (P = total number of inputs). The number of trees to be built 

was tested over a range from 1 to 10,000, and the out-of-bag (Section 2.5.2) error rate was 

plotted versus the number of trees.  In general, prediction accuracy increases with the number of 
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trees used. However, the rate of improvement decreases as the number of trees increases. Thus, 

the benefit in prediction accuracy from using more trees will be lower than the cost in 

computation time for learning these additional trees. This is evident when the out-of-bag error 

rate is plotted versus the number of trees (Fig. 17). The rate of increase in prediction accuracy 

suddenly decreases close to 100 trees in the current model. Although a proper computational 

time cost analysis was not done for the study, the optimal number of trees judging by the graph 

was set to 500. The benefit of adding additional trees was deemed minimal, and individual 

training runs took approximately 3 hours. Many trials were necessary while testing various 

workflows. Thus, models with too many trees proved tedious to work with.  

For XGBoost parameters, a grid containing learning rate values (eta) of {0.01, 0.05, 0.1 }, 

maximum depth (of a single tree) = {2,3,4,6,8,10,14} was tested using cross validation in the 

CARET package (Kuhn, 2008). The CARET package provides an automatic workflow for 

optimization of machine learning algorithms and thus saves much time especially when working 

with algorithms that have not been modified (XGboost in our study). The reader is referred to 

Kuhn (2008) for an introduction to the CARET package. Optimum value for eta (through the 

CARET package) was found to be 0.01 and maximum depth was found to be 3. 

The code for this study was written in R programming language (R Core Team, 2016). Version: 

3.3.1 (2016-06-21). Platform: x86_64-w64-mingw32/x64 (64-bit) 
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Figure 17: Out-of-bag error rate vs. number of trees, used for estimating the optimum number of trees. 
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Chapter 4: Results 

 

The predicted water saturation and bitumen weight values were compared to their corresponding 

values derived from the Dean-Stark analysis done in the lab. The assumption of this study is that 

the Dean-Stark analysis values are correct. It is understood that this assumption might not always 

hold true, as there could be various sources of error in the Dean-Stark procedure. Differences in 

log derived and core derived values are unavoidable. Especially in a reservoir with thin beds, 

conventional wireline logging is prone to errors due to the limitations of vertical resolution and 

the different scale of sampling compared to core measurements. 

To analyze the performance of our model, two phases of testing were implemented. The first 

phase included taking out 4 wells that had the best correlation (i.e. highest R-squared) between 

the measured core water saturation values and the values obtained by the Modified Simandoux 

Equation (Table 1). These wells were not used in the training set. For the second phase, the 

model was tested by multi-fold cross validation: with the number of folds equal to the number of 

wells in the data set (Table 2). Each well was left out of the training set once – the model was 

trained with all the other wells and the prediction was done on the well that was left out. The 

mean R-squared values were analyzed along with the root mean squared error (RMSE). Average 

R-squared and RMSE values for all the test wells across each fold show that the Machine 

Learning model had higher R-squared values and lower RMSE. Figure 18 shows a visual 

representation of the results for one of the wells. Predicted bitumen weight values from Machine 

Learning (ML) are in green, Modified Simandoux (MS) are in blue, with values derived from 

Dean Stark Analysis on core samples asblack dots. Tracks on the left show 4 out of the 11 inputs 

used in the model: Gamma Ray (GR), Deep Resistivity (ResD), Bulk Density (RHOB) and 

Neutron Porosity (NPSS). 
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Figure 18: Predicted bitumen weight values from Machine Learning (ML - Green), Modified Simandoux (MS - Blue) with values derived from Dean Stark Analysis on 

core samples. Tracks on the left show 4 out of the 11 inputs used in the model: GR, ResD, RHOB, NPSS
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4.1: Regular Test Set Results 

 

