Diagenesis and Provenance of Marmora and Sable members of the Upper

Logan Canyon Formation, in wells near Sable Island

By Justin Nagle

A Thesis Submitted to Saint Mary's University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Bachelor of Science, Honours Geology.

April, 2018, Halifax, Nova Scotia

Copyright Justin Nagle, 2018

Approved: Dr. Georgia Pe-Piper Supervisor

Date: April 10, 2018

Diagenesis and Provenance of Marmora and Sable members of the Upper

Logan Canyon Formation, in wells related near Sable Island

Justin Nagle

Abstract

Provenance and diagenesis are important processes to study in order to determine reservoir potential of sandstones within a sedimentary basin. The Scotian Basin is a large sedimentary basin located off the eastern part of Canada. Samples from the Upper Logan Canyon Formation of the Central Scotian Basin were studied in order to determine provenance and diagenesis. The studied wells are located near the West Sable oil and gas field and are targeted in the upward dome created by a large salt diapir.

Diagenetic minerals were studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). This allowed for identification of early seafloor diagenetic minerals, late diagenetic minerals, clay coats, and coated grains. The presence of clay coats is important because they prevent the formation of authigenic quartz, which helps to preserve porosity during prolonged burial.

To understand provenance, detrital minerals were point counted from Back-Scattered Electron (BSE) Images, lithofacies were applied, and petrographic and chemical data was analyzed. The detrital mineralogy of these sandstones is similar to other analyzed wells in the Scotian Basin, and suggests that they were sourced by the Sable River, with minor detrital minerals coming from the Meguma Terrane, and Newfoundland. Whole rock geochemistry was also performed on selected mudstone intervals. It indicates that Cree Member mudstones were sourced by the Sable River or Newfoundland, and the Sable Member mudstones were sourced from the Meguma Terrane and the Sable River.

April 10, 2018

Acknowledgements

I would like to thank Dr. Georgia Pe-Piper for giving me this opportunity to undertake an honours thesis. Thank you for guiding me through this process and taking the time to teach me the proper skills to succeed with this project.

I would like to thank the Canada Nova Scotia Offshore Petroleum Board (CNSOPB) for providing all of the samples that were used in this project.

I would like to thank Dr. Xiang Yang at Saint Mary's University for help with collecting SEM analyses as well as X-ray maps. Thank you Randy Corney, for your help with preparing the samples.

I would also like to thank Dr. David Piper for his help in reviewing this thesis, as well as taking the time to help collect samples at the CNSOPB. His assistance with lithofacies has been invaluable.

Thank you to all other facility and students at Saint Mary's University who have helped me over the course of this thesis.

Table of Contents

Chapter 1: Introduction	1
1.1 Geological Setting	2
1.2 Well History	4
Chapter 2: Methods	5
2.1 Conventional Core and Sampling	5
2.2 Lithofacies Description	6
2.3 Sampling Preparation	6
2.3.1 Polished Thin Sections	6
2.3.2 Whole Rock Analysis	7
2.4 Scanning Electron Microscope (SEM)	7
2.5 Counting of Detrital Minerals from BSE images	8
2.6 Chemical Fingerprinting	9
2.7 Mineral Identification	9
2.7.1 Definitions Applied to Clastic Sedimentary Rocks	9
2.7.2 Mineral and Mineral Mixtures Identification	. 10
2.8 Software Used	. 12
Chapter 3: Lithofacies and Depositional Environments	. 13
3.1 Stratigraphy	. 13
3.2.1 Sable Island 2H-58 Well Facies	. 18
3.2.2 Sable Island 3H-58 Well Facies	. 21
3.2.3 Sable Island 5H-58 Well Facies	. 28
3.2.4 Sable Island E-48 Well Facies	. 35
3.2.5 Sable Island O-47 Well Facies	. 38
3.2.6 Primrose 1A-A41 Well Facies	. 40
3.2.7 Summary	. 43
Chapter 4: Mineralogy and Petrography	. 44
4.1 Introduction to Collected Data	. 44
4.2 Description of Studied Samples	. 44
4.2.1 Sample 2H-58 1600.27	. 44
··	
4.2.2 Sample 3H-58 1613.63	. 45

4.2.4 Sample 3H-58 2001.33	48
4.2.5 Sample 5H-58 1577.78	50
4.2.6 Sample 5H-58 1903.66	51
4.2.7 Sample 5H-58 1906.89	52
4.2.8 Sample E-48 2244.39	54
4.2.9 Sample E-48-2246.46	55
4.2.10 Sample O-47 1886.68	56
4.3 Lithic Clasts	57
4.4 Clay Coats	59
4.4.1 Sample 2H-58 1600.27	60
4.4.2 Sample 3H-58 1613.63	60
4.4.3 Sample 3H-58 1804.26	60
4.4.4 Sample 3H-58 2001.33	60
4.4.5 Sample 5H-58 1577.78	60
4.4.6 Sample 5H-58 1903.66	61
4.4.7 Sample 5H-58 1906.89	61
4.4.8 Sample E-48 2244.39	61
4.4.9 Sample E-48 2246.46	61
4.4.10 Sample O-47 1886.68	61
4.5 Coated Grains	64
4.6 Provenance Classifications	66
4.6.1 Sandstone Classification	66
4.6.2 Paleotectonic Environment	68
4.6.3 Mudstone Geochemistry	69
4.6.4 Geochemical Fingerprinting	70
Chapter 5: Discussion	
5.1 The Glaucony – Glauconite Problem	
5.1.1 Introduction to Green Marine Clays	
5.1.2 The Formation of Glaucony and Glauconite	
5.1.3 Comparing the Studied Glaucony and Glauconite to the Literature	80
5.1.4 X-ray Maps of Glaucony	87
5.2 Provenance	90

5.2.1 Introduction	
5.2.2 Mudstone Geochemistry	
5.2.3 Mineral Chemical Fingerprinting	
5.2.4 Lithic Clasts	
Chapter 6: Conclusion	
References	

List of Figures

Fig. 1.1.1: Map of the Scotian Basin showing the location of studied wells	1
Fig. 1.1.2: Stratigraphic column of the Scotian Basin	2
Fig. 3.1.1: Correlation of studied wells from Primrose 1A-A41 to Sable Island 2H-58.	14
Fig. 3.1.2: Correlation of studied wells from Sable Island 2H-58 to Sable Island O-47.	15
Fig. 3.2.3: Stratigraphic column for core 1 from Sable Island 2H-58	20
Fig. 3.2.4: Representative photograph of core 1 from Sable Island 2H-58	19
Fig. 3.2.5: Stratigraphic column for core 1 from Sable Island 3H-58	23
Fig. 3.2.5.1: Representative photographs of core 1 from Sable Island 3H-58	21
Fig. 3.2.6: Stratigraphic column for core 2 from Sable Island 3H-58	25
Fig. 3.2.6.1: Representative photograph of core 2 from Sable Island 3H-58	24
Fig. 3.2.7: Stratigraphic column for core 3 from Sable Island 3H-58	27
Fig. 3.2.8: Stratigraphic column for core 1 from Sable Island 5H-58	30
Fig. 3.2.8.1: Representative photograph of core 1 from Sable Island 5H-58	29
Fig. 3.2.9: Stratigraphic column for core 2 from Sable Island 5H-58	32
Fig. 3.2.10: Stratigraphic column for core 3 from Sable Island 5H-58	33
Fig. 3.2.11: Stratigraphic column for core 1 from Sable Island E-48	37
Fig. 3.2.12: Stratigraphic column for core 1 from Sable Island O-47	39
Fig. 3.2.13: Stratigraphic column for core 1 from Primrose 1A-A41	41
Fig. 3.2.14: Stratigraphic column for core 2 from Primrose 1A-A41	42
Fig. 4.2.1: Representative BSE images of sample 2H-58 1600.27	45
Fig. 4.2.2: Representative BSE images of sample 3H-58 1613.63	46
Fig. 4.2.3: Representative BSE images of sample 3H-58 1804.26	48
Fig. 4.2.4: Representative BSE images of sample 3H-58 2001.33	49
Fig. 4.2.5: Representative BSE images of sample 5H-58 1577.78	51
Fig. 4.2.6: Representative BSE images of sample 5H-58 1903.66	52
	V

Fig. 4.2.7: Representative BSE images of sample 5H-58 1906.89	53
Fig. 4.2.8: Representative BSE images of sample E-48 2244.39	55
Fig. 4.2.9: Representative BSE images of sample E-48 2246.46	56
Fig. 4.2.10: Representative BSE images of sample O-47 1886.68	57
Fig. 4.4.1: Representative BSE images of clay coats	62
Fig. 4.4.2: Representative BSE images of clay coats	63
Fig. 4.5.1: Representative BSE images of coated grains	65
Fig. 4.5.2: Representative BSE images of coated grains	66
Fig. 4.6.1: QFL diagram using fields and nomenclature from Folk (1968)	67
Fig. 4.6.2: Zoom in of QFL diagram only showing analyses above 75 % quartz, using fields and nomenclature from Folk (1968)	67
Fig. 4.6.3: QmFLt diagram using paleotectonic fields from Dickinson et al. (1983)	68
Fig. 4.6.4: Mudstone geochemistry diagrams indicating provenance	70
Fig. 4.6.5: Alt apfu vs K apfu variation in muscovite with fields from Reynolds et al. (2010)	71
Fig. 4.6.6: Chemical variation in biotite	72
Fig. 4.6.7: Chemical variation in spinel/chromite with fields from Tsikouras et al. (201 and Pe-Piper et al. (2009)	1), 73
Fig. 4.6.8: Discrimination diagram for spinel/chromite analyses. Fields from Pearce et (2000)	al. 74
Fig. 4.6.9: Chemical variation in garnet	75
Fig. 5.1.1: Cartoon of the relatives distribution of the Glaucony and Verdine Facies	76
Fig. 5.1.2: Cartoon of different environments in which authigenic clays form	77
Fig. 5.1.3: Cartoon demonstrating the evolution of glaucony, with X-ray maps (A-E) corresponding to average potassium of the grain	80
Fig. 5.1.4: Representative microphotographs of glaucony/glauconite from sample 3H- 1613.63	58 83
Fig. 5.1.5: Representative microphotographs of glaucony/glauconite from sample 3H-1804.26.	58 84
Fig. 5.1.6: Representative microphotographs of glaucony/glauconite from sample 3H-2001.33	58 85
Fig. 5.1.7: Representative microphotographs of glaucony/glauconite from sample 5H-1577.78	58 86
Fig. 5.1.8: Representative microphotographs of glaucony/glauconite from sample 5H- 1906.89	58 87

Fig.	5.1.9: Potassium peak X-ray maps normalized to 140 X-ray counts	\$8
Fig.	5.2.1: Isopach map of the Scotian Basin showing possible paleoriver paths	0

List of Tables

Table 2.1: Summary of samples and activities performed	5
Table 4.3.1: General summary of lithic clasts	58
Table 5.1.1: EDS geochemical analyses of glaucony used in Fig. 5.1.9	89
Table 5.2.1: Summary table of possible source terranes for each of the studied wells	91

List of Appendices

Appendix 1: SEM-BSE images and EDS mineral analyses for the studied samples .	99
Appendix 2: Whole rock analysis of selected mudstone samples	442
Appendix 3: X-ray maps of analyzed glaucony / glauconite grains	445

Chapter 1: Introduction

The Scotian Basin is a large sedimentary basin located offshore Eastern Canada (Fig. 1.1.1). It is a passive continental margin basin that initially formed during the rifting of the North Atlantic Ocean in Late Triassic times (Wade and MacLean, 1990). The Scotian Basin is sub-divided into three main subbasins: Shelburne Subbasin, Sable Subbasin, and Laurentian Subbasin. The Sable Subbasin is the key focus of this study.

Most of the oil and gas discoveries in the Scotian Basin have been from sandstones that are Mesozoic in age (Wade and MacLean, 1990). The quality of sandstone reservoirs in the Scotian Basin is important to understand because it reduces exploration risk related to reservoir quality. The samples studied in this project come from the West Sable oil and gas field, which has sandstone reservoirs in the Albian-Cenomanian Logan Canyon Formation (CNSOPB, 2000). The provenance and diagenesis of these samples have been studied. The results may give insight into reservoir quality of the Upper Cree, Sable, and Marmora Members of the Logan Canyon Formation.

Figure 1.1.1: Map of the Scotian Basin showing the location of studied wells. Modified after Weston et al. 2012.

1.1 Geological Setting

The Sable Subbasin developed from rifting during the Late Triassic. This rifting was followed by clastic sedimentation of the Eurydice Formation, and then was overlain by an evaporitic sequence known as the Argo Formation (CNSOPB, 2000) (Fig. 1.1.2). Further sedimentation of carbonate, sandstone and shale packages occurred in the Middle Jurassic. The overlying sedimentation, Late Jurassic to Early Cretaceous, consists of fluvial and deltaic sandstones and shales, which make up the Missisauga and Logan Canyon formations (Fig. 1.1.2). Termination of the deltaic sequence occurred in Late Cretaceous times and is marked by Dawson Canyon Formation shales and a carbonate facies known as the Wyandot Formation (CNSOPB, 2000) (Fig. 1.1.2). This prolonged subsidence and accommodation of sediments is related to the expulsion of Argo salt and the creation of salt diapirs (Kendell, 2012). This sequence is then overlain by Tertiary coastal and marine clastic rocks (CNSOPB, 2000) (Fig. 1.1.2).

Figure 1.1.2: Stratigraphic column of the Scotian Basin. Rectangle shows the interval of the studied samples. Modified from Weston et al. (2012).

The West Sable oil and gas field is located on the western tip of Sable Island, in the Sable Subbasin. The studied samples come from the Logan Canyon Formation, which is Albian to Early Cenomanian in age. The Logan Canyon Formation consists of four members: Naskapi, Cree, Sable, and Marmora. Naskapi and Sable are shales, Cree and Marmora are fining upwards sands interbedded with shales (Wade and MacLean, 1990).

Starting in Late Jurassic times, sedimentation shifted to a mixed energy delta complex around the Sable Island area (CNSOPB, 2000). This deltaic progradation stopped during the Aptian, when a large marine transgression occurred, depositing the Naskapi Member. The Naskapi Member consists of yellow-brown to green-grey to redbrown shales with interbedded silty and sandy intervals (Wade and MacLean, 1990). It is believed that the depositional environment of the Naskapi Member is tidal flat to marginal marine (Wade and MacLean, 1990). Renewed deltaic progradation resulted in deposition of the Cree Member. The Cree Member consists of interbedded sands and shales. The base of the Cree Member contains medium-coarse grained sands that fine and thin upwards, with the top consisting of fine-medium grained sands (Wade and MacLean, 1990). This was followed by a rapid marine transgression, which resulted in the deposition of the Sable Member. The Sable Member consists of mostly shale, with some thin sandstone and siltstone beds (Wade and MacLean, 1990). This is then overlain by the Marmora Member, which is similar to the Cree Member and consists of upward fining and thinning sands.

The wells drilled in the West Sable oil and gas field, pass through a series of faults resulted from the upward doming of a large salt diapir that belongs to the Argo Formation. The targeted areas were fault blocks on the flanks and crest of the salt dome

3

(CNSOPB, 2000). The West Sable gas reservoirs are located in the Dawson Canyon and Logan Canyon Formations and the oil reservoirs are only located in the Marmora Member of the Logan Canyon Formation (CNSOPB, 2000).

It has been suggested that the Sable River was bringing sediments into the central part of the Scotian Basin, draining from the Labrador rift through the Gulf of St. Lawrence (Zhang et al., 2014). The same river is also thought to have brought in Upper Paleozoic as well as Meguma Terrane sediments (Zhang et al., 2014). This occurred from Late Jurassic to Early Cretaceous times.

1.2 Well History

The Sable Island wells (1H-58, 2H-58, 3H-58, 5H-58, E-48, and O-47) were drilled off of the same platform near the western tip of Sable Island, with the field being discovered in 1971 (CNSOPB, 2000). They were drilled by Mobil-Tetco and completed between 1971 and 1973. Primrose 1A-A41 was drilled by Shell and is located approximately 64 km from Sable Island. Drilling was completed in 1973.

Chapter 2: Methods

2.1 Conventional Core and Sampling

The studied samples (Table 2.1) come from conventional core. These cores are stored at the Geoscience Research Centre of the Canada Nova Scotia Offshore Petroleum Board (CNSOPB) in Dartmouth, Nova Scotia. During sampling, it was more favourable to obtain a piece of rubble if there was rubble, instead of cutting a thin slab off the back of the core. The samples were restricted to less than 30 g. The 24 samples taken were mostly targeted in sandy sections of the core, as in this way provenance could best be studied.

10010 2010 2		Jiew y	er sumpre		•• p •				
Well	Core	Box	Depth (m)	Lithology	PTS	WRA	SEM	Appendix No.	Notes
Primrose 1A-A41	5	8	1616.39a	Shale		~			Washed
Primrose 1A-A41	5	8	1616.39b	Shale		~			Unwashed
Primrose 1A-A41	6	4	1620.49	Shale		~			
Primrose 1A-A41	6	6	1623.34	Shale		~			
Sable Island E-48	1	2	2244.39	Sandstone	~	~	~	1-1	
Sable Island E-48	1	4	2246.46	Sandstone	~	~	~	1-2	
Sable Island E-48	1	7	2249.76	Shale	~				
Sable Island 2H-58	1	3	1600.27	Sandstone	~		~	1-3	
Sable Island 3H-58	1	1	1613.63	Sandstone	~		~	1-4	
Sable Island 3H-58	1	4	1618.73	Sandstone		~			
Sable Island 3H-58	2	2	1798.89	Sandstone	~				
Sable Island 3H-58	2	6	1804.26	Sandstone	~	~	~	1-5	
Sable Island 3H-58	3	2	1994.66a	Shale		>			Washed
Sable Island 3H-58	3	2	1994.66b	Shale		~			Unwashed
Sable Island 3H-58	3	3	1996.11	Shale		~			WRA will contain cleaned + uncleaned sample
Sable Island 3H-58	3	4	1998.03	Sandstone	~	~			
Sable Island 3H-58	3	5	1999.72	Shale		~			

Table 2.1: Summary of samples and activities performed.

Sable Island 3H-58	3	6	2000.72	Sandstone	~				
Sable Island 3H-58	3	6	2001.33	Sandstone	~	~	~	1-6	
Sable Island 5H-58	1	5	1469.12	Sandstone	~	~			Laminated beds of mud + sand. Still sent for WRA
Sable Island 5H-58	2	4	1577.78	Sandstone	~		~	1-7	
Sable Island 5H-58	3	1	1903.66	Sandstone	~	~	~	1-8	
Sable Island 5H-58	3	2	1905.15	Shale		~			
Sable Island 5H-58	3	2	1905.15a	Shale	~				Sandstone + Mudstone
Sable Island 5H-58	3	2	1905.15b	Shale	~				Shale
Sable Island 5H-58	3	3	1906.89	Sandstone	~		~	1-9	
Sable Island O-47	1	5	1886.68	Sandstone	~		~	1-10	Sandstone + Mudstone
Sable Island O-47	1	7	1890.17	Shale	~	~			

2.2 Lithofacies Description

Lithofacies are interpretations from the studied section of core that relates to a past depositional environment. Lithofacies were identified by describing the core in detail at the CNSOPB. The definition of lithofacies used is after Gould et al. (2011). This will be expanded on in Chapter 3 when comparing lithofacies to parasequences, as in Gould et al. (2012).

2.3 Sampling Preparation

2.3.1 Polished Thin Sections

The polished thin section (pts) preparation started at the Geology Lab in the Department of Geology at Saint Mary's University. This involved taking the slabs of rock obtained from the CNSOPB and trimming them to the appropriate size of a thin section. Some samples had to be impregnated in epoxy in order to stop them from breaking apart. The slabs were washed and dried, and they were then sent to Vancouver Petrographics Ltd, Vancouver, BC in order to produce 30 µm thick polished thin sections. Of the 18 thin sections made, 10 of them were selected for further analysis by petrographic microscope and scanning electron microscope (SEM). The selection was based on quality of the sandstone (grainsize, cement, matrix, and muddy intervals if present). The selected samples were then carbon coated using Leica EM CED030 desktop carbon coater before analysis using the scanning electron microscope (SEM).

2.3.2 Whole Rock Analysis

Whole rock analysis (WRA) preparation started again at the Geology Lab in the Department of Geology at Saint Mary's University. Rock slabs that were obtained from the CNSOPB were cut into small thin chips, and then were washed and brushed with deionized water in order to remove dirt and other contaminants. The chips were then crushed and homogenized. A subsample from each sample was sent to Activations Laboratories Limited for major and trace element analysis according to their Code 4Lithoresearch. The analyses were performed by an ICP-MS package.

2.4 Scanning Electron Microscope (SEM)

A Tescan Mira 3 LMU Variable Pressure Schottky Field Emission Scanning Electron Microscope (FE-SEM) was used in this study. The SEM has a maximum resolution of 1.2 nm at 30 kV and is equipped with an INCA X-max 80 mm² Silicon Drift Detector (SDD) energy dispersive spectroscopy (EDS) for chemical analyses of minerals, with a detection limit > 0.1 wt. %. The beam size was set at 6.4 nm. However, only minerals that were greater than 10 μ m in size were analyzed due to the much larger X-ray generation volume. X-rays are produced due to the interaction of electrons with the mineral in sample. This causes the diameter of the X-rays generation to be larger than the beam size. A pure cobalt sample was used to calibrate the EDS detector before analysis. Counting times for each spot analysis was approximately 60 seconds. These analyses were completed at the Regional Analytical Centre at Saint Mary's University.

Elemental X-ray mapping was also performed on some of the selected samples. This was done in order to separate mineral phases in very fine-grained occurrences. Mapping acquisition on the SEM was run at a Map Dwell of $17500 - 20000 \ \mu s$ (3.82 -4.37 hours per site of interest), at a maximum resolution of 1024 x 768 pixels. This was completed using Oxford Instrument's Mapping package within the INCA program. Later, the X-ray maps were quantified using Oxford Instrument's QuantMap package within INCA. This quantified X-rays for each element present (volatile free) were normalized and then false coloured. The resulting quantification maps have a maximum resolution of 512 x 384 pixels. X-ray mapping of compound percent, weight percent, and peak area were used to best show the different mineral phases. Compound percent represents the weight percent of each element expressed as an oxide, which is most useful for mineral identification. Weight percent is the elemental percent of each element. It is expressed by the equation: Weight percent = Apparent concentration / Intensity correction. Peak area is the area under the curve of the element's X-ray peak at that given location. The value is not normalized and is useful because it gives all the data including background. It also easily shows the location of voids, cracks, and fractures.

2.5 Counting of Detrital Minerals from BSE images

Once the detrital minerals of the studied samples were identified using EDS geochemical analyses and Back-Scattered Electron (BSE) images all minerals were counted. Minerals of the same brightness (density) in BSE images are most likely the same mineral as the one identified by the EDS analysis. This is because the brightness of

a mineral in BSE images depends on the average atomic number of all elements that make up that mineral. Using this principle and the mineral chemical analyses for each polished thin section, detrital minerals were then counted. Summaries of the detrital mineral counting from BSE images were plotted as pie diagrams located on the individual stratigraphic columns in Chapter 3.

2.6 Chemical Fingerprinting

The chemical analyses of some mineral for all studied samples were plotted on appropriate discrimination diagrams, in order to identify mineral varieties, which may be of provenance significance. Only pure analyses of minerals were used. The detrital minerals used for plotting were: biotite, garnet, muscovite, and spinel. The analyses were recalculated to 100 % and binary plots were made using MinPet software (section 2.8).

2.7 Mineral Identification

2.7.1 Definitions Applied to Clastic Sedimentary Rocks

<u>Coated grains:</u> Consist of concentric layers, usually fine-grained and made up of both detrital and seafloor diagenetic minerals such as clays, chlorite, siderite, phosphates, etc.

<u>Cement:</u> Any new mineral that forms in pore spaces during diagenesis.

<u>Fe-chlorite:</u> Diagenetic very fine-grained chlorite that appears bright in BSE images and usually Fe-rich.

<u>Framework Grains:</u> Either detrital (extrabasinal source) or intraclast (intrabasinal source) grains that make up the skeleton of the rock.

<u>Glauconite:</u> forms during seafloor diagenesis and is similar to an intraclast (transported), and makes up some of the framework grains.

<u>Glaucony:</u> Also forms during seafloor diagenesis, but is the intermediary between Fe-smectite and end-member glauconite.

<u>Intraclast:</u> Any previously deposited sediment that has been eroded out of a clast. It is usually fine-grained or is cemented by seafloor carbonate or phosphate. <u>Lithic Clasts:</u> Are rock fragments that can be made up of more than two different minerals. Often displays the same texture as the source rock.

<u>Matrix</u>: Any fine-grained clastic material that is deposited between detrital minerals, or mixed in with bioturbation (from interbedded muds). Matrix is restricted to sandstones and conglomerates. Mudstones are completely made up of matrix.

<u>Nodule:</u> irregularly rounded knot of minerals or mineral aggregate, which may be an intraclast or may result from diagenesis.

<u>Pellets:</u> fecal pellet produced by an organism. Typically characterized based on its habit (i.e. is it circular or oval shaped), and is usually fine-grained. It may be glauconite in oxidizing environments. In reducing environments, it may be odinite, which then alters to berthierine, and eventually chamosite during burial.

2.7.2 Mineral and Mineral Mixtures Identification

All minerals in the studied samples were identified using both the petrographic microscope and their EDS chemical analyses. Such analyses were compared to analyses published in Deer et al. (1992). Minerals identified in this study were abbreviated after Whitney and Evans (2010), and as such are presented in the tables of Appendix 1. If there was a mixture of more than one mineral, careful examination of the BSE image and the

EDS chemical analyse was performed, which allowed for the determination of the mineral phases that made up the mixture.

In such mineral mixtures, illite was differentiated from muscovite using the grain size in BSE images. Both minerals typically have at least 3 wt. % K₂O. Anything very fine-grained (< 30 μ m) in the matrix or cement that contained > 18 wt. Al₂O₃ was considered to be illite. Muscovite was anything larger than > 30 μ m and contained > 25 wt. % Al₂O₃, and basal cleavage planes were usually seen in BSE images.

Chlorite was classified based on its appearance in BSE images. Well-formed grains with basal cleavage planes were considered to be detrital. Chlorite which appeared to be fine-grained, fibrous, or coating other mineral grains was considered to be diagenetic. Detrital chlorite also occurs as an alteration product of detrital mica.

Muscovite and K-feldspar were distinguished from one another using the EDS geochemical analysis for K_2O and Al_2O_3 . This was useful if the analysis was a mixture that was made up of more than one mineral. If the ratio of Al_2O_3 to K_2O was approximately 1.5, then the mineral was K-feldspar. If the ratio was approximately 3 then the mineral was muscovite.

Glauconite was identified based on its habit as well as its chemistry. Glauconites in the studied samples are very fine-grained, contain silt-sized inclusions of minerals and are usually comprised of $Al_2O_3 < 12$ %, $K_2O > 6$ %, and FeO up to 25 %. However, there are grains that have more Al_2O_3 , less K_2O , and more FeO. At this time, those grains are referred to as glaucony. Nevertheless, chemistry alone was not enough to distinguish glauconite from glaucony. An optical microscope was used in order to tell the different types of glauconite that were present based on Eder et al. (2007). X-ray maps were also created in order to help with determination. The glaucony – glauconite problem will be explored more thoroughly in Chapter 5.1.

2.8 Software Used

CorelDRAW was the main software used for this thesis. It allowed for the development of figures and annotated images including those in the appendices. Appendix construction was aided by the use of scripts (macros) created by Dr. Xiang Yang, Regional Analytical Centre, Saint Mary's University. MinPet was used for the creation of binary plots, and ternary diagrams. Grapher 8 was used for the creation of some binary plots for well data, as well as pie diagrams. Logplot 7 was used for the construction of stratigraphic columns for each well. These columns used similar symbols as in Gould et al. (2011).

Chapter 3: Lithofacies and Depositional Environments

3.1 Stratigraphy

Stratigraphy for the studied wells was based on data from the well history reports. Formation and member depth picks are from Wade and MacLean (1993). Figures 3.1.1 and 3.1.2 show gamma-ray plots for the studied area for the Logan Canyon Formation above the Naskapi Member, and the location of the cores. Formations and members are colour-coded in these figures. Similar patterns in the gamma-ray logs have been correlated between wells. Two of the studied cores are located in the Cree Member, one is located in the Sable Member, and the remaining six cores are located in the Marmora Member. The Primrose 1A-A41 cores are located in the Wyandot Formation.

Primrose 1A-A41

Figure 3.1.1: Correlation based on gamma-ray logs of studied wells from Primrose 1A-A41 to Sable Island 2H-58.

Sable Island 2H-58

Figure 3.1.2: Correlation based on gamma-ray logs of studied wells from Sable Island 2H-58.to Sable Island O-47.

3.2 Introduction to Lithofacies

Understanding lithofacies is important in determining depositional environments. The description and type of lithofacies for this study are as in Gould et al. (2011), and include the depositional environment. The authors in that study have identified 11 different facies, based on: lithology, primary structures, and biogenic influence. Below is a summary of each major facie and their respective depositional environment.

Facies 0: Consists of thin bedded mudstone and sandstone with uncommon to absent bioturbation suggesting deposition in river mouth to shoreface, as well as prodeltaic turbidites. *Subfacies: 0g* (generally fine sandstone, absent to sparse

bioturbation, lacks interbedded mudstone); ∂b (fine sandstone, siltstone, mudstone (sandstone > mudstone), sparse to uncommon bioturbation); ∂m (mudstone, siltstone, very fine sandstone (mudstone >> sandstone), uncommon bioturbation); ∂a (mudstone, with coarse and fine grained sandstone, absent to sparse bioturbation).

Facies 1: Consists of mudstone with <5% fine sandstone or siltstone, with abundant to complete bioturbation suggesting deposits in an open shelf environment. No subfacies.

Facies 2: Consists of sandstone and mudstone deposited in a shoreface environment with sparse to complete bioturbation. *Subfacies: 2b* (mudstone, with 10-60% fine sandstone, common to moderate bioturbation); *2c* (60-95% fine sandstone, with lesser mudstone, common to complete bioturbation); *2o* (fine sandstone, with sparse to moderate bioturbation, no mud drapes); *2x* (fine-rare medium sandstone, cross-bedding present, sparse bioturbation, no coal or mud drapes).

Facies 3: Consists of an open shelf transgressive setting, conglomerates, sandstones, mudstones, or limestones. *Subfacies: 3x* (sandy mudstone (10-50% sand), moderate to complete bioturbation); *3y* (muddy sandstone (50-90% sand), moderate to complete bioturbation); *3i* (intraclast conglomerate, may include shells or early siderite); *3c* (lithic conglomerate, may include shells, generally rare); *3f* (firm ground – rare); *3l* (bioclastic limestone); *3o* (oolitic limestone and sandstone).

Facies 4: Consists of a tidal estuary to fluvial depositional environment of mostly sandstone. *Subfacies: 4o* (fine sandstone, with sparse to common bioturbation, mud drapes present); *4a* (medium to coarse sandstone, lesser mudstone, absent bioturbation, present coal laminations or intraclasts); *4g* (medium to coarse sandstone, possible lag at

16

base, <5% mudstone, mud drapes present, absent to sparse bioturbation); 4x (medium to coarse sandstone, mudstone intraclasts, may have lag at base, coal intraclasts, bioturbation and mud drapes absent); 4n (mudstone, siltstone, very fine sandstone (sandstone > mudstone), absent or sparse bioturbation).

Facies 5: Consists of tidal flats and channels mixed sand and mud (sand > mud). The depositional environment varies between subfacies. *Subfacies: 5m* (>75% sandstone (usually fine sands), variable bioturbation and mud drapes, deposition in mixed flat-intertidal environment); *5s* (>95% sandstone (usually fine sands), possible cross-bedding, shells, sparse to moderate bioturbation, deposited in sand flats in intertidal to subtidal environments); *5b* (20-75% sandstone (usually fine sands), destroyed primary structures, abundant to complete bioturbation, may have shells and subvertical burrows, depositional environment in mixed flats-intertidal zones); *5c* (medium sandstone, absent bioturbation, deposited in tidal channel-subtidal zone).

Facies 6: Consists of tidal flat mixed mud and sand (mud > sand). Depositional environment varies between subfacies. *Subfaces: 6s* (60-75% mudstone, burrows absent to common, possible coarser sands in burrows, deposited in mixed flat-intertidal zone); *6b* (>80% mudstone, with very fine-fine sandstone, common to complete bioturbation, possible whole or fragmented oyster shells, deposited in mudflat-intertidal zone); *6m* (>95% mudstone, subvertical-vertical burrows cut discontinuous laminations, absent to common bioturbation, may have subvertical to horizontal burrows, deposited in mudflat-intertidal zone).

Facies 7: Consists of lignite, or carbon-rich mud, with rootlets beneath it suggesting deposition in a tidal marsh environment. No subfacies.

17

Facies 8: Consists of mudstone with rare siltstone, absent to sparse bioturbation, however, it can be locally intense, deposited in lagoon environment. No subfacies.

Facies 9: Consists of thick bedded sandstones deposited in river mouths to prodelta turbidites. *Subfacies: 9g* (very coarse to fine grained sandstones, some graded beds, absent to moderate bioturbation at the top of beds, possible plant detritus, possible reworked costal deposits); *9s* (fine sandstone with minor mudstone, moderate bioturbation at top of beds, possible plant detritus, possible reworked coastal deposits).

Facies 10: Consists of deformed sediments in which the original facies cannot be recognized. *Subfacies: 10f* (mudstone to muddy sandstone, massive texture, horizontal foliation); 10g (sandstone, liquefied beds); *10s* (sandstone, siltstone, mudstone, sheared and foliated beds, variable bioturbation).

3.2.1 Sable Island 2H-58 Well Facies

The Sable Island 2H-58 well core extends from 1596.54 m depth to 1603.76 m depth (Fig. 3.2.3). The core consists of four main lithologies:

1600.95 m to 1603.76 m: there is interbedded mudstone and sandstone that are well bioturbated. There are also some siderite concretions. There is also the presence of a vertical burrow at 1602.96, and mudstone interbedding increases near the base of the interval.

1600.12 m to 1600.95 m: there is interbedded mudstone and fine-lower red sandstone. Sandstone appears more dominant. The interval is well bioturbated. It becomes richer in mud near the base of the interval, and syn-sedimentary deformation is seen (Fig. 3.2.4).

1598.70 m to 1600.12 m: the interval is predominantly made up of fine-lower sands. There is also the occasional mud layer. It is well bioturbated.
1598.70 m to 1596.54 m: there is interbedded mudstone with some sandstone. There is also some shells and siderite concretions. It grades into more sand dominated (fine-lower) towards the base. The interval is also well bioturbated. The lithofacies for this core have been divided into seven different facies (Fig. 3.2.3) and suggest an estuarine-tidal flat depositional environment.

Figure 3.2.4: Synsedimentary faulting from Sable Island 2H-58 1600.25m.

3.2.2 Sable Island 3H-58 Well Facies

The Sable Island 3H-58 well cores extend from 1613 m to 1621.81 m (core 1), 1796.18 m to 1803.80 m (core 2), and 1993.39 m to 2001.40 m (core 3). Core 1 has been split into six different lithologies (Fig. 3.2.5):

1619.74 m to 1621.81 m: This interval consists of fine-lower sands that appear to contain iron oxidation. It coarsens down until \sim 1620.82 m (increasing shell content) (Fig 3.2.5.1). At 1620.70 m there are reworked shell fragments. Crossbedding becomes more dominant with depth. Further down the core there are green, red, and clean sands (fine-lower to very fine-lower). The green sands are probably glauconitic sands. There is also slight mud draping and some of the sand beds contain bioturbation and rare shells.

Figure 3.2.5.1: 3H-58 Core 1 (A) Interval of well bioturbated fine sands at 1618.41m. (B) Vertical burrow partially filled with shells at 1616.08m.

1617.68 m to 1619.74 m: This interval consists of fine sands with slight mud draping. The interval is well bioturbated and with cross-bedding. Some of the sand patches / beds are fine-lower in size. There are some scattered shells.

1617.43 m to 1617.68 m: This interval contains abundant shells. It also consists of fine sands and some large ?siderite concretions. The sands appear to have been a green colour (suggesting the presence of glauconite), now they are oxidized. There are also a few large bivalve fossils.

1615.91 m to 1617.43 m: This interval consists of fine sandy inclined bedding. There are short intervals of fine-upper to fine-lower clean sands. The inclined beds are more green in colour (?glauconite), and range from fine-upper to fine lower.

1613.00 m to 1615.91 m: This interval consists of fine sands with scattered shells.It also contains some vertical burrows. Sands are slightly green, oxidizing to red.Generally it is a sandy mudstone.

Based on the six lithofacies (Figure 3.2.5) in core 1, the depositional environment of the sediments in this core was from an estuarine-tidal flat.

Figure 3.2.5: Stratigraphic column for core 1 from Sable Island 3H-58 well. Formation and member picks are from Wade and MacLean (1993). Pie diagram shows modal distribution of detrital minerals present, excluding quartz. Gamma ray plot is not depth corrected. Core 2 consists of three different lithologies (Fig. 3.2.6):

1800.33 m to 1804.59 m: This is a mud dominate interval with slight sandstone interbedding. The sands grade into darker coloured sands (red/green), with some bioturbation. Then the core transitions into more sandstone (fine-lower), with less bioturbation and mudstone interbeds. It then grades into muds again, with lots of bioturbation, and back into very fine-lower sandstone with rare mudstone. There are also some large siderite concretions.

Figure 3.2.6.1: 3H-58 Core 2. Vertical burrow at 1802.10m.

1796.85 m to 1800.33 m: This interval consists of fine-lower mostly green (?glauconite) sands. There is abundant bioturbation. The interval is interbedded with mudstone. Rare vertical burrows. It then grades into more sand, and then back into more mud. It contains thick sand beds, mud drapes, and lenticular bedding.

1796.19 m to 1796.85 m: This interval consists of rubble that is made up of fine-lower sands. Bioturbation is rare.

Core 2 has also been divided into four different lithofacies (Fig. 3.2.6), which suggests that the depositional environment is a tidal flat.

Figure 3.2.6: Stratigraphic column for core 2 from Sable Island 3H-58 well. Formation and member picks are from Wade and MacLean (1993). Pie diagram shows modal distribution of detrital minerals present, excluding quartz. Gamma ray plot is not depth corrected. Core 3 consists of three different lithologies (Fig. 3.2.7):

2000.64 m to 2001.40 m: This interval consists of medium–lower sands that appear to be slightly laminated with some siderite concretions. This then grades into more concretions and bioturbations, then back into fine-lower sands. 1999.77 m to 2000.64 m: The base of this interval is a large siderite concretion, which then grades into cleaner sands that become laminated, with few mud laminations. The core then grades into slightly coarser sands (medium to fineupper), with some green (?glauconite) laminated beds.

1993.39 m to 1999.77 m: This interval consists of interbedded sandstone and mudstone. It is more mud dominated at the top, grading into sand dominated. It also contains some siderite concretions and bioturbation. In the sandy section of the interval, it is fine-lower in grain size. In the mud dominated part at the bottom of the interval, there are abundant shells, and some bioturbation and concretions. Based on the seven identified lithofacies in core 3 (Fig. 3.2.7), the sediments in this core appear to have been deposited in a prodeltaic setting.

Figure 3.2.7: Stratigraphic column for core 3 from Sable Island 3H-58 well. Formation and member picks are from Wade and MacLean (1993). Pie diagram shows modal distribution of detrital minerals present, excluding quartz. Gamma ray plot is not depth corrected. By comparison to Gould et al. (2012), the depositional environment of core 1 resembles that of an estuarine-tidal flat, core 2 of a tidal flat, and core 3 partially resembles a prodeltaic system. The overall interpretation to this well is that deposition started in a prodeltaic setting. Over time, sedimentation changed, allowing for tide dominated processes to occur. This led to the estuarine-tidal flat depositional setting seen in the higher stratigraphic cores.

3.2.3 Sable Island 5H-58 Well Facies

The Sable Island 5H-58 well cores extend from 1463.04 m to 1472.21 m (core 1), 1572.76 m to 1580.09 m (core 2), and 1903.48 m to 1912.39 m (core 3). Core 1 has been split into four different lithologies (Fig. 3.2.8):

1469.93 m to 1472.21 m: This interval consists of interbedded mudstone with very fine-lower sandstone. It appears to be a mud dominated interval. There is some bioturbation, and it grades into more sandstone dominated. Siderite concretions are common and there are rare reworked shells.

1468.93 m to 1469.93 m: This interval consists of interbedded mudstone and sandstone that grades downwards into more mud dominate. The interval is well bioturbated and there are rare siderite concretions.

1467.10 m to 1468.93 m: This interval consists of mostly mudstone with some fine sand beds. It is well bioturbated, there are large siderite concretions, and shells may be reworked. The interval may also contain cross-bedding.

1463.04 m to 1467.10 m: This interval consists of interbedded mudstone and sandstone that becomes more mud dominated downwards. There are rare shells, some siderite concretions, and wood fragments. It is also well bioturbated.

Figure 3.2.8.1: 5H-58 Core 1. Large siderite concretion at 1464.85m.

Based on the ten different lithofacies identified for core 1 (Fig. 3.2.8), the depositional setting for the sediments appears to resemble a tidal flat.

Figure 3.2.8: Stratigraphic column for core 1 from Sable Island 5H-58 well. Formation and member picks are from Wade and MacLean (1993). Pie diagram shows modal distribution of detrital minerals present, excluding quartz. Gamma ray plot is not depth corrected. Core 2 consists of four different lithologies (Fig. 3.2.9):

1578.84 m to 1580.09 m: This interval consists of interbedded mudstone and sandstone that appears to be more sand dominated. There appears to be leaching near the top of the interval. Lots of bioturbation is present, some vertical burrows?, and possible intraclasts.

1575.64 m to 1578.84 m: This interval consists of interbedded mudstone and sandstone. Lots of shells are present at the top of the interval. Gluconite appears to fill burrows / scours. There are also siderite concretions, and the interval grades downwards into cleaner sands until 1577.95 m. Then it becomes more mud dominated.

1574.89 m to 1575.64 m: This interval consists of mostly mudstone. There are some shells and possibly glauconite.

1572.77 m to 1574.89 m: This interval consists of interbedded mudstone and sandstone. Abundant bioturbation and the presence of vertical burrows. The interval grades into more mud dominated, and contains siderite nodules and reworked shells.

Based on the five different lithofacies identified in core 2 (Fig. 3.2.9), the depositional environment for the sediments in this core appears to be a shoreface setting.

Figure 3.2.9: Stratigraphic column for core 2 from Sable Island 5H-58 well. Formation and member picks are from Wade and MacLean (1993). Pie diagram shows modal distribution of detrital minerals present, excluding quartz. Gamma ray plot is not depth corrected. Core 3 consists of four different lithologies (Fig. 3.2.10):

1911.32 m to 1912.39 m: This interval contains rare shells and shaley layers. This then grades into fine-upper sands with some mud drapes. Then it grades into fine-lower to very fine-lower sands.

1909.48 m to 1911.32 m: This interval consists of interbedded mudstone and sandstone that become more sand dominated (very fine-lower to fine-lower). There are rare vertical burrows, most are horizontal. Erosional surfaces with scours are filled with medium –coarse sands. Some siderite concretions.
1904.58 m to 1909.48 m: This interval consists of interbedded mudstone and sandstone and starts off as more mud dominated, but grades into more sand dominated near the base. There are some small shells and siderite concretions. The glauconite that is present here borders facies 3, but grades into facies 2.
1903.48 m to 1904.58 m: This interval consists of fine-lower sands with some mud laminations. It appears to contain irregular tidal drapes. No shells or bioturbation has been seen.

Lithofacies for this core were classified into three different types (Fig. 3.2.10). The depositional environment of the sediments in this core was an estuarine-tidal flat.

Figure 3.2.10: Stratigraphic column for core 3 from Sable Island 5H-58 well. Formation and member picks are from Wade and MacLean (1993). Pie diagram shows modal distribution of detrital minerals present, excluding quartz. Gamma ray plot is not depth corrected.

Based on the ten lithofacies identified in core 1, the five lithofacies identified in core 2, and the three lithofacies identified in core 3, the depositional environment of this well appears to be an estuarine-tidal flat environment when compared to Gould et al. (2012). The general interpretation is that core 3 was deposited in an estuarine-tidal flat setting. Over time, sediment supply or sea level changed, which caused core 2 to be deposited in a shoreface setting. As more time passed, sediment supply changed again, and core 1 was deposited in a tidal flat setting.

3.2.4 Sable Island E-48 Well Facies

The Sable Island E-48 well core 1 extends from 2242.11 m to 2250.15 m. Core 1 has been split into eight different lithologies (Fig. 3.2.11):

2248.51 m to 2250.15 m: This interval consists of interbedded very fine to finelower sands and mud. There is some lenticular bedding, and rare vertical burrows. Abundant bioturbation is present, and leaching of greenish nodules.

2247.19 m to 2248.51 m: This interval consists of fine-upper sands with rare shells. There are no structures present here. Near the bottom of the interval there is a change to finer sands and thin beds of laminated sand and mud. There are also a few pieces of wood.

2246.44 m to 2247.19 m: This interval consists of fine-upper to medium sands and rare mud.

2245.88 m to 2246.44 m: This interval consists of fine-lower sands with siderite concretions.

2245.32 m to 2245.88 m: This interval consists of fine-lower sands with mud drapes, and horizontal burrows. There are erosion surfaces at 2245.63 m and 2245.72 m, and some small shells at the second erosion surface.

2245.11 m to 2245.32 m: This interval consists of fine-upper sands. This is a very rubbly interval.

2243.68 m to 2245.11 m: This interval consists of fine-lower sands with some mud draping and minor bioturbation. There are also some siderite concretions, and further down the interval there are some shells.

2242.11 m to 2243.68 m: This interval consists of fine-upper sands with siderite concretions / patches. This interval grades into finer sands near the base of the interval. *Ophiomorpha* trace fossils are present. The core appears to be tilted. Based on the ten identified lithofacies of this core (Fig. 3.2.11), the depositional environment of the sediments was an estuarine-tidal flat.

Figure 3.2.11: Stratigraphic column for core 1 from Sable Island E-48 well. Formation and member picks are from Wade and MacLean (1993). Pie diagram shows modal distribution of detrital minerals present, excluding quartz. Gamma ray plot is not depth corrected.

3.2.5 Sable Island O-47 Well Facies

The Sable Island O-47 well core 1 extends from 1882.14 m to 1898.90 m, with 8.05 m not recovered. Core 1 has been split into five different lithologies (Fig. 3.2.12): *1888.60 m to 1890.85 m:* This interval consists of interbedded mudstone and sandstone (very fine-lower) that is more mud dominated. There does not appear to be any bioturbation, and there are very small thin shells, and almost parallel

laminations.

1887.85 m to 1888.60 m: This interval consists of interbedded sandstone and mudstone. There is lenticular bedding and rare shells. The sands are very fine to fine-lower. The interval becomes more mud dominated towards the bottom. *1887.57 m to 1887.85 m:* This interval is more mud dominant with some sands and abundant bioturbation.

1886.42 m to 1887.57 m: This interval consists of interbedded very fine to finelower sands and mudstone. Lenticular bedding is present. There are also some vertical burrows and rare shells.

1882.14 m to 1886.42 m: This interval consists of very fine lower to fine-lower sands with lots of bioturbation. There are oyster-like shells, siderite concretions, a lenticular bed at 1883.54 m, and a vertical burrow at 1884.34 m. Possible reworked shells occur at 1884.80 m.

Based on the five identified lithofacies (Fig. 3.2.12), the sediments of this core were deposited in a shoreface-type environment. However, it is difficult to tell when compared with Gould et al. (2012).

38

Figure 3.2.12: Stratigraphic column for core 1 from Sable Island O-47 well. Formation and member picks are from Wade and MacLean (1993). Pie diagram shows modal distribution of detrital minerals present, excluding quartz. Gamma ray plot is not depth corrected.

3.2.6 Primrose 1A-A41 Well Facies

The Primrose 1A-A41 well cores extend from 1607.82 m to 1616.96 m (core 1), and from 1616.96 m to 1624.58 m (core 2). The lithology for this well has not been described for this project. However, the lithofacies from Gould et al. (2011) have been used, noting that the facies model does not completely fit with this well (Figs. 3.2.13, 3.2.14). The lithofacies for the cores 1 and 2 appear to be facies 1 (shelf deposition), but they could also be classified as facies 3 (condensed unit on the shelf).

Figure 3.2.13: Stratigraphic column for core 1 from Primrose 1A-A41 well. Formation and member picks are from Wade and MacLean (1993). Pie diagram shows modal distribution of detrital minerals present, excluding quartz. Gamma ray plot is not depth corrected.

Figure 3.2.14: Stratigraphic column for core 2 from Primrose 1A-A41 well. Formation and member picks are from Wade and MacLean (1993). Pie diagram shows modal distribution of detrital minerals present, excluding quartz. Gamma ray plot is not depth corrected.

3.2.7 Summary

All Sable Island wells appear to have a very similar depositional environment, which is expected since they are all within a few kilometres of each other. Their depositional environment appears to be an estuarine-tidal flat, with minor variations ranging to shoreface and prodeltaic in some of the cores.

Chapter 4: Mineralogy and Petrography

4.1 Introduction to Collected Data

Ten polished thin sections were chosen for sandstone petrography utilizing BSE images and EDS analyses. This involved looking at the detrital minerals, cement, coated grains, and lithic clasts in order to determine provenance and diagenesis. Seven mudstone samples were chosen for WRA in order to determine provenance.

4.2 Description of Studied Samples

4.2.1 Sample 2H-58 1600.27

The detailed core description from the well history report (Dawson, 1973b) suggests that the sample is from an interval that consists of a very fine-grained, well sorted sandstone, with some shaley laminations. There is also some carbonaceous material, as well as slightly dirtier sandstone with silty, argillaceous material. SEM-EDS analysis (Fig. 4.2.1) indicates that the detrital minerals are: albite, chlorite, ilmenite, K-feldspar, muscovite, oligoclase, quartz, titania, and zircon. The diagenetic minerals in this sample are: chlorite, kaolinite, pyrite, siderite, and titania. Suturing is common between quartz and K-feldspar grains. Overgrowths are rare, and occur in quartz. Primary porosity within the sample appears to have been preserved (Figs. 4.2.1A,B). Some of the micas appear to have expanded along cleavage planes, allowing for diagenetic siderite to precipitate (Fig. 4.2.1C). Lithic clasts identified are argillites, metasiltstones, and granitoid rocks. The tentative paragenetic sequence is: kaolinite \rightarrow chlorite \rightarrow siderite, pyrite, titania. Drilling mud appears to have infiltrated the sample, contaminating it with barite (Fig. 4.2.1D).

44

Figure 4.2.1: Representative BSE images of sample 2H-58 1600.27. **A:** Framework grains consist of quartz and K-fledspar. The grains appear to be partially coated by

clays. There is also a microgranite lithic clast. **B:** Framework grains consist of quartz and K-feldspar. The grains are partially coated by clays. There is a matrix clast as well as a detrital zircon grain. Kaolinite is diagenetic and is patially filling primary porosity.

C: A partially dissolved biotite grain is altered, and has expanded along cleavage planes allowing late diagenetic siderite to precipitate.

D: This site consists of a silty clay coat around framework grains. The barite is probably from drilling mud.

4.2.2 Sample 3H-58 1613.63

The detailed core description from the well history report (Dawson, 1973c)

suggests that the sample is from an interval that consists of light green siltstone that is

slightly sandy and argillaceous. SEM-EDS analysis (Fig. 4.2.2) indicates that the detrital

minerals are: albite, Fe-chlorite, illite + chlorite, ilmenite, K-feldspar, monazite,

muscovite, quartz, titania, and zircon. The diagenetic minerals in this sample are:

glauconite, glaucony, pyrite, siderite, and titania. By examining the BSE images, the

sample appears to be a fine-medium grained sandstone with glauconitic cement (Fig.

4.2.2A). The glaucony grains appear to have been affected by volume reduction. Common substrates for glaucony appear to be pellets, detrital grains, and matrix or possibly intraclasts. There is a coated grain made up of multiple generations of siderite (Fig. 4.2.2D). Siderite is usually late diagenetic mineral, seen partially filling voids, and rims grains. The matrix appears to be made up usually of a fine-grained illite + chlorite mixture (Fig. 4.2.2C). The tentative paragenetic sequence is: glaucony \rightarrow glauconite \rightarrow pyrite, siderite, titania.

Figure 4.2.2: Representative BSE images of sample 3H-58 1613.63.

A: Framework grains consist of quartz and K-feldspar. The matrix consists of illite + chlorite, and diagenetic Fe-chl. Glaucony is early diagenetic, and siderite (position a) is probably late diagenetic. **B:** Framework grains consist of quartz and Fe-chlorite. The matrix contains illite + chlorite, and diagenetic Fe-chl. Glaucony is early diagenetic.

C: This site consists of a calcitic intraclast. The matrix is made up of illite + chlorite. There is also a perthite grain made up of K-feldspar that had its albite altered to Fe-chlorite. Siderite is late diagenetic and partially fills voids.

D: This site consists of a coated grain with multiple generations of siderite.

4.2.3 Sample 3H-58 1804.26

The detailed core description from the well history report (Dawson, 1973c) suggests that the sample is from an interval that consists of greenish grey very finegrained sandstone with local shale laminae. SEM-EDS analysis (Fig. 4.2.3) indicates that the detrital minerals are: albite, biotite, chlorite, illite + chlorite (matrix), ilmenite, K-feldspar, muscovite, quartz, spinel, and zircon. The diagenetic minerals in this sample are: Fe-chlorite, kaolinite, pyrite, and titania. By examining the BSE images, it appears that illite + chlorite make up the matrix (Fig. 4.2.3A), and form intraclasts. Micas appear to follow bedding planes. Chlorite is often seen along cleavages of either micas (muscovite or biotite) or K-feldspar. It is difficult to say if chlorite in such grains is detrital, or formed during burial diagenesis, or both. Glaucony has been seen replacing pellets (Fig. 4.2.3C), detrital grains, matrix, and lithic clasts. The tentative paragenetic sequence is: kaolinite, chlorite \rightarrow pyrite, titania. Halite appears to be a contamination from washing the core in salt water.

Figure 4.2.3: Representative BSE images of sample 3H-58 1804.26.
A: The framework grains are made up of quartz, K-feldspar, and ilmenite. The matrix is made up of illite + chlorite, and kaolinite.
B: This site consists of a peraluminous lithic clast, detrital quartz, and K-feldspar grains. The titania is late diagenetic, and the halite is most likely from washing the core with salt water.
C: The framework grains consist of quartz, K-feldspar, and ilmenite. The matrix is made up of illite + chlorite. Glaucony is early diagenetic.

4.2.4 Sample 3H-58 2001.33

The detailed core description from the well history report (Dawson, 1973c) suggests that the sample is from an interval that consists of white to light greenish grey, very fine-grained sandstone with calcareous cement. Contains some laminae of grey shale. SEM-EDS analysis (Fig. 4.2.4) indicates that the detrital minerals are: albite, chlorite, chromite, ilmenite, K-feldspar, monazite-(Ce), muscovite, oligoclase, and quartz. The diagenetic minerals are: calcite, chlorite, illite, glauconite, glaucony, kaolinite, pyrite, siderite, titania, and ?quartz overgrowths. By closely examining BSE images, the sample appears to be a medium-fine grained sandstone with calcitic cement

(Fig. 4.2.4A). Siderite commonly appears to partially fill secondary porosity (Figs. 4.2.4A,C). Carbonates tend to coat detrital grains. There is more than one generation of calcite. There is chloritized muscovite, which is probably detrital. There are also rare kaolinite booklets, that usually fill primary porosity. Glauconite/glaucony commonly occurs in various forms, sometimes displaying volume reduction (Fig. 4.2.4B). The tentative paragenetic sequence is: glaucony, glauconite \rightarrow kaolinite \pm chlorite \rightarrow calcite \rightarrow siderite \rightarrow pyrite, titania.

Figure 4.2.4: Representative BSE images of sample 3H-58 2001.33.

A: The framework grains are made up of quartz, K-feldspar, muscovite, and chloritized muscovite. The cement is made up of calcite, with late siderite filling secondary porosity. Muscovite commonly expands along cleavage allowing for siderite to precipitate.

B: This site consists of early diagenetic glaucony, and late diagenetic siderite partially cross-cutting the glaucony.

C: This site consists of a chloritized muscovite grain that is partially dissolved and expanded along cleavage, allowing for kaolinite to form.

4.2.5 Sample 5H-58 1577.78

The detailed core description from the well history report (Dawson, 1974) suggests that the sample is from an interval that consists of white to salt and pepper very fine to fine-grained sandstone that is interbedded with fine laminae of dark grey shale. SEM-EDS analysis (Fig. 4.2.5) indicates that the detrital minerals are: chlorite, chromite, ilmenite, K-feldspar, muscovite, quartz, titania, and zircon. From careful examination of BSE images, this sample is a mixture of sandstone and mudstone. Identification of diagenetic minerals and their paragenetic sequence is difficult, and was not performed on this sample. Quartz commonly displays overgrowths. Bioturbation is present in this sample. Suturing is ?rare between quartz and K-feldspar grains (Fig. 4.2.5A). Anhydrite seems to be the latest cement (Fig. 4.2.5B).

Figure 4.2.5: Representative BSE images of sample 5H-58 1577.78. **A**: The framework grains consist of quartz, K-feldspar, and muscovite. The matrix is made up of illite + chlorite.

B: This is a muddier part of the sample. It consists of some silt and sand sized quartz grains. There are also large glaucony grains, and late anhydrite appears to partially fill a fracture.

C: This is a sandier part of the sample. It consists of mostly quartz and K-feldspar. The matrix is made up of mixed clay minerals.

4.2.6 Sample 5H-58 1903.66

The detailed core description from the well history report (Dawson, 1974) suggests that the sample is from an interval that consists light brown medium to finegrained sandstone. SEM-EDS analysis (Fig. 4.2.6) indicates that the detrital minerals are: albite, ilmenite, K-feldspar, muscovite, oligoclase, quartz, titania, and zircon. The diagenetic minerals are: kaolinite, siderite, titania, quartz overgrowths, and K-feldspar overgrowths. Suturing is common between detrital minerals (K-feldspar and quartz) (Fig. 4.2.6B). The sample has a large amount of primary porosity preserved (Fig. 4.2.6C). The tentative paragenetic sequence is: kaolinite \rightarrow siderite, titania. Drilling mud has partially infiltrated this sample, contaminating it with barite (Fig. 4.2.6C).

Figure 4.2.6: Representative BSE images of sample 5H-58 1903.66.
A: The framework grains consist of quartz, K-feldspar, and ilmenite. There is also a granitic lithic clast. Kaolinite appears to partially fill primary porosity, as well as late diagenetic siderite.
B: The framework grains are quartz, K-feldspar, and ilmenite. There is also a granitic lithic clast. Kaolinite partially fills primary porosity.
C: The framework grains are quartz, K-feldspar, and zircon. Drilling mud (barite) appears to be a

4.2.7 Sample 5H-58 1906.89

contaminant.

The detailed core description from the well history report (Dawson, 1974) suggests that the sample is from an interval that consists of dark grey glauconitic-rich shale. SEM-EDS analysis (Fig. 4.2.7) indicates that the detrital minerals are: albite, apatite, chloritized biotite, chloritized muscovite, illite, ilmenite, K-feldspar, monazite-(Ce), muscovite, oligoclase, quartz, spinel, titania, and zircon. The diagenetic minerals are: calcite, Fe-chlorite, glauconite, glaucony, kaolinite, siderite, and titania. Closely examination of the BSE images indicates that the sample is most likely a fine-medium grained glauconitic sandstone (Fig. 4.2.7A). Detrital quartz and K-feldspar grains

commonly contain dissolution voids (Fig. 4.2.7D). Large fractures appear to be filled by calcite. Siderite commonly rims large calcite patches/cement (Fig. 4.2.7A). Siderite also occurs as veinlets. The tentative paragenetic sequence is: glaucony, glauconite \rightarrow kaolinite \rightarrow calcite \rightarrow siderite, titania. Halite (Fig. 4.2.7B) appears to be a contamination from the result of washing the core with salt water.

Figure 4.2.7: Representative BSE images of sample 5H-58 1906.89.

A: The framework grains are quartz and K-feldpsar. Glaucony is an early diagenetic mineral. Calcite and late siderite make up the cement.

B: The matrix is made up of illite + chlorite. The diagenetic minerals are kaolinite and later calcite.

Halite is the latest mineral to form but is a contaminant from washing the core. **C**: Glauconite forms between detrital quartz grains.

D: The framework minerals are quartz, K-feldspar, and muscovite. Glauconite is an early diagenetic mineral.

E: The matrix in this site is made up of illite + chlorite, which is being replaced by a calcite cement. Monazite appears to be diagenetic. Zircon appears fractured into many small detrital grains. Glauconite is the earliest diagenetic mineral to form.

4.2.8 Sample E-48 2244.39

The detailed core description from the well history report (Dawson, 1972a) suggests that the sample is from an interval that consists of light brown, fine to very finegrained sandstone, with very thin irregular laminations of shale. SEM-EDS analysis (Fig. 4.2.8) indicates that the detrital minerals are: albite, apatite, garnet, ilmenite, K-feldspar, muscovite, quartz, spinel, titania, and zircon. The diagenetic minerals are: chlorite, kaolinite, pyrite, siderite, titania, quartz overgrowths, and K-feldspar overgrowths. Examination of the BSE images shows siderite-cemented intraclasts (Fig. 4.2.8B), a titania veinlet cross-cuts Fe-rich chlorite (Fig. 4.2.8D). There is also suturing between quartz and K-feldspar (Fig. 4.2.8A). A fine-grained Fe-chlorite appears to coat detrital grains (Fig. 4.2.8C), and form between detrital grains along with kaolinite booklets. The tentative paragenetic sequence is: kaolinite \rightarrow chlorite \rightarrow calcite \rightarrow pyrite, titania, siderite cemented intraclasts. Halite appears with Fe-chlorite, and with a cubic habit and is considered a contaminant. This most likely happened because the core was washed with salt water.

Figure 4.2.8: Representative BSE images of sample E-48 2244.39. **A:** The framework grains are made up of quartz, K-feldspar, and zircon. The cement is made up of kaolinite. **B:** Detrital quartz grains with a silty mudstone intraclast cemented by siderite. Siderite partially fills

B: Detrital quartz grains with a silty mudstone intraclast cemented by siderite. Siderite partially fills voids in the mudstone.

C: Detrital quartz grains are partially coated by clays and contain overgrowths (positions a).

D: Titania veinlet cross-cuts Fe-chlorite. This may be an intraclast.

4.2.9 Sample E-48-2246.46

The detailed core description from the well history report (Dawson, 1972a) suggests that the sample is from an interval that consists of a brown coloured sandstone that is medium to fine-grained. SEM-EDS analysis (Fig. 4.2.9) indicates that the detrital minerals are: albite, apatite, chromite, ilmenite, K-feldspar, muscovite, quartz, sphalerite, and zircon. The diagenetic minerals are: ?apatite, calcite, kaolinite, pyrite, and titania minerals. After examining the BSE images, the sample appears to be a very fine-grained sandstone. Quartz and K-feldspar commonly display suturing and overgrowths. Kaolinite appears to be the main clay cement (Fig. 4.2.9B), and clays sometimes partially or fully

coat detrital quartz and K-feldspar. The garnet in this sample is a solid solution of almandine-pyrope. Several albitized K-feldspar grains have also been seen (Fig. 4.2.9B). The tentative paragenetic sequence is: kaolinite \rightarrow calcite \rightarrow pyrite, titania, siderite. Barite (Fig. 4.2.9A) appears to be a contaminant from the drilling mud because it fills voids and intergranular boundaries.

Figure 4.2.9: Representative BSE images of sample E-48 2246.46.
A: Framework grains consist of quartz and K-feldspar. There is also a granophyre/rhyolite lithic clast. Diagenetic kaolinite forms booklets. The drilling mud (barite) appears as a contaminant.
B: The framework grains are quartz and K-feldspar. Kaolinite is an early diagenetic mineral and calcite appears to be replacing the matrix. Muscovite appears slightly deformed and has expanded along cleavage allowing calcite to precipitate.

4.2.10 Sample O-47 1886.68

The detailed core description from the well history report (Dawson, 1972b) suggests that the sample is from an interval that consists of micaceous, glauconitic, shelly shale, with a few thin sandstone lenses. SEM-EDS analysis (Fig. 4.2.10) indicates that the detrital minerals are: albite, chlorite, biotite, chromite, ?Fe-clay, garnet, illite, ilmenite, K-feldspar, muscovite, oligoclase, quartz, and zircon. The diagenetic minerals are: anhydrite, chlorite, kaolinite, pyrite, siderite, and titania. After careful examination of BSE images, the sample appears to be a fine-grained sandstone with thin mudstone intervals. Quartz commonly displays suturing and overgrowths. Chlorite and muscovite are usually plastically deformed, causing them to expanded along cleavage planes (Fig. 4.2.10B), allowing for diagenetic minerals to precipitate. When looking at the photograph of the thin section, the sample appears to be layered with fine sands and muddy intervals. The paragenetic sequence is: kaolinite \rightarrow chlorite \rightarrow siderite, titania, pyrite, anhydrite.

Figure 4.2.10: Representative BSE images of sample O-47 1886.68.

A: The framework grains consist of quartz, K-feldspar, and muscovite. Kaolinite appears as early diagenetic booklets as well as massive grains (possibly replacing earlier minerals). Titania is the latest diagenetic mineral to form.

B: A detrital Fe-chlorite grain appears plastically deformed and has expanded along cleavage allowing for diagenetic pyrite to precipitate. K-feldspar appears partially dissolved.

C: There is a siltstone lithic clast made up of quartz, K-feldspar, and chlorite.

4.3 Lithic Clasts

Lithic clasts are an important tool that can be used to determine provenance in

sedimentary rocks. Table 4.3.1 summarizes the general types of lithic clasts that are

present in the studied samples. Further classification of lithic clasts into possible source

rocks is below.

Table 4.3.1:	General	Summary	of Lithic	Clasts
--------------	---------	---------	-----------	--------

Well	<u>Member</u>	Depth	Lithic Clasts		<u>Total</u>	
			Felsic	Sodimontory	Motomorphic	
			igneous	Seumentary	Metamorphic	
2H-58	Marmora	1600.27	26	1	5	32
3H-58	Marmora	1613.63	4			4
3H-58	Marmora	1804.26	5			5
3H-58	Sable	2001.33	11	1	1	13
5H-58	Marmora	1577.78	2	1		3
5H-58	Cree	1903.66	14		2	16
5H-58	Cree	1906.89	1			1
E-48	Cree	2244.39	7	2		9
E-48	Cree	2246.46	18	2	4	24
O-47	Cree	1886.68	3	1		4

Lithic clasts for 2H-58 1600.27: consists of metasiltstone (slate), argillite,

granitoid, peraluminous granite, microgranite, and rhyolite.

Lithic clasts for 3H-58 1613.63: consists of peraluminous granite, and rhyolite or quartzite.

Lithic clasts for 3H-58 1804.26: consists of peraluminous granite, and granite.

Lithic clasts for 3H-58 2001.26: consists of metasiltstone (schist), rhyolite,

granitoid, granite, peraluminous granite, ?siltstone.

Lithic clasts for 5H-58 1577.78: consists of mudstone, and granite.

Lithic clasts for 5H-58 1903.66: consists of rhyolite, metasiltstone, granite, and microgranite.

Lithic clasts for 5H-58 1906.89: consists of granite.

Lithic clasts for E-48 2244.39: consists of granitoid, siltstone/mudstone, and rhyolite.

Lithic clasts for E-48 2246.46: consists of granophyre/rhyolite, subvolcanic rhyolite, metasiltstone (schist), granite, ?mudstone, metasandstone, metasiltstone (slate), ?peraluminous granite, and vein quartz.

Lithic clasts for O-47 1886.68: consists of granite, and siltstone.

4.4 Clay Coats

Clay coats are very important in reservoir rocks because they can affect reservoir quality. During burial, clay coats can help to inhibit quartz overgrowths, which would otherwise fill primary porosity. This is very important because it preserves porosity and permeability that otherwise will decrease with burial. Chlorite and illite clay coats continuous or discontinuous on detrital quartz grains are able to reduce the nucleation area around the grain that is available for authigenic quartz growth (Wooldridge et al. 2017a). Three different types of clay coats have been identified by Wooldridge et al. (2017a) and have been applied to the studied samples.

Type 1: Ridged clay coats. In thin section, these coats appear as partial clay coats or full clay coats along grain boundaries. They are usually occur with coarser, cleaner sediment assemblages in the outer tidal flat and nonvegetated tidal bar environments (Wooldridge et al. 2017a).

Type 2: Bridged clay coats. These types of coats act as a linkage connecting detrital grains together.

Type 3: Clumped clay coats. These coats contain abundant clay and silt, and range up to 200 μ m in size in near-surface environments. They commonly form in depositional environments such as upper-estuary, intertidal, muddy sand flat, tidal bar, and saltmarsh (Wooldridge et al. 2017a).

4.4.1 Sample 2H-58 1600.27

This sample displays abundant clay coats. Most grains are typically fully or partially coated, and there is also bridging between grains (Fig. 4.4.1A). Clay clumps are not as common as the other two types of clay coats. There is also a lot of bright mineral phases present in the clay coats in this sample (probably barite). This means that the clay coats in this sample may be the result of barite drilling mud infiltration.

4.4.2 Sample 3H-58 1613.63

This sample has almost no remaining porosity. Clay coats are very difficult to distinguish from matrix and cement. In the areas that do contain porosity, it appears that a kaolinite cement has partially filled the pore space. There might be a clay coat shown in Figure 4.4.1B.

4.4.3 Sample 3H-58 1804.26

This sample is a mixture of a sandstone with local shale laminae. It consists of partial and full clay coats, clay clumps, and bridges (Fig. 4.4.1C). It is also common for matrix to locally fill porosity (in the areas that are muddier).

4.4.4 Sample 3H-58 2001.33

This sample does not appear to contain any clay coats. The sample has had its porosity filled with a carbonate cement, and to a lesser degree kaolinite cement.

4.4.5 Sample 5H-58 1577.78

This sample is a mixture of a fine-grained muddy sandstone. Porosity is very low in this sample. However, there is a large patch of bioturbation, which has been infilled with larger sand grains, creating porosity. Within this bioturbation patch, partial clay coats, bridges, and clumps are commonly seen (Fig. 4.4.1D).

4.4.6 Sample 5H-58 1903.66

This sample contains abundant porosity and clay coats. Clay coats are commonly partial or full, bridge, and less commonly clay clumps (Fig. 4.4.1E). The clay coats in this sample also contain abundant bright minerals (probably barite). This means that the clay coats in this sample may be the result of barite drilling mud infiltration.

4.4.7 Sample 5H-58 1906.89

This sample consists of a fine-grained glauconitic sandstone with calcitic cement. Porosity is very limited and seems to have been partially filled with kaolinite, calcite, and early diagenetic cement.

4.4.8 Sample E-48 2244.39

This sample contains mostly partial and full clay coats (Fig. 4.4.2A). Bridges are uncommon. Kaolinite cement appears to be partially filling porosity.

4.4.9 Sample E-48 2246.46

This sample contains abundant partial and full clay coats as well as bridges (Fig. 4.4.2B). Clay clumps are less common. The bright minerals in the clay coats is probably barite. This suggests that drilling mud has infiltrated the sample, and that the clay coats are from the drilling mud.

4.4.10 Sample O-47 1886.68

This sample consists mostly of a fine-grained sandstone with mudstone intervals. Porosity is very limited, with only possible partial clay coats. Kaolinite appears to be early diagenetic, partially filling primary porosity.

Figure 4.4.1: Representative BSE images of clay coats displayed in the studied samples.

A: Sample 2H-58 1600.27. This sample displays abundant clay coats. Bright minerals in clay coats is probably barite, suggesting that the clay coats are from drilling mud.

B: Sample 3H-58 1613.63. Possible clay coat around detrital quartz grains (red arrows). May also be matrix.

C: Sample 3H-58 1804.26. This sample consists of common partial and full clay coats, as well as bridges.

D: Sample 5H-58 1577.78. This sample contains a large biotubation patch, in which clay coats are common.

E: Sample 5H-58 1903.66. This sample contains abundant partial and full clay coats, as well as bridges. Bright minerals in clay coats is probably barite, suggesting that the clay coats are from drilling mud.

Figure 4.4.2: Representative BSE images of clay coats displayed in the studied samples. **A:** Sample E-48 2244.39. This sample consists of mostly full-partial clay coats with rare bridges and clay clumps.

Detrital clay coats develop at or near the surface of the sediments, usually in estuary–tidal flat environments. Diagenetic clay coats occur from temperature dependent recrystallization of detrital clays with increasing burial, or they grow in situ with authigenic alteration of detrital or early diagenetic minerals interacting with early pore fluids (Wooldridge et al. 2017a). If these authigenic clays formed in a reducing, subtropical environment are rich in Fe, and they will be odinite (Hillier, 1995; Pe-Piper and Weir-Murphy, 2008). Odinite will alter to berthierine during shallow burial, and eventually to chamosite with increasing burial if temperatures are greater than 90 °C (Hillier, 1995; Pe-Piper and Weir-Murphy, 2008). In the Sable subbasin, chamosite rims are common in the Logan Canyon Formation and occur in thick-bedded sandstones that underlie transgressive surfaces (Pe-Piper and Weir-Murphy, 2008).

Bioturbation is another way to develop clay coats at or near the surface of the sediments, although, more work needs to be done to determine if it has a large enough effect in these environments (Wooldridge et al. 2017a). Bioturbation can have the ability

B: Sample E-48 2246.46. This sample consists of abundant partial and full clay coats as well as bridges. Bright minerals in clay coats is probably barite, suggesting that the clay coats are from drilling mud.

to increase the presence of clay coats through the process of sediment mixing (Fig. 5.2.1D).

Another way to explain the presence of clay coats in intertidal systems is through the presence of biofilms. At the surface, microorganisms can excrete an adhesive substance that can partially or fully coat sand grains (Wooldridge et al. 2017b). This adhesive substance on sand grains can act as a binding agent which can cause clay minerals to stick to the sand grain. The presence of biofilms and early clay coats can act as a precursor to clay coats seen in deeply buried sandstones (Wooldridge et al. 2017b).

4.5 Coated Grains

Coated grains appear throughout some of the studied samples (E-48 2244.39, 3H-58 1613.63 and 2001.33, and 5H-58 1577.78 and 1906.89) (Figs. 4.5.1,2). Coated grains with rims of berthierine (now chlorite or Fe-chlorite), indicate that it probably formed from odinite. During burial, odinite alters into berthierine in the iron reduction zone (Pe-Piper and Weir-Murphy, 2008). With continued burial, pore-water sulfate is expelled, and siderite will precipitate on these coated grains. This can be due to the presence of organic matter, which increases pore-water alkalinity (Pe-Piper and Weir-Murphy, 2008). The two main types of coated grains in the studied samples are:

- 1. those with an Fe-chlorite / chlorite coat (Figs. 4.5.1A,E, 4.5.2B,C)
- 2. those with a siderite coat (Figs. 4.5.1C,D,F, 4.5.2A,D)
- 3. those with a glaucony coat (Fig. 4.5.1B)

The Fe-chlorite / chlorite coated grains commonly have a nucleus of chlorite or monazite. Their core may also be partially dissolved. The siderite coated grains commonly contain a
nucleus of calcite, which may be partially dissolved. The size of the coated grains ranges from \sim 30 μ m to \sim 100 μ m.

Figure 4.5.1: Representative BSE images of coated grains from the studied samples.

A: Sample E-48 2244.39 App. 1-1 site 15.1: Deformed coated grain that consists of chlorite that is being cut by chlorite. There is also a small grain of apatite. The outer coat is made up of Fechlorite.

B: Sample 3H-58 1613.63 App. 1-4 site 3: This coated grain has a core that consists of clay + Fe-chlorite that is coated by glaucony.

C: Sample 3H-58 1613.63 App. 1-4 site 19.2: Siderite fully coats a calcite grain.

D: Sample 3H-58 1613.63 App. 1-4 site 22.2: This coated grain consists of multiple generations of siderite. The inner core is partially dissolved.

E: Sample 3H-58 2001.33 App. 1-6 site 17: Monazite grain is coated by chlorite.

F: Sample 3H-58 2001.33 App. 1-6 site 18.1: Coated grain consisting of siderite \rightarrow calcite \rightarrow

siderite, then pore filling calcite \rightarrow further cementation by siderite

Figure 4.5.2: Representative BSE images of coated grains from the studied samples.
A: Sample 3H-58 2001.33 App. 1-6 site 24: A calcite grain (which may have replaced a previous mineral) is coated by siderite.
B: Sample 3H-58 2001.33 App. 1-6 site 25.1: There is two coated grains in this site. The first on consists of a dissolved core with a chlorite coat. The second one consists of a dissolved quartz grain that allowed for Fe-chlorite to fill the voids. This was then coated with Fe-chlorite.
C: Sample 5H-58 1577.78 App. 1-7 site 16.1: Glaucony is coated by a fine-grained Fe-chlorite.

D: Sample 5H-58 1906.89 App. 1-9 site 5.1: Siderite partially coats a large calcite grain.

4.6 Provenance Classifications

4.6.1 Sandstone Classification

The results from BSE image point counting have been plotted on the QFL

diagrams of Folk (1968). The diagram is a ternary diagram with (Qt) total quartz

(monocrystalline and polycrystalline), (F) feldspars, and (L) lithic clasts (sedimentary,

metamorphic, and igneous), as apices. This allows for various types of sandstones to be

classified.

All studied samples plot in the subarkose field (Figs. 4.6.1, 4.6.2). However,

samples from the Marmora Member appear to differ significantly within the subarkose

field (Sable Island wells 2H-58 and 3H-58). This could be due to different types of

sediment supply to each well. There is not a significant correlation between depth and increasing feldspar supply. Only the 3H-58 well (Marmora Member) shows an increasing feldspar trend with depth.

Figure 4.6.1: QFL plot using counted grains from BSE images for sandstones. Fields and nomenclature are from Folk (1968). (Q_t = monocrystalline + polycrystalline)

Figure 4.6.2: QFL plot using counted grains from BSE images for sandstones, with above 75 % quartz. Fields and nomenclature are from Folk (1968).

4.6.2 Paleotectonic Environment

The paleotectonic environment in which the sediment has been sourced from can be determined using diagrams from Dickenson et al. (1983). The Q_mFL_t diagram is a ternary diagram that uses (Q) monocrystalline quartz, (F) feldspars, and (L) lithic clasts + polycrystalline quartz, to determine provenance sources. The sources are: continental block (dark grey), magmatic arc (white), and recycled orogen (light grey).

All studied samples plot in the continental block provenance field (Fig. 4.6.3). They appear to be from the cratonic interior. There is some variation in the relative amount of Q_{mon} , F, and L. With increasing depth and feldspar content, the Marmora Member plots towards the bottom of the craton interior field, whereas the higher stratigraphic samples plot towards the top of the craton interior field.

Figure 4.6.3: QFL plot for framework grains. Paleotectonic fields are from Dickinson et al. (1983). Q_{mon} = monocrystalline quartz, F = feldspars, L = lithic clasts + polycrystalline quartz.

4.6.3 Mudstone Geochemistry

Seven mudstone samples were collected for geochemistry and contain 50-60 wt. % SiO₂ (App. 2). Mudstone geochemistry is very useful for uncovering a source area. The Cree Member mudstones are from Sable Island 5H-58 and O-47 wells. They contain the highest amount of Ce, Ta, Zr, and Ti/Al₂O₃*(10⁻⁴), when compared to Sable Member mudstones and the Wyandot Formation mudstones. These mudstones appear to have a source of from either Newfoundland or the Sable River (Fig. 4.6.4).

The Sable Member mudstones are exclusively from the Sable Island 3H-58 well. They contain a lower amount of Ce, Ta, Zr, Ti/Al₂O₃*(10⁻⁴), when compared to Cree Member and Wyandot Formation mudstones. These mudstones appear to have a varying source from a Meguma source (Fig. 4.6.4C) to a Sable River source (Figs. 4.6.4A,B).

The Wyandot Formation (Primrose 1A-A41) was also analyzed in this study. It plots in the Meguma source (Fig. 4.6.4C) but it does not plot close to the other defined fields. It contains the lowest amounts of Ta, Zr, Ti/Al₂O₃*(10⁻⁴), when compared to Cree and Sable Member mudstones.

Figure 4.6.4: Variation in mudstone geochemistry from studied samples. The plots show un-normalized element variation. A) Zr vs Cr; B) $Ti/Al_2O_3^*(10^4)$ vs Cr/Al₂O₃*(10⁴); and C) Zr vs Ta. The Meguma source field (M) is shown in grey, the Newfoundland source field (NF) is in red, and the Sable River source field (S) is in blue.

4.6.4 Geochemical Fingerprinting

Geochemical fingerprinting is a useful tool which allows provenance to be determined. It works best with heavy minerals because they are relatively stable throughout burial, and their chemical composition can point to a distinct source. The chemical analyses for muscovite, biotite, spinel/chromite, and garnet have been plotted in order to determine potential provenance.

4.6.4.1 Muscovite

Muscovite is a common phyllosilicate mineral that is seen throughout the studied samples. Since it is seen in all samples, it will be very useful in determining provenance. However, muscovite is commonly altered to chlorite, hydromuscovite, and sometimes kaolinite (in this study muscovite is commonly seen as chloritized grains). Muscovite grains with more than 4 wt. % combined contaminants (TiO₂, FeO, MgO, Na₂O, Cl, and Cr_2O_5) were not plotted. This was to ensure that only the freshest grains were plotted. Muscovite analyses were recalculated to atoms per formula unit (a.p.f.u) using Si = 8, and plotted on a binary diagram (total aluminium vs potassium) with fields from Reynolds et al. (2010) (Fig. 4.6.5).

Figure 4.6.5: Al^t apfu vs K apfu variation in muscovite. Fields for igneous and metasedimentary rocks are from Reynolds et al. (2010).

Most muscovite analyses appear to plot close to the igneous source field. However, some analyses plot in the metasedimentary field, and quite a few analyses plot outside of the established fields. Muscovite for Sable Member samples plots in the igneous field, from Cree Member samples in both fields as well as outside of them, and for Marmora Member samples in the metasedimentary field, with some analyses plotting near the igneous field, and one plotting inside the igneous field. In the Cree Member, only muscovite for Sable Island O-47 well samples plots inside the metasedimentary field. For the Sable Island 3H-58 well, its lower Marmora Member was sourced by igneous muscovites, and the upper part by metasedimentary muscovites.

4.6.4.2 Biotite

Biotite is another common phyllosilicate mineral that alters very easily in a weathering environment (biotite is commonly seen as chloritized grains). Biotite geochemistry was used to determine the type of source rock. Only analyses with less than 2wt. % contaminants (CaO, Na₂O) were plotted. Analyses were recalculated as a.p.f.u. using Si = 8.

Figure 4.6.6: Chemical variations in biotite. Nomenclature and discrimination fields are from A) Deer et al. (1992); B) Fleet (2003); and C) Abdel Rahmen, (1994) A = alkali, C = calcalkali, P = peraluminous.

The few biotite analyses in Figure 4.6.6A plot generally in the biotite nomenclature field. In Figure 4.6.6B, biotite from the Marmora Member plots in the metamorphic field for the Sable Island 3H-58 well, and outside the established fields for Sable Island O-47 well. For Cree Member biotite, it plots in the igneous field. In Figure 4.6.6C the igneous biotite from the Cree Member in well O-47 is calcalkaline.

4.6.4.3 Spinel/chromite

Spinel/chromite is a stable detrital mineral that is able to persist through burial. However, due to its stability, it can be polycyclic. Spinel/chromite analyses were classified on a diagram with Cr# ((Cr/(Cr+Al))*100) vs Mg# ((Mg/(Fe+Mg))*100) (Fig. 4.6.7). The nomenclature fields are after Tsikouras et al. (2011), and the blue field indicates electron microprobe analyses of spinel/chromite from Alma, Glenelg, and North Triumph wells from the Scotian Basin.

Figure 4.6.7: Chemical variation in chromite/spinel analyses from the studied samples with fields from Tsikouras et al. (2011). The blue field is that for spinel analyses from Alma, Glenelg, and North Triumph (Pe-Piper et al. 2009).

Most spinel/chromite analyses plot in the chromite field and two of them plot in the Cr-spinel field. Only two of the analyses plot outside the defined field by Pe-Piper et al. (2009). Since most analyses plot within this field, it signifies that most of the studied wells share a similar source of spinel/chromite as Alma, Glenelg, and North Triumph. Marmora Member spinel/chromite plots in the Cr-spinel field for Sable Island well 3H-58, the chromite field for Sable Island well 5H-58, and the boninitic-type chromite field for the upper part of the Sable Island 3H-58 well. Sable Member spinel/chromite plots in the chromite field. Cree Member spinel/chromite plots in the chromite field for Sable Island wells E-48 and O-47. Only one spinel/chromite analysis from Cree Member Sable Island E-48 plots in the Cr-spinel field.

Out of all the spinel/chromite analyses, only three contain measurable TiO₂, and were plotted on Cr/(Cr+Al) vs TiO₂ bi-plot, with source fields after Pearce et al. (2000) (Fig. 4.6.8). Marmora Member as well as Cree Member (Sable Island E-48) were sourced from island-arc tholeiite. Cree Member Sable Island O-47 well sourced its chromite from MORB. The source of these spinel/chromite grains appears to be from the Newfoundland Appalachians (Pe-Piper et al., 2009)

Figure 4.6.8: Discrimination diagram for chromite spinel analyses. Fields from Pearce et al. (2000).

4.6.4.4 Garnet

Garnet was found only in the Cree Member (Sable Island wells E-48 and O-47). It was then plotted on two ternary diagrams (one for pyrope < 10%, and other for spessartine < 10%) (Fig. 4.6.9). Potential provenance sources are after Deer et al. (1982) and Pe-Piper et al. (2009), as modified by Dutuc et al. (2017).

Figure 4.6.9: Chemical variation in garnet projected onto A: Almandine - Grossular -Spessartine plane, for garnets with < 10% Pyrope. and B: Almandine - Grossular -Pyrope plane, for garnets with < 10% Spessartine. Potential provenance sources from Deer et al. (1982) and Pe-Piper et al. (2009). Fields modified by Dutuc et al. (2017) with nine provenance types

The garnet analyses from Sable Island E-48 well plot in the G2 field. Two of the analyses from Sable Island O-47 well plot in the G2 field, with the other two analyses plotting in the G3 field. This indicates that garnets were mainly supplied to these wells from ultramafic and metamafic rocks, with the Sable Island O-47 well also being supplied from high grade intermediate metamorphic rocks and felsic plutonic rocks during the deposition of the Cree Member.

Chapter 5: Discussion

5.1 The Glaucony – Glauconite Problem

5.1.1 Introduction to Green Marine Clays

Green marine clays in marine environments belong to the Green Clay Facies, in which redox levels are close to the oxic – anoxic boundary (Eder et al. 2007). The Green Clay facies consists of the Verdine and Glaucony facies (Fig. 5.1.1). The Verdine facies occurs in relatively shallow marine waters that are close to terrigenous-clastic costal areas, and shallow marine depositional systems (Eder et al. 2007) (Fig. 5.1.2). These depositional systems can range from deltas, estuaries, and shallow siliclastic seas. However, Verdine facies has also been found in open marine environments. The Verdine facies appears to be confined to tropical regions. Hillier (1995) suggested that this is due to the supply of Fe by river input, which is released by intense tropical weathering conditions. This gives the shallow marine environment high loads of dissolved and colloidal forms of Fe. On the other hand, the Glaucony facies usually occurs in open marine environments, where sedimentation rates are low and there is stratigraphic condensation (Fig. 5.1.2). Glaucony is often associated with phosphatic sediments. Both facies evolve from Fe-rich clay mineral precursors that mature into authigenic minerals (Eder et al. 2007).

Figure 5.1.1: Distribution of the Glaucony and Verdine facies relative to each other. Fe is supplied via two main sources: rivers, and hydrothermal events (After Hillier, 1995).

Figure 5.1.2: Cartoon of different environments in which authigenic clay minerals form (Modified from Hillier, 1995).

Glauconite typically forms on condensed sections of the outer shelf near the seawater-sediment interface (Hillier, 1995). It is the most mature version of glaucony, and it is usually a light–dark green in colour, and ranges from silt to sand size. Glauconite forms in low sedimentation rate environments because, once buried, the grain is no longer able to exchange ions and the maturation process stops.

Glaucony is a mixture of clay minerals and is K-poor, made up of Fe-rich smectite and glauconite mica. Typically, glaucony forms from fecal pellets, however other substrates are possible such as carbonate tests, rock fragments, and matrix minerals. Glaucony may even coat grains (Hillier, 1995).

5.1.2 The Formation of Glaucony and Glauconite

Glauconitization refers to the formation of a glauconitic precursor. Fe-rich smectite forms from the weathering of a poorly drained peneplain, under subtropic – temperate climates (Eder et al. 2007). This influx of terrigenous clays into the basin provides a substrate for glauconitization, along with fecal pellets, rock fragments, detrital minerals, and carbonate tests. Maturation to glauconite starts from a K-poor, Fe-rich smectite \rightarrow mixed layered glaucony (layered potassium and iron-rich dioctahedral minerals with high Fe^{3+}/Fe^{2+} ratio) \rightarrow progressive incorporation of K and Fe and change of mineralogical structure \rightarrow glauconite mica (end member). This change is monitored by a change in colour from light to dark green, which is related to a decrease in Si, Al, Mg, Ca, and Na, and an increase in K and Fe (Eder et al. 2007). The process occurs on the seafloor, in which seawater supplies the grain with K^+ ions. If the grain becomes buried, the maturation process stops, at whatever stage it has reached, because the supply of K^+ ions is cut off. Potassium enrichment occurs after Fe enrichment of the initial Fe-rich smectite grain. The amount of iron does not appear to increase through evolution into end-member glauconite (Hillier, 1995). The process of glauconitization is also favoured by a semi-confined microenvironment, because it allows the seawater to be partially isolated from the grain due to its microporous substrate (Hillier, 1995). This causes glauconitization to favour silt-sand sized grains because smaller grains do not support this type of microenvironment. This is one reason why the core of the grain is usually glauconitized before the margin of the grain.

The mechanism of glauconitization is often divided into four stages, described initially by Odin and Matter (1981) and again in 1988 by Odin and Fullagar (Fig. 5.1.3).

78

The first stage is referred to as the nascent stage, and begins at the sediment-water interface. The substrate at this stage should be highly porous, with alteration occurring quickly as crystal growth fills porosity. Development of Fe-rich clay minerals give the grain a green colour. Potassium content at this stage ranges from 2-4 wt. % K₂O. As glauconitization proceeds, the minerals of the substrate become increasingly destroyed (Odin and Fullagar, 1998).

As time passes, more of the original minerals in the substrate are destroyed. Thus, additional porosity is created. This allows even more clay minerals to form within these newly created voids. The grain at this stage is referred to as slightly evolved. Potassium content ranges from 4-6 wt. % K₂O, and the grain consists mostly of glaucony. Odin and Fullagar (1988) indicated that grains at this stage can show globular, blade-like, and caterpillar-like habits.

As more time passes, evolution of the grain continues, if environmental conditions are correct. The interiors of the grain are replaced first because they have a more organized structure. This causes cracking on the margin of the grain. According to Odin and Fullager (1988), earlier studies attributed this cracking to dehydration with volume reduction, however, this is not correct. Grains at this stage are referred to as evolved, and have a K₂O from 6-8 wt. %.

If the grain is not buried, and is allowed to evolve, it will enter the highly evolved stage. At this stage, K₂O greater than 8 wt. %, and the grain has been completely replaced by end member mica, the glauconite. The cracks that were in the grain from the previous stage have been filled in with a less evolved glaucony, thus creating a more rounded grain.

79

Figure 5.1.3: Cartoon demonstrating the evolution of glaucony (modified from Hillier, 1995), with X-ray maps (A-E) corresponding to average potassium of the grain, indicated on the K_2O wt. % line.

5.1.3 Comparing the Studied Glaucony and Glauconite to the Literature

Four different types of glaucony were classified by Eder et al. (2007). Their

samples were studied optically and by SEM, electron probe microanalysis (EMPA), and

by X-ray diffraction (XRD). Their four types of glaucony are described below:

Type 1: consists of light green glaucony grains. It has K₂O content below 6.5 wt. %, and is a less mature type of glaucony. It is mostly a mixed layered grain consisting of glauconite–smectite, and formed in the distal marine environments of the basin under dysoxic conditions.

Type 2: consists of dark green glaucony that is evolved to highly evolved. This is the most mature glaucony studied by Eder et al. (2007), and consists of K_2O up to 8.5 wt. %. This type of glaucony is consistent with high bottom areas with a low sedimentation rate.

Type 3: consists of brown glaucony grains that are poorer in K and Fe, but richer in Al and Si, than type 2 glaucony and $K_2O = 5.83-6.59$ wt. %. This type of glaucony is only present in strongly condensed secessions.

Type 4: This is the most Fe-rich type studied. It shows fresh yellowish–green cores, with brown rims and cracks, with K_2O cores = 7.06-7.69 wt. % and K_2O rims = 5.96-6.69 wt. %. It is slightly less mature than type 2, but is similar to type 3.

Of the samples studied in this project, only five out of the ten samples contain glaucony / glauconite. We do not have XRD data, but we have determined K₂O wt. % and colour to apply the classification scheme of Eder et al. (2007) to our grains, and estimate the amount of glauconitic mica. Analyzed spots with greater than 6 wt. % K₂O are considered to be glauconite (understanding that such grains may still contain a significant amount of smectite). Grains with less than 6 wt. % K₂O are referred to as glaucony, provided that SiO₂, Al₂O₃, and FeO contents are appropriate.

81

Almost all analyzed grains in the five studied samples appear to be glaucony. Grains identified as glauconite were not classified. In 3H-58 1613.63, the glaucony appears to be a light green-yellow colour, however, most grains appear to be a shade of brown (Fig. 5.3.1). The matrix also appears to be made mostly of glaucony. The grains in this sample closely resemble Type 3 glaucony, and contain 0.91-2.92 wt. % K₂O.

In sample 3H-58 1804.26, the grains are a very dark brown when found in the muddier intervals of the sample. Away from the muddy section, the grains are a green-yellow/brown (Fig. 5.3.2). These grains resemble Type 4 and Type 3, and contain 1.98-5.46 wt. % K₂O.

Sample 3H-58 2001.33 consists mostly of inmature glaucony, and contains a rare evolved glaucony grain. The grains are pale light green in colour, and can range to a yellow brown (Fig. 5.3.3). The evolved grain has a deep dark green colour. The grains in this sample resemble Type 1 and Types 3-4, with 0.69-5.77 wt. % K₂O.

In sample 5H-58 1577.78, the glaucony grains contain a brownish coloured rim with a light yellow core (Fig. 5.3.4). This sample resembles Type 4 glaucony grains, and may also contain some Type 3 grains, with 2.37-5.57 wt. % K₂O.

In sample 5H-58 1906.89, the grains are a light green colour (Fig. 5.3.5), resembling Type 1 glaucony. They also display a deeper green colour than the other Type 1 grains studied, which indicates that they are becoming closer to a Type 2 grain, and are thus more evolved. This glaucony grains contain 2.8-6.78 wt. % K₂O.

Figure 5.1.4: Representative microphotographs of glaucony/glauconite (outlined in red) from sample 3H-58 1613.63, taken at 10x in PPL.

A: This microphotograph is of site 2 in appendix 1-4. There is a large pale green glaucony grain that is partially dissolved and a dark brown grain, both outlined in red. The substrate for these grains appears to be pellets, however, for the smaller grain, it may also be matrix.

B: This microphotograph is of site 3 in appendix 1-4. It consists of a very dark brown glaucony grain outlined in red. The substrate appears to be a pellet.

C: This microphotograph is of site 12 in appendix 1-4. It consists of a large glaucony grain that is probably replacing a pellet, outlined in red. It contains a light white/yellow patch and the rest of the grain is a yellow-green colour. The substrate appears to be a pellet, but may also be matrix.

D: This microphotograph is of site 27 in appendix 1-4. It consists of small green-yellow glaucony grains, and a zoned brown grain with a light yellow-brown rim outlined in red. The substrate appears to be matrix or a pellet.

Figure 5.1.5: Representative microphotographs of glaucony/glauconite (Gly, and outlined in red) in sample 3H-58 1804.26

A: This microphotograph is of site 2, appendix 1-5. Light green glaucony appears to replace the matrix. 40x PPL. The substrate appears to be matrix.

B: This microphotograph is of site 7, appendix 1-5. Dark brown glaucony with some yellow-green is outlined in red. 10x PPL. The substrate appears to be matrix.

C: Large dark brown glaucony with light yellow-green cores are outlined in red. 4x PPL. The substrate appears to be pellets.

D: Large green glaucony with a lighter coloured core are outlined in red. 4x PPL. The substrate appears to be pellets or matrix.

E: A large grain is partially replaced by glaucony or chlorite. 10x PPL.

Figure 5.1.6: Representative microphotographs of glaucony/glauconite (outlined in red) from sample 3H-58 2001.33.

A: This microphotograph is of site 4, position 8, appendix 1-6. Light green glaucony, outlined in red. 40x PPL. The substrate appears to be a pellet.

B: This microphotograph is of site 8, appendix 1-6. Light green glaucony is seen (outlined in red). 10x PPL. The substrate appears to be a pellet.

C: This site consists of a dark green evolved glaucony grain, outlined in red. 10x PPL. The substrate appears to be a pellet, but may also be a detrital grain.

Figure 5.1.7: Representative microphotographs of glaucony/glauconite (outlined in red) from sample 5H-58 1577.78.

A: This microphotograph is of site 15, appendix 1-7. There is a light green-yellow glaucony grain with a brown rim, outlined in red. 10x PPL. The substrate appears to be pellet or matrix.

B: This microphotograph is of site 16, appendix 1-7. A glaucony grain (outlined in red) is coated by a fine-grained Fe-chlorite. 40x PPL. The substrate appears to be a detrital grain.

C: This microphotograph is of site 24, appendix 1-7. Glaucony grains appear to be a light green colour with a brown rim/core (outlined in red).10x PPL. The substrate appears to be pellets or matrix.

D: This site consists of light green, dark green, and a yellow/brown glaucony grains (outlined in red). 10x PPL. The substrate appears to be pellets.

Figure 5.1.8: Representative microphotographs of glaucony/glauconite (outlined in red) from sample 5H-58 1906.89.

A: This microphotograph is of site 6, appendix 1-9. There is a light green-yellow glaucony grain, outlined in red. 10x PPL. The substrate appears to be a pellet or could also be matrix.

B: This microphotograph is of site 18, appendix 1-9. A glaucony grain appears deformed during compaction or is replacing the matrix (outlined in red). 10x PPL. The substrate appears to be matrix.

C: This microphotograph is of site 21, appendix 1-9. Glauconite (outlined in red) appears as a pale light green/yellow, with a partial darker green rim. 10x PPL. The substrate appears to be matrix.

5.1.4 X-ray Maps of Glaucony

X-ray maps were run for specific sites of interest where determination of the

substrate for glauconitization was difficult (Fig. 5.1.9). EDS analyses were also taken in

order to help identify the stage of glauconitization of the grain (Table 5.1.1). The full

results of all X-ray maps and BSE images can be found in Appendix 3. Glaucony in

Figure 5.1.9A,B appears to be very immature and probably resembles Type 4. In Figure

5.1.9C,D,E glaucony appears to be very close to evolved, and has a much higher K₂O content of ~6 wt. %.

- Figure 5.1.9: Potassium peak X-ray maps normalized to 140 X-ray counts.
 A: Sample 3H-58 1613.63. Glaucony appears to be replacing a pellet.
 B: Sample 3H-58 1613.63. Glaucony appears to be replacing a detrital grain.
 C: Sample 5H-58 1906.89 site 4. Glaucony appears to be replacing the matrix.
 D: Sample 5H-58 1906.89 site 4. Glaucony is replacing a large K-feldspar grain and possible the matrix around it.

Sample	3H-58 1613.63	5H-58 1906.89	5H-58 1906.89	5H-58 1906.89	5H-58 1906.89											
Site (Fig.)	А	А	А	А	А	А	В	В	В	В	В	В	С	С	С	С
Position	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4
SiO ₂	38.21	48.22	38.18	48.99	37.47	39.35	46.81	37.20	40.57	40.55	36.48	34.73	43.53	48.71	48.24	48.26
Al ₂ O ₃	12.53	11.75	12.76	12.58	12.76	12.86	11.05	12.32	12.64	12.08	13.76	10.38	13.27	11.01	14.53	15.52
FeOt	29.57	21.33	29.79	19.42	30.10	27.33	23.68	30.58	27.30	27.04	29.97	37.31	21.57	17.63	15.69	13.97
MgO	4.79	4.04	4.52	4.34	4.51	4.83	3.95	4.83	4.65	4.65	5.01	3.19	4.18	2.98	2.68	3.04
K ₂ O	1.90	1.66	1.75	1.66	2.16	2.64	1.51	2.06	1.84	2.67	1.77	1.39	4.46	6.66	5.86	6.20
Total (rec.)	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00
Actual Total	88.52	61.81	83.96	61.68	71.40	85.80	57.72	86.61	72.70	80.91	89.70	63.22	77.32	89.96	82.41	84.20
Sample	5H-58 1906.89															
Site	С	С	С	D	D	D	D	D	D	E	E	E	E	E	E	E
Position	5	6	7	1	2	3	4	5	6	1	2	3	4	5	6	7
SiO ₂	48.84	48.99	48.40	49.14	49.61	49.55	49.70	49.09	49.21	48.17	48.92	47.49	46.55	49.04	44.97	48.73
Al ₂ O ₃	11.75	11.34	14.37	11.13	12.03	11.86	11.58	11.36	33.92	15.03	10.20	13.25	13.98	14.46	13.54	15.06
FeOt	16.51	16.66	15.64	17.22	16.36	15.96	16.26	16.88	2.43	14.95	17.74	16.87	17.35	14.46	19.67	14.58
MgO	3.20	3.26	2.93	3.33	3.23	3.18	3.04	3.40	0.77	2.82	3.28	2.97	3.23	3.00	3.26	2.88
K₂O	6.70	6.74	5.66	6.18	5.77	6.46	6.42	6.26	0.68	6.04	6.86	6.42	5.89	6.04	5.55	5.75
Total (Rec.)	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00	87.00
Actual Total	93.20	93.24	84.49	86.28	91.71	90.12	90.99	94.05	85.63	89.14	80.12	96.06	89.48	92.18	85.83	100.63

Table 5.1.1: EDS Geochemical Analyses of Glaucony used for Fig. 5.1.9

5.2 Provenance

5.2.1 Introduction

Provenance interpretation in the Scotian Basin is an ongoing process that has been constantly updated. The currently proposed paleorivers (Fig. 5.2.1) are:

1. The Banquereau River, sourcing sediments from Newfoundland and transporting them to the Eastern Scotian Basin.

2. The Sable River, sourcing sediments from the Gulf of St. Lawrence and transporting them to the Central Scotian Basin.

3. Smaller rivers from the Meguma Terrance transporting sediments to the Central Scotian Basin.

4. A River from the Bay of Fundy, which most likely has a New Brunswick source and transports sediments to the Southwest Scotian Basin.

Using these proposed paleoriver pathways from the literature, potential source rocks are proposed for the mudstone geochemistry plots, geochemical fingerprinting plots, and lithic clasts.

Figure 5.2.1: Isopach map showing the location of studied wells offshore Nova Scotia (after Wade and MacLean, 1990). Paleoriver paths after Pe-Piper and Piper, (2012).

5.2.2 Mudstone Geochemistry

Based on a number of studies performed in the Scotian Basin by Pe-Piper et al., there are multiple paleoriver sources that fed into the Central Scotian Basin. Rivers from the Meguma Terrane and from the Gulf of St. Lawrence (Sable River) appear to have been active during the Early Cretaceous, and supplied the Sable Member of the studied wells with sediments. The older Cree Member appears to have a source of either Sable River or Newfoundland (possible Banquereau River source). Summary table (Table 5.2.1) of possible source for the studied mudstones is presented below.

•			
r	1		

Table 5.2.1: Summary Table of Possible Source Terranes for Each of the Studied Wells.

Well	Source Terrane						
	Meguma	Sable River	Newfoundland				
Sable Island 3H-58		Х					
Sable Island 5H-58		х	х				
Sable Island O-47		Х	х				
Primrose 1A-A41	?X						

5.2.3 Mineral Chemical Fingerprinting

As indicated from geochemical fingerprinting, some of the detrital minerals were sourced from the Meguma Supergroup, and the Newfoundland Appalachians. The Cree Member was most likely sourced from Newfoundland based on mudstone geochemistry. The garnet found in the Cree Member mot resembles Grenville garnets (Tsikouras et al., 2011). The Sable Member appears to have been sourced igneous muscovite. This partially agrees with the mudstone geochemistry for the Sable Member, which suggests a Meguma and Sable River source. The igneous muscovite most likely came from the granites in the Meguma Terrane. The Sable River would have also brought in detrital minerals, such as chromite possibly from the Newfoundland Appalachians. The Marmora Member appears to have been sourced by mostly metasedimentary muscovite, and metamorphic biotite. This suggests a Meguma source. Chromite is lacking in the Meguma, but is common in sediments deposited by the Sable River in the Central Scotian Basin. Tsikouras et al. (2011) argues that chromite sources are homogenized through polycyclic reworking. Therefore, changes in source cannot be deduced from individual analyses. Ilmenite is common in all of the studied intervals. Studies of the Chaswood Formation (Pe-Piper et al., 2005; Piper et al., 2007) show that it is interpreted as Appalachian sources. It is also common in the Grenville. It is therefore difficult to use as a provenance indicator. The abundance of chloritized muscovite suggests that the Meguma Terrane was an important source throughout the Logan Canyon Formation.

5.2.4 Lithic Clasts

The lithic clasts present in the studied samples appear to be sourced from multiple rock lithologies. The metasedimentary and granitic lithic clasts are most likely sourced from the Meguma Supergroup, and could have been transported by tributaries of the Sable River (as suggested by the mudstone geochemistry (Fig. 4.6.4)). However, the rhyolitic lithic clasts could have been sourced from the Avalon Terrane, and transported by the Sable River.

Chapter 6: Conclusion

- The lithofacies for the Sable Island wells indicate that it was most likely an estuarine-tidal flat depositional environment, with minor variations. Since each lithofacies correlates to a general porosity and permeability (based on the rocks that occur in each depositional environment), they can be a useful tool in order to predict reservoir quality.
- 2) The evolution of glaucony in the studied samples indicates that they were not highly evolved or evolved before burial occurred. This means that there was continued sediment input deep into the basin.
- Clay coats are important features that can help preserve primary porosity during prolonged burial, by inhibiting the growth of quartz cement. The clay coats are seen in most samples, and correspond to samples with the higher porosities.
- Coated grains that consists of siderite for the outer coat, indicate that there was depletion in sulfate-rich pore-water, which allowed for the siderite to precipitate around calcite grains.
- 5) The paragenetic sequence for most of the studied wells is similar. First to form were the early seafloor diagenetic minerals (glaucony, glauconite) (if available), followed by kaolinite, then chlorite. Then calcite started precipitating followed by siderite. Finally, minor late diagenetic minerals (pyrite, titania, and rarely anhydrite) were the last to form.

6) Provenance data suggests that most of the detrital sediments were transported by the Sable River, with minor detrital sediments coming into the Central Scotian Basin from the Meguma Terrane and Newfoundland.

References

Canada-Nova Scotia Offshore Petroleum Board (CNSOPB). 2000. Technical Summaries of Scotian Shelf Significant and Commercial Discoveries.

Dawson, W.E. 1972a. Well History Report: Mobil Tetco Sable Island E-48.

- Dawson, W.E. 1972b. Well History Report: Mobil Tetco Sable Island O-47.
- Dawson, W.E. 1973a. Well History Report: Mobil Tetco Sable Island H-58.
- Dawson, W.E. 1973b. Well History Report: Mobil Tetco Sable Island 2H-58.
- Dawson, W.E. 1973c. Well History Report: Mobil Tetco Sable Island 3H-58.
- Dawson, W.E. 1974. Well History Report: Mobil Tetco Sable Island 5H-58.
- Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman,
 K.F., Knepp, R.A., Lindberg, F.A., and Ryberg, P.T., 1983. Provenance of
 North American Phanerozoic sandstones in relation to tectonic setting.
 Geological Society of America Bulletin, 94: 222-235.
- Dutuc, D. -C., Pe-Piper, G., and Piper, D.J.W. 2017. The provenance of Jurassic and Lower Cretaceous clastic sediments offshore southwestern Nova Scotia. Canadian Journal of Earth Sciences, 54: 33-51.
- Eder, V.G., Martin-Algarra, A., Sanchez-Navis, A., Zanin, Y.N., Zamirailova, A.G., and
 Lebedevs, Y.N. 2007. Depositional controls on glaucony texture and composition,
 Upper Jurassic, West Siberian Basin. Sedimentology, 54: 1365-1387.
- Folk, R.L. 1968. Petrology of sedimentary rocks. Austin, University of Texas publication, 170p.

- Gould, K.M., Piper, D.J.W., and Pe-Piper, G. 2012. Lateral variation in sandstone
 lithofacies from conventional core, Scotian Basin: implications for reservoir
 quality and connectivity. Canadian Journal of Earth Sciences, 49: 1478-1503.
- Gould, K.M., Piper, D.J.W., and Pe-Piper, G. 2011. Lithofacies and diagenesis of selected conventional core from Jurassic and Early Cretaceous terrigenous clastic rocks, Scotian Basin. Geological Survey of Canada, Open File 6945.
- Hillier, S. 1995. Erosion, Sedimentation and Sedimentary Origin of Clays. *In* Origin and Mineralogy of Clays. Clays and the Environment. Edited by B. Velde. Springer, pp. 192-201.
- Kendell, K.L. 2012. Variations in salt expulsion style within the Sable Canopy Complex, central Scotian margin. Canadian Journal of Earth Sciences, **49**(12): 1504-1522.
- Odin, G.S., and Fullagar, P.D. 1988. Geological significance of the glaucony facies. *In* Green Marine Clays. Oolitic Ironstone Facies, Verdine Facies, Glaucony Facies and Celadonite-Bearing Facies – A Comparative Study. Edited by G.S. Odin. Elsevier, pp. 295-332.
- Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J., and Leat, P. T., 2000,
 Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic: Contributions to Mineralogy and Petrology,
 139(1): 36-53.
- Pe-Piper, G., and Piper, D.J.W. 2012. The Impact of Early Cretaceous Deformation on Deposition in the Passive-Margin Scotian Basin, Offshore Eastern Canada. *In* Tectonics of Sedimentary Basins, Recent Advances. Edited by C. Busby and A. Azor. Wiley-Blackwell. Pp. 270–287.

- Pe-Piper, G., Piper, D.J.W, and Dolansky, L. 2005. Alteration of ilmenite in the Cretaceous sandstones of Nova Scotia, southeastern Canada. Clays and Clay Minerals, 53(5): 490-510.
- Pe-Piper, G., Tsikouras, B., Piper, D.J.W., and Triantaphyllidis, S. 2009. Chemical fingerprinting of detrital minerals in the Upper Jurassic-Lower Cretaceous sandstones, Scotian Basin. Geological Survey of Canada, Open File 6288.
- Pe-Piper, G., and Weir-Murphy, S. 2008. Early diagenesis of inner-shelf phosphorite and iron-silicate minerals, Lower Cretaceous of the Orpheus graben, southeastern
 Canada: Implications for the origin of chlorite rims. AAPG Bulletin, 92(9): 1153-1168.
- Pe-Piper, G., and Yang, X. 2014. Albitisation of detrital feldspars in the Scotian Basin: implications for the thermal evolution of the basin. Geological Survey of Canada, Open File 7117.
- Piper, D.J.W., Pe-Piper, G., Hundert, T., and Venugopal, D.V. 2007. The Lower Cretaceous Chaswood Formation in southern New Brunswick: provenance and tectonics. Canadian Journal of Earth Sciences, 44: 665-677.
- Reynolds, P.H., Pe-Piper, G., and Piper, D.J.W. 2010. Sediment sources and dispersion as revealed by single-grain 40Ar/39Ar ages of detrital muscovite from Carboniferous and Cretaceous rocks in mainland Nova Scotia. Canadian Journal of Earth Sciences, 47(7): 957-970.

Shell Canada Limited. 1973. Well History Report – Primrose A-41, 1a A-41.

- Tsikouras, B., Pe-Piper, G., Piper, D.J.W., and Schaffer, M. 2011. Varietal heavy mineral analysis of sediment provenance, Lower Cretaceous Scotian Basin, eastern Canada. Sedimentary Geology, 237: 150-165.
- Wade, J.A. and MacLean, B.C. 1993. East coast basin atlas series: seismic markers and stratigraphic picks in the Scotian Basin wells. Atlantic Geoscience Centre, Geological Survey of Canada.
- Wade, J.A. and MacLean, B.C. 1990. Aspects of the geology of the Scotian Basin from recent seismic and well data. *In* Geology of the Continental Margin of Eastern Canada. Edited by M.J. Keen and G.L. Williams. Geology of Canada, 2: pp. 190-238.
- Weston, J.F., MacRae, A., Ascoli, P., Cooper, M.K.E., Fensome, R.A., Shaw, D., and Williams, G.L. 2012. A revised biostratigraphic and well-log sequencestratigraphic framework for the Scotian Margin, offshore eastern Canada. Canadian Journal of Earth Science, **49**: 1417-1462.
- Wooldridge, L.J., Worden, R.H., Griffiths, J., and Utley, J.E.P. 2017a. Clay-coated sand grains in petroleum reservoirs: understanding their distribution via a modern analogue. Journal of Sedimentary Research, **87**: 338-352.
- Wooldridge, L.J., Worden, R.H., Griffiths, J., Thompson, A., and Chung, P. 2017b.Biofilm origin of clay-coated sand grains. Geology, 45(10): 875-878.
- Zhang, Y., Pe-Piper, G., and Piper, D.J.W. 2014. Sediment geochemistry as a provenance indicator: Unravelling the cryptic signatures of polycyclic sources, climate change, tectonism and volcanism. Sedimentology, 61: 383-410.

Appendix 1: SEM-BSE images and EDS mineral analyses for the studied samples.

Appendix 1-1: SEM-BSE images and EDS mineral analyses for sample E-48-2244.39.
Sample E-48-2244.39: Fine-medium grained sandstone

Detrital Minerals: Albite, Apatite, Garnet, Ilmenite, K-feldspar, Muscovite, Quartz, Spinel, Titania (Figs. 24,?49), Zircon

Diagenic Minerals: Chlorite, Kaolinite, Pyrite, Siderite, Titania (Straight edges Fig. 5, veinlet Fig. 29), quartz overgrowths, K-feldspar overgrowths

Notes:

1. Siderite-cemented intraclasts are common in this sample (Figs. 12,15,25,30,33,47,54).

2. Titania veinlet cross-cuts Fe-rich chlorite (Fig. 46).

3. Quartz and K-feldspar commonly display suturing (Figs. 2, 5, 7).

4. K-feldspar and quartz display overgrowths (Fig. 4).

5. A fine-grained Fe-chlorite appears to coat detrital grains (Figs. 17,27), and occur between grains (Figs. 3,25,30,34) along with kaolinite booklets (Fig. 28).

6. Halite appears with Fe-chlorite (Figs. 35,47), and with a cubic habit (Figs. 13,14,21). The halite is present because the core was not washed well formed in the lab.

$ \begin{bmatrix} & & & & & & \\ & & & & & & \\ & & & & &$	E-48-2249.39
	1 cm

Figure 1-1.1: Scanned thin section of sample E-48-2244.39 showing the location of analyzed sites.

Figure 1-1.2: Sample E-48-2244.39 site 1 (SEM). This site consists of mainly quartz and K-feldspar. There is also a small crystal of detrital zircon (1). Kaolinite booklets are seen partially filling primary porosity. Suturing is common between quartz grains (positions a).

1:Quartz 2:Halite + 3:Pyrite 4:Fe-Chlorite 5:TiO₂ 6:Muscovite + Chlorite 7:Kaolinite 8:Fe-Chlorite 9:Quartz

Figure 1-1.3: Sample E-48-2244.39 site 1.1 (SEM). This site consists of detrital quartz (1,9) and muscovite (6) grains with kaolinite (7), Fe-chlorite (4,8), and pyrite (6) cements. Halite (2) partially fills intergranular boundaries and has probably precipitated from salt water.

Figure 1-1.4: Sample E-48-2244.39 site 1.2 (SEM). This site consists of quartz (3), and Kfeldspar (1). Between grain boundaries there is kaolinite, chlorite (4,6), diagenetic apatite (2) and siderite (7). Suturing is seen between quartz and K-feldspar (position a). Kfeldspar overgrowths (positions b) and quartz overgrowths (positions c) are also present.

3:K-feldspar 4:K-feldspar 5:K-feldspar 10:K-feldspar + 11:Quartz 12:Quartz 13:Halite 15:K-feldspar

Figure 1-1.5: Sample E-48-2244.39 site 2 (SEM). This site consists of mainly K-feldspar and quartz grains. Suturing between grains is common (positions a). Diagenetic titania (2,14) appear to cross-cut some of the host. Halite (13) appears to grow along grain boundaries.

Figure 1-1.6: Sample E-48-2244.39 site 2.1 (SEM). This site consists of a lithic clast made up of albitized K-feldspar (1) and quartz (3), with Fe-chlorite (4) alteration.

Figure 1-1.7: Sample E-48-2244.39 site 3 (SEM). This site consists of quartz and K-feldspar. Titania (2,3) appears to form along grain boundaries. Zircon (9) appears to occur as inclusion in quartz (8) grain. Halite (14) appears to fill void in quartz. Suturing is common (positions a).

Figure 1-1.8: Sample E-48-2244.39 site 4 (SEM). This site consists mainly of quartz grains that display suturing, spinel (2), K-feldspar (8) appears to be altering to clays, and garnet (10).

1:Quartz 2:TiO₂ 3:K-feldspar 4:TiO₂ 5:K-feldspar 6:Mixture

Figure 1-1.9: Sample E-48-2244.39 site 4.1 (SEM). This site consists of detrital K-feldspar (3), quartz (1), and garnet. Titania (2,4) appears to be diagenetic. Suturing is indicated (position b). Clays appear to coat the grains (positions c). A Lithic clast appears to be made up of quartz and ?muscovite. There is also a granitoid lithic clast made up of quartz and K-feldspar (5). Between some grains (positions a) is a poorly sorted muddy lithology which may be either a deformed fine-grained lithic clast or bioturbated in muddy matrix.

Figure 1-1.10: Sample E-48-2244.39 site 5 (SEM). This site consists of quartz (1,3-4,8), K-feldspar (5-7) that commonly display suturing. Clays (Fe-chlorite) are present between grains. Siderite cemented intraclast (Fig. 12).

1:Quartz 2:Siderite + 3:Quartz 4:Muscovite 5:Siderite 6:Illite + Chlorite 7:K-feldspar 8:Quartz 9:K-feldspar

Figure 1-1.11: Sample E-48-2244.39 site 5.1 (SEM). This site consists of a lithic clast or muddy intraclast made up of illite + chlorite (6) matrix, muscovite (4), detrital K-feldspar (9) and quartz (1,8) grains, and siderite (2,5).

1:K-feldspar 2:Pyrite + 3:Siderite + 4:Chlorite + Illite 5:Quartz + 6:Chlorite + Illite

Figure 1-1.12: Sample E-48-2244.39 site 5.2 (SEM). This site consists mainly of an intraclast of silty mudstone partly cemented by siderite (3). The mudstone is made up of silt-size grains of quartz (5), K-feldspar (1), micas (position a), and chlorite + illite (4,6). The detrital quartz grains develop overgrowths.

2:K-feldspar 3:K-feldspar 4:K-feldspar 5:Quartz 6:K-feldspar 7:Halite 8:K-feldspar 9:Halite 10:Halite 11:Apatite 12:Quartz 13:K-feldspar 14:Quartz 15:Halite

Figure 1-1.13: Sample E-48-2244.39 site 6 (SEM). This site consists of quartz and K-feldspar grains that commonly display suturing. There is also kaolinite booklets that occur between grains as well as halite (7,9-10,15).

Figure 1-1.14: Sample E-48-2244.39 site 7 (SEM). This site consists of quartz grains that commonly display suturing. K-feldpar (1,11,13) and spinel (2) are also present. Clays (illite) and kaolinite booklets occur between grains.

1:Garnet 2:Quartz 3:Muscovite 4:K-feldspar 5:Quartz 6:Siderite 7:Siderite? +

Figure 1-1.15: Sample E-48-2244.39 site 7.1 (SEM). This site consists of a silty mudstone intraclast that is partially cemented by siderite (6-7). The silt-size grains consist of K-feldspar (4), muscovite (3), garnet (1), and quartz (5,positions a). There is also large detrtial quartz (2) grains.

Figure 1-1.16: Sample E-48-2244.39 site 7.2 (SEM). This site consists of perthitic K-feldspar (1,3). Clays coat the grains (positions a).

1:Spinel 2:Fe-Chlorite 3:Chlorite +Illite 4:Chlorite + Illite 5:Quartz 6:Quartz 7:Fe-Chlorite

Figure 1-1.17: Sample E-48-2244.39 site 7.3 (SEM). This site consists of a detrital spinel (1) and quartz (6) grains, with Fechlorite (2,7) and chlorite + illite cement (3-4).

Figure 1-1.18: Sample E-48-2244.39 site 7.4 (SEM). This site consists of a mixture or contaminant (2).

Figure 1-1.19: Sample E-48-2244.39 site 8 (SEM). This site consists of detrital quartz and K-feldspar grains. Suturing is common (positions a) and K-feldspar (8) appears to be altering to chlorite (7). Fe-Chlorite is common along intergranular boundaries (11,13).

Figure 1-1.20: Sample E-48-2244.39 site 8.1 (SEM). This site consists of very fine-grained chlorite + illite (1-2)(?intraclast).

Figure 1-1.21: Sample E-48-2244.39 site 9 (SEM). This site consists of quartz and K-feldspar. Suturing is common with these grains. A large halite (8) crystal appears to cross-cut two quartz grains. It is unclear if it formed in secondary porosity or if it is an artifact of washing the core.

Figure 1-1.22: Sample E-48-2244.39 site 9.1 (SEM). This site contains a crushed coated grain of chlorite and halite (1,4). Late growth of halite (3) is probably from salt water.

1:Contaminant 2:Contaminant

Figure 1-1.23: Sample E-48-2244.39 site 9.2 (SEM). This site consists of contaminants from the process of making the thin section.

Figure 1-1.24: Sample E-48-2244.39 site 10 (SEM). This site contains mostly quartz and K-feldspar grains. There appears to be a filling of pores by kaolinite and siderite (Fig. 25). Titania (12) appears to be ?detrital.

1:Fe-Chlorite + 2:Siderite + 3:Fe-Chlorite +

Figure 1-1.25: Sample E-48-2244.39 site 10.1 (SEM). This site consists of finegrained intraclast of mudstone that contains Fe-chlorite +?illite (1,3) and is cemented with siderite (2), and late siderite which precipitates in voids.

Figure 1-1.26: Sample E-48-2244.39 site 11 (SEM). This site consists of quartz and K-feldspar (sometimes with voids - 5) grains. Titania (4) appears to grow along grain boundaries. Suturing is also common (positions a). Some of the grains are coated by clays (illite + chlorite), and kaolinite appears to fill intergranular boundaries and pores.

1:Fe-Chlorite 2:K-feldspar 3:Chlorite + Illite 4:Fe-Chlorite 5:Quartz

Figure 1-1.27: Sample E-48-2244.39 site 11.1 (SEM). This site consists of a fine-grained Fe-rich chlorite with very small amounts of illite that appear to form between grains.

1:Quartz 2:Fe-Chlorite 3:Calcite

Figure 1-1.28: Sample E-48-2244.39 site 11.2 (SEM). This site consists of a dissolved ?rhyolite lithic clast that is made up of quartz (1). Kaolinite booklets and fine-grained Fe-chlorite (2) appear to make up some of the cement. Late calcite (3) partially fills a void.

1:Hole/contaminant

Figure 1-1.29: Sample E-48-2244.39 site 11.3 (SEM). This site consists of a mixture.

Figure 1-1.30: Sample E-48-2244.39 site 11.4 (SEM). This site consists of a finegrained mudstone that is partially cemented by siderite. The silt-size grains consists of quartz (3), and Fe-Chlorite (2,4). There is also large framework grains of quartz (5).

Figure 1-1.31: Sample E-48-2244.39 site 12 (SEM). This site contains quartz, K-feldspar (7), halite (3,6), diagenetic siderite (Fig. 33), and Fe-chlorite (Figs. 32-35). The clays commonly coat detrital grains. Zircon (4) appears to be a

Figure 1-1.32: Sample E-48-2244.39 site 12.1 (SEM). This site consists of quartz grains that are coated with fine-grained Fe-chlorite (3), and diagenetic pyrite (4). There are also quartz overgrowths (positions a).

1:Quartz 2:Fe-Chlorite 3:Siderite + 4:Chlorite + Muscovite 5:Quartz

Figure 1-1.33: Sample E-48-2244.39 site 12.2 (SEM). This site is similar to sites 5.2, 7.1, 10.1, and 11.4. There may be a granitoid lithic clast made up of quartz (5) and muscovite + chlorite (4).

1:Fe-Chlorite 2:Fe-Chlorite 3:Fe-Chlorite 4:Halite 5:Fe-Chlorite 6:Quartz 7:Muscovite + 8:Chlorite + Muscovite

Figure 1-1.34: Sample E-48-2244.39 site 12.3 (SEM). This site consists of detrital quartz grains with a Fe-rich chlorite (1-3,5) cement. There is a granitoid lithic clast made up of quartz (6) and chloritized muscovite (7). Halite (4) appears late and most likely formed from salt water. The site is cut by a late irregular fracture that postdates the Fe-rich chlorite (3).

1:Quartz 2:K-feldspar + 3:Chlorite + Muscovite 4:Siderite + 5:Halite + 6:Fe-Chlorite 7:Pyrite

Figure 1-1.35: Sample E-48-2244.39 site 12.4 (SEM). This site is similar to sites 5.2, 7.1, 10.1, 11.4, and 12.2. There is also a fine-grained lithic clast made up of K-feldspar and probably quartz. Halite (5) appears to be late and most likely precipitated from salt water.

1:Quartz 2:K-feldspar 3:K-feldspar 4:Quartz 5:Quartz 6:K-feldspar 7:K-feldspar 8:Quartz 9:Quartz 10:Albite + Halite 11:K-feldspar 12:K-feldspar

Figure 1-1.36: Sample E-48-2244.39 site 13 (SEM). This site consists of quartz and K-feldspar which display suturing. K-feldspar (7) appears to be altering to ?kaolinite. Quartz appears to have small inclusions/veinlets of albite (10).

1:K-feldspar 2:Illite + Chlorite 3:Quartz 4:Chlorite 5:K-feldspar

Figure 1-1.37: Sample E-48-2244.39 site 13.1 (SEM). Zoom in of the altered K-feldspar grain from site 13. K-feldspar (1) appears to be altering to Fe-chlorite (4). K-feldspar (5) may be albitized (ellipses).

Figure 1-1.38: Sample E-48-2244.39 site 13.2 (SEM). This site consists of detrital quartz grains with a fine-grained Fe-chlorite (1,5) cement. There appears to be a ?collasped coated grain of chlorite + illite (4) with concentric Fe-chlorite (arrow). Late halite (2) is most likely from salt water.

1:Quartz 2:K-feldspar 3:Halite + 4:Garnet 5:Quartz 6:Quartz 6:Quartz 7:Quartz 8:Quartz 9:Quartz 10:K-feldspar 11:Mixture? 12:K-feldspar 13:Quartz

Figure 1-1.39: Sample E-48-2244.39 site 14 (SEM). This site contains grains of quartz, K-feldspar (2,10,12) and garnet (4). Suturing is common between grains. There also appears to be Fe-chlorite (Fig. 41) partially filling intergranular boundaries. Kaolinite booklets are common between grains.

1:"Ilmenite" 2:Quartz

Figure 1-1.40: Sample E-48-2244.39 site 14.1 (SEM). This site consists of an altered ilmenite crystal with quartz inclusions (2).

1:Fe-Chlorite 2:Fe-Chlorite 3:Quartz

Figure 1-1.41: Sample E-48-2244.39 site 14.2 (SEM). This site consists of detrital quartz (3) grains and a cement made up of fine-grained Fe-chlorite (1-1).

Figure 1-1.42: Sample E-48-2244.39 site 15 (SEM). This site contains mostly quartz and some partly altered K-feldspar grains. K-feldsar (4) and albite (5) appear to be a granitoid lithic clast. Kaolinite booklets are common between grains.

1:Chlorite 2:Apatite 3:Chlorite 4:Fe-Chlorite

Figure 1-1.43: Sample E-48-2244.39 site 15.1 (SEM). This site consists of a ?deformed coated grain that is made up of chlorite (3) with chlorite (1) veinlets cutting through it. Apatite (2) appears to be detrital and the outer coating is made up of Fe-chlorite (4).

Figure 1-1.44: Sample E-48-2244.39 site 15.2 (SEM). This site consists of kaolinite (1) forming the cement between detrital quartz grains.

Figure 1-1.45: Sample E-48-2244.39 site 16 (SEM). This site consists mainly of quartz with some K-feldspar (2,8) grains, Fe-chlorite cement (Figs. 44-45), late halite (13) precipitation between grain boundaries, and late titania (6) minerals.

Figure 1-1.46: Sample E-48-2244.39 site 16.1 (SEM). This site consists of a titania (2-3) mineral veinlet that is cross-cutting Fe-chlorite (4). This site may be an intraclast.

1:Halite 2:Fe-Chlorite 3:Siderite +

Figure 1-1.47: Sample E-48-2244.39 site 16.2 (SEM). Part of this site is similar to sites 5.2, 7.1, 10.1, 11.4, 12.4. Otherwise this site consists of detrital quartz grains with a fine-grained Fe-chlorite cement. Halite (1) most likely formed later by washing the core with salt water.

Figure 1-1.48: Sample E-48-2244.39 site 17 (SEM). This site consists of mostly quartz grains that display suturing. Chlorite (13) appears to grow along grain boundaries or fill voids (14). Titania (3) appears to be the latest to form.

1:Quartz 2:K-feldspar 3:K-feldspar 4:TiO₂ 5:K-feldspar 6:Quartz 7:Quartz 8:K-feldspar 9:Apatite 10:Quartz 11:Quartz 11:Quartz 12:TiO₂

Figure 1-1.49: Sample E-48-2244.39 site 18 (SEM). This site consists of quartz and K-feldspar. Fe-clays (Fig. 48) commonly coat detrital grains and K-feldspar (3,5,8) contain overgrowths (position a). Apatite (9) appears to be detrital.

1:Quartz 2:Chlorite + Illite 3:Chlorite + Illite

Figure 1-1.50: Sample E-48-2244.39 site 18.1 (SEM). This site consists of detrital quartz (1) grains that appear to be coated by chlorite + illite (2-3).

Figure 1-1.51: Sample E-48-2244.39 site 19 (SEM). This site is mostly made up of quartz with some K-feldspar grains. There is also an altered ilmenite grain (2).

Figure 1-1.52: Sample E-48-2244.39 site 19.1 (SEM). This site contains mostly quartz with halite (4) and fine-grained Fe-chlorite (5). Fragments of coated grains (position a) are also seen.

Figure 1-1.53: Sample E-48-2244.39 site 20 (SEM). This site consists of quartz grains. Primary porosity appears to be partially filled by kaolinite, whereas fine-grained Fe-chlorite (6, position a) appears to fill mostly secondary porosity. There is a detrital grain of chloritized muscovite (4), and zircon (2) appears to be an inclusion in quartz.

1:Quartz 2:Quartz 3:Siderite + 4:Siderite + Chlorite

Figure 1-1.54: Sample E-48-2244.39 site 20.1 (SEM). This site is similar to sites 5.2, 7.1, 10.1, 11.4, and 12.4.

1:Kaolinite

Figure 1-1.55: Sample E-48-2244.39 site 20.2 (SEM). This site consists of detrital quartz grains with kaolinite (1) partially filling primary porosity.

Sample	Site	Position Mineral	Si02	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	ō	Cr203	ZrO2	BaO	Ce2O3	HfO2	WO3	PbO	B2O3	Total	Actual Total
E-48-2244.39	1	1 Zrn	31.39														68.61							100	120
E-48-2244.39	1	2 Qz	100.00																					100	125
E-48-2244.39	1	3 Kfs	66.30		17.80					0.70	15.20													100	118
E-48-2244.39	1	4 Qz	100.00																					100	118
E-48-2244.39	1	5 Qz	100.00																					100	117
E-48-2244.39	1	6 Qz	100.00																					100	118
E-48-2244.39	1	7 Qz	100.00																					100	116
E-48-2244.39	1	8 Qz	100.00																					100	125
E-48-2244.39	1	9 Kfs	65.80		17.61					0.73	15.12							0.74						100	115
E-48-2244.39	1	10 Kfs	65.42		18.03					0.69	14.84							1.02						100	117
E-48-2244.39	1	11 Ms	48.69	0.87	28.38	4.19		1.88		0.42	10.57													95	114
E-48-2244.39	1	12 Kfs	66.43		18.11					1.44	14.02													100	113
E-48-2244.39	1	13 Qz	99.82			0.18																		100	119
E-48-2244.39	1	14 Qz	100.00																			L		100	120
E-48-2244.39	1.1	1 Qz	99.74			0.26																		100	121
E-48-2244.39	1.1	2 HI +	2.47			15.29			0.46	25.84			38.75		17.19							<u> </u>		100	196
E-48-2244.39	1.1	3 Py	1.47		0.29	28.28			0.22	2.59			65.22		1.91							<u> </u>		100	144
E-48-2244.39	1.1	4 Fe-Chl	28.78		20.56	29.32		4.53		0.98	0.48				0.36							<u> </u>		85	94
E-48-2244.39	1.1	5 TiO2		98.53	0.40	1.08																<u> </u>		100	109
E-48-2244.39	1.1	6 Ms + Chl	43.56		22.73	24.22		4.48		1.10	3.38				0.53									100	81
E-48-2244.39	1.1	7 Kln	49.33		36.43	0.24																<u> </u>		86	99
E-48-2244.39	1.1	8 Fe-Chl	30.39	0.33	20.91	26.57		5.08		0.82	0.33				0.56							<u> </u>		85	64
E-48-2244.39	1.1	9 Qz	100.00																			<u> </u>		100	122
E-48-2244.39	1.2	1 Kfs	66.14	0.34	17.73					0.83	14.97											<u> </u>		100	118
E-48-2244.39	1.2	2 Ap							48.40			44.21		5.51							1.87	<u> </u>		100	123
E-48-2244.39	1.2	3 Qz	100.00																			<u> </u>		100	119
E-48-2244.39	1.2	4 Chi	33.10		21.04	22.78		5.87		0.94	0.90				0.37							<u> </u>		85	98
E-48-2244.39	1.2	5 TiO2	3.32	92.85	1.57	1.84					0.42											<u> </u>		100	102
E-48-2244.39	1.2	6 Fe-Chl	29.63	0.48	20.93	27.88		4.31		0.66	0.37				0.74							<u> </u>	<u> </u>	85	59
E-48-2244.39	1.2	7 Sd +	6.07		2.44	72.51	1.71	8.79	5.62	1.76	0.37				0.73							<u> </u>		100	62
E-48-2244.39	2		100.00	00.00	1.00	0.04																<u> </u>		100	120
E-48-2244.39	2	2 1102	0.97	96.80	1.60	0.64				0.40	45.74											<u> </u>		100	109
E-48-2244.39	2	3 KIS	66.26		17.55					0.48	15.71											<u> </u>	<u> </u>	100	115
E-48-2244.39	2	4 KIS	66.19		18.08					1.24	14.50							0.00				<u> </u>		100	112
E-48-2244.39	2		65.70		17.82					0.87	14.92							0.68				<u> </u>	<u> </u>	100	112
E-48-2244.39	2		100.00																			<u> </u>	<u> </u>	100	115
E-40-2244.39	2	1 42	100.00																			<u> </u>	<u> </u>	100	11/
E-40-2244.39	2		100.00																			<u> </u>	'	100	114
E 49 2244.39	2		66.22		17.75					2.27	12 50											<u> </u>	├───┤	100	119
E-40-2244.39	2	11 07	100.32		17.75					2.37	13.56											<u> </u>	<u> </u>	100	110
E 49 2244.39	2	12 07	100.00																			├── ′	├───┤	100	110
E-40-2244.39	2		0.00							50.02					10 30							<u> </u>		100	110
L-40-2244.39	∠		0.09							00.03				1	+3.30							L		100	102

Table 1-1.1: EDS analyses of sample E-48-2244.39.

г

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	Ŀ	C	Cr203	ZrO2	BaO	Ce2O3	HfO2	WO3	PbO	B2O3	Total	Actual Total
E-48-2244.39	2	14 7	ГiO2	1.61	94.62	1.96	1.81								1										100	102
E-48-2244.39	2	15 k	۲fs	66.26		17.89					0.65	15.20													100	112
E-48-2244.39	2.1	11	۲fs	65.98		18.12					0.45	15.46													100	119
E-48-2244.39	2.1	20	Ωz	100.00																					100	122
E-48-2244.39	2.1	30	Ωz	100.00																					100	122
E-48-2244.39	2.1	4 F	e-Chl	30.91	1.09	20.64	26.52		4.01		0.81	0.55				0.48									85	78
E-48-2244.39	3	10	Ωz	100.00																					100	118
E-48-2244.39	3	21	ГiO2	1.53	96.01	1.21	1.25																		100	109
E-48-2244.39	3	31	FiO2	1.22	96.36	1.56	0.87																		100	109
E-48-2244.39	3	4	۲fs	66.20		17.86					0.82	15.12													100	117
E-48-2244.39	3	50	Ωz	100.00																					100	120
E-48-2244.39	3	60	Ωz	100.00																					100	118
E-48-2244.39	3	71	۲fs	65.72		17.77					0.62	15.27							0.61						100	114
E-48-2244.39	3	80	Ωz	100.00																					100	120
E-48-2244.39	3	9 Z	Zrn	29.44		1.46	0.55			1.20	0.90					0.99		64.06			1.41				100	104
E-48-2244.39	3	10 0	Ωz	100.00																					100	124
E-48-2244.39	3	11 1	۲fs	66.17		18.18					1.06	14.59													100	114
E-48-2244.39	3	12 (Ωz	100.00																					100	117
E-48-2244.39	3	13 (Ωz	100.00																					100	123
E-48-2244.39	3	14 H	-ll +	9.72						1.18	40.32			1.74		47.04									100	128
E-48-2244.39	4	10	Ωz	100.00																					100	120
E-48-2244.39	4	2 5	Spl	0.46		38.40	15.62		16.55								28.97								100	110
E-48-2244.39	4	3 (Ωz	100.00																					100	123
E-48-2244.39	4	4 (Ωz	100.00																					100	125
E-48-2244.39	4	60	Ωz	100.00																					100	117
E-48-2244.39	4	7 (Ωz	100.00																					100	118
E-48-2244.39	4	8	۲fs	66.52		17.85					0.86	14.77													100	117
E-48-2244.39	4	90	Ωz	100.00																					100	118
E-48-2244.39	4	10 0	Grt	39.71		21.06	27.78	0.87	1.45	9.13															100	112
E-48-2244.39	4.1	10	Ωz	100.00																					100	123
E-48-2244.39	4.1	2 1	FiO2	0.94	96.96	1.52	0.58																		100	108
E-48-2244.39	4.1	31	۲fs	66.32		17.69					0.83	15.16													100	118
E-48-2244.39	4.1	4 7	FiO2	0.53	97.73	0.78	0.96																		100	106
E-48-2244.39	4.1	5 H	۲fs	66.28		17.71					0.53	15.47													100	116
E-48-2244.39	4.1	61	Mix	52.36		19.26	12.32		1.96	2.18	0.55	9.10	2.27											ľ	100	100
E-48-2244.39	5	1 (Ωz	100.00																					100	121
E-48-2244.39	5	2 F	Fe-Chl	28.48		21.38	29.12		4.57		0.77	0.21				0.46									85	68
E-48-2244.39	5	3 (Ωz	100.00																					100	121
E-48-2244.39	5	4 (Ωz	100.00																					100	123
E-48-2244.39	5	5 k	۲fs	66.19		18.12					1.40	14.28													100	116
E-48-2244.39	5	6	۲fs	66.41		17.58					0.46	15.56													100	119
E-48-2244.39	5	71	۲fs	65.79		17.70					0.55	15.29							0.67						100	115
E-48-2244.39	5	80	Ωz	100.00										-											100	117

Table 1-1.1: EDS analyses of sample E-48-2244.39.

E44-224439 S.1 I Oz 100 100 100 100 100 130 E44-224439 S.1 2 Su 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.23 9.7 0.7 0.7 0.75 0.7 <	Sample	Site	Position Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	C	Cr203	ZrO2	BaO	Ce2O3	HfO2	WO3	PbO	B2O3	Total	Actual Total
E4A-224439 S1 S1 S2 S4 4.48 68.96 15.17 14.39 <t< td=""><td>E-48-2244.39</td><td>5.1</td><td>1 Qz</td><td>100.00</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td>120</td></t<>	E-48-2244.39	5.1	1 Qz	100.00				1																	100	120
E4-8224439 S.1 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	E-48-2244.39	5.1	2 Sd +	1.48			68.96		15.17	14.39															100	58
E-48-2244.39 S.1 4 Ms 46.6 0.52 2.86 7.43 1.91 0.57 8.24 0.82	E-48-2244.39	5.1	3 Qz	99.77			0.23																		100	121
E4-82244.39 5.1 6 + Ch 47.8 0.41 2.86 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 7.8 8.4 8.1 7.8 8.1 7.8 9.1 7.8 9.1 7.8 9.1 9.2 1.8 0.2 1.0 1.01	E-48-2244.39	5.1	4 Ms	46.46	0.52	29.86	7.43		1.91		0.57	8.25													95	104
E-48-2244.39 5.1 6 + Ch 4.79 0.47 2.26 1.78 4.14 1.06 4.51 1.01 1.01 1.01 1.00 0.00 1.00 <td>E-48-2244.39</td> <td>5.1</td> <td>5 Sd</td> <td>1.22</td> <td></td> <td></td> <td>37.06</td> <td>0.39</td> <td>8.44</td> <td>8.21</td> <td>0.68</td> <td></td> <td>56</td> <td>61</td>	E-48-2244.39	5.1	5 Sd	1.22			37.06	0.39	8.44	8.21	0.68														56	61
E-48-2244.39 5.1 7 Kis 66.09 17.75 0.25 0.22 15.9 0 0 100 119 E-48-2244.39 5.1 9 Kis 66.14 17.76 0.77 15.31 0 0 100 117 E-48-2244.39 5.2 1 Kis 66.16 17.66 0.40 0.62 15.16 0 0 100 117 E-48-2244.39 5.2 2 Py + 2.68 1.46 33.62 0.44 0.44 0.49 0.56 0 0 100 151 E-48-2244.39 5.2 5.2 3.25 1.76 17.34 119 17.34 1.05 0.655 0 100 100 162 E-48-2244.39 6.2 2 Kis 66.31 17.79 0.31 0.92 0.88 0.43 0.43 0 100 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 1100 1100 1100 110	E-48-2244.39	5.1	6 III + Chl	47.98	0.41	22.96	17.95		4.14		1.05	4.51				1.01									100	67
E-48-2244.39 5.1 8 kg 0100 123 E-48-2244.39 5.2 1 Kfs 66.16 17.66 0.40 0.62 15.16 0.60 100 112 E-48-2244.39 5.2 2 Py + 268 1.46 3.362 0.44 0.44 0.49 0.17 60.69 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.56 1.00 100 65 E-48-2244.39 5.2 5 Qz + 91.39 0.43 0.54 0.55 0.54 0.55 1.00 110 61 E-48-2244.39 5.2 5 Qz + 91.39 0.49 0.51 0.56 0.65 1.00 110 111 E-48-2244.39 6.1 1.49 5.13 0.54 0.59 1.36 0.43 1.00 100 112 E-48-2244.39 6 1 Kits 66.31 17.94 0.39 1.485 0.48 0.43 0.40 100 112	E-48-2244.39	5.1	7 Kfs	66.09		17.75	0.25				0.32	15.59													100	119
	E-48-2244.39	5.1	8 Qz	100.00																					100	123
	E-48-2244.39	5.1	9 Kfs	66.14		17.78					0.77	15.31													100	117
	E-48-2244.39	5.2	1 Kfs	66.16		17.66	0.40				0.62	15.16													100	112
	E-48-2244.39	5.2	2 Py +	2.68		1.46	33.62		0.44	0.44	0.49	0.17		60.69											100	151
	E-48-2244.39	5.2	3 Sd +	4.26		1.90	72.43	1.15	10.91	7.38	1.43					0.54									100	62
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2244.39	5.2	4 Chl + III	33.83	0.78	23.25	33.56		4.90	0.62	1.12	0.59				1.36									100	66
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2244.39	5.2	5 Qz +	91.39		1.49	5.13		0.54	0.54	0.35					0.55							ļ'		100	111
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2244.39	5.2	6 Chl + Ill	36.58		24.13	31.98		4.97	0.31	0.92	0.68				0.43									100	67
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2244.39	6	1 Qz	100.00																			<u> </u>		100	118
E-48-2244.39 6 3 Kfs 65.38 18.04 0.51 15.04 1.04 100 102 E-48-2244.39 6 5 Qz 98.69 0.70 0.39 0.32 0.70 15.21 0.70 1.54 100 102 E-48-2244.39 6 6 Kfs 65.19 18.14 0.66 14.47 1.54 100 101 1137 E-48-2244.39 6 7 H 0.71 48.01 51.28 0.80 100 116 E-48-2244.39 6 8 Kfs 65.93 17.79 0.93 14.55 0.80 0.80 100 116 E-48-2244.39 6 10 H 5.00 2.33 4.34 1.85 42.64 0.6 7.92 35.55 0.00 100 152 E-48-2244.39 6 11 Ap 48.35 44.23 5.86 1.56 100 118 E-48-2244.39 6 13 Kfs 65.67 17.98 0.64 0.70 15.01 1.56 1000 <td< td=""><td>E-48-2244.39</td><td>6</td><td>2 Kfs</td><td>66.31</td><td></td><td>17.94</td><td></td><td></td><td></td><td></td><td>0.89</td><td>14.86</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td>100</td><td>113</td></td<>	E-48-2244.39	6	2 Kfs	66.31		17.94					0.89	14.86											<u> </u>		100	113
E-48-2244.39 6 4 Kis 66.22 17.87 0.70 15.21 100 100 1100 1100 1100 1100 1110 100 111 E-48-2244.39 6 6 Kfs 65.19 18.14 0.66 14.47 1.54 100 111 E-48-2244.39 6 7 H 0.71 48.01 51.28 0.80 1000 132 E-48-2244.39 6 9 H 0.99 0.93 14.55 0.80 0.80 100 157 E-48-2244.39 6 10 H 5.00 2.33 4.34 1.85 42.64 0.16 7.92 35.55 100 100 157 E-48-2244.39 6 12 Qz 100.00 2 44.23 5.86 1.56 100 100 118 E-48-2244.39 6 13 Kis 65.67 17.98 0.64 0.70 15.01 100 101	E-48-2244.39	6	3 Kfs	65.38		18.04					0.51	15.04							1.04				<u> </u>		100	112
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2244.39	6	4 Kfs	66.22		17.87					0.70	15.21											<u> </u>		100	109
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2244.39	6	5 Qz	98.59	0.70	0.39	0.32																		100	112
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2244.39	6	6 Kfs	65.19		18.14					0.66	14.47							1.54				<u> </u>		100	111
E-48-2244.39 6 8 Kis 65.93 17.79 0.93 14.55 0 100 110 116 E-48-2244.39 6 10 H 0.99 2.33 4.34 1.85 42.84 0.16 7.92 35.55 0 100 116 E-48-2244.39 6 11 Ap 48.35 44.23 5.86 0 1.56 100 115 E-48-2244.39 6 12 Qz 100.00 48.35 44.23 5.86 0 100 116 E-48-2244.39 6 13 kis 65.67 17.98 0.64 0.70 15.01 0 0 100 117 E-48-2244.39 6 14 Qz 100.00 0 0.88 47.62 45.01 0 100 100 117 E-48-2244.39 7 1 kis 6.637 17.74 0.74 0.70 15.18 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	E-48-2244.39	6	7 HI	0.71							48.01					51.28							<u> </u>		100	137
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2244.39	6	8 Kfs	65.93		17.79					0.93	14.55							0.80				<u> </u>		100	116
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2244.39	6	9 HI	0.99							52.98					46.03							<u> </u>		100	157
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2244.39	6	10 HI	5.00		2.33	4.34			1.85	42.84	0.16		7.92		35.55							<u> </u>	ļ	100	116
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2244.39	6	11 Ap							48.35			44.23		5.86							1.56	Ļ!	ļ]	100	125
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2244.39	6	12 Qz	100.00																			<u> </u>	\square	100	118
E-48-2244.39 6 15 HI 5.03 0.76 1.20 0.38 47.62 45.01 100 100 100 100 E-48-2244.39 7 1 Kfs 66.37 17.74 0.70 15.18 100 100 100 101 E-48-2244.39 7 2 Spl 27.68 18.16 9.83 44.33 44.33 100 100 114 E-48-2244.39 7 3 Qz 100.00 17 40.01 100 100 100 100 100 114 E-48-2244.39 7 3 Qz 100.00 17.64 9.83 100 44.33 100 100 118 E-48-2244.39 7 4 Qz 100.00 100 14 43.71 55.83 100 100 112 E-48-2244.39 7 6 Qz 100.00 17.94 0.67 15.38 100 100 112 E-48-2244.39 7 7 Kfs 66.08 17.64 0.28 0.90 15.1	E-48-2244.39	6	13 Kfs	65.67		17.98	0.64				0.70	15.01											<u> </u>		100	111
E-88-2244.39615H5.030.761.200.3847.6245.0145.01100103E-48-2244.3971Kfs66.3717.740.7015.18100103E-48-2244.3972Spl27.6818.169.83100100100E-48-2244.3973Qz100.00100100100100E-48-2244.3974Qz100.00100100100100E-48-2244.3975HI0.4643.7155.83100100112E-48-2244.3975HI0.4643.7155.83100100122E-48-2244.3977Kfs66.0017.940.6715.38100100124E-48-2244.3978Kfs66.0817.640.280.9015.11100110110E-48-2244.3979Qz100.0017.940.6715.38100100117E-48-2244.3979Qz100.0010.2810.01111100110112E-48-2244.39710Qz100.0010.28100.117100112100110112E-48-2244.39710Qz100.00100125100.111100118100110118E-48-2244.39710Qz100.00100 <t< td=""><td>E-48-2244.39</td><td>6</td><td>14 Qz</td><td>100.00</td><td></td><td>0.70</td><td>1.00</td><td></td><td></td><td>0.00</td><td>47.00</td><td></td><td></td><td></td><td></td><td>15.04</td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td>ļ </td><td>100</td><td>11/</td></t<>	E-48-2244.39	6	14 Qz	100.00		0.70	1.00			0.00	47.00					15.04							<u> </u>	ļ	100	11/
E-48-2244.39 7 1 kis 66.37 17.74 0.70 15.18 100 114 $E-48-2244.39$ 7 2 Spl 27.68 18.16 9.83 44.33 100 100 100 100 $E-48-2244.39$ 7 3 Qz 100.00 18 100 118 100 119 $E-48-2244.39$ 7 4 Qz 100.00 179 100 119 100 122 $E-48-2244.39$ 7 5 HI 0.46 43.71 55.83 100 100 122 $E-48-2244.39$ 7 6 Qz 100.00 43.71 55.83 100 100 122 $E-48-2244.39$ 7 7 Kfs 66.00 17.94 0.67 15.38 100 100 124 $E-48-2244.39$ 7 8 Kfs 66.88 17.64 0.28 0.90 15.11 100 100 117 $E-48-2244.39$ 7 10 Qz 100.00 100 125 100 100 125 $E-48-2244.39$ 7 10 Qz <	E-48-2244.39	6	15 HI	5.03		0.76	1.20			0.38	47.62	45.40				45.01							<u> </u>		100	103
E-48-2244.39 7 3 Qz 100.00 105 E-48-2244.39 7 3 Qz 100.00 105 E-48-2244.39 7 4 Qz 100.00 100 118 E-48-2244.39 7 5 HI 0.46 43.71 55.83 100 100 122 E-48-2244.39 7 6 Qz 100.00 17.94 43.71 55.83 100 100 124 E-48-2244.39 7 7 Kfs 66.00 17.94 0.67 15.38 100 100 116 E-48-2244.39 7 8 Kfs 66.08 17.64 0.28 0.90 15.11 100 100 117 E-48-2244.39 7 9 Qz 100.00 116 100 117 E-48-2244.39 7 9 Qz 100.00 124 100 1100 125 E-48-2244.39 7 9 Qz 100.00 100 125 100 100 125 E-48-2244.39 <	E-48-2244.39	/		66.37		17.74	10.40		0.00		0.70	15.18					44.00						<u> </u>		100	114
E-48-2244.39 7 4 QZ 100.00 118 $E-48-2244.39$ 7 4 QZ 100.00 100 118 $E-48-2244.39$ 7 5 H 0.46 43.71 55.83 100 100 122 $E-48-2244.39$ 7 6 QZ 100.00 17.94 0.67 15.38 100 100 112 $E-48-2244.39$ 7 7 Kfs 66.00 17.94 0.67 15.38 100 100 117 $E-48-2244.39$ 7 8 Kfs 66.08 17.64 0.28 0.90 15.11 100 100 117 $E-48-2244.39$ 7 9 QZ 100.00 100 122 100.01 1100 125 $E-48-2244.39$ 7 9 QZ 100.00 100 125 100 100 125 $E-48-2244.39$ 7 10 QZ 100.00 100 126 100 118 $E-48-2244.39$ 7 10 QZ 100.00<	E-48-2244.39	7		400.00		27.68	18.16		9.83								44.33						<u> </u>		100	105
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E-48-2244.39	7	3 QZ	100.00																			<u> </u>		100	118
E-48-2244.39 7 6 Qz 100.00 124 E-48-2244.39 7 6 Qz 100.00 124 E-48-2244.39 7 7 7 7 7 66.00 17.94 0.67 15.38 100 100 124 E-48-2244.39 7 8 Kfs 66.08 17.64 0.28 0.90 15.11 100 125 E-48-2244.39 7 9 Qz 100.00 100 125 100 125 E-48-2244.39 7 10 Qz 100.00 128 100 126 100 125 E-48-2244.39 7 10 Qz 100.00 126 100 126 100 125 E-48-2244.39 7 10 Qz 100.00 118 100 118 E-48-2244.39 7 12 Qz 100.00 124 100 111 E-48-2244.39 7 12 Qz 100.00 100 111 100 120 100 1100 111 </td <td>E-48-2244.39</td> <td>7</td> <td>4 QZ</td> <td>100.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>40.74</td> <td></td> <td></td> <td></td> <td></td> <td>FF 00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td> </td> <td>100</td> <td>119</td>	E-48-2244.39	7	4 QZ	100.00							40.74					FF 00							<u> </u>		100	119
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E-40-2244.39	7		0.46							43.71					<u> </u>							<u> </u>		100	122
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E-40-2244.39	7		100.00		17.04					0.67	15 20											<u> </u>		100	124
L-ror-Z244.39 7 9 Qz 100.00 17.04 0.20 0.30 15.11 0 100 117 E-48-2244.39 7 9 Qz 100.00 17.04 0.20 0.30 15.11 100 117 E-48-2244.39 7 10 Qz 100.00 100 125 E-48-2244.39 7 11 Kfs + 66.42 17.76 2.08 13.74 100 118 E-48-2244.39 7 12 Qz 100.00 120 120 100 111	E 49 2244.39	7		66.00		17.94	0.20				0.07	15.38											├ ──	┝───┦	100	110
L-40-2244.39 7 10 Qz 100.00 125 E-48-2244.39 7 11 Kfs + 66.42 17.76 2.08 13.74 100 110 118 E-48-2244.39 7 12 Qz 100.00 118 100 118 E-48-2244.39 7 12 Qz 100.00 110 120 E-48-2244.39 7 12 Qz 100.00 120 100 120	E 40 2244.39	7		100.08		17.04	0.28				0.90	15.11										-	<u> </u>	┝──┦	100	117
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E 49 2244.39	7	10 07	100.00																			⊢'	┝───┦	100	120
L-to-22tt.39 7 11 pts t 00:12 17.70 2.00 10.74 100 111 E-48-2244.39 7 12 Qz 100.00 100 120 100 120 E-48-2244.39 7 13 Kfs 66 23 17.54 0.37 15.85 100 148	E-40-2244.39	7		66 42		17 76					2.09	13 74											⊢—	┝───┦	100	110
L-T0-22-T05 / 12/02 100.00 100 120 100.00 100 120 12	E-40-2244.39	7	12 07	100.42		17.70					2.00	13.74											⊢—	 	100	120
	F-48-2244.39	7	12 QZ	66.23		17 54					0.37	15.85											\vdash		100	118

Table 1-1.1: EDS analyses of sample E-48-2244.39.

Sample	Site	Position Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	C	Cr203	ZrO2	BaO	Ce2O3	HfO2	WO3	PbO	B2O3	Total	Actual Total
E-48-2244.39	7.1	1 Grt	39.75		20.77	29.62	0.29	1.30	8.27					1										100	111
E-48-2244.39	7.1	2 Qz	98.54		0.93	0.33					0.20													100	118
E-48-2244.39	7.1	3 Ms	50.27		29.97	2.64		2.16		0.65	9.32													95	104
E-48-2244.39	7.1	4 Kfs	65.85		17.87	0.49				0.95	14.84													100	115
E-48-2244.39	7.1	5 Qz	99.45			0.55																		100	119
E-48-2244.39	7.1	6 Sd	0.96		0.43	39.45	0.47	6.87	7.16	0.66														56	57
E-48-2244.39	7.1	7 Sd? +	2.11			70.33	0.79	14.11	11.79	0.87														100	61
E-48-2244.39	7.2	1 Kfs	66.37		17.64					1.11	14.88													100	114
E-48-2244.39	7.2	2 Ab +	65.06		22.05				2.97	9.34	0.57													100	116
E-48-2244.39	7.2	3 Kfs	65.70		18.83				1.03	8.73	5.72													100	119
E-48-2244.39	7.3	1 Spl			28.12	17.86		8.92								45.10								100	104
E-48-2244.39	7.3	2 Fe-Chl	29.52		21.13	27.35		4.72	0.28	0.87	0.37				0.77									85	61
E-48-2244.39	7.3	3 Chl + Ill	57.14		23.08	8.04		3.07		1.56	6.42				0.69									100	84
E-48-2244.39	7.3	4 Chl + Ill	56.35		22.67	8.71		2.95		1.52	6.75				1.05									100	84
E-48-2244.39	7.3	5 Qz	99.76			0.24																		100	119
E-48-2244.39	7.3	6 Qz	100.00																					100	118
E-48-2244.39	7.3	7 Fe-Chl	31.16		22.75	25.06		4.41		0.88					0.74									85	52
E-48-2244.39	7.4	2 Hole/contar	70.91		9.46	4.85		2.49	3.30	4.78	1.33		2.88											100	41
E-48-2244.39	8	1 Qz	100.00																					100	120
E-48-2244.39	8	2 Qz	100.00																					100	121
E-48-2244.39	8	3 Qz	100.00																					100	118
E-48-2244.39	8	4 Qz	100.00																					100	118
E-48-2244.39	8	5 Kfs	66.26		17.85					0.66	15.23													100	113
E-48-2244.39	8	6 Qz	100.00																					100	116
E-48-2244.39	8	7 Chl + Kfs	46.88		21.22	24.65		3.41		1.36	1.67				0.81									100	52
E-48-2244.39	8	8 Kfs	66.09		18.03					0.64	15.23													100	115
E-48-2244.39	8	9 Qz	100.00																					100	118
E-48-2244.39	8	10 Qz	100.00																					100	121
E-48-2244.39	8	11 Fe-Chl	29.18		20.95	28.86		4.73		0.63	0.21				0.43									85	69
E-48-2244.39	8	12 Kfs	64.27		18.48					1.18	13.53							2.54						100	118
E-48-2244.39	8	13 Chl + Kfs	52.46		18.13	16.22		3.12		1.67	7.45				0.95									100	92
E-48-2244.39	8.1	1 Chl + Ill	37.41		25.32	29.43		4.94		0.97	0.97				0.94									100	58
E-48-2244.39	8.1	2 Chl + Ill	36.14		24.74	31.35		5.28		0.97	0.70				0.83									100	56
E-48-2244.39	9	1 Kfs	65.43		18.28					1.38	14.03							0.88				<u> </u>		100	117
E-48-2244.39	9	2 Kfs	65.71		18.07					1.39	13.97							0.86						100	120
E-48-2244.39	9	3 Qz	100.00																					100	122
E-48-2244.39	9	4 Qz	100.00																					100	124
E-48-2244.39	9	5 Qz	100.00																					100	125
E-48-2244.39	9	6 Qz	100.00																			<u> </u>		100	121
E-48-2244.39	9	7 Qz	100.00																					100	120
E-48-2244.39	9	8 HI	0.72						2.38	43.63			7.43		45.84							<u> </u>		100	125
E-48-2244.39	9	9 Qz	100.00																					100	117
E-48-2244.39	9	10 Qz	100.00																					100	119

Table 1-1.1: EDS analyses of sample E-48-2244.39.

г

Sample	Site	Position	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	ū	Cr203	ZrO2	BaO	Ce2O3	HfO2	WO3	PbO	B2O3	Total	Actual Total
E-48-2244.39	9	11 Qz	100.00																					100	115
E-48-2244.39	9	12 Qz	100.00																					100	123
E-48-2244.39	9.1	1 Chl + Hl	31.12		23.39	33.98		5.32		3.53					2.65									100	85
E-48-2244.39	9.1	2 Chl	30.82	0.44	15.28	28.44		8.40		1.16	0.21				0.26									85	90
E-48-2244.39	9.1	3 HI +	6.22		3.52	8.82		0.37		36.96					42.42							1.68		100	86
E-48-2244.39	9.1	4 Chl	28.35		20.83	29.84		4.34		0.74	0.24				0.66									85	72
E-48-2244.39	9.2	1 Contaminat	74.94		1.31	0.23		4.43	7.31	11.28	0.51													100	97
E-48-2244.39	9.2	2 Contaminat	67.96		12.95	12.73		1.80	0.53	1.20	1.80				1.03									100	42
E-48-2244.39	10	1 Kfs	66.19		17.75					0.47	15.59													100	114
E-48-2244.39	10	2 Qz	100.00																					100	118
E-48-2244.39	10	3 Qz	100.00																					100	116
E-48-2244.39	10	4 Kfs	66.00		18.03					0.55	15.42													100	113
E-48-2244.39	10	5 Qz	100.00																					100	124
E-48-2244.39	10	6 Qz	96.13		3.15	0.45									0.28									100	107
E-48-2244.39	10	7 Qz	100.00																					100	123
E-48-2244.39	10	8 Kfs	66.23		17.75					0.70	15.32													100	115
E-48-2244.39	10	9 Qz	100.00																					100	119
E-48-2244.39	10	10 Qz	100.00																					100	116
E-48-2244.39	10	11 Qz +	94.90		3.56	0.72					0.82													100	112
E-48-2244.39	10	12 TiO2	0.60	98.56		0.84																		100	103
E-48-2244.39	10.1	1 Fe-Chl +	29.83	0.44	20.54	27.55		4.20		0.75	0.79				0.91									85	71
E-48-2244.39	10.1	2 Sd +	4.18		1.22	74.86	1.48	9.33	6.48	1.82					0.63									100	59
E-48-2244.39	10.1	3 Fe-Chl +	30.22	0.32	20.91	26.85		4.47		0.61	0.76				0.86									85	66
E-48-2244.39	11	1 Ms	47.72	1.04	32.60	1.57		1.07		0.47	10.54													95	103
E-48-2244.39	11	2 Qz	100.00																					100	114
E-48-2244.39	11	3 HI	0.49							49.09					50.42									100	140
E-48-2244.39	11	4 TiO2	0.87	96.61	1.07	1.45																		100	103
E-48-2244.39	11	5 Kfs	66.08		17.98					0.78	15.17													100	115
E-48-2244.39	11	6 Qz	100.00								10.50													100	119
E-48-2244.39	11	7 Kfs	66.48	0.28	17.87					1.81	13.56													100	114
E-48-2244.39	11	8 QZ	100.00																					100	123
E-48-2244.39	11	9 QZ	100.00		40.70					44.00														100	120
E-48-2244.39	11	10 AD	69.45		18.72					11.83														100	113
E-48-2244.39	11	11 QZ	100.00																					100	116
E-48-2244.39	11	12 QZ	100.00		04.44	00.40		4.00		0.77	0.70				0.00									100	117
E-40-2244.39	11.1		30.89		21.14	20.40		4.39		0.77	0.73				0.69			0.55						00	59
E-40-2244.39	11.1		40.44		10.04	26.52		4 74		0.91	14.72				0.64			0.55						100	64
E-40-2244.39	11.1		40.44		24.80	20.03		4./1		0.89	1.98				0.04									95	04 50
E 49 2244.39	11.1		100.00		21.28	25.04		4.38		0.08	0.62				0.60									100	117
E-40-2244.39	11.1	1 07	00.00		0.55						0.16													100	11/
E-40-2244.39	11.2		20.20		21.26	28.61		4 67			0.10				0.50									85	60
F-48-2244 30	11.2	2 Cal	23.30		21.20	1.67		0.48	53.86		0.50				0.59									56	54
L 10 2277.03	11.4					1.07		0.70	55.00									1	1	1				00	

Table 1-1.1: EDS analyses of sample E-48-2244.39.

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	Ŀ	ō	Cr203	ZrO2	BaO	Ce2O3	HfO2	WO3	PbO	B2O3	Total	Actual Total
E-48-2244.39	11.3	1 Ho	ole/contar	57.22		7.74	4.05	i i	3.69	5.56	5.47	1.55	11.25	2.51		0.96									100	22
E-48-2244.39	11.4	1 Sc	d +	3.68		1.49	74.78	1.88	9.19	6.91	1.59					0.49									100	61
E-48-2244.39	11.4	2 Cł	hl + III	46.08		22.25	25.26		3.55		1.09	0.72				1.06									100	72
E-48-2244.39	11.4	3 Q;	Z	99.57			0.37					0.06													100	114
E-48-2244.39	11.4	4 Fe	e-Chl	29.08	0.34	20.85	28.84		4.42		0.65	0.39				0.43									85	80
E-48-2244.39	11.4	5 Q;	Z	100.00																					100	117
E-48-2244.39	12	1 Q;	Z	100.00																					100	116
E-48-2244.39	12	2 Q;	Z	100.00																					100	120
E-48-2244.39	12	3 HI		0.60							46.24					53.16									100	135
E-48-2244.39	12	4 Zr	'n	30.86														67.31			1.83				100	121
E-48-2244.39	12	5 Q:	Z	100.00																					100	121
E-48-2244.39	12	6 HI		1.08		0.28	0.26				47.51					50.88									100	143
E-48-2244.39	12	7 Kf	fs	66.34		17.91					1.13	14.63													100	117
E-48-2244.39	12	8 Q;	Z	100.00																					100	119
E-48-2244.39	12	9 Q:	Z	100.00																					100	118
E-48-2244.39	12	10 Q;	Z	100.00																					100	118
E-48-2244.39	12	11 Q;	Z	100.00																					100	115
E-48-2244.39	12	12 At	b	69.60		19.02					11.38														100	123
E-48-2244.39	12	13 Q;	Z	100.00																					100	116
E-48-2244.39	12.1	1 Q;	Z	100.00																					100	119
E-48-2244.39	12.1	2 Q;	Z	99.57						0.43															100	115
E-48-2244.39	12.1	3 Fe	e-Chl	28.79		20.42	29.99		4.45		0.54	0.24				0.58									85	60
E-48-2244.39	12.1	4 P)	y	0.63			28.96							70.40											100	219
E-48-2244.39	12.2	1 Q;	Z	100.00																					100	115
E-48-2244.39	12.2	2 Fe	e-Chl	31.27		20.60	26.58		4.52		0.72	0.62				0.68									85	70
E-48-2244.39	12.2	3 Sc	d +	7.22		1.54	73.56	1.30	7.74	6.35	1.51					0.77									100	62
E-48-2244.39	12.2	4 Cr	hl + Ms	51.34		27.94	7.08		2.57		0.92	9.51				0.64									100	105
E-48-2244.39	12.2	5 Q;	Z	100.00																					100	115
E-48-2244.39	12.3	1 Fe	e-Chl	28.56		21.15	29.27		4.66		0.71					0.65									85	73
E-48-2244.39	12.3	2 + e	e-Chl	29.32		20.52	29.22		4.11		0.68	0.47				0.68									85	68
E-48-2244.39	12.3	3 Fe	e-Chi	27.96		20.61	28.73		4.89	0.37	1.67	0.20				0.58									85	98
E-48-2244.39	12.3			4.78		1.12	0.97		4.04		50.50	0.57				42.63			-						100	154
E-48-2244.39	12.3	5 Fe	e-Cni	30.15		20.90	27.40		4.61		0.84	0.57				0.53									85	63
E-48-2244.39	12.3	6 Q2	Z	99.72		04.40	0.28		0.70		0.07	40.07													100	116
E-48-2244.39	12.3		S +	49.84		34.42	3.72		0.78		0.87	10.37				1.01									100	104
E-48-2244.39	12.3		ni + Ms	55.39		22.54	10.18		2.54		1.35	6.96				1.04									100	//
E-48-2244.39	12.4		<u>۲</u>	100.00		40.07	4 4 5			2.04	1.00	10.00	4 4 4			0.00				4 4 7					100	119
E 48-2244.39	12.4		S+	60.57		16.27	1.15		2 00	3.04	1.02	12.36	4.14	0.00		0.28				1.17					100	82
E-48-2244.39	12.4		ni + IVIS	52.20		20.23	12.89	1 40	3.23	1.80	2.04	6.78		0.62		0.21									100	100
E 48-2244.39	12.4	4 50	u +	3.98		1.91	74.49	1.40	9.59	0.54	1.69	2.22		0.00		0.40									100	6Z
E-40-2244.39	12.4			11.01		0.08	5.58		0.93	0.71	35.89	2.33		0.08		29.43									100	120
E 48-2244.39	12.4		3-UNI	30.73		21.09	20.27		4.43	0.22	0.80	0.78		70.00		0.67									85	69
⊑-4ö-∠∠44.39	12.4	L (IP)	y	0.22			29.18							10.00						I					100	220

Table 1-1.1: EDS analyses of sample E-48-2244.39.