 Water Saturation - Dean Stark vs 

Predicted 

Bitumen Weight - Dean Stark vs Predicted 

R-Squared R-Squared RMSE 

Well MS ML MS ML MS ML 

1 0.89 0.93 0.79 0.9 0.022 0.014 

2 0.92 0.87 0.8 0.68 0.015 0.018 

3 0.9 0.84 0.83 0.87 0.026 0.025 

4 0.9 0.91 0.87 0.9 0.021 0.023 

Mean 0.9 0.89 0.82 0.84 0.021 0.02 

 

Table 1: Results for regular test for 4 wells with the highest R-squared values using the Modified Simandoux Equation 

used as test wells. WS: Water Saturation, BW: Bitumen Weight, MS: Modified Simandoux, ML: Machine Learning. Last 

two columns show RMSE 

 

4.2: Multi Fold Cross Validation Results 

 

The full cross validation results are shown in the appendix, the mean values for accuracy metrics 

are reported below. 

Water Saturation - Dean 

Stark vs Predicted 

Bitumen Weight - Dean Stark vs Predicted 

R-Squared R-Squared RMSE 

MS ML MS ML MS ML 

0.65 0.68 0.58 0.66 0.024 0.022 

 

Table 2: Mean values for cross validation results. Abbreviations same as Table 1. 
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Chapter 5: Discussion 
 

Judging by the R-squared and RMSE values for the test sets (see Table 1 and Table 2), the 

machine learning model performed equally as well if not better than the Modified Simandoux 

Equation. As mentioned in methods, it is important to note that comparing water saturation 

results from well-log derived models and core analyses is challenging in the best of 

circumstances. The reason for this is the difference in scale and methodology between porosity 

derived from well logs and the porosity derived from the cores. It is probably unrealistic to 

expect them to match perfectly. Differences in the two values can arise from various reasons. For 

example, especially when clay is present in the reservoir, the core sample may not dry 

completely during the Dean-Stark process. For this reason, petrophysicists compare bitumen 

weight values between well logs and core because they are more likely to match, and for the 

same reason we provide accuracy metrics on both output variables. The latter point is evident 

from Figure 18, which shows closer overlap between the different models of bitumen weight 

compared to predictions for water saturation. 

Although cross-validation is a more robust method for analyzing the accuracy of a predictive 

machine learning model, the regular test process was done keeping in mind the fairly large 

temporal gap between the drilling dates of these wells. Some of the wells have core analysis 

done in discrete intervals and thus might yield unreliable core saturation results, especially 

considering the heterogeneity in the reservoir due to interbedded mud beds. This is probably the 

reason why some of the wells in the cross-validation results have a substantially lower accuracy 

metric for both the conventional and the machine learning model. It is probably not a 

coincidence that the regular test set of wells with the best matches are wells that have a 

comparatively younger drill date with more consistent and continuously tested cores.  
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Analyzing the residuals (Observed core values – Predicted modelled values) of a predictive 

model gives important insights and is an important part of result analysis. Plotting residuals 

against observed values can give details about the nature of the prediction 

(overestimation/underestimation).  

Figures 19 and 20 show residuals plotted against observed bitumen weight values (Dean-Stark 

Analysis) for Modified Simandoux and Machine Learning respectively. Judging by the plots we 

can see that both the models tend to underestimate high values of observed bitumen weight and 

also overestimate low values of bitumen weight. Both of these observations expected around a 

regression line bounded by an upper and a lower limit. 

The colour in the plots reflects the different valley fill units in the reservoir. There is a 

segregation of residuals with respect to the valley fills. Valley B which has the lowest oil 

saturation is expectedly offset towards the lower bitumen weight values. Comparing the two 

predictive models we observe that the Machine Learning model does a better job in separating 

out the valley fills, and also has better prediction accuracy in the D valley. D valley is more 

tidally influenced and has more mud interbeds. Mud interbeds are a challenge for the Modified 

Simandoux Equation as shown in Figure16. This demonstrates that implementing the different 

valley fills and combining the mixed effects model with Random Forest improved the prediction 

accuracy. Achieving similar consistency with the Modified Simandoux equation would probably 

require time-consuming empirical adjustment for each reservoir facies. 