Sample	Site	Position Mineral	SiO2	TiO2	AI203	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	ō	Cr203	ZrO2	BaO	Ce2O3	HfO2	WO3	PbO	B2O3	Total	Actual Total
E-48-2244.39	13	1 Qz	97.79							0.97					1.24									100	121
E-48-2244.39	13	2 Kfs	65.69		17.89					0.79	14.84							0.80						100	117
E-48-2244.39	13	3 Kfs	65.48		18.06					1.22	14.16							1.08						100	120
E-48-2244.39	13	4 Qz	100.00																					100	125
E-48-2244.39	13	5 Qz	100.00																					100	121
E-48-2244.39	13	6 Kfs	66.17		17.77					0.42	15.64													100	116
E-48-2244.39	13	7 Kfs	65.69		18.05					1.02	14.24							1.00						100	114
E-48-2244.39	13	8 Qz	100.00																					100	117
E-48-2244.39	13	9 Qz	100.00																					100	119
E-48-2244.39	13	10 Ab + HI	63.74		17.19					15.72					3.36									100	118
E-48-2244.39	13	11 Kfs	66.00		17.86					0.43	15.71													100	114
E-48-2244.39	13	12 Kfs	66.15		17.72					0.57	15.56													100	109
E-48-2244.39	13.1	1 Kfs	66.02		18.77					2.86	11.42							0.93						100	116
E-48-2244.39	13.1	2 III + Chl	53.18		20.10	15.18		3.44		0.89	6.46				0.75									100	74
E-48-2244.39	13.1	3 Qz	100.00																					100	119
E-48-2244.39	13.1	4 Fe-Chl	30.82		20.84	26.63		4.40		0.78	0.86				0.66							<u> </u>	<u> </u>	85	66
E-48-2244.39	13.1	5 Kfs	66.27		17.61					0.37	15.76											L		100	115
E-48-2244.39	13.2	1 Fe-Chl	26.32		19.86	31.03		4.55	1.39	1.33			0.54									<u> </u>	<u> </u>	85	90
E-48-2244.39	13.2	2 HI +	1.30		0.43	0.77				46.37					51.13							L		100	128
E-48-2244.39	13.2	3 Fe-Chl	29.47		18.79	24.37		11.55		0.82												<u> </u>		85	91
E-48-2244.39	13.2	4 Chl + Ill	51.34		22.44	10.79		9.30		1.31	4.14				0.68							<u> </u>	L	100	89
E-48-2244.39	13.2	5 Fe-Chl	28.64		20.76	29.82		4.66		0.67					0.44									85	75
E-48-2244.39	13.2	6 Qz	100.00																			<u> </u>	L	100	119
E-48-2244.39	14	1 Qz	100.00																			<u> </u>	L	100	118
E-48-2244.39	14	2 Kfs	66.34		17.47					0.43	15.76											<u> </u>	<u> </u>	100	118
E-48-2244.39	14	3 HI +	1.75		0.54	1.40			1.49	40.55			7.50		46.77							<u> </u>	<u> </u>	100	102
E-48-2244.39	14	4 Grt	39.71		21.02	28.63	0.79	1./1	8.15													<u> </u>	<u> </u>	100	108
E-48-2244.39	14	5 Qz	100.00																				<u> </u>	100	11/
E-48-2244.39	14	6 Qz	100.00																			<u> </u>	<u> </u>	100	120
E-48-2244.39	14	7 QZ	100.00																			<u> </u>	<u> </u>	100	116
E-48-2244.39	14	8 QZ	100.00																			<u> </u>	<u> </u>	100	117
E-48-2244.39	14	9 QZ	100.00		47.00						45.04												<u> </u>	100	118
E-48-2244.39	14	10 KIS	66.44	2.05	17.62	0.05		0.40	2.45	2.02	15.94												<u> </u>	100	112
E-48-2244.39	14		43.82	2.05	30.83	9.05		9.18	2.45	2.03	14.00												<u> </u>	100	90
E-48-2244.39	14	12 KIS	100.00		18.08					1.10	14.08											<u> </u>	<u> </u>	100	121
E-48-2244.39	14	13 Q2	100.00	07.64	0.45	0.20																<u> </u>	<u> </u>	100	122
E 40 2244.39	14.1	207	1.32	91.04	0.45	0.39																<u> </u>	├──	100	104
E 49 2244.39	14.1		39.47	0.53	20.09	27.04		1 5 6		0.77	0.20				0.75							<u> </u>	<u> </u>	95	56
E 49 2244.39	14.2		29.00		20.98	27.91		4.00		0.77	0.38				0.75							<u> </u>	├───	00 95	64
E 19 2244.39	14.2		100.00		21.39	21.14		4.08		0.94	0.24				0.79							<u> </u>	<u> </u>	100	110
E 49 2244.39	14.2		27.76		21.17	20.06		4 70		0.72					0.60							<u> </u>	├───	95	71
E-40-2244.39	15		21.10	-	20.00	29.90		4.70		0.72					0.09							<u> </u>	<u> </u>	00 95	72
L-40-2244.39	1 10		∠0.40		20.90	∠J.∠Ö		4.00		0.09			1	1	0.71		1	1				<u> </u>		00	12

Table 1-1.1: EDS analyses of sample E-48-2244.39.
Sample	Site	Position Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	Ŀ	ō	Cr203	ZrO2	BaO	Ce2O3	HfO2	WO3	PbO	B2O3	Total	Actual Total
E-48-2244.39	15	3 Qz	100.00											1					1					100	119
E-48-2244.39	15	4 Kfs	66.55		17.53					1.08	14.84													100	116
E-48-2244.39	15	5 Ab	68.67		18.64	1.24			0.24	11.21														100	114
E-48-2244.39	15	6 Qz	100.00																					100	118
E-48-2244.39	15	7 HI	0.59							50.72					48.69									100	141
E-48-2244.39	15	8 Qz	100.00																					100	117
E-48-2244.39	15	9 Qz	100.00																					100	121
E-48-2244.39	15	10 Kfs	66.21		17.90					0.72	15.17													100	119
E-48-2244.39	15	11 Qz	100.00																					100	123
E-48-2244.39	15	12 Qz	100.00																					100	121
E-48-2244.39	15	13 Qz	100.00																					100	117
E-48-2244.39	15	14 Chl	31.53		23.07	24.85		3.85		0.76	0.31				0.64									85	64
E-48-2244.39	15.1	1 Chl	32.69		20.07	20.49		9.50		0.80	0.32				1.12									85	34
E-48-2244.39	15.1	2 Ap				0.60			48.10			43.76		5.85							1.69			100	120
E-48-2244.39	15.1	3 Chl	32.01		17.39	18.83		15.63		0.41	0.73													85	83
E-48-2244.39	15.1	4 Fe-Chl	30.11		21.34	27.27		4.51		0.77	0.21				0.80									85	73
E-48-2244.39	15.2	1 Kln	48.93		37.07																			86	99
E-48-2244.39	16	1 Qz	100.00																					100	116
E-48-2244.39	16	2 Kfs	66.26		17.76					0.52	15.46													100	117
E-48-2244.39	16	3 Qz	100.00																					100	121
E-48-2244.39	16	4 Kfs	65.99		17.97					1.05	14.98													100	111
E-48-2244.39	16	5 Qz	100.00																					100	116
E-48-2244.39	16	6 TiO2	1.06	96.88	1.45	0.61																		100	103
E-48-2244.39	16	7 Qz	100.00																					100	114
E-48-2244.39	16	8 Kfs	66.34		17.83					1.19	14.63												ļ	100	110
E-48-2244.39	16	9 Qz	100.00																					100	114
E-48-2244.39	16	10 Qz	100.00																		-		ļ!	100	113
E-48-2244.39	16	11 Qz	100.00																					100	113
E-48-2244.39	16	12 Qz	100.00																				ļ!	100	113
E-48-2244.39	16	13 HI	0.56		4	0.38				41.42	45.50				57.64									100	103
E-48-2244.39	16.1		66.10	50.47	17.77	44.00	0.00	0.74	0.00	0.60	15.53											⊢		100	115
E-48-2244.39	16.1	21102	0.64	53.47		44.00	0.88	0.71	0.29		0.00													100	100
E-48-2244.39	16.1	3 1102	0.53	53.20	04 54	44.32	0.75	0.98		0.70	0.22				0.02									100	100
E-48-2244.39	10.1	4 Fe-Chi	29.40		21.51	27.05		5.02		0.73					0.03									80	04
E-48-2244.39	10.2		1.93		24.20	0.58		4 40		42.20	0.40				0.02									100	115
E-40-2244.39	16.2		29.01		21.29	21.24	164	4.48	6.60	1.18	0.46				0.63									100	50
E 49 2244.39	10.2		5.95	0.29	17.05	12.10	1.04	10.47	0.00	2.12	14 74				0.03			<u> </u>				┌───┤	┝───┦	100	110
E-40-2244.39	17		100.00	0.28	17.05					1.02	14.74											┌──┤	┝───┦	100	110
E 49 2244.39	17	2 1102	2 4 2	05.25	1.26	1.26																	┝──┦	100	104
E-40-2244.39	17	4 07	100.00	90.20	1.30	1.20											-					┌───┤	┝───┦	100	120
E-40-2244.39	17	5 07	100.00																				 	100	115
F-48-2244.39	17	607	100.00																					100	117
L 10 2277.03			100.00				1							1				1	1				í	100	1 1 1 7

Table 1-1.1: EDS analyses of sample E-48-2244.39.

г

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	ō	Cr203	ZrO2	BaO	Ce2O3	HfO2	WO3	PbO	B2O3	Total	Actual Total
E-48-2244.39	17	7 Qz		100.00						ĺ		ĺ													100	123
E-48-2244.39	17	8 Qz		100.00																					100	120
E-48-2244.39	17	9 Qz		100.00																					100	124
E-48-2244.39	17	10 Qz		100.00																					100	122
E-48-2244.39	17	11 Qz		100.00																					100	118
E-48-2244.39	17	12 Qz		100.00																					100	117
E-48-2244.39	17	13 Ch		31.63		20.10	23.02		7.34	0.31	0.61	1.80				0.19									85	86
E-48-2244.39	17	14 Fe-	Chl	26.90		18.52	29.12	0.36	9.66		0.43														85	96
E-48-2244.39	18	1 Qz		100.00																					100	121
E-48-2244.39	18	2 Kfs		66.02		17.75	0.23				0.73	15.27													100	116
E-48-2244.39	18	3 Kfs		65.58		17.84					0.45	15.40							0.73						100	117
E-48-2244.39	18	4 TiC)2	0.62	96.38		3.00																		100	97
E-48-2244.39	18	5 Kfs		65.83		17.84					0.52	15.22							0.60						100	113
E-48-2244.39	18	6 Qz		100.00																			ļ'		100	120
E-48-2244.39	18	7 Qz		100.00																					100	119
E-48-2244.39	18	8 Kfs		66.28		17.61					0.46	15.66													100	116
E-48-2244.39	18	9 Ap								49.08			43.96		5.22							1.74			100	124
E-48-2244.39	18	10 Qz		100.00																			<u> </u>		100	120
E-48-2244.39	18	11 Qz		100.00																					100	116
E-48-2244.39	18	12 TiC)2	0.51	97.62	1.48	0.39																		100	104
E-48-2244.39	18.1	1 Qz		100.00																			<u> </u>		100	117
E-48-2244.39	18.1	2 Ch	+	42.00		22.67	27.25		4.86		0.71	1.68				0.83									100	62
E-48-2244.39	18.1	3 Ch	+	52.11		22.74	14.84		3.70		0.97	4.78				0.86							<u> </u>		100	65
E-48-2244.39	19	1 Qz		100.00																			<u> </u>		100	121
E-48-2244.39	19	2 "lln	"	0.99	97.21		1.79																<u> </u>		100	108
E-48-2244.39	19	3 Kfs	+	61.84		17.16					4.76	13.96				2.28							<u> </u>		100	128
E-48-2244.39	19	4 Qz		100.00																			<u> </u>		100	125
E-48-2244.39	19	5 Qz		100.00																			<u> </u>		100	125
E-48-2244.39	19	6 Qz		100.00																			<u> </u>		100	122
E-48-2244.39	19	/ Ca							0.85	54.75	0.41												ļ!	ļ	56	55
E-48-2244.39	19	8 Kfs		65.92		18.06					0.90	15.12											<u> </u>		100	116
E-48-2244.39	19	9 Qz		100.00				. = 0					10.00		o (=								ļ!	ļ	100	120
E-48-2244.39	19	10 Ap		0.65		47.00	0.77	1.70		45.23	1.00	10.00	43.93		6.45				1.04			1.27	<u> </u>	ļ	100	122
E-48-2244.39	19	11 Kfs		65.55		17.99					1.29	13.93							1.24				<u> </u>	ļ	100	114
E-48-2244.39	19	12 Qz		100.00																			<u> </u>		100	119
E-48-2244.39	19	13 QZ		100.00																			<u> </u>		100	119
E-48-2244.39	19	14 QZ		100.00																			<u> </u>	├ ───┦	100	118
E-48-2244.39	19	15 QZ		100.00																			<u> </u>	├ ───┦	100	118
E-48-2244.39	19	16 QZ		100.00																			└── ′		100	121
E-48-2244.39	19	17 QZ		100.00		17 50					0.05	45 40											<u> </u>	├ ───┦	100	118
E-40-2244.39	19	10 10		100.02		17.59					0.05	15.43											<u> </u>		100	113
E-48-2244.39	10.4	19 QZ		100.00																			<u> </u>		100	122
⊑-48-2244.39	19.1	IQZ		100.00																			<u> </u>	Ĺ	100	122

Table 1-1.1: EDS analyses of sample E-48-2244.39.

r

Sample	Site	Position	Mineral	Si02	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	Ŀ	ū	Cr203	ZrO2	BaO	Ce2O3	HfO2	WO3	PbO	B2O3	Total	Actual Total
E-48-2244.39	19.1	2	Qz	100.00												İ		ĺ							100	124
E-48-2244.39	19.1	3	Qz	100.00																					100	122
E-48-2244.39	19.1	4	HI + ChI	16.54		8.99	4.28		1.77		36.46	1.31				30.66									100	135
E-48-2244.39	19.1	5	Fe-Chl	29.55		21.83	27.07		4.28		1.03	0.74				0.51									85	77
E-48-2244.39	20	1	Qz	100.00																					100	121
E-48-2244.39	20	2	Zrn	31.01			0.33											67.02			1.64				100	125
E-48-2244.39	20	3	Qz	100.00																					100	118
E-48-2244.39	20	4	Ms + Chl	49.42		23.49	10.46		9.07		2.09	3.71		0.54		1.21									100	87
E-48-2244.39	20	5	Qz	100.00																					100	116
E-48-2244.39	20	6	Fe-Chl +	27.22		19.82	28.12		4.45	1.44	2.11	0.40		0.68		0.76									85	96
E-48-2244.39	20	7	Qz	100.00																					100	121
E-48-2244.39	20	8	Mix	44.29	1.28	20.91	15.10		3.61	3.72	3.58	4.44		1.35		1.72									100	96
E-48-2244.39	20	9	Qz	100.00																					100	118
E-48-2244.39	20	10	Qz	100.00																					100	119
E-48-2244.39	20	11	Qz	100.00																					100	119
E-48-2244.39	20	12	Qz	99.72							0.28														100	107
E-48-2244.39	20	13	Qz	100.00																					100	125
E-48-2244.39	20	14	Qz	100.00																					100	115
E-48-2244.39	20.1	1	Qz	100.00																					100	121
E-48-2244.39	20.1	2	Qz	100.00																					100	119
E-48-2244.39	20.1	3	Sd +	2.00			72.06	1.66	13.85	8.91	1.18					0.34									100	59
E-48-2244.39	20.1	4	Sd + Chl	6.80		4.06	65.29	1.03	13.86	7.75	0.81	0.41													100	63
E-48-2244.39	20.2	1	Kln	48.44		37.20					0.36														86	92.3
																										L
										Notes															⊢	<u> </u>
								1:+i	ndicates	s more t	han one	minera	al prese	ent												
		<u> </u>						2: " "	Indicate	es an alt	ered gri	an														<u> </u>
																									⊢	

Table 1-1.1: EDS analyses of sample E-48-2244.39.

г

Appendix 1-2: SEM-BSE images and EDS mineral analyses for sample E-48-2246.46.

Sample E-48-2246.46: Very fine-grained sandstone?

Diagenetic Minerals: ?Apatite, Calcite, kaolinite, pyrite, titania minerals

Detrital Minerals: Albite, Apatite, Chromite, Ilmenite, K-feldspar, Muscovite, Quartz, Sphalerite (Fig. 25), Zircon (Fig. 28).

Notes:

1. Quartz and K-feldspar commonly display suturing.

2. Quartz and K-feldspar (Fig. 4) contain overgrowths.

3. Barite appears to be mostly drilling mud because it fills voids and intergranular boundaries (Fig. 23).

4. Kaolinite appears to be the main clay cement.

5. Clay minerals sometimes coat quartz and K-feldspar grains (Figs. 31, 32).

6. The garnet in this sample is a solid solution of almandine-pyrope.

7. Several albitized K-feldspar grains have been seen (e.g. Figs. 32, 38, 40).

8. Paragenetic sequence: Kaolinite	e Calcit	te Pyrite	e ± Tita	nia ± Sic	lerite
I	 Fig. 6	ا Fig. 1	4 Fig.	19 Fig	 j. 15

Figure 1-2.1: Scanned thin section of sample E48-2246.46 showing the location of analyzed sites.

Figure 1-2.2: Sample E-48-2246.46 site 1 (SEM). This site consists of quartz and K-feldspar that contains some porosity, that has been invaded by drilling mud (16). Some of the quartz and K-feldspar crystals display suturing (positions a), and overgrowths (positions b). The large K-felspar grain (2) shows albitization (3).

1:Barite 2:Smectite + 3:Barite 4:Barite 5:Smectite +

Figure 1-2.3: Sample E-48-2246.46 site 1.1 (SEM). Zoom in of the drilling mud in Figure 2. It consists of barite (1,3-4) and smectite (2,5).

1:Quartz 2:Quartz 3:K-feldspar 4:K-feldspar 5:Barite 6:Plagioclase 7:Quartz 8:Albite 9:K-feldspar 10:Quartz 11:Quartz 12:K-feldspar 13:Quartz

Figure 1-2.4: Sample E-48-2246.46 site 2 (SEM). This site consists of mainly quartz crystals (1-2,7,10-11, 13) and K-feldspar (3-4,9,12). K-feldspar appears to be albitized (8). Suturing and dissolution are common (positions a), and overgrowths are less common, quartz overgrowth (position b) and K-feldspar overgrowth (position c). Drilling mud made of barite partially fills primary porosity.

1:K-feldspar 2:K-feldspar 3:K-feldspar 4:Quartz 5:Quartz 6:Quartz 7:Quartz 8:Quartz 9:Quartz 10:Quartz 11:Quartz 12:Quartz 12:Quartz 13:K-feldspar

Figure 1-2.5: Sample E-48-2246.46 site 3 (SEM). This site consists mainly of quartz (4-12), K-feldspar (1-3,13), and kaolinite along grain boundaries or filling pores (position a).

Figure 1-2.6: Sample E-48-2246.46 site 3.1 (SEM). Kaolinite (4) forms along grain boundaries and is the cement between quartz (1,3) and K-feldspar (2) grains. Calcite (5) is another cement postdating the kaolinite.

Figure 1-2.7: Sample E-48-2246.46 site 4 (SEM). This site shows suturing between detrital grains, quartz (6,9) and K-feldspar (2). Drilling mud fills primary porosity.

Figure 1-2.8: Sample E-48-2246.46 site 4.1 (SEM). Lithic clast (1-3) of granophyre/rhyolite that appears to be altering to clay.

Figure 1-2.9: Sample E-48-2246.46 site 5 (SEM). This site consists of quartz (3,5-6,8) and K-feldspar (1-2,4,7) grains, and shows primary porosity and suturing (position a). Pyrite (9) is diagenetic. Albite (10) appears to be altering to kaolinite (11).

Figure 1-2.10: Sample E-48-2246.46 site 5.1 (SEM). This site consists of a partially dissolved K-feldspar (1) grain and a lithic clast made up of K-feldspar (3) and albite (2), that are altering to kaolinite (4). The lithic clast appears to be from a subvolcanic rhyolite.

1:Quartz 2:Muscovite 3:Quartz

Figure 1-2.11: Sample E-48-2246.46 site 5.2 (SEM). This site consists of a) a deformed lithic clast that consists of quartz (1,3) and muscovite (2), probably from a schist and b) detrital grains of quartz either with quartz overgrowth (position a) or sometimes with an apparently corroded margin (position b) and K-feldspar.

Figure 1-2.12: Sample E-48-2246.46 site 6 (SEM). This site consists of quartz grains with suturing (positions a) and overgrowths (positions b).

1:Quartz 2:Muscovite 3:Quartz

Figure 1-2.13: Sample E-48-2246.46 site 6.1 (SEM). This site consists of a lithic clast that is a clay-cemented sandstone with some framework grains that have dissolved out.

Figure 1-2.14: Sample E-48-2246.46 site 6.2 (SEM). This site consists of slightly deformed perthite with K-feldspar altered to kaolinite (3) and albite (1) remains. Late pyrite (2) and apatite (4) appear to be diagenetic.

1:Siderite 2:Garnet 3:Albite 4:Muscovite 5:Muscovite 6:Albite 7:Muscovite 8:Pyrite

Figure 1-2.15: Sample E-48-2246.46 site 6.3 (SEM). Lithic clast that consists of partially corroded albite (3,6), muscovite (4-5,7), and garnet (2) (almandine-pyrope). Diagenetic siderite (1) and pyrite (8) appear to partially fill porosity.

1:Albite 2:K-feldspar 3:Quartz 4:K-feldspar 5:Albite 6:Quartz 7:Quartz 8:Quartz 9:Quartz 10:Calcite 11:TiO2 12:K-feldspar 13:Albite

Figure 1-2.16: Sample E-48-2246.46 site 7 (SEM). This site consists of quartz (6-9), K-feldspar (2,12), and late calcite (10) and titania (11). A lithic clast of fine-grained albite (1,5,13) and of quartz (3) and K-feldspar (4).

1:Quartz 2:Garnet 3:K-feldspar

Figure 1-2.17: Sample E-48-2246.46 site 7.1 (SEM). Lithic clast of quartz (1), garnet (2) (almandine-pyrope), and K-feldspar (3).

Figure 1-2.18: Sample E-48-2246.46 site 7.2 (SEM). Lithic clast of garnet (1) and clay (smectite (2)).

1:Quartz 2:K-feldspar 3:Quartz 4:Calcite 5:Muscovite + 6:Kaolinite 7:Calcite + 8:Quartz 9:TiO2 10:Albite 11:K-feldspar 12:Quartz 13:Apatite 14:Quartz + 15:Mixture

Figure 1-2.19: Sample E-48-2246.46 site 8 (SEM). This site consists of detrital quartz and K-feldspar grains. Kaolinite (6) appears to form between the grains and is cut by calcite (7). Calcite (4) also appears to have formed along the cleavage of muscovite (5). Quartz (14) appears to be cross-cut by clays and late apatite (13).

Figure 1-2.20: Sample E-48-2246.46 site 9 (SEM). Quartz and K-feldspar commonly display suturing. Albite (14) appears to have been partly replaced by a clay. Diagenetic calcite (11) appears to cross-cut the clays.

1:K-feldspar 2:Quartz 3:Albite 4:Quartz 5:Quartz 6:Quartz 7:Quartz 8:Garnet 9:Quartz 10:Kaolinite

Figure 1-2.21: Sample E-48-2246.46 site 10 (SEM). This site consists mainly of detrital quartz and K-feldspar. Kaolinite (10) appears to be forming the cement between grains. A lithic clast of probably metasandstone is made up of quartz (9) and garnet (8).

Figure 1-2.22: Sample E-48-2246.46 site 10.1 (SEM). Lithic clast of slate that is made up of muscovite (2,4) and quartz (1). Late diagenetic pyrite (3) appears to fill voids in the clast.

1:K-feldspar 2:Quartz 3:Quartz 4:Kaolinite + 5:Quartz 6:Quartz 7:Quartz 8:K-feldspar 9:K-feldspar 10:Pyrite 11:Barite 12:K-feldspar 13:Smectite 14:K-feldspar

Figure 1-2.23: Sample E-48-2246.46 site 11 (SEM). This site consists of mainly quartz that displays suturing. K-feldspar (14) appears to be altering to clay. Diagenetic pyrite (10) and ?barite (11) appear to partially fill porosity.

Figure 1-2.24: Sample E-48-2246.46 site 12 (SEM). This site consists of quartz and K-feldspar, which commonly display suturing (positions a).

1:?Chlorite 2:K-feldspar 3:K-feldspar 4:Sphalerite

Figure 1-2.25: Sample E-48-2246.46 site 12.1 (SEM). Lithic clast that consists of ?chlorite (1), K-feldspar (2,3), sphalerite (4) and pyrite framboids (position a).

1:Quartz 2:K-feldspar 3:Quartz 4:Pyrite 5:K-feldspar 6:Muscovite 7:K-feldspar 8:Quartz 9:Calcite 10:Mixture 11:Quartz 12:Calcite +

Figure 1-2.26: Sample E-48-2246.46 site 13 (SEM). This site consists mainly of detrital quartz and K-feldspar (5,7). Calcite (12) and pyrite (4) appear to be diagenetic. A lithic clast of quartz (3) and K-feldspar (2) is also seen.

1:K-feldspar 2:Quartz 3:Quartz 4:Albite 5:Kaolinite 6:Albite 7:Quartz 8:Quartz 9:Pyrite 10:Quartz 11:Quartz

Figure 1-2.27: Sample E-48-2246.46 site 14 (SEM). This site consists mainly of quartz. Albite (4) appears to be altering to clay. Pyrite (9) is diagenetic.

1:K-feldspar 2:K-feldspar 3:Albite 4:Quartz 5:K-feldspar 6:Quartz 7:Quartz 8:K-feldspar 9:Quartz 10:Zircon 11:Muscovite 12:Albite 13:Mixture 14:Quartz 15:Quartz

Figure 1-2.28: Sample E-48-2246.46 site 15 (SEM). This site consists of detrital quartz and K-feldspar (8). Some quartz grains show overgrowths (positions a). There are also lithic clasts of quartz (6) and K-feldspar (5), and albite (12) and muscovite (11). Zircon (10) is also seen in one of the clasts made up of quartz and K-feldspar. Albite (3) appears to be altering.

1:Quartz 2:K-feldspar 3:Quartz 4:K-feldspar 5:K-feldspar 6:Quartz 7:Quartz 8:Quartz 9:Quartz 10:Quartz 11:"Ilmenite" 12:Albite 13:Pyrite

Figure 1-2.29: Sample E-48-2246.46 site 16 (SEM). This site consists of quartz and K-feldspar grains. Albite (12) appears to be replaced by clays. Diagenetic pyrite (13) appears to fill void and altered ilmenite (11) is also seen. Probably ilmenite (11) and albite (12) are part of a lithic clast.

Figure 1-2.30: Sample E-48-2246.46 site 17 (SEM). This site consists of mainly quartz and K-feldspar. Kaolinite (7) forms along grain boundaries.

1:K-feldspar 2:Quartz 3:Chromite 4:Quartz 5:Quartz 6:K-feldspar 7:Albite 8:K-feldspar 9:Quartz 10:Muscovite 11:Albite + Muscovite 12:Quartz 13:Quartz

Figure 1-2.31: Sample E-48-2246.46 site 18 (SEM). This site is made up of quartz, K-feldspar, a chromite (3) grain, and intergranular kaolinite (positions a). A large albite (7) grain appears to be coated with clays. There is also a lithic clast made up of albite (11) and muscovite (10).

1:K-feldspar 2:Albite 3:K-feldspar 4:Quartz 5:Albite 6:Mixture 7:Albite 8:Calcite 9:Quartz 10:Quartz 11:Quartz 11:Quartz 12:K-feldspar 13:Quartz

Figure 1-2.32: Sample E-48-2246.46 site 19 (SEM). This site consists mainly of quartz. Albite (7) appears partially dissolved. Calcite (8) cement partially fills voids in polycrystalline quartz (9) or lithic clast made up of quartz and calcite. K-feldspar (1) and quartz (4,10,13) appear to be coated by clays and drilling mud. There is also an albitized K-feldspar (2-3).

1:Quartz 2:Quartz 3:Calcite 4:Altered Ilmenite 5:K-feldspar 6:K-feldspar 7:Quartz 8:Quartz 9:Chlorite 10:Quartz

Figure 1-2.33: Sample E-48-2246.46 site 20 (SEM). This site consists of quartz and K-feldspar (5-6) grains showing suturing. Calcite (3) appears to cross-cut clays. Altered ilmenite grain (4) has also been seen. There is also a metasandstone lithic clast made up of quartz (10) and chlorite (9).

1:K-feldspar 2:Quartz 3:Quartz 4:Albite 5:Quartz 6:Quartz 7:K-feldspar 8:Quartz 9:K-feldspar 10:Quartz 11:Quartz

Figure 1-2.34: Sample E-48-2246.46 site 21 (SEM). This site consists of quartz that appears to be more fractured and contains voids. Albite (4) appears to have beem parity replaced by clays. K-feldspar (1,7,9) also appears to be fractured.

1:K-feldspar 2:TiO₂ +? 3:Quartz 4:Ilmenite 5:Quartz 6:Calcite + 7:Kaolinite 8:Quartz 9:K-feldspar 10:Quartz 11:Quartz

Figure 1-2.35: Sample E-48-2246.46 site 22 (SEM). This site consists of quartz and K-feldspar. Kaolinite (7) appears to form commonly between grains. There is also an altered ilmenite grain (4) with quartz inclusions (5), and titania (2) mineral alteration.

1:Quartz 2:K-feldspar 3:Albite 4:K-feldspar 5:Kaolinite 6:K-feldspar 7:Oligoclase 8:K-feldspar 9:Quartz 10:Pyrite 11:Quartz

Figure 1-2.36: Sample E-48-2246.46 site 23 (SEM). This site consists of quartz and K-feldpsar. There is an albitized K-feldspar (2-3) detrital grain. Pyrite (10) appears to be diagenetic, and a large amount of kaolinite can be seen (5, positions a).

1:K-feldspar 2:K-feldspar 3:Pyrite 4:Pyrite 5:Quartz 6:K-feldspar 7:Albite 8:K-feldspar 9:Quartz 10:Quartz 11:Quartz 11:Quartz + Kfeldspar 12:Quartz 13:Albite

Figure 1-2.37: Sample E-48-2246.46 site 24 (SEM). This site consists of K-feldspar (1), albite (7), both also appear fractured, and diagenetic pyrite (3-4) filling voids. There are lithic clasts of quartz (9) and K-feldspar (8), and probably quartz and albite (13). There is also another finer grained, probably subvolcanic lithic clast made up of quartz and K-feldspar (11).

1:Albite 2:K-feldspar

Figure 1-2.38: Sample E-48-2246.46 site 24.1 (SEM). This site contains a lithic clast that consists of K-feldspar (2), albite (1) and scattered high reflectivity very small mineral grains.

Figure 1-2.39: Sample E-48-2246.46 site 25 (SEM). This site consists of mainly quartz with kaolinite (positions a) partially filling intergranular boundaries and drilling mud (3).

Figure 1-2.40: Sample E-48-2246.46 site 26 (SEM). This site consists of quartz, K-feldspar (2-3), and albite (8). There is a lithic clast made up of apatite (6) and quartz (7) (?pegmatite), and an albitized (4) K-feldspar (5) detrital grain.

1:Barite 2:Quartz 3:Quartz + Clay 4:Quartz

Figure 1-2.41: Sample E-48-2246.46 site 26.1 (SEM). Lithic clast made up of quartz and clays (quartz vein). Barite (1) forms in the space between grains (probably drilling mud).

Figure 1-2.42: Sample E-48-2246.46 site 27 (SEM). This site consists mainly of quartz and K-feldspar. There are lithic clasts made up of oligoclase (3,4) and quartz (2) and albite (8) and K-feldspar (9).

1:Quartz + Muscovite 2:Muscovite 3:Muscovite + Chlorite

Figure 1-2.43: Sample E-48-2246.46 site 27.1 (SEM). Lithic clast of quartz (1), and muscovite (2).

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ш	C	Sc2O3	Cr2O3	CoO	NiO	ZnO	SrÓ	ZrO2	BaO	WO3	Total	Actual Total
E-48-2246.46	1	1	Qz	100.00																						100	113
E-48-2246.46	1	2	Kfs	66.44		17.64					0.64	15.29														100	111
E-48-2246.46	1	3	Ab	69.42		18.63					11.57	0.38														100	113
E-48-2246.46	1	4	Qz	100.00																						100	116
E-48-2246.46	1	5	Kfs	66.38		17.78					1.28	14.56														100	110
E-48-2246.46	1	6	Qz	100.00																						100	116
E-48-2246.46	1	7	Qz	100.00																						100	119
E-48-2246.46	1	8	Qz	100.00																						100	119
E-48-2246.46	1	9	Kfs	66.75		17.84					1.68	13.73														100	110
E-48-2246.46	1	10	Kfs	65.49		17.96					1.11	14.35												1.09		100	109
E-48-2246.46	1	11	Qz	100.00																						100	112
E-48-2246.46	1	12	Qz	100.00																						100	117
E-48-2246.46	1	13	Qz	100.00																						100	113
E-48-2246.46	1	14	Qz	96.83		1.82	0.53		0.55			0.27														100	110
E-48-2246.46	1	15	Qz	100.00																						100	111
E-48-2246.46	1	16	Brt											36.81								1.80		61.38		100	107
E-48-2246.46	1.1	1	Brt											36.98										63.02		100	111
E-48-2246.46	1.1	2	Sme +	63.86	0.61	18.47	7.72		2.50	2.50	0.95	1.53	0.64	0.87		0.36										100	82
E-48-2246.46	1.1	3	Brt	0.75										36.58								2.10		60.58		100	111
E-48-2246.46	1.1	4	Brt											36.95										63.05		100	108
E-48-2246.46	1.1	5	Sme +	50.16		22.19	6.59		2.29	2.22	1.22	2.27		4.99		0.59								7.47		100	83
E-48-2246.46	2	1	Qz	100.00																						100	119
E-48-2246.46	2	2	Qz	100.00																						100	119
E-48-2246.46	2	3	Kfs	66.16		17.68					0.54	15.62														100	113
E-48-2246.46	2	4	Kfs	67.14		17.71						15.15														100	113
E-48-2246.46	2	5	Brt											37.01										62.99		100	109
E-48-2246.46	2	6	Plag	63.67		22.80				4.50	8.80	0.22														100	111
E-48-2246.46	2	7	Qz	100.00																						100	114
E-48-2246.46	2	8	Ab	67.31		20.35				0.96	10.48	0.91														100	114
E-48-2246.46	2	9	Kfs	65.91		17.72					0.89	14.94												0.55		100	109
E-48-2246.46	2	10	Qz	98.55	0.36	1.09																				100	111
E-48-2246.46	2	11	Qz	100.00																						100	115
E-48-2246.46	2	12	Kfs	66.07		17.77					0.67	15.48														100	112
E-48-2246.46	2	13	Qz	100.00																						100	119
E-48-2246.46	3	1	Kfs	66.54		17.62					0.98	14.86														100	113
E-48-2246.46	3	2	Kfs	66.00		17.96					0.53	15.52														100	116
E-48-2246.46	3	3	Kfs	65.77		17.58					0.49	15.37												0.80		100	118
E-48-2246.46	3	4	Qz	100.00																						100	121
E-48-2246.46	3	5	Qz	100.00																						100	120
E-48-2246.46	3	6	Qz	100.00																						100	117
E-48-2246.46	3	7	Qz	100.00																						100	118
E-48-2246.46	3	8	Qz	100.00																						100	124
E-48-2246.46	3	9	Qz	100.00																						100	122
E-48-2246.46	3	10	Qz	100.00																						100	117
E-48-2246.46	3	11	Qz	100.00																						100	117
E-48-2246.46	3	12	Qz	100.00																						100	120

Table 1-2.1: EDS geochemical analyses of sample E-48-2246.46.

E4-822446 3 13 K% 66.7 17.7 1 15.86 1 1 1 1 10 100 100 E4822464 31 1 K% 66.26 17.82 1 0.48 15.36 1 0 1 100 10	Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	EOS	ш	C	Sc2O3	Cr203	CoO	NiO	OuZ	SrO	ZrO2	BaO	WO3	Total	Actual Total
E48-2264.6 3.1 1 Or. 100 1 1 0 1 0 100	E-48-2246.46	3	13	Kfs	66.17		17.87						15.96														100	115
E48-2264.6 3.1 3 3 3 4 100 16 4 6.9 15.73 4 6 100 16 E48-2264.6 3.1 4 Kn 4.876 37.24 5 64.0 4 6 7	E-48-2246.46	3.1	1	Qz	100.00																						100	120
E4-82244.6 3.1 3 QZ 100.0 - - - - - - - - - - - 8 0 100.1 <td>E-48-2246.46</td> <td>3.1</td> <td>2</td> <td>Kfs</td> <td>66.26</td> <td></td> <td>17.52</td> <td></td> <td></td> <td></td> <td></td> <td>0.49</td> <td>15.73</td> <td></td> <td>100</td> <td>116</td>	E-48-2246.46	3.1	2	Kfs	66.26		17.52					0.49	15.73														100	116
E-48-22464 3.1 4 Kn 48.7 3.71 2.70 8.6 2.23 5.10 C 6 6.6 7 7 8 6 0 100	E-48-2246.46	3.1	3	Qz	100.00																						100	118
E4-822446 3.1 5 Cal 1.81 1.06 1.20 5.30 51.10 7 7 8.8 6.63 6.63 6.63 7 7 E4-82246.46 4 1 0.2 100.00 - 2.32 15.11 0.70 152 0.88 0.63 - - 0.01 100 120 100.01 152 0.88 0.63 - - 0.010 100	E-48-2246.46	3.1	4	Kln	48.76		37.24																				86	92
E48-2244.6 3.1 6 Mix 41.76 3.71 2.70 8.66 2.32 1.11 0.70 1.52 0.88 0.63 97 74 E48-2244.6 4 1 0.72 100.00 5.24 100 110 <td< td=""><td>E-48-2246.46</td><td>3.1</td><td>5</td><td>Cal</td><td>1.81</td><td></td><td>1.06</td><td>1.20</td><td>0.53</td><td></td><td>51.40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>56</td><td>56</td></td<>	E-48-2246.46	3.1	5	Cal	1.81		1.06	1.20	0.53		51.40																56	56
E48-2244.6 4 1 O.Z 100.0 M	E-48-2246.46	3.1	6	Mix	41.76	3.71	21.70	8.66		2.32	15.11	0.70	1.52		0.88		0.63										97	74
E-48-2246.46 4 3 C 17.64 0.90 15.24 14.34 0.90 15.24 14.34 0.90 15.24 14.34 0.90 15.24 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85<	E-48-2246.46	4	1	Qz	100.00																						100	121
E4-82246.46 4 4 Qz 1000 A	E-48-2246.46	4	2	Kfs	66.22		17.64					0.90	15.24														100	115
E-48-2246.46 4 4 Qz 1000 No	E-48-2246.46	4	3	Qz	100.00																						100	119
E-48-2246.46 4 6 Mix 31.14 18.25 1.44 0.48 1.70 42.25 4.34 0 0 0 100 120 100 120 100 100 120 100 100 <t< td=""><td>E-48-2246.46</td><td>4</td><td>4</td><td>Qz</td><td>100.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td>120</td></t<>	E-48-2246.46	4	4	Qz	100.00																						100	120
E-49-2246.46 4 7 02 1000 1 1 1 100 1100	E-48-2246.46	4	5	Mix	31.14		18.25	1.84	0.48	1.70	42.25		4.34														100	81
E-48-2246.46 4 7 Oz 100.00 No 100 119 E-48-2246.46 4 8 Oz 100.00 No No <t< td=""><td>E-48-2246.46</td><td>4</td><td>6</td><td>Qz</td><td>100.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td>119</td></t<>	E-48-2246.46	4	6	Qz	100.00																						100	119
E-48-2246.46 4 8 Qz 100.00 Image: Constraint of the second sec	E-48-2246.46	4	7	Qz	100.00																						100	119
E-48-2246.46 4.1 1 Kfs 65.94 1.69 0 0 0 0 0 100 125 E-48-2246.46 4.1 1 Kfs 67.01 17.11 0 0.68 0.45 14.65 0.65 0 <td>E-48-2246.46</td> <td>4</td> <td>8</td> <td>Qz</td> <td>100.00</td> <td></td> <td>100</td> <td>124</td>	E-48-2246.46	4	8	Qz	100.00																						100	124
E-48-2246.46 4.1 1 Kfs 65.94 16.97 0.46 0.88 0.46 1.465 0.65 0.65 0.65 0.65 0.65 0.08 0.67 100 87 E-48-2246.46 5 1 Kfs 66.44 17.22 0.59 14.32 1.42 0.66 0.68	E-48-2246.46	4	9	Qz	100.00																						100	125
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2246.46	4.1	1	Kfs	65.94		16.97	0.46			0.88	0.45	14.65				0.65										100	87
E-48-2246.46 4.1 3 Kfs 66.44 17.22 0 0.59 14.32 1.42 0	E-48-2246.46	4.1	2	Kfs	67.01		17.11					0.66	14.39				0.83										100	84
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2246.46	4.1	3	Kfs	66.44		17.22					0.59	14.32				1.42										100	80
E-48-2246.46 5 2 Kfs 66.09 17.52 0 0.42 15.98 0 0 0 100 118 E-48-2246.46 5 3 Qz 100.00 0 <t< td=""><td>E-48-2246.46</td><td>5</td><td>1</td><td>Kfs</td><td>66.04</td><td>0.29</td><td>17.91</td><td></td><td></td><td></td><td></td><td>0.90</td><td>14.86</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td>112</td></t<>	E-48-2246.46	5	1	Kfs	66.04	0.29	17.91					0.90	14.86														100	112
E-48-2246.46 5 3 QZ 100.00 M	E-48-2246.46	5	2	Kfs	66.09		17.52					0.42	15.98														100	118
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E-48-2246.46	5	3	Qz	100.00																						100	123
E-48-2246.46 5 5 Qz 100.00 m	E-48-2246.46	5	4	Kfs	66.18		17.82					0.79	15.21														100	120
E-48-2246.46 5 6 Qz 100.00 m 0 0.82 15.3 m <td>E-48-2246.46</td> <td>5</td> <td>5</td> <td>Qz</td> <td>100.00</td> <td></td> <td>100</td> <td>119</td>	E-48-2246.46	5	5	Qz	100.00																						100	119
E-48-2246.6 5 7 Kfs 66.30 17.55 0 0.82 15.33 0 0 0 100 118 E-48-2246.46 5 8 Qz 100.00 29.28 0.27 70.15 0 0 100 121 E-48-2246.46 5 10 Ab 69.69 18.86 0 11.45 0 4.19 0 0 0 100 121 E-48-2246.46 5.1 11 Kin 48.02 33.79 0 15.85 0 0 0 0 100 121 E-48-2246.46 5.1 1 Kis 66.74 17.78 15.85 0 0 0 0 100 117 E-48-2246.46 5.1 3 Kis 66.74 17.25 0.26 0.45 15.30 0 0 0 0 100 115 E-48-2246.46 5.1 3 Kis 66.74 17.25 0.26 0.34 1.40 0.60 0.60 0.34 0.40 0 0	E-48-2246.46	5	6	Qz	100.00																						100	123
E-48-2246.46 5 8 Qz 100.00 0 0 0 0 0 100 121 E-48-2246.46 5 9 Py 0.31 29.28 0.27 70.15 0 0 0 0 100 121 E-48-2246.46 5 10 Ab 69.69 18.86 0 11.45 0.27 70.15 0 0 0 0 100 121 E-48-2246.46 5.1 1 Kin 48.02 33.79 0 0 15.85 0 4.19 0 0 0 0 100 117 E-48-2246.46 5.1 3 Kis 66.74 17.25 0.26 0.45 15.30 0 0 0 0 0 100 114 E-48-2246.46 5.1 4 Kin 48.18 0.65 34.75 0.37 0.31 0.34 1.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E-48-2246.46	5	7	Kfs	66.30		17.55					0.82	15.33														100	118
E-48-2246.46 5 9 Py 0.31 29.28 0.27 70.15 0 0 0 0 213 E-48-2246.46 5 10 Ab 69.69 18.86 11.45 6 6 100 100 100 100 121 E-48-2246.46 5.1 1 Kin 48.02 33.79 6 15.85 6 6 4.19 6 6 70.15 6 6 70.15 6 4.19 6 6 86 47 E-48-2246.46 5.1 1 Kis 66.38 17.78 6 15.85 6 6 70.15 6 7 70.17 <t< td=""><td>E-48-2246.46</td><td>5</td><td>8</td><td>Qz</td><td>100.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td>121</td></t<>	E-48-2246.46	5	8	Qz	100.00																						100	121
E-48-2246.46 5 10 Ab 69.69 18.86 11.45 4.19 4.19 4.19 4.19 6 86 47 E-48-2246.46 5.1 1 Kin 48.02 33.79 15.85 1 4.19 1 100 121 E-48-2246.46 5.1 1 Kfs 66.38 17.78 15.85 1 100 100 117 E-48-2246.46 5.1 2 Ab 69.91 18.74 11.17 0.17 1 1 100 117 E-48-2246.46 5.1 3 Kfs 66.74 17.25 0.26 0.45 15.30 1 140<	E-48-2246.46	5	9	Pv	0.31			29.28				0.27			70.15												100	213
E-48-2246.46 5 11 Kln 48.02 33.79 Image: constraint of the state o	E-48-2246.46	5	10	Ab	69.69		18.86					11.45															100	121
E-48-2246.46 5.1 1 Kfs 66.38 17.78 15.85 15.85 16 16 16 16 100 117 E-48-2246.46 5.1 2 Ab 69.91 18.74 11.17 0.17 16 16 16 16 16 16 16 16 16 16 16 100 117 E-48-2246.46 5.1 3 Kfs 66.74 17.25 0.26 0.45 15.30 14 11.17 0.17 100 114 E-48-2246.46 5.2 1 Qz 100.00 20 0.34 1.40 20 </td <td>E-48-2246.46</td> <td>5</td> <td>11</td> <td>KIn</td> <td>48.02</td> <td></td> <td>33.79</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.19</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>86</td> <td>47</td>	E-48-2246.46	5	11	KIn	48.02		33.79										4.19										86	47
E-48-2246.46 5.1 2 Ab 69.91 18.74 11.17 0.77 0 0 0 100 115 E-48-2246.46 5.1 3 Kfs 66.74 17.25 0.26 0.45 15.30 0 0 0 100 115 E-48-2246.46 5.1 4 Kin 48.18 0.65 34.75 0.37 0.31 0.34 1.40 0 0 0 0 100 114 E-48-2246.46 5.2 1 Qz 1000 137 1.43 0.78 0.56 8.47 0.26 0.30 0 100 120 100 121 E-48-2246.46 5.2 2 Ms 50.93 0.90 31.37 1.43 0.78 0.56 8.47 0.26 0.30 0 0 100 121 E-48-2246.46 6 2 Qz 100.00 2 0.63 15.13 0 0 0.61 15.3 0 0 0.79 100 113 E-48-2246.46 6	E-48-2246.46	5.1	1	Kfs	66.38		17.78						15.85														100	117
E-48-2246.46 5.1 3 Kfs 66.74 17.25 0.26 0.45 15.30 1 1 100 114 E-48-2246.46 5.1 4 Kln 48.18 0.65 34.75 0.37 0.31 0.34 1.40 1 1 100 114 E-48-2246.46 5.2 1 Qz 100.00 0 0.31 0.34 1.40 0.26 0.30 0 140 86 72 E-48-2246.46 5.2 2 Ms 50.93 0.90 31.37 1.43 0.78 0.56 8.47 0.26 0.30 0 0 100 120 E-48-2246.46 5.2 3 Qz 1000 1.43 0.78 0.56 8.47 0.26 0.30 0 0 100 120 E-48-2246.46 6 1 Kfs 65.68 17.77 0 0.63 15.13 0 0 0 0.10 120 E-48-2246.46 6 3 Kfs 66.06 17.69 0.61 15.63 <td>E-48-2246.46</td> <td>5.1</td> <td>2</td> <td>Ab</td> <td>69.91</td> <td></td> <td>18.74</td> <td></td> <td></td> <td></td> <td></td> <td>11.17</td> <td>0.17</td> <td></td> <td>100</td> <td>115</td>	E-48-2246.46	5.1	2	Ab	69.91		18.74					11.17	0.17														100	115
E-48-2246.46 5.1 4 Kin 48.18 0.65 34.75 0.37 0.31 0.34 1.40 0 0 0 86 72 E-48-2246.46 5.2 1 Qz 100.00 1.43 0.78 0.56 8.47 0.26 0.30 0 0 95 98 E-48-2246.46 5.2 2 Ms 50.93 0.90 31.37 1.43 0.78 0.56 8.47 0.26 0.30 0 0 95 98 E-48-2246.46 5.2 3 Qz 100.00 0 0.77 0.63 15.13 0.26 0.30 0 0.79 100 121 E-48-2246.46 6 2 Qz 100.00 0 0 0.61 15.63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.61 15.63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E-48-2246.46	5.1	3	Kfs	66.74		17.25	0.26				0.45	15.30														100	114
E-48-2246.46 5.2 1 Qz 100.00 0 0 0 0 0 0 0 0 100 120 E-48-2246.46 5.2 2 Ms 50.93 0.90 31.37 1.43 0.78 0.56 8.47 0.26 0.30 0 0 100 120 E-48-2246.46 5.2 3 Qz 100.00 0 0.77 0.63 15.13 0 0.26 0.30 0 0 100 120 E-48-2246.46 6 2 Qz 100.00 0 0 0.63 15.13 0	E-48-2246.46	5.1	4	KIn	48.18	0.65	34.75	0.37				0.31	0.34				1.40										86	72
E-48-2246.46 5.2 2 Ms 50.93 0.90 31.37 1.43 0.78 0.56 8.47 0 0.26 0.30 0 0 95 98 E-48-2246.46 5.2 3 Qz 100.00 0 0 0.63 15.13 0 0 0 100 121 E-48-2246.46 6 1 Kfs 65.68 17.77 0 0.63 15.13 0 0 0 0 0 100 121 E-48-2246.46 6 2 Qz 100.00 0 0.63 15.13 0	E-48-2246.46	5.2	1	Qz	100.00																						100	120
E-48-2246.46 5.2 3 Qz 100.00 N	E-48-2246.46	5.2	2	Ms	50.93	0.90	31.37	1.43		0.78		0.56	8.47				0.26		0.30								95	98
E-48-2246.46 6 1 Kfs 65.68 17.77 0.63 15.13 0 0 0 100 13 E-48-2246.46 6 2 Qz 100.00 0 0.63 15.13 0 0 0 100 120 E-48-2246.46 6 3 Kfs 66.06 17.69 0.61 15.63 0 0 0 100 120 E-48-2246.46 6 4 Qz 100.00 0 0.61 15.63 0 0 0 0.01 130 100 110<	F-48-2246 46	5.2	3	07	100.00																						100	121
E-48-2246.46 6 2 Qz 100.00 Image: Constraint of the constraint of th	E-48-2246.46	6	1	Kfs	65.68		17.77					0.63	15.13												0.79		100	113
E-48-2246.46 6 3 Kfs 66.06 17.69 0.61 15.63 0 100 119 E-48-2246.46 6 4 Qz 100.00 100 110	F-48-2246 46	6	2	07	100.00																						100	120
E-48-2246.46 6 4 Qz 100.00 100 100 100 110 124 110 124 110 124 110 124 1100 1100 1100 1100	E-48-2246.46	6	3	Kfs	66.06		17.69					0.61	15.63														100	119
E-48-2246.46 6 5 Oz 100.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 123 100 124 100 100 124 100 100 100 100 1	E-48-2246.46	6	4	Qz	100.00																						100	118
E-48-2246.46 6 6 Qz 100,00 100 110 123 E-48-2246.46 6 8 Qz 100,00 100 100 123 100 123 E-48-2246.46 6.1 1 Qz 98.96 0.61 0.43	F-48-2246 46	6	5	07	100.00																						100	116
E-48-2246.46 6 7 Qz 1000 100 100 100 100 100 100 100 100 100 100 100 123 E-48-2246.46 6 8 Qz 100.00 100 123 E-48-2246.46 6.1 1 Qz 98.96 0.61 0.43 100 122	E-48-2246.46	6	6	Qz	100.00																						100	116
E-48-2246.46 6.1 1 Qz 98.96 0.61 0.43 0.43	F-48-2246 46	6	7	07	100.00																						100	123
	E-48-2246.46	6	8	Qz	100.00																						100	124
	E-48-2246.46	6.1	1	Qz	98.96		0.61						0.43														100	122

Table 1-2.1: EDS geochemical analyses of sample E-48-2246.46.

Sample	Site	Position	Mineral	SiO2	Ті02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	Ч	C	Sc2O3	Cr2O3	CoO	NiO	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
E-48-2246.46	6.1	2	Ms	58.27		27.45	3.77		1.25		0.41	8.65				0.19										100	102
E-48-2246.46	6.1	3	Qz	100.00																						100	122
E-48-2246.46	6.2	1	Ab	69.79		18.65					11.56															100	117
E-48-2246.46	6.2	2	Ру	0.40			28.08							71.52												100	230
E-48-2246.46	6.2	3	Kln	48.42		37.10	0.30									0.18										86	90
E-48-2246.46	6.2	4	Ар	1.42		0.66	0.47			46.81			42.88		5.69	0.26									1.81	100	122
E-48-2246.46	6.3	1	Sd	1.35		0.53	43.36	0.35	5.84	4.14	0.44															56	63
E-48-2246.46	6.3	2	Grt	38.81		24.50	25.75	0.31	8.80		0.86	0.97														100	99
E-48-2246.46	6.3	3	Ab	68.36		19.57				0.89	11.03	0.14														100	119
E-48-2246.46	6.3	4	Ms	48.38		32.60	1.43		1.27		0.33	10.98														95	107
E-48-2246.46	6.3	5	Ms	48.31		34.06	1.01		0.78		0.28	10.56														95	107
E-48-2246.46	6.3	6	Ab	67.44		20.53				1.33	10.32	0.37														100	116
E-48-2246.46	6.3	7	Ms	49.56		32.25	1.11		1.82		0.36	9.89														95	110
E-48-2246.46	6.3	8	Py	0.38		10 70	28.26				10.05			71.11						0.25						100	226
E-48-2246.46	7	1	Ab	68.16		19.79				0.89	10.85	0.31														100	116
E-48-2246.46	7	2	KIS	66.16		17.77					0.34	15.74														100	113
E-48-2246.46	7	3	QZ	100.00		47.00					0.74	45.00														100	119
E-48-2246.46	7	4	KIS	66.30		17.00				0.00	0.74	15.30														100	115
E-48-2246.46	7	5	AD O7	08.24		19.67				0.36	11.07	0.66														100	117
E-40-2240.40	7	7	07	100.00																						100	121
E-40-2240.40	7	/	Q2	100.00																						100	122
E-48-2246.46	7	8		100.00																						100	120
E-40-2240.40	7	10		0.00			0.67	0.20	0.21	E2 25		0.20														56	50
E-40-2240.40 E-48-2246.46	7	11		1 00	0/ 87	0.80	0.07	0.29	0.31	0.40		0.39														100	00 107
E-48-2240.40	7	12	Kfe Kfe	66 77	94.07	17 18	1.11			0.40	0.49	15 13				0.42										100	00
E-48-2240.40	7	12	Ab	68.41		10.13	0.31			0.31	0.49	0.61				0.42										100	114
E-48-2246.46	71	13	07	99.41		0.56	0.51			0.51	11.23	0.01														100	121
E 40 2240.40	7.1	2	Grt	35.00		20.70	31.88	0 4 4	11 32		0.66															100	100
E 40 2240.40 E-48-2246 46	7.1	- 3	Kfs	66 77		17 28	51.00	0.77	11.52		0.00	14 85												0.57		100	119
E-48-2246.46	72	1	Grt	37.33		18.51	25 12	0.43	18.06		0.54	11.00												0.07		100	90
E-48-2246.46	7.2	2	Sme	50.38		24 12	5.82	0.10	15 50		1 27	1 89				1 02										100	91
E-48-2246.46	8	1	Qz	100.00		22	0.02		.0.00																	100	115
E-48-2246.46	8	2	Kfs	65.74		17.96					1.56	13.73												1.01		100	112
E-48-2246.46	8	3	Qz	100.00																						100	118
E-48-2246.46	8	4	Cal				1.86	0.74	0.44	52.96																56	57
E-48-2246.46	8	5	Ms +	40.25	9.29	13.32	11.25	0.27	15.45		1.04	9.13														100	110
E-48-2246.46	8	6	Kln	48.26		34.18	0.69	-			-	0.23		0.53		2.11										86	60
E-48-2246.46	8	7	Cal +	9.27		5.38	2.05	0.87	0.94	80.32		1.16														100	62
E-48-2246.46	8	8	Qz	96.22	0.22	3.08	-					0.48														100	113
E-48-2246.46	8	9	TiO2	3.17	92.82	1.46	1.20			0.93		0.42														100	98
E-48-2246.46	8	10	Ab	66.53		18.92				0.39	10.41	0.78		1.82							1.15					100	118
E-48-2246.46	8	11	Kfs	66.08	0.26	17.74					0.53	15.40														100	116
E-48-2246.46	8	12	Qz	100.00																						100	120
E-48-2246.46	8	13	Ар	0.54					0.32	48.09			43.45		5.68	0.29									1.63	100	125
E-48-2246.46	8	14	Qz +	96.23		2.04					0.76	0.96														100	120

Table 1-2.1: EDS geochemical analyses of sample E-48-2246.46.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	Ч	ū	Sc2O3	Cr203	CoO	NiO	OuZ	SrO	ZrO2	BaO	WO3	Total	Actual Total
E-48-2246.46	8	15	Mix	58.24	0.78	15.06	0.49			5.93	0.58	12.81	5.21			0.90										100	86
E-48-2246.46	9	1	Ab	69.41		19.03					11.56															100	115
E-48-2246.46	9	2	Kfs	66.27		17.56					0.74	15.43														100	109
E-48-2246.46	9	3	Qz	100.00																						100	118
E-48-2246.46	9	4	Kfs	66.84		17.18					0.27	15.00												0.72		100	117
E-48-2246.46	9	5	Qz	100.00																						100	121
E-48-2246.46	9	6	Qz	99.44		0.56																				100	117
E-48-2246.46	9	7	Qz	100.00																						100	117
E-48-2246.46	9	8	Kfs	66.23		17.72					0.68	15.37														100	119
E-48-2246.46	9	9	Qz	100.00																						100	123
E-48-2246.46	9	10	Ms	48.00		31.95	2.50		1.09	0.61	0.65	10.20														95	108
E-48-2246.46	9	11	Cal +	1.74		0.99	1.63	0.72	0.39	50.43		0.10														56	59
E-48-2246.46	9	12	Qz	100.00																						100	119
E-48-2246.46	9	13	Ab	66.60		23.76	0.35				9.11					0.17										100	104
E-48-2246.46	9	14	Ab	69.05		18.70				0.40	11.08	0.77														100	116
E-48-2246.46	9	15	Py	0.23			28.83							70.94												100	225
E-48-2246.46	9	16	Kln +	54.32	0.72	29.63	4.32		1.16	1.55	0.67	1.97		2.23		0.76								2.67		100	74
E-48-2246.46	9	17	Qz	100.00																						100	125
E-48-2246.46	9	18	Cal	1.37		0.31	1.02	0.38		52.63		0.29														56	57
E-48-2246.46	9	19	Kfs +	65.15		16.20	0.70				0.72	13.62				3.60										100	44
E-48-2246.46	10	1	Kfs	65.98		17.63					0.61	15.77														100	119
E-48-2246.46	10	2	Qz	100.00																						100	118
E-48-2246.46	10	3	Ab	69.74		18.71					11.55															100	118
E-48-2246.46	10	4	Qz	100.00																						100	119
E-48-2246.46	10	5	Qz	98.70			1.30																			100	117
E-48-2246.46	10	6	Qz	100.00																						100	120
E-48-2246.46	10	7	Qz	100.00																						100	124
E-48-2246.46	10	8	Grt	38.37		21.62	19.15		19.63		0.35	0.66				0.22										100	91
E-48-2246.46	10	9	Qz	98.78		0.87						0.36														100	118
E-48-2246.46	10	10	Kln	48.25		37.14						0.19				0.42										86	77
E-48-2246.46	10.1	1	Qz	99.59		0.41																				100	211
E-48-2246.46	10.1	2	Ms	52.42	0.50	32.69	1.73		1.22		0.53	5.42				0.48										95	88
E-48-2246.46	10.1	3	Py	0.35			28.38							71.27												100	234
E-48-2246.46	10.1	4	Ms	52.65		32.64	1.72		1.46		0.48	5.47				0.58										95	85
E-48-2246.46	11	1	Kfs	65.68		17.88					0.73	15.16												0.55		100	115
E-48-2246.46	11	2	Qz	100.00																						100	119
E-48-2246.46	11	3	Qz	100.00																						100	120
E-48-2246.46	11	4	Kln +	56.73		38.75	0.34					0.48				3.70										100	62
E-48-2246.46	11	5	Qz	100.00																						100	121
E-48-2246.46	11	6	Qz	100.00																						100	122
E-48-2246.46	11	7	Qz	100.00																						100	123
E-48-2246.46	11	8	Kfs	66.41		17.67					1.81	14.11														100	113
E-48-2246.46	11	9	Kts	66.32		17.75					2.93	12.83				0.16										100	111
E-48-2246.46	11	10	Py	0.34			29.16				0.32			70.18										00 0 i		100	226
E-48-2246.46	11	11	Brt	0.78										36.98										62.24		100	118
E-48-2246.46	11	12	Kfs	64.54	1.47	17.31	0.76		1.33			14.28				0.32										100	101

Table 1-2.1: EDS geochemical analyses of sample E-48-2246.46.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ш	CI	Sc2O3	Cr2O3	CoO	NiO	OuZ	SrO	ZrO2	BaO	WO3	Total	Actual Total
E-48-2246.46	11	13	Sme	62.44	0.68	20.90	5.19		1.71	1.85	0.63	2.09		1.73		0.99								1.77		100	78
E-48-2246.46	11	14	Kfs	66.31		17.66					0.43	14.63				0.96										100	79
E-48-2246.46	12	1	Qz	100.00																						100	118
E-48-2246.46	12	2	Qz	100.00																						100	121
E-48-2246.46	12	3	Kfs	66.39		17.48					0.49	15.65														100	117
E-48-2246.46	12	4	Qz	98.93		0.39	0.34				0.33															100	108
E-48-2246.46	12	5	Qz	100.00																						100	120
E-48-2246.46	12	6	Kfs	65.98		17.77					0.32	15.93														100	119
E-48-2246.46	12	7	Qz	100.00																						100	124
E-48-2246.46	12.1	1	?Chl	42.75		18.70	16.75		18.57		0.99	0.50				1.74										100	60
E-48-2246.46	12.1	2	Kfs	66.51		17.35	0.34				0.28	15.52														100	116
E-48-2246.46	12.1	3	Kfs	66.75		18.94	0.66		0.68		3.87	9.10														100	111
E-48-2246.46	12.1	4	Sp	3.38		0.98	0.55					0.54		47.60							46.94					100	184
E-48-2246.46	13	1	Qz	100.00																						100	120
E-48-2246.46	13	2	Kfs	66.27		17.74					0.38	15.62														100	117
E-48-2246.46	13	3	Qz	100.00																						100	122
E-48-2246.46	13	4	Py	0.32			28.61							71.07												100	226
E-48-2246.46	13	5	Kfs	66.27		17.57					0.63	15.53														100	117
E-48-2246.46	13	6	Ms	50.47	0.39	30.09	2.43		1.82		0.29	9.23				0.27										95	97
E-48-2246.46	13	7	Kfs	66.20		17.77					0.76	15.26														100	121
E-48-2246.46	13	8	Qz	100.00																						100	121
E-48-2246.46	13	9	Cal	0.77		0.56	1.32	0.62		52.73																56	59
E-48-2246.46	13	10	Mix	57.82		28.95	2.16		2.30	1.07	0.49	5.26				1.95										100	71
E-48-2246.46	13	11	Qz	100.00																						100	115
E-48-2246.46	13	12	Cal +	8.36	1.53	4.40	3.17	1.02	0.74	79.96		0.84														100	61
E-48-2246.46	14	1	Kfs	66.34		17.79					2.13	13.74														100	121
E-48-2246.46	14	2	Qz	100.00																						100	121
E-48-2246.46	14	3	Qz	100.00																						100	120
E-48-2246.46	14	4	Ab	69.31		19.14					11.55															100	119
E-48-2246.46	14	5	Kln	50.20		36.39	9.04		2.17	0.26	0.59					1.37										100	66
E-48-2246.46	14	6	Ab	69.42		19.07				0.24	11.26															100	116
E-48-2246.46	14	7	Qz	100.00																						100	118
E-48-2246.46	14	8	Qz	100.00																						100	119
E-48-2246.46	14	9	Py	0.21			28.93							70.86												100	221
E-48-2246.46	14	10	Qz	100.00																						100	123
E-48-2246.46	14	11	Qz	100.00																						100	125
E-48-2246.46	15	1	Kfs	67.45		18.25					1.23	13.07														100	112
E-48-2246.46	15	2	Kfs	65.97		17.85					0.58	15.60														100	118
E-48-2246.46	15	3	Ab	69.45		18.81					11.75															100	119
E-48-2246.46	15	4	Qz	100.00																						100	121
E-48-2246.46	15	5	Kfs	66.38		17.52					1.63	14.47														100	114
E-48-2246.46	15	6	Qz	100.00																						100	120
E-48-2246.46	15	7	Qz	100.00																						100	119
E-48-2246.46	15	8	Kfs	65.71		17.98					0.76	14.90												0.64		100	116
E-48-2246.46	15	9	Qz	100.00																						100	118
E-48-2246.46	15	10	Zrn	31.47		1.81	0.77			1.02							0.87						64.05			100	99

Table 1-2.1: EDS geochemical analyses of sample E-48-2246.46.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	OuM	OgM	CaO	Na2O	K20	P205	SO3	ш	C	Sc2O3	Cr203	CoO	NiO	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
E-48-2246.46	15	11	Ms	53.70		27.75	1.07		0.46			12.02														95	116
E-48-2246.46	15	12	Ab	69.49		18.85				0.23	11.43															100	119
E-48-2246.46	15	13	Mix	53.07	4.85	26.72	6.69		1.83	1.69	0.95	1.83		1.56		0.83										100	77
E-48-2246.46	15	14	Qz	100.00																						100	124
E-48-2246.46	15	15	Qz	100.00																						100	122
E-48-2246.46	16	1	Qz	100.00																						100	120
E-48-2246.46	16	2	Kfs	66.19		17.73					0.43	15.65														100	117
E-48-2246.46	16	3	Qz	100.00																						100	120
E-48-2246.46	16	4	Kfs	65.65		17.74					0.61	15.41												0.59		100	116
E-48-2246.46	16	5	Kfs	65.94		17.97					0.86	15.23														100	118
E-48-2246.46	16	6	Qz	100.00																						100	121
E-48-2246.46	16	7	Qz	100.00																						100	125
E-48-2246.46	16	8	Qz	100.00																						100	126
E-48-2246.46	16	9	Qz	100.00																						100	126
E-48-2246.46	16	10	Qz	100.00																						100	127
E-48-2246.46	16	11	"llm"	1.76	71.74	0.65	24.04		0.62	0.79						0.40										100	85
E-48-2246.46	16	12	Ab	69.40		18.61	0.29				11.70															100	120
E-48-2246.46	16	13	Py	0.31			28.97							70.73												100	232
E-48-2246.46	17	1	Kfs	65.92		18.12					1.03	14.94														100	117
E-48-2246.46	17	2	Qz	100.00																						100	119
E-48-2246.46	17	3	Qz	100.00																						100	123
E-48-2246.46	17	4	Qz	100.00																						100	124
E-48-2246.46	17	5	Qz	100.00																						100	122
E-48-2246.46	17	6	Qz	99.58		0.42																				100	117
E-48-2246.46	17	7	Kln	46.06		33.20						0.39				6.35										86	29
E-48-2246.46	17	8	Qz	100.00																						100	120
E-48-2246.46	17	9	Qz	100.00																						100	126
E-48-2246.46	17	10	Qz	100.00																						100	120
E-48-2246.46	18	1	Kfs	65.38		17.95					0.80	14.95												0.93		100	116
E-48-2246.46	18	2	Qz	100.00																						100	116
E-48-2246.46	18	3	Chr		0.40	23.03	20.61		12.43									43.53								100	105
E-48-2246.46	18	4	Qz	100.00																						100	117
E-48-2246.46	18	5	Qz	100.00																						100	118
E-48-2246.46	18	6	Kfs	66.20		17.59					0.65	15.56														100	120
E-48-2246.46	18	7	Ab	69.60		18.76					11.64															100	119
E-48-2246.46	18	8	Kfs	66.22		17.90					1.09	14.79														100	117
E-48-2246.46	18	9	Qz	100.00																						100	121
E-48-2246.46	18	10	Ms	50.83		31.83	0.73		0.59		1.43	9.58														95	110
E-48-2246.46	18	11	Ab + Ms	64.11		23.04	0.24			0.58	9.13	2.90														100	119
E-48-2246.46	18	12	Qz	100.00																						100	120
E-48-2246.46	18	13	Qz	100.00																						100	121
E-48-2246.46	19	1	Kfs	65.36		17.94					0.97	14.73												1.00		100	121
E-48-2246.46	19	2	Ab	66.90		20.47				2.04	10.36	0.22														100	117
E-48-2246.46	19	3	Kfs	66.66		17.82					1.71	13.81														100	116
E-48-2246.46	19	4	Qz	100.00																						100	120
E-48-2246.46	19	5	Ab	69.63		18.80					11.57															100	118

Table 1-2.1: EDS geochemical analyses of sample E-48-2246.46.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	ū	Sc2O3	Cr2O3	CoO	NiO	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
E-48-2246.46	19	6	Mix	17.74	69.83	5.88	1.03		0.45		4.84					0.24										100	113
E-48-2246.46	19	7	Ab	69.74		18.61					11.65															100	117
E-48-2246.46	19	8	Cal	0.43			1.95	0.92	0.53	52.17																56	59
E-48-2246.46	19	9	Qz	100.00																						100	125
E-48-2246.46	19	10	Qz	100.00																						100	125
E-48-2246.46	19	11	Qz	100.00																						100	119
E-48-2246.46	19	12	Kfs	66.57		17.64					0.63	15.16														100	112
E-48-2246.46	19	13	Qz	100.00																						100	117
E-48-2246.46	20	1	Qz	100.00																						100	118
E-48-2246.46	20	2	Qz	100.00																						100	121
E-48-2246.46	20	3	Cal	0.74			2.50	1.23	0.66	94.87																100	58
E-48-2246.46	20	4	"llm"	1.39	96.44	0.79	0.94									0.44										100	91
E-48-2246.46	20	5	Kfs	66.12		17.63					0.57	15.68														100	115
E-48-2246.46	20	6	Kfs	65.94		17.97					0.54	15.55														100	112
E-48-2246.46	20	7	Qz	100.00																						100	119
E-48-2246.46	20	8	Qz	100.00																						100	126
E-48-2246.46	20	9	Chl	27.17		19.12	27.69	0.63	10.39																	85	107
E-48-2246.46	20	10	Qz	99.79			0.21																			100	126
E-48-2246.46	21	1	Kfs	65.06		17.69	1.89				1.32	14.04														100	115
E-48-2246.46	21	2	Qz	100.00																						100	120
E-48-2246.46	21	3	Qz	100.00																						100	120
E-48-2246.46	21	4	Ab	69.16		18.66				0.26	11.28	0.63														100	118
E-48-2246.46	21	5	Qz	100.00																						100	123
E-48-2246.46	21	6	Qz	100.00																						100	125
E-48-2246.46	21	7	Kfs	66.07		17.89					0.88	15.16														100	120
E-48-2246.46	21	8	Qz	100.00																						100	120
E-48-2246.46	21	9	Kfs	64.38		17.51					0.29	15.89		0.47										1.46		100	117
E-48-2246.46	21	10	Qz	100.00																						100	125
E-48-2246.46	21	11	Qz	100.00																						100	118
E-48-2246.46	22	1	Kfs	63.67		18.51					1.09	13.55												3.19		100	114
E-48-2246.46	22	2	TiO2 +?	2.77	79.85	5.65	3.13				1.62					5.44					1.54					100	28
E-48-2246.46	22	3	Qz	100.00																						100	122
E-48-2246.46	22	4	llm	0.81	76.54	0.77	21.02	0.41			0.46															100	101
E-48-2246.46	22	5	Qz	99.55	0.45																					100	123
E-48-2246.46	22	6	Cal +	6.76		6.27	1.37	0.62		84.98																100	63
E-48-2246.46	22	7	Kln	46.45	2.98	32.64	0.52		0.35			1.98				1.08										86	68
E-48-2246.46	22	8	Qz	100.00																						100	124
E-48-2246.46	22	9	Kfs	66.30		17.67					0.71	15.31														100	123
E-48-2246.46	22	10	Qz	100.00																						100	126
E-48-2246.46	22	11	Qz	100.00																						100	120
E-48-2246.46	23	1	Qz	98.98		0.70				0.32																100	121
E-48-2246.46	23	2	Kfs	65.42		17.81					0.27	15.92												0.58		100	120
E-48-2246.46	23	3	Ab	69.68		18.63					11.69															100	122
E-48-2246.46	23	4	Kfs	65.95		17.76					0.63	15.65														100	118
E-48-2246.46	23	5	Kln	48.54		37.46																				86	96
E-48-2246.46	23	6	Kfs	66.10		17.77					0.60	15.53														100	118

Table 1-2.1: EDS geochemical analyses of sample E-48-2246.46.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	ū	Sc2O3	Cr2O3	CoO	NiO	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
E-48-2246.46	23	7	Oligo	63.43		23.00				4.77	8.51	0.30														100	120
E-48-2246.46	23	8	Kfs	66.05		17.64					0.63	15.69													i	100	125
E-48-2246.46	23	9	Qz	100.00																						100	126
E-48-2246.46	23	10	Py				28.73							71.27												100	236
E-48-2246.46	23	11	Qz	100.00																						100	123
E-48-2246.46	24	1	Kfs	66.06		17.93					0.59	15.43														100	114
E-48-2246.46	24	2	Kfs	66.17		17.77					0.78	15.28														100	114
E-48-2246.46	24	3	Py	0.21			28.44				0.49			70.86												100	230
E-48-2246.46	24	4	Py	0.16			28.82							71.02												100	227
E-48-2246.46	24	5	Qz	100.00																						100	120
E-48-2246.46	24	6	Kfs	65.70		17.72	0.24				0.43	15.19												0.72		100	117
E-48-2246.46	24	7	Ab	69.79		18.63					11.57															100	119
E-48-2246.46	24	8	Kfs	66.27		17.80					0.43	15.51														100	117
E-48-2246.46	24	9	Qz	100.00																						100	122
E-48-2246.46	24	10	Qz	100.00																						100	124
E-48-2246.46	24	11	Qz + Kfs	86.05		7.65					0.55	5.76														100	120
E-48-2246.46	24	12	Qz	100.00																						100	119
E-48-2246.46	24	13	Ab	69.31		18.55	0.33				11.43			0.38												100	122
E-48-2246.48	24.1	1	Ab	69.58		18.4	0.25				11.37	0.39													لــــــا	100	119
E-48-2246.49	24.1	2	Kfs	67.61		17.79					0.52	14.08														100	111
E-48-2246.46	25	1	Qz	100.00																						100	122
E-48-2246.46	25	2	Qz	100.00																						100	123
E-48-2246.46	25	3	Brt	0.53										36.71										62.76		100	122
E-48-2246.46	25	4	Qz	100.00																					لــــــا	100	123
E-48-2246.46	25	5	Qz	100.00																						100	118
E-48-2246.46	25	6	Qz	100.00																						100	118
E-48-2246.46	25	7	Qz	100.00																						100	117
E-48-2246.46	25	8	Qz	100.00																						100	118
E-48-2246.46	26	1	Qz	100.00																					لــــــا	100	125
E-48-2246.46	26	2	Qz	100.00																						100	127
E-48-2246.46	26	3	Kfs	66.26		17.59					0.68	15.48														100	118
E-48-2246.46	26	4	Ab	68.54		19.48				0.69	11.12	0.16														100	115
E-48-2246.46	26	5	Kfs	66.23		17.79					0.87	15.11														100	115
E-48-2246.46	26	6	Ар	5.21						46.19	0.29		41.01		7.31											100	118
E-48-2246.46	26	7	Qz	100.00																						100	117
E-48-2246.46	26	8	Ab	69.97		18.56					11.47															100	116
E-48-2246.46	26	9	Qz	100.00																						100	118
E-48-2246.46	26	10	Qz	100.00																						100	119
E-48-2246.46	26	11	Qz	100.00																						100	119
E-48-2246.46	26.1	1	Brt	0.85										36.28										62.87		100	115
E-48-2246.46	26.1	2	Qz	99.61												0.39										100	96
E-48-2246.46	26.1	3	Qz + Clay	81.26		13.40	1.00		0.69		0.37	2.32				0.97										100	84
E-48-2246.46	26.1	4	Qz	99.60		0.40																				100	119
E-48-2246.46	27	1	Qz	100.00																						100	119
E-48-2246.46	27	2	Qz	100.00																						100	118
E-48-2246.46	27	3	Oligo	66.77		20.53				2.30	10.39															100	116

Table 1-2.1: EDS geochemical analyses of sample E-48-2246.46.

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	Ŀ	ō	Sc2O3	Cr203	CoO	NiO	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
E-48-2246.46	27	4	Oligo	65.37		21.63				3.25	9.75															100	114
E-48-2246.46	27	5	Qz	100.00																						100	120
E-48-2246.46	27	6	Kfs	65.71		17.77					0.72	15.23												0.57		100	118
E-48-2246.46	27	7	Kfs	66.16		17.78					0.60	15.46														100	119
E-48-2246.46	27	8	Ab	69.27		18.94				0.25	11.54															100	117
E-48-2246.46	27	9	Kfs	65.61		17.74					0.44	15.28												0.94		100	116
E-48-2246.46	27	10	Qz	100.00																						100	123
E-48-2246.46	27	11	Qz	100.00																						100	126
E-48-2246.46	27	12	Kfs	65.69		17.84					0.76	15.09												0.62		100	110
E-48-2246.46	27.1	1	Qz + Ms	84.22		9.67	1.06		0.97		0.61	3.46														100	122
E-48-2246.46	27.1	2	Ms	47.80	0.55	24.79	7.37		2.23	0.78		10.99				0.48										95	90
E-48-2246.46	27.1	3	Ms + Chl	37.44		24.53	21.47		12.69		0.39	3.48														100	98
							Notes																				
							1. + ind	icates	more th	an one																	
							2. " " in	dicate	d altered	d grain																	

Table 1-2.1: EDS geochemical analyses of sample E-48-2246.46.
Appendix 1-2: SEM-BSE images and EDS mineral analyses for sample 2H-58 1600.27.

Sample 2H-58 1600.27: Medium-fine grained sandstone

Detrital Minerals: Albite, Chlorite (Fig. 40), Ilmenite, K-feldspar, Muscovite, Oligoclase, Quartz, Titania (Fig. 33), Zircon (Fig. 47)

Diagenetic Minerals: Chlorite, Kaolinite, Pyrite, Siderite, Titania,

Notes:

1. Suturing is present mainly in quartz and K-feldspar grains (i.e. Figs. 2,4,6).

2. Overgrowths are rare and occur in quartz (Figs. 2,10).

3. Primary porosity has been preserved.

4. Chlorite appears to have expanded along cleavage and has allowed for diagenetic siderite to precipitate (Figs. 40,44).

5. Drilling mud has partially coated grains thoughout this sample (i.e. Figs. 37,38,40,45,48,54).

6. Pargenetic sequence:	Kaolinite	Chlorite	Siderite ± Pyrite :	± Tita	nia
	ţ	1		1	
	Fig. 34	Figs. 4	40,44	Fig.	19

Figure 1-3.1: Scanned thin section of sample 2H-58 1600.27 showing the location of analyzed sites.

Figure 1-3.2: Sample 2H-58 1600.27 (SEM) site 1. This site consists of mostly quartz and K-feldspar grains. Most grains seem to be coated in clays. Some suturing is seem (position a) and overgrowths are seen in quartz (positions b).

1:Quartz + Kfeldspar + Chlorite 2:Quartz + 3:K-feldspar 4:Quartz

Figure 1-3.3: Sample 2H-58 1600.27 (SEM) site 1.1. This site consists of a metasiltstone lithic clast made up of quartz + K-feldspar + chlorite (1).

Figure 1-3.4: Sample 2H-58 1600.27 (SEM) site 2. This site consists of mainly quartz and K-feldspar grains. A quartz aggregate (11) appears to have clays forming along grain boundaries. There is also a lithic clast of dissolved quartz, and an albitized K-feldspar (7) grain. Suturing is seen in positions a.

1:Albite 2:K-feldspar

Figure 1-3.5: Sample 2H-58 1600.27 (SEM) site 2.1. This site consists of an albitized K-feldspar grain.

Figure 1-3.6: Sample 2H-58 1600.27 (SEM) site 3. This site consists mainly of quartz and K-feldspar, with some diagenetic pyrite (5). Clays appear to coat grains. There is a clast of altered ilmenite (10). Suturing between grains is common.

1:TiO₂ 2:Chlorite + 3:Chlorite + Muscovite

Figure 1-3.7: Sample 2H-58 1600.27 (SEM) site 3.1. This site consists of a TiO₂ mineral (?rutile) grain (1) and chlorite. This site may be an argillite lithic clast.

1:Muscovite 2:K-feldspar 3:K-feldspar 4:K-feldspar 5:Quartz 6:Quartz 7:Quartz 8:Quartz 9:K-feldspar 10:Quartz

Figure 1-3.8: Sample 2H-58 1600.27 (SEM) site 4. This site consists of mainly quartz and K-feldspar, with a rare muscovite (1) grain.

1:Quartz 2:Muscovite +

Figure 1-3.9: Sample 2H-58 1600.27 (SEM) site 4.1. This site contains a granitoid lithic clast made up of quartz (1) and muscovite (2).

1:Quartz 2:K-feldspar 3:Muscovite 4:K-feldspar 5:K-feldspar 6:Quartz 7:Quartz 8:Quartz 9:K-feldspar 10:K-feldspar 11:Quartz

Figure 1-3.10: Sample 2H-58 1600.27 (SEM) site 5. This site is mostly made up of quartz and K-feldspar. There is a rare muscovite (3) grain and all grains appear to be coated or partially coated by clays. There appears to be a lithic clast made up of quartz and K-feldspar. Suturing is common (position a) and overgrowths occur in quartz grains (positions b).