The values close to zero bitumen weight are samples near the bottom water (i.e. below the 

bitumen-bearing zone, where the reservoir is almost entirely water saturated), which is evident 

from Figures 21 and 22. The data points in the two figures have been coloured by deep-

resistivity and depth (offset from the top of the reservoir) respectively. With additional time 
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these could be easily filtered out of the input data and likely allow a more fine-tuned Machine 

Learning model for the bitumen-bearing zone. 

 

Figure 19: Observed Core Bitumen Weight (x:axis) vs. Residuals for the Modified Simandoux Equation (Observed – 

Predicted, y:axis) coloured by the different valley fills. Valley B: Red, Valley C: Green, Valley D: Blue. 

 

Figure 20: Observed Core Bitumen Weight (x:axis) vs. Residuals for the Machine Learning model (Observed – Predicted, 

y:axis) coloured by the different valley fills. Valley B: Red, Valley C: Green, Valley D: Blue. 
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Figure 21: Observed Core Bitumen Weight (x:axis) vs. Residuals for the Machine Learning model (Observed – Predicted, 

y:axis) coloured by Deep-Resistivity values. Red: High Resistivity Blue: Low Resistivity, the grey dots are outside the 

range of the Resistivity values on the colour gradient (0-20). 

 

Figure 22: Observed Core Bitumen Weight (x:axis) vs. Residuals for the Machine Learning model (Observed – Predicted, 

y:axis) coloured by Depth (offset) values. Red: Deeper Blue: Shallower. 
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More data generally is a good thing when it comes to building a data-driven model. However, 

with geology, it also means accounting for more variation. Thus blanketing a large number of 

wells in a complex depositional environment with a model (Modified Simandoux or Machine 

Learning) is always going to be difficult due to the heterogeneity of the setting. In addition to the 

geology, the issue of legacy wells in the area and the logging inconsistency between wells is also 

an issue. This, combined with the resolution limits of the logging tools that makes it difficult to 

account for the thin mud interbeds, all lead to the reduction in prediction accuracies. 

Nevertheless, this study shows great potential for application of Machine Learning to similar 

types of problems in petroleum geology settings. 

Any discussion about Machine Learning is incomplete without the argument of black-boxes, and 

although a very good attempt was made in this study to ensure the transparency of the model by 

using simpler algorithms, there is no doubt that the Modified Simandoux equation is the more 

transparent model, giving the petrophysicist more control. Machine Learning, although fast and 

seemingly more accurate, remains a black box to some extent and it is up to the user to decide 

which model works best for the problem in hand.  

In the words of George Box (1976): “All models are wrong, some models are useful…. 

It would be remarkable if any system existing in the real world could be exactly represented by 

any simple model. However, cunningly chosen parsimonious models often do provide 

remarkably useful approximations. For example, the law PV = RT relating pressure P, volume V 

and temperature T of an "ideal" gas via a constant R is not exactly true for any real gas, but it 

frequently provides a useful approximation and furthermore its structure is informative since it 

springs from a physical view of the behavior of gas molecules. 
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 For such a model there is no need to ask the question "Is the model true?" If "truth" is to be the 

"whole truth" the answer must be "No". The only question of interest is "Is the model 

illuminating and useful?” In that respect, in the author’s opinion, Machine Learning has been 

“illuminating and useful” in the present application. 