1:K-feldspar 2:Albite 3:K-feldspar 4:Albite

Figure 1-3.11: Sample 2H-58 1600.27 (SEM) site 5.1. This site contains a transported albitized K-feldspar grain with K-feldspar dissolving.

Figure 1-3.12: Sample 2H-58 1600.27 (SEM) site 6. This site consists mostly of quartz and K-feldspar grains that are coated in clays. There is also a grain of needily siderite (6).

 $1:TiO_2 +$ 2:Chlorite + ?Albite 3:Chlorite + ?Albite $4:TiO_2 +$

Figure 1-3.13: Sample 2H-58 1600.27 (SEM) site 6.1. This site consists of a clast of TiO_2 mineral (?rutile) and chlorite mixed with albite, probably from an argillite.

Figure 1-3.14: Sample 2H-58 1600.27 (SEM) site 6.2. This site consists of K-feldspar (2) grain surrounded by matrix (1,4) mixed with drilling mud (3).

Figure 1-3.15: Sample 2H-58 1600.27 (SEM) site 7. This site is similar to previous sites consisting of quartz, K-feldspar, and clays (kaolinite (6)).

1:K-feldspar 2:K-feldspar 3:Oligoclase 4:K-feldspar 5:K-feldspar 6:Quartz 7:Quartz 8:Quartz 9:K-feldspar 10:Quartz 11:Quartz

Figure 1-3.16: Sample 2H-58 1600.27 (SEM) site 8. This site is similar to previous sites. There appears to be a ?lithic clast of quartz (3) and K-feldspar (4).

1:K-feldspar 2:Quartz 3:K-feldspar 4:Quartz 5:Quartz 6:Quartz 7:Quartz 8:Quartz 9:K-feldspar 10:Smectite

Figure 1-3.17: Sample 2H-58 1600.27 (SEM) site 9. This site is similar to previous sites. Suturing is common (positions a). Some of the quartz appears partially dissolved (position b).

Figure 1-3.18: Sample 2H-58 1600.27 (SEM) site 10. This site is similar to previous sites. Clays appear to coat quartz and K-feldspar grains. Suturing is common.

1:Quartz 2:TiO₂ 3:K-feldspar 4:Albite 5:Pyrite 6:Albite 7:Albite

Figure 1-3.19: Sample 2H-58 1600.27 (SEM) site 10.1. This site contains a granitoid clast of K-feldspar (3) and albite (4). Diagenetic pyrite (5) partially fills voids in the lithic clast. Titania (2) appears to be diagenetic.

Figure 1-3.20: Sample 2H-58 1600.27 (SEM) site 10.2. This site consists of a dissolved quartz grain (1) and drilling mud.

2:Muscovite 3:Quartz 4:K-feldspar 5:Quartz 6:K-feldspar 7:Quartz 8:K-feldspar 9:Quartz 10:Quartz 11:K-feldspar 12:Quartz 13:Mixture 14:Quartz 15:Siderite

Figure 1-3.21: Sample 2H-58 1600.27 (SEM) site 11. This site is similar to previous sites, with suturing present. There appears to be a lithic clast of quartz (7) and K-feldspar (6). Muscovite (2) appears fine-grained and may be a lithic clast as well.

Figure 1-3.22: Sample 2H-58 1600.27 (SEM) site 11.1. This site consists of a clast that is made up of quartz (1), probably from a granite, with chlorite (2) inclusions (altered magmatic mineral).

1:K-feldspar 2:Quartz 3:Quartz 4:Quartz 5:Quartz 5:Quartz 6:Mixture 7:K-feldspar 8:Quartz

Figure 1-3.23: Sample 2H-58 1600.27 (SEM) site 12. This site is similar to previous sites. There appears to be a clast of K-feldspar (1) with quartz (2) inclusions. Some quartz grains (positions a) appear porous.

1:Quartz 2:Muscovite (III) 3:Muscovite (III)

Figure 1-3.24: Sample 2H-58 1600.27 (SEM) site 12.1. This site contains a metasiltstone lithic clast (slate) made up of muscovite (III) (2-3) and probably fibrous chlorite (position a).

1:Muscovite + Chlorite 2:Muscovite + Chlorite

Figure 1-3.25: Sample 2H-58 1600.27 (SEM) site 12.2. This site consists of a metasiltstone lithic clast made up of an altered muscovite (III) grain (2), fibrous chlorite and scattered high reflectivity minute grains, probably diagenetic pyrite and titania.

1:Quartz 2:K-feldspar 3:Pyrite 4:K-feldspar 5:Quartz 6:Quartz 7:K-feldspar 8:Quartz 9:Quartz 10:Muscovite 11:Quartz

Figure 1-3.26: Sample 2H-58 1600.27 (SEM) site 13. This site is similar to previous sites. Diagenetic pyrite (3) appears to partially fill primary porosity. There is also a lithic clast of quartz (11) and muscovite (10).

1:Quartz 2:K-feldspar 3:K-feldspar 4:Muscovite + 5:Quartz 6:Quartz + 7:Quartz 8:Quartz 9:Albite

Figure 1-3.27: Sample 2H-58 1600.27 (SEM) site 14. This site consists of mainly quartz and K-feldspar. There is a lithic clast made up of quartz (7) and probably K-feldspar (6). Another lithic clast appears to be made up of albite (9) and quartz (8). Suturing is common in this site.

Figure 1-3.28: Sample 2H-58 1600.27 (SEM) site 15. This site is similar to previous sites. There is a lithic clast of K-feldspar (2) and albite (3). Suturing is common and quartz appears to contain overgrowths (position a).

1:Quartz 2:Muscovite

Figure 1-3.29: Sample 2H-58 1600.27 (SEM) site 15.1. This site consists probably of a peraluminous granitic clast made up of quartz (1) and muscovite (2).

Figure 1-3.30: Sample 2H-58 1600.27 (SEM) site 16. This site is similar to previous sites. Suturing is common and there is a rare grain of ilmenite (1).

1:K-feldspar 2:Albite + Kfeldspar

Figure 1-3.31: Sample 2H-58 1600.27 (SEM) site 16.1. This site consists of a detrital grain of perthitic K-feldspar (1).

Figure 1-3.32: Sample 2H-58 1600.27 (SEM) site 17. This site is similar to previous sites. Clays commonly coat grains and suturing is present. A grain of titania is seen.

Figure 1-3.33: Sample 2H-58 1600.27 (SEM) site 17.1. This site consists of a detrital titania grain (1-2).

Figure 1-3.34: Sample 2H-58 1600.27 (SEM) site 18. This site is similar to previous sites. Zircon (2) appears to be detrital. There is also kaolinite booklets between some of the quartz grains and a ?matrix clast. A lithic clast of K-feldspar (4) and albite (5) is seen.

1:Quartz 2:Muscovite + Chlorite

Figure 1-3.35: Sample 2H-58 1600.27 (SEM) site 18.1. This site contains a probably peraluminous granitic lithic clast made up of quartz (1) and muscovite (2).

1:K-feldspar 2:Quartz 3:K-feldspar 4:Quartz 5:K-feldspar 6:Quartz 7:K-feldspar 8:Quartz 9:Quartz + Albite 10:Quartz + Albite

Figure 1-3.36: Sample 2H-58 1600.27 (SEM) site 19. This site is similar to previous sites. Clays coat grains and suturing is common.

1:Barite 2:Quartz 3:K-feldspar

Figure 1-3.37: Sample 2H-58 1600.27 (SEM) site 19.1. This site consists of a microgranite lithic clast made up of K-feldspar (3) and quartz (2). Barite (1) appears to be drilling mud.

Figure 1-3.38: Sample 2H-58 1600.27 (SEM) site 19.2. This site consists of a fractured and partially dissolved quartz grain with barite (3) and clay (2) (most likely drilling mud) partially coating it.

1:Quartz 2:K-feldspar 3:Chlorite 4:K-feldspar 5:Quartz 6:Limonite + 7:Quartz 8:Chlorite + Illite

Figure 1-3.39: Sample 2H-58 1600.27 (SEM) site 20. This site is similar to previous sites. Chlorite (3) appears to have slit open along cleavage and allowed a diagenetic mineral to form. There is also a lithic clast of quartz (5) and K-feldspar (4).

Figure 1-3.40: Sample 2H-58 1600.27 (SEM) site 20.1. This site consists of a plastically deformed chloritized muscovite with siderite precipitating along the expanded cleavage planes of the chloritized muscovite, quartz grains and drilling mud made up of silt-size quartz and clays (illite + chlorite) (2).

1:K-feldspar 2:Albite 3:Kaolinite 4:K-feldspar 5:Quartz 6:Quartz 7:K-feldspar 8:Quartz 9:Quartz 10:Muscovite

Figure 1-3.41: Sample 2H-58 1600.27 (SEM) site 21. This site is similar to previous sites. Kaolinite (3) appears to be the alteration product of a previous mineral. There is also a lithic clast of K-feldspar (1) and albite (2).

Figure 1-3.42: Sample 2H-58 1600.27 (SEM) site 22. This site is similar to previous sites. There appears to be a lithic clast made up of quartz (3) and ?chlorite (4). Kaolinite (2) may also be a lithic clast as it appears to pseudomorph a mica.

1:Quartz 2:Muscovite 3:Chloritized ?Feldspar 4:K-feldspar 5:Quartz 6:K-feldspar 7:Quartz 8:K-feldspar + Chlorite 9:Quartz 10:Quartz

Figure 1-3.43: Sample 2H-58 1600.27 (SEM) site 23. This site is similar to previous sites. ?Feldspars appear to be chloritized. Suturing is common between quartz grains.

Figure 1-3.44: Sample 2H-58 1600.27 (SEM) site 23.1. This site consists of partially dissoved and altered biotite (1) that has expanded along cleavage planes and allowed late diagenetic siderite (2) to precipitate.

1:Quartz 2:Clays 3:Clays 4:Quartz + Chlorite

Figure 1-3.45: Sample 2H-58 1600.27 (SEM) site 23.2. This site consists of a detrital quartz (1) grain that is partially coated by drilling mud made up of clays, probably chlorite + illite (3), and quartz (4).

Figure 1-3.46: Sample 2H-58 1600.27 (SEM) site 24 This site is similar to previous sites. There is a lithic clast made up of quartz (3) and K-feldspar (2).

1:Quartz 2:K-feldspar 3:K-feldspar 4:Quartz 5:Mixture 6:Quartz 7:Muscovite 8:Quartz 9:Zircon 10:Quartz 11:Albite 12:Quartz

Figure 1-3.47: Sample 2H-58 1600.27 (SEM) site 25. This site is similar to previous sites. Zircon (9) appears to be an inclusion in a quartz grain (10). Albite (11) appears to be altered.

Figure 1-3.48: Sample 2H-58 1600.27 (SEM) site 25.1. This site consists of the clays that partially coat detrital quartz grains (4). It appears to be made up of barite (3), quartz (4), and late siderite (2). They all may be from drilling mud.

1:Quartz 2:K-feldspar 3:Kaolinite 4:K-feldspar 5:TiO₂ 6:Quartz 7:Quartz + Kfeldspar 8:K-feldspar 9:K-feldspar 10:K-feldspar 11:Quartz 12:Quartz

Figure 1-3.49: Sample 2H-58 1600.27 (SEM) site 26. This site is similar to the previous sites. There is a rhyolite lithic clast of quartz (7) and K-feldspar (8).

Figure 1-3.50: Sample 2H-58 1600.27 (SEM) site 26.1. This site consists of a rhyolite lithic clast that is made up of quartz (2) and K-feldspar (1,3).

1:Quartz 2:K-feldspar 3:Quartz 4:K-feldspar 5:K-feldspar 6:Quartz 7:Quartz 8:Quartz 9:K-feldspar 10:Quartz 11:Quartz

Figure 1-3.51: Sample 2H-58 1600.27 (SEM) site 27. This site is similar to previous sites. There is a lithic clast of quartz (3) and K-feldspar (4) and possibly quartz (1) and K-feldspar (2). Suturing is common in this site.

Figure 1-3.52: Sample 2H-58 1600.27 (SEM) site 28. This site is similar to previous sites. Clays coat grains and there is a lithic clast of oligoclase (5) and K-feldspar (6).

Figure 1-3.53: Sample 2H-58 1600.27 (SEM) site 29. This site is similar to previous sites. There is a lithic clast of muscovite (1) and quartz (2).

Figure 1-3.54: Sample 2H-58 1600.27 (SEM) site 29.1. This site shows the clays (drilling mud) that partially coat detrital grains, such as quartz (1). The barite (3) appears to be drilling mud.

1:K-feldspar 2:Muscovite 3:Quartz 4:Quartz 5:K-feldspar + Pyrite 6:Quartz 7:Quartz 8:K-feldspar 9:Quartz 10:Albite 11:Quartz

Figure 1-3.55: Sample 2H-58 1600.27 (SEM) site 30. This site is similar to previous sites. There is a lithic clast of quartz (11) and K-feldspar (1). Muscovite (2) does not appear deformed.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	OuM	MgO	CaO	Na2O	K2O	P205	SO3	CI	Sc2O3	CoO	ZnO	ZrO2	BaO	Yb2O3	WO3	Total	Actual Total
2H-58 1600.27	1	1	Qz	100.00																			100	122
2H-58 1600.27	1	2	Kfs	65.35		17.89					1.57	13.98								1.20			100	113
2H-58 1600.27	1	3	Kfs	66.34		17.74					0.68	15.24											100	120
2H-58 1600.27	1	4	Kfs	66.40		17.65					0.46	15.49											100	120
2H-58 1600.27	1	5	Qz	100.00																			100	125
2H-58 1600.27	1	6	Qz	100.00																			100	121
2H-58 1600.27	1	7	Kfs	66.23		18.13					1.00	14.64											100	117
2H-58 1600.27	1	8	Qz +	75.70	0.37	14.22	3.51		1.54		0.49	3.92			0.25								100	100
2H-58 1600.27	1	9	Oligo	64.61		21.93				3.84	9.47	0.15											100	120
2H-58 1600.27	1	10	Qz	100.00																			100	123
2H-58 1600.27	1	11	Qz	100.00																			100	121
2H-58 1600.27	1	12	Qz	100.00																			100	119
2H-58 1600.27	1	13	Qz	100.00																			100	119
2H-58 1600.27	1	14	Kfs	65.01		18.12					1.10	14.10								1.67			100	116
2H-58 1600.27	1	15	Mix	53.84		20.54	10.13		1.82	5.03	1.18	2.44		2.05	0.95					2.01			100	76
2H-58 1600.27	1.1	1	Qz + Kfs + Chl	74.51	1.16	14.07	5.11		1.28		0.48	3.09			0.31								100	97
2H-58 1600.27	1.1	2	Qz +	94.88		3.35	0.60		0.34			0.83											100	113
2H-58 1600.27	1.1	3	Kfs	66.23		17.66					0.38	15.74											100	117
2H-58 1600.27	1.1	4	Qz	100.00																			100	120
2H-58 1600.27	2	1	Qz	100.00																			100	123
2H-58 1600.27	2	2	Kfs	66.45		17.50					0.93	15.12											100	120
2H-58 1600.27	2	3	Kfs	66.30		17.72					0.87	15.11											100	117
2H-58 1600.27	2	4	Qz	100.00																			100	122
2H-58 1600.27	2	5	Py	0.35			29.13							70.52									100	227
2H-58 1600.27	2	6	Qz	100.00																			100	123
2H-58 1600.27	2	7	Kfs + Ab	67.88		18.04					4.38	9.69											100	118
2H-58 1600.27	2	8	Kfs	66.15		17.76					0.46	15.64											100	119
2H-58 1600.27	2	9	Qz	100.00																			100	121
2H-58 1600.27	2	10	Kfs	66.19		17.95					1.05	14.81											100	114
2H-58 1600.27	2	11	Qz	100.00																			100	118
2H-58 1600.27	2	12	Qz	100.00																			100	119
2H-58 1600.27	2	13	Qz	100.00																			100	122
2H-58 1600.27	2.1	1	Ab	68.77		19.22				0.54	11.34	0.13											100	119
2H-58 1600.27	2.1	2	Kfs	66.34		17.72					0.54	15.40											100	116
2H-58 1600.27	3	1	Qz	100.00																			100	121
2H-58 1600.27	3	2	Kfs	66.26		17.75					0.63	15.36											100	118
2H-58 1600.27	3	3	Qz	100.00																			100	121
2H-58 1600.27	3	4	Kfs	66.58		17.75					1.10	14.58											100	123
2H-58 1600.27	3	5	Py	0.50			29.91				0.46			69.13									100	211
2H-58 1600.27	3	6	Kfs	65.57		17.33					0.48	16.62											100	105
2H-58 1600.27	3	7	Kfs	65.05		18.28					1.39	13.58								1.69			100	121
2H-58 1600.27	3	8	Qz	100.00									İ			İ							100	126
2H-58 1600.27	3	9	Kfs	65.12		17.51					2.01	14.74			0.62								100	125
2H-58 1600.27	3	10	TiO2	2.58	92.31	1.64	2.48		0.99														100	113

Table 1-3.1: EDS geochemical analyses of sample 2H-58 1600.27.

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ū	Sc2O3	CoO	OuZ	ZrO2	BaO	Yb2O3	WO3	Total Actual Total
2H-58 1600.27	3	11	Qz	100.00																		1	00 127
2H-58 1600.27	3	12	Qz	100.00																		1	00 123
2H-58 1600.27	3	13	Qz	96.56		0.48	0.25				1.81				0.90							1	00 119
2H-58 1600.27	3.1	1	TiO2	0.48	98.60		0.47			0.45												-	00 107
2H-58 1600.27	3.1	2	Chl +	26.68	4.23	20.16	18.82	0.31	14.80														85 99
2H-58 1600.27	3.1	3	Chl + Ms	43.50	0.52	28.92	14.84		5.97		0.70	5.16			0.39							1	00 82
2H-58 1600.27	4	1	Ms	47.19	0.59	34.89	1.06		0.48		1.02	9.77											95 107
2H-58 1600.27	4	2	Kfs	66.02		18.01					0.60	15.37										1	00 116
2H-58 1600.27	4	3	Kfs	64.14		18.42					0.99	13.77								2.68		1	00 119
2H-58 1600.27	4	4	Kfs	66.04		17.96					0.98	14.48								0.54		1	00 118
2H-58 1600.27	4	5	Qz	100.00																		1	00 120
2H-58 1600.27	4	6	Qz	100.00																		1	00 119
2H-58 1600.27	4	7	Qz	100.00																		1	00 122
2H-58 1600.27	4	8	Qz	100.00																		1	00 118
2H-58 1600.27	4	9	Kfs	66.40		18.00					1.19	14.41										1	00 117
2H-58 1600.27	4	10	Qz	100.00																		1	00 120
2H-58 1600.27	4.1	1	Qz	100.00																		1	00 120
2H-58 1600.27	4.1	2	Ms +	58.98	0.43	25.13	4.26		1.74			9.46										1	00 110
2H-58 1600.27	5	1	Qz	100.00																			00 119
2H-58 1600.27	5	2	Kfs	65.79	0.30	19.34					0.41	14.17										1	00 108
2H-58 1600.27	5	3	Ms	49.13	0.58	30.22	2.59		0.58		0.81	9.97			1.12								95 74
2H-58 1600.27	5	4	Kfs	66.32		18.21					1.54	13.93											00 114
2H-58 1600.27	5	5	Kfs	65.35		17.85					1.71	13.75								1.35		1	00 120
2H-58 1600.27	5	6	Qz	100.00																		1	00 119
2H-58 1600.27	5	7	Qz	100.00																		1	00 117
2H-58 1600.27	5	8	Qz	100.00																		1	00 120
2H-58 1600.27	5	9	Kfs	66.45		17.67					0.70	15.18											00 114
2H-58 1600.27	5	10	Kfs	66.03		17.55					0.43	15.99											00 119
2H-58 1600.27	5	11	Qz	100.00																			00 122
2H-58 1600.27	5.1	1	Kfs	66.15		17.78					0.45	15.62											00 117
2H-58 1600.27	5.1	2	Ab	69.16		18.99				0.48	11.37												00 118
2H-58 1600.27	5.1	3	Kfs	66.61		17.48					0.37	15.53											00 118
2H-58 1600.27	5.1	4	Ab	68.82		19.16				0.50	11.52												00 118
2H-58 1600.27	6	1	Kfs	66.27		17.94					1.37	14.42										-	00 116
2H-58 1600.27	6	2	Qz	100.00																			00 121
2H-58 1600.27	6	3	Brt	0.68										36.69			-0.20			62.83			00 115
2H-58 1600.27	6	4	Qz	100.00																			00 118
2H-58 1600.27	6	5	Kfs	65.20		18.06					0.84	14.75								1.15			00 119
2H-58 1600.27	6	6	Sd +	0.94			48.47	2.26	1.06	1.51	1.52				0.24								56 62
2H-58 1600.27	6	7	Kfs	65.16		17.76					1.46	14.55			0.30					0.77			00 116
2H-58 1600.27	6	8	Qz	99.73	0.27																		00 117
2H-58 1600.27	6.1	1	TiO2 +	1.34	88.94	3.28	1.99			0.96	1.65		1.06		0.78								00 99
2H-58 1600.27	6.1	2	Chl + ?Ab	37.88	2.36	16.90	35.93		2.12	0.35	2.10	0.51			1.85								00 60
2H-58 1600.27	6.1	3	Chl + ?Ab	33.99	2.77	12.87	40.98		1.78	0.31	3.14			2.16	2.00								00 76

Table 1-3.1: EDS geochemical analyses of sample 2H-58 1600.27.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ū	Sc2O3	CoO	OuZ	ZrO2	BaO	Yb2O3	WO3	Total	Actual Total
2H-58 1600.27	6.1	4	TiO2 +	1.82	88.44	3.21	2.64			0.76	1.62		1.14		0.37								100	98
2H-58 1600.27	6.2	1	Qz	100.00																			100	122
2H-58 1600.27	6.2	2	Kfs	66.30		17.82					0.98	14.91											100	115
2H-58 1600.27	6.2	3	Brt	0.68										36.31			-0.22			63.22			100	115
2H-58 1600.27	6.2	4	Mix	57.02	0.38	20.57	6.28		1.67	8.22	1.53	1.62		1.18	1.52								100	65
2H-58 1600.27	7	1	Kfs	66.20		17.63					0.41	15.76											100	114
2H-58 1600.27	7	2	Qz	100.00																		i l	100	116
2H-58 1600.27	7	3	Qz	100.00																			100	120
2H-58 1600.27	7	4	Kfs	65.53		17.97					1.00	14.46								1.04		i l	100	116
2H-58 1600.27	7	5	Qz	100.00																			100	121
2H-58 1600.27	7	6	Kln +	47.84		35.73	3.99			2.14	1.28	0.93			8.09								100	28
2H-58 1600.27	7	7	Qz	100.00																			100	120
2H-58 1600.27	7	8	Qz	100.00																			100	115
2H-58 1600.27	7	9	Kfs	66.02		17.76					0.51	15.71											100	114
2H-58 1600.27	7	10	Qz	100.00																			100	120
2H-58 1600.27	7	11	Qz	100.00																			100	116
2H-58 1600.27	8	1	Kfs	65.84		17.91					0.79	14.94								0.52			100	114
2H-58 1600.27	8	2	Kfs	66.56		17.47					0.32	15.65											100	114
2H-58 1600.27	8	3	Oligo	64.32		22.22				4.09	9.37												100	114
2H-58 1600.27	8	4	Kfs	65.69		17.97					0.65	15.00								0.68			100	112
2H-58 1600.27	8	5	Kfs	66.41		17.76					1.02	14.81											100	116
2H-58 1600.27	8	6	Qz	100.00																			100	121
2H-58 1600.27	8	7	Qz	100.00																			100	117
2H-58 1600.27	8	8	Qz	100.00																			100	116
2H-58 1600.27	8	9	Kfs	66.26		17.56					0.58	15.59											100	115
2H-58 1600.27	8	10	Qz	100.00																			100	120
2H-58 1600.27	8	11	Qz	100.00																			100	119
2H-58 1600.27	9	1	Kfs	65.37		18.12					1.19	14.12								1.20			100	114
2H-58 1600.27	9	2	Qz	100.00																			100	120
2H-58 1600.27	9	3	Kfs	65.89		18.12					1.39	14.02								0.58			100	115
2H-58 1600.27	9	4	Qz	100.00																			100	115
2H-58 1600.27	9	5	Qz	100.00																			100	122
2H-58 1600.27	9	6	Qz	100.00																			100	118
2H-58 1600.27	9	7	Qz	100.00																			100	122
2H-58 1600.27	9	8	Qz	100.00																			100	117
2H-58 1600.27	9	9	Kfs	66.41		17.79					1.05	14.75											100	111
2H-58 1600.27	9	10	Sme	43.21	0.47	18.38	4.63	0.87	1.34	6.95	0.96	1.11		1.02	1.05								80	64
2H-58 1600.27	10	1	Kfs	66.05	0.31	17.91					1.12	14.60										$ \longrightarrow $	100	113
2H-58 1600.27	10	2	Qz	100.00																		$ \longrightarrow $	100	117
2H-58 1600.27	10	3	Kfs	66.05		17.91					0.70	15.35										$ \longrightarrow $	100	115
2H-58 1600.27	10	4	Qz	100.00																		$ \longrightarrow $	100	119
2H-58 1600.27	10	5	Qz	100.00																		$ \longrightarrow $	100	124
2H-58 1600.27	10	6	Mix	62.06	1.09	21.34	8.44		1.62	0.68	1.42	2.57			0.78								100	87
2H-58 1600.27	10	7	Qz	100.00																		i d	100	117

Table 1-3.1: EDS geochemical analyses of sample 2H-58 1600.27.

Sample	Site	Position	Mineral		SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ō	Sc2O3	CoO	ZnO	ZrO2	BaO	Yb2O3	WO3	Total	Actual Total
2H-58 1600.27	10	8	Kfs		66.05		17.75	0.23				0.97	15.00											100	114
2H-58 1600.27	10	9	Kfs		66.58		17.79					1.43	14.20											100	117
2H-58 1600.27	10.1	1	Qz	1	00.00																			100	120
2H-58 1600.27	10.1	2	TiO2		0.84	95.78		3.37																100	104
2H-58 1600.27	10.1	3	Kfs		66.18		17.54					0.33	15.95											100	116
2H-58 1600.27	10.1	4	Ab		69.63		18.48					11.73	0.16]	100	117
2H-58 1600.27	10.1	5	Ру		0.69			28.73				1.25			69.34									100	210
2H-58 1600.27	10.1	6	Ab		69.41		18.68					11.91												100	116
2H-58 1600.27	10.1	7	Ab		69.40		18.86					11.74												100	117
2H-58 1600.27	10.2	1	Qz	1	00.00																			100	119
2H-58 1600.27	11	1	Qz	1	00.00																			100	115
2H-58 1600.27	11	2	Ms		50.64	0.57	28.88	2.80		2.01		0.87	9.22											95	100
2H-58 1600.27	11	3	QZ	1	00.00	0.05	47.07					0.40	45 50											100	116
2H-58 1600.27	11	4	KIS		66.02	0.25	17.67					0.46	15.59											100	110
2H-58 1600.27	11	5	QZ	1	00.00		47 70					0.00	44.00											100	112
2H-58 1600.27	11	0		4	66.43		17.70					0.98	14.89											100	109
2H-58 1600.27	11	/		1	66.09		17.96					1.00	15.06											100	114
2H-58 1600.27	11	8		1	80.08		17.80					1.00	15.06											100	113
2H-58 1600.27	11	10	07	1	00.00																			100	117
20-50 1000.27	11	10			66.16		17.96					0.57	15 41											100	115
20-50 1000.27	11	10		1	00.10		17.00					0.57	15.41											100	121
2H-56 1600.27	11	12	QZ Mix		65.07		19 50	4.60		1 61	2.44	1.61	1.04		1 21	1.60					1 22			100	76
2H-58 1600.27	11	1/		1	00.00		10.50	4.09		1.01	2.44	1.01	1.04		1.31	1.00					1.22			100	121
2H-58 1600.27	11	14	84 84		0.00			10.88	2 15	0.72	2.04			0.73										56	61
2H-58 1600 27	11 1	10	07	1	00.00			40.00	2.10	0.72	2.04			0.75										100	121
2H-58 1600 27	11 1	2	Chl		25 77		21.83	25 76	0.22	11 42														85	100
2H-58 1600 27	12	1	Kfs		66 17		17.84	20.10	0.22	11.72		0.59	15 40											100	110
2H-58 1600 27	12	2	07	1	00.00		17.01					0.00	10.10											100	113
2H-58 1600 27	12	3	07	1	00.00																			100	118
2H-58 1600 27	12	4	Q7	1	00.00																			100	118
2H-58 1600.27	12	5	Qz	1	00.00																			100	121
2H-58 1600.27	12	6	Mix		48.73		29.20	11.59		5.07		0.58	4.54			0.29								100	93
2H-58 1600.27	12	7	Kfs		65.88		17.80					0.67	15.04								0.61			100	116
2H-58 1600.27	12	8	Qz	1	00.00																			100	115
2H-58 1600.27	12.1	1	Qz	1	00.00																			100	118
2H-58 1600.27	12.1	2	Ms (III)		52.39		35.01	3.13		1.99		1.48	5.62			0.39								100	90
2H-58 1600.27	12.1	3	Ms (III)		49.25		32.17	3.25		2.47		0.92	6.75			0.18								95	97
2H-58 1600.27	12.2	1	Ms + Chl		52.74	0.83	24.74	8.31		2.66	3.70	1.54	3.04			2.45								100	61
2H-58 1600.27	12.2	2	Ms + Chl		49.34	5.74	28.78	5.06		3.24		0.55	7.09			0.20								100	101
2H-58 1600.27	13	1	Qz	1	00.00																			100	117
2H-58 1600.27	13	2	Kfs		64.58		18.42					1.09	14.01								1.89			100	113
2H-58 1600.27	13	3	Py		0.37			29.87				0.36			69.39									100	206
2H-58 1600.27	13	4	Kfs		66.39		17.70					1.11	14.79											100	112

Table 1-3.1: EDS geochemical analyses of sample 2H-58 1600.27.

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	Ū	Sc2O3	CoO	ZnO	ZrO2	BaO	Yb2O3	WO3	Total	Actual Total
2H-58 1600.27	13	5	Qz	100.00																			100	117
2H-58 1600.27	13	6	Qz	100.00																		1	100	120
2H-58 1600.27	13	7	Kfs	66.45		17.73					1.27	14.56										1	100	115
2H-58 1600.27	13	8	Qz	100.00																			100	113
2H-58 1600.27	13	9	Qz	100.00																			100	114
2H-58 1600.27	13	10	Ms	50.60	0.64	28.86	2.48		2.11		0.46	9.86											95	107
2H-58 1600.27	13	11	Qz	98.79		0.82					0.39												100	119
2H-58 1600.27	14	1	Qz	100.00																			100	116
2H-58 1600.27	14	2	Kfs	66.51		17.73					0.78	14.97											100	110
2H-58 1600.27	14	3	Kfs	66.62		17.56					0.60	15.22											100	115
2H-58 1600.27	14	4	Ms +	54.31		26.39	4.53		1.96		0.58	6.10			1.14								95	76
2H-58 1600.27	14	5	Qz	99.73						0.27													100	108
2H-58 1600.27	14	6	Qz +	90.60		3.89	2.39				0.49	2.43			0.20								100	102
2H-58 1600.27	14	7	Qz	100.00																			100	114
2H-58 1600.27	14	8	Qz	100.00																			100	120
2H-58 1600.27	14	9	Ab	72.40	0.35	16.93				0.32	9.84	0.16											100	109
2H-58 1600.27	15	1	Qz	100.00																			100	113
2H-58 1600.27	15	2	Kfs	65.88		17.58	0.40				0.44	15.70											100	113
2H-58 1600.27	15	3	Ab	69.23		18.87				0.47	11.43												100	114
2H-58 1600.27	15	4	Kfs	66.17		17.87					0.98	14.98											100	113
2H-58 1600.27	15	5	Qz	100.00																			100	117
2H-58 1600.27	15	6	Qz	99.41		0.59																	100	115
2H-58 1600.27	15	7	Kfs	65.47		17.73					0.52	15.50								0.79			100	113
2H-58 1600.27	15	8	Qz	100.00																			100	116
2H-58 1600.27	15	9	Qz	100.00																			100	114
2H-58 1600.27	15.1	1	Qz	98.54			1.32					0.14										1	100	117
2H-58 1600.27	15.1	2	Ms	49.92	0.49	26.04	5.81		2.00			10.73										1	95	105
2H-58 1600.27	16	1	llm		54.43		44.54	1.03														1	100	100
2H-58 1600.27	16	2	Qz	100.00																		1	100	114
2H-58 1600.27	16	3	Kfs	65.69		17.85					0.42	15.38								0.66			100	110
2H-58 1600.27	16	4	Qz	100.00																			100	118
2H-58 1600.27	16	5	Qz	100.00																			100	118
2H-58 1600.27	16	6	Kfs	66.52		17.66					0.71	15.11											100	114
2H-58 1600.27	16	7	Ms	47.32	0.39	25.56	3.88		2.64	3.40		9.12	2.69										95	105
2H-58 1600.27	16	8	Kfs	65.93		17.75					0.45	15.86											100	114
2H-58 1600.27	16	9	Kfs + Ab	67.41	0.25	18.29					6.49	7.57											100	113
2H-58 1600.27	16	10	Qz	100.00																			100	117
2H-58 1600.27	16.1	1	Kfs	66.33		17.78					1.67	13.50								0.72			100	117
2H-58 1600.27	16.1	2	Ab + Kfs (Perthite)	67.45		18.38					4.91	8.68								0.58		1	100	117
2H-58 1600.27	17	1	Qz	100.00																			100	114
2H-58 1600.27	17	2	Qz	100.00																			100	113
2H-58 1600.27	17	3	TiO2	0.57	98.26		0.89								0.28								100	87
2H-58 1600.27	17	4	Kfs	66.17		18.00					0.53	15.29											100	107
2H-58 1600.27	17	5	Kfs	65.45		17.87					0.82	14.87								1.00		1	100	112

Table 1-3.1: EDS geochemical analyses of sample 2H-58 1600.27.

Sample	Site	Position	Mineral	SiO2	ТіО2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	CI	Sc2O3	CoO	OuZ	ZrO2	BaO	Yb2O3	WO3	Total	Actual Total
2H-58 1600.27	17	6	Ab	68.90		18.42				0.83	11.86												100	110
2H-58 1600.27	17	7	Qz	100.00																			100	114
2H-58 1600.27	17	8	Ms	47.59	0.65	34.92	0.71		0.40		1.34	9.40											95	106
2H-58 1600.27	17	9	Qz	100.00																			100	116
2H-58 1600.27	17	10	Mix	50.25		21.84	7.44		1.82	3.15	1.72	1.67		1.14	10.96								100	41
2H-58 1600.27	17.1	1	TiO2 +	4.41	88.40	2.56	2.93			0.25	0.79	0.42			0.24								100	97
2H-58 1600.27	17.1	2	TiO2	0.99	95.83	0.59	1.89				0.47				0.24								100	97
2H-58 1600.27	18	1	Qz	100.00																			100	111
2H-58 1600.27	18	2	Zrn	28.79		0.89	1.05			1.83	0.52					0.66			66.27				100	91
2H-58 1600.27	18	3	Qz	100.00																		\vdash	100	110
2H-58 1600.27	18	4	Kfs	66.17		17.73					0.35	15.76										\vdash	100	109
2H-58 1600.27	18	5	Ab	69.19		18.88					11.55	0.37										└──┤	100	110
2H-58 1600.27	18	6	Qz	100.00																		└──┤	100	110
2H-58 1600.27	18.1	1	Qz	100.00																		└──┤	100	113
2H-58 1600.27	18.1	2	Ms + Chl	52.38		25.45	4.20		3.15			9.81										└──┤	95	104
2H-58 1600.27	19	1	Kfs	66.51		17.39					0.89	15.21										──	100	108
2H-58 1600.27	19	2	Qz	100.00																		──┤	100	113
2H-58 1600.27	19	3	Kfs	66.27		17.78					0.54	15.41											100	109
2H-58 1600.27	19	4	Qz	100.00																			100	114
2H-58 1600.27	19	5	Kfs	65.67		17.97					0.50	15.31								0.55			100	110
2H-58 1600.27	19	6	Qz	100.00																			100	111
2H-58 1600.27	19	7	Kfs	65.67		18.01					1.16	14.16								0.99			100	107
2H-58 1600.27	19	8	Qz	100.00																			100	110
2H-58 1600.27	19	9	Qz + Ab	95.96		2.50					1.30				0.24								100	90
2H-58 1600.27	19	10	Qz + Ab	88.60		6.11	0.68				3.87			0.74									100	111
2H-58 1600.27	19.1	1	Brt											37.16			0.01			62.83			100	108
2H-58 1600.27	19.1	2	Qz	100.00																			100	114
2H-58 1600.27	19.1	3	Kfs	65.45		17.63	0.24				0.87	15.56			0.24								100	111
2H-58 1600.27	19.2	1	Qz	97.90		1.34					0.75												100	120
2H-58 1600.27	19.2	2	Mix	53.98	2.37	21.54	6.80		1.76	6.39	1.39	1.98		1.77	2.02								100	63
2H-58 1600.27	19.2	3	Brt			0.93								37.31			-0.21			59.26		2.71	100	118
2H-58 1600.27	19.2	4	Qz	97.05		1.81					1.14												100	122
2H-58 1600.27	20	1	Qz	100.00														-					100	114
2H-58 1600.27	20	2	Kfs	65.82		17.30					0.48	15.73	0.67										100	106
2H-58 1600.27	20	3	Chl	27.45		19.46	22.10	0.94	15.05														85	79
2H-58 1600.27	20	4	Kfs	65.05		18.05					0.90	14.42								1.57			100	109
2H-58 1600.27	20	5	Qz	100.00																			100	113
2H-58 1600.27	20	6	Lm +	2.60			87.47	1.40	0.94	2.04	3.70			0.97	0.88							$ \square$	100	77
2H-58 1600.27	20	7	Qz	100.00																			100	116
2H-58 1600.27	20	8	Chl + III	43.50	0.53	21.64	6.43		3.42	0.32	0.98	2.46			0.72								80	73
2H-58 1600.27	20.1	1	Qz	99.01		0.82						0.17											100	120
2H-58 1600.27	20.1	2	III + Chl	54.31	0.63	29.24	4.05		1.50		1.05	3.04			1.19								95	78
2H-58 1600.27	21	1	Kfs	66.65		17.59					0.97	14.78											100	107
2H-58 1600.27	21	2	Ab	69.42		18.59					11.85	0.15										1	100	109

Table 1-3.1: EDS geochemical analyses of sample 2H-58 1600.27.
Sample	Site	Position	Mineral	SiO2	ТіО2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	C	Sc2O3	CoO	ZnO	ZrO2	BaO	Yb2O3	WO3	Total	Actual Total
2H-58 1600.27	21	3	Kln	48.26		34.61	1.82				0.58	0.27			0.46								86	81
2H-58 1600.27	21	4	Kfs	65.13		17.86					0.87	14.50								1.63			100	110
2H-58 1600.27	21	5	Qz	100.00																			100	114
2H-58 1600.27	21	6	Qz	100.00																			100	116
2H-58 1600.27	21	7	Kfs	65.61		17.89					0.95	14.70								0.85			100	106
2H-58 1600.27	21	8	Qz	100.00																			100	110
2H-58 1600.27	21	9	Qz	100.00																			100	114
2H-58 1600.27	21	10	Ms	47.72	0.74	34.50	0.97		0.60		1.07	9.40											95	105
2H-58 1600.27	22	1	Qz	100.00																			100	110
2H-58 1600.27	22	2	Kin	47.35		34.44	2.81		0.46		0.38	0.37			0.19								86	82
2H-58 1600.27	22	3	Qz	100.00		04.74		0.04	10.00	0.40													100	115
2H-58 1600.27	22	4	Chi	31.19		21.71	28.93	0.84	16.90	0.43	0.70	44.00											100	90
2H-58 1600.27	22	5	Kfs	65.53		17.89					0.78	14.99								0.82			100	109
2H-58 1600.27	22	6	QZ	100.00		47.00					0.00	45.00											100	112
2H-58 1600.27	22	/	NIS	00.33	4.05	17.68	0.00		0.40		0.30	15.63											100	106
2H-58 1600.27	22	8		47.50	1.05	34.52	0.92		0.48		2.00	8.53											95	99
20-50 1000.27	22	9	07	100.00																			100	100
20-50 1000.27	23	1	QZ Ma	F2 20	0.24	20.22	2.20		1.02		0.61	7.02											100	100
211-30 1000.27	23	2	Chloritized 2fold	20.50	1 46	17.01	2.30		7 1 9		2.01	7.03			1.05								100	53
2H-58 1600.27	23	- 3	Kfe	66.02	1.40	17.01	22.49		7.10		2.00	15.70			1.95								100	108
2H-58 1600 27	23	5	07	100.02		17.70					0.50	13.70											100	111
2H-58 1600.27	23	6	Kfe	65.99		17 74					0.80	15 47											100	105
2H-58 1600 27	23	7	Q7	100.00		11.14					0.00	10.47											100	111
2H-58 1600 27	23	8	Kfs + Chl	57 77	0 49	26.61	6.91		1 95	1 54	1 35	2 07			1.30								100	61
2H-58 1600 27	23	9	Q7	100.00	01.10	20.01	0.01					2.01											100	111
2H-58 1600.27	23	10	Qz	100.00																			100	106
2H-58 1600.27	23.1	1	Bt	39.34	1.30	19.42	19.15		8.64		0.65	7.51											96	99
2H-58 1600.27	23.1	2	Sd	0.46			53.72	0.80		1.02													56	59
2H-58 1600.27	23.2	1	Qz	100.00																			100	120
2H-58 1600.27	23.2	2	Clays	52.53	1.08	26.29	5.17		1.29	9.24	1.03	1.43		0.67	1.27								100	63
2H-58 1600.27	23.2	3	Clays	53.51		14.54	14.05		0.88	5.30	0.66	3.09		1.33	6.63								100	23
2H-58 1600.27	23.2	4	Qz + Chl +	71.74		11.77	8.50		1.22	1.84	1.40	0.88			2.65								100	56
2H-58 1600.27	24	1	Kfs	66.55		17.74					1.21	14.50											100	106
2H-58 1600.27	24	2	Kfs	65.71		17.66					0.26	15.72								0.64			100	107
2H-58 1600.27	24	3	Qz	100.00																			100	110
2H-58 1600.27	24	4	Qz	100.00																			100	112
2H-58 1600.27	24	5	Kfs	66.27		17.89					0.81	15.03											100	105
2H-58 1600.27	24	6	Qz	100.00																			100	107
2H-58 1600.27	24	7	Qz	100.00																			100	111
2H-58 1600.27	25	1	Qz	100.00																			100	108
2H-58 1600.27	25	2	Kfs	66.52		17.71					0.83	14.94											100	107
2H-58 1600.27	25	3	Kfs	66.33		17.98					0.30	15.39											100	103
2H-58 1600.27	25	4	Qz	100.00																			100	108

Table 1-3.1: EDS geochemical analyses of sample 2H-58 1600.27.

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ū	Sc2O3	CoO	ZnO	ZrO2	BaO	Yb2O3	WO3	Total	Actual Total
2H-58 1600.27	25	5	Mix	60.24	0.46	22.01	5.62		1.82	3.84	1.69	1.88		1.37	1.07								100	69
2H-58 1600.27	25	6	Qz	100.00																		-	100	110
2H-58 1600.27	25	7	Ms	50.75		29.98	1.77		1.80		0.31	10.39											95	96
2H-58 1600.27	25	8	Qz	99.89								0.11											100	104
2H-58 1600.27	25	9	Zrn	31.85															68.15				100	103
2H-58 1600.27	25	10	Qz	100.00																			100	105
2H-58 1600.27	25	11	Ab	69.36		18.78				0.26	11.61												100	107
2H-58 1600.27	25	12	Qz	100.00																		1	100	112
2H-58 1600.27	25.1	1	Clays	57.45		21.91	6.16		1.88	5.21	1.22	1.58		1.52	1.73					1.34		1	100	66
2H-58 1600.27	25.1	2	Sd	1.65		0.68	41.09	1.16	6.58	4.83								0.02					56	60
2H-58 1600.27	25.1	3	Brt	0.54										36.03			-0.17			63.60			100	115
2H-58 1600.27	25.1	4	Qz	100.00																			100	121
2H-58 1600.27	26	1	Qz	100.00																			100	106
2H-58 1600.27	26	2	Kfs	65.86		17.75					0.80	14.88								0.71			100	105
2H-58 1600.27	26	3	Kln	48.31		34.02	1.22				0.66	1.32			0.46								86	72
2H-58 1600.27	26	4	Kfs	66.57		17.58					0.63	15.22											100	105
2H-58 1600.27	26	5	TiO2	1.62	97.41		0.97																100	93
2H-58 1600.27	26	6	Qz	100.00																			100	108
2H-58 1600.27	26	7	Qz + Kfs	88.41		6.13						5.46										1	100	105
2H-58 1600.27	26	8	Kfs	67.42	1.04	17.92	0.34				0.40	12.88											100	96
2H-58 1600.27	26	9	Kfs	66.02		17.70					0.40	15.88											100	106
2H-58 1600.27	26	10	Kfs	66.21		17.80					0.36	15.62											100	107
2H-58 1600.27	26	11	Qz	100.00																			100	108
2H-58 1600.27	26	12	Qz	100.00																			100	106
2H-58 1600.27	26.1	1	Kfs	66.19		17.87					0.44	15.50											100	114
2H-58 1600.27	26.1	2	Qz	98.95		0.84						0.21										1	100	114
2H-58 1600.27	26.1	3	Kfs	66.84		17.43					0.34	15.39										1	100	115
2H-58 1600.27	27	1	Qz	100.00																		1	100	110
2H-58 1600.27	27	2	Kfs	65.61		17.98					1.17	14.23								1.01		1	100	106
2H-58 1600.27	27	3	Qz	99.88								0.12											100	108
2H-58 1600.27	27	4	Kfs	68.95		16.23						14.82											100	105
2H-58 1600.27	27	5	Kfs	66.20		17.78					0.72	15.30											100	104
2H-58 1600.27	27	6	Qz	100.00																			100	107
2H-58 1600.27	27	7	Qz	100.00																			100	105
2H-58 1600.27	27	8	Qz	100.00																			100	107
2H-58 1600.27	27	9	Kfs	65.57		18.12					0.97	14.62								0.71			100	107
2H-58 1600.27	27	10	Qz	100.00																			100	109
2H-58 1600.27	27	11	Qz	100.00																			100	111
2H-58 1600.27	28	1	Kfs	66.16		17.57					0.61	15.16								0.50			100	103
2H-58 1600.27	28	2	Qz	100.00																			100	105
2H-58 1600.27	28	3	Kfs	66.31		17.81					0.77	15.10											100	101
2H-58 1600.27	28	4	Qz	100.00																			100	106
2H-58 1600.27	28	5	Oligo	60.21		28.71	0.32				4.81	5.95											100	97
2H-58 1600.27	28	6	Kfs	66.50		17.83						15.67										1	100	102

Table 1-3.1: EDS geochemical analyses of sample 2H-58 1600.27.

Sample	Site	Position	Mineral	SiO2	ТіО2	AI2O3	FeO	OuM	OĜM	CaO	Na2O	K2O	P205	SO3	CI	Sc2O3	CoO	ZnO	ZrO2	BaO	Yb2O3	WO3	Total	Actual Total
2H-58 1600.27	28	7	Qz	100.00																			100	108
2H-58 1600.27	28	8	Kfs	66.27		17.58					0.51	15.64											100	105
2H-58 1600.27	28	9	Kfs	66.41		17.56					0.77	15.25											100	106
2H-58 1600.27	28	10	Qz	100.00																			100	109
2H-58 1600.27	28	11	Qz	100.00																			100	106
2H-58 1600.27	28	12	Kfs	65.66		17.94					0.65	15.18								0.58			100	102
2H-58 1600.27	28	13	Qz	98.84		0.60	0.31		0.25														100	107
2H-58 1600.27	29	1	Ms	48.38	0.30	32.76	1.43		1.21		0.52	10.40											95	93
2H-58 1600.27	29	2	Qz	100.00																			100	104
2H-58 1600.27	29	3	Qz	100.00																			100	103
2H-58 1600.27	29	4	Kfs	66.36		17.69					0.78	15.17										1	100	100
2H-58 1600.27	29	5	Kfs	66.07		17.80					0.85	15.28										í T	100	104
2H-58 1600.27	29	6	Qz	100.00																			100	106
2H-58 1600.27	29	7	Qz	100.00																			100	108
2H-58 1600.27	29	8	Kfs	66.64		17.56					0.71	15.08											100	106
2H-58 1600.27	29	9	Qz	100.00																			100	108
2H-58 1600.27	29	10	Qz	100.00																			100	108
2H-58 1600.27	29	11	Kfs	66.42		17.54					0.99	15.05											100	103
2H-58 1600.27	29	12	Qz	100.00																			100	105
2H-58 1600.27	29	13	Qz	100.00																			100	105
2H-58 1600.27	29	14	Brt											36.77			0.03			63.20			100	99
2H-58 1600.27	29	15	Clays	49.11		24.16	5.20		1.62	4.32	1.42	1.56		2.98	5.32		-			4.30			100	49
2H-58 1600.27	29	16	Kfs	66.09		17.79				-	1.58	14.04								0.51			100	99
2H-58 1600.27	29	17	Qz	100.00																			100	102
2H-58 1600.27	29	18	Qz	100.00																			100	103
2H-58 1600.27	29.1	1	Qz	100.00																			100	119
2H-58 1600.27	29.1	2	Clays	47.94		19.48	5.31		1.26	8.24	1.59	1.21		5.59	0.82					8.56			100	83
2H-58 1600.27	29.1	3	Brt											36.63			-0.05			63.42			100	112
2H-58 1600.27	30	1	Kfs	65.85	0.35	17.82					0.45	15.53											100	99
2H-58 1600.27	30	2	Ms	47.41	0.55	34.55	1.18		0.41		1.75	9.15											95	94
2H-58 1600.27	30	3	Qz	100.00																			100	105
2H-58 1600.27	30	4	Qz	100.00																			100	106
2H-58 1600.27	30	5	Kfs + Py	56.37		15.45	4.38				0.75	12.81		10.24									100	108
2H-58 1600.27	30	6	Qz	100.00																			100	104
2H-58 1600.27	30	7	Qz	100.00				-															100	101
2H-58 1600.27	30	8	Kfs	65.78	0.28	17.86					0.99	15.09											100	97
2H-58 1600.27	30	9	Qz	100.00																			100	102
2H-58 1600.27	30	10	Ab	66.67		20.47				2.19	10.50	0.16											100	104
2H-58 1600.27	30	11	Qz	100.00																			100	101
				Notes																				
			1. + indicates more	than one	mineral	present																		
																						l l		

Table 1-3.1: EDS geochemical analyses of sample 2H-58 1600.27.

Appendix 1-4: SEM-BSE images and EDS mineral analyses for sample 3H-58 1613.63.

Sample 3H-58 1613.63: Fine-medium grained sandstone with glauconitic cement

Detrital Minerals: Albite, Fe-Chlorite, Illite + Chlorite, Ilmenite, "Ilmenite", K-feldspar, Monazite, Muscovite, Quartz, Titania (Fig. 3), Zircon

Diagenetic Minerals: Glauconite, Glaucony, Pyrite, Siderite, Titania (Fig. 26)

Notes:

1. Gluacony grains appear to have been affected by volume reduction (Fig. 2).

2. There is a coated grain made up of multiple generations of siderite (Fig. 32).

3. Siderite is usually late diagenetic mineral, partially filling voids (Figs. 2-4,24,26) and rims grains (Fig. 24).

4. The matrix appears to be made up usually of a fine-grained illite + chlorite mixture (Figs. 5,24,26,33).

5: Common substrates for glaucony appear to be pellets, detrital grains, and matrix or possibly intraclasts (i.e. Flgs. 2,34,8).

6. Paragenetic sequence: Glaucony G I a u c Øyrite, tSielerite, Titania

t t Figs. i.e. 1-3,15,21 Fig. 8 Figs. 24,29

1:Quartz 2:Glaucony 3:Quartz 4:Fe-Chlorite 5:"Ilmenite" 6:Quartz 7:Siderite + 8:Chlorite + Illite 9:K-feldspar 10:K-feldspar

Figure 1-4.2: Sample 3H-58 1613.63 (SEM) site 1. This site consists of detrital quartz (1,3,6), K-felspar (9-10), Fe-chlorite (4), and ilmenite (5) grains. There appears to be a large glaucony (2) pellet with volume reduction (outlined in red). The matrix appears to be made up of illite + chlorite (8), and diagenetic siderite (7) partially fills voids.

1:Quartz 2:TiO₂ 3:K-feldspar 4:Glaucony + 5:Glaucony 6:Siderite 7:Illite + Chlorite 8:K-feldspar 9:Glaucony 10:Quartz 11:Glaucony

Figure 1-4.3: Sample 3H-58 1613.63 (SEM) site 2. This site consists of detrital quartz (1,10), K-feldspar (3,8), and titania (2) grains. Illite + chlorite (7) make up the matrix, and glaucony (4,5,9,11) make up the early diagenetic minerals. Siderite (6) is late diagenetic and cross-cuts the matrix.

Figure 1-4.4: Sample 3H-58 1613.63 (SEM) site 3. This site consists of detrital quartz (4-6,8,12), and K-feldspar (3,11) grains. The matrix is made up of illite + chlorite (10), and diagenetic glaucony (7,9). Late siderite (13) partially fills voids. There is also a coated grain made up of clay + Fe-chlorite (1) and glaucony (2).

1:Glaucony 2:Pyrite 3:Muscovite 4:Quartz

Figure 1-4.5: Sample 3H-58 1613.63 (SEM) site 3.1. This site consists of detrital quartz grains (4), K-feldspar, and muscovite (3) grains. There is a early diagenetic glaucony (1) grain, and late diagenetic pyrite (2).

1:Quartz 2:Illite + Chlorite 3:Quartz 4:Quartz 5:Illite + Chlorite 6:Quartz

Figure 1-4.6: Sample 3H-58 1613.63 (SEM) site 4. This site consists of detrital quartz (1,3-4,6), and K-feldspar grains. The matrix is made up of illite + chlorite (2,5).

1:Ilmenite 2:K-feldspar 3:Quartz 4:Glaucony 5:K-feldspar 6:Zircon 7:Chlorite + Muscovite 8:Quartz 9:K-feldspar 10:"Ilmenite"?

Figure 1-4.7: Sample 3H-58 1613.63 (SEM) site 5. This site consists of detrital quartz (3,8), K-feldspar (2,5,9), ilmenite (1), and zircon (6) grains. Glaucony (4) appears to replace a detrital grain. Chlorite + muscovite (7) make up the matrix. Probably late diagenetic siderite cross-cuts the matrix.

Figure 1-4.8: Sample 3H-58 1613.63 (SEM) site 6. This site consists of detrital quartz (4-5), K-feldspar (2-3), and Fe-chlorite (1) grains. The matrix is made up of illite + chlorite (8), and glaucony (6) appears to be replacing the matrix.

1:Quartz 2:K-feldspar 3:K-feldspar 4:Glaucony 5:Illite + Chlorite 6:Fe-Chlorite + 7:Glaucony 8:Quartz 9:Glaucony

Figure 1-4.9: Sample 3H-58 1613.63 (SEM) site 7. This site consists of detrital quartz (1,8), and K-feldspar (2-3) grains. The matrix consists of illite + chlorite (5), and diagenetic Fe-chlorite (6). glaucony (7) appears to replace a detrital grain, and glaucony (9) may be a pellet. Probably late diagenetic siderite cross-cuts the matrix (position a).

Figure 1-4.10: Sample 3H-58 1613.63 (SEM) site 8. This site consists of detrital quartz (1,4-5) grains. Glaucony (2) replaces matrix, and glauconite (6) replaces a detrital grain. Siderite (7) partially fills voids and is the latest diagenetic mineral to form.

1:K-feldspar 2:Siderite 3:Fe-Chlorite + ?Glaucony 4:Quartz

Figure 1-4.11: Sample 3H-58 1613.63 (SEM) site 8.1. This site consists of a partially dissolved K-feldspar (1) grain and detrital quartz (4). Fe-chlorite + glaucony (3) partially make up the early diagenetic minerals. Late diagenetic siderite (2) cross-cuts the matrix.

1:"Ilmenite" 2:Quartz 3:K-feldspar 4:Mixture 5:Illite + Chlorite 6:Quartz 7:Glaucony 8:Quartz 9:Clay + Fe-Chlorite 10:Quartz

Figure 1-4.12: Sample 3H-58 1613.63 (SEM) site 9. This site consists of detrital quartz (2,6,10), K-feldspar (3), and altered ilmenite (1) grains. The matrix is made up of illite + chlorite (5), and glaucony (7) makes up the early diagenetic minerals and appears to replace the matrix.

1:Quartz 2:K-feldspar 3:Glaucony 4:Glaucony 5:Illite + Chlorite 6:K-feldspar 7:Fe-Chlorite + 8:Quartz 9:Quartz

Figure 1-4.13: Sample 3H-58 1613.63 (SEM) site 10. This site consists of detrital quartz (1,8-9), Fe-chlorite (7), and K-feldspar (2,6) grains. The matrix is made up of illite + chlorite (5), and the early diagenetic minerals are made up of glaucony (3-4), which appear to replace matrix.

Figure 1-4.14: Sample 3H-58 1613.63 (SEM) site 11. This site consists of detrital quartz (1,3,5,8), and K-feldspar (6,9) grains. The early diagenetic minerals are made up of glaucony (2,4,7), which appear to replace a detrital mineral (2,7) and (4) may be replacing matrix.

1:Albite 2:Clay + Fe-Chlorite 3:Glaucony 4:Glaucony 5:Glaucony 6:Quartz

Figure 1-4.15: Sample 3H-58 1613.63 (SEM) site 12. This site consists of detrital albite (1), and quartz (6) grains. Glaucony (3-5) is early diagenetic and appear to either replace the matrix (3) or be a pellet (4,5).

1:Quartz 2:Glaucony 3:K-feldspar 4:Muscovite + 5:Quartz 6:K-feldspar 7:Quartz

Figure 1-4.16: Sample 3H-58 1613.63 (SEM) site 13. This site consists of detrital quartz (1,7), K-feldspar (3,6), and a peraluminous granitic lithic clast made up of muscovite (4), and quartz (5). The early diagenetic mineral is glaucony (2), and it appears to replace the matrix.

1:Zircon 2:Quartz 3:Mixture 4:Chlorite + Mixture 5:K-feldspar 6:Zircon 7:Glaucony 8:Quartz

Figure 1-4.17: Sample 3H-58 1613.63 (SEM) site 14. This site consists of detrital quartz (2,8), K-feldspar (5), and zircon (1,6) grains. The early diagenetic minerals are made up of glaucony (7).

Figure 1-4.18: Sample 3H-58 1613.63 (SEM) site 15. This site consists of detrital quartz (2,4-5), and Fe-chlorite (1) grains. The matrix appears to be made up of illite + chlorite (7), and glaucony (3,6) appear to replace probably pellets.

1:Ilmenite 2:Fe-Chlorite ? 3:Quartz 4:Fe-Chlorite + 5:"Ilmenite" 6:Quartz

Figure 1-4.19: Sample 3H-58 1613.63 (SEM) site 16. This site consists of detrital quartz (3,6), ilmenite (1), and altered ilmenite (5) grains. The early diagenetic minerals are made up of glaucony (4). There is also a pellet of ?Fe-chlorite (2).

1:Quartz 2:Quartz 3:Ilmenite 4:K-feldspar 5:K-feldspar 6:Quartz 7:Illite + Chlorite 8:Glaucony 9:Siderite

Figure 1-4.20: Sample 3H-58 1613.63 (SEM) site 17. This site consists of detrital quartz (1-2,6), K-feldspar (4-5), and ilmenite (3) grains. The matrix is made up of illite + chlorite (7), and the early diagenetic mineral is glaucony (8), which may be replacing a pellet.

1:Fe-Chlorite + 2:Quartz 3:Chlorite? 4:Glaucony 5:Quartz 6:Glaucony 7:Ilmenite 8:Quartz 9:K-feldspar

Figure 1-4.21: Sample 3H-58 1613.63 (SEM) site 18. This site consists of detrital quartz (2,8), ?chlorite (3), K-feldspar (9), and ilmenite (7). Glaucony (4,6) replace a pellet and detrital grain respectively.

Figure 1-4.22: Sample 3H-58 1613.63 (SEM) site 19. This site consists of detrital quartz (1,5), K-feldspar (4), and ilmenite (2) grains. Glaucony (3) appears to replace the matrix. The matrix in particular is riddled with diagenetic siderite.

1:Quartz 2:Illite + Chlorite 3:Illite + Chlorite

Figure 1-4.23: Sample 3H-58 1613.63 (SEM) site 19.1. This site consists of detrital quartz and a partially dissolved rhyolitic or polycrystalline quartz (quartzite) lithic clast made up of quartz (1) rimmed by siderite (positions a). The matrix around the grains consists of illite + chlorite (2-3), that is cross-cut by siderite (position b).

Figure 1-4.24: Sample 3H-58 1613.63 (SEM) site 19.2. This site consists of a calcite (1) grain that is coated by late diagenetic siderite (2). The early diagenetic minerals are made up of glaucony (3-4), with late cross-cutting diagenetic siderite (5).

1:K-feldspar 2:Clay + Fe-Chlorite 3:K-feldspar

Figure 1-4.25: Sample 3H-58 1613.63 (SEM) site 20. This site consists of detrital quartz, and K-feldspar (1,3) grains. The matrix is riddled with diagenetic siderite (bright spots).

1:Calcite 2:Illite + Chlorite 3:TiO₂ 4:K-feldspar 5:Fe-Chlorite? 6:Siderite

Figure 1-4.26: Sample 3H-58 1613.63 (SEM) site 20.1. This site consists of a calcitic intraclast?, and a perthitic (granitic) K-feldspar (4) crystal that has had its albite altered to Fe-chlorite. The matrix is made up of illite + chlorite (2), with late diagenetic titania (3) and siderite (6) partially filling voids.

1:Quartz 2:Glaucony 3:Glaucony 4:Glaucony 5:K-feldspar 6:Glaucony 7:Quartz

Figure 1-4.27: Sample 3H-58 1613.63 (SEM) site 21. This site consists of detrital quartz (1,7), K-feldspar (5), and muscovite + chlorite (3-4) grains, and glaucony (2,6).

Figure 1-4.28: Sample 3H-58 1613.63 (SEM) site 21.1. This site consists of detrital quartz grains, glaucony grains, and a matrix made up of illite + chlorite (1). Late diagenetic siderite partially fills voids.

Figure 1-4.29: Sample 3H-58 1613.63 (SEM) site 21.2. This site consists of diagenetic pyrite (1), that partially fills a void between glaucony grains.

Figure 1-4.30: Sample 3H-58 1613.63 (SEM) site 22. This site consists of detrital quartz (4,6), and K-feldspar (1,5) grains (2-3,7), and glaucony (2-3,7).

1:Quartz 2:Illite + Chlorite

Figure 1-4.31: Sample 3H-58 1613.63 (SEM) site 22.1. This site consists of a lithic clast that is made up of partially dissolved quartz (1) and probably altered K-feldspar (2) grains.

Figure 1-4.32: Sample 3H-58 1613.63 (SEM) site 22.2. This site consists of a coated grain with multiple layers of siderite, some of which is partially dissolved. The matrix is made up of illite + chlorite (1).

1:Illite + Chlorite 2:Quartz 3:Glaucony

Figure 1-4.33: Sample 3H-58 1613.63 (SEM) site 22.3. This site consists of mainly matrix that is made up of illite + chlorite (1), and silt sized quartz (2) fragments. A large glaucony (3) grain probably replaces a detrital mineral.

Figure 1-4.34: Sample 3H-58 1613.63 (SEM) site 23. This site consists of detrital quartz (1), and K-feldspar (2) grains. The matrix is made up of illite + chlorite (3), with early diagenetic glaucony (4) grains.

1:Glaucony 2:Glaucony 3:Glaucony 4:Calcite 5:Illite + Chlorite

Figure 1-4.35: Sample 3H-58 1613.63 (SEM) site 23.1. This site consists of an ?altered calcite (4) grain. A ?coated grain of glaucony (1-3). Glaucony and illite + chlorite (5) make up the matrix. Late diagenetic siderite cross-cuts the matrix.

Figure 1-4.36: Sample 3H-58 1613.63 (SEM) site 23.2. The site consists of detrital quartz (2) grains and an altered ilmenite (1) grain.

1:Quartz 2:Glaucony 3:TiO₂ 4:Glaucony 5:Quartz 6:K-feldspar 7:Glaucony

Figure 1-4.37: Sample 3H-58 1613.63 (SEM) site 24. This site is similar to site 21. Titania (3) appear to be diagenetic.

1:Monazite 2:K-feldspar 3:Quartz 4:K-feldspar 5:Illite? + Chlorite 6:Quartz 7:Clay + Fe-Chlorite

Figure 1-4.38: Sample 3H-58 1613.63 (SEM) site 25. This site consists of detrital quartz (3,6), K-feldspar (2,4), and monazite (1) grains. The matrix is made up of illite + chlorite (5). Late diagenetic siderite cross-cuts the matrix.

1:Glaucony 2:Glaucony 3:Glaucony

Figure 1-4.39: Sample 3H-58 1613.63 (SEM) site 25.1. This site consists of a glaucony (1-3) ?pellet that is surround by illite + chlorite matrix. The glaucony may be replacing the matrix. Late diagenetic siderite cross-cuts the matrix.

1:Glaucony 2:Glaucony 3:Illite + Chlorite 4:K-feldspar 5:Clay + Fe-Chlorite 6:Quartz

Figure 1-4.40: Sample 3H-58 1613.63 (SEM) site 26. This site consists of detrital quartz (6), and K-feldspar (4) grains. The matrix consists of illite + chlorite (3), with early diagenetic glaucony (1-2) grains. There also appears to be late cross-cutting diagenetic siderite.

1:Quartz 2:"Ilmenite"

Figure 1-4.41: Sample 3H-58 1613.63 (SEM) site 26.1. This site consists of a large altered ilmenite grain (1-2), that is surrounded by probably an illite + chlorite matrix.

Figure 1-4.42: Sample 3H-58 1613.63 (SEM) site 27. This site consists of detrital quartz (4,8), K-feldspar (2,5), ilmenite (1), and altered ilmenite (3) grains. The matrix appears to be made up of illite + chlorite, and late cross-cutting diagenetic siderite. Glaucony (6-7) appears to replace a pellet or a coated grain.

1:Muscovite + 2:Quartz

Figure 1-4.43: Sample 3H-58 1613.63 (SEM) site 27.1. This site consists of detrital quartz, and K-feldspar, as well as a peraluminous granitic clast made up of quartz (2) and muscovite (1).

Figure 1-4.44: Sample 3H-58 1613.63 (SEM) site 27.2. This site consists of detrital quartz and altered chromite (1) grains.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ш	C	Sc2O3	Cr203	ZnO	As203	ZrO2	Ag2O	BaO	La203	Ce2O3	Nd2O3	Hf02	Total	Actual Tota
3H-58 1613.63	1	1	Qz	100.00																								100	120
3H-58 1613.63	1	2	Gly	42.98		10.24	23.40		3.05	0.67	1.04	4.58	0.85			0.19												87	96
3H-58 1613.63	1	3	Qz	100.00																								100	118
3H-58 1613.63	1	4	Fe-Chl	32.06		12.81	34.40		3.29	0.48	1.63					0.32												85	97
3H-58 1613.63	1	5	"llm"	0.59	63.06		32.27	4.08																				100	101
3H-58 1613.63	1	6	Qz	100.00					1.00																			100	119
3H-58 1613.63	1	(Sd +	11.67		3.13	/1.69	1.12	1.82	5.29	2.16		2.50			0.62												100	79
3H-58 1613.63	1	8	ChI + III	38.81	0.47	17.90	34.16		3.60	1.48	1.22	1.24				1.11												100	5/
3H-58 1613.63	1	9	KIS I//	00.54		17.77	0.04				1.16	14.53											0.00					100	113
3H-58 1013.03	2	10	KIS Oz	00.77		17.80	0.24				1.16	14.21											0.82					100	115
3H-58 1613 63	2	2	TiO2	1 10	91.00	1 74	3.12			0 99	0.81		0.03			0.31												100	05
3H-58 1613 63	2	3	Kfs	65.22	01.00	17.67	1 31			0.00	0.01	15 50	0.00			0.01												100	120
3H-58 1613.63	2	4	Glv +	42.86		16.29	28.20		4.64	2.83	2.16	1.99		0.65		0.39												100	96
3H-58 1613.63	2	5	Gly	38.04		16.51	23.97		2.54	1.55	2.41	1.09		0.64		0.25												87	96
3H-58 1613.63	2	6	Sd	2.05		0.67	38.80	2.82	5.78	5.68						0.20		l										56	63
3H-58 1613.63	2	7	III + Chl	42.87		18.92	30.94		3.14	0.58	1.78	0.93				0.85												100	62
3H-58 1613.63	2	8	Kfs	64.02		17.18	3.62				0.31	14.35		0.51														100	122
3H-58 1613.63	2	9	Gly	46.08		9.54	20.16		3.40	0.43	1.57	5.34				0.49												87	94
3H-58 1613.63	2	10	Qz	100.00																								100	121
3H-58 1613.63	2	11	Gly	37.95		11.94	28.33		3.71	0.50	1.58	2.72				0.26												87	98
3H-58 1613.63	3	1	Clay + Fe-Ch	37.27		10.93	42.51	0.51	4.56	1.05	2.01	0.73				0.41												100	94
3H-58 1613.63	3	2	Gly	43.03		10.88	22.79		2.91	0.81	1.79	4.54				0.25												87	98
3H-58 1613.63	3	3	Kts	66.17		17.86					0.72	15.25																100	11/
3H-58 1613.63	3	4	QZ	100.00		4.64	0.21					2.44																100	121
20 50 1013.03	2	6	Q2 +	100.00		4.04	0.31					3.44																100	121
3H-58 1613 63	3		Gly	38.27	0.31	14.85	26.66		3.02	0.78	1 00	0.01				0.30												87	92
3H-58 1613 63	3	8	07	99.48	0.31	14.05	20.00		3.02	0.76	1.90	0.91				0.30												100	120
3H-58 1613 63	3	9	Glv	43 49		9 42	23.68		3.09	0.86	1 18	5 27																87	96
3H-58 1613.63	3	10	III + Chl	45.60	0.45	21.49	24.58		3.15	1.02	1.95	1.04				0.71												100	62
3H-58 1613.63	3	11	Kfs	65.74		17.98					1.01	14.44											0.83					100	119
3H-58 1613.63	3	12	Qz	100.00																								100	120
3H-58 1613.63	3	13	Sd +	6.53			82.83	2.33	1.33	3.15	1.01		1.02			1.80												100	63
3H-58 1613.63	3.1	1	Gly	41.60		10.56	23.89		3.37	1.50	1.79	3.44		0.56		0.30												87	90
3H-58 1613.63	3.1	2	Py	0.35			29.45							69.66					L	0.54								100	221
3H-58 1613.63	3.1	3	Ms	47.89	0.24	35.35	1.27		0.41		0.92	8.92																95	112
3H-58 1613.63	3.1	4	Qz	99.79			0.21																					100	122
311-58 1613.63	4	1	QZ	100.00		04.44	05.00		0.00	0.70	4.00	4.00																100	119
20 - 58 1013.63	4	2		40.25		21.44	25.28		2.80	0.78	1.82	1.62																100	122
3H-58 1613 63	4	3	07	100.00																								100	122
3H-58 1613 63	4	5	III + Chl	52 19	0.72	15.92	22.83	0.26	4 56	0.31	1 1 1	1.81				0.29												100	94
3H-58 1613 63	4	6	Qz	100.00	0.72	10.02	22.00	0.20	4.00	0.01		1.01				0.23												100	119
3H-58 1613.63	5	1	llm		52.79		41.35	5.87																				100	104
3H-58 1613.63	5	2	Kfs	65.59		17.87					0.73	15.10											0.71					100	118
3H-58 1613.63	5	3	Qz	100.00																								100	121
3H-58 1613.63	5	4	Gly	43.46		12.28	19.87		3.60	1.57	1.39	4.59				0.23												87	97
3H-58 1613.63	5	5	Kfs	66.26		17.86			-		0.77	15.11																100	116
3H-58 1613.63	5	6	Zrn	29.93		0.55	1.06			0.49							0.59				64.89						2.49	100	113
3H-58 1613.63	5	7	Chl + Ms	45.70		29.50	19.55		2.26	0.64	1.51	0.65				0.19												100	98
3H-58 1613.63	5	8	Qz	100.00																								100	120
3H-58 1613.63	5	9	Kts	66.07	05.55	17.45	0.40	1.07			0.35	15.73																100	116
3H-58 1613.63	5	10	"IIM"?	0.84	65.57		31.94	1.65											1									100	99

Table 1-4.1: EDS geochemical analyses of sample 3H-58 1613.63.

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	ō	Sc2O3	Cr203	ZnO	As203	ZrO2	Ag2O	BaO	La203	Ce2O3	Nd2O3	HfO2	Total	Actual Tota
3H-58 1613.63	6	1	Fe-Chl	31.65		11.00	35.20	0.36	3.65	0.85	1.63	0.41				0.26												85	94
3H-58 1613.63	6	2	Kfs	65.51		17.87	0.23				0.47	15.17											0.75					100	117
3H-58 1613.63	6	3	Kfs	66.17		18.08	0.21				1.18	14.36																100	114
3H-58 1613.63	6	4	Qz	100.00																								100	123
3H-58 1613.63	6	5	Qz	100.00																								100	125
3H-58 1613.63	6	6	Gly	41.99		10.81	23.38		3.38	1.77	1.56	3.90				0.22												87	99
3H-58 1613.63	6	7	Sd +	5.25		1.12	76.93	4.87	3.07	6.54	0.76					1.46												100	62
3H-58 1613.63	6	8	III + Chl	39.75		18.71	35.08		3.46		1.17	0.81				1.03												100	63
3H-58 1613.63	7	1	Qz	100.00																								100	120
3H-58 1613.63	7	2	Kfs	65.99		17.59	0.46				0.47	15.50																100	118
3H-58 1613.63		3	Kfs	66.30	0.07	17.75	05.00	0.07	5.04		0.53	15.42				0.07												100	11/
3H-58 1613.63		4	Gly	34.92	0.67	15.36	25.66	0.27	5.21	1.14	1.54	1.96				0.27												87	101
3H-58 1013.03	7	0		21.75		14.62	31.48	0.66	2.90	0.99	2.12	1.11				1.32												100	49
24 59 1612 62	7	7	Chy	45.20		10.06	43.30	0.00	2.03	0.21	1 16	5.76				0.27												07	105
3H-58 1613 63	7	8	O7	99.20		10.00	0.51		2.90	0.31	1.10	5.70																100	103
3H-58 1613.63	7	9	Glv	40.49		11.44	26.08		3.46	0.38	1.10	3.45				0.59												87	66
3H-58 1613.63	8	1	Qz	99.78			0.22		0.10	0.00	0	0.70				0.00			1									100	120
3H-58 1613.63	8	2	Glv	44.23		12.50	20.21		2.49	0.71	3.85	2.44		0.57														87	102
3H-58 1613.63	8	3	Clav + Fe-Ch	39.05		15.36	34.90		4.90	1.91	2.14	0.88		0.60		0.27												100	96
3H-58 1613.63	8	4	Qz	99.62			0.38			-																		100	123
3H-58 1613.63	8	5	Qz	99.77			0.23																					100	120
3H-58 1613.63	8	6	Glt	42.16		8.06	26.33		2.55	0.55	0.84	6.28				0.23												87	77
3H-58 1613.63	8	7	Sd	1.93		0.73	39.64	2.45	5.85	5.42																		56	62
3H-58 1613.63	8.1	1	Kfs	66.23		17.43	0.39				0.63	15.33																100	116
3H-58 1613.63	8.1	2	Sd	2.02			43.36	2.39	3.54	3.59	0.57					0.54												56	62
3H-58 1613.63	8.1	3	Fe-Chl + ?Gl	41.67		13.06	35.90		3.24	1.15	2.03	2.71				0.23												100	90
3H-58 1613.63	8.1	4	Qz	100.00	01.10		00.00	0.40																				100	119
3H-58 1613.63	9	1	"lim"	100.00	61.48		38.09	0.43																				100	99
3H-58 1013.03	9	2	QZ Kfo	100.00		17.76	0.21				0.57	15.00											0.66					100	120
3H-58 1613 63	9		Mix	46.98	0.54	11.70	23 73		2 77	5.09	0.57	2.60		1 32		0.85			0.57				0.00					100	68
3H-58 1613 63	0	5		40.30	0.34	16.53	28.55		3.75	0.45	1.60	2.00		1.52		0.00			0.57									100	95
3H-58 1613 63	9	6	07	100.00		10.00	20.00		0.70	0.40	1.00	2.02				0.00												100	119
3H-58 1613.63	9	7	Glv	36.38	1.10	18.10	25.96		2.59	0.49	1.20	1.17																87	93
3H-58 1613.63	9	8	Qz	99.77			0.23				0																	100	120
3H-58 1613.63	9	9	Clay + Fe-Ch	39.45		12.96	37.30	0.29	5.65	0.76	1.95	1.35				0.29												100	98
3H-58 1613.63	9	10	Qz	100.00																								100	125
3H-58 1613.63	10	1	Qz	100.00							_																	100	121
3H-58 1613.63	10	2	Kfs	66.10		17.63	0.25				0.72	15.30																100	123
3H-58 1613.63	10	3	Gly	46.79	0.35	7.07	17.76		2.64	3.11	3.29	5.08				0.91												87	70
3H-58 1613.63	10	4	Gly	42.08		10.84	20.03		2.76	0.85	1.57	5.04	1.96			0.67									1.20			87	101
3H-58 1613.63	10	5	III + Chl	45.43		20.37	25.19		2.95		1.47	1.32		1.55		1.72												100	40
3H-58 1613.63	10		KIS	66.36		17.80	40.04		0.00	4.00	0.84	15.00				44.00												100	11/
311-58 1613.63	10		re-Chi +	36.79		8.22	16.24		2.33	1.00	19.96	4.36				11.09												100	120
20 50 1013.03	10	8	07	100.00			0.34																					100	121
3H-58 1613 63	11	1	07	100.00																								100	123
3H-58 1613.63	11	2	Glv	40.86		12.68	25.09		3.40	0.45	1.65	2.32				0.53												87	89
3H-58 1613,63	11	3	Qz	100.00			_0.00		0.10	0.10		2.52				0.00												100	117
3H-58 1613.63	11	4	Gly	36.26		15.15	25.88		4.18	1.98	1.94	1.41				0.20												87	97
3H-58 1613.63	11	5	Qz	100.00																								100	123
3H-58 1613.63	11	6	Kfs	66.09		17.94					0.74	15.23																100	119
3H-58 1613.63	11	7	Gly	44.81		11.43	19.92		4.10		1.40	4.22				1.11												87	86

Table 1-4.1: EDS geochemical analyses of sample 3H-58 1613.63.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	OgM	CaO	Na2O	K20	P205	SO3	ш	ō	Sc2O3	Cr203	ZnO	As203	ZrO2	Ag2O	BaO	La203	Ce2O3	Nd2O3	Hf02	Total	Actual Total
3H-58 1613.63	11	8	Qz	100.00																								100	120
3H-58 1613.63	11	9	Kfs	65.61		17.81					0.34	15.60											0.65					100	115
3H-58 1613.63	12	1	Ab	68.03		18.41	1.16			0.58	11.63	0.21																100	120
3H-58 1613.63	12	2	Clay + Fe-Ch	40.24		15.18	35.48		4.61	0.49	2.03	1.68				0.30												100	101
3H-58 1613.63	12	3	Gly	42.93		10.23	22.65		2.73	1.51	1.28	5.67																87	95
3H-58 1613.63	12	4	Gly	39.36		10.90	27.98		3.99	0.39	1.10	2.58				0.69												87	62
3H-58 1613.63	12	5	Gly	39.59		9.91	26.79		3.45	1.98	1.61	3.43				0.25												87	97
3H-58 1613.63	12	6	Qz	99.75			0.25																					100	123
3H-58 1613.63	13	1	Qz	99.77			0.23																					100	122
3H-58 1613.63	13	2	Gly	37.63		14.77	28.67		2.63	0.76	1.02	1.52																87	93
3H-58 1613.63	13	3	Kfs	65.04		18.29	0.27				0.92	14.10											1.38					100	119
3H-58 1613.63	13	4	Ms +	53.12	0.26	28.17	5.22		2.16		0.33	10.75																100	108
3H-58 1613.63	13	5	Qz	98.91		0.97					0.05	0.12																100	119
3H-58 1613.63	13	6	KIS	65.81		17.68	0.22				0.35	15.94																100	119
3H-58 1613.63	13		QZ Z-r	99.71			0.29														50.00							100	125
20 - 58 1013.03	14		210	48.15			0.87														20.99							100	123
20 50 1013.03	14		Miv	29.01		15.60	25.59		5 50	0.46	1.62	0.79				1.57		 									\vdash	100	77
34-58 1613 62	14			50.71		10.08	30.08		2.59	0.40	3.56	1.78		1 77		1.57	-		0.61								\vdash	100	72
3H-58 1613 63	14	5	Kfe	65.00		18 16	0.22		2.22	0.55	1 20	13.00		1.77		1.00			0.01				1.52					100	118
3H-58 1613 63	14	6	Zrn	31 15		10.10	0.22				1.20	13.90									68 51		1.02					100	117
3H-58 1613 63	14	7	Gly	41.03		12 40	22.97		3 14	1 76	1 52	3 91				0.28					00.01							87	103
3H-58 1613 63	14	8	07	100.00		12.40	22.01		0.14	1.70	1.02	0.01				0.20												100	123
3H-58 1613 63	15	1	Fe-Chl	33 21	0.39	11.86	31.59		4 28	0.34	1 47	1.68				0.19												85	98
3H-58 1613 63	15	2	07	99.77	0.00		0.23			0.01						0.10												100	120
3H-58 1613.63	15	3	Glv	43.73		10.22	20.57		2.57	1.07	2.18	3.87	0.99	0.64		0.29									0.86			87	89
3H-58 1613.63	15	4	Qz	100.00																								100	123
3H-58 1613.63	15	5	Qz	100.00																								100	123
3H-58 1613.63	15	6	Gly	36.34		12.83	29.21		4.94	0.36	1.30	1.61				0.41												87	85
3H-58 1613.63	15	7	III + Chl	46.17		21.08	26.59		2.84		0.86	1.73				0.74												100	51
3H-58 1613.63	16	1	llm		51.41		44.23	4.35																				100	106
3H-58 1613.63	16	2	Fe-Chl ?	37.35		11.98	42.73	0.50	4.21	0.61	1.85	0.33				0.44												100	99
3H-58 1613.63	16	3	Qz	99.80			0.20																					100	122
3H-58 1613.63	16	4	Fe-Chl +	37.85		13.71	39.44		5.10	1.00	1.82	0.76				0.32												100	95
3H-58 1613.63	16	5	"llm"	2.51	79.64	1.00	16.40	0.45																				100	98
3H-58 1613.63	16	6	Qz	100.00													L		L									100	125
3H-58 1613.63	17	1	Qz	99.79			0.21																					100	122
3H-58 1613.63	17		Qz	100.00	50.01		40.47	0.00																				100	121
3H-58 1613.63	17		lim Izta	0.60	53.01	47.00	43.17	3.23			0.50	45.00					<u> </u>						0.00					100	107
311-58 1613.63	1/	4	NIS Kfo	65.76		17.82					0.50	15.26											0.66					100	145
20 - 58 1013.03	17	5		100.00		17.91					1.01	14.76																100	115
30-30 1013.03	17	0		40.67	0.40	25.22	15.04		2.26	0.20	0.00	2.74				0.40												100	120
3H-30 1013.03	17	6		49.07	0.40	25.25	10.04		2.30	0.30	1.90	5.74				0.49												07	02
3H-58 1613 63	17	0	Sd	72.23		3.15	50.47	1 32	1 27	2.22	1.00	5.05				0.42												56	60
3H-58 1613 63	18	1	Fe-Chl +	37 44		12.03	41.92	0.60	4 45	0.60	2 18	0.40				0.39	-											100	98
3H-58 1613 63	18	2	07	99.63		12.00	0.37	0.00	4.45	0.00	2.10	0.40				0.00												100	118
3H-58 1613.63	18	3	Chl?	43.18		15.44	30.64		4.06	1.29	1.88	3.14				0.36												100	94
3H-58 1613.63	18	4	Glv	36.59		14.67	27.96		3.18	1.15	1.77	1.47				0.22												87	95
3H-58 1613.63	18	5	Qz	100.00			21.00		0.10	0						0.22												100	123
3H-58 1613.63	18	6	Glv	40.88	0.30	13.14	22.82		2.79	1.31	1.57	3.82				0.37												87	98
3H-58 1613.63	18	7	IIm		54.54		44.09	0.92	0.45																			100	107
3H-58 1613.63	18	8	Qz	100.00																								100	123
3H-58 1613.63	18	9	Kfs	66.16		17.85					0.59	15.41																100	120

Table 1-4.1: EDS geochemical analyses of sample 3H-58 1613.63.