5.1: Future Work 

 

There is potential for future work using similar approaches that include Machine Learning and 

well log data. Machine Learning has been used to effectively generate electro-facies (Bhatt and 

Helle, 2002; Dubois et al., 2007). The generated electro-facies can then be used as inputs by 

creating a second tier of mixed effects and combining it with the saturation model. Feature 

engineering plays an important role in the accuracy of a model, as demonstrated above. Features 

that can amplify the interbedded muds prove to be extremely useful. One such feature that can be 

generated and used is a derivative of the gamma ray log. Gamma ray log derivatives have been 

used in the past for stratigraphic studies (Reid et al., 1989; Vermeer and Alkemade, 1992). The 

derivative log can be used to amplify the response of lithology contacts within a well. Such a log 

can be constructed by using the following equation of the slope of a line: 

 

                 
       

             
 

Where,        and        are the consecutive depth readings with corresponding gamma ray 

log values of     and     respectively. Applying this equation to the entire gamma ray log in a 

well generates a derivative of the gamma ray log. 
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Figure 23 shows a derivative log for the well used in Figure 18. Positive spikes indicate a 

transition from sand to mud (low radioactivity to high radioactivity) . A negative spike represents 

a transition from mud to sand. The derivative log can then be used as an ‘engineered input’ to a 

machine learning model that predicts either facies or fluid saturation. 

 

Figure 23: A derivate of the gamma ray log (seventh track) showing points of contact between sand and mud. Red: 

Positive - sand to mud. Black: Negative - mud to sand. Other tracks are same as Figure 18. 
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Chapter 6: Conclusions 

 

In summary, the machine learning model is a supplemental guide for fluid saturation prediction 

instead of a replacement. Some parallels can be drawn between the Archie Equation and the 

machine learning model in the sense that they both involve an empirically driven process.  

Coming back to the two questions posed in the introduction of this thesis: 

1) Judging by the accuracy metrics of R-Squared and RMSE on both the testing phases, it 

can be concluded that Machine Learning was successful in predicting fluid saturation 

values and had comparable if not better prediction accuracy than the Modified 

Simandoux Equation. 

2) Some of the variation in R-squared values is related to variations in the Dean-Stark 

analysis values. These variations are not captured in the well logs and could be due to 

various reasons. The most obvious is some mud interbeds are too thin to be captured as 

discrete beds in well logs due to resolution limits of the tools. There could also be 

discrepancies in a few core samples from the lab, which could be outliers. Additionally, 

there is a lack of consistency arising from the temporal gap due to legacy wells, which 

could also reduce the prediction accuracy of both models. Finally, there is also variation 

in the accuracy due to the different valley fills in the reservoir. Thus, implementing the 

mixed effect models proved to be an important step in the workflow. 
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Appendix 1: Cross Validation Results: 
 

 

Water Saturation – Dean Stark vs 

Predicted 

Bitumen Weight – Dean Stark vs 

Predicted 

R-Squared R-Squared RMSE 

Well MS ML MS ML MS ML 

1 0.66 0.70 0.58 0.69 0.02 0.02 

2 0.75 0.81 0.74 0.80 0.02 0.02 

3 0.46 0.29 0.40 0.33 0.03 0.03 

4 0.67 0.59 0.70 0.66 0.02 0.02 

5 0.62 0.60 0.56 0.61 0.02 0.02 

6 0.51 0.43 0.25 0.31 0.02 0.02 

7 0.55 0.65 0.35 0.37 0.04 0.03 

8 0.38 0.60 0.56 0.73 0.03 0.02 

9 0.45 0.70 0.37 0.72 0.03 0.03 

10 0.21 0.43 0.24 0.41 0.02 0.02 

11 0.81 0.82 0.76 0.83 0.03 0.02 

12 0.82 0.91 0.59 0.81 0.02 0.02 

13 0.89 0.93 0.79 0.90 0.02 0.01 

14 0.69 0.74 0.64 0.74 0.02 0.02 

15 0.51 0.60 0.54 0.60 0.02 0.03 

16 0.69 0.74 0.59 0.72 0.02 0.02 

17 0.92 0.87 0.80 0.68 0.02 0.02 
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18 0.71 0.71 0.58 0.57 0.03 0.03 

19 0.57 0.60 0.66 0.60 0.02 0.02 

20 0.70 0.81 0.74 0.80 0.02 0.02 

21 0.61 0.69 0.66 0.69 0.02 0.02 

22 0.76 0.87 0.76 0.87 0.02 0.02 

23 0.63 0.67 0.64 0.59 0.02 0.02 

24 0.90 0.84 0.83 0.87 0.03 0.02 

25 0.68 0.62 0.71 0.62 0.02 0.04 

26 0.83 0.79 0.70 0.75 0.02 0.02 

27 0.53 0.54 0.23 0.39 0.03 0.03 

28 0.65 0.68 0.54 0.65 0.03 0.03 

29 0.59 0.69 0.54 0.68 0.03 0.02 

30 0.58 0.68 0.63 0.73 0.04 0.03 

31 0.90 0.91 0.87 0.90 0.02 0.02 

32 0.70 0.75 0.74 0.63 0.02 0.03 

33 0.79 0.81 0.59 0.78 0.02 0.02 

34 0.38 0.34 0.38 0.34 0.02 0.02 

35 0.72 0.74 0.64 0.75 0.02 0.02 

36 0.63 0.64 0.71 0.72 0.02 0.02 

37 0.69 0.82 0.32 0.73 0.02 0.02 

38 0.62 0.66 0.61 0.68 0.02 0.02 

39 0.63 0.67 0.51 0.63 0.02 0.02 

40 0.53 0.42 0.27 0.48 0.03 0.02 
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Appendix 2: Plots of a few wells showing the modelled values vs Core values 

Legend: 

BW_ Logs (Blue) : Bitumen Weight using Water Saturation Values derived from the Modified 

Simandoux Equation 

Core_BW (Black): Bitumen Weight values derived from the Dean Stark Analysis on core 

samples 

XGB (Orange): Bitumen Weight values using Machine Learning 
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Well X1: 

 

 



 

 

63 

Well X2: 
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Well X3: 

 



 

 

65 

Well X4: 
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Well X5:
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Appendix 3: Code 
 

Function for Combining Mixed Effects with Random Forest. Modified from mixRF 

package 
 

 

function(Y, X, random, data, initialRandomEffects=0, 

         ErrorTolerance=0.001, MaxIterations=1000) { 

   

  #Y = Target Variable, X = Predictors, random = random effects (Valleys) 

   

  Target = Y 

   

  # Condition that indicates the loop has not converged or run out of 

iterations 

  ContinueCondition = TRUE 

   

  iterations <- 0 

   

  # Get initial values 

  AdjustedTarget <- Target - initialRandomEffects 

  oldLogLik <- -Inf 

   

  while(ContinueCondition){ 

     

    iterations <- iterations+1 

     

     

    #randomForest 

    rf = randomForest(X, AdjustedTarget, ntree = 500) 

     

    # y - X*beta (out-of-bag prediction) 

    resi = Target - rf$predicted 

     

    ## Estimate New Random Effects and Errors using lmer 

    f0 = as.formula(paste0('resi ~ -1 + ',random)) 

    lmefit <- lmer(f0, data=data) 

     

    # check convergence 

    newLogLik <- as.numeric(logLik(lmefit)) 

     

    ContinueCondition <- (abs(newLogLik-oldLogLik)>ErrorTolerance & 

iterations < MaxIterations) 

    oldLogLik <- newLogLik 

     

    # Extract random effects to make the new adjusted target 

    AllEffects <- predict(lmefit) 

     

    #  y-Zb 

    AdjustedTarget <- Target - AllEffects 

  } 

   

  result <- list(forest=rf, MixedModel=lmefit, RandomEffects=ranef(lmefit), 

                 IterationsUsed=iterations) 
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  return(result) 

} 

Random Forest and XGboost: 
 

 

Wells <- data.frame(unique(facies_sw_dn$.id)) #Store all Well UWIs 

Wells[,1] <- as.character(Wells[,1])          #convert to characters 

 

 

for (i in 1:nrow(Wells)) { 

   