Sample	Site	Position	Mineral	SiO2	ТіО2	AI2O3	FeO	OnM	MgO	CaO	Na2O	K20	P205	SO3	Ŀ	ū	Sc2O3	Cr203	ZnO	As203	ZrO2	Ag2O	BaO	La203	Ce2O3	Nd2O3	Hf02	Total	Actual Tota
3H-58 1613.63	19	1	Qz	100.00																								100	117
3H-58 1613.63	19	2	2 llm		53.92		44.35	1.74																				100	102
3H-58 1613.63	19	3	3 Gly	45.94		9.42	20.96		2.88	0.69	1.04	5.72				0.36												87	81
3H-58 1613.63	19	4	Kfs	65.98		17.90	0.31				0.86	14.95																100	114
3H-58 1613.63	19	5	Qz	100.00																								100	117
3H-58 1613.63	19.1	1	Qz	96.22		1.45	1.33		0.40	0.34	0.53	0.13																100	107
3H-58 1613.63	19.1	2		40.48		18.68	33.57		3.12	0.41	1.31	1.61				0.82												100	71
3H-58 1613.63	19.1	3	S III + Chi	45.06		21.86	24.88		3.20	0.40	1.59	1.37				1.64												100	55
38-56 1013.03	19.2	2		2.00			40.22	2.20	1.50	33.00	0.35		0.54			0.52												56	62
3H-58 1613 63	19.2	3	l Gly	45 19		9.66	19.85	3.30	2 90	2 27	1.00	5.66	0.54			0.52												87	97
3H-58 1613 63	19.2	4	Gly	36.64	0.86	17.82	25.74		2.30	0.35	1.47	1 09				0.57												87	70
3H-58 1613.63	19.2	5	Sd	1.63	0.00	0.58	39.93	2.14	6.23	5.49						0.01												56	59
3H-58 1613.63	20	1	Kfs	65.16		17.95	0.33	2	0.20	0.10	1.08	14.15											1.34					100	114
3H-58 1613.63	20	2	Clay + Fe-Ch	40.70		13.51	37.47		3.71	0.84	1.72	2.06																100	88
3H-58 1613.63	20	3	8 Kfs	66.54		17.98					1.55	13.93																100	112
3H-58 1613.63	20.1	1	Cal				0.60	-		54.77	0.41					0.21												56	42
3H-58 1613.63	20.1	2	2 III + Chl	44.29		19.52	29.36		2.73	0.41	1.00	1.79				0.90												100	69
3H-58 1613.63	20.1	3	3 TiO2	0.74	96.66		2.31			0.29																		100	101
3H-58 1613.63	20.1	4	Kfs	66.19		17.86	0.58				1.20	14.16																100	113
3H-58 1613.63	20.1	5	Fe-Chl?	42.22		15.28	33.81	0.41	3.09	0.42	1.50	3.01				0.25												100	100
3H-58 1613.63	20.1	6	Sd	2.13		0.74	38.61	2.98	5.67	5.86																		56	58
3H-58 1613.63	21	1	Qz	100.00		40.00	07.00		0.07	4 70	4.04	0.00				0.07												100	117
3H-58 1613.63	21		Gly	38.76	0.44	10.93	27.22		3.37	1.73	1.91	2.82		1.05		0.27												87	<u>87</u> 50
3H-58 1013.03	21	3	Gly	42.70	0.44	9.07	19.87		2.67	4.54	4.05	1.49		1.25		0.91			-									87	04
3H-58 1613 63	21	- 4	Kfe	65.64	0.55	17.74	24.10		4.15	3.14	0.62	15.04		0.75		0.47							0.75					100	115
3H-58 1613 63	21	6	Gly	41 53	0.30	13.29	24.02		2 91	0.42	1 24	2.84				0 44							0.75					87	93
3H-58 1613 63	21	7	/ Q7	100.00	0.00	10.20	24.02		2.01	0.42	1.24	2.04				0.44												100	115
3H-58 1613.63	21.1	1	III + Chl	46.53		19.06	28.53		3.36		0.98	0.73				0.80												100	56
3H-58 1613.63	21.1	2	2 Sd	1.16		0.43	37.27	3.89	5.86	7.39																		56	59
3H-58 1613.63	21.2	1	Py	0.18			29.00							70.82														100	218
3H-58 1613.63	22	1	Kfs	65.60		17.76					0.68	15.09											0.87					100	114
3H-58 1613.63	22	2	Gly	35.86		13.34	29.55		3.67	0.79	1.57	1.98				0.23												87	93
3H-58 1613.63	22	3	8 Gly	38.76	0.43	10.06	26.03		2.83	2.50	3.98	1.04		0.92		0.45												87	77
3H-58 1613.63	22	4	Qz	100.00																								100	114
3H-58 1613.63	22	5	Kfs	65.87		17.75	0.78				0.29	15.30																100	111
3H-58 1613.63	22	6	QZ	100.00		40.00	00.01		0.50	4 74		0.00				0.40												100	11/
3H-58 1613.63	22		GIY	37.91		12.28	26.91		3.52	1.74	1.14	3.30				0.19												8/ 100	90
31-58 1613.63	22.1	1	QZ 2 III ≠ Cbl	53.87		28.00	10.29		1 05	0.34	0.70	4.00				0.30												100	78
3H-58 1613 63	22.1			50.16		20.09	12.63		2.64	0.34	0.79	5 32				0.30												100	90
3H-58 1613 63	22.2	2	2 Sd	50.10		20.22	52.00	0.68	2.04	2.65	0.01	0.02	0.67			0.22												56	55
3H-58 1613.63	22.2	3	3 Sd +	4.19		1.30	71.72	4.67	8.43	9.25			0.07			0.43												100	58
3H-58 1613.63	22.2	4	Sd	1.06			45.36	5.16	0.62	0.97	1.00			0.55		1.28												56	61
3H-58 1613.63	22.3	1	III + Chl	42.91		20.33	30.18		3.11		1.39	1.13				0.95												100	59
3H-58 1613.63	22.3	2	2 Qz	99.45			0.55																					100	115
3H-58 1613.63	22.3	3	8 Gly	41.72	0.52	9.79	20.48		3.21	2.76	3.47	1.77		1.71		0.70			0.84	0.04								87	64
3H-58 1613.63	23	1	Qz	100.00																								100	118
3H-58 1613.63	23	2	Kfs	66.00		17.77	0.42				0.46	15.35																100	115
3H-58 1613.63	23	3	3 III + Chl	39.72	0.34	14.39	35.27		6.08	0.48	1.48	2.24																100	97
3H-58 1613.63	23	4	Gly	44.40		9.74	21.16		3.33	1.98	1.46	4.93																87	99
3H-58 1613.63	23.1	1	Gly	38.71		14.00	25.75		3.25	1.20	1.74	2.14				0.22			<u> </u>									87	96
3H-58 1613.63	23.1	2	Gly	41.89		15.23	22.34		2.76	0.35	0.97	3.12				0.35												87	80

Table 1-4.1: EDS geochemical analyses of sample 3H-58 1613.63.

Sample	Site	Position	Mineral	Si02	ТіО2	AI2O3	FeO	OuM	OgM	CaO	Na2O	K2O	P205	£OS	Ч	C	Sc2O3	Cr203	ZnO	As203	ZrO2	Ag2O	BaO	La203	Ce2O3	Nd2O3	Hf02	Total	Actual Tota
3H-58 1613.63	23.1	3	Gly	40.40	0.48	13.31	21.31		2.60	2.65	3.60	1.12		1.08		0.44												87	78
3H-58 1613.63	23.1	4	Cal	2.01			0.93		1.06	51.35	0.65																	56	54
3H-58 1613.63	23.1	5	III + Chl	43.54		19.82	30.36		2.76	0.41	1.01	1.25				0.86												100	58
3H-58 1613.63	23.2	1	"llm"	0.77	60.10	0.63	33.23	0.77	4.49																			100	105
3H-58 1613.63	23.2	2	Qz	99.60			0.40																					100	122
3H-58 1613.63	24	1	Qz	99.75			0.25																					100	122
3H-58 1613.63	24	2	Gly	38.75		20.09	21.34		2.72	0.31	1.15	2.08				0.55												87	67
3H-58 1613.63	24	3	TiO2		99.04		0.96																					100	109
3H-58 1613.63	24	4	Gly	39.53		19.29	21.24		2.16	0.37	1.26	2.92				0.23												87	99
3H-58 1613.63	24	5	Qz	97.61		1.40	0.84					0.15																100	117
3H-58 1613.63	24	6	Kfs	66.22	0.27	18.09					1.41	14.01																100	118
3H-58 1613.63	24	7	Gly	35.49	1.01	14.75	28.64		3.40	0.25	1.71	1.23				0.52												87	101
3H-58 1613.63	25	1	Monazite							0.82			37.69									2.20		16.49	31.31	11.68		100	104
3H-58 1613.63	25	2	Kfs	66.07		17.83					0.52	15.58																100	117
3H-58 1613.63	25	3	Qz	100.00																								100	124
3H-58 1613.63	25	4	Kfs	65.76	0.42	17.85	0.27		0.07	0.01	0.78	14.92				0.00												100	114
3H-58 1613.63	25	5	III? + Chi	46.92	2.74	23.95	19.25		2.67	0.31	1.39	1.86				0.92												100	58
3H-58 1613.63	25	6	QZ	99.65		45.40	0.35		5 70	0.44	4.00	0.04				0.00												100	120
3H-58 1613.63	25	1	Clay + Fe-Ch	39.89		15.18	35.87		5.79	0.44	1.69	0.84				0.30												100	96
3H-58 1613.63	25.1	1	Gly	41.69		9.64	26.97		3.18	0.26	1.10	3.85				0.58												87	00
20 50 1013.03	25.1	2	Gly	43.21		9.01	23.09		2.00	5.20	1.97	4.57		0.69		0.42												07	03
21 50 1612 62	20.1	1	Gly	40.23		0.41	23.13		2.04	1.02	1.03	5 16		0.00		0.23												07	92
20 50 1013.03	20	2	Gly	42.30		9.54	25.11		2.70	1.93	2.26	5.10		1.00		0.10												07	37
20 50 1612 62	20	2	Giy III I Chi	44.26		10.00	21.03		2.09	1.21	1.05	0.07		1.09		0.70												100	50
3H-58 1613 63	20	- 3	Kfe	66.25		17.64	31.24		2.00		0.35	15 76				0.07												100	120
3H-58 1613 63	26	5	Clav + Fe-Ch	37 72		12.65	40.60	0.42	5 20	0.58	1.97	0.62				0.24												100	92
3H-58 1613 63	26	6	Q7	100.00		12.00	10.00	0.12	0.20	0.00	1.07	0.02				0.21												100	117
3H-58 1613 63	26.1	1	07	95.65	0.38	2 15	1.30				0.36	0.17																100	118
3H-58 1613 63	26.1	2	"llm"	4 22	70.55	2.10	23.80	1 43			0.00	0.11																100	103
3H-58 1613.63	27	1	llm		52.84		44.97	1.23	0.95																			100	104
3H-58 1613.63	27	2	Kfs	65.84		17.97	0.27				0.98	14.95																100	116
3H-58 1613.63	27	3	"llm"	0.59	67.08		30.70	1.62																				100	98
3H-58 1613.63	27	4	Qz	100.00																								100	118
3H-58 1613.63	27	5	Kfs	66.48		17.75						15.77																100	121
3H-58 1613.63	27	6	Gly	39.28		9.23	28.14		3.68	0.99	1.51	3.78				0.38												87	96
3H-58 1613.63	27	7	Gly	37.34		14.03	27.81		4.39	0.39	1.24	1.06				0.72												87	80
3H-58 1613.63	27	8	Qz	100.00																								100	122
3H-58 1613.63	27.1	1	Ms +	50.15		29.74	7.75		2.22		0.44	9.72																100	106
3H-58 1613.63	27.1	2	Qz	99.78			0.22																					100	120
3H-58 1613.63	27.2	1	"Chr"		0.87	7.18	53.17	0.88	1.35							_		36.55										100	101
																			L										
										Notes																			
										1. + indi	cates m	ore than	one mi	neral pre	esent														
										2. " " inc	licates a	Itered g	rain																
										3. Gly re	efers to t	he mixtu	ure glau	cony															

Table 1-4.1: EDS geochemical analyses of sample 3H-58 1613.63.

Appendix 1-5: SEM-BSE images and EDS mineral analyses for sample 3H-58 1804.26. Sample 3H-58 1804.26: Fine-grained Sandstone with local shale laminae

Detrital Minerals: Albite, Biotite, Chlorite, Illite + Chlorite (Figs. 3-4 (matrix)), Ilmenite, K-feldspar, Muscovite, Quartz, Spinel (Fig. 12), Zircon

Diagenetic Minerals: Fe-chlorite, Kaolinite, Pyrite, Titania (Fig. 13)

Notes:

1. Halite appears to be contamination from washing the core in salt water (Fig. 33).

2. Micas appear to follow bedding planes (Figs. 9,17,22,23,29).

3. Illite + chlorite forms matrix (Figs. 3,14), and intraclasts (Fig. 21).

4. Chlorite is often seen along cleavages of either micas (Ms, Bt) or K-feldspar (Fig. 2). It is difficult to say if chlorite in such grains is detrital, or formed during burial diagenesis, or both.

5. Glaucony has been seen replacing pellets (Fig. 19,28-29), detrital grains, matrix (Figs. 19,23), and lithic clasts.

6. Paragenetic sequence: K a o	l itë, rChlorite	Pyrite,	Titania
∱ Fig.∶	† 33 ?Fig. 2	†	

Figure 1-5.1: Scanned thin section of sample 3H-58 1804.26 showing the location of analyzed sites.

1:Chlorite + Kfeldspar 2:Quartz 3:Muscovite + Chlorite 4:Kaolinite 5:Quartz 6:K-feldspar 7:Ilmenite 8:Mixture 9:Fe-Chlorite + 10:K-feldspar + Chlorite 11:Quartz 12:Illite + Chlorite 13:Muscovite 14:Quartz 15:K-feldspar 16:Ilmenite

Figure 1-5.2: Sample 3H-58 1804.26 (SEM) site 1. This site consists of detrital quartz (2,11,14), K-feldspar (6,15), ilmenite (7), muscovite (13), chlorite + muscovite (3), and K-feldspar + chlorite (1,10). The matrix is made up of illite + chlorite (12) and kaolinite (4). Fe-chlorite (9) rims a mineral (8).

1:K-feldspar 2:Chlorite 3:Quartz 4:K-feldspar 5:Quartz 6:Glaucony 7:Quartz 8:Quartz 9:Quartz 10:Illite + Chlorite + 11:Illite + Chlorite 12:Clay + Fe-Chlorite 13:Glaucony

Figure 1-5.3: Sample 3H-58 1804.26 (SEM) site 2. This site consists of detrital quartz (3,5,7-9), K-feldspar (1,4), and chlorite (2). The matrix is made up of illite + chlorite (10-11). Glaucony (13) rims a clay + Fe-chlorite (12) ?pellet.

1:Quartz 2:Fe-Chlorite + 3:Quartz + Monazite-(Ce) 4:Quartz 5:K-feldspar 6:K-feldspar 7:Illite + Chlorite 8:K-feldspar 9:Quartz 10:Ilmenite 11:Chlorite + 12:K-feldspar 13:K-feldspar + Chlorite

Figure 1-5.4: Sample 3H-58 1804.26 (SEM) site 3. This site consists of detrital quartz (1,4,9), K-feldspar (5-6,8,12), ilmenite (10), and K-feldspar + chlorite (2,13) grains. The matrix is made up of illite + chlorite (7) and clays partially rim detrital minerals (positions a).

1:Quartz 2:K-feldspar 3:Fe-Clay 4:Fe-Clav 5:Fe-Chlorite? 6:Muscovite + Chlorite 7:Muscovite + Chlorite 8:K-feldspar 9:Quartz 10:Quartz 11:Quartz 12:K-feldspar 13:Quartz + Kaolinite +

Figure 1-5.5: Sample 3H-58 1804.26 (SEM) site 4. This site consists of detrital quartz (1,9-11), chlorite + muscovite (6-7), and K-feldspar (2,12) grains. The matrix is probably made up of illite + chlorite.

Figure 1-5.6: Sample 3H-58 1804.26 (SEM) site 5. This site consists of detrital quartz (1,6,8-12), ilmenite (4), K-feldspar (3,5,13), and altered ilmenite (8) grains. Diagenetic pyrite (2) is the latest mineral to form.

1:Albite + Kfeldspar

Figure 1-5.7: Sample 3H-58 1804.26 (SEM) site 5.1. This site consists of a very small grain of microperthite (K-feldspar + albite).

1:Zircon 2:Ilmenite 3:Chlorite 4:Biotite? 5:Illite + Chlorite 6:Chlorite + Biotite 7:Zircon 8:Quartz 9:Illite + Chlorite 10:Quartz 11:Biotite 12:K-feldspar 13:Illite + Chlorite 14:K-feldspar + 15:Quartz + Kfeldspar 16:Quartz

Figure 1-5.8: Sample 3H-58 1804.26 (SEM) site 6. This site consists of detrital zircon (1), ilmenite (2), quartz (8,10,16), chlorite (3), biotite (4,11), K-feldspar (12), and a granitic lithic clast made up of quartz + K-feldspar (14-15). The matrix is made up of illite + chlorite (5,9,13).

1:Glaucony 2:Quartz 3:Monazite + Mixture 4:Chlorite + Biotite 5:Biotite 6:Quartz 7:Glaucony + 8:Quartz + 9:Glaucony + 10:Quartz 11:Quartz 11:Quartz 12:K-feldspar 13:Kaolinite

Figure 1-5.9: Sample 3H-58 1804.26 (SEM) site 7. This site consists of detrital quartz (2,6,8,10-11) K-feldspar (12), chlorite + biotite (4), and biotite (5). The micas in this site appears to follow bedding planes. The matrix is probably made up of illite + chlorite, and kaolinite (13) in the cement. Glaucony (1) appears to be replacing a pellet, while glaucony (7,9) appear to be replacing matrix.

1:K-feldspar 2:Chlorite + Muscovite 3:Glaucony ? + Halite 4:Quartz 5:Illite + Chlorite 6:Ilmenite 7:K-feldspar 8:Quartz + 9:Quartz 10:K-feldspar 11:Illite + Chlorite 12:Chlorite + Biotite 13:Mixture 14:TiO₂ 15:Quartz

Figure 1-5.10: Sample 3H-58 1804.26 (SEM) site 8. This sample is similar to site 6. There is also diagenetic titania (14) filling voids in quartz.

Figure 1-5.11: Sample 3H-58 1804.26 (SEM) site 9. This site is similar to site 6. Muscovite + halite (9) appear to be plastically deformed. Glaucony (6) appear to be replacing pellet. The halite in this site is made up of very fine-grained crystals, that appear to be very late; possibly due to washing the core in salt water.

Figure 1-5.12: Sample 3H-58 1804.26 (SEM) site 10. This site consists of detrital quartz (1,5,8), K-feldspar (6-7), ilmenite (3-4), and spinel (2). Clays (probably made up of illite + chlorite) partially coat grains (positions a).

1:Quartz 2:Halite 3:TiO₂ 4:Muscovite + Chlorite

Figure 1-5.13: Sample 3H-58 1804.26 (SEM) site 10.1. This site consists of a peraluminous felsic lithic clast made up of quartz (1) and muscovite + chlorite (4). The titania (3) is late diagenetic, and the halite (2) is most likely from washing the core in salt water.

1:Ilmenite 2:Quartz 3:K-feldspar 4:Illite + Chlorite 5:TiO₂ 6:Quartz 7:TIO₂ 8:Clay + Fe-Chlorite 9:Quartz 10:Quartz 11:K-feldspar

Figure 1-5.14: Sample 3H-58 1804.26 (SEM) site 11. This site consists of detrital quartz (2,6,9-10), K-feldspar (3,11), ilmenite (1), and altered ilmenite (now titania) (7) with quartz (6) inclusions. The matrix is made up of illite + chlorite (4), and diagenetic titania (5) partially fills a void in the matrix. Clay + Fe-chlorite may be an ?altered grain.

1:Ilmenite 2:K-feldspar 3:Quartz 4:"Ilmenite" 5:Muscovite + Chlorite 6:Clay + Fe-Chlorite 7:Quartz 8:Glaucony 9:Fe-Clay 10:Quartz 11:Quartz 12:Chlorite +

Figure 1-5.15: Sample 3H-58 1804.26 (SEM) site 12. This site is similar to site 11. There is also detrital chlorite (12), muscovite + chlorite (5) grains, and a glaucony (8) grain. The matrix in this site appears to be made up of illite + chlorite.

Figure 1-5.16: Sample 3H-58 1804.26 (SEM) site 13. This site is similar to site 11. Pyrite (11) and ?titania (12) are late diagenetic minerals. The matrix is made up of illite + chlorite (13). There is also a glaucony + Fe-chlorite grain (2).

1:K-feldspar 2:Quartz 3:Ilmenite 4:Quartz 5:Chlorite 6:Quartz 7:K-feldspar 8:Fe-Chlorite 9:K-feldspar 10:Quartz 11:Illite + Chlorite 12:Chlorite +

Figure 1-5.17: Sample 3H-58 1804.26 (SEM) site 14. This site is similar to site 7. Micas appear to follow bedding planes. The matrix consists of illite + chlorite (11).

1:Zircon 2:Quartz 3:K-feldspar 4:Albite + Kfeldspar 5:K-feldspar 6:Glaucony? + Halite 7:Illite + Chlorite 8:Quartz 9:Quartz 10:K-feldspar 11:Chlorite + Biotite

Figure 1-5.18: Sample 3H-58 1804.26 (SEM) site 15. This site is similar to site 11. There is also detrital zircon (1), a mixture of albite + K-feldspar (4), probably microperthite, and chlorite + biotite (11). The matrix is made up of illite + chlorite (7). There is also glaucony + halite (6) mixture that appears to replace the matrix.

1:K-feldspar 2:Glaucony 3:Ilmenite 4:K-feldspar 5:Glaucony + 6:Quartz 7:K-feldspar 8:K-feldspar 9:Illite + Chlorite 10:Illite + Chlorite 11:TiO₂ + 12:Pyrite

Figure 1-5.19: Sample 3H-58 1804.26 (SEM) site 16. This site is similar to site 15. There is also diagenetic pyrite (12) and titania (11). Glaucony (2) appears to be replacing matrix, and glaucony (5) is replacing a pellet.

Figure 1-5.20: Sample 3H-58 1804.26 (SEM) site 17. This site consists of detrital quartz (1,4,9,12), K-feldspar (3,8), ilmenite (7), and chlorite (5). The matrix is made up of illite + chlorite (10). Titania (6) appears to be diagenetic. Fe-chlorite (2) rims a quartz (1) grain, most likely replacing a Fe-rich clay coat.

1:Fe-Chlorite 2:Fe-Chlorite + 3:Quartz + 4:Quartz 5:Fe-Chlorite ? 6:Quartz 7:K-feldspar 8:TiO₂ 9:K-feldspar 10:"Ilmenite" 11:Quartz 12:Illite + Chlorite

Figure 1-5.21: Sample 3H-58 1804.26 (SEM) site 18. This site is similar to site 17. The matrix at this site is made up of probably illite + chlorite, and there is also an illite + chlorite intraclast (12).

Figure 1-5.22: Sample 3H-58 1804.26 (SEM) site 19. This site is similar to site 7. The micas appear to follow bedding planes. There is a late fracture that cuts through this site, and late diagenetic titania (10). Glaucony (4) appears to replace a grain, and (7) appears to replace matrix.

1:Fe-Chlorite + Mica 2:"Ilmenite" 3:Quartz 4:"Ilmenite" 5:Quartz 6:Chlorite + 7:Fe-Chlorite 8:Quartz 9:Illite + Chlorite 10:Glaucony + 11:K-feldspar 12:Chlorite + **Biotite?** 13:K-feldspar 14:Quartz

Figure 1-5.23: Sample 3H-58 1804.26 (SEM) site 20. This site is similar to site 19. Micas tend to follow bedding planes and the matrix is made up of illite + chlorite (9). Glaucony (10) appears to be replacing the matrix.

1:K-feldspar 2:Quartz 3:K-feldspar 4:Pyrite 5:Chlorite + Quartz 6:Quartz 7:K-feldspar 8:Quartz 9:Illite + Chlorite 10:Clay + Fe-Chlorite 11:Clay + Fe-Chlorite 12:Quartz 13:Fe-Chlorite 14:K-feldspar

Figure 1-5.24: Sample 3H-58 1804.26 (SEM) site 21. This site consists of detrital quartz (2,12), K-feldspar (1,3,14), and a granitic lithic clast made up of quartz (6,8) and K-feldspar (7). The matrix in this site consists of illite + chlorite (9). Late frambodial diagenetic pyrite (4) partially fills voids in the matrix.

1:Chlorite + Muscovite 2:"Ilmenite" 3:Quartz 4:Fe-Chlorite 5:K-feldspar 6:K-feldspar 7:Quartz 8:Pyrite 9:Illite + Chlorite 10:Quartz

Figure 1-5.25: Sample 3H-58 1804.26 (SEM) site 22. This site consists of detrital quartz (3,7,10), K-feldspar (5-6), ilmenite (2), and chloritized muscovite (1) grains. The matrix is made up of illite + chlorite (9), with late diagenetic pyrite (8) partially filling voids.

1:Zircon 2:Quartz 3:K-feldspar 4:Ilmenite 5:K-feldspar 6:Chlorite + Biotite 7:Illite + Chlorite 8:Clay + Fe-Chlorite 9:Quartz 10:Ilmenite

Figure 1-5.26: Sample 3H-58 1804.26 (SEM) site 23. This site is similar to site 21. There is also a detrital zircon (1), and ilmenite (10) grain. Diagenetic pyrite (4) is the latest mineral to form. Clay + Fe-chlorite (8) coat a quartz (9) grain.

1:Chlorite + 2:K-feldspar 3:Quartz 4:K-feldspar 5:Illite + Chlorite 6:Pyrite 7:K-feldspar

Figure 1-5.27: Sample 3H-58 1804.26 (SEM) site 24. This site consists of detrital quartz (3), K-feldspar (2,4,7), and a chloritized mica (?biotite) (1). The matrix is made up of illlite + chlorite (5), with late diagenetic pyrite (6) partially filling voids.

1:Chlorite + Muscovite 2:Quartz 3:Glaucony 4:"Ilmenite" 5:Quartz 6:Quartz 7:Fe-Chlorite 8:Illite + Chlorite 9:Illite + Chlorite 10:Ilmenite 11:Quartz

Figure 1-5.28: Sample 3H-58 1804.26 (SEM) site 25. This site is similar to site 18. The micas appear to be plastically deformed. There is also detrital ilmenite (4,10), and the matrix is made up of illite + chlorite (8-9). Glaucony (3) appears to be replacing a detrital grain or lithic clast.

1:Glaucony 2:Quartz 3:Chlorite 4:Glaucony 5:Quartz + Kfeldspar 6:Quartz 7:K-feldspar 8:Fe-Chlorite + 9:Fe-Chlorite + 10:Quartz

Figure 1-5.29: Sample 3H-58 1804.26 (SEM) site 26. This site is similar to site 7. Micas appear to be following bedding planes, but it is difficult to tell. Glacuony (1,4) appears to be replacing pellets. Fe-chlorite (8) appears as a pellet and Fe-chlorite (9) appears to have replaced an earlier mineral in quartz (10).

Figure 1-5.30: Sample 3H-58 1804.26 (SEM) site 27. This site consists of detrital quartz (3), K-feldspar (1,10-11,13,15), zircon (14), altered ilmenite (2), partially dissolved albite (6-7), and albitized K-feldspar (8-9) grains. The matrix is made up of probably illite + chlorite, and diagenetic titania (5).

Figure 1-5.31: Sample 3H-58 1804.26 (SEM) site 28. This site is similar to site 27. There is also detrital chloritized grain probably albite (5). The matrix is made up of illite + chlorite (11).

1:K-feldspar 2:Pyrite 3:Pyrite 4:Quartz 5:K-feldspar 6:Illite + Chlorite 7:Fe-Chlorite + Quartz 8:Quartz 9:Glaucony + Halite 10:Quartz 11:K-feldspar

Figure 1-5.32: Sample 3H-58 1804.26 (SEM) site 29. This site consists of detrital quartz (4,8,10), and K-feldspar (1,5,11) grains. The matrix is made up of illite + chlorite (6), with late diagenetic pyrite (2-3) partially filling voids in the matrix or along intergranular boundaries (3).

1:Halite 2:Quartz 3:Kaolinite 4:Quartz 5:K-feldspar 6:Quartz 7:Fe-Chlorite + 8:Chlorite + Mica 9:K-feldspar 10:Illite + Chlorite 11:Quartz

Figure 1-5.33: Sample 3H-58 1804.26 (SEM) site 30. This site is similar to site 29. Kaolinite fills a pore (arrow) adjacent to a kaolinitized mica or K-feldspar (3).

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	C	Sc2O3	V205	Cr2O3	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	UO3	B2O3	Total	Actual Total
3H-58 1804.26	1	1 C	hl + Kfs	48.56		11.33	27.31		3.06		2.22	6.37			1.15											100	80
3H-58 1804.26	1	2 Q	Z	100.00																						100	100
3H-58 1804.26	1	3 M	ls + Chl	51.93	0.31	28.87	5.43		2.94			10.51														100	90
3H-58 1804.26	1	4 K	In	46.63		33.87	2.77		0.54	0.34	0.52	0.16		0.76	0.42											86	74
3H-58 1804.26	1	5 Q	Z	100.00																						100	100
3H-58 1804.26	1	6 K	fs	66.05		17.60					0.58	15.77														100	94
3H-58 1804.26	1	7 IIr	n	1.00	49.27		47.29	2.12							0.32											100	75
3H-58 1804.26	1	8 M	lix	64.05	0.55	15.52	12.69		2.17		1.23	2.82			0.95											100	78
3H-58 1804.26	1	9 F	e-Chl +	42.87		21.28	27.89		3.64		2.14	1.42			0.75											100	80
3H-58 1804.26	1	10 K	ts + Chl	60.52		17.94	6.13		0.71		1.20	12.62			0.19					0.68						100	85
3H-58 1804.26	1	11 Q	Z	100.00																						100	97
3H-58 1804.26	1	12 11	+ Chl	63.29	0.55	24.76	5.15		1.35		0.72	3.55			0.61											100	64
3H-58 1804.26	1	13 10	IS	47.41	0.92	35.00	0.60		0.59		1.66	8.83														95	90
3H-58 1804.26	1	14 Q	Z	100.00		47.05					0.50	45.44														100	103
311-58 1804.26	1	15 K	15	66.35	E4 00	17.65	40.00	0.50	4.04		0.59	15.41														100	101
3H-58 1804.26	1	16 11	n fe	0.50	51.29	47 70	42.89	0.50	4.81		0.00	14.00														100	89
311-58 1804.20	2			20.00	1.10	17.78	10.42		4.00		0.98	14.93														100	94
311-58 1804.20	2	20	ni -	30.09	1.10	20.03	19.43		4.60		0.57	3.12														400	79
311-50 1004.20	2	30	2	00.00		47.05					0.00	4477								0.00						100	99
31-38 1804.20	2	4 K		100.00		17.95					0.83	14.77								0.68						100	97
21 59 1004.20	2	50	2	100.00		15 70	22.24		2 00		0.02	2.01			1 10											97.00	100
21 59 1004.20	2	70		41.12		15.72	22.31		3.00		0.93	2.01			1.10											100	40
31-38 1804.20	2	/Q	2	100.00																						100	102
21 59 1004.20	2		2	100.00																						100	00
3H-50 1004.20	2	10 11		40.57		20.22	8.22		1 44	2.24	0.80	1 / 9		5.02	0.00											100	99
311-50 1004.20	2	11 11		49.J7		27.59	0.22	0.20	2 70	2.24	0.00	1.40		5.05	0.90											100	49 56
3H-58 1804 26	2	12 C		15 /2		15.61	30.23	0.59	3.68		1 11	3.71			0.72											100	77
3H-58 1804 26	2	13 G		44.16		13.01	21 78		2.57		0.78	3.65			0.23											87.00	61
3H-58 1804 26	3	10	7	100.00		15.00	21.70		2.51		0.70	5.05			0.37											100	98
3H-58 1804 26	3	2 F	e-Chl +	37.99	0.46	16 12	35.12		4 72		1 17	2 70			1 71											100	54
3H-58 1804 26	3	30	z + Mnz-(Ce)	39.36	0.40	1.37	00.12		4.72		1.17	0.83	18 74		1.7 1						10.33	22 19	7 17			100	95
3H-58 1804 26	3	40	7	100.00								0.00	10.7 1								10.00	22.10				100	97
3H-58 1804.26	3	5 K	fs	66.20		17.55					0.75	14.93								0.57						100	95
3H-58 1804.26	3	6 K	fs	66.09		17.90					0.90	15.11								0.01						100	96
3H-58 1804.26	3	7 11	+ Chl	51.91	2.00	29.53	9.56		1.79	0.38	1.45	2.19			1.18											100	47
3H-58 1804.26	3	8 K	fs	66.04		18.04			-		1.29	13.89			-					0.75						100	93
3H-58 1804.26	3	9 Q	z	100.00							-						l									100	96
3H-58 1804.26	3	10 IIr	m	0.56	52.49		45.48		1.47																	100	85
3H-58 1804.26	3	11 C	hl +	28.50	16.77	18.01	26.05		9.18		0.62	0.62			0.24											100	76
3H-58 1804.26	3	12 K	fs	65.78		17.78					0.50	15.21								0.73						100	94
3H-58 1804.26	3	13 K	fs + Chl	51.97		13.66	22.98		3.21		1.13	6.34			0.71											100	71
3H-58 1804.26	4	1 Q	Z	100.00																						100	92
3H-58 1804.26	4	2 K	fs	66.39		17.71					0.69	15.21														100	89
3H-58 1804.26	4	3 F	e-Clay	48.33		30.00	17.17		2.24		1.17	0.64			0.46											100	72
3H-58 1804.26	4	4 F	e-Clay	49.00		30.02	16.32		1.65		1.32	1.25			0.44											100	74
3H-58 1804.26	4	5 F	e-Chl ?	42.96		19.90	29.56		2.93		1.73	1.87			1.06											100	65
3H-58 1804.26	4	6 M	ls + Chl	49.46		32.85	7.21		0.99		0.99	8.30			0.21											100	81
3H-58 1804.26	4	7 M	ls + Chl	45.29		26.89	18.34		1.78		1.44	5.92			0.35											100	78
3H-58 1804.26	4	8 K	fs	65.53		18.04					1.53	13.55								1.35						100	90
3H-58 1804.26	4	9 Q	Z	100.00																						100	93

Table 1-5.1: EDS geochemical analyses of sample 3H-58 1804.26.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	CI	Sc203	V205	Cr203	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	UO3	B2O3	Total	Actual Total
3H-58 1804.26	4	10	Qz	100.00																						100	92
3H-58 1804.26	4	11	Qz	100.00																						100	93
3H-58 1804.26	4	12	Kfs	66.40		17.71					0.83	15.05														100	90
3H-58 1804.26	4	13	Qz + Kln +	74.98	0.41	16.32	4.19		1.10		0.80	1.75			0.45											100	66
3H-58 1804.26	5	1	Qz	100.00																						100	89
3H-58 1804.26	5	2	Ру	0.60			37.50							61.59	0.32											100	89
3H-58 1804.26	5	3	Kfs	64.40		18.19					1.16	13.68								2.58						100	86
3H-58 1804.26	5	4	llm	1.02	57.14		40.47	1.37																		100	75
3H-58 1804.26	5	5	Kts	66.31		18.14					0.64	14.91														100	77
3H-58 1804.26	5	6	Qz	100.00					0.15		=	0.45														100	86
3H-58 1804.26	5	1	Mix	66.92	70.07	7.41	21.28	0.05	2.15		1.45	0.45			0.34											100	
3H-58 1804.26	5	8	"lim"	0.99	70.87		26.08	2.05																		100	/6
311-58 1804.20	5	40	Q2	100.00																						100	00
31-38 1804.20	5	10	07	100.00																						100	89
3H-58 1804.20	5	12	07	100.00																						100	00
3H-58 1804 26	5	12	Q2 Kfe	65.55		17 75					0.65	15 17								0.80						100	8/
3H-58 1804 26	51	1	Ab + Kfe	67.05	0.34	10.02				0.03	7 90	4 76								0.03						100	82
3H-58 1804 26	6	1	Zrn	31.20	0.04	10.02				0.00	7.00	4.70							68 80							100	81
3H-58 1804.26	6	2	llm	0.70	55.99		40.78	2.54											00.00							100	71
3H-58 1804.26	6	3	Chl	36.10	0.64	17.28	22.24		3.86		1.62	2.64			0.62											85	64
3H-58 1804.26	6	4	Bt?	40.47	1.98	19.91	23.61	0.47	7.90	0.44	0.98	4.02			0.22											100	63
3H-58 1804.26	6	5	III + Chl	55.90	1.15	30.88	5.79		1.61		1.37	2.76			0.54											100	63
3H-58 1804.26	6	6	Chl + Bt	37.94		16.37	36.05	0.49	5.00		2.40	1.28			0.47											100	62
3H-58 1804.26	6	7	Zrn	31.38															68.62							100	75
3H-58 1804.26	6	8	Qz	100.00																						100	76
3H-58 1804.26	6	9	III + Chl	52.62	0.57	32.33	8.00		2.46		0.81	2.71			0.50											100	58
3H-58 1804.26	6	10	Qz	100.00																						100	78
3H-58 1804.26	6	11	Bt	39.80	1.70	22.05	19.24		8.04	0.37	0.81	3.99														96	63
3H-58 1804.26	6	12	Kfs	66.34		17.71					0.38	15.58														100	75
3H-58 1804.26	6	13	III + Chl	47.99		15.83	26.50		3.02		1.49	4.36			0.80											100	55
3H-58 1804.26	6	14	Kfs +	71.57		16.39	5.40		0.69		0.63	5.13			0.18											100	66
3H-58 1804.26	6	15	Qz + Kfs	88.64	0.73	5.74	1.34		0.42			3.12														100	71
3H-58 1804.26	6	16	Qz	100.00		40.00	00.40		0.00		4.55	0.00			0.57											100	/5
3H-58 1804.26	7	1	Giy	38.15		12.88	28.13		2.39		1.55	3.32			0.57											87.00	51
3H-38 1804.20	7	2	QZ Maz I Miy	99.02		12.20	0.32		0.09	10.95	1.01	2.20	22 E7								2 50	6 45	2.20			100	
3H-58 1804.20	7	3		40.22	0.72	21.00	29.17		0.90	19.00	1.01	2.29	23.57		0.21						2.50	0.45	2.30			100	55
3H-58 1804 26	7	4	Bt	40.23	2.17	21.90	15.82		8.21	0.43	0.44	1.30		0.60	0.31											96	57
3H-58 1804 26	7	6	07	99.07	2.17	0.74	10.02		0.21		0.44	0.19		0.00	0.22											100	69
3H-58 1804 26	7	7	Glv +	43.38		16 79	27 48		2.58	2 88	2 43	3.67			0.80											100	54
3H-58 1804 26	7	8	Q7 +	80.68		4 03	13.06		0.64	2.00	0.64	0.01		0.75	0.00											100	63
3H-58 1804.26	7	9	Gly +	40.97		16.95	33.46		3.00		2.71	2.33		00	0.58											100	55
3H-58 1804.26	7	10	Qz	100.00																						100	71
3H-58 1804.26	7	11	Qz	100.00																						100	67
3H-58 1804.26	7	12	Kfs	65.99		17.75					0.65	15.62														100	67
3H-58 1804.26	7	13	Kln	47.83		36.45	1.08				0.40	0.25														86	48
3H-58 1804.26	8	1	Kfs	65.56		17.78					0.54	15.40								0.72						100	63
3H-58 1804.26	8	2	Chl + Ms	43.50		19.74	27.78		3.36		2.20	2.35			1.07											100	52
3H-58 1804.26	8	3	Gly ? + HI	39.53		14.56	34.58		4.06		3.92	1.74			1.60											100	49
3H-58 1804.26	8	4	Qz	100.00																						100	63

Table 1-5.1: EDS geochemical analyses of sample 3H-58 1804.26.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	CI	Sc2O3	V205	Cr2O3	ZrO2	BaO	La203	Ce2O3	Nd2O3	UO3	B2O3	Total	Actual Total
3H-58 1804.26	8	5	III + Chl	54.21	0.74	30.81	8.05		1.65		0.96	2.58			0.99											100	36
3H-58 1804.26	8	6	llm	0.77	51.16		43.72	0.64	3.72																	100	54
3H-58 1804.26	8	7	Kfs	66.62		18.09					1.49	13.80														100	59
3H-58 1804.26	8	8	Qz +	87.72		8.21	1.95		0.50		0.43	0.93			0.26											100	46
3H-58 1804.26	8	9	Qz	99.19			0.81																			100	59
3H-58 1804.26	8	10	Kfs	66.19		16.97	1.71				0.47	14.67														100	57
3H-58 1804.26	8	11	III + Chl	51.53		33.99	10.77		1.83		0.87	0.39			0.62											100	36
3H-58 1804.26	8	12	Chl + Bt	39.31	1.57	18.25	27.91		6.27	0.40	1.18	4.35		0.70	0.46											100	46
3H-58 1804.26	8	13	Mix	47.39	00.54	22.88	4.91		1.83	6.43	0.78	3.13		11.08	1.57											100	19
3H-58 1804.26	8	14	102	1.00	98.51		0.49																			100	53
3H-58 1804.26	8	15	QZ	98.83		0.84					0.04	0.33														100	58
3H-58 1804.26	9	1	Kfs	66.11		18.03	00.00		0 77		0.81	15.04			0.00											100	47
3H-58 1804.26	9	2		37.32		15.35	26.93		2.77		2.05	1.98			0.60											87.00	39
31-38 1804.20	9	3		100.00 EE 21		20.76	7 56		1 50		1.00	2 55			1 24											100	47
30-30 1804.20	9	4		00.31 6F 90	0.40	17.05	00.1		1.56		1.00	2.00			1.24											100	20 15
31-38 1804.20	9	5		29.00	0.40	12.22	31.00		2 /2		0.58	10.37			2 0 1											100	40
311-30 1004.20	9	7		100.09		12.22	31.09		3.43		1.22	3.33			3.0 I											100	40
3H-58 1804.20	9	0	QZ Kfc	66.51		17.00					1 1 2	1/ 29														100	40
311-58 1804.20	9	0		21.91		20.95	8.02		1 29		22.02	1 1 9			14.92											100	43
3H-58 1804 26	9	10		0.50		20.05	28.63		1.20		0.41	1.10		70.46	14.02											100	82
3H-58 1804 26	0	11	ry Ms⊥Chl	51 /1		32.27	1 60		1.54		1 36	8 72		70.40												100	30
3H-58 1804 26	3	12		08.65		1 00	0.36		1.54		1.50	0.72														100	12
3H-58 1804 26	9	13	07	100.00		1.00	0.50																			100	43
3H-58 1804 26	0	1/		56 30		20 / 7	7 23		1 0/		0 00	3 25			0.73											100	27
3H-58 1804 26	9	15	Chl + Bt?	42 20	1.63	18 22	22.01		8.85		2 10	4.03			0.75											100	37
3H-58 1804 26	9	16	llt + Chl + Qz	62.03	0.79	23.77	6.35		1.56		1 70	2.88			0.00											100	34
3H-58 1804.26	10	1	Qz	100.00	0.10	20.11	0.00					2.00			0.01											100	120
3H-58 1804.26	10	2	Spl			37.08	18.76		13.22									30.94								100	109
3H-58 1804.26	10	3	llm	0.53	51.68		44.62	0.51	2.65																	100	105
3H-58 1804.26	10	4	llm		52.25		45.15	0.82	1.78																	100	109
3H-58 1804.26	10	5	Qz	100.00																						100	123
3H-58 1804.26	10	6	Kfs	66.28		17.66					0.63	15.43														100	115
3H-58 1804.26	10	7	Kfs	66.51		17.75					1.36	14.38														100	116
3H-58 1804.26	10	8	Qz	100.00																						100	118
3H-58 1804.26	10.1	1	Qz	100.00																						100	120
3H-58 1804.26	10.1	2	HI	4.74		1.02	0.65			4.19	47.39				42.01											100	133
3H-58 1804.26	10.1	3	TiO2	1.19	98.25		0.56																			100	106
3H-58 1804.26	10.1	4	Ms + Chl	53.24	0.91	30.26	2.24		2.16		0.29	10.91			_											100	108
3H-58 1804.26	11	1	llm		51.44	0.48	43.76	0.63	3.70																	100	107
3H-58 1804.26	11	2	Qz	100.00																						100	121
3H-58 1804.26	11	3	Kfs	65.60		18.14					1.16	14.14								0.97						100	117
3H-58 1804.26	11	4	III + Chl	55.46	0.75	33.02	5.87		1.27		0.82	2.11			0.70											100	77
3H-58 1804.26	11	5	TiO2	0.97	98.18	0.47	0.38																			100	105
3H-58 1804.26	11	6	Qz	99.76	0.24																					100	117
3H-58 1804.26	11	7	TIO2	10.99	86.61	0.92	1.48																			100	103
3H-58 1804.26	11	8	Clay + Fe-Chl	38.29		14.71	37.84		3.92		2.34	1.13		0.66	1.10								L			100	83
3H-58 1804.26	11	9	Qz	100.00																						100	119
3H-58 1804.26	11	10	Qz	100.00													L						<u> </u>			100	124
3H-58 1804.26	11	11	Kfs	66.09		17.98					0.80	15.13														100	116
3H-58 1804.26	12	1	llm		52.23		46.37	1.40																		100	108

Table 1-5.1: EDS geochemical analyses of sample 3H-58 1804.26.

Sample	Site	Position Mineral	Si02	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ū	Sc2O3	V205	Cr203	ZrO2	BaO	La203	Ce2O3	Nd2O3	NO3	B2O3	Total	Actual Total
3H-58 1804.26	12	2 Kfs	65.75		17.82					0.63	15.31								0.49						100	118
3H-58 1804.26	12	3 Qz	100.00																						100	121
3H-58 1804.26	12	4 "llm"	1.08	73.00	0.54	17.73	4.11		0.65			2.89													100	95
3H-58 1804.26	12	5 Ms + Chl	50.32		33.62	3.71		0.83		0.68	10.84														100	104
3H-58 1804.26	12	6 Clay + Fe-Chl	37.15		14.28	42.07		3.61		1.52	1.01			0.37											100	87
3H-58 1804.26	12	7 Qz	100.00																						100	120
3H-58 1804.26	12	8 Gly	40.86		11.08	26.00		2.81		1.07	4.52			0.68											87.00	87
3H-58 1804.26	12	9 Fe-Clay	49.66		32.28	15.46		1.30		0.83	0.47														100	101
3H-58 1804.26	12	10 Qz	100.00																						100	126
3H-58 1804.26	12	11 QZ	100.00	2.02	40.70	25.20	0.47	0.04	4.00	1.00	2.42	1.00		0.47											100	121
3H-58 1804.26	12	12 Chi +	38.03	2.02	19.76	25.38	0.47	6.84	1.33	1.03	3.42	1.26		0.47											100	83
3H-58 1804.20	13	2 Gly + Eo Chl 2	100.00		15.27	22.26		2 75		1 5 1	2.45			0.41											100	07
311-58 1804.20	13	2 019 + 1 0-0111 :	42.23		13.27	55.50		3.13		1.51	5.45			0.41											100	122
3H-58 1804.20	13	4 Kfs	65.82		17.87					0.82	14.88								0.61						100	122
3H-58 1804 26	13	5 07	100.02		17.07					0.02	14.00								0.01						100	120
3H-58 1804.26	13	6 Chl +	42.73	1.74	21.84	20.73	0.45	7.01		0.69	4.57			0.23											100	102
3H-58 1804.26	13	7 Qz	100.00		2	20.10	0.10			0.00				0.20											100	123
3H-58 1804.26	13	8 Qz	100.00																						100	124
3H-58 1804.26	13	9 Chl + Ms	51.85		30.44	10.85		1.63		0.84	4.40														100	100
3H-58 1804.26	13	10 Qz +	90.05		8.15	1.01		0.26			0.34			0.19											100	106
3H-58 1804.26	13	11 Py	0.24			28.98							70.78												100	229
3H-58 1804.26	13	12 TiO2 +	4.34	87.09	4.23	1.92			0.48			1.27		0.65											100	72
3H-58 1804.26	13	13 III + Chl	55.38	3.52	27.18	7.46		1.64		0.85	3.10			0.85											100	88
3H-58 1804.26	14	1 Kfs	66.38		17.92					0.88	14.82														100	116
3H-58 1804.26	14	2 Qz	100.00																						100	121
3H-58 1804.26	14	3 Ilm	0.51	53.94		42.42	0.77	2.36																	100	104
3H-58 1804.26	14	4 Qz	95.87		2.33	1.40					0.15			0.25											100	92
3H-58 1804.26	14	5 Chl	33.89		21.26	23.86	0.23	3.46		0.48	1.03		0.63	0.15											85	101
3H-58 1804.26	14	6 Qz	100.00		17.05					4.07															100	119
3H-58 1804.26	14	/ Kfs	66.61	0.01	17.65	20.25	0.00	7 00	0.00	1.07	14.66			0.40											100	115
3H-58 1804.26	14	8 Fe-Chi	29.89	0.91	15.63	29.35	0.38	7.00	0.36	1.06	45.00			0.42											85.00	81
3H-58 1804.20	14	9 KIS	100.00		17.94					0.73	15.33														100	124
3H-58 1804.20	14	11 III + Chi	53.02	0.42	31 27	7 9/		1 78		1 23	2.72			0.70											100	83
3H-58 1804.20	14	12 Chl +	41 52	1.76	21 25	21.63	0.27	6.91		0.46	5.23		0.79	0.70											100	101
3H-58 1804 26	15	1 Zrn	31.37	10	21.20	21.00	0.21	0.01		0.40	0.20		0.75	0.13		1		68.63							100	121
3H-58 1804.26	15	2 Qz	100.00															00.00							100	122
3H-58 1804.26	15	3 Kfs	65.47		17.96					1.07	14.32								1.18						100	121
3H-58 1804.26	15	4 Ab + Kfs	67.62		18.14	0.27				6.98	6.52								0.47						100	119
3H-58 1804.26	15	5 Kfs	65.45	l	18.17					0.81	14.67						1	1	0.89						100	119
3H-58 1804.26	15	6 Gly? + HI	42.98		18.01	17.23		2.16		11.08	3.47			5.07											100	106
3H-58 1804.26	15	7 III + Chl	53.82	1.19	29.72	8.32		1.71		0.94	3.56			0.75											100	76
3H-58 1804.26	15	8 Qz	100.00																						100	118
3H-58 1804.26	15	9 Qz	100.00						-	-		-													100	123
3H-58 1804.26	15	10 Kfs	66.27		17.48	0.25				0.46	15.54														100	120
3H-58 1804.26	15	11 Chl + Bt	25.24	1.11	12.75	16.97		4.55	0.44	22.52	2.88		0.64	12.90											100	117
3H-58 1804.26	16	1 Kfs	65.14		17.89					0.72	15.09								1.16						100	116
3H-58 1804.26	16	2 Gly	40.71	l	12.59	24.31		2.51		1.76	4.45			0.67								L			87.00	95
3H-58 1804.26	16	3 IIm		51.43		46.79	1.79									-									100	105
3H-58 1804.26	16	4 Kts	65.47		18.00					0.65	15.15					I			0.73						100	118

Table 1-5.1: EDS geochemical analyses of sample 3H-58 1804.26.

Sample	Site	Position	Mineral	Si02	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ū	Sc2O3	V205	Cr2O3	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	NO3	B2O3	Total	Actual Total
3H-58 1804.26	16	5	Gly +	43.73		13.71	33.64		3.32		1.35	3.47			0.79											100	94
3H-58 1804.26	16	6	Qz	100.00																						100	124
3H-58 1804.26	16	7	Kfs	65.93		17.89					1.06	14.57								0.55						100	120
3H-58 1804.26	16	8	Kfs	66.31		17.65					0.42	15.62														100	117
3H-58 1804.26	16	9	Ill + Chl	55.39	1.52	28.99	8.34		1.49		1.06	2.39			0.81											100	79
3H-58 1804.26	16	10	III + Chl	67.34	0.27	21.05	6.96		1.17		0.80	1.66			0.76											100	86
3H-58 1804.26	16	11	102+	1.23	90.67	3.78	1.97				0.58		1.77													100	109
3H-58 1804.26	16	12	Ру	0.26			29.24							70.51												100	233
3H-58 1804.26	17	1	Qz	98.11		1.31	00.45	0.00		0.23	0.35	0.01														100	121
3H-58 1804.26	17	2	Fe-ChI +	44.66		20.44	28.15	0.32	2.20		1.16	2.81			0.26											100	101
3H-58 1804.26	17	3	KIS	66.20		17.85						15.95														100	117
3H-58 1804.26	17	4	QZ	100.00		21.40	20.41		2 72		2.00	0.75			0.72											100	122
3H-58 1804.20	17	<u>с</u>		41.93	00.00	21.40	29.41		3.72		2.09	0.75			0.72											100	90
311-38 1804.20	17	0	1102	0.52	98.80		10.00	1.00	4 1 1																	100	108
3H-36 1604.20	17	- /	11111	00.40	40.02	47.50	40.70	1.09	4.11			45.00														100	100
311-38 1804.20	17	0		100.00		17.50	0.29					15.96														100	120
21 59 1904 26	17	10		57.00	1 20	20 72	6.07		1 20		0.02	2.67			0.96											100	02
2H-59 1904 26	17	11		40.22	1.30	20.72	26.00	0.22	1.30		1.62	2.07			0.60											100	02
311-30 1004.20	17	12		100.00		14.12	30.90	0.55	4.30		1.00	1.70			0.07											100	125
3H-58 1804 26	18	12	G2 Fe-Chl	32.66		14 47	31 32		3 50		1 22	1 5 3			0.22											85.00	00
3H-58 1804 26	18	2	Fe-Chl +	12.00		10.03	30.60		3 15		2 / 2	1.55			0.22											100	01
311-30 1004.20	10	2		94 54	0.00	2.76	30.00		0.52		0.42	0.21			0.00											100	31
3H-58 1804 26	10	1	07	100.00	0.00	2.70	3.40		0.52		0.43	0.21														100	120
3H-58 1804 26	18	5	Ee-Chl 2	38.04		13.65	38 58	033	/ 87		2 97	0.45			1 1 2											100	86
3H-58 1804 26	18	6	Q7	100.00		10.00	00.00	0.00	4.01		2.07	0.40			1.12											100	121
3H-58 1804 26	18	7	Kfs	66.42		17 75					0.72	15 12														100	117
3H-58 1804 26	18	8	TiO2	0.81	98 77	11.10	0.42				0.72	10.12														100	106
3H-58 1804 26	18	9	Kfs	66.37	00.11	17 78	0.12				0 70	15 15														100	120
3H-58 1804.26	18	10	"llm"	1.45	77.85	2.64	16.34		0.40		0.57	.0.10			0.25			0.51								100	104
3H-58 1804.26	18	11	Qz	100.00																						100	123
3H-58 1804.26	18	12	III + Chl	58.77	0.51	27.73	7.44		1.26		0.97	2.84			0.48											100	83
3H-58 1804.26	19	1	Fe-Chl	31.35	0.36	12.70	31.98		4.79		2.36	0.98			0.49											85.00	99
3H-58 1804.26	19	2	Qz	100.00																						100	121
3H-58 1804.26	19	3	Kfs	65.66		17.79					0.67	15.22								0.66						100	116
3H-58 1804.26	19	4	Gly	39.21		12.01	26.62		2.87	0.22	1.57	4.14			0.36											87.00	96
3H-58 1804.26	19	5	Qz	100.00																						100	124
3H-58 1804.26	19	6	Kfs	65.70		17.76					0.66	14.84								1.03						100	122
3H-58 1804.26	19	7	Gly	40.53		11.96	25.35		2.67		1.19	4.51			0.78											87.00	88
3H-58 1804.26	19	8	Qz	100.00																						100	117
3H-58 1804.26	19	9	Chl + Mica	42.68	0.68	25.03	25.72		3.19		1.10	1.35			0.25											100	96
3H-58 1804.26	19	10	TiO2 +	1.16	92.32	2.32	2.06			0.34	0.70		0.75		0.35											100	94
3H-58 1804.26	20	1	Fe-Chl + Mica	36.97	0.55	18.10	35.92		4.16		1.70	2.06			0.53											100	87
3H-58 1804.26	20	2	"llm"	1.32	73.12	0.75	24.31		0.50																	100	96
3H-58 1804.26	20	3	Qz	100.00																						100	120
3H-58 1804.26	20	4	"llm"	0.84	92.44		6.72																			100	105
3H-58 1804.26	20	5	Qz	100.00																						100	122
3H-58 1804.26	20	6	Chl +	42.94	0.50	21.82	14.42		9.09	0.71	0.59	4.36	2.54	1.03	0.20							1.80				100	104
3H-58 1804.26	20	7	Fe-Chl	24.74		21.54	27.34	0.59	9.55	0.43				0.80												85.00	98
3H-58 1804.26	20	8	Qz	100.00																						100	118
3H-58 1804.26	20	9	III + Chl	55.73	0.95	27.09	6.17		1.49	1.64	1.01	2.40	2.11	0.60	0.81											100	66

Table 1-5.1: EDS geochemical analyses of sample 3H-58 1804.26.

Sample	Site	Position	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ū	Sc2O3	V205	Cr2O3	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	UO3	B2O3	Total	Actual Total
3H-58 1804.26	20	10 Gly +	43.01		15.05	32.77		3.27		1.48	3.42			1.00											100	84
3H-58 1804.26	20	11 Kfs	65.61		17.84					0.34	15.43								0.78						100	117
3H-58 1804.26	20	12 Chl + Bt?	42.06	1.58	21.48	19.63		7.36	0.68	0.59	4.98		1.19	0.45											100	94
3H-58 1804.26	20	13 Kfs	65.78		17.70					0.67	15.85														100	112
3H-58 1804.26	20	14 Qz	100.00																						100	123
3H-58 1804.26	21	1 Kfs	65.74		17.71					0.64	15.19								0.71						100	115
3H-58 1804.26	21	2 Qz	100.00																						100	118
3H-58 1804.26	21	3 Kfs	66.35		17.80					1.26	14.59														100	113
3H-58 1804.26	21	4 Py	0.30			28.86							70.84												100	219
3H-58 1804.26	21	5 Chl + Qz	49.70		14.77	25.64	0.38	7.92	0.20	1.17				0.22											100	98
3H-58 1804.26	21	6 Qz	100.00																						100	118
3H-58 1804.26	21	7 Kfs	65.66		17.57	0.42				0.68	14.98								0.70						100	115
3H-58 1804.26	21	8 QZ	100.00	0.00	00.40	0.04		0.00		1.10	0.75			0.70											100	118
3H-58 1804.26	21		53.77	0.29	29.48	9.21		2.62	1.40	1.10	2.75			0.78											100	80
311-58 1804.26	21	11 Clay + Fe-Chl	41.50		14.48	33.76		3.81	1.46	1.86	2.79			0.35											100	95
311-38 1804.20	21	12 O-	41.71		10.12	32.15		5.15		1.80	2.59			0.48											100	95
3H-58 1804.20	21	12 Q2	39.77		16.19	20.14		4 50	0.22	1 21	0.57			0.27											95.00	123
3H-58 1804.20	21	14 Kfs	66 38		17 71	23.14		4.55	0.22	0.54	15 37			0.37											100	115
3H-58 1804 26	22	1 Chl + Ms	42.81		24.27	27 13	0.28	2 77		1 39	1.06			0.28											100	95
3H-58 1804 26	22	2 "Ilm"	1.28	73.80	1 17	22 40	0.96	2.11		1.00	1.00			0.20			0.38								100	101
3H-58 1804 26	22	3 07	100.00	10.00		22.10	0.00										0.00								100	119
3H-58 1804 26	22	4 Fe-Chl	31.82		11.82	34 67	0.51	3 30		2.03	0.30			0.54											85.00	95
3H-58 1804.26	22	5 Kfs	66.49		17.78	0	0.01	0.00		1.14	14.59			0.0 .											100	117
3H-58 1804.26	22	6 Kfs	66.11		17.74					0.72	15.43														100	114
3H-58 1804.26	22	7 Qz	100.00																						100	122
3H-58 1804.26	22	8 Py	0.23			29.18							70.59												100	225
3H-58 1804.26	22	9 III + Chl	43.83		17.68	29.22		3.44		1.76	2.83			1.24											100	64
3H-58 1804.26	22	10 Qz	100.00																						100	119
3H-58 1804.26	23	1 Zrn	26.76		1.99	0.88			4.21	1.11				0.52	1.31			61.15					2.08		100	81
3H-58 1804.26	23	2 Qz	100.00																						100	118
3H-58 1804.26	23	3 Kfs	66.08		17.82	0.44				1.26	14.40														100	114
3H-58 1804.26	23	4 lm	0.47	50.06		46.57	2.46	0.44																	100	104
3H-58 1804.26	23	5 Kfs	66.14	1 70	17.91	10.00		11.05		0.51	15.44		0.54												100	115
3H-58 1804.26	23	6 Chi + Bt	41.79	1.72	18.25	19.39	0.26	11.25		0.65	6.19		0.51	1 10											100	103
311-58 1804.20	23		54.09	1.23	31.84	0.40	0.47	1.28		1.24	2.00			1.19											100	05
3H-58 1804.20	23		30.35		13.80	42.75	0.47	3.00		2.05	0.29			0.62											100	95
311-58 1804.20	23	10 llm	0.92	55.62	0.52	20.40	4 1 5																		100	102
3H-58 1804.20	23	1 Chl	39.74	55.05	30.09	17.06	4.15	9 15		1.67	2 29														100	95
3H-58 1804 26	24	2 Kfs	66.26		17.85	17.00		0.10		0.75	15 15														100	115
3H-58 1804 26	24	3 07	100.00							0.10															100	121
3H-58 1804.26	24	4 Kfs	65.26		18.18					0.92	14.65								0.99						100	117
3H-58 1804.26	24	5 III + Chl	55.27	0.70	27.62	9.57		1.66		1.50	2.40			1.27											100	64
3H-58 1804.26	24	6 Py	0.30			28.89				0.28			70.53												100	222
3H-58 1804.26	24	7 Kfs	66.20		17.75					0.46	15.59														100	119
3H-58 1804.26	25	1 Chl + Ms	48.03	0.65	25.55	20.22		2.02		0.75	2.59			0.20											100	95
3H-58 1804.26	25	2 Qz	100.00																						100	117
3H-58 1804.26	25	3 Gly	39.80		11.71	27.25		2.71		1.21	3.61			0.71											87.00	87
3H-58 1804.26	25	4 "llm"	0.67	69.72	0.78	28.19	0.65																		100	102
3H-58 1804.26	25	5 Qz	100.00																						100	120

Table 1-5.1: EDS geochemical analyses of sample 3H-58 1804.26.

3H-58 1004.26 25 7 7 7 7 8 7 8 7 8 7 8 8 7 8 7 7 7 3 8 10 23 0.33	100 122 85.00 97 100 65
3H-58 1604-26 25 8 H + Chi 53.51 0.73 3.84 1.53 0.96 0.37 0.86 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.20 0.29 0.20 0.29 0.20	85.00 97 100 65
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100 65
3H-Se 1804.26 25 9 + Chi 53.21 0.48 31.09 7.80 1.24 1.20 1.02 1.02 1.02 3H-Se 1804.26 25 11 02 100.00 6 1.02	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 93
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 108
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100 124
3H-58 1904_26 28 2 (Jz 100.00 100	87.00 101
3H-88 1804.26 26 3 Chi 301.80 17.03 10.80 17.72 3.04 11.81 4.17 0.23 0.19 0.11 0.11 0.11 0.11 0.26 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0	100 118
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	85 92
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	87.00 97
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 99
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 123
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100 117
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 102
11-56 100-120 120	100 119
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 118
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100 96
3H-58 1804.26 27 4 Ms + Chl 52.75 0.41 25.04 12.72 2.84 0.61 5.63	100 119
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 104
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 109
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 119
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 90
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 116
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 106
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 117
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 123
3H-58 1804.26 27 13 Kfs 66.27 17.65 0.45 15.63 0 68.48 0 0 3H-58 1804.26 27 14 Zm 31.52 0 0.45 15.63 68.48 0 0 3H-58 1804.26 27 15 Kfs 665.38 18.06 0.92 14.79 0 0.84 0 0 3H-58 1804.26 28 1 Qz 100.00 0 0.92 14.79 0	100 85
3H-58 1804.26 27 14 Zrn 31.52 68.48 68.48 68.48 3H-58 1804.26 27 15 Kfs 65.38 18.06 0.92 14.79 88.4 68.48 69.48 69.	100 112
3H-58 1804.26 27 15 Kfs 65.38 18.06 0.92 14.79 0.84 1 3H-58 1804.26 28 1 Qz 100.00 1 <td>100 119</td>	100 119
3H-58 1804.26 28 1 Qz 100.00 <td>100 119</td>	100 119
3H-58 1804.26 28 2 Chi + 45.33 0.30 23.29 21.82 3.11 1.67 3.51 0.98	100 117
3H-58 1804.26 28 3 Kfs 66.13 17.68 0.72 15.47 3H-58 1804.26 28 4 TiO2 99.34 0.66 <td< td=""><td>100 100</td></td<>	100 100
3H-58 1804.26 28 4 TIO2 99.34 0.66	100 113
3H-58 1804.26 28 5 Chi + 38.04 18.98 32.43 0.28 3.04 4.91 0.51 1.83	100 104
3H-58 1804.26 28 6 QZ 100.00 1.09 14.48 0.73 3H-58 1804.26 28 7 Kfs 65.75 17.95 1.09 14.48 0.73	100 97
	100 120
	100 118
SH-50 1804.20 26 91/15 00.94 17.52 0.82 15.11	100 113
	100 117
3H-58 1804.26 28 11 11 + Chi 34.35 0.50 34.33 5.07 1.26 0.31 1.06 1.81 0.59 0.52	100 80
3H-58 1804.26 29 1 [KIS 05.73] 17.86 0.92 14.86 0.92 14.86 0.92 14.86 0.93 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95	100 117
01700 1004.20 20 21 Fy 0.30 30.32 0.27 0.00 40.49 1.14	100 107
1100 1004.20 27 317 U.24 20.00 U.31 10.33 10.00	100 221
	100 121
	100 85
	100 102
	100 121
3H-58 1804 26 29 9 GU+ HI 37.33 11.87 25.01 3.09 9.65 4.04 9.00	100 102
3H-58 1804.26 29 10 Qz 100.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 124

Table 1-5.1: EDS geochemical analyses of sample 3H-58 1804.26.

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	CI	Sc2O3	V205	Cr203	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	UO3	B2O3	Total	Actual Total
3H-58 1804.26	29	11	Kfs	66.18		17.51					0.39	15.74			0.17											100	120
3H-58 1804.26	30	1	н	0.42							46.51				53.07											100	135
3H-58 1804.26	30	2	Qz	100.00																						100	120
3H-58 1804.26	30	3	Fe-Clay	50.21		35.02	12.18		0.91		0.98				0.70											100	80
3H-58 1804.26	30	4	Qz	100.00																						100	121
3H-58 1804.26	30	5	Kfs	66.41		17.87					1.12	14.60														100	118
3H-58 1804.26	30	6	Qz	99.34			0.66																			100	115
3H-58 1804.26	30	7	Kln	41.09		16.92	33.31	0.41	3.85		2.19	1.51			0.72											100	90
3H-58 1804.26	30	8	Chl + Mica	43.98	0.82	27.73	19.09		3.61	0.67	1.69	1.13	0.69		0.59											100	89
3H-58 1804.26	30	9	Kfs	65.92		17.48					0.89	15.53			0.18											100	114
3H-58 1804.26	30	10	III + Chl	61.46	0.29	25.11	6.18		1.74		0.63	4.00			0.59											100	78
3H-58 1804.26	30	11	Qz	99.78			0.22																			100	117
											Notes																
											1. + ind	licates r	nore that	an one r	nineral p	oresen	nt										
										2. " " indicates altered grain																	
										3. Gly refers to the mixture glaucony																	

Table 1-5.1: EDS geochemical analyses of sample 3H-58 1804.26.

Appendix 1-6: SEM-BSE images and EDS mineral analyses for sample 3H-58 2001.33.

Sample 3H-58 2001.33: Medium-fine grained sandstone with calcitic cement

Detrital Minerals: Albite, Chlorite, Chromite, Ilmenite, K-feldspar, Monazite-(Ce), Muscovite, Oligoclase, Quartz

Diageneitc Minerals: Calcite, Chlorite, Illite, Glauconite, Glaucony, Kaolinite, Pyrite, Siderite, Titania, ?Quartz overgrowths

Notes:

1. Siderite commonly appears to partially fill secondary porosity

2. Chloritized muscovite, probably detrital (Figs. 24,26)

3. Suturing is not usually seen

4. Carbonates coat detrital grains (Figs. 39,58)

5. There are rare kaolinite booklets, filling usually primary porosity (Figs. 19,25)

6. Glauconite commonly occurs in various forms, sometimes displaying volume reduction Fig. 16)

7. More than one generation of calcite has been seen (Fig. 45)

8. Paragenetic sequence:

Glaucony, Glauconite	Kaolinite ± Chlorite	Calcite	Siderite	Pyrite	, Titania
figs. (i.e. 33,40,42,47,65)	1 Fig. 19		f Fig.	39	† Fig. ?64

Figure 1-6.1: Scanned thin section of sample 3H-58 2001.33 showing the location of analyzed sites.

Figure 1-6.2: Sample 3H-58 2001.33 (SEM) site 1. This site consists of quartz, K-feldspar, and muscovite grains within a calcite cement. Late siderite (11-12) is seen filling secondary porosity.

1:K-feldspar 2:Albite 3:K-feldspar 4:Chlorite + Illite 5:Muscovite + Chlorite 6:K-feldspar 7:Calcite 8:Siderite

Figure 1-6.3: Sample 3H-58 2001.33 (SEM) site 1.1. This site consists of altered K-feldspar (3), and a quartz -muscovite metasiltstone (schist) lithic clast.

Figure 1-6.4: Sample 3H-58 2001.33 (SEM) site 2. This site consists of mostly of quartz, with some K-feldspar and muscovite grains. Muscovite (8) appears deformed and has siderite (10) forming within its cleavage. Calcite makes up the cement with siderite filling secondary porosity. There is also a clast of altered ilmenite (17).

1:Quartz 2:Quartz 3:"Ilmenite"

Figure 1-6.5: Sample 3H-58 2001.33 (SEM) site 2.1. This site may be an intraclast made up of quartz (2) and probably clays. There is also an altered ilmenite (3) grain.

2:Quartz 3:Siderite + 4:Chloritized Muscovite 5:K-feldspar 6:Muscovite 7:Siderite 8:Chlorite + Muscovite 9:Quartz 10:Kaolinite 11:Siderite 12:Kaolinite 13:Quartz 14:Calcite

Figure 1-6.6: Sample 3H-58 2001.33 (SEM) site 3. This site consists of mostly quartz grains with some K-feldspar and muscovite grains. Muscovite (6) commonly expands on cleavage and siderite (7) precipitates there. The cement consists of calcite (1,14), with siderite (3) filling secondary porosity.

1:Quartz 2:Calcite 3:Chloritized Muscovite 4:Quartz 5:Albite + Quartz 6:Chloritized Muscovite 7:Siderite 8:Glaucony 9:Quartz 10:Kaolinite 11:Quartz 12:Chlorite? 13:Mix

Figure 1-6.7: Sample 3H-58 2001.33 (SEM) site 4. This site consists of quartz, chlorite, and rare glaucony grains (8). The cement is made up of calcite (2) with siderite (7) filling secondary porosity. Kaolinite (10) forms some of the ?matrix between quartz grains.

Figure 1-6.8: Sample 3H-58 2001.33 (SEM) site 4.1. This site consists of a lithic clast of quartz (2), chlorite (7), and probably muscovite. The clays between detrital quartz grains (1) seem to be made up of chloritzed muscovite. Siderite (4), titania (3) and calcite (5) appear to be filling voids within the clays.

1:K-feldspar 2:Quartz 3:Quartz 4:Calcite 5:"Ilmenite" 6:Quartz 7:K-feldspar 8:Chloritized Muscovite 9:Glaucony 10:Illite + Chlorite 11:Siderite 12:Calcite 13:K-feldspar 14:Siderite

Figure 1-6.9: Sample 3H-58 2001.33 (SEM) site 5. This site consists of mostly quartz and some K-feldspar (1,7,13), chloritized muscovite (8), and glaucony (9-10). The cement is made up of calcite (4,12) and siderite (11,14) fills secondary porosity.

Figure 1-6.10: Sample 3H-58 2001.33 (SEM) site 5.1. This site contains a lithic clast made up of quartz (1) and chloritized muscovite (2).

Figure 1-6.11: Sample 3H-58 2001.33 (SEM) site 5.2. This site consists of a glaucony grain that has underwent volume reduction (1).

1:Glaucony

Figure 1-6.12: Sample 3H-58 2001.33 (SEM) site 5.3. This site consists of a glaucony (1-2) grain with glauconite (3) rim.

Figure 1-6.13: Sample 3H-58 2001.33 (SEM) site 6. This site consists of mostly quartz, with some K-feldspar (2-3,7,11,15), chloritized muscovite (4,6,9-10,14). Calcite and siderite (12-13) form the cement with siderite being the later phase.

277

Figure 1-6.14: Sample 3H-58 2001.33 (SEM) site 7. This site consists of mainly quartz with some K-feldspar (3-4,8,10), muscovite (5-6) grains. There is also a compacted grain of glaucony (14). The cement between grains is made up of calcite (12), with siderite (11,13) filling secondary porosity.

1:Quartz 2:Smectite? 3:Oligoclase 4:Siderite 5:Calcite 6:Muscovite 7:Calcite 8:Siderite 9:Glaucony 10:Chloritized Muscovite 11:K-feldspar 12:Smectite? 13:Quartz 14:Chloritized Muscovite 15:Quartz 16:K-feldspar 17:"Ilmenite" 18:Siderite

Figure 1-6.15: Sample 3H-58 2001.33 (SEM) site 8. This site consists mainly of quartz grains with some K-feldspar (11,16), oligoclase (3), muscovite (6), and chloritized muscovite (10,14). The cement is made up of calcite (5,7) with siderite (4,8,18) filling secondary porosity. There is also a glaucony grain (9).

Figure 1-6.16: Sample 3H-58 2001.33 (SEM) site 8.1. This site consists of a glauconite pellet (1) that has underwent volume reduction. Siderite (3) precipitates in the space around the pellet.

1:K-feldspar 2:Quartz 3:K-feldspar 4:Calcite 5:Siderite 6:Chloritized Muscovite 7:Muscovite + Chlorite 8:Quartz 9:K-feldspar 10:Albite + Kfeldspar 11:Chloritized Muscovite 12:K-feldspar 13:Quartz 14:Albite 15:Chloritized Muscovite

Figure 1-6.17: Sample 3H-58 2001.33 (SEM) site 9. This site contains quartz, K-feldspar (1,3,9,12), and chloritized muscovite (6,11,15). The cement is made up of calcite (4) with siderite (5) filling secondary porosity.

Figure 1-6.18: Sample 3H-58 2001.33 (SEM) site 9.1. This site consists of a lithic clast made up of a ?muscovite clay with a REE rich mineral forming in the porosity of the clast.

1:Chlorite 2:Fe-clay 3:Siderite

Figure 1-6.19: Sample 3H-58 2001.33 (SEM) site 9.2. This site consists of a probably altered mineral, now made up of chlorite (1), kaolinite cut by siderite, and Fe-clay (2).

Figure 1-6.20: Sample 3H-58 2001.33 (SEM) site 9.3. This site consists of a very fine-grained partially dissolved rhyolite clast made up of quartz with siderite (2) precipitating in the voids around the grain.

1:Quartz 2:Chloritized Muscovite 3:Chlorite + 4:K-feldspar 5:Calcite 6:Siderite 7:Quartz 8:Chlorite + ?Kfeldspar + Kaolinite 9:Chloritized Muscovite 10:K-feldspar 11:Quartz 12:Quartz 13:Chlorite + Kfeldspar

Figure 1-6.21: Sample 3H-58 2001.33 (SEM) site 10. This site consists of mostly of quartz and K-feldspar. Muscovite (2-3,9) has been chloritized. Smectite (8) appears to be alteration product of some grains. The cement consists of calcite (5), and siderite (6) fills secondary porosity.

Figure 1-6.22: Sample 3H-58 2001.33 (SEM) site 11. This site consists of quartz, K-feldspar, and some chloritized muscovite. Calcite (10) is the main cement between grains. Siderite (11,15) and chromite (12-13) appear to fill secondary porosity.

1:Glaucony 2:Chloritized Muscovite 3:Siderite 4:Glauconite

Figure 1-6.23: Sample 3H-58 2001.33 (SEM) site 11.1. This site consists of a grain of a glaucony (1) with volume reduction (voids), and a small patch of glauconite (4), a small chloritized muscovite (2) grain, and late siderite (3) precipitating in the voids.

Figure 1-6.24: Sample 3H-58 2001.33 (SEM) site 11.2. This site consists of a chloritized muscovite lath.

Figure 1-6.25: Sample 3H-58 2001.33 (SEM) site 12. This site consists of quartz (6,10), K-feldspar (1,14-16), oligoclase (3), albite (12), and kaolinite (4). Muscovite (7-9) has been chloritized. Calcite (5) is the main cement between grains. Siderite (2,11,17) appears to partially fill secondary porosity.

Figure 1-6.26: Sample 3H-58 2001.33 (SEM) site 12.1. This site consists of a chloritized muscovite grain with chlorite in the centre of the grian. Siderite precipitates in open space around the grain.

Figure 1-6.27: Sample 3H-58 2001.33 (SEM) site 12.2. This site consists of a K-feldspar (1) grain probably with perthitic albite.

1:K-feldspar

Figure 1-6.28: Sample 3H-58 2001.33 (SEM) site 13. This site again consists mostly of quartz, with some K-feldspar grains. Muscovite has been chloritized. Calcite forms the cement between grains and siderite partially fills secondary porosity.

1:Muscovite 2:?Glaucony

Figure 1-6.29: Sample 3H-58 2001.33 (SEM) site 13.1. This site consists of a ?glaucony (2) pellet with a small relic muscovite (1) grain.

1:Chlorite 2:Chloritized Muscovite 3:Chloritized Muscovite + Kaolinite

Figure 1-6.30: Sample 3H-58 2001.33 (SEM) site 13.2. This site consists of a chloritized muscovite (1) grain that has expanded along cleavage allowing for kaolinite to form (3).

2:Glauconite 3:K-feldspar 4:Calcite 5:K-feldspar 6:Quartz 7:K-feldspar 8:Chloritized Muscovite 9:Quartz 10:Quartz 11:Calcite 12:Muscovite 13:Kaolinite + Chlorite 14:Quartz 15:TiO₂ 16:Siderite 17:Quartz 18:Quartz +

Figure 1-6.31: Sample 3H-58 2001.33 (SEM) site 14. This site consists of mainly quartz with some K-feldspar (3,5,7) grains. Muscovite (12) has mostly been chloritized (8). Titania (15) appears to fill a void. Calcite (4,11) is the cement between grains and siderite (16) partially fills secondary porosity. There is also a granitoid lithic clast made up of quartz (18) and K-feldspar (7), and a glauconite (2) pellet.

Figure 1-6.32: Sample 3H-58 2001.33 (SEM) site 14.1. This site consists of an altered muscovite (1) grain that is altering to kaolinite.

Figure 1-6.33: Sample 3H-58 2001.33 (SEM) site 14.2. This site consists of a glauconite pellet that has underwent volume reduction.

1:Glauconite

Figure 1-6.34: Sample 3H-58 2001.33 (SEM) site 15. This site is similar to previous sites. There is a lithic clast of quartz (13) and K-feldspar (14). There is also a pellet of glauconite (19).

1:Glaucony 2:Glaucony

Figure 1-6.35: Sample 3H-58 2001.33 (SEM) site 15.1. This site consists of a glaucony grain.

Figure 1-6.36: Sample 3H-58 2001.33 (SEM) site 15.2. This site consists of a glaucony grain.

1:Quartz 2:Muscovite 3:TiO₂ +

Figure 1-6.37: Sample 3H-58 2001.33 (SEM) site 15.3. This site consists of a lithic clast made up of muscovite (2) and quartz (1). Titania (3) is later and cross-cuts the muscovite.

Figure 1-6.38: Sample 3H-58 2001.33 (SEM) site 15.4. This site consists of chloritized muscovite.

Figure 1-6.39: Sample 3H-58 2001.33 (SEM) site 16. This site is similar to previous sites. There is altered ilmentie (7), and diagenetic siderite is cut by diagenetic pyrite (8) (position a).

1:Glauconite

Figure 1-6.40: Sample 3H-58 2001.33 (SEM) site 16.1. This site consists of a glauconite pellet.

Figure 1-6.41: Sample 3H-58 2001.33 (SEM) site 17. This site is similar to previous sites. There is a monazite-(Ce) (8) grain which is coated by clays (chlorite?) (7).

Figure 1-6.42: Sample 3H-58 2001.33 (SEM) site 17.1. This site consists of a circular glaucony (1-2) grain that has underwent volume reduction.

1:Quartz

Figure 1-6.43: Sample 3H-58 2001.33 (SEM) site 17.2. This site consists of a dissolved quartz grain, possibly a rhyolite lithic clast.

Figure 1-6.44: Sample 3H-58 2001.33 (SEM) site 18. This site is similar to previous sites. Muscovite is chloritized and there is an igneous lithic clast made up of albite and K-feldspar.

1:Siderite 2:Calcite 3:Siderite 4:Quartz 5:Quartz

Figure 1-6.45: Sample 3H-58 2001.33 (SEM) site 18.1. This site consists of a coated grain (siderite up o siderite) pore filling calcite

Figure 1-6.46: Sample 3H-58 2001.33 (SEM) site 18.2. This site consists of an altered K-feldspar (1) grain, with a ?relic albite (3) grain.

1:Glaucony 2:Quartz

Figure 1-6.47: Sample 3H-58 2001.33 (SEM) site 18.3. This site consists of a glaucony (1) grain with some small grains of quartz (2).

Figure 1-6.48: Sample 3H-58 2001.33 (SEM) site 19. This site is similar to previous sites.

1:Quartz 2:K-feldspar

Figure 1-6.49: Sample 3H-58 2001.33 (SEM) site 19.1. This site consists of a rhyolite lithic clast made up of quartz (1) and K-feldspar (2).

1: Glauconite 2: Quartz

Figure 1-6.50: Sample 3H-58 2001.33 (SEM) site 19.2. This site consists of a glauconite pellet (1) with large quartz (2) grains within it.

1:Quartz 2:K-feldspar 3:Chlorite + ?Kfeldspar 4:Quartz 5:K-feldspar 6:Albite 7:Calcite 8:Chloritized Muscovite 9:Quartz 10:Siderite 11:Calcite

Figure 1-6.51: Sample 3H-58 2001.33 (SEM) site 20. This site consists mainly of quartz. There are some grains of K-feldspar (2), and chloritized muscovite (3,8). There is also an igneous lithic clast made up of K-feldspar (5) and albite (6).

Figure 1-6.52: Sample 3H-58 2001.33 (SEM) site 20.1. This site consists of a grain of oligolcase (1) altering to chlorite (2).

Figure 1-6.53: Sample 3H-58 2001.33 (SEM) site 21. This site is similar to previous sites. Siderite (7,12) partially fills secondary porosity. There is also a detrital ilmenite (11) grain, and a glauconite (3) grain.

Figure 1-6.54: Sample 3H-58 2001.33 (SEM) site 22. This site is similar to previous sites. Muscovite is commonly chloritized, calcite forms the cement, and siderite partially fills secondary porosity.

Figure 1-6.55: Sample 3H-58 2001.33 (SEM) site 22.1. This site consists of a glaucony grain (1-2).

1:Glaucony 2:Glaucony

Figure 1-6.56: Sample 3H-58 2001.33 (SEM) site 22.2. This site consists of a pellet of glaucony (1-2).

Figure 1-6.57: Sample 3H-58 2001.33 (SEM) site 23. This site is similar to previous sites.

Figure 1-6.58: Sample 3H-58 2001.33 (SEM) site 24. This site is similar to previous sites. There is a large grain of altered ilmenite (17) and siderite (11-12) coats a calcite grain (that may have replaced a previous mineral).

Figure 1-6.59: Sample 3H-58 2001.33 (SEM) site 25. This site is similar to previous sites. Muscovite is commonly chloritized and siderite partially fills secondary porosity.

Figure 1-6.60: Sample 3H-58 2001.33 (SEM) site 25.1. This site consists of an altered K-feldspar (1), quartz (5-6) grains, and a coated grain (3) that had been partially dissolved.

1:Fe-Chlorite 2:Fe-Chlorite 3:Quartz + 4:Quartz

Figure 1-6.61: Sample 3H-58 2001.33 (SEM) site 25.2. This site consists of a coated grain that is made up of a nucleus of layered quartz (3-4) with chlorite (2) patches and a coat of chlorite (1).

Figure 1-6.62: Sample 3H-58 2001.33 (SEM) site 26. This site consists mainly of quartz, K-feldspar, and chloritized muscovite. The cement is made up of calcite, and siderite partially fills secondary porosity.

1:Quartz 2:Glaucony 3:Glaucony 4:Fe-chlorite

Figure 1-6.63: Sample 3H-58 2001.33 (SEM) site 26.1. This site consists of a crushed Fe-clay pellet (4) and a pellet of quartz (1) and glaucony (2,3). This probably was originally an Fe-clay that was converted to chamosite (Fe-rich chlorite (4)) through diagenesis.

Figure 1-6.64: Sample 3H-58 2001.33 (SEM) site 27. This site is similar to previous sites. There is also an altered ilmenite (11-12) grain present, and a granitoid lithic clast made up of quartz (9) and K-feldspar (10).

1:Glaucony 2:Glaucony 3:Glaucony 4:Quartz

Figure 1-6.65: Sample 3H-58 2001.33 (SEM) site 27.1. This site consists of grains of glaucony (1-3).

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	Ŀ	ō	Cr203	NiO	As2O3	ZrO2	Cs2O	BaO	La203	Ce2O3	Nd2O3	Er203	Yb203	ThO2	Total	Actual Total
3H-58-2001.33	1	1	Qz	100.00																									100	119
3H-58-2001.33	1	2	Qz	100.00																									100	120
3H-58-2001.33	1	3	Kfs	66.29		17.77					0.45	15.49																	100	114
3H-58-2001.33	1	4	Kfs	66.04		17.91					0.66	15.39																	100	113
3H-58-2001.33	1	5	Qz	100.00																									100	116
3H-58-2001.33	1	6	Kfs	66.28		17.80					0.77	15.15																	100	115
3H-58-2001.33	1	7	Qz	100.00																									100	118
3H-58-2001.33	1	8	Cal				1.10	0.77		54.14																			56	56
3H-58-2001.33	1	9	Cal				0.93	0.49		54.58																			56	57
3H-58-2001.33	1	10	Kfs	66.06		17.61					0.26	16.06																	100	117
3H-58-2001.33	1	11	Sd	0.40			41.37	0.88	7.20	5.63			0.52																56	62
3H-58-2001.33	1	12	Sd	0.54			39.25	1.19	7.40	7.62																			56	62
3H-58-2001.33	1	13	Ms	47.06	0.83	27.53	6.93		1.80		0.53	10.33																	95	106
3H-58-2001.33	1.1	1	Kfs	66.81		17.81					1.45	13.92																	100	118
3H-58-2001.33	1.1	2	Ab	68.82		18.86	0.20			0.50	11.54	0.08																	100	119
3H-58-2001.33	1.1	3	Kfs	66.30		17.80					0.80	15.10																	100	116
3H-58-2001.33	1.1	4	Chl + III	43.18		17.36	28.87		5.14	0.67	1.45	2.12				1.22													100	67
3H-58-2001.33	1.1	5	Ms + Chl	51.25	0.57	27.95	8.68		3.34		0.52	7.36				0.33													100	96
3H-58-2001.33	1.1	6	Kfs	66.26		17.66	0.29					15.80																	100	116
3H-58-2001.33	1.1	7	Cal				1.25	0.67		54.08																			56	55
3H-58-2001.33	1.1	8	Sd	0.73			44.26	1.57	6.74	2.52		0.18																	56	62
3H-58-2001.33	2	1	Qz	100.00																									100	121
3H-58-2001.33	2	2	Kfs	65.43		18.22					1.17	14.02										1.16							100	114
3H-58-2001.33	2	3	Kfs	66.07		17.78					0.67	15.48																	100	113
3H-58-2001.33	2	4	Qz	100.00																									100	121
3H-58-2001.33	2	5	Qz	100.00																									100	121
3H-58-2001.33	2	6	Chl + III	53.98		19.54	17.30		3.24		1.16	3.88				0.91													100	79
3H-58-2001.33	2	7	Chl + Ms	47.80	0.43	30.26	16.26		2.43		0.76	1.36				0.71													100	82
3H-58-2001.33	2	8	Ms	47.18	0.56	32.22	3.50		0.57		0.78	10.19																	95	110
3H-58-2001.33	2	9	Cal				1.48	0.60		53.92																			56	57
3H-58-2001.33	2	10	Sd				40.77	2.28	6.67	5.19	0.51					0.58													56	64
3H-58-2001.33	2	11	Kfs	66.07		17.77					0.56	15.60																	100	118
3H-58-2001.33	2	12	Kfs	66.29		17.98					1.42	14.31																	100	115
3H-58-2001.33	2	13	Qz	100.00																									100	118
3H-58-2001.33	2	14	Cal				0.99	0.60		54.40																			56	56
3H-58-2001.33	2	15	Sd	0.44			39.38	1.20	7.34	7.64																			56	60
3H-58-2001.33	2	16	Sd	0.41			37.03	1.20	8.86	8.50																			56	61
3H-58-2001.33	2	17	"llm"	4.94	61.78	2.48	26.87	2.03	0.90	0.39		0.24				0.37													100	92
3H-58-2001.33	2.1	1	Qz	99.31		0.67						0.02																	100	117
3H-58-2001.33	2.1	2	Qz	99.55			0.45																						100	118
3H-58-2001.33	2.1	3	"llm"	0.49	97.24		0.56													1.71									100	108
3H-58-2001.33	3	1	Cal				1.33	0.80		53.87																			56	54
3H-58-2001.33	3	2	Qz	100.00																									100	116
3H-58-2001.33	3	3	Sd +	6.70		3.86	69.24	2.06	9.12	8.53		0.49																	100	62
3H-58-2001.33	3	4	Chloritized Ms	48.65		26.44	17.49		3.71	0.53	0.79	1.95				0.44													100	80
3H-58-2001.33	3	5	Kfs	66.37		17.71					0.80	15.13																	100	112
3H-58-2001.33	3	6	Ms	47.36	1.08	33.05	1.75		0.84		0.62	10.31																	95	101
3H-58-2001.33	3	7	Sd				44.83	0.93	2.84	5.85			1.55																56	58
3H-58-2001.33	3	8	Chl + Ms	40.49	2.25	20.47	21.88	0.27	8.49		0.51	5.64																	100	95
3H-58-2001.33	3	9	Qz	100.00																									100	119
3H-58-2001.33	3	10	Kln	46.96		36.00	0.40				0.51	2.14																	86	97
3H-58-2001.33	3	11	Sd	0.92		0.54	37.32	1.15	8.24	7.83																			56	61
3H-58-2001.33	3	12	Kln	48.53		36.40	0.93					0.15																	86	83

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	CI	Cr203	NiO	As203	ZrO2	Cs2O	BaO	La2O3	Ce2O3	Nd2O3	Er203	Yb2O3	ThO2	Total	Actual Total
3H-58-2001.33	3	13 Qz		99.80			0.20																						100	110
3H-58-2001.33	3	14 Cal					0.96	0.64		54.40																			56	53
3H-58-2001.33	4	1 Qz		100.00																									100	118
3H-58-2001.33	4	2 Cal					0.81	0.55		54.64																			56	54
3H-58-2001.33	4	3 Chlori	tized Ms	45.21	0.50	25.02	22.78		3.55	0.36	0.78	1.25				0.56													100	86
3H-58-2001.33	4	4 Qz		99.97								0.03																	100	116
3H-58-2001.33	4	5 Ab + 0	Qz	74.33		1.22			4.58	7.42	11.94	0.51																	100	116
3H-58-2001.33	4	6 Chlori	tized Ms	37.88	1.21	20.17	29.24		7.18	0.33	1.09	2.38				0.51													100	84
3H-58-2001.33	4	7 Sd					41.80	0.44	7.22	5.69			0.85																56	61
3H-58-2001.33	4	8 Gly		44.81		12.63	19.18		3.39	0.43	0.64	5.18				0.73													87	63
3H-58-2001.33	4	9 Qz		100.00																									100	119
3H-58-2001.33	4	10 Kln		49.24		35.84	0.42									0.49													86	55
3H-58-2001.33	4	11 Qz		100.00																									100	119
3H-58-2001.33	4	12 Chl ?		43.23		24.36	26.79		3.26	0.57	0.92	0.32				0.55													100	75
3H-58-2001.33	4	13 Mix		30.52		11.82	9.19		2.40	2.77		2.26	21.60			0.76								13.99	4.70				100	79
3H-58-2001.33	4.1	1 Qz		100.00																									100	121
3H-58-2001.33	4.1	2 Qz		97.06		1.81	0.69					0.43			L														100	118
3H-58-2001.33	4.1	3 TiO2 ·	÷	3.49	92.72	2.20	0.79			0.81																			100	103
3H-58-2001.33	4.1	4 Sd		0.44			42.83	0.66	7.82	4.24																			56	57
3H-58-2001.33	4.1	5 Cal					0.91	0.56		54.53																			56	53
3H-58-2001.33	4.1	6 Chl +		52.35	0.77	32.19	10.17		1.61	0.25	0.64	1.31				0.70													100	69
3H-58-2001.33	4.1	7 Chi		34.52		21.03	23.59		3.27	0.27	0.81	0.89				0.62													85	66
3H-58-2001.33	5	1 Kfs		66.29		17.69					0.54	15.48				-													100	109
3H-58-2001.33	5	2 Qz		100.00							-	-				-													100	117
3H-58-2001.33	5	3 QZ		100.00			0.00	0.05		E 4 47																			100	116
3H-58-2001.33	5	4 Cai		0.55	07.45	0.40	0.88	0.65	0.44	54.47		0.75																	56	54
3H-58-2001.33	5	5 1111		8.00	87.15	2.19	0.92		0.44			0.75																	100	105
3H-58-2001.33	5	0 QZ		100.00		47.00					4.00	44.40																	100	114
3H-56-2001.33	5	7 KIS	tized Me	41 17	0.75	17.00	20 02		2.01	0.27	1.30	14.13				0.71													100	9/
24 59 2001 22	5	0 Chi		41.17	0.75	15 22	16.02		2.06	0.37	1.25	1.00				0.71													87	90
24 59 2001 22	5	10 III + C	Ы	43.37		17.22	20 00		5.00	0.30	1.55	4.70				1.26													100	63
3H-58-2001.33	5	11 Sd	111	42.31		17.75	40.51	0.82	7 99	6.69	1.00	1.77				1.20													56	58
3H-58-2001 33	5	12 Cal					12 78	0.86	1.00	41 35																			56	52
3H-58-2001.33	5	13 Kfs		64.90		18 13	12.70	0.00	1.01	41.00	0.86	14 45										1 65							100	112
3H-58-2001.33	5	14 Sd		01.00		10.10	43.02	0.96	7 25	4 54	0.00	1 11 10				0.23													56	58
3H-58-2001.33	5.1	1 Qz		99.78			0.22									0.00													100	121
3H-58-2001.33	5.1	2 Chlori	tized Ms	50.29		18.47	21.79		7.43	0.28	0.75	0.99																	100	102
3H-58-2001.33	5.1	3 Sd					38.18	0.99	8.41	8.42															l				56	60
3H-58-2001.33	5.1	4 Cal					1.13	0.59	-	54.28																			56	55
3H-58-2001.33	5.1	5 Qz		100.00																									100	119
3H-58-2001.33	5.2	1 Gly		37.09		14.62	25.58		4.99	0.56	1.19	1.96				1.02													87	66
3H-58-2001.33	5.3	1 Gly		45.56		14.94	16.30		2.88	0.44	0.82	5.35				0.72													87	78
3H-58-2001.33	5.3	2 Gly		46.26		15.16	14.93		3.01	0.43	1.01	5.10				1.10													87	84
3H-58-2001.33	5.3	3 Glt		42.58		12.96	20.44		2.11	0.60	0.84	6.43				1.04													87	59
3H-58-2001.33	6	1 Qz		100.00																									100	116
3H-58-2001.33	6	2 Kfs		66.38		17.86					1.02	14.74																	100	114
3H-58-2001.33	6	3 Kfs		64.83		18.29					1.06	14.03										1.79							100	115
3H-58-2001.33	6	4 Chlori	tized Ms	42.81	1.25	20.65	25.59		4.50	0.59	1.29	2.31				1.01													100	78
3H-58-2001.33	6	5 Qz		100.00											<u> </u>														100	120
3H-58-2001.33	6	6 Chlori	tized Ms	43.21	0.61	22.40	24.81		4.64	0.28	1.23	1.88				0.93													100	85
3H-58-2001.33	6	7 Kfs		66.24		17.70					0.39	15.68																	100	114
3H-58-2001.33	6	8 Qz		100.00																									100	115

Table 1-6.1: EDS	geochemica	l analyses of	sample 3H-	58 2001.33.
------------------	------------	---------------	------------	-------------

Sample	Site	Position Mineral	Si02	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	C	Cr203	NiO	As203	ZrO2	Cs2O	BaO	La2O3	Ce2O3	Nd2O3	Er203	Yb2O3	ThO2	Total	Actual Total
3H-58-2001.33	6	9 Chloritized Ms	45.10		27.49	21.20		3.26	0.40	1.08	0.49				0.98													100	70
3H-58-2001.33	6	10 Chloritized Ms	40.82		20.69	30.06		4.12	0.86	1.50	1.02				0.94													100	75
3H-58-2001.33	6	11 Kfs	64.70		18.21					1.06	13.94										2.10							100	114
3H-58-2001.33	6	12 Sd				42.11	0.97	6.30	6.05			0.57																56	59
3H-58-2001.33	6	13 Sd	0.40			37.64	1.01	8.67	8.28																			56	62
3H-58-2001.33	6	14 Chloritized Ms	38.88	0.64	18.38	30.55		6.55	0.46	1.62	1.88				1.04													100	83
3H-58-2001.33	6	15 Kfs	66.51		17.62						15.86																	100	119
3H-58-2001.33	7	1 Qz	100.00																									100	119
3H-58-2001.33	7	2 Chl	30.62		13.40	33.00	0.39	4.04	0.45	1.24	0.28				1.59													85	66
3H-58-2001.33	7	3 Kfs	64.58		18.02					0.94	13.99										2.48							100	118
3H-58-2001.33	7	4 Kfs	65.59		17.92					0.68	15.11										0.70							100	117
3H-58-2001.33	7	5 Ms + Chl	50.91		27.85	13.66		2.48	0.36	0.99	2.95				0.81													100	87
3H-58-2001.33	7	6 Ms + Chl	50.73		22.30	16.49		3.36	0.57	1.11	4.51				0.93													100	80
3H-58-2001.33	7	/ QZ	100.00		47.00					0.50	45.00																	100	11/
3H-58-2001.33	7	8 Kts	66.22	0.00	17.80	00.50		E 45	0.44	0.59	15.38				0.74													100	113
3H-58-2001.33	1	9 Chloritized Ms	41.77	0.62	19.96	26.58		5.45	0.44	1.74	2.73				0.71													100	97
311-58-2001.33	/		65.72		17.64	1.07	4.04	7.00	7.00	0.70	14.86																	100	115
3H-58-2001.33	7	11 50	0.46			38.75	1.04	7.90	7.86																			56	60
3H-58-2001.33	7	12 Cal	0.04			1.21	0.63	7.00	34.10																			50	50
3H-58-2001.33	7	13 50	0.61		40.00	38.88	1.02	7.99	7.50	0.04	4 77				0.00													07	00
3H-38-2001.33	/	14 Gly	41.40		19.82	14.39		3.11	0.40	2.24	4.77				0.86													100	110
3H-38-2001.33	8	1 QZ	100.00	0.45	24 04	12.07		2.65	0.41	0.52	E				0.65													100	71
3H-38-2001.33	8	2 Sme /	51.98	0.45	24.81	12.97		2.65	0.41	0.53	0.10			-	0.65													100	115
3H-56-2001.33	0	1 Sd	03.07		22.12	40.52	0.60	7 76	4.71	0.71	0.19																	56	50
311-30-2001.33	0	4 GU				40.55	0.09	1.10	54.29																			56	55
24 59 2001 22	0	6 Mc	46.00	0.70	21 01	2.70	0.00	0.70	34.20	0.46	10.47																	05	102
3H-58-2001.33	8	7 Cal	40.99	0.79	31.01	1.68	0.87	0.79	53.45	0.40	10.47																	56	53
3H-58-2001.33	8	8 Sd				39.57	0.07	8 / 7	7 14																			56	60
3H-58-2001.33	8	9 Glv	1/1 38		14.05	18 //	0.02	2.96	7.14	0.69	5.46				1.03													87	67
3H-58-2001.33	8	10 Chloritized Ms	38.66	1 40	17.46	29.03	0.28	7.09	0.72	0.03	3.94				0.52													100	92
3H-58-2001.33	8	11 Kfs	66.39	1.40	17.40	20.00	0.20	1.00	0.72	1 32	14 52				0.02													100	117
3H-58-2001.33	8	12 Sme ?	56.36		21.83	11.80		2.71	0.84	1.13	4.41				0.92													100	90
3H-58-2001.33	8	13 Qz	100.00						0.0.						0.0-													100	121
3H-58-2001.33	8	14 Chloritized Ms	37.74	1.84	19.40	27.50		6.63	0.45	0.58	5.45				0.39													100	91
3H-58-2001.33	8	15 Qz	100.00																									100	124
3H-58-2001.33	8	16 Kfs	66.24		17.87					0.98	14.92																	100	116
3H-58-2001.33	8	17 "llm"		70.61		28.92			0.47																			100	92
3H-58-2001.33	8	18 Sd	0.46			38.47	1.16	8.37	7.53																			56	62
3H-58-2001.33	8.1	1 Glt	46.21		14.20	16.15		3.05		0.84	5.72				0.84													87	66
3H-58-2001.33	8.1	3 Sd				43.01	0.73	5.26	5.66			1.34																56	59
3H-58-2001.33	9	1 Kfs	66.35		17.49					0.33	15.83																	100	115
3H-58-2001.33	9	2 Qz	100.00																									100	119
3H-58-2001.33	9	3 Kfs	65.94		17.75	0.45				0.44	15.42																	100	111
3H-58-2001.33	9	4 Cal				1.00	0.59		54.41																			56	56
3H-58-2001.33	9	5 Sd	1.02			38.87	2.07	7.07	6.01	0.76					0.20													56	63
3H-58-2001.33	9	6 Chloritized Ms	43.15		22.36	26.02		4.68	0.58	0.80	1.66				0.77													100	74
3H-58-2001.33	9	7 Ms + Chl	53.03		27.22	12.56		2.34	0.41	0.84	2.83				0.76													100	78
3H-58-2001.33	9	8 Qz	98.58		0.59	0.83																						100	109
3H-58-2001.33	9	9 Kfs	66.04		17.60					0.28	16.07																	100	114
3H-58-2001.33	9	10 Ab + Kfs	67.57	0.07	18.43	00.4-	0.05	=		9.86	4.15																	100	118
3H-58-2001.33	9	11 Chloritized Ms	39.23	0.89	16.94	29.42	0.29	7.37	0.54	0.88	4.11			L	0.33		L											100	96
3H-58-2001.33	9	12 Kfs	65.72		17.72					0.48	15.55										0.53							100	119

Table 1-6.1: EDS	geochemical	analyses of	f sample	3H-58 2001	.33.
------------------	-------------	-------------	----------	------------	------

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	OuM	MgO	CaO	Na2O	K20	P205	SO3	ш	ō	Cr203	NiO	As2O3	ZrO2	Cs2O	BaO	La2O3	Ce2O3	Nd2O3	Er203	Yb2O3	ThO2	Total	Actual Total
3H-58-2001.33	9	13	Qz	100.00																									100	123
3H-58-2001.33	9	14	Ab	69.32		18.82				0.27	11.59																		100	119
3H-58-2001.33	9	15	Chloritized Ms	39.34	2.05	17.76	29.76		5.40	0.38	1.12	3.18				1.02													100	77
3H-58-2001.33	9.1	1	Kfs + Chl	53.86		11.83	20.35		3.52	0.64	1.01	8.54				0.24													100	104
3H-58-2001.33	9.1	2	Mnz +	26.60		5.85	11.05		1.85	5.28		4.53	21.77			0.29					1.01			16.32	5.45				100	83
3H-58-2001.33	9.1	3	Mnz +	48.55		11.63	18.76		2.75		0.70	7.38	3.12			0.76							1.66	3.34	1.35				100	78
3H-58-2001.33	9.1	4	Chl + III	48.19	1.59	19.60	20.99		3.25	0.34	1.34	3.60				1.10													100	83
3H-58-2001.33	9.1	5	Chl + III	46.76		21.28	22.33		3.72	0.98	1.62	2.12				1.18													100	81
3H-58-2001.33	9.1	6	Cal				1.02	0.55		54.43																			56	55
3H-58-2001.33	9.1	7	Sd				44.06	1.10	3.77	5.85			1.22																56	59
3H-58-2001.33	9.2	1	Chl	31.48		22.02	14.07	0.41	15.58	0.16	0.48	0.60				0.22													85	95
3H-58-2001.33	9.2	2	Fe-clay	64.92		21.18	8.54		1.75	0.45	0.78	1.99				0.39													100	91
3H-58-2001.33	9.2	3	Sd	0.55			24.83	8.70	4.49	17.25						0.18													56	57
3H-58-2001.33	9.3	1	Qz	99.71			0.29																						100	109
3H-58-2001.33	9.3	2	Sd	0.47			41.93	0.39	7.35	5.04			0.82																56	58
3H-58-2001.33	10	1	Qz	100.00																									100	115
3H-58-2001.33	10	2	Chloritized Ms	46.05		28.69	19.25		2.66	0.60	0.86	1.28				0.61													100	72
3H-58-2001.33	10	3	Chl +	36.43	0.40	17.33	31.54		7.63	0.61	3.87	0.43				1.76													100	93
3H-58-2001.33	10	4	Kfs	65.94		17.65					0.71	15.13										0.57							100	116
3H-58-2001.33	10	5	Cal				1.13	0.67		54.20																			56	56
3H-58-2001.33	10	6	Sd	0.52			38.51	0.95	8.48	7.54																			56	60
3H-58-2001.33	10	7	Qz	100.00																									100	118
3H-58-2001.33	10	8	Chl + ?Kfs + Kln	41.47		26.02	26.00		3.29	0.31	1.03	1.01				0.87													100	57
3H-58-2001.33	10	9	Chloritized Ms	44.44		15.22	23.91		4.45	0.64	1.89	4.05	2.90			0.71								1.79					100	92
3H-58-2001.33	10	10	Kfs	66.43		17.79					0.99	14.79																	100	118
3H-58-2001.33	10	11	Qz	100.00																									100	121
3H-58-2001.33	10	12	Qz	99.78			0.22																						100	118
3H-58-2001.33	10	13	Chl + Kfs	59.02		17.97	13.54		2.63		0.97	4.94				0.93													100	88
3H-58-2001.33	11	1	Kfs	65.40		17.98					0.61	14.97										1.05							100	113
3H-58-2001.33	11	2	07	100.00							0.01	1																	100	114
3H-58-2001.33	11	3	07	100.00																									100	116
3H-58-2001.33	11	4	Chloritized Ms	43.06	0.34	16 25	26 48		7 15	0.46	1.39	4 00				0.88													100	83
3H-58-2001.33	11	5	Qz	100.00	0.01	10.20	20.10			0.10						0.00													100	116
3H-58-2001.33	11	6	07	100.00																									100	117
3H-58-2001.33	11	7	Kin + Chi	49.69		31.09	13 22		2 48	0.43	0.91	0.71				1 47													100	56
3H-58-2001.33	11	8	Qz +	88.93		6.41	2.20		0.40	0.70	0.42	1.47				0.16													100	99
3H-58-2001 33	11	9	Chloritized Ms + 2KIn	49 10	0.51	30.76	14.06		2 18	0.34	0.88	1.52				0.64													100	84
3H-58-2001.33	11	10	Cal		0.01	500	1.15	0.79	0	54.06	0.00					0.04													56	55
3H-58-2001 33	11	11	Sd	1 00			41 80	1 23	6 1 4	5.12	0.48					0.24													56	62
3H-58-2001.33	11	12	Chr			18 81	21 12		10.97	0.63	0.10					0.21	48 47												100	106
3H-58-2001.33	11	13	Chr			19.14	21.30		11.28	0.42							47.85												100	107
3H-58-2001.33	11	14	Chl + Kfs	49.48		23.73	17.07		3.77	0.65	1.23	2.94				1.12													100	76
3H-58-2001.33	11	15	Sd	0.60			42.92	0.99	6.58	4.92						1.1.1													56	58
3H-58-2001,33	11	16	Chloritized Ms	41.08		15.42	21.20		4.16	7.98	2.99	3.86		0.58		2.71													100	90
3H-58-2001 33	11	17	07	100.00								0.00																	100	118
3H-58-2001.33	11.1	1	Glv	44.57		19.02	14.65		3.58	0.40	0.86	3.24				0.68													87	82
3H-58-2001.33	11 1	2	Chloritized Ms	52 44		34 70	7 69		1 26	0.45	0.49	2.68				0.28													100	90
3H-58-2001 33	11 1	3	Sd	02.74		50	43.06	1 0.9	5.65	5.57	0.70		0.62			0.20													56	58
3H-58-2001.33	11.1	4	Glt	47.12		24.59	5.42		2.52	0.31	0.66	6.17	0.02			0.20													87	101
3H-58-2001.33	11.2	1	Chloritized Ms	48.48		31.10	15.48		2.05	0.32	0.75	1.18			1	0,65													100	79
3H-58-2001.33	11.2	2	Chloritized Ms	48.47	0.39	30.86	15.38		2.10	0.30	0.95	1.32				0.21													100	89
3H-58-2001,33	12	1	Kfs	66.21		17.67					0.55	15.57		-		1													100	111
3H-58-2001.33	12	2	Sd	0.67			42.86	2.52	3.35	5.00	0.81					0.81													56	56
		_													_					_	_	_				_	_	_	_	

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	OuM	MgO	CaO	Na2O	K20	P205	SO3	ш	CI	Cr203	NiO	As2O3	ZrO2	Cs2O	BaO	La2O3	Ce2O3	Nd2O3	Er2O3	Yb2O3	ThO2	Total	Actual Total
3H-58-2001.33	12	3	Oligo	66.66		20.25	0.31			2.13	10.51	0.14																	100	112
3H-58-2001.33	12	4	Kln	48.59		37.09										0.33													86	64
3H-58-2001.33	12	5	Cal				0.88	0.52		54.60																			56	53
3H-58-2001.33	12	6	Qz	100.00																									100	116
3H-58-2001.33	12	7	Chloritized Ms	37.04	0.82	17.71	31.75		6.66	0.77	1.01	3.32				0.92													100	73
3H-58-2001.33	12	8	Chl + Kfs?	41.23		19.29	30.57		4.80	0.36	1.63	1.04				1.08													100	81
3H-58-2001.33	12	9	Chloritized Ms	37.84	2.36	18.27	28.15	0.55	7.11	0.76	1.26	3.07				0.63													100	83
3H-58-2001.33	12	10	Qz	100.00																									100	119
3H-58-2001 33	12	11	Sd	0.49			43 11	0.83	4 67	5 59			1.30																56	60
3H-58-2001 33	12	12	Ab	69.09		18 68	0.54	0.00		0.00	11 69																		100	115
3H-58-2001 33	12	13	Sme ?	61.66		11 94	19.97		3 32	0.41	0.91	0.98				0.81													100	58
3H-58-2001 33	12	14	Kfs	66.28		17.86	10.07		0.02	0.11	1.03	14.82				0.01													100	116
3H-58-2001 33	12	15	K fe	65.64		17.00	0.23				0.36	16.06																	100	111
24 59 2001 22	12	16	Kfc	66.24		17.76	0.25				0.00	15.00																	100	114
3H-58-2001.33	12	17	Sd	00.24		17.70	41.00	0.06	7 1 1	602	0.92	13.00						-										-	56	60
3H-58-2001.33	121	1	Chloritized Ms	14 57		24 61	23.27	0.90	3.20	0.93	1.00	1.54				1.09												-	100	65
24 59 2001 22	12.1	2	Chi	22.69		12 00	20.52		5.29	0.55	1.09	0.41				0.97													95	72
311-30-2001.33	12.1	2	Chloritized Ma	46.00		13.80	23.32		3.55	0.05	0.02	1.05				0.07													100	-13
38-56-2001.33	12.1	3		40.20		22.03	23.21		3.79	0.51	0.92	1.95				0.67													100	04
3H-58-2001.33	12.2	1	KIS .	00.73		18.11					1.89	13.28																	100	112
3H-58-2001.33	13	1	QZ	100.00												-													100	110
3H-58-2001.33	13	2	Qz	100.00																									100	119
3H-58-2001.33	13	3	Qz	100.00																									100	116
3H-58-2001.33	13	4	Chloritized Ms	38.04	2.47	21.75	27.61		6.99	0.64	0.93	1.00				0.59													100	88
3H-58-2001.33	13	5	Kfs	66.34		17.72					0.45	15.49																	100	113
3H-58-2001.33	13	6	Cal				0.87	0.61		54.52																			56	54
3H-58-2001.33	13	7	Sd				41.40	0.40	7.57	5.90			0.73																56	60
3H-58-2001.33	13	8	Kfs	65.53		17.85					0.65	14.97										1.00							100	112
3H-58-2001.33	13	9	Chl + III	44.71		22.51	23.32		5.04	0.60	1.25	1.60				0.98													100	71
3H-58-2001.33	13	10	Qz	100.00																									100	116
3H-58-2001.33	13	11	Chloritized Ms	44.94		19.71	24.64		5.14	1.08	1.33	2.48				0.68													100	87
3H-58-2001.33	13	12	Kln	46.48		32.39	4.73		1.10	0.24	0.47	0.30				0.28													86	89
3H-58-2001.33	13	13	Cal				1.08	0.59		54.34																			56	56
3H-58-2001.33	13	14	Qz	100.00																									100	122
3H-58-2001.33	13	15	Chloritized Ms	37.90		19.71	31.29		8.39	0.51	1.08	0.37				0.76													100	82
3H-58-2001.33	13.1	1	Ms	48.39	0.33	32.70	2.26		0.89		0.36	10.06																	95	101
3H-58-2001.33	13.1	2	?Gly	44.58	0.98	21.88	23.41		4.93	0.63	0.91	1.84				0.84													100	71
3H-58-2001.33	13.2	1	Chl	32.61		17.07	26.58		6.29	0.38	1.00	0.47				0.60													85	78
3H-58-2001.33	13.2	2	Chloritized Ms	43.38		25.19	23.18		5.62	0.43	0.96	0.39				0.85													100	63
3H-58-2001.33	13.2	3	Chloritized Ms + Kln	46.56		29.86	17.15		4.27	0.51	0.85	0.23				0.58													100	74
3H-58-2001.33	14	1	Qz	100.00																									100	118
3H-58-2001.33	14	2	Glt	47.51		13.61	14.96		2.98		0.93	6.10				0.90													87	65
3H-58-2001.33	14	3	Kfs	66.35		17.55					0.44	15.66																	100	113
3H-58-2001.33	14	4	Cal				1.02	0.56		54.42																			56	54
3H-58-2001.33	14	5	Kfs	65.85		17.81	0.39				0.62	15.32																	100	112
3H-58-2001.33	14	6	Qz	100.00																									100	116
3H-58-2001.33	14	7	Kfs	66.69		17.47	0.21					15.63																	100	111
3H-58-2001.33	14	8	Chloritized Ms	41.54		19.93	28.19		5.63	0.56	1.56	2.31				0.27													100	95
3H-58-2001.33	14	9	Qz	100.00																									100	121
3H-58-2001.33	14	10	Qz	99.30			0.27			0.43																			100	120
3H-58-2001.33	14	11	Cal				1.12	0.69		54.19																			56	56
3H-58-2001.33	14	12	Ms	45.08	0.43	32.45	7.48		1.08		0.88	7.44				0.16													95	104
3H-58-2001.33	14	13	Kln + Chl	51.04		35.36	10.03		1.38	0.31	0.71	0.52				0.65						_							100	71
3H-58-2001.33	14	14	Qz	100.00																									100	118

Table 1-6.1: EDS geochemical analyses of sample 3H-58 2001.33.

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	Ŀ	CI	Cr203	NiO	As2O3	ZrO2	Cs2O	BaO	La2O3	Ce2O3	Nd2O3	Er203	Yb2O3	ThO2	Total	Actual Total
3H-58-2001.33	14	15	TiO2	0.84	96.95		1.65			0.55																			100	103
3H-58-2001.33	14	16	Sd				41.16	0.60	9.21	5.03																			56	60
3H-58-2001.33	14	17	Qz	100.00																									100	116
3H-58-2001.33	14	18	Qz +	84.20		7.22	2.79		0.45	0.24	0.38	4.53				0.20													100	101
3H-58-2001.33	14.1	1	"Ms"	52.87		37.83	6.97		1.17		0.61	0.20				0.34													100	89
3H-58-2001.33	14.2	1	Glt	47.92		13.30	14.51		3.02	0.37	0.87	5.98				1.03													87	67
3H-58-2001.33	15	1	Kfs	65.54		18.08					0.94	14.75										0.69							100	115
3H-58-2001.33	15	2	Qz	100.00																									100	116
3H-58-2001.33	15	3	Kln + Chl	49.45		34.58	11.64		2.11	0.31	0.73	0.85				0.33													100	89
3H-58-2001.33	15	4	Kfs	66.24		17.92					0.64	15.20																	100	116
3H-58-2001.33	15	5	Cal				1.32	0.77		53.91																			56	55
3H-58-2001.33	15	6	Sd				40.20	0.96	7.58	7.26																			56	59
3H-58-2001.33	15	7	?Chl + Kfs	54.60	0.32	19.19	16.09		3.54	0.34	1.45	3.46				1.00													100	83
3H-58-2001.33	15	8	Qz +	87.71	0.34	6.44	2.09		1.28	0.17	0.53	1.45																	100	118
3H-58-2001.33	15	9	Kfs	66.06		17.82					0.66	15.46																	100	112
3H-58-2001.33	15	10	Sd	1.00			44.82	0.93	4.63	3.91	0.49					0.22													56	57
3H-58-2001.33	15	11	Chl +	35.05		15.65	39.05	0.52	5.43	0.85	1.52	0.68				1.26													100	66
3H-58-2001.33	15	12	Chl + ?Kfs	34.14		15.06	29.65		4.62	11.62	2.39	1.42		0.61		0.49													100	77
3H-58-2001.33	15	13	Qz	100.00																									100	122
3H-58-2001.33	15	14	Kfs +	62.59		16.78	0.30				0.39	14.31	3.32											2.31					100	117
3H-58-2001.33	15	15	Chl + ?Kfs	42.60		23.91	25.59		4.14	0.49	1.25	0.82				1.19													100	84
3H-58-2001.33	15	16	Qz	100.00																									100	124
3H-58-2001.33	15	17	Kfs +	70.22	0.38	18.76	2.53		1.31		0.38	6.42																	100	114
3H-58-2001.33	15	18	Kfs	66.59		17.66					1.38	14.37																	100	118
3H-58-2001.33	15	19	Glt	46.42		14.42	15.30		2.75	0.40	0.82	6.03				0.86													87	67
3H-58-2001.33	15.1	1	Gly	42.56		16.19	14.04		3.05	0.40	2.91	2.85	0.77			4.22													87	83
3H-58-2001.33	15.1	2	Gly	42.56	0.97	17.37	16.63		3.73	0.44	1.42	3.59				0.29													87	95
3H-58-2001.33	15.2	1	Glt	46.68		14.36	15.75		2.52	0.37	0.67	5.97				0.70													87	66
3H-58-2001.33	15.2	2	Glv	46.76		14.64	15.04		2.70	0.39	0.72	5.62				1.12													87	71
3H-58-2001.33	15.3	1	Qz	99.83						0.17																			100	116
3H-58-2001.33	15.3	2	Ms	52.27	0.36	28.79	2.26		1.78		0.28	9.27																	95	106
3H-58-2001.33	15.3	3	TiO2 +	1.72	96.67	0.83	0.44			0.33		0.2.																	100	105
3H-58-2001.33	15.4	1	Chloritized Ms	45.52		21.67	24.65		3.78	0.42	1.58	1.98				0.41													100	93
3H-58-2001.33	15.4	2	Chl	34.57		16.60	26.30		3.98	0.47	1.05	1.07				0.96													85	62
3H-58-2001.33	15.4	3	Chloritized Ms	44.63		21.42	25.26		4.21	0.68	1.14	1.94				0.72													100	78
3H-58-2001.33	16	1	Ms	50.66	0.40	26.48	4.22		2.47		0.30	10.47																	95	107
3H-58-2001.33	16	2	Qz	100.00																						1			100	118
3H-58-2001.33	16	3	Kfs	64.89		18.03	0.44				0.30	15.08										1.26							100	114
3H-58-2001.33	16	4	Cal				1.20	0.60		54.20																1			56	54
3H-58-2001.33	16	5	?Kfs + Chl	53.17		20.72	14.12		2.88		0.59	7.85				0.67													100	80
3H-58-2001.33	16	6	Gly	45.17		13.34	17.72		2.92		0.91	5.49				1.44	-												87	55
3H-58-2001.33	16	7	"llm"	1.71	66.27	0.89	28.43	2.45		0.24																			100	91
3H-58-2001.33	16	8	Pv	0.20			25.70							68.28				1.34	3.21							1.26			100	223
3H-58-2001.33	16	9	Qz	100.00																									100	121
3H-58-2001.33	16	10	Chl + Ms	34.32		15.38	31.90	0.29	5.00	7.13	3.35	0.76				1.86													100	93
3H-58-2001.33	16	11	Chl + ?Kfs	47.61		19.74	21.45	2.20	4.62	0.48	1.41	3.20				1.48													100	71
3H-58-2001 33	16	12	07	100.00								0.20																	100	115
3H-58-2001 33	16	13	Qz	100.00																									100	115
3H-58-2001 33	16	14	Kfs	65.99		18.11					0.83	15.07																	100	111
3H-58-2001.33	16	15	Qz	100.00							0.00																		100	115
3H-58-2001.33	16	16	Kfs	66.33		17.72					0.69	15.25																	100	115
3H-58-2001.33	16.1	1	Glt	46.21		12.90	17.26		2,98		0.89	5.78				0,97													87	64
3H-58-2001.33	17	1	Qz	100.00												1													100	119
																														_

Table 1-6.1: EDS geochemical analyses of sample 3H-58 2001.33.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	C	Cr203	NiO	As2O3	ZrO2	Cs2O	BaO	La203	Ce2O3	Nd2O3	Er203	Yb2O3	ThO2	Total	Actual Total
3H-58-2001.33	17	2	Kfs	66.47		17.69					1.04	14.79																	100	115
3H-58-2001.33	17	3	Cal				0.72	0.57		54.71																			56	55
3H-58-2001.33	17	4	Sd				41.80	1.00	7.81	5.39																			56	60
3H-58-2001 33	17	5	Chloritized Ms	45.37	1.03	32 07	10.51		1.31		0.75	8.97																	100	94
3H-58-2001 33	17	6	Chloritized 2Kfs	/0.01	1100	17 77	22.58		3.58	0.57	1.03	4.63				0.82													100	67
311-30-2001.33	17	7	Chi i	20.00		16.90	22.00		6.57	0.07	1.00	4.00				0.02													100	77
3H-56-2001.33	17			39.00		10.00	33.94		0.57	0.01	1.32	0.90	20 52		0.05	0.60		0.00					45.07	24.00	40.50			4.04	100	
3H-58-2001.33	17	8	IVINZ	0.71						1.35			30.53		-0.05			-0.09					15.97	31.02	10.53			4.04	100	96
3H-58-2001.33	17	9	Qz	100.00																									100	114
3H-58-2001.33	17	10	Qz	98.53		0.82	0.26					0.39																	100	117
3H-58-2001.33	17	11	Kfs	65.69		17.43	1.12				0.64	15.13																	100	108
3H-58-2001.33	17	12	Qz	100.00																									100	116
3H-58-2001.33	17	13	Kfs	66.40		17.73					0.55	15.32																	100	115
3H-58-2001.33	17	14	Cal				1.28	1.14		53.58																			56	54
3H-58-2001 33	17	15	Kfs	66 29		17 71					0.81	15 18																	100	114
3H-58-2001 33	17.1	1	Gly	37.04	0.70	16.63	20.64		6.02	0.35	0.01	2 98				0.67													87	86
24 59 2001 22	17.1	2	Chy	12 11	0.73	16.66	15 42		2.00	2.59	1 20	2.00				0.07													07	97
311-30-2001.33	17.1	4	07	43.41	-	10.00	13.42		2.99	2.50	1.23	0.07				0.70													100	116
3H-36-2001.33	17.2	-	02	99.93								0.07																	100	110
3H-58-2001.33	18	1	QZ	100.00																									100	119
3H-58-2001.33	18	2	Ab	69.61		18.77					11.62																		100	115
3H-58-2001.33	18	3	Kfs	66.01	0.26	17.80					0.64	15.28																	100	114
3H-58-2001.33	18	4	Kfs	64.52		17.54	0.59			2.20	0.70	14.45																	100	111
3H-58-2001.33	18	5	Cal				0.88	0.49		54.63																			56	57
3H-58-2001.33	18	6	Sd				43.33	1.06	5.95	5.67																			56	60
3H-58-2001 33	18	7	Kfs	66 25		17 78			0.00		0.71	15.26																	100	113
3H-58-2001 33	18	8	Sd	0.81			38 70	1 27	7 73	7 4 9	0.7 1	10.20																	56	61
24 59 2001 22	10	0	Chi	21.75	0.45	12 97	20.60	0.20	6.09	0.92	1.02	0.52				0.50													95	75
24 59 2001 22	10	10	64	51.75	0.45	13.07	23.00	0.00	6.52	0.02	1.02	0.52	0.52			0.55													56	60
3H-56-2001.33	10	10	Su	400.00			41.44	0.95	0.55	0.00			0.55																30	00
3H-58-2001.33	18	11	QZ	100.00												0.40													100	119
3H-58-2001.33	18	12	Chloritized ?Kfs	44.72	0.60	18.94	24.25		5.64	0.79	0.79	3.77				0.49													100	80
3H-58-2001.33	18	13	Qz	100.00																									100	116
3H-58-2001.33	18.1	1	Sd	1.69		0.78	37.95	1.09	7.28	7.22																			56	62
3H-58-2001.33	18.1	2	Cal				1.07	0.39	0.55	53.99																			56	57
3H-58-2001.33	18.1	3	Sd				43.85	1.34	3.43	6.03			1.36																56	61
3H-58-2001.33	18.1	4	Qz	99.64			0.32					0.04																	100	117
3H-58-2001.33	18.1	5	Qz	100.00																									100	119
3H-58-2001 33	18.1	6	Cal				1 43	0.80		53 78																			56	56
3H-58-2001 33	18.2	1	Kfs	65 45		17 75	0.24	0.00		300	0.40	15 47										0.68							100	114
3H-58-2001 22	18.2	2	Chi	33 01		16.50	28.00		1 32	0.60	0.40	0.50				1.07						5.00				<u> </u>			85	69
24 59 2001 22	10.2	2	Δh	60.24		19.50	0.00		7.52	0.00	11 01	0.39				1.07		1											100	112
311-30-2001.33	10.2	3		42.27		17.00	17 70		4 7 4	0.20	1.01	2.04				0.04													07	76
30-38-2001.33	10.3	1	Giy	42.37		17.06	11.12		4.74	0.39	1.00	2.91				0.81		l								-			0/	10
3H-58-2001.33	18.3	2	QZ	99.68			0.32																						100	117
3H-58-2001.33	19	1	Qz	100.00																									100	120
3H-58-2001.33	19	2	Cal				0.91	0.62		54.48																			56	56
3H-58-2001.33	19	3	Cal				1.71	0.85		53.44																			56	55
3H-58-2001.33	19	4	Sd	0.58			38.41	1.69	6.69	8.64																			56	60
3H-58-2001.33	19	5	Chloritized Ms	43.52		22.97	25.32		4.33	0.58	1.46	1.36				0.46													100	87
3H-58-2001.33	19	6	Qz	99.77			0.23																				1	1	100	118
3H-58-2001.33	19	7	Glt	46.17		12.93	17.33		2.70		0.72	6.18				0.98													87	66
3H-58-2001 33	19	8	Kfs	66 25		17 54			0		0.41	15.80																	100	113
3H-58-2001 33	19	9	Kfs	66 19		17 78					0.33	15.00						1											100	119
3H-58-2001 22	10	10	Chloritized Ms	36.36	0.72	18 10	35.87		5.01	0.81	0.00	1 17				1.00		-									-	-	100	77
24 59 2001 22	10	11		00.00	0.72	10.10	0.20		5.01	0.01	0.30	1.17				1.00		<u> </u>								-	<u> </u>		100	121
011-00-2001.33	19	11	Q42	99.80		00.00	0.20		0.07		0.00	0.00									-					<u> </u>			100	121
38-58-2001.33	19	12	Sille	44.22		22.93	3.52		2.37		0.30	0.66						1								1	1		80	105

Table 1-6.1: EDS geochemical analyses of sample 3H-58 2001.33

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	ū	Cr203	NiO	As2O3	ZrO2	Cs2O	BaO	La2O3	Ce2O3	Nd2O3	Er203	Yb2O3	ThO2	Total	Actual Total
3H-58-2001.33	19	13	Qz +	92.78	0	4.69	0.78		0.26			1.49																	100	114
3H-58-2001.33	19.1	1	Qz	99.96																							0.04		100	119
3H-58-2001.33	19.1	2	Kfs	67.96		17.21	0.48				0.30	14.05																	100	113
3H-58-2001.33	19.2	1	Glt	47.47		17.91	11.72		2.65		0.96	5.94				0.36													87	85
3H-58-2001.33	19.2	2	Qz	99.79			0.21																						100	115
3H-58-2001.33	20	1	Qz	100.00																									100	123
3H-58-2001.33	20	2	Kfs	66.19		17.69					0.34	15.78																	100	116
3H-58-2001.33	20	3	Chl + ?Kfs	47.27		18.26	23.66		3.54	0.48	1.34	3.97				1.48													100	67
3H-58-2001.33	20	4	Qz	100.00																									100	119
3H-58-2001.33	20	5	Kfs	65.60		17.80	0.24		0.07	1.00	0.34	15.42										0.60							100	115
3H-58-2001.33	20	6	AD	66.81		19.55	1.61	0.05	0.37	1.23	10.43																		100	117
3H-58-2001.33	20	/	Cal	47.45	0.44	07.05	1.40	0.85	2.00	53.69	0.07	4.55				0.00													100	00
31-50-2001.33	20	0		47.45	0.41	27.95	0.26		3.22	0.51	0.97	1.55				0.65													100	120
24 59 2001 22	20	10	QZ 64	99.74			12 90	1 20	4 27	5 50			1 1 2																56	60
3H-58-2001.33	20	10	Cal				43.69	0.51	4.27	54.64			1.13																56	57
3H-58-2001.33	20 1	1	Oligo	66.73		20.44	0.00	0.51		2 1 2	10.35																		100	112
3H-58-2001.33	20.1	2	Chl + Feld	43 59		21.58	25 54		5 16	0.60	1 44	1 21				0.87													100	80
3H-58-2001.33	20.1	1	07	100.00		21.00	20.04		0.10	0.00	1.44	1.21				0.07													100	116
3H-58-2001.33	21	2	Cal	100.00			1.50	0.88		53.62																			56	54
3H-58-2001.33	21	3	Glt	45.82		13.63	16.61	0.00	2 70	0.44	0.67	6.22				0.90													87	70
3H-58-2001.33	21	4	Kfs	66.14		17.75	10.01		2.70	0	0.51	15.61				0.00													100	116
3H-58-2001.33	21	5	Kfs	66.04	0.24	17.76					0.64	15.33																	100	115
3H-58-2001.33	21	6	Cal				1.42	0.81		53.77																			56	55
3H-58-2001.33	21	7	Sd				40.72	1.16	7.60	6.52																			56	60
3H-58-2001.33	21	8	Kfs	65.80		17.80					0.89	14.77										0.74							100	113
3H-58-2001.33	21	9	Qz	100.00																									100	119
3H-58-2001.33	21	10	Chl + ?Kfs	39.99		17.07	33.43		6.21	0.66	1.10	1.03				0.50													100	74
3H-58-2001.33	21	11	llm		58.38		36.36	0.60	4.66																				100	105
3H-58-2001.33	21	12	Sd				38.95	1.06	8.72	7.27																			56	62
3H-58-2001.33	21	13	Chloritized ?Kfs	42.11		22.85	27.05		4.81	0.71	1.01	0.72				0.74													100	80
3H-58-2001.33	21	14	Qz	100.00																									100	120
3H-58-2001.33	21	15	Kfs	66.45		17.83					1.24	14.47																	100	116
3H-58-2001.33	21	16	Kln + Chl	53.76		39.74	4.73		0.73	0.22	0.49					0.33													100	89
3H-58-2001.33	21	17	Kfs	66.27		17.73					0.71	15.30																	100	115
3H-58-2001.33	22	1	Chloritized Ms	48.85		28.26	16.81		2.72	0.45	1.05	1.53				0.34													100	96
3H-58-2001.33	22	2	KIS	66.24		17.39					0.33	16.04																	100	115
3H-58-2001.33	22	3	NIS Cal	66.16		17.92	0.04	0.40		54.00	1.22	14.70																	100	114 F6
3H-58-2001.33	22	4	Chu	44.44	-	27.00	0.64	0.43	4 75	0.27	0.74	0.60		-	-	0.44									-	-	-		00	00
3H-58-2001.33	22	0 6		44.14		27.00	11.31		1.75	0.37	0.71	0.69				0.44						-							100	117
3H-58-2001.33	22	7	S4	100.00			38.84	1.08	8.26	7.82																			56	50
3H-58-2001.33	22	2	Gly	/3.01		13 10	16 73	1.00	3.02	0.67	0.01	5.21	1 / 1			0.88								1 15					87	71
3H-58-2001.33	22	0	07	100.00		13.10	10.73		0.02	0.07	0.31	0.21	1.41	-		0.00								1.15	-	-			100	118
3H-58-2001 33	22	10	Kfs	66 29		17 89					1 27	14.55				1													100	118
3H-58-2001 33	22	11	Qz	100.00		17.00					1.21	14.00			-														100	123
3H-58-2001.33	22	12	Cal	1.00.00			1.24	0.83		53.93						1													56	57
3H-58-2001.33	22	13	Cal				1.10	0.60		54.29						1													56	54
3H-58-2001.33	22.1	1	Gly	41.75		24.27	15.46		2.38	0.66	0.92	1.03	1			0.53													87	84
3H-58-2001.33	22.1	2	Gly	45.31		16.34	15.53		3.10	0.66	0.81	4.55	1			0.70													87	70
3H-58-2001.33	22.2	1	Gly	47.38		13.54	15.56		3.03	0.42	0.79	5.77				0.51	1		1				1						87	86
3H-58-2001.33	22.2	2	Gly	45.38		13.70	17.21		3.17	0.51	0.90	5.46				0.66													87	71
3H-58-2001.33	23	1	Qz	100.00																									100	118

Table 1-6.1: EDS	geochemical	analyses of	f sample 3	3H-58 2001.33.
------------------	-------------	-------------	------------	----------------

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	н	C	Cr203	NiO	As2O3	ZrO2	Cs2O	BaO	La2O3	Ce2O3	Nd2O3	Er203	Yb2O3	ThO2	Total	Actual Total
3H-58-2001.33	23	2	Sd	0.48			43.41	0.63	7.42	3.49			0.58																56	60
3H-58-2001.33	23	3	Kfs	65.99		17.71	0.23				0.41	15.66																	100	115
3H-58-2001.33	23	4	Chloritized Ms	43.51		24.70	25.11		3.91	0.50	1.00	0.55				0.73													100	78
3H-58-2001.33	23	5	Chloritized Ms	39.12	0.68	19.28	30.17		6.70	0.38	0.72	2.31				0.63													100	76
3H-58-2001.33	23	6	Qz	100.00																									100	119
3H-58-2001.33	23	7	Kfs	66.39		17.89					0.70	15.02																	100	116
3H-58-2001.33	23	8	Cal				0.93	0.57		54.50																			56	57
3H-58-2001.33	23	9	Chloritized Ms	45.05		25.77	22.59		3.83	0.27	0.95	1.13				0.41													100	90
3H-58-2001.33	23	10	Cal				1.55	0.95		53.50																			56	55
3H-58-2001.33	23	11	Qz	100.00																									100	120
3H-58-2001.33	23	12	Kfs	65.62		17.78					0.62	15.39										0.59							100	117
3H-58-2001.33	23	13	Kfs	66.24		17.66					0.52	15.58																	100	118
3H-58-2001.33	23	14	Sd				42.86	0.80	5.42	5.67			1.27																56	63
3H-58-2001.33	24	1	Kln +	54.80		37.20	5.45		0.76		0.51	0.55				0.73													100	79
3H-58-2001.33	24	2	Cal	0		5	0.95	0.73	00	54.32	0.01	0.00				1 5													56	58
3H-58-2001.33	24	3	Qz	100.00			0.00	00		5																			100	123
3H-58-2001.33	24	4	Kin	48.68		37.32																							86	96
3H-58-2001 33	24	5	Sd	0.55		07.02	36.94	1.05	8 98	8 4 8																			56	59
3H-58-2001 33	24	6	K fe	66.22		17 00	00.04	1.00	0.00	0.40	0.71	15 17																	100	116
24 59 2001 22	24	7	Kis	66.46		17.30					1 20	14.50																	100	117
31-30-2001.33	24	0		00.40		17.75	1 22	0.75		E4 02	1.30	14.50																	56	56
31-30-2001.33	24	0		00.57			0.20	0.75		0.03																			100	120
3H-58-2001.33	24	9	QZ	99.57			0.20	0.40	0.70	0.23	0.07			0.50															56	57
3H-58-2001.33	24	10	Cal				0.88	0.48	0.73	52.95	0.37			0.59															00	5/
3H-58-2001.33	24	11	Sd				40.75	1.51	6.37	7.37			4.00																00	61
3H-58-2001.33	24	12	Sd				44.03	1.29	3.76	5.61			1.32																56	62
3H-58-2001.33	24	13	Sd	0.60			47.02	1.62	5.50	1.25																			56	63
3H-58-2001.33	24	14	Chloritized Ms	40.31	1.72	20.86	23.54		7.91	0.61	1.16	3.28				0.62													100	97
3H-58-2001.33	24	15	Qz	100.00																									100	121
3H-58-2001.33	24	16	Chl + Ms	45.26		25.14	18.88		3.73	0.56	1.08	4.42				0.95													100	70
3H-58-2001.33	24	17	TiO2	0.92	97.11	0.60	1.07			0.30																			100	104
3H-58-2001.33	25	1	Qz	100.00																									100	121
3H-58-2001.33	25	2	Qz	100.00																									100	120
3H-58-2001.33	25	3	Cal				1.15	0.77		54.08																			56	56
3H-58-2001.33	25	4	Kfs	66.14		17.94					0.91	15.01																	100	118
3H-58-2001.33	25	5	Chloritized Ms	48.12		30.47	14.81		2.49	0.32	1.60	1.07				1.11													100	99
3H-58-2001.33	25	6	Chloritized Ms	38.01	0.71	17.69	32.54		7.00	0.47	1.05	1.85				0.68													100	82
3H-58-2001.33	25	7	Sd	0.71			37.51	1.09	8.67	8.01																			56	62
3H-58-2001.33	25	8	Chloritized Ms	45.44		25.07	21.58		4.42	0.36	0.81	1.59				0.71													100	86
3H-58-2001.33	25	9	Kfs	66.00		18.42					1.80	13.19										0.59							100	120
3H-58-2001.33	25	10	Chl + III	47.69		16.63	24.28		4.65	0.59	1.14	3.88				1.14													100	70
3H-58-2001.33	25	11	Chloritized Ms	45.18		25.20	19.75		3.55		1.24	4.50				0.58													100	94
3H-58-2001.33	25	12	Kfs	65.61		18.10					0.83	14.53										0.93							100	118
3H-58-2001.33	25	13	Kfs	66.28		17.62					0.42	15.69																	100	123
3H-58-2001.33	25	14	Cal				0.61	0.44		54.95																			56	58
3H-58-2001.33	25	15	Kfs	66.37		17.71					0.71	15.06				0.15													100	116
3H-58-2001.33	25	16	Kfs	66.40		18.01					1.11	14.48																	100	116
3H-58-2001.33	25.1	1	Kfs	66.45		17.59						15.96																	100	119
3H-58-2001.33	25.1	2	Qz	100.00																									100	124
3H-58-2001.33	25.1	3	Chl	31.79		20.36	26.81		3.21	0.39	0.81	0.49				1.13													85	48
3H-58-2001.33	25.1	4	Sd				42.50	1.05	5.96	5.71			0.77																56	63
3H-58-2001.33	25.1	5	Qz +	90.96		4.84	2.04	-	0.52		0.26	1.37																	100	117
3H-58-2001.33	25.1	6	Qz +	96.03		1.53	1.97		0.28			0.06				0.14													100	115
3H-58-2001.33	25.1	7	Cal				0.39	0.42		55.19																			56	58

|--|

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	C	Cr203	NiO	As2O3	ZrO2	Cs2O	BaO	La2O3	Ce2O3	Nd2O3	Er203	Yb2O3	ThO2	Total	Actual Total
3H-58-2001.33	25.2	1	Fe-Chl	44.27		23.07	24.27		3.89	0.56	1.14	1.96				0.84													100	75
3H-58-2001.33	25.2	2	Fe-Chl	38.33		17.53	34.74		4.49	0.69	1.65	0.69				1.88													100	70
3H-58-2001.33	25.2	3	Qz +	91.07		4.62	2.25		0.46		0.30	1.29																	100	108
3H-58-2001.33	25.2	4	Qz	98.10		1.24	0.60					0.06																	100	113
3H-58-2001.33	26	1	Kfs	66.27		17.81					0.68	15.25																	100	118
3H-58-2001.33	26	2	Kfs	66.15		17.62					0.45	15.77																	100	118
3H-58-2001.33	26	З	Cal				0.88	0.43		54.70																			56	57
3H-58-2001.33	26	4	Sd				37.75	1.01	8.50	8.74																			56	61
3H-58-2001.33	26	5	Chloritized Ms	50.35		33.51	11.98		2.00	0.46	0.72	0.46				0.52													100	92
3H-58-2001.33	26	6	Qz	100.00																									100	120
3H-58-2001.33	26	7	Qz	100.00																									100	124
3H-58-2001.33	26	8	Sme ?	47.78		29.51	15.30		2.22	0.37	0.91	3.26				0.64													100	76
3H-58-2001.33	26	9	Kfs	66.35		17.60					0.62	15.43																	100	118
3H-58-2001.33	26	10	Qz	100.00																									100	120
3H-58-2001.33	26	11	Gly	43.68		20.33	12.40		2.92	0.36	1.68	5.03				0.60													87	101
3H-58-2001.33	26	12	Kfs	65.87		17.82					0.66	14.83										0.82							100	117
3H-58-2001.33	26	13	Cal				0.90	0.51		54.59																			56	59
3H-58-2001.33	26	14	Sd	1.24			43.65	3.98	2.12	3.96	0.72					0.33													56	70
3H-58-2001.33	26	15	Chloritized Ms	39.54	0.68	17.19	31.03		6.77	0.68	1.11	2.76				0.24													100	98
3H-58-2001.33	26.1	1	Qz	100.00																									100	116
3H-58-2001.33	26.1	2	?Gly	39.83	0.77	18.01	31.69	0.31	5.55	0.79	1.19	1.01				0.85													100	75
3H-58-2001.33	26.1	3	?Gly	41.78		19.55	29.27		5.40	0.66	1.24	1.15				0.94													100	57
3H-58-2001.33	26.1	4	Fe-Chl	42.32		27.06	25.37		2.47		0.53	1.16				1.10													100	49
3H-58-2001.33	27	1	Qz	100.00																									100	122
3H-58-2001.33	27	2	Kfs	66.38		17.85					1.24	14.53																	100	118
3H-58-2001.33	27	3	Kfs	63.68		18.70					1.59	12.44										3.59							100	115
3H-58-2001.33	27	4	Cal				0.94	0.41		54.66																			56	55
3H-58-2001.33	27	5	Sd				42.53	0.94	6.97	5.57																			56	61
3H-58-2001.33	27	6	Qz	100.00																									100	120
3H-58-2001.33	27	7	Gly	44.76		12.06	19.08		3.50	0.41	1.13	5.08				0.97													87	68
3H-58-2001.33	27	8	111	54.16	0.41	28.83	6.32		1.98		0.60	7.52				0.18													100	96
3H-58-2001.33	27	9	Qz	100.00																									100	121
3H-58-2001.33	27	10	Kfs	68.27		16.71						15.03																	100	116
3H-58-2001.33	27	11	Qz	99.73	0.27																								100	122
3H-58-2001.33	27	12	TiO2	1.23	90.73	4.47	1.35			0.70	0.52		1.00																100	96
3H-58-2001.33	27	13	Chloritized Ms +	40.23	14.13	20.91	17.46		3.19	0.77	1.25	1.62				0.44													100	89
3H-58-2001.33	27	14	Kfs	66.29		17.83					0.79	15.09																	100	114
3H-58-2001.33	27	15	Qz	100.00																									100	118
3H-58-2001.33	27.1	1	Gly	43.55		17.91	14.56		2.98	1.02	0.80	5.47				0.71													87	69
3H-58-2001.33	27.1	2	Gly	44.37		11.57	19.80		3.34	0.47	0.97	5.02				1.44													87	60
3H-58-2001.33	27.1	3	Gly	45.79		11.46	18.00		3.41	1.10	0.84	5.63				0.77													87	69
3H-58-2001.33	27.1	4	Qz	99.77			0.23																						100	114
								Notes																						
								1. + inc	dicates	more th	han one	e miner	al prese	ent																
								2. " " in	dicates	altere	d grain																			
								3. Gly I	refers t	o the m	ixture g	laucon	у																	

Table 1-6.1: EDS geochemical analyses of sample 3H-58 2001.33.

Appendix 1-7: SEM-BSE images and EDS mineral analyses for sample 5H-58 1577.78.

Sample 5H-58 1577.78: Fine-grained muddy sandstone

Detrital Minerals: Chlorite, Chromite, Ilmenite, K-feldspar, Muscovite, Quartz, Titania (Figs. 8,23), Zircon

Notes:

1. This sample is a mixture of sandstone and mudstone. Identification of diagenetic minerals and their paragenetic sequence is difficult, and was not performed on this sample.

2. Quartz commonly displays overgrowths (Figs. 2,24,27).

3. There appears to be bioturbation of the sediments (Zoom out of Figure 19, page 12).

- 4. Suturing is uncommon between quartz and K-feldspar grains.
- 5. Anhydrite seems to be the latest cement (Figs. 6,18).

Figure 1-7.1: Scanned thin section of sample 5H-58 1577.78 showing the location of analyzed sites.

1:K-feldspar 2:Quartz 3:K-feldspar 4:Quartz 5:Pyrite 6:Quartz 7:Muscovite 8:Illite + Chlorite 9:Illite + Chlorite 10:K-feldspar 11:Pyrite

Figure 1-7.2: Sample 5H-58 1577.78 (SEM) site 1. This site consists of detrital quartz (2,4,6), K-feldspar (1,3,10), and muscovite (7) grains. The muscovite appears plastically deformed. Illite + chlorite make up the matrix between grains. Diagenetic pyrite (5,11) fills voids within the cement. Quartz may contain overgrowths (positions a).

1:Quartz 2:Quartz 3:K-feldspar 4:K-feldspar 5:Pyrite 6:Pyrite 7:Illite + Chlorite + Pyrite 8:Illite + Chlorite + Pyrite

Figure 1-7.3: Sample 5H-58 1577.78 (SEM) site 2. This site consists of detrital quartz (1-2) and K-feldspar (3-4) grains. Illite + chlorite + pyrite (7-8) make up the matrix and late pyrite (5-6) partially fills voids. This site also contains contaminants (positions a).

Figure 1-7.4: Sample 5H-58 1577.78 (SEM) site 3. This site consists of detrital quartz (2-6) and K-feldspar (1) grains. Both of these detrital minerals contain overgrowths. The matrix between grains is made up of illite + chlorite + pyrite (8-9).

1:Quartz 2:K-feldspar 3:Quartz 4:TiO₂ 5:Pyrite 6:Quartz 7:Illite + Chlorite 8:Illite 9:Quartz 10:K-feldspar 11:Illite + Chlorite 12:K-feldspar 13:Quartz 14:Illite + Chlorite

Figure 1-7.5: Sample 5H-58 1577.78 (SEM) site 4. This site consists of detrital quartz and K-feldspar grains. Illite + chlorite (7-8,11,14) make up the matrix between grains. Pyrite (5) and titania (4) appear diagenetic. K-feldspar(10) appears to be dissolving.

1:Quartz 2:Anhydrite 3:K-feldspar 4:Quartz 5:Chloritized Muscovite 6:Quartz 7:K-feldspar 8:Quartz 9:Quartz 10:K-feldspar 11:Quartz 12:Quartz + 13:Quartz 14:Pyrite

Figure 1-7.6: Sample 5H-58 1577.78 (SEM) site 5. This site consists of detrital quartz (1,4,6,8-9,13), K-feldspar (3,7,10), and chloritized muscovite (5) grains. The matrix between grains a fine-grained mixture of quartz (11-12) and other minerals. Anhydrite (2) appears to be the latest cement.

1:K-feldspar 2:Quartz 3:Quartz 4:Mixture 5:Pyrite 6:Illite + Chlorite 7:Illite + Chlorite 8:Kaolinite 9:Quartz 10:Illite + Chlorite 11:Quartz 12:Pyrite

Figure 1-7.7: Sample 5H-58 1577.78 (SEM) site 6. This site consists of detrital quartz and K-feldspar grains. Illite + chlorite (6-7,10) make up the matrix and kaolinite (8) fills porosity. There is a deformed grain that displays volume reduction (4), probably a pellet. Diagenetic pyrite (5,12) partially fills voids.

1:Zircon 2:Quartz 3:K-feldspar 4:Pyrite 5:TiO₂ 6:Quartz 7:K-feldspar 8:Quartz 9:Illite + Chlorite 10:K-feldspar 11:Mixture ? 12:Mixture ?

Figure 1-7.8: Sample 5H-58 1577.78 (SEM) site 7. This site consists of detrital quartz (2,8), K-feldspar (3,7,10), zircon (1), and titania (5). The matrix is made up of illite + chlorite (9). Diagenetic pyrite (4) partially fills voids in the cement. Suturing is also common (positions a).

1:Quartz 2:Quartz 3:Kaolinite 4:Zircon 5:Mixture

Figure 1-7.9: Sample 5H-58 1577.78 (SEM) site 8. This site consists of mainly of detrital quartz (1-2) grains and a rare detrital grain of zircon (4). The cement appears to be made up of kaolinite (3), and the matrix is probably made up of illite + chlorite.

Figure 1-7.10: Sample 5H-58 1577.78 (SEM) site 9. This site consists of detrital quartz (2,8) and K-feldspar (1,?3) grains. Diagenetic pyrite (4-5) partially fills voids in the illite + chlorite matrix (6,9). Illite + chlorite (7) is a mudstone intraclast. K-feldspar (1) appears to be corroded and partially dissolved.

1:K-feldspar 2:"Ilmenite" 3:Quartz 4:Quartz 5:K-feldspar 6:Quartz + 7:Illite + Chlorite 8:Pyrite +

Figure 1-7.11: Sample 5H-58 1577.78 (SEM) site 10. This site consists of rare detrital quartz (3-4), K-feldspar (1,5), and altered ilmenite (2) grains. The matrix appears to be made up of illite + chlorite (7). Diagenetic pyrite (8) partially fills voids in the matrix.

1:Quartz 2:K-feldspar 3:Quartz 4:Illite + 5:"Ilmenite" 6:K-feldspar 7:Quartz 8:K-feldspar 9:Quartz 10:K-feldspar 11:Chloritized Muscovite 12:Pyrite 13:Quartz 14:Illite + Chlorite

Figure 1-7.12: Sample 5H-58 1577.78 (SEM) site 11. This site consists of detrital quartz (1,3,7,9,13), K-feldspar (6,8,10), altered ilmenite (5) and chlorite (11). Diagenetic pyrite (12) partially fills voids and creates veinlets in the illite + chlorite (14) matrix. Quartz and K-feldspar contain overgrowths (positions a).

1:K-feldspar 2:Albite 3:Illite + Chlorite 4:Quartz

Figure 1-7.13: Sample 5H-58 1577.78 (SEM) site 11.1. This site consists of detrital quartz grains (4) and a detrital albitized K-feldspar (1-2) grain. The matrix between grains is made up of illite + chlorite (3).

1:Quartz 2:Quartz 3:Quartz 4:K-feldspar 5:K-feldspar 6:Illite + Chlorite 7:Zircon 8:Quartz + 9:Illite + Siderite ? 10:Illite + Siderite ?

Figure 1-7.14: Sample 5H-58 1577.78 (SEM) site 12. This site consists of detrital quartz (1-3), K-feldspar (4-5), and zircon (7) grains. The matrix consists of illite + chlorite (6). There is also a pellet made up of illite + ?siderite (9-10).

1:Albite 2:Fe-rich Chlorite + Albite 3:Pyrite

Figure 1-7.15: Sample 5H-58 1577.78 (SEM) site 12.1. This site consists probably of a lithic clast made up of albite (1) that is hosted in a muddy matrix.

1:K-feldspar 2:Quartz 3:K-feldspar 4:TiO₂ + 5:Pyrite 6:Quartz 7:Illite + Chlorite 8:K-feldspar 9:Pyrite 10: Albite + Kfeldspar 11:Quartz 12:K-feldspar 13:Illite + Chlorite 14:K-feldspar 15:Illite

Figure 1-7.16: Sample 5H-58 1577.78 (SEM) site 13. This site consists of detrital quartz (2,6,11), and K-feldspar (1,3,8) grains. The matrix is made up of illite + chlorite (7). K-feldspar (12,14) is being altered to illite + chlorite (13) and illite (15). Diagenetic pyrite (5,9) and titania (4) partially fills voids in the matrix.

1:Quartz 2:K-feldspar 3:K-feldspar 4:Quartz 5:Illite + Chlorite $6:TiO_2$ + 7:Quartz 8:Illite + Chlorite 9:Mixture 10:Quartz 11:K-feldspar

Figure 1-7.17: Sample 5H-58 1577.78 (SEM) site 14. This site consists of detrital quartz (1,4,7,10) K-feldspar (2-3,11) grains. The titania (6) appears to be diagenetic. The matrix is made up of illite + chlorite (5,8).

Predominately shale. The main feature in the image is a compacted lined burrow (Fig. 19)

1:Quartz 2:Glaucony 3:Quartz 4:Pyrite 5:Glaucony 6:Glaucony 7:Kaolinite + Illite ? 8:Anhydrite 9:Anhydrite

Figure 1-7.18: Sample 5H-58 1577.78 (SEM) site 15. This site is a chlorite + illite mudstone with scattered pellets and rare fine sand grains and detrital quartz (1,3) grains that are surrounded by an illite + chlorite (2,5-6) matrix. Late diagenetic pyrite (4) and anhydrite (8-9) partially fills voids in the matrix.

1:K-feldspar 2:Quartz 3:K-feldspar 4:TiO₂ + 5:K-feldspar 6:Quartz 7:Quartz 8:Mixture 9:K-feldspar 10:Quartz

Figure 1-7.19: Sample 5H-58 1577.78 (SEM) site 16. This site is part of a burrow lining and consists of mainly detrital quartz and K-feldspar grains, and an altered ilmenite (4) grain. The mudstone that fills the burrow (8), is probably made up of chlorite + illite.

1:Quartz 2:Illite + Chlorite 3:Glaucony 4:Fe-Chlorite + 5:K-feldspar 6:Illite 7:Quartz

Figure 1-7.20: Sample 5H-58 1577.78 (SEM) site 16.1. This site consists of a grain of glaucony (3), which is coated by a fine-grained Fe-rich chlorite + (4). There is also a fine-grained ?intraclast of illite + chlorite (2) with a quartz (1) grain.

1:K-feldspar 2:Quartz 3:Quartz 4:K-feldspar 5:Zircon 6:Pyrite 7:Mixture 8:Quartz

Figure 1-7.21: Sample 5H-58 1577.78 (SEM) site 17. This site is a mudstone and consists of rare detrital quartz (2-3,8), K-feldspar (1,4), and zircon (5) grains, and probably a illite + chlorite matrix. Late diagenetic pyrite (6) partially fills voids.

Figure 1-7.22: Sample 5H-58 1577.78 (SEM) site 18. This site consists of detrital grains of quartz (3,7), K-feldspar (1), ilmenite (2), and chromite (8). The matrix is made up of illite + chlorite (5-6), probably with diagenetic pyrite partially filling voids.

1:K-feldspar 2:TiO₂ 3:K-feldspar 4:Quartz 5:Quartz + 6:K-feldspar 7:Illite + Chlorite 8:Mixture 9:Quartz 10:Quartz 11:Mixture 12:K-feldspar 13:Mixture 14:Pyrite

Figure 1-7.23: Sample 5H-58 1577.78 (SEM) site 19. This site consists of detrital quartz and K-feldspar grains. There appears to be an intraclast (8). The matrix is made up of illite + chlorite (7). Titania (2) may be detrital.

2:Pyrite 3:K-feldspar 4:Chlorite + 5:K-feldspar 6:Quartz 7:Mixture 8:Pyrite 9:Mixture 10:K-feldspar 11:Quartz 12:Mixture 13:Mixture 14:Quartz

Figure 1-7.24: Sample 5H-58 1577.78 (SEM) site 20. This site is a mixture of sandstone and mudstone. The sandstone patch consists of detrital quartz (1,6,11,14), K-feldspar (3,5), and chlorite (4). The quartz grains contain overgrowths (positions a), and K-feldspar (5) appears to be altered. The mudstone patch is probably made up of illite + chlorite. Pyrite (2) fills pores.

1:K-feldspar 2:Quartz 3:Quartz 4:K-feldspar 5:Illite + Chlorite 6:Xenotime-(Y) 7:Quartz 8:Quartz + Mixed Clay 9:K-feldspar 10:K-feldspar

Figure 1-7.25: Sample 5H-58 1577.78 (SEM) site 21. This site consists of detrital quartz, K-feldspar, and xenotime (6) grains. There is a granitic lithic clast made up of quartz (position a) and K-feldspar (4,9), and a quartz grain (3) with K-feldspar (4) inclusion. The matrix is made up of mixed clay minerals (5,8).

1:K-feldspar 2:Quartz 3:Chlorite + Illite 4:Quartz 5:Muscovite 6:K-feldspar 7:Mixture 8:Mixed Clay 9:Mixed Clay 9:Mixed Clay 10:Quartz 11:Quartz 12:Pyrite 13:K-feldspar

Figure 1-7.26: Sample 5H-58 1577.78 (SEM) site 22. This site consists of detrital quartz, K-feldspar, muscovite (5), probably altered muscovite (7) grains. The matrix is made up of illite + chlorite (3), and mixed clay minerals (8-9).

1:Ilmenite 2:K-feldspar 3:Quartz 4:Mixed Clay 5:Ilmenite 6:K-feldspar 7:Quartz 8:K-feldspar 9:Mixed Clay 10:K-feldspar 11:Mixed Clay 12:K-feldspar 13:Quartz 14:Mixed Clay 15:"Ilmenite"

Figure 1-7.27: Sample 5H-58 1577.78 (SEM) site 23. This site consists of detrital quartz, K-feldspar, ilmenite (1,5), and altered ilmenite (15) grains. The matrix is made up of mixed clay minerals (9,14). Quartz overgrowths are also seen (positions a).

Figure 1-7.28: Sample 5H-58 1577.78 (SEM) site 24. This site consists of rare detrital quartz, K-feldspar, muscovite (13), and zircon (5) grains. The matrix is probably made up of mixed clay minerals. There is also grains of glaucony (1-2, 7-8, 9-10).

1:K-feldspar 2:Glaucony ? 3:Glaucony ? 4:Mixed Clay 5:"Ilmenite" 6:Quartz + 7:Quartz 8:Quartz 9:K-feldspar

Figure 1-7.29: Sample 5H-58 1577.78 (SEM) site 25. This site is similar to site 24.

Figure 1-7.30: Sample 5H-58 1577.78 (SEM) site 26. This site is a mudstone and consists of detrital quartz (2,6), K-feldspar (3), apatite (4), chloritized muscovite (8), muscovite (1) grains and mixed clay minerals. Diagenetic pyrite (7) partially fills voids.

1:Zircon 2:Quartz 3:K-feldspar 4:Quartz + 5:Quartz 6:Pyrite 7:Quartz 8:Mixed Clay

Figure 1-7.31: Sample 5H-58 1577.78 (SEM) site 27. This site is similar to site 26.

Figure 1-7.32: Sample 5H-58 1577.78 (SEM) site 28. This site is a mixed sandstone and mudstone.

Figure 1-7.33: Sample 5H-58 1577.78 (SEM) site 29. This site consists of detrital quartz, K-feldspar grains. There is also a pellet (6). The matrix is made up of mixed clay minerals. Diagenetic pyrite probably partially fills voids.

Figure 1-7.34: Sample 5H-58 1577.78 (SEM) site 30. This site is similar to site 28.

5:K-feldspar 7:Glaucony 10:K-feldspar 12:K-feldspar 13:"Glaucony" 15:K-feldspar

Figure 1-7.34: Sample 5H-58 1577.78 (SEM) site 31. This site is similar to site 28. There is also glaucony (7,13) grains, and an albitized K-feldspar grain (9-10).