  Test_well <- Wells[i,1] #select well to be used as test set with i 

   

  Train_mrf <- subset(facies_sw_XGB_narm, !facies_sw_XGB_narm$.id %in% 

Test_well) #Create Train set without Test_Well 

   

  #Only select features that we want to use 

  Train_mrf2 <- Train_mrf[,c("Core_Sw_old" ,"GR.x" , "iGR", "ResD.x", "ResM" 

,"RHOB.x" , "NPSS.x" , "ResS.x" , "VshPhi2" , "vshSP2" ,  "N_DEPT", 

"Valley")] 

   

  Train_mrf <- na.omit(Train_mrf) #take out any NA values 

   

  Test_mrf <- subset(facies_sw_XGB_narm, facies_sw_XGB_narm$.id %in% 

Test_well) #Create Test Set 

     

   

  Test_mrf2 <- Test_mrf[,c("Core_Sw_old","GR.x" , "iGR", "ResD.x", "ResM" 

,"RHOB.x" , "NPSS.x" , "ResS.x" , "VshPhi2" , "vshSP2" , "pred_final2", 

"N_DEPT", "Valley" )] 

   

  facies_sw_XGB_PR2 <- facies_sw_XGB_narm[,c("Core_Sw_old","GR.x" , "iGR", 

"ResD.x", "ResM" ,"RHOB.x" , "NPSS.x" , "ResS.x" , "VshPhi2" , "vshSP2" , 

"pred_final2", "N_DEPT", "Valley" )] 

   

   

  #Random Forest with Mixed Effects model: 

   

  mrf_VFac2 = MixXGB(Y = Train_mrf2$Core_Sw_old, X = as.data.frame(Train_mrf2 

%>%                                                                   

select(-Core_Sw_old)), random = "(1|Valley)", data = Train_mrf2, 

initialRandomEffects = 0, ErrorTolerance = 0.01, MaxIterations = 5) 

   

  pred_mixrf2 <- predict(mrf_VFac2$forest, Test_mrf2) #Make Prediction on the 

test set 

   

  pred_full_mrf <- predict(mrf_VFac2$forest, facies_sw_XGB_PR2) #Predict 

Water Saturation (From Random Forest-Mixed Effects) for all the wells - to be 

used by XGBoost for Bit Wt. 

   

     

   

  #store R2 values for test set, Col. 2: Modified Simandoux vs Dean Stark, 
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Col. 3: Machine Learning vs Dean Stark 

  mrf_Results_BW[i,1] <- Test_well #store test UWI 

  mrf_Results_BW[i,2] <-  cor(Test_mrf$Core_Sw_old, Test_mrf$SwMS) 

  mrf_Results_BW[i,3] <-  cor(Test_mrf$Core_Sw_old, Test_mrf$pred_mixrf) 

  

   

  facies_bw_XGB_narm <- cbind(facies_sw_XGB_narm, pred_full_mrf) #bind WS 

predictions with datatable 

   

  facies_bw_XGB <- subset(facies_bw_XGB_narm, 

!facies_bw_XGB_narm$Core_UD1_old %in% -999.250) #Remove depths that done have 

core samples 

  Test_well <- Wells[i,1] #select well to be used as test set with i 

      

  Train_mrf <- subset(facies_bw_XGB, !facies_bw_XGB$.id %in% Test_well) 

#Create Train set without Test_Well 

  Train_mrf <- Train_mrf[,c("Core_UD1_old" ,"GR.x" , "iGR", "ResD.x", "ResM" 

,"RHOB.x" , "NPSS.x" , "ResS.x" , "VshPhi2" , "vshSP2" , "pred_final2", 

"N_DEPT", "Valley", "pred_full_mrf" )]  

   

  #Only select features that we want to use 

  Train_mrf2 <- Train_mrf[,c("Core_UD1_old" ,"GR.x" , "iGR", "ResD.x", "ResM" 