Sample	Site	Position	Mineral	SiO2	ТіО2	AI2O3	ЬеО	MnO	O ⁶ M	CaO	Na2O	K2O	P205	SO3	ш	ō	Sc203	Cr2O3	Y 203	ZrO2	BaO	Gd2O3	Dy203	Er203	Yb2O3	HfO2	WO3	Total	Actual Total
5H-58 1577.78	1	1	Kfs	66.39		17.60					0.52	15.50																100	118
5H-58 1577.78	1	2	Qz	99.51		0.49																						100	122
5H-58 1577.78	1	3	Kfs	66.28		17.68					0.67	15.36																100	119
5H-58 1577.78	1	4	Qz	100.00																								100	122
5H-58 1577.78	1	5	Py	0.25			28.68							71.07														100	231
5H-58 1577.78	1	6	Qz	100.00																								100	121
5H-58 1577.78	1	7	Ms	47.27	0.84	32.69	3.08		0.58		0.62	9.93																95	106
5H-58 1577.78	1	8	III + Chl	54.61	1.32	28.41	6.58		1.77		1.16	2.95		3.21														100	93
5H-58 1577.78	1	9	III + Chl	47.76	0.35	28.70	7.71		1.37	0.34	1.52	4.30		7.68		0.27												100	99
5H-58 1577.78	1	10	Kfs	65.96		17.81					0.92	14.67									0.63							100	123
5H-58 15/7.78	1	11	Py	1.45		0.89	28.39				0.26			69.01														100	222
5H-58 1577.78	2	1	QZ	100.00																								100	122
5H-58 15/7.78	2	2	QZ Kfc	66.14		17.07					0.65	15.22																100	123
5H-56 1577.76	2	3	Kis	62.50		10.65	0.70				0.05	14.96		0.50		0.22												100	95
5H-58 1577 78	2	5	Pv	3 34		1 9.03	30.02		1.46	7 10	1.26	14.00		44.30		0.55												100	113
5H-58 1577 78	2	6	Pv	0.40		1.34	29.16		1.40	0.28	1.20			70.16		0.55												100	209
5H-58 1577 78	2	7	III + ChI + Pv	51.52	0.63	27 29	7 70		2 82	0.20	1.31	3 55		4 83		0.34												100	98
5H-58 1577 78	2	8	III + Chl + Pv	53 49	0.00	24.58	8.35		1 14		1.86	2.55		7.28		0.28												100	106
5H-58 1577.78	3	1	Kfs	65.51	0.11	18.01	0.00				0.89	14.78		1.20		0.20					0.82							100	115
5H-58 1577.78	3	2	Qz	100.00																								100	120
5H-58 1577.78	3	3	Qz	100.00																								100	125
5H-58 1577.78	3	4	Qz	100.00																								100	126
5H-58 1577.78	3	5	Qz	100.00																								100	122
5H-58 1577.78	3	6	Qz	99.54		0.46																						100	119
5H-58 1577.78	3	7	Ms	48.78	0.58	32.28	1.27		1.31		0.38	9.64		0.75														95	111
5H-58 1577.78	3	8	?Ms + Chl + Py	52.78		33.37	4.76		1.03	0.22	1.02	2.64		3.82		0.36												100	96
5H-58 1577.78	3	9	III + ChI + Py	51.35	0.49	28.47	7.06		1.71		1.50	3.85		5.25		0.31												100	93
5H-58 1577.78	4	1	Qz	100.00																								100	122
5H-58 1577.78	4	2	Kfs	65.62		17.90					0.90	14.64									0.94							100	116
5H-58 1577.78	4	3	Qz	100.00																								100	119
5H-58 15/7.78	4	4	1102	0.71	98.52		0.77				0.07			00.00														100	106
5H-58 15/7.78	4	5	Py O-	0.52			29.22				0.27			69.99														100	212
5H-58 15/7.78	4	0		F1 24	0.25	26.19	0.61		0.00	0.26	1 40	1 20		0.00		0.52												100	01
5H-56 1577.76	4	0		17 42	0.35	20.10	9.01		1.24	0.20	0.96	5.51		0.09		0.52												90	106
5H-58 1577 78	4	0	07	100.00	0.27	29.23	3.52		1.54		0.00	5.51		1.05														100	123
5H-58 1577 78	- 4	10	Kfs	68 32		17.84					3 90	9 94																100	114
5H-58 1577 78	4	11	III + Chl	46.93	0.91	26.26	10.61		1 21		1.68	2 02		9 7 9		0.59												100	79
5H-58 1577.78	4	12	Kfs	66.30	0.01	17.73					0.70	15.27		00		5.00												100	120
5H-58 1577.78	4	13	Qz	100.00																								100	124
5H-58 1577.78	4	14	III + Chl	54.52		23.56	14.06		2.65		1.82	0.87		1.81		0.69												100	66
5H-58 1577.78	5	1	Qz	100.00																								100	125
5H-58 1577.78	5	2	Anh	5.04		2.51	0.87			34.05	0.60	0.47		55.94		0.50												100	103
5H-58 1577.78	5	3	Kfs	66.69		17.88					1.27	14.16																100	119
5H-58 1577.78	5	4	Qz	100.00																								100	123
5H-58 1577.78	5	5	Chloritized Ms	41.26	4.42	20.76	19.39		7.67		0.71	5.77																100	104
5H-58 1577.78	5	6	Qz	100.00																								100	124
5H-58 1577.78	5	7	Kts	65.58		17.94					0.94	14.48									1.06							100	125
5H-58 1577.78	5	8	Qz	100.00																								100	128
5H-58 15/7.78	5	9	QZ	100.00		47.00					0.01	45.40									0.07							100	127
5H-58 15/7.78	5	10	KIS	65.51		17.89	0.00				0.61	15.12		0.00							0.87							100	119
o⊓-58 15/7.78	5	11	QZ	95.98		2.12	0.63				0.30	0.04		0.93														100	120

Table 1-7.1: EDS	geochemical	analyses of	sample	5H-58	1577.78.
------------------	-------------	-------------	--------	-------	----------

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	OgM	CaO	Na2O	K20	P205	SO3	ĿL	ō	Sc2O3	Cr203	Y203	ZrO2	BaO	Gd2O3	Dy203	Er203	Yb2O3	Hf02	WO3	Total	Actual Total
5H-58 1577.78	5	12	Qz +	90.37		6.23	1.36				0.38	0.50		1.17														100	122
5H-58 1577.78	5	13	Qz	100.00																								100	123
5H-58 1577.78	5	14	Py	0.21			28.84							70.94														100	230
5H-58 1577.78	6	1	Kfs	65.81		17.82					0.72	15.02									0.63							100	118
5H-58 1577.78	6	2	Qz	100.00																								100	122
5H-58 1577.78	6	3	Qz	100.00																								100	121
5H-58 1577.78	6	4	Mix	55.07	0.40	12.68	19.12		3.99	0.66	3.01	1.80		2.69		0.58												100	101
5H-58 1577.78	6	5	Ру	0.36			29.43			0.15				70.06														100	223
5H-58 1577.78	6	6	III + Chl	45.02	0.29	26.97	10.88		3.74		2.43	2.21		8.11		0.34												100	109
5H-58 1577.78	6	7	III + Chl	52.97	0.32	32.70	5.37		0.88		1.28	1.26		4.99		0.22												100	108
5H-58 1577.78	6	8	Kin	47.52		30.52	2.80		0.61		0.75	1.19		2.27		0.34												86	99
5H-58 15/7.78	6	9	QZ	100.00	0.50	00.00	7.40		4.55		4.50	0.74				0.05												100	126
5H-58 15/7.78	6	10		52.52	0.58	28.26	7.16		1.55		1.50	3.74		4.44		0.25												100	103
50 1577.70	6	12	QZ By	0.21			29.01				0.50			70.29														100	220
5H-58 1577 78	7	12	7 y Zrn	31.16			20.91				0.50			10.20						67.50						1 3/		100	124
5H-58 1577 78	7	2	07	100.00																07.50						1.54		100	123
5H-58 1577 78	7	2	Kfs	66 27		17 90					0.80	15.04																100	118
5H-58 1577 78	7	4	Pv	0.28		17.00	31 71				1.53	10.04		66 48														100	180
5H-58 1577.78	7	5	TiO2	0.46	99.27		0.28							00.10														100	112
5H-58 1577.78	7	6	Qz	100.00	00.2.		0.20																					100	125
5H-58 1577.78	7	7	Kfs	66.45		17.79					1.40	14.36																100	122
5H-58 1577.78	7	8	Qz	100.00							-																	100	126
5H-58 1577.78	7	9	III + ChI	48.44	0.52	29.38	6.94		1.43		1.66	4.54		6.52		0.57												100	96
5H-58 1577.78	7	10	Kfs	65.08		17.33	1.86				0.38	15.35																100	124
5H-58 1577.78	7	11	Mix ?	34.55		24.31	12.80		0.77		1.10	1.06		25.05		0.36												100	110
5H-58 1577.78	7	12	Mix ?	46.37	0.37	24.83	9.41		1.56		2.06	2.81		12.05		0.53												100	99
5H-58 1577.78	8	1	Qz	100.00																								100	122
5H-58 1577.78	8	2	Qz	100.00																								100	123
5H-58 1577.78	8	3	Kln	48.03		34.61	1.12		0.41	0.17	0.40	0.15		0.97		0.14												86	100
5H-58 1577.78	8	4	Zrn	29.23		0.52	0.46			0.88				10.50			0.71			68.20								100	110
5H-58 1577.78	8	5	Mix	44.63	0.74	25.44	11.96		1.19		2.46	2.61		10.58		0.41												100	91
5H-58 1577.78	9	1	KIS	66.23		17.91					0.71	15.15																100	115
5H-58 1577.78	9	2	QZ	100.00		47.07					0.77	44.04																100	118
5H-58 15/7.78	9	3	NIS Dv	0.32		17.97	20 52			0.44	0.77	14.94		70.24														100	217
511-50 1577.70	9	4	F y Dv	0.29			20.32			0.44	0.41			70.34														100	217
5H-58 1577 78	9	6	Chl + III	44 40	0 74	26.22	10.49		1 24	0.38	1.69	3 70		10.70		0.38												100	84
5H-58 1577 78	9	7	III + Chl	55.02	0.14	25.63	6 74		2 47	0.00	0.81	7.97		1 14		0.00	_										-	100	105
5H-58 1577.78	9	. 8	Qz	100.00		20.00	0.1 1		2.17		0.01					0.21												100	124
5H-58 1577.78	9	9	III + Chl	50.95	0.98	23.01	11.18		1.58	0.48	1.83	1.85		7.82		0.31												100	89
5H-58 1577.78	10	1	Kfs	66.20		17.85					0.84	15.12																100	121
5H-58 1577.78	10	2	"llm"		60.69		37.27	2.04																				100	109
5H-58 1577.78	10	3	Qz	100.00																								100	122
5H-58 1577.78	10	4	Qz	100.00																								100	121
5H-58 1577.78	10	5	Kfs	63.03		19.13	2.30		0.40		1.18	11.64		2.31														100	127
5H-58 1577.78	10	6	Qz +	77.73	1.03	12.37	2.93		0.92	0.38	1.14	1.27		1.92		0.29												100	109
5H-58 1577.78	10	7	III + Chl	53.94	0.82	22.94	8.71		1.21	0.27	1.72	2.04		7.96		0.39												100	94
5H-58 1577.78	10	8	Py +	8.39	0.30	3.03	41.90		0.94	0.60	0.95	0.16		42.62		1.10												100	127
5H-58 1577.78	11	1	Qz	100.00																								100	127
5H-58 1577.78	11	2	Kts	66.21		17.62					0.64	15.53																100	120
5H-58 1577.78	11	3	Qz	100.00	0.42	00.00	7.00		1.05		1.00	1.00		5.00		0.50												100	123
5H-58 15/7.78	11	4	III +	60.89	0.48	20.89	7.33		1.25		1.30	1.68		5.62		0.56												100	99

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	Ŀ	ū	Sc2O3	Cr203	Y 203	ZrO2	BaO	Gd2O3	Dy203	Er203	Yb2O3	Hf02	WO3	Total	Actual Total
5H-58 1577.78	11	5	"llm"	1.10	68.45	0.45	28.90	1.10																				100	101
5H-58 1577.78	11	6	Kfs	66.29		17.64	0.42					15.64																100	117
5H-58 1577.78	11	7	Qz	100.00																								100	123
5H-58 1577.78	11	8	Kfs	66.40		17.71					1.03	14.86																100	120
5H-58 1577.78	11	9	Qz	100.00																								100	125
5H-58 1577.78	11	10	Kfs	66.42		17.68					0.61	15.29																100	121
5H-58 1577.78	11	11	Chloritized Ms	42.22	3.35	21.09	20.33		7.40		0.75	4.66				0.21												100	107
5H-58 1577.78	11	12	Py	0.80			53.06			0.20	0.80			41.52		3.63												100	121
5H-58 1577.78	11	13	Qz	100.00																								100	126
5H-58 1577.78	11	14	III + Chi	53.76	0.36	28.58	7.21		1.45		1.17	1.83		3.70		1.94												100	/5
5H-58 1577.78	11.1	1	Kfs	66.08		17.92					0.34	15.66																100	122
5H-58 1577.78	11.1	2	Ab	67.70		18.87	1.39			0.36	11.55			1.00		0.13												100	121
5H-58 15/7.78	11.1	3		50.14	1.13	28.82	8.87		1.35		1.30	1.63		4.89		1.88												100	73
50 15/1.78	11.1	4	07	100.00																								100	120
511-30 13/1.18	12	2	07	100.00																								100	110
54-58 1577 79	12	2	07	100.00																								100	123
5H-58 1577 78	12	1	Kfs	65 01	0.23	17.89					0.69	15.28																100	119
5H-58 1577 78	12	5	Kfs	66.02	0.25	17.03					0.03	14.95									0.47							100	123
5H-58 1577 78	12	6	III + Chl	54 84		28 54	9 59		1.69		0.70	3.26				1 1 4					0.47							100	75
5H-58 1577 78	12	7	Zrn	31.30		20.04	0.00		1.00		0.04	0.20				1.14				68 70								100	122
5H-58 1577 78	12	8	07 +	88 70		8 12	1 26		0 44		0 70	0.45				0.32				00.70								100	120
5H-58 1577.78	12	9	III + Sd ?	45.33	0.34	18.95	25.29		3.93		1.74	2.75		1.08		0.59												100	94
5H-58 1577.78	12	10	III + Sd ?	43.26		17.69	29.26		3.70		1.57	1.91		0.90		1.71												100	78
5H-58 1577.78	12.1	1	Ab	67.75		19.75	0.26			1.31	10.93																	100	121
5H-58 1577.78	12.1	2	Fe-rich Chl + Ab	42.32		18.76	29.29		3.64		2.22	0.89		1.10		1.79												100	88
5H-58 1577.78	12.1	3	Py	0.32			28.93							70.75														100	231
5H-58 1577.78	13	1	Kfs	66.13		17.91					0.55	15.41																100	117
5H-58 1577.78	13	2	Qz	100.00																								100	122
5H-58 1577.78	13	3	Kfs	66.04		17.93					0.69	15.34																100	117
5H-58 1577.78	13	4	TiO2 +	2.92	95.11	1.05	0.64			0.27																		100	106
5H-58 1577.78	13	5	Ру	0.45		1.13	41.77				4.62			51.39		0.63												100	117
5H-58 1577.78	13	6	Qz	100.00																								100	124
5H-58 1577.78	13	7	III + Chl	57.60	0.41	27.08	6.42		1.28		0.96	2.25		3.12		0.88												100	73
5H-58 1577.78	13	8	Kfs	65.94		18.03					0.95	14.41									0.67							100	119
5H-58 1577.78	13	9	Py	0.31		0.25	31.09			0.29	1.33			66.73														100	192
5H-58 15/7.78	13	10	AD + KIS	68.73		18.51					8.10	4.67																100	126
511-58 15/7.78	13	11	QZ Kfo	100.00		20.14	4.70		0.57		0.00	11 07		0.60		0.27												100	127
54 59 1577 79	13	12		60.63		20.14	4.76		0.57		0.99	7.51		0.66		0.37												100	106
54-58 1577 79	13	1/	III T UIII Kfe	66.52		20.02	0.00		1.10		1.22	13.65		1.44		0.01	-											100	117
5H-58 1577 78	13	14		52.52		21.60	5.82		1.03		0.85	7.81				0.27												90	00
5H-58 1577 78	1/	1	07	100.00		21.09	0.02		1.03		0.05	1.01				0.27												100	123
5H-58 1577 78	14	2	Kfs	65.85		17.80					0.96	14.80									0.59							100	120
5H-58 1577 78	14	3	Kfs	65.70		17.86					0.67	15.01									0.77							100	115
5H-58 1577 78	14	4	Qz	100.00							5.07										5.77							100	119
5H-58 1577 78	14	5	III + Chi	50.26	1.41	28.13	8.00		1.52		1.77	2.97		5.63		0.31												100	97
5H-58 1577 78	14	6	TiO2 +	3.24	93.09	1.92	1.48					0.28		0.00														100	108
5H-58 1577.78	14	7	Qz	100.00																								100	123
5H-58 1577.78	14	8	III + Chl	62.31		21.28	7.47		1.56		1.62	4.48		0.88		0.40												100	108
5H-58 1577.78	14	9	Mix	39.73	1.14	24.15	14.34		1.12		2.57	2.59		13.85		0.52												100	95
5H-58 1577.78	14	10	Qz	100.00																								100	126
5H-58 1577.78	14	11	Kfs	66.22		17.70					0.59	15.49																100	121

Sample	Site	Position	Mineral	SiO2	Т:02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ш	ō	Sc203	Cr2O3	Y203	ZrO2	BaO	Gd2O3	Dy203	Er203	Yb2O3	HfO2	80M	Total	Actual Total
5H-58 1577.78	15	1	Qz	100.00																								100	123
5H-58 1577.78	15	2	Gly	49.29		10.55	12.35		3.69		3.33	4.59		2.21		0.99												87	68
5H-58 1577.78	15	3	Qz	100.00																								100	121
5H-58 1577.78	15	4	Py	0.21			28.91				0.24			70.63														100	222
5H-58 1577.78	15	5	Gly	46.42		7.81	19.23		2.87		2.49	5.57		0.50		2.11												87	105
5H-58 1577.78	15	6	Gly	47.23		7.83	19.24		2.87		0.94	5.50		2.83		0.57												87	94
5H-58 1577.78	15	7	Kln + III ?	52.30	1.06	32.07	5.19		1.03		1.35	2.00		4.70		0.30												100	110
5H-58 1577.78	15	8	Anh	9.49		5.93	1.61			25.62	4.05	0.55		52.26		0.50												100	97
5H-58 1577.78	15	9	Anh	6.16		3.45	0.72			29.27	4.07	0.48		55.85														100	107
5H-58 1577.78	16	1	Kfs	66.24		17.75					0.54	15.47																100	121
5H-58 1577.78	16	2	Qz	100.00																								100	122
5H-58 1577.78	16	3	Kfs	66.26		18.10					1.07	14.57																100	119
5H-58 1577.78	16	4	TiO2 +	1.27	91.76	2.03	2.13			0.52	0.39		1.09	0.60		0.22												100	101
5H-58 1577.78	16	5	Kts	65.93		17.77					0.85	14.91									0.54							100	117
5H-58 1577.78	16	6	Qz	100.00																								100	120
5H-58 1577.78	16	7	QZ	100.00	0.45	05.00	10.00				0.00	0.02		10.00		0.07												100	119
5H-58 15/7.78	16	8	MIX	42.26	0.45	25.68	12.33		1.44		2.93	2.03		12.06		0.81												100	92
5H-58 1577.78	16	9	Kfs	66.30		17.80					0.79	15.11																100	118
5H-58 15/7.78	16	10	QZ	100.00																								100	121
5H-58 15/7.78	10.1	-		100.00		40.00	40.40		0.40		4.04	2.04		0.00		1 00												100	124
5H-58 15/7.78	10.1	2		24.53	-	10.08	16.43		3.43		1.91	2.94		2.88		1.80												97	08
5H-58 1577 78	16.1	3	Giy Fe-Chl ±	40.00		10.11	27.67		2 20		5.40	0.65		2.00		0.55												100	90
5H-58 1577 78	16.1	5	Kfe	66.25		17.68	21.01		2.23		0.65	15.42		21.51		0.30												100	103
5H-58 1577 78	16.1	6	III	43.21	0.98	26.98	5.87		0.84		1.07	6.23		4 4 1		0.41												90	84
5H-58 1577 78	16.1	7	07	99.44	0.00	0.55	0.07		0.04		1.07	0.01		4.41		0.41												100	126
5H-58 1577.78	17	1	Kfs	66.11		17.77					1.35	14.77																100	118
5H-58 1577.78	17	2	Qz	100.00																								100	124
5H-58 1577.78	17	3	Qz	100.00																								100	127
5H-58 1577.78	17	4	Kfs	64.26		18.64	1.00		0.49			15.61																100	119
5H-58 1577.78	17	5	Zrn	29.19		0.58	0.60			0.65							0.52			66.76						1.69		100	109
5H-58 1577.78	17	6	Py				29.14							70.86														100	234
5H-58 1577.78	17	7	Mix	43.87	1.74	25.27	11.78		1.44	0.31	2.54	2.30		10.50		0.27												100	105
5H-58 1577.78	17	8	Qz	98.83		0.83	0.34																					100	121
5H-58 1577.78	18	1	Kfs	66.27		17.89					0.85	14.99																100	123
5H-58 1577.78	18	2	llm		52.69		44.94	0.33	2.04																			100	107
5H-58 1577.78	18	3	Qz	100.00																								100	126
5H-58 1577.78	18	4	Kln	46.85		31.49	3.09		0.39		0.68	0.43		2.81		0.26												86	101
5H-58 1577.78	18	5	III +	61.03	0.37	25.83	3.99		1.49		1.03	3.44		2.56		0.27												100	108
5H-58 1577.78	18	6	III + Chl	49.35	1.49	30.09	7.79		1.45		1.66	2.58		5.17		0.42												100	108
5H-58 15/7.78	18		QZ Chr	98.86		1.09	40.04		44.00			0.05						45 47										100	12/
511-58 15//./8	18	8	Uni	6E 04		24.41	16.04		14.08		0.60	15 50						45.47										100	114
54 59 1577 79	19	1		0.91	02.16	0.70	5 4 1				0.00	15.52																100	122
5H-58 1577 79	19	2	Kfe	65.46	93.10	17.00	5.41				0.90	1/ 90									0.06							100	105
5H-58 1577 79	19	3	07	100.00		17.99					0.60	14.60									0.90							100	121
5H-58 1577 78	10	5	07 +	70.26	0.53	21.90	2 80		1 02		0.91	1 53		0.88		0.17												100	110
5H-58 1577 78	10	6	Kfs	66 33	0.00	18.00	2.00		1.02		1 26	14.41		0.00		0.17												100	123
5H-58 1577.78	19	7	III + Chl	48.27	0.93	28.06	11.37		1.64	0.29	1.73	2.02		4.56		1.13												100	72
5H-58 1577.78	19	8	Mix	55.77	0.00	16.32	18.88		2.80	0.25	1.86	1.93		1.81		0.38												100	108
5H-58 1577.78	19	9	Qz	100.00	-					20																		100	125
5H-58 1577.78	19	10	Qz	100.00																								100	124
5H-58 1577.78	19	11	Mix	33.19	37.98	18.39	4.31		1.20		1.29	1.26		2.18		0.21												100	111

Table 1-7.1: EDS geochemical analyses of sample 5H-58 1577.78.

eless 05778 10 10 12 10 102 102 102 102 100	Sample	Site	Position	Mineral	SiO2	ТіО2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ш	ō	Sc203	Cr203	Y203	ZrO2	BaO	Gd2O3	Dy203	Er2O3	Yb2O3	HfO2	WO3	Total	Actual Total
Bete Stor 78 10 13 Max 48.88 1.07 2.80 1.20 2.72 0.08 1	5H-58 1577.78	19	12	Kfs	65.91		17.90					1.02	14.51									0.66							100	117
Bets Bir778 D Ide PT Ose PT Ose PT Ose PT Des Des <thdes< th=""> Des <thdes< th=""></thdes<></thdes<>	5H-58 1577.78	19	13	Mix	48.68	1.07	26.50	10.42		1.27		1.80	1.99		7.29		0.98												100	78
94-88 97.78 0.0 10.2 10.0 </td <td>5H-58 1577.78</td> <td>19</td> <td>14</td> <td>Py</td> <td>1.33</td> <td></td> <td>0.75</td> <td>51.90</td> <td></td> <td>0.40</td> <td>0.77</td> <td>0.88</td> <td></td> <td></td> <td>41.11</td> <td></td> <td>2.85</td> <td></td> <td>100</td> <td>128</td>	5H-58 1577.78	19	14	Py	1.33		0.75	51.90		0.40	0.77	0.88			41.11		2.85												100	128
94-86 94-77 3 20 2 P 2.56 2.56 0.26 1.11 2.39 2.92 1 0.75 0.75 100	5H-58 1577.78	20	1	Qz	100.00																								100	122
94-86 1977.78 20 3/Km 65.80 17.78	5H-58 1577.78	20	2	Py	2.55		2.54	66.06		0.82		1.11			23.99		2.92												100	91
94-88 1077.78 20 A Chi 2.24 0.29 1.10 1.00	5H-58 1577.78	20	3	Kfs	65.80		17.78					0.81	14.87									0.75							100	119
B+B B+B <td>5H-58 1577.78</td> <td>20</td> <td>4</td> <td>Chl +</td> <td>45.27</td> <td></td> <td>15.75</td> <td>28.31</td> <td></td> <td>4.69</td> <td></td> <td>2.84</td> <td>0.95</td> <td></td> <td>1.18</td> <td></td> <td>1.00</td> <td></td> <td>100</td> <td>103</td>	5H-58 1577.78	20	4	Chl +	45.27		15.75	28.31		4.69		2.84	0.95		1.18		1.00												100	103
94-96 177.78 20 8 0 1 <th< td=""><td>5H-58 1577.78</td><td>20</td><td>5</td><td>Kfs</td><td>66.21</td><td></td><td>17.67</td><td></td><td></td><td></td><td></td><td>0.98</td><td>15.13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td>121</td></th<>	5H-58 1577.78	20	5	Kfs	66.21		17.67					0.98	15.13																100	121
9H-89 1777 20 7 Max 46.42 14.1 2.65 2.46 2.65 1.45 1.45 1.46	5H-58 1577.78	20	6	Qz	100.00																								100	125
94-86 94-87 6.87 5.88 5.47 1.28 1.41 22.9 2.25 1.00	5H-58 1577.78	20	7	Mix	46.42		14.71	27.48		3.05		2.40	2.45		2.05		1.45												100	87
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5H-58 1577.78	20	8	Py	5.87		5.98	54.43		1.28		1.41			28.79		2.25												100	105
64-68 67.78 20 10 (kb 66.81 2.52 1.47 0.65 0.42 6.32 1	5H-58 1577.78	20	9	Mix	49.16	0.41	29.89	10.27		1.39		1.35	1.71		4.37		1.45												100	80
64-68 167/78 20 11 1/2 100 00 124 100 100 124 100 100 124 100 100 124 100 124 100 124 100 124 100 124 100 100 124 100 124 100 124 100 124 100 125 164 100 125 164 100 125 164 100 125 164 100 125 164 100 125 164 <td< td=""><td>5H-58 1577.78</td><td>20</td><td>10</td><td>Kfs</td><td>68.61</td><td></td><td>22.52</td><td>1.47</td><td></td><td>0.65</td><td></td><td>0.42</td><td>6.32</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td>100</td><td>116</td></td<>	5H-58 1577.78	20	10	Kfs	68.61		22.52	1.47		0.65		0.42	6.32															\vdash	100	116
bites bit/r.r/s 2vi 1 kmx 47.77 0.28 2.42 9.14 2.04 1.57 1.11 47.2 0.93 100 02 bites bit/r.7s 20 14 0x 53 1.33 2.65 0.40 0.40 100 100 100 100 bites bit/r.7s 21 1 Kis 66.2 17.70 0 0.66 15.43 0 0 0.62 0 0.00 100 121 bites bit/r.7s 21 0 Kis 65.5 1.65 0.43 0.88 1.73 0 0.62 0 0.00 100	5H-58 1577.78	20	11	Qz	100.00																							\vdash	100	126
bitsb bitsb <th< td=""><td>5H-58 1577.78</td><td>20</td><td>12</td><td>Mix</td><td>47.77</td><td>0.29</td><td>32.42</td><td>9.14</td><td></td><td>2.04</td><td></td><td>1.57</td><td>1.11</td><td></td><td>4.72</td><td></td><td>0.93</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td>100</td><td>92</td></th<>	5H-58 1577.78	20	12	Mix	47.77	0.29	32.42	9.14		2.04		1.57	1.11		4.72		0.93											\vdash	100	92
bits bits <td>5H-58 1577.78</td> <td>20</td> <td>13</td> <td>Mix</td> <td>53.59</td> <td>0.48</td> <td>27.98</td> <td>8.40</td> <td></td> <td>2.38</td> <td></td> <td>1.33</td> <td>2.80</td> <td></td> <td>2.65</td> <td></td> <td>0.40</td> <td></td> <td>\vdash</td> <td>100</td> <td>104</td>	5H-58 1577.78	20	13	Mix	53.59	0.48	27.98	8.40		2.38		1.33	2.80		2.65		0.40											\vdash	100	104
bit bit 77.76 cit 1 1NS 06.26 17.70 0 0.00 15.33 0 0 1 0 100 126 0 H58 157.77.8 21 3 (2x 100.00 1 0 0 1 0 0 1 0 100 126 0 H58 157.77.8 21 3 (2x 100.00 1 0 0 0 0 0 0 100 126 0 H58 157.77.8 21 5 (4x) 6 (5x) 1.65 1.65 0.63 0.88 1.77 0.86 1.13 0.87 2.13 4.58 4.66 4.66 100 102 0 H58 157.77.8 21 0 (0x 0.82 2.77 0.86 1.13 0.47 0.47 0.47 0.00 100 100 102 0 H58 157.77.8 21 0 (0x 6.50 17.55 2.64 0.65 10.01 123 0.47 0.47 0.47 0.00 100 100 100	5H-58 1577.78	20	14	QZ	100.00		4					0.00	45.10															\vdash	100	124
bitsb bitsb <td< td=""><td>5H-58 1577.78</td><td>21</td><td>1</td><td>Kfs</td><td>66.26</td><td></td><td>17.70</td><td></td><td></td><td></td><td></td><td>0.60</td><td>15.43</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td>121</td></td<>	5H-58 1577.78	21	1	Kfs	66.26		17.70					0.60	15.43																100	121
Briss Bir/, 78 21 3 Jaz 1000 17.76 0.73 14.94 0.66 1.13 0.62 100 120 6H58 Jir/, 78 21 5 Kirs 6.55 1.65 0.43 0.88 1.77 0.66 1.13 0.62 100 71 6H58 Jir/, 78 21 5 Kirs 6.55 1.65 0.43 0.88 1.77 0.66 1.13 0.62 100 71 6H58 Jir/, 78 21 6 Kirs 66.04 0.62 100 100 100 6H58 Jir/, 78 21 9 Kirs 66.04 1.76 0.65 1.72 0.47 100 110 100 185 6H58 Jir/, 78 21 10 Kirs 65.61 1.756 2.64 0.051 4.08 100 100 120 6H58 Jir/, 78 22 2.02 100.00 1.44 1.43 1.44 1.33 0.90 100 100 120 6H58 Jir/, 78 22 3.01 <td>5H-58 1577.78</td> <td>21</td> <td>2</td> <td>Qz</td> <td>100.00</td> <td></td> <td><u> </u></td> <td>100</td> <td>126</td>	5H-58 1577.78	21	2	Qz	100.00																							<u> </u>	100	126
BHSB BY/7.6 21 A [NS BY/7.6 17.70 0.03 1.24 BHSB 177.78 21 6 [xn-ctime+(') 0 1.66 0.48 1.94 0.66 1.13 21.7 6.21 4.58 4.66 4.66 100 102 6HSB 1577.78 21 6 Xanctime+(') 0.62 0.86 1.13 21.3 4.58 4.66 4.66 100 102 6HSB 1577.78 21 8 Qz + Maxed Clay 60.42 1.76 0.27 0.67 0.47 0.47 100 100 123 6HSB 1577.78 21 10 Kts 66.64 17.67 0.27 1.76 0.66 0.47 0.47 100 100 116 6HSB 1577.78 22 1 Kts 66.64 1.14 1.28 14.41 1.43 0.90 0.99 0.99 100 100 125 6HSB 1577.78 22.6 1.60 1.44 8.	5H-58 1577.78	21	3	QZ	100.00		47.70					0.70	44.04									0.00						┝──┤	100	124
Bross Dir/r.8 21 8 M-Un 54/4 1.79 30.16 c.39 1.89 0.06 1.13 1.13 1.13 2.13 4.58 4.66 1.00 1.12 64-86 1577.78 21 6 Xenothme (Y) 10.00 10.01 10.02 10.00 10.01 11.01 10.00 11.01 10.00 11.01 10.01 11.01 10.01 11.01 10.01 11.01 10.01 11.01 10.01 11.01 10.01 11.01 10.01 11.01 10.01 11.01 10.01 11.01 10.01 11.01 10.01 11.01 10.01 11.01 10.01 11.01 10.01 11.01 <	5H-58 15/7.78	21	4		00.90	4 70	17.70	0.55		4.05	0.42	0.73	14.94		0.00		4.40					0.62							100	120
Bits 0, 17, 10 2 17, 10 10 100 102 100 102 6456 1577, 8 21 7 Gz 100, 100 100, 102 100, 102 100, 102 5458 1577, 8 21 9 Kis 66.04 17,67 0.27 0.47 100, 112 6458 1577, 8 21 1 Kis 65.04 17,67 0.27 16.06 0.47 100 100 112 6458 1577, 8 22 1 Kis 65.04 17,56 2.64 0.05 10.04 100 116 64458 1577, 78 22 1 Kis 65.04 17.56 2.67 5.77 1.76 0.67 100 100 125 64458 1577, 78 22 1 Kis 65.04 1.04 1.33 0.90 0 100 125 6458 1577, 78 22 1 Kis 65.54 18.01 1.45 8.77 0 0 100 124 6458 1577,78 22 1 Mix 66.54 18.01	5H-58 1577.78	21	5	III + Chi Xonotimo (V)	54.74	1.79	30.18	0.00		1.00	0.43	0.88	1.97		0.00		1.13			21 72			2 12	4 5 9	4 65	1 66			100	102
Jinus Juris Juris <thjuris< th=""> Juris Juris</thjuris<>	54 59 1577 79	21	7		100.00															31.73			2.13	4.50	4.05	4.00		├──┼	100	102
Bit Wind Bit Signer Bit Signe	5H-58 1577 78	21	8	QZ Oz + Mixed Clav	60.42	0.80	26.57	5 72		1 76	0.65	0.01	2 70				0.47												100	08
bits bits <td>5H-58 1577 78</td> <td>21</td> <td>9</td> <td>Kfs</td> <td>66.04</td> <td>0.00</td> <td>17.67</td> <td>0.27</td> <td></td> <td>1.70</td> <td>0.05</td> <td>0.31</td> <td>16.02</td> <td></td> <td></td> <td></td> <td>0.47</td> <td></td> <td>100</td> <td>118</td>	5H-58 1577 78	21	9	Kfs	66.04	0.00	17.67	0.27		1.70	0.05	0.31	16.02				0.47												100	118
3H-58 1577.78 22 1 Kis 66.41 18.43 0.00 1.44 13.73 0.99 100 120 3H-58 1577.78 22 2 Qz 100.00 1.44 13.73 0.99 0.99 100 120 3H-58 1577.78 22 2 Qz 1000 1.44 13.73 0.90 0.99 0.99 100 120 5H-58 1577.78 22 5 Mix 56.83 50.90 0.92 0.54 1.45 8.77 0.90 0.90 0.90 0.99 0.90 100 120 5H-58 1577.78 22 6 Mix 56.40 18.01 1.00 14.45 8.77 0.90 1.00 19.45 5H-58 1577.78 22 6 Mixed Clay 54.40 2.62 2.22 0.17 0.66 1.11 0.99 100 120 5H-58 1577.78 22 10 <t< td=""><td>5H-58 1577 78</td><td>21</td><td>10</td><td>Kfs</td><td>65.05</td><td></td><td>17.58</td><td>2.64</td><td></td><td></td><td></td><td>0.65</td><td>14.08</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td>116</td></t<>	5H-58 1577 78	21	10	Kfs	65.05		17.58	2.64				0.65	14.08																100	116
Bit-S8 1577.78 22 2 0.2 100.00 0.00 0.00 100 125 Bit-S8 1577.78 22 3 Chi + III 41.84 25.91 13.08 1.14 2.85 1.89 12.38 0.90 100 124 Bit-S8 1577.78 22 4 Oz 100.00 0.92 0.54 1.89 12.38 0.90 100 124 SH-S8 1577.78 22 5 Ms 47.65 0.56 35.09 0.92 0.54 1.45 8.77 0.90 124 SH-S8 1577.78 22 7 Mix 54.40 25.63 13.29 2.62 2.22 0.17 0.66 1.11 100 120 SH-S8 1577.78 22 9 Mixed Clay 47.09 28.15 9.68 1.17 0.66 1.11 100 120 SH-S8 1577.78 22 9 Mixed Clay 47.09 28.15 9.68 1.57 2.04 2.64 8.12 0.72 100 123 SH-S8 1577.78	5H-58 1577 78	22	1	Kfs	65.41		18.43	2.04				1 44	13.73									0.99							100	120
Bits Bits	5H-58 1577.78	22	2	Qz	100.00		10.10						.0.70									0.00							100	125
5H-58 1577.78 22 4 Qz 100.00 n	5H-58 1577.78	22	3	ChI + III	41.84		25.91	13.08		1.14		2.85	1.89		12.38		0.90												100	84
5H-58 1577.78 22 5 Ms 47.65 0.58 35.09 0.92 0.54 1.45 8.77 0 0 0 0 100 120 5H-58 1577.78 22 6 Kis 66.54 18.01 1.00 14.45 0 0.56 1.11 0 0 95 116 5H-58 1577.78 22 7 Mix 54.45 0.51 24.28 8.38 1.31 2.38 2.17 6.17 0.66 0 0 0 95 1100 99 91 5H-58 1577.78 22 9 Mixed Clay 47.09 28.15 9.68 1.57 2.04 2.64 8.12 0.72 0 0 100 99 91 5H-58 1577.78 22 10 Q 0.51 2.99 0.51 2.99 0.51 2.99 0.51 2.99 0.51 2.99 0.51 2.99 0.90 14.66 0.04 0.04 0.01 124 5H-58 1577.78 22 1 1 Mm 0.44 54.85 1.87 1.41 0.82 2.35 0.99 <td>5H-58 1577.78</td> <td>22</td> <td>4</td> <td>Qz</td> <td>100.00</td> <td></td> <td>100</td> <td>124</td>	5H-58 1577.78	22	4	Qz	100.00																								100	124
5H-58 1577.78 22 6 Kts 66.54 18.01 100 14.45 0 100 120 5H-58 1577.78 22 7 Mix 54.40 25.63 13.29 2.62 2.22 0.17 0.56 1.11 0 100 120 5H-58 1577.78 22 Mixed Clay 54.15 0.51 2.42 8.38 1.31 2.38 2.17 6.17 0.66 0 0 100 97 5H-58 1577.78 22 Mixed Clay 54.15 0.51 2.42 8.38 1.37 2.04 2.64 8.12 0.72 0 0 100 120 5H-58 1577.78 22 11 Q2 100.00 2 0 0 69.58 0 0 0 100 124 5H-58 1577.78 22 13 Kis 65.57 17.81 0.90 1.46 0 0.83 0 100 124 5H-58 1577.78 23 148 0.44 42.53 0.90 1.44 0.83 0.83 0 0 100 118	5H-58 1577.78	22	5	Ms	47.65	0.58	35.09	0.92		0.54		1.45	8.77																95	116
5H-58 1577.78 22 7 Mix 54.40 25.63 13.29 2.62 2.22 0.17 0.56 1.11 0 0 0 100 97 5H-58 1577.78 22 8 Mixed Clay 47.09 28.15 9.68 1.57 2.04 6.17 0.66 0 0 0 0 90 5H-58 1577.78 22 10 Qz 100.0 2 8.38 1.31 2.38 2.17 6.17 0.66 0 0 0 100 97 5H-58 1577.78 22 10 Qz 100.0 2 8.38 1.31 2.38 2.17 6.17 0.66 0 0 0 0 100 123 5H-58 1577.78 22 11 Qz 100.0 2 9.91 0 0 69.58 0 0.84 0 0 100 124 5H-58 1577.78 23 2 [18, 0 54.85 42.53 0.96 1.23 0 0 0 0.84 0 0 100 124 5H-58 1577.78 23 <th2< td=""><td>5H-58 1577.78</td><td>22</td><td>6</td><td>Kfs</td><td>66.54</td><td></td><td>18.01</td><td></td><td></td><td></td><td></td><td>1.00</td><td>14.45</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td>120</td></th2<>	5H-58 1577.78	22	6	Kfs	66.54		18.01					1.00	14.45																100	120
5H-58 1577.78 22 8 Mixed Clay 54.15 0.51 24.28 8.38 1.31 2.38 2.17 6.17 0.66 0 0 0 99 5H-58 1577.78 22 9 Mixed Clay 47.09 28.15 9.68 1.57 2.04 2.04 8.12 0.72 0 0 0 100 99 5H-58 1577.78 22 10 Qz 100.00 28.15 9.68 1.57 2.04 2.04 8.12 0.72 0 0 100 100 100 100 124 5H-58 1577.78 22 12 Py 0.51 29.91 0 0 4.66 0 0 0.84 0 0.04 100 124 5H-58 1577.78 23 3 Kfs 65.57 18.08 42.53 0.90 1.23 0 0 0 0.83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5H-58 1577.78	22	7	Mix	54.40		25.63	13.29		2.62		2.22	0.17		0.56		1.11												100	97
5H-58 1577.78 22 9 Mixed Clay 47.09 28.15 9.68 1.57 2.04 2.64 8.12 0.72 0 0 100 91 5H-58 1577.78 22 10 Qz 100.00 2 0 2 0 2 0 2 0 2 0 2 0 100 123 5H-58 1577.78 22 12 Py 0.51 29.91 0 1 0.90 14.66 69.58 0 0.84 0 100 123 5H-58 1577.78 22 13 Kfs 65.79 17.81 0.90 14.66 69.58 0 0.84 0 0 100 124 5H-58 1577.78 23 2 Kfs 65.57 18.08 1.37 1.41 0.82 2.35 0.99 0.83 0 100 110 111 100 124 5H-58 1577.78 23 3 Qz 100.00 123 1.41 0.82 2.35 0.99 0 0 0.00 100 1100 <td>5H-58 1577.78</td> <td>22</td> <td>8</td> <td>Mixed Clay</td> <td>54.15</td> <td>0.51</td> <td>24.28</td> <td>8.38</td> <td></td> <td>1.31</td> <td></td> <td>2.38</td> <td>2.17</td> <td></td> <td>6.17</td> <td></td> <td>0.66</td> <td></td> <td>100</td> <td>99</td>	5H-58 1577.78	22	8	Mixed Clay	54.15	0.51	24.28	8.38		1.31		2.38	2.17		6.17		0.66												100	99
5H-58 1577.78 22 10 Qz 100.0 Image: constraint of the second seco	5H-58 1577.78	22	9	Mixed Clay	47.09		28.15	9.68		1.57		2.04	2.64		8.12		0.72												100	91
5H-58 1577.78 22 11 Qz 100.01 124 5H-58 1577.78 22 12 Py 0.51 29.91 69.58 0 0.84 100 124 5H-58 1577.78 22 13 Kfs 65.79 17.81 0.90 14.66 69.58 0 0.84 100 124 5H-58 1577.78 23 1 llm 0.44 54.87 42.53 0.96 1.23 0 0.84 0.84 0 100 124 5H-58 1577.78 23 2 Kfs 65.57 18.08 1.04 1.44 0 0.83 0 100 124 5H-58 1577.78 23 2 Kfs 65.57 18.08 1.04 1.44 0 0.83 0.83 100 122 5H-58 1577.78 23 4 Mixed Clay 57.75 0.52 25.85 8.45 1.87 1.41 0.82 2.35 0.99 0.4 0.49 100 124 5H-58 1577.78 23 5 Ilm 54.27 44.08 0.89 0.76 0.99 0.4 0.49 100 <td>5H-58 1577.78</td> <td>22</td> <td>10</td> <td>Qz</td> <td>100.00</td> <td></td> <td>\square</td> <td>100</td> <td>123</td>	5H-58 1577.78	22	10	Qz	100.00																							\square	100	123
5H-58 1577.78 22 12 Py 0.51 29.91 0 69.58 0 0 0.84 100 228 5H-58 1577.78 22 13 Kfs 65.79 17.81 0.90 14.66 0 0.84 0 100 124 5H-58 1577.78 23 11m 0.44 54.85 42.53 0.96 1.23 0 0 0.84 0.84 0 100 124 5H-58 1577.78 23 2 Kfs 65.57 18.08 1.04 1.44.7 0 0.83 0 100 122 5H-58 1577.78 23 3 Qz 100.00 22.58 8.45 1.87 1.41 0.82 2.35 0.99 0 0 100 122 5H-58 1577.78 23 5 Ilm 54.27 44.08 0.89 0.76 0 0 0 0 100 100 123 5H-58 1577.78 23 7 Qz 100.00 0 0 0.71 14.99 0 0 0 0.49 0 100 <th< td=""><td>5H-58 1577.78</td><td>22</td><td>11</td><td>Qz</td><td>100.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td>124</td></th<>	5H-58 1577.78	22	11	Qz	100.00																								100	124
5H-58 1577.78 22 13 krs 65.79 17.81 0.90 14.66 0.84 0.84 100 124 5H-58 1577.78 23 1 llm 0.44 54.85 42.53 0.96 1.23 0 0.84 0 100 124 5H-58 1577.78 23 2 kfs 65.57 18.08 42.53 0.96 1.23 0 0.83 0 100 107 5H-58 1577.78 23 3 Qz 100.00 1 1.04 1.447 0 0.83 0 0 100 122 5H-58 1577.78 23 4 Mixed Clay 57.75 0.52 25.85 8.45 1.87 1.41 0.82 2.35 0.99 0 0 0 100 122 5H-58 1577.78 23 6 Kfs 65.94 1.78 0.89 0.76 0.99 0 0.49 0 100 100 100 119 5H-58 1577.78 23 7 Qz 100.00 0 0 0 0 0.49 0 0 100 123 </td <td>5H-58 1577.78</td> <td>22</td> <td>12</td> <td>Py</td> <td>0.51</td> <td></td> <td></td> <td>29.91</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>69.58</td> <td></td> <td>\vdash</td> <td>100</td> <td>228</td>	5H-58 1577.78	22	12	Py	0.51			29.91							69.58													\vdash	100	228
5H-58 1577.78 23 1 llm 0.44 54.85 42.53 0.96 1.23 1.04 14.47 0 0.83 100 100 100 101 5H-58 1577.78 23 3 Qz 100.00 18.88 1.04 14.47 0 0.83 0 100 118 5H-58 1577.78 23 3 Qz 100.00 1 1.44 1.44 0.82 2.35 0.99 0.83 0 100 122 5H-58 1577.78 23 4 Mixed Clay 57.75 0.52 25.85 8.45 1.87 1.41 0.82 2.35 0.99 0.83 0 100 122 5H-58 1577.78 23 6 Kfs 65.94 17.88 0.76 0.71 14.99 0.76 0.49 0.49 100 100 123 5H-58 1577.78 23 7 Qz 100.0 1 0.71 14.99 0.71 14.99 0.4 0.49 100 100 123 5H-58 1577.78 23 8 Kfs 66.37 17.84 1.08 1.0.16 <t< td=""><td>5H-58 1577.78</td><td>22</td><td>13</td><td>Kts</td><td>65.79</td><td></td><td>17.81</td><td></td><td></td><td></td><td></td><td>0.90</td><td>14.66</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.84</td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td>100</td><td>124</td></t<>	5H-58 1577.78	22	13	Kts	65.79		17.81					0.90	14.66									0.84						\vdash	100	124
5H-58 1577.78 23 2 krs 65.57 18.08 1.04 14.47 0.83 0.83 100 118 5H-58 1577.78 23 3 Qz 1000 100 122 5H-58 1577.78 23 4 Mixed Clay 57.75 0.52 25.85 8.45 1.87 1.41 0.82 2.35 0.99 0 0 100 122 5H-58 1577.78 23 5 llm 54.27 44.08 0.89 0.76 0.82 2.35 0.99 0 0 100 122 5H-58 1577.78 23 6 krs 65.94 17.88 0.71 14.99 0 0 0.49 0 100 123 5H-58 1577.78 23 7 Qz 100.00 178 0.71 14.99 0 0 0.49 0 100 123 5H-58 1577.78 23 8 krs 66.37 17.84 1.08 1.04 1.04 0.49 0 100 121 5H-58 1577.78 23 9 Mixed Clay 53.47 17.84 1.08 1.08 <	5H-58 1577.78	23	1	Ilm	0.44	54.85		42.53	0.96	1.23																		$ \longrightarrow $	100	107
SH-SB 1577.78 23 4 Mixed Clay 57.75 0.52 25.85 1.87 1.41 0.82 2.35 0.99 0 0 100 122 SH-SB 1577.78 23 5 IIm 54.27 44.08 0.89 0.76 0.71 14.99 0 0 0.49 0.49 0.49 100 122 SH-SB 1577.78 23 6 Kfs 65.94 17.88 0.80 0.71 14.99 0 0 0.49 0 100 122 SH-SB 1577.78 23 6 Kfs 65.94 17.88 0.80 0.71 14.99 0 0 0.49 0 100 122 SH-SB 1577.78 23 7 Qz 100.00 22.25 3.89 3.18 2.01 1.67 1.44 0 0.49 0 100 123 SH-SB 1577.78 23 9 Mixed Clay 53.54 1.84 0 1.08 14.71 0 0 0 100 123 SH-SB 1577.78 23 9 Mixed Clay 53.54 3.411 6.67 1.23 1.23 1.23 0.27 1.44 0 0 0 100 123 SH-SB 1577.78 23 11 M	5H-58 1577.78	23	2	Kts	65.57		18.08					1.04	14.47									0.83						\vdash	100	118
Sh+Se 1577.78 23 4 Mixed Clay 57.75 0.52 25.88 8.45 1.87 1.41 0.82 2.35 0.99 100 92 Sh+Se 1577.78 23 6 Kfs 65.94 17.88 0.89 0.76 100 123 Sh+Se 1577.78 23 8 Kfs 66.37 17.84 1.08 14.71 100 123 Sh+Se 1577.78 23 9 Mixed Clay 54.92 10.63 22.25 3.89 3.18 2.01 1.67 1.44 100 123 Sh+Se 1577.78 23 10 Mixed Clay 53.54 34.11 6.67 1.23 1.23 0.27	5H-58 1577.78	23	3	Qz	100.00	0.50	05.05	0.45		4.07			0.00		0.05		0.00											├ ── ├	100	122
DT-50 1577.78 23 0 Kfs 65.94 17.88 0.79 0.71 14.99 0.71 0.49 0.49 100 100 100 5H-58 1577.78 23 7 Qz 100.0 1 0.71 14.99 0.71 14.99 0.49 0.49 100 100 123 5H-58 177.78 23 7 Qz 100.0 1 1.08 1.471 0 0.49 0 100 123 5H-58 1577.78 23 9 Mixed Clay 54.92 10.63 22.25 3.89 3.18 2.01 1.67 1.44 0 0 100 123 5H-58 1577.78 23 10 Kfs 66.75 16.84 3.03 0.46 0.93 13.66 0.34 0 0 100 119 5H-58 1577.78 23 11 Mixed Clay 53.54 34.11 6.67 1.23 1.23 0.27 1.90 1.06 0 0 100 188 5H-58 127/7.78 23 12 Kfs 66.24 17.68 0.68 15.41 0 0 0 100 121 5H-58 1577.78 23 12 Kfs 66.24 </td <td>5H-58 15//.78</td> <td>23</td> <td>4</td> <td>Mixed Clay</td> <td>57.75</td> <td>0.52</td> <td>25.85</td> <td>8.45</td> <td>0.00</td> <td>1.87</td> <td></td> <td>1.41</td> <td>0.82</td> <td></td> <td>2.35</td> <td></td> <td>0.99</td> <td></td> <td>\vdash</td> <td>100</td> <td>92</td>	5H-58 15//.78	23	4	Mixed Clay	57.75	0.52	25.85	8.45	0.00	1.87		1.41	0.82		2.35		0.99											\vdash	100	92
DT-D0 15/1/10 23 0 NIS 0.34 0.49 0.49 100 119 5H-58 1577.78 23 7 Qz 100.00 1 1 1 100 123 5H-58 1577.78 23 8 Kfs 66.37 17.84 1.08 14.71 1 1 100 121 5H-58 1577.78 23 9 Mixed Clay 54.92 10.63 22.25 3.89 3.18 2.01 1.67 1.44 100 100 123 5H-58 1577.78 23 10 Kfs 64.75 16.84 3.03 0.46 0.93 13.66 0.34 100 100 190 5H-58 1577.78 23 11 Mixed Clay 53.54 34.11 6.67 1.23 1.23 0.27 1.90 1.06 100 123 5H-58 1577.78 23 12 Kfs 66.24 17.68 0.68 15.41 100 100 123 5H-58 1577.78 23 12 Kfs 66.24 17.68 0.68 15.41 100 100 123 5H-58 1577.78 23 13 Qz 100 100 123 100 124	5H-58 15//./8	23	5		05.04	54.27	47.00	44.08	0.89	U.76		0.71	44.00									0.40						┝──┤	100	106
Shr50 1577.78 23 9 Mixed Clay 54.92 10.63 22.25 3.89 3.18 2.01 1.67 1.44 0 100 121 5H-58 1577.78 23 9 Mixed Clay 54.92 10.63 22.25 3.89 3.18 2.01 1.67 1.44 0 100 121 5H-58 1577.78 23 10 Kfs 64.75 16.84 3.03 0.46 0.93 13.66 0.34 0 100 115 5H-58 1577.78 23 11 Mixed Clay 53.54 34.11 6.67 1.23 1.23 0.27 1.90 1.06 0 100 121 5H-58 1577.78 23 12 Kis 66.24 17.68 0.68 15.41 0 0 100 121 5H-58 1577.78 23 12 Kis 66.24 17.68 0.68 15.41 0 0 100 121 5H-58 1577.78 23 13 Q.2 100.00 0 0 123 120 120 120 120	511-58 15/1.78	23	6		65.94		17.88					0.71	14.99									0.49						\vdash	100	119
Shr 30 1577.78 23 10 Kis 64.75 16.84 3.03 0.46 0.93 13.66 0.34 0.34 100 121 5H-58 1577.78 23 10 Kis 64.75 16.84 3.03 0.46 0.93 13.66 0.34 100 100 115 5H-58 1577.78 23 11 Mixed Clay 53.54 34.11 6.67 1.23 1.23 0.27 1.90 1.06 100 121 5H-58 1577.78 23 12 Kis 66.24 17.68 0.68 15.41 100 121 5H-58 1577.78 23 12 Kis 66.24 17.68 0.68 15.41 100 121 5H-58 1577.78 23 13 Qz 100 00 123 123 123 12.41 100 121	50 15/1./8	23	/	V/L	66.27		17.04					1.00	14.74															\vdash	100	123
Since Gray Struct Oray Struct Oray <thstruct oray<="" th=""> <thstruct oray<="" th=""></thstruct></thstruct>	54-58 1577 79	23	0 0	Mixed Clay	54.02		10.62	22.25		3 80		3.19	2.01		1.67		1 1 1											\vdash	100	70
SH-58 1577.78 23 11 Mixed Clay 53.54 34.11 6.67 1.23 1.23 0.27 1.90 1.06 100 113 5H-58 1577.78 23 12 Kfs 66.24 17.68 0.68 15.41 100 121 5H-58 1577.78 23 13 Q2 1.06 100 121 5H-58 1577.78 23 13 Q2 10.01 124 100 121	5H-58 1577 78	23	9	Kfs	64 75		16.84	3.03		0.46		0.03	13.66		1.07		0.3/											\vdash	100	115
SH-58 1577.78 23 12 Kfs 66.24 17.68 0.68 15.41 100 121 5H-58 1577.78 23 13 Q2 100 0.12 100 121	5H-58 1577 78	23	11	Mixed Clav	53 54		34 11	6.67		1 23		1 23	0.27		1.90		1.06												100	88
	5H-58 1577 78	23	12	Kfs	66.24		17.68	0.07		1.20		0.68	15.41		1.50		1.00										1		100	121
	5H-58 1577,78	23	13	Qz	100.00							0.00	10.71																100	127

Table 1-7.1: EDS geochemical analyses of sample 5H-58 1577.78.

Sample	Site	Position	Mineral	Si02	Ti02	AI2O3	FeO	OuM	MgO	CaO	Na2O	K2O	P205	SO3	Ŀ	ō	Sc203	Cr203	Y203	ZrO2	BaO	Gd2O3	Dy2O3	Er203	Yb2O3	HfO2	£ОМ	Total	Actual Total
5H-58 1577.78	23	14	Mixed Clay	44.50	0.37	27.32	11.64		1.25	0.20	2.12	2.21		10.08		0.30												100	103
5H-58 1577.78	23	15	"llm"	0.96	66.15		31.23	1.25	0.42																			100	96
5H-58 1577.78	24	1	Gly	48.72		9.07	19.02		2.90		2.04	3.78		0.84		0.63												87	106
5H-58 1577.78	24	2	Gly	44.55		8.47	16.26		2.44		1.94	2.70		9.83		0.82												87	82
5H-58 1577.78	24	3	Gly	46.05		10.53	17.84		2.91	0.77	2.30	3.50		2.47		0.64												87	107
5H-58 1577.78	24	4	Qz	100.00																								100	130
5H-58 1577.78	24	5	Zrn	30.20		0.54	0.59			0.75										67.92								100	115
5H-58 1577.78	24	6	Kfs	66.05		17.70	0.28				0.30	15.68																100	126
5H-58 1577.78	24	7	Gly	45.98		9.68	20.05		2.74	0.36	1.72	4.48		1.51		0.48												87	102
5H-58 1577.78	24	8	Gly	47.12		8.85	17.42		2.77		2.31	2.37		4.87		1.30												87	82
5H-58 1577.78	24	9	QZ Ohi i Dii	100.00		40.05	04.00		2.22		2.40	4.40		4 70		0.00												100	126
5H-58 1577.78	24	10	GIV + Py	54.78		10.95	21.90		3.33		2.19	4.46		1.73		0.66												100	101
54-58 1577 79	24	11	Giy ? Miv	45.02	0.69	21.87	19.05		2.82		2.30	3.52		7 29		0.00											\vdash	100	11/
5H-58 1577 7º	24	12	Ms	43.02	0.00	21.07	1.92		0.81		0.75	0.04		1.20		4.59												95	114
5H-58 1577 78	24	13	Kfs	65.65	0.24	17.89	1.02		0.01		1.02	5.50 14.41									1.03							100	120
5H-58 1577 78	25	2	Glv ?	52.61		9.82	19 15		3 12		2 21	3.02		9.32		0.75					1.03							100	72
5H-58 1577 78	25	3	Gly ?	53.97		10.16	22.25		3.06	0.55	1.90	5.24		2.26		0.62												100	100
5H-58 1577.78	25	4	Mixed Clav	46.71	0.55	25.26	10.90		1.44	0.00	2.21	2.44		10.15		0.33												100	104
5H-58 1577.78	25	5	"llm"		61.92		34.45	2.27	1.36																			100	100
5H-58 1577.78	25	6	Qz +	88.75		5.04	2.76		1.71		0.47	1.11				0.16												100	122
5H-58 1577.78	25	7	Qz	100.00																								100	128
5H-58 1577.78	25	8	Qz	100.00																								100	121
5H-58 1577.78	25	9	Kfs	65.70		17.83						15.67									0.79							100	117
5H-58 1577.78	26	1	Ms	48.45	1.43	31.76	0.60		2.12		0.59	10.06																95	119
5H-58 1577.78	26	2	Qz	100.00																								100	121
5H-58 1577.78	26	3	Kfs	66.49		17.63					0.63	15.25																100	118
5H-58 1577.78	26	4	Ар				0.50			49.92	0.63		41.61		5.71												1.62	100	119
5H-58 1577.78	26	5	III + Chl	56.68	0.56	22.66	8.31		1.01		1.93	1.85		6.64		0.34												100	102
5H-58 1577.78	26	6	Qz	100.00																								100	126
5H-58 1577.78	26	7	Py	54.00	0.04	05 70	29.17		0.70		0.28	0.50		70.55														100	235
5H-58 1577.78	26	8	Chloritized Ms	51.29	0.94	35.73	0.97		0.79		1.79	8.50		0.00		4.54												100	112
5H-58 1577.78	26	9	III + Chi	56.10		19.06	13.95		2.88		2.51	1.77		2.22		1.51				07.05						0.07		100	79
5H-58 1577.78	27	1	Zm Oz	30.88																67.05						2.07		100	120
5H-56 1577.70	27	2	QZ Kfc	65.74		17.90					0.27	15.25									0.74							100	124
5H-58 1577 78	27	1	07 +	89.03	0.45	6.03	0.95		0 32		0.37	0.35		1 23							0.74							100	124
5H-58 1577 78	27	5	07	100.00	0.40	0.03	0.93		0.52		0.74	0.55		1.23														100	120
5H-58 1577 78	27	6	Pv	0.16			28.37							71.48														100	247
5H-58 1577.78	27	7	Qz	100.00			20.01							0														100	123
5H-58 1577.78	27	8	Mixed Clay	49.99	0.47	29.34	9.45		1.45		1.40	2.01		5.16		0.74												100	85
5H-58 1577.78	28	1	Qz	100.00																								100	122
5H-58 1577.78	28	2	llm		51.78		46.00	0.57	1.66																			100	107
5H-58 1577.78	28	3	Mixed Clay	56.30	3.10	25.91	6.65		1.20		1.44	1.50		3.71		0.19												100	107
5H-58 1577.78	28	4	Mixed Clay	46.65	0.78	30.70	9.23		1.10	0.27	1.61	1.17		7.81		0.68												100	89
5H-58 1577.78	28	5	Kfs	66.24		17.65					0.60	15.51																100	117
5H-58 1577.78	28	6	Qz +	94.47		3.28	1.07					0.21		0.98														100	122
5H-58 1577.78	28	7	Qz	100.00					_																			100	126
5H-58 1577.78	28	8	Mixed Clay	55.74		33.49	4.51		0.91		0.93	1.76		2.66														100	107
5H-58 1577.78	29	1	Qz	100.00																								100	119
5H-58 1577.78	29	2	Kts	66.02		17.55					0.28	16.16															\vdash	100	109
5H-58 1577.78	29	3	Qz	100.00																								100	120
5H-58 1577.78	29	4	Kts	66.08		17.84					0.61	15.47																100	117

Table 1-7.1: EDS geochemical and	alyses of sample 5H-58 1577.78.
----------------------------------	---------------------------------

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	EOS	н	CI	Sc2O3	Cr203	Y203	ZrO2	BaO	Gd2O3	Dy203	Er203	Yb2O3	Hf02	WO3	Total	Actual Total
5H-58 1577.78	29	5	Kfs	66.31		17.61					0.61	15.47																100	115
5H-58 1577.78	29	6	Mixed Clay	42.84		15.92	33.10		3.60		1.77			1.27		1.49												100	88
5H-58 1577.78	29	7	Qz	100.00																								100	118
5H-58 1577.78	29	8	Qz +	91.77		4.62	1.60		0.46			0.37		0.94		0.24												100	101
5H-58 1577.78	29	9	Mix	33.48	0.29	22.29	15.28		1.22	0.41	0.99	1.62		23.74		0.68												100	93
5H-58 1577.78	29	10	Qz	100.00																								100	117
5H-58 1577.78	29	11	Qz	100.00																								100	120
5H-58 1577.78	29	12	Mixed Clay	57.50	0.40	27.04	7.37		1.48		1.14	2.00		2.30		0.77												100	81
5H-58 1577.78	29	13	Qz	100.00																								100	124
5H-58 1577.78	30	1	Ms	47.97	1.12	33.49	0.72		1.09		0.68	9.93																95	107
5H-58 1577.78	30	2	Kfs	65.90		17.65	0.42				0.47	15.55																100	116
5H-58 1577.78	30	3	Qz	100.00																								100	123
5H-58 1577.78	30	4	Kfs	66.14		17.83					0.61	15.42																100	120
5H-58 1577.78	30	5	Kfs	63.16	0.36	17.17	1.71				0.40	14.65		2.55														100	118
5H-58 1577.78	30	6	Qz	100.00																								100	120
5H-58 1577.78	30	7	Qz	100.00																								100	124
5H-58 1577.78	30	8	Qz	95.93		2.41	0.62					0.39		0.65														100	124
5H-58 1577.78	30	9	Mixed Clay	53.87	0.47	30.62	5.73		0.80		1.34	1.81		4.95		0.42												100	92
5H-58 1577.78	30	10	Zrn	31.09			0.57													68.33								100	112
5H-58 1577.78	30	11	Kln?	55.07		34.95	6.36		1.41		1.34	0.20				0.66												100	95
5H-58 1577.78	30	12	Kfs	66.44	0.27	17.90					0.84	14.55																100	110
5H-58 1577.78	31	1	Qz	100.00																								100	126
5H-58 1577.78	31	2	Zrn	29.92		0.51				0.94							0.46			68.17								100	111
5H-58 1577.78	31	3	llm		52.34		43.37	4.29																				100	106
5H-58 1577.78	31	4	Mixed Clay	50.47	0.40	25.91	8.49		1.45		1.86	2.08		8.65		0.68												100	87
5H-58 1577.78	31	5	Kfs	66.12		17.80						16.08																100	120
5H-58 1577.78	31	6	Qz	98.79		0.71	0.49																					100	119
5H-58 1577.78	31	7	Gly	47.66		12.52	16.04		2.84		1.31	3.87		1.87		0.89												87	78
5H-58 1577.78	31	8	Qz	100.00																								100	122
5H-58 1577.78	31	9	Ab	69.61		18.77				0.52	11.10																	100	122
5H-58 1577.78	31	10	Kfs	66.76		17.81	0.66				1.03	13.74														\square		100	116
5H-58 1577.78	31	11	Qz	100.00																							$ \rightarrow $	100	122
5H-58 1577.78	31	12	Kfs	66.19		18.00					1.39	13.91									0.50					\square	$ \rightarrow $	100	118
5H-58 1577.78	31	13	Gly	47.25		9.65	19.02		2.88		1.31	5.24		0.80		0.85										\square	$ \rightarrow $	87	93
5H-58 1577.78	31	14	Qz	100.00																								100	125
5H-58 1577.78	31	15	Kfs	66.13		17.97					0.79	15.11																100	124
5H-58 1577.78	31	16	Qz	97.45	0.54	1.54	0.31					0.16																100	126
																											\rightarrow		
	ļ								Notes																		+		
									1. + indi	cates m	ore than	n one mi	ineral p	resent												I	+	$ \rightarrow $	
	L								2. " " inc	licates a	attered g	rain												-		$ \longrightarrow $			
									3. Gly re	eters to	the mixt	ure glau	cony													-			
																											<u>+</u>		

Table 1-7.1: EDS geochemical analyses of sample 5H-58 1577.78.

Appendix 1-8: SEM-BSE images and EDS mineral analyses for sample 5H-58 1903.66.

Sample 5H-58 1903.66: Fine-medium grained sandstone

Detrital Minerals: Albite, Illmenite, K-feldspar, Muscovite, Oligoclase, Quartz, Titania (Fig. 22), Zircon

Diagenetic Minerals: Kaolinite, Siderite, Titania, Quartz overgrowths, K-feldspar overgrowths

Notes:

- 1. Suturing is common between detrital minerals (K-feldspar and quartz).
- 2. The sample contains a lot of primary porosity.
- 3. K-feldspar and quartz display overgrowths (Figs. 32,33).

4. Drilling mud (clays + barite) have partially surround grains throughout this sample (Figs. 2,35).

5. Paragenetic sequence: Kaolinite Siderite, Titania † † † Fig. 37 Fig. 17 Figs. 6,31

Figure 1-8.1: Scanned thin section of sample 5H-58 1903.66 showing the location of analyzed sites.

Figure 1-8.2: Sample 5H-58 1903.66 (SEM) site 1. This site consists of detrital quartz (2-4,6-7,9,11-12), oligoclase (13), and K-feldspar (1,8) grains. K-feldspar (10) appears to be albitized. Siderite (5) appears to be diagenetic, partially filling voids in quartz. Barite (14) makes up part of the drilling mud.

1:K-feldspar 2:Siderite 3:Quartz 4:Quartz 5:K-feldspar 6:Barite 7:Albite 8:K-feldspar 9:Quartz + Kfeldspar 10:K-feldspar 11:Ilmenite 12:K-feldspar

Figure 1-8.3: Sample 5H-58 1903.66 (SEM) site 2. This site consists of detrital quartz (3-4), K-feldspar (1,5,8,10,12), and albite (7) grains. Ilmenite (11) appears to be dissolved. There appears to be a graintoid lithic clast made up of quartz and K-feldspar (9). Barite makes up part of the drilling mud (6).

Figure 1-8.4: Sample 5H-58 1903.66 (SEM) site 2.1. This site consists of a partially dissolved quartz grains (2). It may be a rhyolitic lithic clast.

1:Quartz 2:Barite 3:K-feldspar 4:Quartz 5:K-feldspar 6:K-feldspar 7:Quartz 8:K-feldspar 9:K-feldspar 10:Quartz 11:Quartz

Figure 1-8.5: Sample 5H-58 1903.66 (SEM) site 3. This site consists of detrital quartz (1,4,7,10-11), and K-feldspar (3,5-6,8-9) grains. These grains commonly display suturing (positions a).

1:Muscovite 2:TiO₂ +

Figure 1-8.6: Sample 5H-58 1903.66 (SEM) site 3.1. This site consists of a metasiltstone lithic clast made up of muscovite (1) with diagenetic titania (2) precipitating within voids.

1:K-feldspar 2:Quartz 3:Barite 4:K-feldspar 5:Quartz 6:K-feldspar 7:K-feldspar 9:Quartz 10:Quartz 11:Quartz

Figure 1-8.7: Sample 5H-58 1903.66 (SEM) site 4. This site consists of detrital quartz and K-feldspar grains. Suturing is common between these grains. Drilling (barite + clays) (3) partially fills porosity. K-feldspar (8) appears that it may be perthitic.

Figure 1-8.8: Sample 5H-58 1903.66 (SEM) site 5. This site consists of mainly detrital quartz and K-feldspar grains, and a rare detrital muscovite (3), and albite (15) grain. Suturing is common.

1:Albite 2:K-feldspar 3:K-feldspar 4:Quartz + Muscovite

Figure 1-8.9: Sample 5H-58 1903.66 (SEM) site 5.1. This site consists of detrital quartz grains, a large albitized K-feldspar grain, and a small granitic lithic clast made up of quartz and probably muscovite (4).

Figure 1-8.10: Sample 5H-58 1903.66 (SEM) site 6. This site consists of detrital quartz and K-feldspar grains. There is an altered ilmenite (15) grain as well as a granitic lithic clast of quartz (11) and K-feldspar (10). Kaolinite (12) partially fills primary porosity.

1:Quartz 2:Barite 3:K-feldspar 4:K-feldspar 5:Quartz 6:K-feldspar 7:Quartz 8:Quartz 9:Quartz 10:K-feldspar 11:Quartz 12:Quartz

Figure 1-8.11: Sample 5H-58 1903.66 (SEM) site 7. This site consists of detrital quartz and K-feldspar grains that display suturing. Barite (2) makes up part of the drilling mud. Kaolinite partially forms between grains.

Figure 1-8.12: Sample 5H-58 1903.66 (SEM) site 8. This site consists of detrital quartz (1,4,6,9-10), and chloritized mica (5). Diagenetic siderite (2-3) partially fills primary porosity. There are two granitic lithic clasts of: 1. albite (11) and K-feldspar (12). 2: quartz (8) and K-feldspar (7). Drilling mud appears to coat most grains (positions a).

1:Quartz 2:Kaolinite 3:Quartz 4:Albite 5:Mixture

Figure 1-8.13: Sample 5H-58 1903.66 (SEM) site 8.1. This site consists of detrital quartz (3) and albite (4) grains. Kaolinite (2) grows along intergranular boundaries.

Figure 1-8.14: Sample 5H-58 1903.66 (SEM) site 9. This site consists of mainly detrital quartz (2,6,11-12), albite (3,8,13), and K-feldspar (1,4-5,7). There is also a quartz (10) grain with K-feldspar (9) inclusions.

Figure 1-8.15: Sample 5H-58 1903.66 (SEM) site 10. This site consists of mainly detrital quartz and K-feldspar grains. Quartz (2) appears to be a dissolved rhyolitic lithic clast. Barite (7) makes up part of the drilling mud.

Figure 1-8.16: Sample 5H-58 1903.66 (SEM) site 10.1. This site consists of a metasiltstone lithic clast made up of muscovite (1-3).

Figure 1-8.17: Sample 5H-58 1903.66 (SEM) site 11. This site consists mainly of detrital quartz, K-feldspar, and oligoclase (11) grains. There is also diagenetic siderite (4) and titania (14). Barite (15) makes up part of the drilling mud.

Figure 1-8.18: Sample 5H-58 1903.66 (SEM) site 12. This site is similar to site 7. Quartz (10) appears to be ?dissolving.

1:K-feldspar 2:Quartz

Figure 1-8.19: Sample 5H-58 1903.66 (SEM) site 12.1. This site consists of a microgranitic lithic clast made up of quartz (2) and K-feldspar (1).

Figure 1-8.20: Sample 5H-58 1903.66 (SEM) site 13. This site is similar to site 8. Quartz (7) may be a rhyolitic lithic clast.

1:Quartz 2:K-feldspar 3:Albite 4:Oligoclase 5:K-feldspar 6:K-feldspar 7:Quartz 8:Quartz 9:K-feldspar 10:Quartz 11:Albite

Figure 1-8.21: Sample 5H-58 1903.66 (SEM) site 14. This site consists of detrital quartz (1,7-8,10), K-feldspar (5-6,9), and oligoclase (4). There is a granitic lithic clast made up of albite (3) and K-feldspar (2).

Figure 1-8.22: Sample 5H-58 1903.66 (SEM) site 15. This site consists mainly of detrital quartz and K-feldspar grains. There is an albitized K-feldspar (10) grain. K-feldspar (4) appears to be surrounded by muscovite or chlorite (arrow). Titania (2) may be ?detrital.

1:Quartz 2:Quartz 3:K-feldspar 4:Albite 5:K-feldspar 6:K-feldspar 7:Quartz 8:Quartz 9:Quartz

Figure 1-8.23: Sample 5H-58 1903.66 (SEM) site 16. This site is similar to previous sites, such as site 15. There is a detrital grain of albitized K-feldspar (4-5).

Figure 1-8.24: Sample 5H-58 1903.66 (SEM) site 16.1. This site consists of detrital quartz and K-feldspar grains. There is a large albitized (4,6) Kfeldspar (3,5) grain.

2:K-feldspar 3:Barite 4:Quartz 5:Quartz 6:Quartz 7:K-feldspar 8:Albite 9:K-feldspar 10:Siderite 11:Quartz

Figure 1-8.25: Sample 5H-58 1903.66 (SEM) site 17. This site is similar to previous sites such as site 15,16. An albitized (8) K-feldspar appears to be dissolving. Barite (3) makes up part of the drilling mud.

Figure 1-8.26: Sample 5H-58 1903.66 (SEM) site 18. This site consists of detrital quartz (1,6-8), K-feldspar (3), and oligoclase (2). There is a granitic lithic clast made up of quartz (4) and K-feldspar (5). Muscovite (10) appears to fill a fracture/void in quartz (9).

1:K-feldspar + 2:Quartz 3:Oligoclase 4:K-feldspar 5:Oligoclase 6:K-feldspar 7:Quartz 8:K-feldspar 9:Quartz 10:Quartz 11:K-feldspar 12:Quartz 13:Barite 14:Quartz 15:Quartz

Figure 1-8.27: Sample 5H-58 1903.66 (SEM) site 19. This site consists of mainly detrital quartz (2,7,9-10,12,14-15), K-feldspar (1,4,6,8,11), and oligoclase (3,5) grains. Barite (13) makes up part of the drilling mud. Suturing is common between grains (positions a).

Figure 1-8.28: Sample 5H-58 1903.66 (SEM) site 20. This site is similar to site 19.

Figure 1-8.29: Sample 5H-58 1903.66 (SEM) site 21. This site consists of detrital grains of quartz (1-2,4-5,7-9), and K-feldspar (2,6). Late diagenetic siderite appears to cross-cut detrital quartz grains.

Figure 1-8.30: Sample 5H-58 1903.66 (SEM) site 21.1. This site consists of an albitized K-feldspar (1-2). Late diagenetic siderite (3) fills pores. Barite (4) makes up part of the drilling mud.

Figure 1-8.31: Sample 5H-58 1903.66 (SEM) site 22. This site is similar to site 20.

Figure 1-8.32: Sample 5H-58 1903.66 (SEM) site 23. This site is similar to site 20.Quartz commonly displays suturing with other crystals (positions a) and sometimes overgrowths (positions b).

1:Quartz 2:K-feldspar 3:Quartz 4:Quartz 5:K-feldspar 6:Quartz 7:K-feldspar 8:Quartz 9:K-feldspar 10:Quartz 11:Quartz

Figure 1-8.33: Sample 5H-58 1903.66 (SEM) site 24. This site is similar to site 20. Quartz contains some overgrowths (positions b), and quartz and K-feldspar commonly display suturing (positions a).

1:K-feldspar 2:Apatite + Chlorite 3:Albite 4:K-feldspar

Figure 1-8.34: Sample 5H-58 1903.66 (SEM) site 24.1. This site consists of detrital quartz grains. There is also a granitic clast of albitized Kfeldspar (1,3-4), with apatite + chlorite (2) partially filling a void.

6:K-feldspar 8:K-feldspar 10:Quartz 11:Quartz 12:K-feldspar 13:K-feldspar

Figure 1-8.35: Sample 5H-58 1903.66 (SEM) site 25. This site is similar to site 20. There is also a detrital zircon (7) grain. Drilling mud that is made up of clays + barite (2) partially fills primary porosity.

Figure 1-8.36: Sample 5H-58 1903.66 (SEM) site 26. This site is similar to site 20. Suturing is common between grains (positions a).

Figure 1-8.37: Sample 5H-58 1903.66 (SEM) site 27. This site consists of detrital quartz and K-feldspar grains. Siderite (3) and kaolinite (6) partially fill primary porosity.

Figure 1-8.38: Sample 5H-58 1903.66 (SEM) site 28. This site is similar to site 27. K-feldspar (9) appears to be dissolving.

Figure 1-8.39: Sample 5H-58 1903.66 (SEM) site 29. This site is similar to site 28. There is a granitic lithic clast made up of K-feldspar (1) and quartz (2), and there is an albitized K-feldspar (11) grain with ?siderite partially filling a void in it. There is also a rare grain of detrital zircon (14). Barite (4) makes up part of the drilling mud.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ū	Cr2O3	CoO	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
5H-58 1903.66	1	1	Kfs	66.34		17.51					0.58	15.58											100	120
5H-58 1903.66	1	2	Qz	100.00																			100	125
5H-58 1903.66	1	3	Qz	100.00																			100	123
5H-58 1903.66	1	4	Qz	100.00																			100	122
5H-58 1903.66	1	5	Sd	0.60			48.06	0.32	0.41	4.83			1.76										56	61
5H-58 1903.66	1	6	Qz	100.00																			100	121
5H-58 1903.66	1	7	Qz	100.00																			100	119
5H-58 1903.66	1	8	Kfs	66.10		18.09					1.14	14.67											100	116
5H-58 1903.66	1	9	Qz	100.00																			100	124
5H-58 1903.66	1	10	Kfs	66.18		17.98					0.93	14.92											100	122
5H-58 1903.66	1	11	Qz	100.00																			100	123
5H-58 1903.66	1	12	Qz	100.00																			100	122
5H-58 1903.66	1	13	Oligo	64.53		22.07				4.27	9.13												100	117
5H-58 1903.66	1	14	Brt											36.95							63.20		100	114
5H-58 1903.66	2	1	Kfs	66.38		17.58					0.40	15.65											100	118
5H-58 1903.66	2	2	Sd				49.03		0.52	4.78			1.67										56	61
5H-58 1903.66	2	3	Qz	100.00																			100	122
5H-58 1903.66	2	4	Qz	100.00																			100	121
5H-58 1903.66	2	5	Kfs	65.04		18.06					0.93	14.44									1.52		100	117
5H-58 1903.66	2	6	Brt											36.77					0.97		62.42		100	113
5H-58 1903.66	2	7	Ab	70.00		18.41					11.59												100	123
5H-58 1903.66	2	8	Kfs	66.16		17.85					0.66	15.33											100	116
5H-58 1903.66	2	9	Qz + Kfs	94.04		3.37	0.25					2.34											100	118
5H-58 1903.66	2	10	Kfs	66.65		17.64					0.50	15.21											100	118
5H-58 1903.66	2	11	llm	0.87	59.86		37.59	1.17	0.51														100	98
5H-58 1903.66	2	12	Kfs	66.41		17.54					0.44	15.61											100	116
5H-58 1903.66	2.1	1	Qz	100.00																			100	118
5H-58 1903.66	2.1	2	Qz	97.65		1.95						0.40											100	117
5H-58 1903.66	3	1	Qz	100.00																			100	122
5H-58 1903.66	3	2	Brt	0.47			28.47				0.31			70.75									100	226
5H-58 1903.66	3	3	Kfs	65.76		17.67					0.72	15.03									0.82		100	119
5H-58 1903.66	3	4	Qz	100.00																			100	122
5H-58 1903.66	3	5	Kfs	66.60		18.06					1.05	14.29											100	118
5H-58 1903.66	3	6	Kfs	66.25		17.84					0.67	15.24											100	116
5H-58 1903.66	3	7	Qz	100.00																			100	121
5H-58 1903.66	3	8	Kfs	66.40		17.79					1.41	14.39											100	116
5H-58 1903.66	3	9	Kfs	65.73		17.76					1.03	14.87									0.61		100	115
5H-58 1903.66	3	10	Qz	100.00																			100	125
5H-58 1903.66	3	11	Qz	100.00																			100	121

Table 1-8.1: EDS geochemical analyses of sample 5H-58 1903.66.

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	C	Cr203	C00	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
5H-58 1903.66	3.1	1	Ms	50.49	0.33	24.76	5.22		3.19		0.47	10.55											95	107
5H-58 1903.66	3.1	2	TiO2 +	1.94	89.78	2.19	1.52			0.70	1.01	0.49	1.19		0.55	0.63							100	88
5H-58 1903.66	4	1	Kfs	66.16		17.82					0.63	15.40											100	119
5H-58 1903.66	4	2	Qz	100.00																			100	122
5H-58 1903.66	4	3	Brt											37.20							62.86		100	115
5H-58 1903.66	4	4	Kfs	65.77		17.68					0.63	15.21									0.70		100	119
5H-58 1903.66	4	5	Qz	100.00																			100	121
5H-58 1903.66	4	6	Kfs	66.27		17.57						16.16											100	119
5H-58 1903.66	4	7	Kfs	65.74		17.98					1.18	14.29									0.81		100	119
5H-58 1903.66	4	8	Kfs	66.39		17.98					2.06	13.57											100	117
5H-58 1903.66	4	9	Qz	100.00																			100	121
5H-58 1903.66	4	10	Qz	100.00																			100	119
5H-58 1903.66	4	11	Qz	100.00																			100	125
5H-58 1903.66	5	1	Qz	100.00																			100	121
5H-58 1903.66	5	2	Kfs	65.38		17.98					0.60	14.84									1.20		100	118
5H-58 1903.66	5	3	Ms	47.66	0.92	34.09	0.83		0.75		0.76	9.99											95	108
5H-58 1903.66	5	4	Kfs	66.41		17.73					0.60	15.25											100	117
5H-58 1903.66	5	5	Qz	100.00																			100	121
5H-58 1903.66	5	6	Kfs	65.95		17.87					0.86	15.32											100	118
5H-58 1903.66	5	7	Qz	99.11	0.40	0.50																	100	121
5H-58 1903.66	5	8	Kfs	66.21		17.84					0.92	15.02											100	118
5H-58 1903.66	5	9	Kfs	65.17		18.13					1.07	14.23									1.39		100	120
5H-58 1903.66	5	10	Qz	100.00																			100	125
5H-58 1903.66	5	11	Kfs	65.94		17.79					1.03	14.51									0.73		100	121
5H-58 1903.66	5	12	Qz	100.00																			100	125
5H-58 1903.66	5	13	Qz	100.00																			100	126
5H-58 1903.66	5	14	Kfs	65.71		17.78					0.77	15.02									0.73		100	117
5H-58 1903.66	5	15	Ab	69.73		18.52					11.75												100	120
5H-58 1903.66	5.1	1	Ab	69.54		18.78				0.24	11.44												100	121
5H-58 1903.66	5.1	2	Kfs	66.14		17.71					0.65	15.50											100	119
5H-58 1903.66	5.1	3	Kfs	66.16		17.88					0.86	15.11											100	119
5H-58 1903.66	5.1	4	Qz + Ms	76.20		16.99	1.98		0.90			3.94											100	115
5H-58 1903.66	6	1	Qz	100.00																			100	121
5H-58 1903.66	6	2	Kfs	65.18		18.02					0.93	14.43									1.45		100	118
5H-58 1903.66	6	3	Kfs	66.17		17.64					0.56	15.63											100	118
5H-58 1903.66	6	4	Qz	100.00																			100	123
5H-58 1903.66	6	5	Kfs	66.00		17.68					0.34	15.98											100	118
5H-58 1903.66	6	6	Qz	100.00																			100	122
5H-58 1903.66	6	7	Kfs	65.58		18.00					1.10	14.30									1.03		100	119

Table 1-8.1: EDS geochemical analyses of sample 5H-58 1903.66.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ū	Cr2O3	C00	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
5H-58 1903.66	6	8	Qz	100.00																			100	122
5H-58 1903.66	6	9	Qz	100.00																			100	122
5H-58 1903.66	6	10	Kfs	66.66		17.81					0.81	14.72											100	116
5H-58 1903.66	6	11	Qz	98.55		0.91						0.54											100	119
5H-58 1903.66	6	12	Kln	48.99		36.90						0.10											86	99
5H-58 1903.66	6	13	Qz	100.00																			100	119
5H-58 1903.66	6	14	Qz	100.00																			100	119
5H-58 1903.66	6	15	"llm"	0.72	74.71	0.56	23.15		0.64						0.21								100	98
5H-58 1903.66	7	1	Qz	100.00																			100	122
5H-58 1903.66	7	2	Brt											38.62							58.73	2.76	100	121
5H-58 1903.66	7	3	Kfs	66.95		17.99						15.06											100	117
5H-58 1903.66	7	4	Kfs	64.36		18.31					0.94	13.97									2.43		100	118
5H-58 1903.66	7	5	Qz	100.00																			100	121
5H-58 1903.66	7	6	Kfs	66.13		17.79					0.74	15.33											100	117
5H-58 1903.66	7	7	Qz	100.00																			100	121
5H-58 1903.66	7	8	Qz	100.00																			100	126
5H-58 1903.66	7	9	Qz	100.00																			100	123
5H-58 1903.66	7	10	Kfs	65.84	0.24	17.80					0.45	15.67											100	117
5H-58 1903.66	7	11	Qz	100.00																			100	118
5H-58 1903.66	7	12	Qz	100.00																			100	119
5H-58 1903.66	8	1	Qz	100.00																			100	119
5H-58 1903.66	8	2	Sd				48.18		0.47	6.15			1.20										56	60
5H-58 1903.66	8	3	Sd	0.57			48.53			5.41			1.50										56	59
5H-58 1903.66	8	4	Qz	100.00																			100	118
5H-58 1903.66	8	5	Chloritized Mica	39.24	4.61	22.18	18.96		12.21	0.50	0.98	0.64			0.67								100	76
5H-58 1903.66	8	6	Qz	100.00																			100	119
5H-58 1903.66	8	7	Kfs	66.41		17.71					0.59	15.28											100	119
5H-58 1903.66	8	8	Qz	100.00																			100	122
5H-58 1903.66	8	9	Qz	100.00																			100	121
5H-58 1903.66	8	10	Qz	100.00																			100	117
5H-58 1903.66	8	11	Ab	69.58		18.96					11.46												100	113
5H-58 1903.66	8	12	Kfs	66.60		17.70					2.09	13.61											100	112
5H-58 1903.66	8.1	1	Qz	100.00																			100	120
5H-58 1903.66	8.1	2	Kln	48.47	0.47	35.48	0.75				0.39				0.44								86	78
5H-58 1903.66	8.1	3	Qz	100.00																			100	120
5H-58 1903.66	8.1	4	Ab	69.50		18.93				0.45	11.12												100	117
5H-58 1903.66	8.1	5	Mix	48.52	0.65	19.06	6.54		1.72	13.52	1.50	1.62		1.00	0.86								95	74
5H-58 1903.66	9	1	Kfs	65.01		18.02					0.97	14.25									1.74		100	116
5H-58 1903.66	9	2	Qz	100.00																			100	121

Table 1-8.1: EDS geochemical analyses of sample 5H-58 1903.66.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	Oum	MgO	CaO	Na2O	K20	P205	SO3	ਹ	Cr2O3	CoO	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
5H-58 1903.66	9	3	Ab	67.06		20.51				2.06	10.37												100	117
5H-58 1903.66	9	4	Kfs	66.38		17.77					0.86	15.00											100	114
5H-58 1903.66	9	5	Kfs	66.34		17.58					0.31	15.77											100	114
5H-58 1903.66	9	6	Qz	100.00																			100	124
5H-58 1903.66	9	7	Kfs	66.16		17.86					0.82	15.16											100	119
5H-58 1903.66	9	8	Ab	69.89		18.81				0.30	11.00												100	119
5H-58 1903.66	9	9	Kfs	65.16		18.04					0.84	14.52									1.45		100	119
5H-58 1903.66	9	10	Qz	100.00																			100	122
5H-58 1903.66	9	11	Qz	100.00																			100	118
5H-58 1903.66	9	12	Qz	100.00																			100	121
5H-58 1903.66	9	13	Ab	70.06		18.30	0.41				11.23												100	117
5H-58 1903.66	10	1	Kfs	65.90		17.85					0.71	15.05									0.49		100	113
5H-58 1903.66	10	2	Qz	100.00																			100	119
5H-58 1903.66	10	3	Qz	100.00																			100	119
5H-58 1903.66	10	4	Qz	100.00																			100	121
5H-58 1903.66	10	5	Kfs	66.39		17.83					1.17	14.61											100	116
5H-58 1903.66	10	6	Qz	100.00																			100	121
5H-58 1903.66	10	7	Brt	0.73										37.03							62.32		100	114
5H-58 1903.66	10	8	Kfs	66.06		17.92					0.52	15.50											100	114
5H-58 1903.66	10	9	Qz	100.00																			100	118
5H-58 1903.66	10	10	Qz	100.00																			100	122
5H-58 1903.66	10	11	Qz	100.00																			100	123
5H-58 1903.66	10	12	Qz	100.00																			100	118
5H-58 1903.66	10.1	1	Ms	51.37		31.85	1.26		1.37		0.70	8.45											95	102
5H-58 1903.66	10.1	2	Ms	52.11		31.45	1.55		1.69		0.98	7.06			0.16								95	105
5H-58 1903.66	10.1	3	Ms +	56.10	0.42	35.05	1.67		1.02		0.73	4.36			0.64								100	91
5H-58 1903.66	11	1	Qz	100.00																			100	118
5H-58 1903.66	11	2	Kfs	66.17		17.81						16.01											100	115
5H-58 1903.66	11	3	Kfs	65.64		17.94					0.69	14.84									0.89		100	115
5H-58 1903.66	11	4	Sd	0.57			46.81		0.41	6.68	0.73		0.80										56	61
5H-58 1903.66	11	5	Ms +	54.26	1.39	24.46	2.74		2.26		0.43	9.46											95	108
5H-58 1903.66	11	6	Qz	100.00																			100	121
5H-58 1903.66	11	7	Qz	100.00																			100	120
5H-58 1903.66	11	8	Kfs	66.31		17.83					0.71	15.15											100	115
5H-58 1903.66	11	9	Qz	100.00																			100	118
5H-58 1903.66	11	10	Kfs	66.17		17.93					0.88	15.02											100	113
5H-58 1903.66	11	11	Oligo	65.27		21.76				3.22	9.75										1		100	114
5H-58 1903.66	11	12	Qz	100.00																			100	116
5H-58 1903.66	11	13	Qz	100.00																			100	116

Table 1-8.1: EDS geochemical analyses of sample 5H-58 1903.66.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	OgM	CaO	Na2O	K20	P205	SO3	C	Cr203	CoO	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
5H-58 1903.66	11	14	TiO2	1.20	90.31	2.19	1.89			0.97	1.51		1.12		0.37	0.44							100	94
5H-58 1903.66	11	15	Brt	1.08										35.46					2.86		60.78		100	105
5H-58 1903.66	11	16	Qz	100.00																			100	117
5H-58 1903.66	11	17	Kfs	65.63		17.84					0.63	15.08									0.83		100	116
5H-58 1903.66	11	18	Kfs	66.35		17.75						15.90											100	113
5H-58 1903.66	12	1	Qz	100.00																			100	120
5H-58 1903.66	12	2	Kfs	66.53		17.71					0.78	14.98											100	112
5H-58 1903.66	12	3	Qz	100.00																			100	116
5H-58 1903.66	12	4	Qz	100.00																			100	118
5H-58 1903.66	12	5	Qz	99.65		0.35																	100	119
5H-58 1903.66	12	6	Kfs	66.59		17.49						15.92											100	117
5H-58 1903.66	12	7	Qz	100.00																			100	122
5H-58 1903.66	12	8	Qz	100.00																			100	121
5H-58 1903.66	12	9	Qz	100.00																			100	120
5H-58 1903.66	12	10	Qz	98.84		1.02						0.15											100	117
5H-58 1903.66	12	11	Qz	96.60	0.68	2.14						0.58											100	120
5H-58 1903.66	12	12	Kfs	66.07		18.04					0.96	14.92											100	113
5H-58 1903.66	12.1	1	Kfs	66.36		17.77					0.34	15.53											100	116
5H-58 1903.66	12.1	2	Qz	99.36		0.44						0.19											100	120
5H-58 1903.66	13	1	Kfs	66.15		18.23					1.49	14.13											100	117
5H-58 1903.66	13	2	Kfs	65.65		17.71					0.43	15.64									0.56		100	118
5H-58 1903.66	13	3	Qz	100.00																			100	122
5H-58 1903.66	13	4	Qz	100.00																			100	123
5H-58 1903.66	13	5	Kfs	66.13		17.86					0.79	15.22											100	119
5H-58 1903.66	13	6	Qz	100.00																			100	120
5H-58 1903.66	13	7	Qz +	93.59	3.08	1.83						1.12			0.38								100	95
5H-58 1903.66	13	8	Ab	69.67		18.79					11.54												100	117
5H-58 1903.66	13	9	Qz	100.00																			100	119
5H-58 1903.66	13	10	Sd				48.75			5.61			1.65										56	62
5H-58 1903.66	13	11	Qz	100.00																			100	125
5H-58 1903.66	13	12	Qz	100.00																			100	124
5H-58 1903.66	14	1	Qz	100.00																			100	120
5H-58 1903.66	14	2	Kfs	66.55		17.94					1.58	13.94											100	118
5H-58 1903.66	14	3	Ab	67.87		19.94				1.46	10.60	0.14											100	118
5H-58 1903.66	14	4	Oligo	65.77		21.37				2.97	9.73	0.16											100	119
5H-58 1903.66	14	5	Kfs	65.57		18.00					0.76	14.82									0.85		100	117
5H-58 1903.66	14	6	Kfs	66.29		17.82					0.66	15.22											100	118
5H-58 1903.66	14	7	Qz	100.00																			100	120
5H-58 1903.66	14	8	Qz	98.74						0.17	0.35			0.74									100	121

Table 1-8.1: EDS geochemical analyses of sample 5H-58 1903.66.