,"RHOB.x" , "NPSS.x" , "ResS.x" , "VshPhi2" , "vshSP2" ,  "N_DEPT", "Valley", 

"pred_full_mrf" )] 

   

  Train_mrf <- na.omit(Train_mrf) #take out any NA values 

   

  Test_mrf <- subset(facies_bw_XGB, facies_bw_XGB$.id %in% Test_well) #Create 

Test Set 

   

  Test_mrf <- Test_mrf[,c("Core_UD1_old", "GR.x" , "iGR", "ResD.x", "ResM" 

,"RHOB.x" , "NPSS.x" , "ResS.x" , "VshPhi2" , "vshSP2" , "N_DEPT", 

"pred_full_mrf"  )] 

   

   

   

  #Run XGBOOST  

   

  Train_mrf2$Valley <- as.numeric(Train_mrf2$Valley) 

   

  xgb_bw = xgboost(data = as.matrix(Train_mrf2 %>% 

                                      select(-Core_UD1_old)), 

                   label = Train_mrf2$Core_UD1_old, 

                   params = xgb_params_1, 

                   nrounds = 1000,                                                 

# max number of trees to build 

                   verbose = TRUE,                                          

                   print.every.n = 1, 

                   early.stop.round = 10                                          

# stop if no improvement within 10 trees 

  ) 

   

   

   

   

  xgbpred_bw <- predict(xgb_bw, as.matrix(Test_mrf %>% 

                                            select(-Core_UD1_old))) #Make 



 

 

70 

Predictions on test set 

   

  Test_mrf$Bw_logs <-(Test_mrf$PHIE * (1 - Test_mrf$SwMS))/(((1-

Test_mrf$PHIE)*2.65) + (Test_mrf$PHIE)) #bitumen weight from Modified 

Simandoux Predictions 

   

  Test_mrf <- Test_mrf[,c("Core_UD1_old", "GR.x" , "iGR", "ResD.x", "ResM" 

,"RHOB.x" , "NPSS.x" , "ResS.x" , "VshPhi2" , "vshSP2" , "N_DEPT", "Valley",  

"Bw_logs" )] 

  Test_mrf <- cbind(Test_mrf,  xgbpred_bw) #bind XGboost predictions with 

Testset 

   

  mrf_Results_BW[i,4] <-  cor(Test_mrf$Core_UD1_old, Test_mrf$Bw_logs) 

#Record R-squared values for Models vs Dean Stark Bit. Wt., Col. 4: Mod. 

Sim., Col. 5: Machine Learning 

  mrf_Results_BW[i,5] <-  cor(Test_mrf$Core_UD1_old, Test_mrf$xgbpred_bw) # 

  mrf_Results_BW[i,6] <- sqrt(mean((Test_mrf$Core_UD1_old - 

Test_mrf$Bw_logs)^2)) #Record RMSE values for Models vs Dean Stark Bit. Wt., 

Col. 6: Mod. Sim., Col. 7: Machine Learning 

  mrf_Results_BW[i,7] <- sqrt(mean((Test_mrf$Core_UD1_old - 

Test_mrf$xgbpred_bw)) 

   

   

} 

 

 

Feature Abbreviations: 

 

Core_UD1_old = Core bitumen weight, GR.x = Gamma Ray Log, iGR = Vshale (Gamma), 

ResD.x = Deep Resistivity, ResM = Medium Resistivity, RHOB.x = Bulk Density, NPSS.x = 

Neutron Porosity, ResS.x = Shallow Resistivity, VshPhi2 = Vshale (Porosity Logs), N_DEPT = 

Depth (Offset), Valley = Valley Fills, Bw_logs = Bitumen Weight from Mod. Sim 

 

Libraries/Packages Used: 

 

MixRF, version 1.0 

randomForest, version 4.6-12 

xgboost, version 0.6-2 

plyr, version 1.8.4 

dplyr, version 0.5.0 

ggplot2, version 2.1.0 
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