Sample	Site	Position	Mineral	SiO2	Ті02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ਹ	Cr2O3	CoO	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
5H-58 1903.66	14	9	Kfs	65.88		17.92					1.18	14.40									0.62		100	119
5H-58 1903.66	14	10	Qz	100.00																			100	119
5H-58 1903.66	14	11	Ab	69.55		18.88				0.39	11.04	0.15											100	116
5H-58 1903.66	15	1	Qz	100.00																			100	121
5H-58 1903.66	15	2	TiO2	1.10	91.81	2.44	1.71			0.65	0.67		1.39		0.22								100	97
5H-58 1903.66	15	3	Qz	100.00																			100	122
5H-58 1903.66	15	4	Kfs	66.18		17.67					0.45	15.70											100	114
5H-58 1903.66	15	5	Qz	100.00																			100	120
5H-58 1903.66	15	6	Qz	100.00																			100	119
5H-58 1903.66	15	7	Sd	0.67			47.71		0.48	6.19			0.95										56	59
5H-58 1903.66	15	8	Qz	100.00																			100	119
5H-58 1903.66	15	9	Qz	100.00																			100	120
5H-58 1903.66	15	10	Albitized Kfs	68.22		18.44					8.34	5.00											100	118
5H-58 1903.66	16	1	Qz	100.00																			100	120
5H-58 1903.66	16	2	Qz	100.00																			100	120
5H-58 1903.66	16	3	Kfs	65.15		17.94					0.75	14.82									1.34		100	117
5H-58 1903.66	16	4	Ab	68.50		19.54				0.63	11.33												100	117
5H-58 1903.66	16	5	Kfs	65.71		17.70					0.28	15.46									0.84		100	114
5H-58 1903.66	16	6	Kfs	66.49		17.73					1.12	14.66											100	114
5H-58 1903.66	16	7	Qz	100.00																			100	117
5H-58 1903.66	16	8	Qz	100.00																			100	116
5H-58 1903.66	16	9	Qz	100.00																			100	119
5H-58 1903.66	16.1	1	Qz	100.00																			100	119
5H-58 1903.66	16.1	2	Kfs	63.74		18.38					1.02	13.60									3.27		100	115
5H-58 1903.66	16.1	3	Kfs	65.98		17.55	0.38				0.26	15.84											100	116
5H-58 1903.66	16.1	4	Ab	69.79		18.66					11.55												100	116
5H-58 1903.66	16.1	5	Kfs	67.82		18.32					2.34	11.52											100	114
5H-58 1903.66	16.1	6	Ab	69.21		18.72					11.09	0.98											100	115
5H-58 1903.66	17	1	Qz	100.00																			100	120
5H-58 1903.66	17	2	Kfs	66.07		17.88					1.11	14.27									0.67		100	115
5H-58 1903.66	17	3	Brt	3.59		0.43					0.62			30.72							64.69		100	99
5H-58 1903.66	17	4	Qz	100.00																			100	122
5H-58 1903.66	17	5	Qz	100.00																			100	122
5H-58 1903.66	17	6	Qz	100.00																		_	100	120
5H-58 1903.66	17	7	Kfs	66.15		17.61					0.44	15.80											100	115
5H-58 1903.66	17	8	Ab	68.61		19.43				0.89	10.95	0.12											100	117
5H-58 1903.66	17	9	Kfs	65.05		18.07					0.92	14.25									1.71		100	116
5H-58 1903.66	17	10	Sd	0.55			49.18	0.32	0.50	3.68			1.76										56	63
5H-58 1903.66	17	11	Qz	100.00																			100	124

Table 1-8.1: EDS geochemical analyses of sample 5H-58 1903.66.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	Oum	MgO	CaO	Na2O	K2O	P205	SO3	ū	Cr2O3	CoO	OuZ	SrO	ZrO2	BaO	WO3	Total	Actual Total
5H-58 1903.66	18	1	Qz	100.00																			100	121
5H-58 1903.66	18	2	Oligo	66.47		21.00				2.62	9.91												100	117
5H-58 1903.66	18	3	Kfs	66.05		17.82					0.50	15.62											100	118
5H-58 1903.66	18	4	Qz	100.00																			100	120
5H-58 1903.66	18	5	Kfs	66.16		17.76	0.24				0.70	15.14											100	116
5H-58 1903.66	18	6	Qz	100.00																			100	118
5H-58 1903.66	18	7	Qz	100.00																			100	118
5H-58 1903.66	18	8	Qz	100.00																			100	119
5H-58 1903.66	18	9	Qz	100.00																			100	119
5H-58 1903.66	18	10	Ms	55.66	0.29	26.91	3.04		1.23		0.44	7.44											95	107
5H-58 1903.66	18	11	Qz	100.00																			100	122
5H-58 1903.66	19	1	Kfs	65.22		18.02					0.87	14.68									1.21		100	116
5H-58 1903.66	19	2	Qz	100.00																			100	121
5H-58 1903.66	19	3	Oligo	65.63		21.51				3.14	9.53	0.20											100	120
5H-58 1903.66	19	4	Kfs	65.65		17.58	0.41				0.37	15.99											100	109
5H-58 1903.66	19	5	Oligo	65.31		21.75				3.27	9.52	0.15											100	120
5H-58 1903.66	19	6	Kfs	66.14		17.79					0.61	15.46											100	119
5H-58 1903.66	19	7	Qz	100.00																			100	123
5H-58 1903.66	19	8	Kfs +	72.14		14.63					0.45	12.79											100	119
5H-58 1903.66	19	9	Qz	100.00																			100	122
5H-58 1903.66	19	10	Qz	100.00																			100	121
5H-58 1903.66	19	11	Kfs	66.28		17.79					0.73	15.20											100	117
5H-58 1903.66	19	12	Qz	100.00																			100	121
5H-58 1903.66	19	13	Brt	0.79										36.56							62.66		100	114
5H-58 1903.66	19	14	Qz	100.00																			100	123
5H-58 1903.66	19	15	Qz	100.00																			100	123
5H-58 1903.66	20	1	Kfs	65.63		17.93					0.71	14.91									0.83		100	114
5H-58 1903.66	20	2	Brt	3.37										35.38				0.10			61.20		100	106
5H-58 1903.66	20	3	Kfs	66.44		17.70					0.39	15.47											100	119
5H-58 1903.66	20	4	Kfs	66.16		17.74					0.49	15.61											100	118
5H-58 1903.66	20	5	Qz	100.00																			100	120
5H-58 1903.66	20	6	Qz	100.00																			100	119
5H-58 1903.66	20	7	Qz	100.00																			100	120
5H-58 1903.66	20	8	Qz	100.00																			100	120
5H-58 1903.66	20	9	Qz	100.00															-				100	123
5H-58 1903.66	20	10	Kfs	66.38		17.62					0.59	15.41											100	121
5H-58 1903.66	21	1	Qz	100.00																			100	121
5H-58 1903.66	21	2	Qz	100.00																			100	119
5H-58 1903.66	21	3	Kfs	65.30		17.97					0.95	14.52									1.25		100	117

Table 1-8.1: EDS geochemical analyses of sample 5H-58 1903.66.

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ū	Cr203	CoO	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
5H-58 1903.66	21	4	Qz	96.21		2.47	0.22				0.29	0.81											100	121
5H-58 1903.66	21	5	Qz	100.00																			100	121
5H-58 1903.66	21	6	Kfs	65.84	0.27	17.88					0.64	15.36											100	117
5H-58 1903.66	21	7	Qz	100.00																			100	123
5H-58 1903.66	21	8	Qz	100.00																			100	121
5H-58 1903.66	21	9	Qz	100.00																			100	118
5H-58 1903.66	21.1	1	Kfs	66.25		17.63					0.30	15.81											100	118
5H-58 1903.66	21.1	2	Ab	69.76		18.57					11.41	0.26											100	118
5H-58 1903.66	21.1	3	Sd				49.24			5.24			1.52										56	60
5H-58 1903.66	21.1	4	Brt											37.32							62.72		100	116
5H-58 1903.66	22	1	Qz	100.00																			100	120
5H-58 1903.66	22	2	Qz	100.00																			100	117
5H-58 1903.66	22	3	Kfs	66.55		17.70					1.19	14.56											100	114
5H-58 1903.66	22	4	Kfs	66.36		17.86					0.96	14.81											100	113
5H-58 1903.66	22	5	Kfs	64.93		18.09					1.52	13.04									2.43		100	113
5H-58 1903.66	22	6	Qz	100.00																		-	100	119
5H-58 1903.66	22	7	Kfs	66.40		17.57					0.66	15.37											100	114
5H-58 1903.66	22	8	TiO2	1.05	95.94	1.35	0.78									0.87						-	100	107
5H-58 1903.66	22	9	Qz	100.00																			100	123
5H-58 1903.66	22	10	Qz	100.00																			100	124
5H-58 1903.66	22	11	Kfs	66.29		17.52					0.55	15.63											100	118
5H-58 1903.66	22	12	Qz	100.00																		-	100	123
5H-58 1903.66	23	1	Qz	100.00																		-	100	117
5H-58 1903.66	23	2	Kfs	66.21		17.85					0.53	15.41											100	114
5H-58 1903.66	23	3	Qz	100.00																		-	100	119
5H-58 1903.66	23	4	Qz	100.00																		-	100	119
5H-58 1903.66	23	5	Kfs	66.30		17.50					0.69	15.52											100	112
5H-58 1903.66	23	6	Qz	100.00																		-	100	117
5H-58 1903.66	23	7	Kfs	65.46		17.93					1.04	14.48			0.17						0.92		100	111
5H-58 1903.66	23	8	Qz	100.00																			100	117
5H-58 1903.66	23	9	Kfs	66.26		17.70					0.95	15.10										-	100	115
5H-58 1903.66	23	10	Qz	100.00																		-	100	117
5H-58 1903.66	23	11	Qz	100.00																			100	118
5H-58 1903.66	24	1	Qz	100.00																			100	120
5H-58 1903.66	24	2	Kfs	66.51		17.62						15.86											100	117
5H-58 1903.66	24	3	Qz	100.00																			100	120
5H-58 1903.66	24	4	Qz	100.00																			100	119
5H-58 1903.66	24	5	Kfs	65.03		18.18					1.11	14.14									1.54		100	120
5H-58 1903.66	24	6	Qz	100.00																			100	121

Table 1-8.1: EDS geochemical analyses of sample 5H-58 1903.66.

Sample	Site	Position	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	CI	Cr2O3	CoO	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
5H-58 1903.66	24	7 Kfs	65.51		17.89					0.58	15.30									0.72		100	120
5H-58 1903.66	24	8 Qz	100.00																			100	123
5H-58 1903.66	24	9 Kfs	65.37		17.80					0.60	15.18									1.05		100	115
5H-58 1903.66	24	10 Qz	100.00																			100	117
5H-58 1903.66	24	11 Qz	100.00																			100	118
5H-58 1903.66	24.1	1 Kfs	66.37		17.66					0.46	15.52											100	116
5H-58 1903.66	24.1	2 Ap + Chl	20.74		11.84	24.47		2.66	21.18	0.71	0.31	18.08										100	99
5H-58 1903.66	24.1	3 Ab	68.02		19.95				1.37	10.66												100	117
5H-58 1903.66	24.1	4 Kfs	66.64		17.72					0.54	15.09											100	115
5H-58 1903.66	25	1 Kfs	65.25		17.88					0.99	14.53									1.35		100	117
5H-58 1903.66	25	2 Brt	0.75										37.27					1.84		60.20		100	117
5H-58 1903.66	25	3 Qz	100.00																			100	122
5H-58 1903.66	25	4 Qz	100.00																			100	121
5H-58 1903.66	25	5 Qz	100.00																			100	121
5H-58 1903.66	25	6 Kfs	66.43		17.68					0.83	15.06											100	117
5H-58 1903.66	25	7 Zrn	31.19																68.81			100	119
5H-58 1903.66	25	8 Kfs	65.57		18.18					1.34	14.08									0.83		100	113
5H-58 1903.66	25	9 Qz	100.00																			100	120
5H-58 1903.66	25	10 Qz	100.00																			100	121
5H-58 1903.66	25	11 Qz	100.00																			100	124
5H-58 1903.66	25	12 Kfs	66.29		17.94					1.34	14.42											100	121
5H-58 1903.66	25	13 Kfs	67.04		17.73						15.22											100	116
5H-58 1903.66	26	1 Kfs	65.84		17.84					0.95	14.70									0.67		100	117
5H-58 1903.66	26	2 Qz	100.00																			100	120
5H-58 1903.66	26	3 Kfs	66.18		17.86					0.65	15.32											100	115
5H-58 1903.66	26	4 Qz	100.00																			100	119
5H-58 1903.66	26	5 Qz	100.00																			100	122
5H-58 1903.66	26	6 Qz	100.00																			100	121
5H-58 1903.66	26	7 Kfs	65.69		17.95					0.98	14.57									0.82		100	116
5H-58 1903.66	26	8 Qz	100.00																			100	118
5H-58 1903.66	26	9 Qz	100.00																			100	118
5H-58 1903.66	27	1 Qz	100.00																			100	117
5H-58 1903.66	27	2 Kfs	65.85		17.87					0.85	14.79									0.63		100	117
5H-58 1903.66	27	3 Sd				48.74			6.17			1.09										56	58
5H-58 1903.66	27	4 Qz	100.00																			100	119
5H-58 1903.66	27	5 Qz	98.64		1.22						0.14											100	119
5H-58 1903.66	27	6 Kln	48.55		36.72					0.37				0.36								86	83
5H-58 1903.66	27	7 Qz	100.00																			100	123
5H-58 1903.66	27	8 Kfs	65.81		17.75					0.90	14.83									0.71		100	120

Table 1-8.1: EDS geochemical analyses of sample 5H-58 1903.66.

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	CI	Cr203	CoO	ZnO	SrO	ZrO2	BaO	WO3	Total	Actual Total
5H-58 1903.66	27	9	Qz	100.00																			100	124
5H-58 1903.66	27	10	Kfs	66.07		17.92					0.55	15.47											100	119
5H-58 1903.66	27	11	Qz	100.00																			100	123
5H-58 1903.66	27	12	Qz	100.00																			100	126
5H-58 1903.66	28	1	Qz	100.00																			100	121
5H-58 1903.66	28	2	Qz	99.29		0.46	0.25																100	120
5H-58 1903.66	28	3	Kfs	66.85		17.91					1.87	13.36											100	120
5H-58 1903.66	28	4	Qz	100.00																			100	123
5H-58 1903.66	28	5	Kfs	66.28		17.76					0.53	15.44											100	116
5H-58 1903.66	28	6	Kfs	66.17		17.72					0.37	15.75											100	115
5H-58 1903.66	28	7	Qz	100.00																			100	120
5H-58 1903.66	28	8	Sd	0.44			48.09	0.26	0.57	5.17			1.47										56	59
5H-58 1903.66	28	9	Kfs	66.14		17.77					0.42	15.68											100	116
5H-58 1903.66	28	10	Qz	100.00																			100	120
5H-58 1903.66	28	11	Qz	100.00																			100	118
5H-58 1903.66	28	12	Kfs	65.74		17.79					0.89	14.81									0.77		100	120
5H-58 1903.66	28	13	Qz	100.00																			100	124
5H-58 1903.66	29	1	Kfs	66.06		18.02					1.11	14.80											100	116
5H-58 1903.66	29	2	Qz	100.00																			100	119
5H-58 1903.66	29	3	Qz	100.00																			100	119
5H-58 1903.66	29	4	Brt	0.56										36.51							63.05		100	114
5H-58 1903.66	29	5	Kfs	66.54		17.62					0.31	15.54											100	118
5H-58 1903.66	29	6	Qz	100.00																			100	121
5H-58 1903.66	29	7	Kfs	66.02	0.31	17.90					0.75	15.02											100	112
5H-58 1903.66	29	8	Qz +	72.09			21.93			0.71	3.72				1.54								100	115
5H-58 1903.66	29	9	Qz	100.00																			100	119
5H-58 1903.66	29	10	Qz	100.00																			100	118
5H-58 1903.66	29	11	Kfs	65.89		17.87					0.36	15.88											100	117
5H-58 1903.66	29	12	Ab	69.69		18.61					11.44	0.26											100	119
5H-58 1903.66	29	13	Qz	96.42		1.88	0.57		0.48			0.65											100	121
5H-58 1903.66	29	14	Zrn	31.30																68.70			100	122
5H-58 1903.66	29	15	Qz	100.00																			100	123
								Notes	S															
								1. + i	ndicate	s more	than o	ne mine	eral pre	sent										
								2. " "	indicate	es alter	ed gra	in												

Table 1-8.1: EDS geochemical analyses of sample 5H-58 1903.66.

Appendix 1-9: SEM-BSE images and EDS mineral analyses for sample 5H-58 1906.89.

Sample 5H-58 1906.89: Fine-medium grained glauconitic sandstone.

Detrital Minerals: Albite, Apatite, Chloritized Biotite, Chloritized Muscovite, Illite, Ilmenite, K-feldspar, Monazite-(Ce), Muscovite, Oligoclase, Quartz, Spinel, Titania (Fig. 21), Zircon

Diagenetic Minerals: Calcite, Fe-Chlorite, Glauconite, Kaolinite, Siderite, Titania

Notes:

1. Detrital quartz and K-feldspar grains commonly contain dissolution voids (Fig. 18).

- 2. Large fractures appear to be filled by calcite (Figs. 11,17).
- 3. Siderite commonly rims large calcite patches/cement (Flgs. 7-8,13,34-35).
- 4. Siderite also occurs as veinlets (Fig. 32)
- 5. Halite is a result of washing the core with salt water.
- 6. Paragenetic sequence:

Glauconite	Kaolinite	Calcite	e Sider	rite, Titania
	† Figs	s. 3, Fi	† igs. 7,	† Figs. 2,15
	20,2	20 13	୬,১∠,১০	

Figure 1-9.1: Scanned thin section of sample 5H-58 1906.89 the location of analyzed sites.

06

Figure 1-9.2: Sample 5H-58 1906.89 (SEM) site 1. This site consists of detrital quartz (2,4,10,13,17), K-feldspar (6-7, 11), and chloritized muscovite (5) grains. The matrix is made up of illite + chlorite (8-9,16). The diagenetic minerals are calcite (1,3,14), siderite (15), and titania (19). There is also glauconite (18), and halite (12). The halite appears to be an artifact from washing the core with salt water.

o10

Fig. 4

WD: 17.00 mm

Det: BSE

013

o16

SEM HV: 20.0 kV

View field: 1.25 mm

SEM MAG: 317 xDate(m/d/y): 09/25/17Saint Mary's UniversityFigure 1-9.3: Sample 5H-58 1906.89 (SEM) site 2. This site consists of detrital
quartz and K-feldspar grains. The matrix is made up of chlorite + Illite (14-15,17).
The diagenetic minerals are kaolinite (7), and calcite (2,9). Calcite appears to
replace kaolinite (arrow).

200 µm

Figure 1-9.4: Sample 5H-58 1906.89 (SEM) site 2.1. This site consists of detrital quartz (2), K-feldspar (1), and probably muscovite (7). The matrix is made up of chlorite + illite (3), and the diagenetic minerals are kaolinite (6), and later calcite (5). Halite is the latest mineral to form but most likely was created by washing the core with salt water.

1:K-feldspar 2:Chlorite + Illite 3:Quartz 4:Quartz 5:Halite 6:Glaucony 7:Calcite 8:Quartz 9:Chlorite + ?Kfeldspar 10:Glauconite

Figure 1-9.5: Sample 5H-58 1906.89 (SEM) site 3. This site consists of detrital quartz and K-feldspar grains. There is also glauconite (10), and glaucony (6). The matrix is made up of chlorite + illite (2,9), and late calcite (7) acts as the cement between grains.

Figure 1-9.6: Sample 5H-58 1906.89 (SEM) site 4. This site is similar to site 3. Zircon (8) appears to be an inclusion in quartz (7). Halite (3,5) still appears as a contaminant due to washing the core with salt water.

Figure 1-9.7: Sample 5H-58 1906.89 (SEM) site 5. This site consists of detrital quartz (1,6-7,17-18), K-feldspar (4), and chloritized muscovite (5) grains. The matrix consists of chlorite + muscovite (16), and the diagenetic minerals are glauconite (2), glaucony (12-13), probably kaolinite (position a), with late calcite (8,14) and siderite (9-11) making up the cement. Siderite (9) partially coats calcite (8).

1:Calcite 2:Siderite 3:Siderite 4:Calcite

Figure 1-9.8: Sample 5H-58 1906.89 (SEM) site 5.1. This site consists of a calcite cement (1,4) that is partially coated by a late siderite (2-3) cement.

Figure 1-9.9: Sample 5H-58 1906.89 (SEM) site 6. This site is similar to site 2. Calcite appears to fill voids in kaolinite (16) (arrow). There also appears to be suturing between grains (positions a).

Figure 1-9.10: Sample 5H-58 1906.89 (SEM) site 7. This site consists of detrital quartz (2,8,12,16), K-feldspar (1,4-5,14), and apatite (6) grains. There is also glauconite (16). The cement between grains is made up of kaolinite (10), and calcite (3,9,11).

1:Calcite 2:Quartz 3:Chloritized Muscovite 4:Calcite 5:Quartz 6:Chlorite + Kaolinite + 7:Glaucony 8:Quartz 9:Calcite 10:Quartz 11:K-feldspar 12:Glauconite 13:Muscovite + Chlorite

Figure 1-9.11: Sample 5H-58 1906.89 (SEM) site 8. This site is similar to site 7. However, calcite (1) appears very large, suggesting that it is filling a fracture and is therefore late.

1:Halite 2:Quartz 3:Chlorite + Muscovite + Halite 4:Siderite 5:Calcite 6:Glauconite + Halite 7:Quartz 8:Quartz 9:Quartz 10:Quartz 11:Glaucony 12:Calcite 14:Chlorite + Halite + K-feldspar 15:Albite 16:Quartz

Figure 1-9.12: Sample 5H-58 1906.89 (SEM) site 9. This site consists of detrital quartz, K-feldspar, albite (15), and chloritized muscovite (3) grains. Quartz (15) appears to be partially ?brecciated. The cement is made up of calcite (5,12), and siderite (4). Siderite (4) partially coats calcite (5). There are also large grains of glaucony (11, position a).

1:K-feldspar 2:Calcite 3:Calcite 4:Siderite + 5:Glauconite 6:Chloritized **Biotite?** 7:Quartz 8:Quartz 9:Quartz 10:Glaucony 11:Glaucony 12:Quartz 13:Halite 14:Glauconite + Halite 15:Chlorite + Glaucony + Halite 16:Quartz

Figure 1-9.13: Sample 5H-58 1906.89 (SEM) site 10. This site is similar to site 9. There is also detrital grains of chloritized biotite (6). Siderite (4) still partially coats calcite (2,3). Calcite (2) appears to pseudomorph a previous mineral.

Figure 1-9.14: Sample 5H-58 1906.89 (SEM) site 11. This site consists of detrital quartz, K-feldspar, and altered ilmenite (5) grains. K-feldspar appears to be replaced by kaolinite (position a). The cement is made up of kaolinite (3,9) and calcite (6-7).

1:Quartz 2:K-feldspar 3:Kaolinite 4:Calcite 5:K-feldspar 6:K-feldspar 7:Calcite 8:Quartz 9:Kaolinite 10:Glauconite 11:Quartz 12:TiO₂

Figure 1-9.15: Sample 5H-58 1906.89 (SEM) site 12. This site consists of detrital quartz and K-feldspar grains. The cement is made up of kaolinite (3,9), and calcite (4,7). There is also glauconite (10), and late diagenetic titania (12).

Figure 1-9.16: Sample 5H-58 1906.89 (SEM) site 12.1. This site consists of a detrital grain of quartz (1) with a cement around it made up of kaolinite (2), calcite (4,6) and siderite (3,5).

Figure 1-9.17: Sample 5H-58 1906.89 (SEM) site 13. This site consists of detrital quartz (1,7,13-14, 16), K-feldspar (4), and chlorite + muscovite (6). The cement is made up of kaolinite (11-12,17). There is also glauconite (8,15), glaucony (9), and a late calcite (5) ?vein most likely filling a fracture.

4:K-feldspar 5:Calcite 6:Chlorite + Muscovite 7:Quartz 8:Glauconite + Halite 9:Glaucony 10:Siderite + 11:Kaolinite 12:Kaolinite 13:Quartz 14:Quartz 15:Glauconite 16:Quartz 17:Kaolinite

Figure 1-9.18: Sample 5H-58 1906.89 (SEM) site 14. This site is similar to site 11. The detrital quartz appears to have dissolution voids.

1:Siderite 2:Chlorite + Illite 3:K-feldspar 4:Quartz 5:Quartz 6:Quartz 7:K-feldspar 8:Glaucony 9:Chlorite + Muscovite 10:Quartz 11:Glauconite

Figure 1-9.19: Sample 5H-58 1906.89 (SEM) site 15. This site consists of detrital quartz and K-feldspar grains. The matrix is made up of illite + chlorite (2,9). The cement is made up of probably kaolinite and calcite, and siderite (1). There is also small grains of glauconite (11), and glaucony (8).

Figure 1-9.20: Sample 5H-58 1906.89 (SEM) site 16. This site consists of detrital quartz, K-feldspar, altered ilmenite (4), a granitic lithic clast made up of albite (8) and K-feldpsar (9), and chloritized biotite (1). There is also glauconite (10-11). The cement is made up of kaolinite (7), and calcite (2,12). Calcite appears later than the kaolinite (arrow).

- 1:TiO₂ + 2:Calcite 3:Glauconite 4:Fe-chlorite 5:Glaucony
- 6:Glaucony

Figure 1-9.21: Sample 5H-58 1906.89 (SEM) site 16.1. This site consists of detrital titania (1) that is surrounded by glaucony (3,5-6) + Fe-chlorite (4) cement. A late calcite cement (2) is seen cross-cutting the glaucony and Fe-chlorite.

Figure 1-9.22: Sample 5H-58 1906.89 (SEM) site 17. This site is similar to site 16.

Figure 1-9.23: Sample 5H-58 1906.89 (SEM) site 18. This site consists of detrital grains of quartz, and K-feldspar. Glauconite (11), glaucony (7,13), and kaolinite (8,12) make up the diagenetic minerals. The cement is made up of calcite (positions a).

1:Quartz 2:Glauconite 3:Glauconite 4:Halite + 5:Glauconite + Monazite

Figure 1-9.24: Sample 5H-58 1906.89 (SEM) site 18.1. This site shows a zoom in of the cement. The diagenetic minerals are made up of glauconite, with rare patches of monazite (5).

Figure 1-9.25: Sample 5H-58 1906.89 (SEM) site 19. This site is similar to site 16. There is also a detrital grain of chalcopyrite (2) and a partially dissolved ilmenite (12) grain.

1:Ilmenite 2:Chlorite + Halite + Glaucony 3:K-feldspar

Figure 1-9.26: Sample 5H-58 1906.89 (SEM) site 19.1. This site consists of a detrital grain of ilmenite (1), and K-feldspar (3). The matrix appears to be made up of glaucony + chlorite (2) and kaolinite (position a), and calcite (positions b) makes up the cement.

Figure 1-9.27: Sample 5H-58 1906.89 (SEM) site 20. This site is similar to site 16. Detrital quartz and K-feldspar grains appear to be partially altered. Suturing is common (positions a).

Figure 1-9.28: Sample 5H-58 1906.89 (SEM) site 20.1. This site consists of an altered grain of quartz (1,3), with kaolinite (4) and late calcite (2).

Figure 1-9.29: Sample 5H-58 1906.89 (SEM) site 21. This site is similar to site 16. There is also a detrital grain of titania (14).

Figure 1-9.30: Sample 5H-58 1906.89 (SEM) site 22. This site consists of detrital quartz (1,6,9,11), K-feldspar (2,4,12), and oligoclase (10). The cement is made up of probably kaolinite (positions a), calcite (positions b), and siderite (7). There is also diagenetic glauconite (5,8), and glaucony (3).

Figure 1-9.31: Sample 5H-58 1906.89 (SEM) site 23. This site is similar to site 22. The matrix in the site also consists of kaolinite + chlorite (6).

Figure 1-9.32: Sample 5H-58 1906.89 (SEM) site 24. This site is similar to site 22. There is also a vein of late diagenetic siderite (3). Detrital quartz and K-feldspar grains contain abundant dissolution voids.

Figure 1-9.33: Sample 5H-58 1906.89 (SEM) site 25. This site is similar to site 24. Suturing is common between quartz grains (positions a).

Figure 1-9.34: Sample 5H-58 1906.89 (SEM) site 26. This site is similar to site 9.

1:Siderite 2:Calcite 3:Quartz 4:K-feldspar 5:Quartz 6:Kaolinite

Figure 1-9.35: Sample 5H-58 1906.89 (SEM) site 26.1. This site consists of detrital quartz (3,5) grains with a kaolinite (6), calcite (2) and late siderite (1) cement. The calcite is partially coated by late siderite (1).

Figure 1-9.36: Sample 5H-58 1906.89 (SEM) site 27. This site is similar to site 22. Calcite veinlets cross-cut K-feldspar (7). This site consists of detrital quartz (1,5-6) and K-feldspar (7,10) grains. Glauconite (3), and glaucony (8) make up some of the framework grains. Kaolinite (2) and calcite (4,9) make up the cement with calcite being the latest.

1:Halite + Apatite 2:Calcite 3:Glauconite + Halite 4:Kaolinite 5:Quartz 6:"Ilmenite" 7:Quartz 8:Glauconite + Halite + 9:Quartz 10:Quartz 11:Kaolinite 12:Quartz 13:K-feldspar 14:Quartz 15:Glauconite + Halite

Figure 1-9.37: Sample 5H-58 1906.89 (SEM) site 28. This site consists of detrital quartz (5,7,9-10,12,14), K-feldspar (13), altered ilmenite (6), and apatite (1). The cement is made up of kaolinite (4,11), and calcite (2). Glauconite (3,8,15) also acts as framework grains.

Figure 1-9.38: Sample 5H-58 1906.89 (SEM) site 29. This site is similar to site 28. Late diagenetic siderite partially fills voids in calcite (5).

1:Quartz 2:Glauconite 3:Quartz 4:Calcite 5:Kaolinite + 6:Glauconite + 7:Quartz 8:Kaolinite 9:"Ilmenite" 10:Quartz 11:Glauconite

Figure 1-9.39: Sample 5H-58 1906.89 (SEM) site 30. This site consists of detrital quartz (1,3,7,10), and altered ilmenite (9) grains. The cement between grains consists of kaolinite (5,8), and calcite (4). Glauconite (2,6,11) acts as framework grains.

Figure 1-9.40: Sample 5H-58 1906.89 (SEM) site 31. This site is similar to site 30. There is also detrital ilmenite (6). Calcite (13) partially fills voids in kaolinite.

Figure 1-9.41: Sample 5H-58 1906.89 (SEM) site 32. This site consists of detrital quartz (1,3,6,9-10), and K-feldspar (7) grains. The cement is made up of kaolinite (11), calcite (2,5,8), and late siderite (12).

Sample	Site	Position	Mineral	Si02	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ш	CI	V205	Cr2O3	CuO	ZnO	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	HfO2	WO3	B2O3	Total	Actual Total
5H-58 1906.89	1	1	Cal				2.25	1.10	0.44	52.21																			56	54
5H-58 1906.89	1	2	Qz	100.00																									100	117
5H-58 1906.89	1	3	Cal				2.00	1.04	0.41	52.54																			56	55
5H-58 1906.89	1	4	Qz	100.00																									100	117
5H-58 1906.89	1	5	Chloritized Ms	51.77	0.32	14.15	21.08		3.80		1.36	6.95				0.57													100	101
5H-58 1906.89	1	6	Kfs	65.45		18.29					2.72	13.23				0.31													100	111
5H-58 1906.89	1	7	Kfs	66.21		17.69					0.61	15.49																	100	113
5H-58 1906.89	1	8	III + Chl	47.98		19.41	13.58		2.76	0.36	0.94	4.22				0.75													90	72
5H-58 1906.89	1	9	III + Chl	54.21		13.53	20.03		3.56		1.17	6.57				0.94													100	82
5H-58 1906.89	1	10	Qz	100.00																									100	121
5H-58 1906.89	1	11	Kfs	65.82		17.72					1.00	15.45																	100	113
5H-58 1906.89	1	12	HI	0.51						0.59	44.11	0.42				54.38													100	118
5H-58 1906.89	1	13	Qz	100.00																									100	122
5H-58 1906.89	1	14	Cal	0.00			1.45	0.98	0.34	53.23	0.55		0.54			0.74													56	58
5H-58 1906.89	1	15	Sd	0.93			45.89	1.80	3.18	2.41	0.55	- 10	0.54			0.71													56	64
5H-58 1906.89	1	16	III + Chi	52.98		14.92	18.06		2.91		2.21	7.46				1.46													100	91
5H-58 1906.89	1	17	QZ	100.00		44.07	40.40		0.00		0.50	0.40				0.74													100	118
5H-58 1906.89	1	18	Git	48.25	07.00	11.67	16.43		3.20		0.59	6.12				0.74													87	12
5H-58 1906.89	1	19	1102	0.75	97.99		1.26																						100	103
SH-58 1906.89	2	1	QZ	100.00		0.44	4.50	4 00	0.07	00.00																			100	57
5H-58 1906.89	2	2	Cal +	3.84		2.41	4.58	1.68	0.87	86.62	0.00	45 40																	100	10
SH-58 1906.89	2	3		00.00		17.94					0.60	15.40				00.40													100	110
5H-58 1906.89	2	4		33.40		8.37					27.94	0.12				22.12													100	120
5H-56 1906.69	2	7	QZ Klp	100.00		27.24					0.26					0.17													96	03
5H-58 1906.89	2	8	Kfe	66.20		37.24					0.20	15 35				0.17													100	117
511-58 1006 80	2	0	Cal	00.29		17.71	1.02	0.02	0 4 4	52 72	0.00	13.33																	56	57
5H-58 1906 89	2	10	07	100.00			1.52	0.32	0.44	52.72																			100	114
5H-58 1906 89	2	11	07	100.00																									100	116
5H-58 1906 89	2	13	Q7	100.00																									100	114
5H-58 1906 89	2	14	Chl + Kfs	41.31	0.74	16 73	20.07		8 56	5 16	1 79	3.72	1 24			0.68													100	90
5H-58 1906.89	2	15	ChI + III ?	54.83		13.51	18.78		3.11		1.38	7.65				0.74													100	101
5H-58 1906.89	2	16	Qz	100.00					-																				100	118
5H-58 1906.89	2	17	Chl + III	50.59		25.01	18.39		2.48		1.19	1.21				1.13													100	50
5H-58 1906.89	2	18	Kfs	65.70		17.77					0.44	15.42										0.67							100	111
5H-58 1906.89	2.1	1	Kfs	66.10		17.70					0.86	15.12				0.21													100	116
5H-58 1906.89	2.1	2	Qz	100.00																									100	120
5H-58 1906.89	2.1	3	Chl + III	52.76		17.22	17.80		3.44		1.54	5.53				1.71													100	85
5H-58 1906.89	2.1	4	HI	1.29		0.33	0.26				39.38	0.51				58.24													100	105
5H-58 1906.89	2.1	5	Cal				1.13	0.50		54.38																			56	56
5H-58 1906.89	2.1	6	Kln	48.68		37.32																							86	94
5H-58 1906.89	2.1	7	Chloritized Ms	49.40	0.96	18.33	17.13		5.78		0.70	7.12				0.58													100	94
5H-58 1906.89	3	1	Kfs	65.77		17.73					0.96	14.73										0.81							100	118
5H-58 1906.89	3	2	Chl + III	49.70		14.44	23.14		4.25		1.14	5.86				1.12	0.34												100	85
5H-58 1906.89	3	3	Qz	98.81							0.82					0.36													100	104
5H-58 1906.89	3	4	Qz	100.00																									100	118
5H-58 1906.89	3	5	HI	0.56							48.15	0.38				50.91								L					100	144
5H-58 1906.89	3	6	Gly	47.10		10.96	17.70		2.92		0.97	6.46				0.89													87	86
5H-58 1906.89	3	7	Cal				2.26	1.04	0.42	52.28																			56	54
5H-58 1906.89	3	8	Qz	100.00																									100	118

Table 1-9.1: EDS geochemical analyses of sample 5H-58 1906.8	89
--	----

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	ō	V205	Cr2O3	CuO	OuZ	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	HfO2	WO3	B2O3	Total	Actual Total
5H-58 1906.89	3	9	Chl + ?Kfs	46.09		10.60	18.16		3.22		0.82	5.61				0.50													85	87
5H-58 1906.89	3	10	Glt	47.17		10.85	18.59		3.30		0.84	5.74				0.51													87	72
5H-58 1906.89	4	1	Qz	100.00																									100	121
5H-58 1906.89	4	2	Qz	100.00																									100	117
5H-58 1906.89	4	3	HI	1.56							46.79					51.65													100	130
5H-58 1906.89	4	4	Chl + III	54.66		14.13	18.77		3.48		1.16	6.92				0.55	0.33												100	88
5H-58 1906.89	4	5	HI	1.02							41.09	0.26				57.63													100	99
5H-58 1906.89	4	6	Chl + III + HI	47.97		15.34	16.90		2.52		6.67	5.13				5.46													100	100
5H-58 1906.89	4	7	Qz	99.87												0.13													100	114
5H-58 1906.89	4	8	Zrn	30.91																	67.68					1.41			100	113
5H-58 1906.89	4	9	Gly	47.54		15.17	14.26		2.78		1.25	5.39				0.60													87	81
5H-58 1906.89	4	10	Qz	100.00																									100	114
5H-58 1906.89	4	11	Kfs + HI	46.28		13.39					16.99	10.35				12.50						0.50							100	126
5H-58 1906.89	4	12	Kln	36.78	1.16	18.15	32.85		5.92		2.14	1.38				1.62													100	88
5H-58 1906.89	4	13	Kin	48.64		36.70					0.40	0.10			<u> </u>	0.16													86	93
5H-58 1906.89	4	14	III + Chl?	55.96		13.34	18.01		3.48		1.01	7.28				0.91													100	66
5H-58 1906.89	4	15	Glt	45.36		7.69	24.39		1.50		0.33	7.26				0.48													87	52
5H-58 1906.89	5	1	Qz	99.73							0.27																		100	113
5H-58 1906.89	5	2	GIt + HI?	48.93		14.02	18.44		2.99		5.56	6.12				3.94													100	103
5H-58 1906.89	5	4	Kts	66.95		17.55	0.53					14.98					0.05												100	105
5H-58 1906.89	5	5	Chloritized Ms	50.05	0.39	17.56	18.92		4.18		1.41	6.16				0.96	0.35						-						100	102
5H-58 1906.89	5	6	Qz	100.00																									100	119
5H-58 1906.89	5	/	Qz	100.00						55.00	0.40					0.40							-						100	122
5H-58 1906.89	5	8	Cal	0.05			40.54	4.04	0.04	55.33	0.49					0.18													56	56
5H-58 1906.89	5	9	50	0.95			46.51	1.91	2.01	3.41	0.73					0.47													00	04
5H-58 1906.89	5	10	50	0.52			44.04	2.14	4.47	4.22	40.74					5 00													20	00
5H-58 1006 80	5	12	Su +	1.30		14.00	17.26	3.00	2 /2	3.07	19.71	5 25				5.99													97	60
54 59 1006 80	5	12	Gly	44.00		14.09	12.64		3.42		1.22	5.33				1.01													87	03
5H-58 1906 89	5	1/	Cal	40.90		13.13	13.04		5.05	55 53	1.22	3.70		0.47		1.31													56	60
5H-58 1906 89	5	15	Sd + Cal	1 92			64 25	1 65	2 98	27.99	0.67			0.47		0.53													100	62
5H-58 1906 89	5	16	Chl + Ms	52.33		20.06	17.95	1.00	3.55	21.00	0.90	4 78				0.00													100	78
5H-58 1906 89	5	17	07	100.00		20.00			0.00		0.00					0.11													100	118
5H-58 1906.89	5	18	Qz	100.00																									100	115
5H-58 1906.89	5.1	1	Cal				0.32			55.68																			56	57
5H-58 1906.89	5.1	2	Sd				43.70	1.70	3.77	6.25			0.58																56	60
5H-58 1906.89	5.1	3	Sd	1			44.19	1.39	3.53	6.00	1		0.89			1													56	60
5H-58 1906.89	5.1	4	Cal				1.80	0.72	0.36	53.12													-						56	55
5H-58 1906.89	6	1	HI	0.33						0.67	50.90	0.52				47.59													100	162
5H-58 1906.89	6	2	Kfs	65.37		18.14					0.59	14.81										1.10							100	114
5H-58 1906.89	6	3	Chl + Kln	52.42	0.39	30.68	7.70		3.69		0.92	3.69			1	0.51													100	77
5H-58 1906.89	6	4	Qz	100.00																									100	117
5H-58 1906.89	6	5	Glt	47.26		10.91	18.57		3.01		0.70	6.13				0.42													87	86
5H-58 1906.89	6	6	Cal				2.23	0.96	0.35	52.46																			56	57
5H-58 1906.89	6	7	Kfs	64.33		17.87					1.72	14.45	0.66			0.96													100	115
5H-58 1906.89	6	8	Kfs	61.27		16.61					5.03	14.16				2.93													100	123
5H-58 1906.89	6	9	Qz	100.00																									100	123
5H-58 1906.89	6	10	Kfs	65.14		18.26					1.16	14.24										1.20							100	121
5H-58 1906.89	6	11	Qz + HI	91.55							3.64					4.80													100	107
5H-58 1906.89	6	12	Mix	49.95		17.13	21.23		3.99		1.44	5.15				1.10													100	81

Table 1-9.1: EDS	geochemical	analyses of	sample 5H-58	3 1906.89
------------------	-------------	-------------	--------------	-----------

Sample	Site	Position	Mineral	SiO2	ТіО2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	Ŧ	ō	V205	Cr2O3	CnO	ZnO	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	HfO2	WO3	B2O3	Total	Actual Total
5H-58 1906.89	6	13	ChI + III ?	53.86		22.25	13.79		2.68		0.95	5.33				0.72	0.42												100	81
5H-58 1906.89	6	14	Kfs	65.72	0.33	18.09					0.88	14.98																	100	116
5H-58 1906.89	6	15	Qz	100.00																									100	120
5H-58 1906.89	6	16	Kln	48.27		33.68	2.62		0.52			0.53				0.38													86	72
5H-58 1906.89	6	17	Kfs	66.23		17.77					1.00	14.99																	100	115
5H-58 1906.89	6	18	Qz	100.00																									100	117
5H-58 1906.89	6	19	Qz	100.00																									100	119
5H-58 1906.89	7	1	Kfs	65.44		17.34					0.94	16.10				0.19													100	89
5H-58 1906.89	7	2	Qz	100.00																									100	119
5H-58 1906.89	7	3	Cal				1.54	0.85	0.41	52.95		0.25																	56	54
5H-58 1906.89	7	4	Kfs	66.21		17.84					0.63	15.32																	100	112
5H-58 1906.89	7	5	Kfs	66.25		17.66					0.39	15.70																	100	117
5H-58 1906.89	7	6	Ap +	1.13		0.61	1.28			46.84	1.69		39.74	0.72	5.02	0.45								0.97			1.56		100	80
5H-58 1906.89	7	7	Chl + Hl + Kfs	44.47		14.61	20.01		4.47	2.11	4.22	4.86				4.90	0.34												100	100
5H-58 1906.89	7	8	Qz	100.00																									100	123
5H-58 1906.89	7	9	Cal	1.15		0.99	4.21	1.92	0.92	90.81																			100	57
5H-58 1906.89	7	10	Kln +	51.30		36.81	7.24		0.88		0.79	2.56				0.42													100	69
5H-58 1906.89	7	11	Cal +	12.65		7.64	4.30	1.06	0.81	72.74		0.54				0.26													100	61
5H-58 1906.89	7	12	Qz	100.00																									100	122
5H-58 1906.89	7	13	Cal +	10.74		8.83	2.91	1.22	0.52	75.79																			100	63
5H-58 1906.89	7	14	Kfs	66.49		17.91					1.69	13.90																	100	118
5H-58 1906.89	7	15	Qz	100.00																									100	121
5H-58 1906.89	7	16	Glt +	53.24		11.73	18.92		2.90		3.19	7.82				2.22													100	101
5H-58 1906.89	8	1	Cal							55.58	0.42																		56	53
5H-58 1906.89	8	2	Qz	100.00																									100	126
5H-58 1906.89	8	3	Chloritized Ms	45.25	0.39	16.97	25.99		6.25		1.15	3.41				0.58													100	76
5H-58 1906.89	8	4	Cal				1.19	0.45		54.20						0.16													56	51
5H-58 1906.89	8	5	Qz	100.00																									100	122
5H-58 1906.89	8	6	Chl + Kln +	47.97		29.43	16.68		2.00		1.44	1.15				1.33													100	52
5H-58 1906.89	8	7	Gly	45.91		13.31	16.98		3.62	0.47	1.02	4.81				0.89													87	63
5H-58 1906.89	8	8	Qz	100.00																									100	121
5H-58 1906.89	8	9	Cal							55.68	0.32																		56	55
5H-58 1906.89	8	10	Qz	100.00																									100	119
5H-58 1906.89	8	11	Kfs	65.73		17.99					1.02	14.39										0.86							100	122
5H-58 1906.89	8	12	Glt	48.25		11.95	15.70		3.07		0.92	6.66				0.45													87	89
5H-58 1906.89	8	13	Ms + Chl	54.91		26.93	8.90		2.39		1.38	4.87				0.61													100	92
5H-58 1906.89	9	1	H				0.23				47.08					52.69													100	135
5H-58 1906.89	9	2	Qz	98.24							0.86					0.90													100	124
5H-58 1906.89	9	3	Chl + Ms + Hl	46.17		16.94	20.55		4.45	0.57	3.27	4.87				3.18													100	98
5H-58 1906.89	9	4	Sd	0.51			43.15	2.72	4.92	3.94	0.48					0.27													56	61
5H-58 1906.89	9	5	Cal							55.20	0.80																		56	56
5H-58 1906.89	9	6	Glt + HI	52.06		13.40	18.38		3.09	0.88	2.76	7.50				1.93													100	94
5H-58 1906.89	9	7	Qz	100.00								L				L	L	L								L			100	115
5H-58 1906.89	9	8	Qz	100.00			I					L					L									L			100	119
5H-58 1906.89	9	9	Qz	100.00																						L			100	120
5H-58 1906.89	9	10	Qz	100.00		10.1	10 -		0.51							0 -													100	118
5H-58 1906.89	9	11	Gly	46.42		12.11	18.01		3.01		0.94	5.99				0.51										L			87	
5H-58 1906.89	9	12	Cal			10.5	15.5.		0.05	56.00	0.07															L			56	59
5H-58 1906.89	9	14	Cnl + HI + Kfs	44.50	0.31	12.94	15.51		3.00	3.39	9.69	5.33				5.33	L									L			100	112
5H-58 1906.89	9	15	Ab	68.67		19.19				0.79	11.34																		100	120

Table 1-9.1: EDS	geochemical	analyses of	sample 5H-5	58 1906.89
------------------	-------------	-------------	-------------	------------

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	OgM	CaO	Na2O	K20	P205	SO3	ш	C	V205	Cr203	CuO	OuZ	ZrO2	BaO	La203	Ce2O3	EO2bN	HfO2	WO3	B2O3	Total	Actual Total
5H-58 1906.89	9	16	Qz	100.00																									100	118
5H-58 1906.89	10	1	Kfs	66.44		17.53					0.71	15.32																	100	115
5H-58 1906.89	10	2	Cal							55.61	0.39																		56	55
5H-58 1906.89	10	3	Cal				2.37	0.97	0.41	52.24																			56	54
5H-58 1906.89	10	4	Sd +	6.22		2.20	79.78	1.81	1.44	3.82	2.40					2.34													100	67
5H-58 1906.89	10	5	Glt	47.50		9.82	18.86		3.18		0.74	6.47				0.43													87	90
5H-58 1906.89	10	6	Chloritized Bt?	40.08	1.09	19.33	27.50		4.30	0.52	2.42	2.45				1.99	0.32												100	94
5H-58 1906.89	10	7	Qz	100.00																									100	119
5H-58 1906.89	10	8	Qz	100.00																									100	122
5H-58 1906.89	10	9	Qz	99.52										0.48															100	118
5H-58 1906.89	10	10	Gly	45.33		13.37	17.19		3.09	0.50	1.11	5.55				0.85													87	96
5H-58 1906.89	10	11	Gly	46.68		11.74	18.52		3.05		0.91	5.59				0.51													87	81
5H-58 1906.89	10	12	Qz	99.84												0.16													100	123
5H-58 1906.89	10	13	H	1.42		0.28	0.88			0.53	45.45	0.37				51.06													100	126
5H-58 1906.89	10	14	Glt + HI	54.05		10.30	19.61		3.34		3.30	7.57				1.83													100	99
5H-58 1906.89	10	15	Chl + Gly + Hl	39.98		17.77	31.16		4.63	0.40	2.47	1.92				1.67													100	80
5H-58 1906.89	10	16	Qz	100.00																									100	116
5H-58 1906.89	11	1	Qz	100.00																									100	120
5H-58 1906.89	11	2	Qz	100.00																									100	122
5H-58 1906.89	11	3	Kln +	54.63		35.13	5.36		1.40		0.71	2.45				0.32													100	76
5H-58 1906.89	11	4	Kfs	66.20		17.69					0.79	15.32																	100	118
5H-58 1906.89	11	5	"llm"	0.75	62.06		31.38	5.54		0.27																			100	100
5H-58 1906.89	11	6	Cal				1.87	0.95	0.35	52.83																			56	57
5H-58 1906.89	11	7	Cal				2.12	1.08	0.53	52.27																			56	56
5H-58 1906.89	11	8	Kfs	66.50		17.93					1.38	14.19																	100	122
5H-58 1906.89	11	9	Kln	48.52		36.75	0.26				0.27					0.20													86	88
5H-58 1906.89	11	10	Kfs	66.35		17.67					0.75	15.24																	100	114
5H-58 1906.89	11	12	Kfs	63.88		17.03					2.93	15.01				1.13													100	117
5H-58 1906.89	11	13	Qz	100.00																									100	118
5H-58 1906.89	11	14	Kfs	66.28		17.65					0.35	15.71																	100	119
5H-58 1906.89	12	1	Qz	100.00																									100	121
5H-58 1906.89	12	2	Kfs	63.81		17.46	1.44			0.89	1.45	14.39				0.57													100	109
5H-58 1906.89	12	3	Kln	49.26		36.07	0.31					0.15				0.22													86	84
5H-58 1906.89	12	4	Cal				2.44	1.01	0.50	52.05																			56	57
5H-58 1906.89	12	5	Kfs	66.17		17.84					0.82	15.17																	100	118
5H-58 1906.89	12	6	Kfs	66.17		17.94					2.11	13.77																	100	114
5H-58 1906.89	12	7	Cal						0.73	54.81	0.45																		56	54
5H-58 1906.89	12	8	Qz	100.00																									100	120
5H-58 1906.89	12	9	Kln	46.61		35.11					3.08					1.20													86	104
5H-58 1906.89	12	10	Glt	47.44		11.34	17.34		3.24		0.70	6.52				0.44													87	91
5H-58 1906.89	12	11	Qz	100.00																									100	119
5H-58 1906.89	12	12	TiO2	0.68	98.64		0.68																						100	107
5H-58 1906.89	12.1	1	Qz	100.00																				L		L	L		100	120
5H-58 1906.89	12.1	2	Kln	48.36		36.58					0.80					0.26													86	96
5H-58 1906.89	12.1	3	Sd +	1.17			44.62	1.06	3.33	4.94		L	0.67	L	L	0.21	L		L							L	L		56	61
5H-58 1906.89	12.1	4	Cal						0.85	54.10	0.39			0.52		0.15		L								L	L		56	56
5H-58 1906.89	12.1	5	Sd	0.73			43.09	1.39	3.65	6.51		L	0.63	L	L		L		L							L	L		56	59
5H-58 1906.89	12.1	6	Cal				2.04	0.88	0.35	52.72								L								L	L		56	56
5H-58 1906.89	12.1	7	Qz	99.74						0.26		ļ									-					L	L		100	118
5H-58 1906.89	13	1	Qz	100.00																									100	119

Table 1-9.1: EDS	geochemical	analyses of	sample 5H-5	58 1906.89
------------------	-------------	-------------	-------------	------------

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	ш	ō	V205	Cr2O3	CuO	ZnO	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	Hf02	WO3	B2O3	Total	Actual Total
5H-58 1906.89	13	2	Sd +	4.95		2.63	70.07	3.22	7.82	11.31																			100	62
5H-58 1906.89	13	4	Kfs	66.16	1	7.67						16.17																	100	116
5H-58 1906.89	13	5	Cal							55.53				0.47															56	56
5H-58 1906.89	13	6	Chl + Ms	47.76	0.73 1	5.39	22.27		6.19	0.70	1.37	5.32				0.27													100	99
5H-58 1906.89	13	7	Qz	100.00																									100	116
5H-58 1906.89	13	8	Glt + HI	53.54	1	3.64	17.99		3.43		1.98	7.09				2.34													100	81
5H-58 1906.89	13	9	Gly	47.49	1	4.41	15.17		2.84		0.80	5.52				0.44	0.33												87	71
5H-58 1906.89	13	10	Sd +	4.19		1.08	79.53	2.06	4.07	6.93	1.34					0.81													100	63
5H-58 1906.89	13	11	Kln	47.58	3	5.25	1.55					0.60				1.02													86	33
5H-58 1906.89	13	12	Kln	48.73	3	6.99					0.28																		86	96
5H-58 1906.89	13	13	Qz	100.00																									100	121
5H-58 1906.89	13	14	Qz	99.78			0.22																						100	119
5H-58 1906.89	13	15	Glt	49.36	1	0.13	16.41		3.10		0.62	6.86				0.53													87	97
5H-58 1906.89	13	16	Qz	100.00																									100	121
5H-58 1906.89	13	17	Kln	48.57	3	4.55	1.70		0.34		0.31	0.52																	86	87
5H-58 1906.89	14	1	Kfs	65.84	1	7.67					0.75	15.53				0.20													100	118
5H-58 1906.89	14	2	Sd + HI	0.74			43.55	2.52	3.69	2.86	1.53					1.11													56	62
5H-58 1906.89	14	3	Cal +	2.34		1.33	7.69	2.01	0.97	85.30						0.35													100	58
5H-58 1906.89	14	4	Qz	99.39							0.31					0.30													100	117
5H-58 1906.89	14	5	Chl + ?Ms + HI	44.28	0.45 1	6.15	26.33		4.70	0.73	1.89	4.65				0.82													100	96
5H-58 1906.89	14	6	Qz	100.00																									100	122
5H-58 1906.89	14	7	Gly	47.86		9.16	18.71		3.24		1.00	6.78				0.26										\square			87	102
5H-58 1906.89	14	8	Gly	48.30	1	5.64	13.73		2.63		0.68	5.39				0.64													87	70
5H-58 1906.89	14	9	Kln	48.68	3	7.32																							86	98
5H-58 1906.89	14	10	Mix	54.02		16.1	18		3.3		0.95	6.94				0.66													100	88
5H-58 1906.89	14	11	Glt	47.40	1	3.62	15.40		2.85		1.03	6.47				0.23													87	101
5H-58 1906.89	14	12	Qz	100.00																									100	118
5H-58 1906.89	14	13	Sd +	1.63		0.66	43.00	1.32	5.56	3.84																			56	62
5H-58 1906.89	14	14	HI +	12.22		2.24	4.48		0.37	0.53	43.19	1.81				35.15													100	137
5H-58 1906.89	15	1	Sd	0.85			43.79	1.38	4.65	3.96	0.58		0.80																56	61
5H-58 1906.89	15	2		51.63	1.11 2	0.63	15.75		3.90		1.39	4.48				1.12										\vdash			100	/5
5H-58 1906.89	15	3	Kts	66.17	1	7.94					1.42	14.47																	100	113
5H-58 1906.89	15	4	Qz	100.00																						\vdash			100	118
5H-58 1906.89	15	5	QZ	100.00							0.04					0.05										<u> </u>			100	120
511-58 1906.89	15	67	QZ Kfo	99.04	4	7 05					0.61	15 67				0.35										┌──┤			100	122
5H-58 1906.89	15	/	NIS Oliv	00.04	1	1.85	44.70		2.04		0.44	15.07				0.70										<u> </u>			07	112
5H-58 1906.89	15	0	Gly Chi i Mo	40.17	0.22 1	0.95	14.70		2.84		0.76	4.83				0.70													100	8Z 72
5H-56 1906.69	10	9		43.00	0.32	0.90	20.31		5.24		1.17	3.37				1.09										┢──┤			100	110
5H-56 1906.69	10	10		100.00		0 00	10.20		2 05		0.90	6.09				0.20										┢──┤			97	09
5H-58 1006 80	10	1	Git Chloritized Mc2	40.01	1	6.00	20.02		3.05		1.30	5.50				0.29										├ ──┤			100	90
54 59 1006 90	16	2		51.55		0.70	1.64	0.95	0.22	52 10	1.50	5.50				0.00										┢━━┥			56	55
5H-58 1906 89	16	2		100.00			1.04	0.05	0.52	55.19																<u> </u>			100	118
5H-58 1906 89	16	4	"llm"	1 27	78 47	0.82	17 47	1 26			0 47					0.25										<u> </u>			100	93
5H-58 1906 89	16	5	Kfs	66.33	1	7 89		1.20			1 01	14 77				0.20													100	118
5H-58 1906 89	16	6	07	100.00		00					1.01	. 4.11			1									1		-+			100	124
5H-58 1906.89	16	7	Kin +	54.68	3	6.18	6.66		0.85		0.45	0.65				0.52										$ \rightarrow$			100	71
5H-58 1906.89	16	8	Ab	68.95	1	9.22	0.00		5.00	0.43	11.41	0.00				0.02										+			100	117
5H-58 1906.89	16	9	Kfs	65.92	1	7.96	0.24			0.10	0.81	15.07																	100	115
5H-58 1906.89	16	10	Gly	47.05	1	4.00	15.56		2.81		0.82	5.71				0.75	0.31												87	76

Table 1-9.1: EDS geochemical analyses of sample 5H-58 1906.89

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	OgM	CaO	Na2O	K2O	P205	SO3	ш	G	V205	Cr203	CuO	OuZ	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	HfO2	80M	B2O3	Total	Actual Total
5H-58 1906.89	16	11	Gly	43.12		14.26	19.14		3.82		1.13	4.92				0.62													87	81
5H-58 1906.89	16	12	Cal				2.33	1.27	0.40	52.00																			56	56
5H-58 1906.89	16	13	Qz	97.05							1.40					1.55													100	121
5H-58 1906.89	16.1	1	TiO2 +	5.67	81.47	3.41	3.92		0.89	0.76	1.01	0.80	0.86			0.45		0.76											100	91
5H-58 1906.89	16.1	2	Cal				2.34	1.15	0.51	52.01																			56	55
5H-58 1906.89	16.1	3	Glt	47.12		10.22	18.35		3.05	0.73	0.84	6.12				0.56													87	85
5H-58 1906.89	16.1	4	Fe-chl	44.42		14.40	15.75		2.49		1.13	5.63				1.19													85	61
5H-58 1906.89	16.1	5	Gly	45.46		14.74	16.12		2.55		1.16	5.76				1.22													87	85
5H-58 1906.89	16.1	6	Gly	42.70		13.43	20.54		4.00		1.14	4.45				0.74													87	82
5H-58 1906.89	17	1	Qz	100.00																									100	118
5H-58 1906.89	17	2	Kfs	66.30		17.78					1.03	14.88																	100	115
5H-58 1906.89	17	3	Kln	49.24		36.76																							86	91
5H-58 1906.89	17	4	Kfs	66.42		17.50					0.43	15.65																	100	119
5H-58 1906.89	17	5	Gly	44.59		10.08	15.87		2.56		5.43	6.51				1.97													87	104
5H-58 1906.89	17	6	TiO2 +	3.28	88.76	3.10	1.67			0.72	0.89		0.93			0.65													100	66
5H-58 1906.89	17	7	Gly	45.66		18.73	14.29		2.34		0.77	4.59				0.62													87	69
5H-58 1906.89	17	8	Chl + III	54.12		30.87	9.10		1.64		0.73	3.03				0.52													100	81
5H-58 1906.89	17	9	Gly	48.02		18.80	10.59		2.47		0.99	5.27				0.63	0.23												87	92
5H-58 1906.89	17	10	Kln	48.20		36.11	1.17				0.31					0.21													86	83
5H-58 1906.89	17	11	Qz	99.65							0.35																		100	101
5H-58 1906.89	17	12	Gly	46.12		11.92	17.48		3.06		0.99	5.96	0.68			0.79													87	88
5H-58 1906.89	17	13	Qz	100.00																									100	123
5H-58 1906.89	17	14	Qz	100.00																									100	119
5H-58 1906.89	17	15	Cal				1.54	0.78	0.32	51.23	0.85					1.27													56	57
5H-58 1906.89	17	16	Qz	100.00																									100	116
5H-58 1906.89	18	1	Ξ	0.76							42.93	0.33				55.98													100	123
5H-58 1906.89	18	2	Qz	100.00																									100	121
5H-58 1906.89	18	3	Kfs	64.98		17.39					2.21	14.92				0.50													100	115
5H-58 1906.89	18	4	Kfs	65.49		17.89					1.05	14.46										1.11							100	114
5H-58 1906.89	18	5	Qz	100.00																									100	118
5H-58 1906.89	18	6	Kfs	64.24		17.56					2.04	14.79				0.68						0.68							100	115
5H-58 1906.89	18	7	Gly	46.05		13.44	16.78		3.06		1.06	5.26				1.04	0.32												87	82
5H-58 1906.89	18	8	Kln	48.31		36.62	0.61				0.34	0.12																	86	87
5H-58 1906.89	18	9	Kfs +	64.00		17.07	6.74		0.94		0.92	9.51				0.81													100	62
5H-58 1906.89	18	10	Kfs	66.09		17.74					0.26	15.91																	100	114
5H-58 1906.89	18	11	Glt	47.76		12.73	15.94		2.77		0.90	6.39				0.52													87	78
5H-58 1906.89	18	12	Kln	52.06		33.07	0.49									0.38													86	73
5H-58 1906.89	18	13	Gly	44.56		9.81	15.87		2.97		0.97	5.76	3.35			0.77								2.04	0.90				87	89
5H-58 1906.89	18	14	Qz	100.00																									100	122
5H-58 1906.89	18.1	1	Qz	100.00																									100	119
5H-58 1906.89	18.1	2	Glt	48.53		10.88	17.48		3.11		0.64	6.00				0.37													87	87
5H-58 1906.89	18.1	3	Glt	48.37		10.95	17.24		2.99		0.84	6.23				0.38													87	94
5H-58 1906.89	18.1	4	HI +	3.23		0.63	0.64				50.52	0.22				44.76													100	162
5H-58 1906.89	18.1	5	Glt + Mnz	40.59		10.51	16.06		2.70	1.23	1.33	4.88	8.87			1.29							2.86	7.06	2.62				100	82
5H-58 1906.89	19	1	Qz	99.40			0.60																						100	122
5H-58 1906.89	19	2	Сср	0.39			21.53							54.82					23.26										100	206
5H-58 1906.89	19	3	Kln	48.63		37.27						0.09																	86	101
5H-58 1906.89	19	4	Kfs	66.86		18.13					2.92	12.08																	100	122
5H-58 1906.89	19	5	Qz	100.00																									100	121
5H-58 1906.89	19	6	Gly	43.90	0.31	13.25	19.19		3.32		1.43	4.96				0.64													87	90

Table 1-9.1: EDS geochemical analyses of sample 5H-58 1906.89

Sample	Site	Position	Mineral	SiO2	Ti02	AI2O3	FeO	MnO	OgM	CaO	Na2O	K20	P205	SO3	ш	C	V205	Cr2O3	CuO	ZnO	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	HfO2	WO3	B2O3	Total	Actual Total
5H-58 1906.89	19	7	Glt	48.89		9.28	17.37		3.41		0.57	7.07				0.40													87	96
5H-58 1906.89	19	8	Qz	100.00																									100	117
5H-58 1906.89	19	9	Kfs	65.52		18.10					1.18	14.09										1.11							100	114
5H-58 1906.89	19	10	Kln	46.29		31.04	5.15		0.86		0.40	1.91				0.36													86	78
5H-58 1906.89	19	11	Qz	100.00																									100	118
5H-58 1906.89	19	12	llm	0.55	54.74		41.47	3.23																					100	108
5H-58 1906.89	19	13	Qz	100.00																									100	126
5H-58 1906.89	19	14	Glt	47.11		11.19	17.74		3.09		1.02	6.67				0.18													87	102
5H-58 1906.89	19	15	Cal +	8.19		6.86	2.98	1.64		80.32																			100	60
5H-58 1906.89	19	16	Qz	100.00																									100	117
5H-58 1906.89	19.1	1	llm		55.60		41.53	2.87																					100	104
5H-58 1906.89	19.1	2	Chl + Hl + Gly	43.46		12.97	23.75		4.16	0.84	4.90	5.22				4.69													100	99
5H-58 1906.89	19.1	3	Kfs	66.40		17.92					1.04	14.64																	100	115
5H-58 1906.89	20	1	llm		51.37		46.85	0.65	1.14																				100	102
5H-58 1906.89	20	2	Qz	100.00																									100	120
5H-58 1906.89	20	3	Kfs	65.30		17.94					0.75	15.10										0.91							100	120
5H-58 1906.89	20	4	Qz	100.00																									100	121
5H-58 1906.89	20	5	Qz	98.44	1.02	0.49						0.04																	100	115
5H-58 1906.89	20	6	Glt + HI	39.66		8.36	13.23		2.05		18.60	5.64				12.47													100	108
5H-58 1906.89	20	7	Kln	45.96		30.32	6.34		1.08		0.52	1.41				0.37													86	72
5H-58 1906.89	20	8	Fe-chl + Hl	39.49	0.53	17.47	28.78		4.83	0.72	3.94	2.65				1.59													100	98
5H-58 1906.89	20	9	Ms	46.93	0.99	31.97	3.52		0.67		0.72	10.18																	95	99
5H-58 1906.89	20	10	Glt	48.98		12.49	14.85		3.62		0.59	6.06				0.40													87	95
5H-58 1906.89	20	11	Kfs	66.39		17.69					0.64	15.28																	100	115
5H-58 1906.89	20	12	Ab	69.06		19.02				0.31	11.61																		100	114
5H-58 1906.89	20	13	Kfs	66.34	4.00	17.84	00.40				0.96	14.86				0.50													100	114
5H-58 1906.89	20	14	Chloritized Bt?	37.09	1.28	18.19	33.12		5.75	0.25	1.09	2.73				0.50													100	90
5H-58 1906.89	20.1	1		2.44		2.20	4.05	4.07	0.40	00.40																			100	121
5H-58 1906.89	20.1	2		3.11	1.69	2.29	4.05	1.97	0.48	88.10		0.65																	100	117
5H-56 1906.69	20.1	3		93.09	1.00	2.40	1.03		0.20		0.22	0.05				0.20													96	92
5H-58 1006 80	20.1	4	NIII Kfc	49.40		17 20	0.04				2.00	14.52				0.20													100	117
54 59 1006 90	21	2	Chloritized Bt + UI	40.10		12.20	19.22		2 72	1 15	3.00	6.34				2.19	0.24												100	100
5H-58 1906 89	21	2		100.00		15.00	10.23		5.75	1.15	4.00	0.54				5.10	0.54												100	115
5H-58 1906 89	21	4	07	100.00																									100	116
5H-58 1906 89	21	5	Cal + Mix	24.37		10.61	5 59	0.61	2 84	53 32	0.50	1.83				0.34													100	70
5H-58 1906.89	21	6	Kin	47.36		34.78	2.61					0.34				0.90													86	47
5H-58 1906.89	21	7	Qz	100.00		00	2.01					0.01				0.00													100	122
5H-58 1906.89	21	8	Cal							56.00																			56	57
5H-58 1906.89	21	9	Qz	100.00																									100	122
5H-58 1906.89	21	10	Glt	48.11	0.31	11.20	16.30		3.13		0.94	6.07				0.67	0.26												87	89
5H-58 1906.89	21	11	Glt	42.73		17.48	16.93		2.45		0.57	6.03				0.80													87	41
5H-58 1906.89	21	12	Chl + Bt?	44.97		21.12	25.08		4.60		0.91	2.31				1.00													100	69
5H-58 1906.89	21	13	Gly	45.45		13.53	18.38		3.08		0.80	5.19				0.57													87	85
5H-58 1906.89	21	14	TiO2		100.00								1																100	108
5H-58 1906.89	22	1	Qz	100.00																									100	121
5H-58 1906.89	22	2	Kfs	65.86		17.64					0.84	15.46				0.20													100	117
5H-58 1906.89	22	3	Gly	39.39		14.47	23.64		4.47	0.45	1.10	2.80				0.67													87	79
5H-58 1906.89	22	4	Kfs	66.26		17.55					0.30	15.89																	100	117
5H-58 1906.89	22	5	Glt + HI	48.55		14.28	21.91		2.91		3.07	6.51				2.38	0.38					_							100	94

Table 1-9.1: EDS	geochemical	analyses of	sample 5H-5	58 1906.89
------------------	-------------	-------------	-------------	------------

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ш	CI	V205	Cr2O3	CuO	ZnO	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	HfO2	WO3	B2O3	Total	Actual Total
5H-58 1906.89	22	6	Qz	100.00																									100	123
5H-58 1906.89	22	7	Sd	0.55			43.96	0.99	3.84	5.96			0.69																56	61
5H-58 1906.89	22	8	Glt + HI	46.68		12.31	20.79		2.92		6.36	5.86				5.08													100	99
5H-58 1906.89	22	9	Qz	100.00																									100	125
5H-58 1906.89	22	10	Oligo	64.25		21.86				3.58	10.05					0.26													100	122
5H-58 1906.89	22	11	Qz	100.00																									100	124
5H-58 1906.89	22	12	Kfs	63.95		17.01					2.65	15.03				1.37													100	119
5H-58 1906.89	23	1	Kfs	62.42		17.08					4.33	13.72				1.92						0.54							100	113
5H-58 1906.89	23	2	Sd				43.80	1.34	3.87	6.30			0.68																56	57
5H-58 1906.89	23	3	Gly	45.93		17.49	15.24		2.97		0.70	4.32				0.36													87	83
5H-58 1906.89	23	4	Qz	100.00																									100	116
5H-58 1906.89	23	5	Kln	48.39		37.35					0.26																		86	94
5H-58 1906.89	23	6	Kln + Chl	47.16		30.23	17.37		2.25		1.03	1.36				0.60													100	73
5H-58 1906.89	23	7	Cal				1.62	0.77	0.35	53.26																			56	55
5H-58 1906.89	23	8	Qz	99.59							0.41																		100	111
5H-58 1906.89	23	9	Chl + Bt? + HI	39.58	1.29	15.76	27.77		8.11		2.38	3.91				1.20													100	71
5H-58 1906.89	23	10	Qz	100.00																									100	121
5H-58 1906.89	23	11	Qz	99.74												0.26													100	117
5H-58 1906.89	23	12	Cal	0.66			0.86	0.66		53.82																			56	56
5H-58 1906.89	23	13	Gly	47.34		12.40	16.94		3.11		0.72	5.77				0.37	0.35												87	80
5H-58 1906.89	23	14	Qz	100.00																									100	109
5H-58 1906.89	23	15	Glt + HI	37.60		8.07	11.73		2.59		21.40	5.10				13.50													100	125
5H-58 1906.89	23	16	Qz	100.00																									100	122
5H-58 1906.89	24	1	Qz	100.00																									100	121
5H-58 1906.89	24	2	Cal				0.38		0.53	53.89				1.20															56	58
5H-58 1906.89	24	3	Sd	0.68			47.14	2.34	1.90	2.74	0.52					0.69													56	67
5H-58 1906.89	24	4	Cal +	0.83			2.28	1.28		91.96	2.16					1.50													100	59
5H-58 1906.89	24	5	Cal				2.11	0.89	0.46	52.54																			56	56
5H-58 1906.89	24	6	llm	0.73	51.96		45.94	0.52	0.86																				100	103
5H-58 1906.89	24	7	Qz +	88.41		7.61	0.80		0.50		0.62	1.65				0.40													100	111
5H-58 1906.89	24	8	Kln	50.10		35.33	0.24									0.34													86	74
5H-58 1906.89	24	9	Glt	47.54		9.14	18.57		3.15		0.62	6.92	0.63			0.44													87	88
5H-58 1906.89	24	10	Qz	99.12							0.46					0.41													100	116
5H-58 1906.89	24	11	Gly + HI	43.31		16.19	12.66		3.04		13.06	4.38				7.36													100	98
5H-58 1906.89	24	12	Qz	99.45							0.35					0.20													100	125
5H-58 1906.89	24	13	Qz	99.80			0.20																						100	119
5H-58 1906.89	24	14	Kfs	65.33		17.43					1.56	15.23				0.45													100	115
5H-58 1906.89	25	1	Qz	100.00																									100	120
5H-58 1906.89	25	2	III + Chl	46.33		26.93	17.93		2.77		0.91	4.35				0.78													100	73
5H-58 1906.89	25	3	Glt	48.29		9.38	17.51		3.08	0.68	1.07	6.80				0.20													87	103
5H-58 1906.89	25	4	H	0.77							41.47	0.18				57.58													100	106
5H-58 1906.89	25	5	Qz	100.00		40.05	44		0.05		4.00	0.01				0.01													100	120
5H-58 1906.89	25	6	GI	48.31		12.69	14.75		2.92		1.80	6.21				0.31	L	L									\vdash		87	103
5H-58 1906.89	25	7	QZ	100.00																									100	121
5H-58 1906.89	25	8	QZ	100.00		10.07	00.07		1.00		1.0-																		100	125
5H-58 1906.89	25	9	GIY ?	47.83		19.89	20.28	4.05	4.82	00.70	1.39	4.75				1.04													100	/0
5H-58 1906.89	25	10		4.83		3.10	3.19	1.35	0.75	86.78														l					100	62
5H-58 1906.89	25	11	0-	100.00																									100	123
511-58 1906.89	25	12	Q2	100.00		0.01	4.42	4.00	0.00	05.00																	\vdash		100	123
5H-58 1906.89	25	13	Cai +	5.61		3.34	4.10	1.29	0.66	85.00														1					100	62

Table 1-9.1: EDS	geochemical	analyses of	sample 5	5H-58	1906.89
------------------	-------------	-------------	----------	-------	---------

Sample	Site	Position	Mineral	SiO2	ТіО2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ш	Ū	V205	Cr2O3	CuO	ZnO	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	HfO2	WO3	B2O3	Total	Actual Total
5H-58 1906.89	25	14	Qz	97.53							1.06					1.41													100	123
5H-58 1906.89	26	1	Cal						0.31	55.69																			56	57
5H-58 1906.89	26	2	Chloritized Ms	49.42		17.47	20.74		4.74		1.58	5.06				0.98													100	95
5H-58 1906.89	26	3	Chloritized Ms	49.33		16.10	22.09		4.15		1.80	5.41				1.12													100	88
5H-58 1906.89	26	4	Qz	100.00																									100	119
5H-58 1906.89	26	5	Cal				1.71	0.91	0.36	53.02																			56	55
5H-58 1906.89	26	6	Glt + HI	43.98		11.51	19.50		2.72		10.92	5.64				5.37	0.35												100	104
5H-58 1906.89	26	7	Qz	100.00																									100	125
5H-58 1906.89	26	8	Qz	100.00																									100	125
5H-58 1906.89	26	9	Kfs	64.93		18.04					0.92	14.31										1.81							100	118
5H-58 1906.89	26	10	Qz	100.00																									100	116
5H-58 1906.89	26	11	Kfs	64.60		18.29					0.99	13.73										2.38							100	114
5H-58 1906.89	26	12	Qz	98.91		0.39	0.46				0.24																		100	115
5H-58 1906.89	26	13	Glt +	53.98		12.4	19.9		3.7		2.1	6.81				0.81	0.3												100	101
5H-58 1906.89	26	14	Cal							56.00																			56	56
5H-58 1906.89	26	15	Sd	1.55		0.58	43.24	0.59	3.82	5.53	0.49					0.20													56	62
5H-58 1906.89	26.1	1	Sd				43.09	1.62	3.87	7.42																			56	60
5H-58 1906.89	26.1	2	Cal				0.30		0.46	54.73				0.50															56	58
5H-58 1906.89	26.1	3	Qz	97.79		1.68					0.49	0.03																	100	119
5H-58 1906.89	26.1	4	Kfs	66.67		17.49					0.81	15.03																	100	118
5H-58 1906.89	26.1	5	Qz	100.00																									100	122
5H-58 1906.89	26.1	6	Kln	48.92		37.08																							86	99
5H-58 1906.89	27	1	Qz	100.00																									100	121
5H-58 1906.89	27	2	Kln +	54.28		36.07	6.82		1.19		0.71	0.45				0.49													100	78
5H-58 1906.89	27	3	Glt? + HI	51.74		14.07	16.56		1.96		6.24	5.70				3.72													100	88
5H-58 1906.89	27	4	Cal				1.80	0.86	0.31	53.03																			56	58
5H-58 1906.89	27	5	Qz	100.00																									100	123
5H-58 1906.89	27	6	Qz	99.11							0.61					0.28													100	123
5H-58 1906.89	27	7	Kfs	66.22		17.86					0.67	15.25																	100	115
5H-58 1906.89	27	8	Gly	47.30		11.79	17.88		3.13		0.70	5.79				0.42													87	88
5H-58 1906.89	27	9	Cal +	11.70		10.06	2.55	1.21		74.07						0.42													100	67
5H-58 1906.89	27	10	Kfs	66.17		17.48	0.34				0.45	15.56																	100	118
5H-58 1906.89	28	1	HI + Ap							27.81	24.60	0.24	24.10	0.68		20.57								0.80			1.20		100	110
5H-58 1906.89	28	2	Cal				2.04	1.28	0.41	52.27																			56	56
5H-58 1906.89	28	3	Glt + HI	54.01		19.35	14.93		3.33		1.10	5.88				1.08	0.31												100	87
5H-58 1906.89	28	4	Kln	49.16		36.64										0.21													86	75
5H-58 1906.89	28	5	Qz	100.00																									100	119
5H-58 1906.89	28	6	"llm"	10.53	71.40	5.39	7.11		2.13	0.83	1.08	1.19				0.33													100	97
5H-58 1906.89	28	7	Qz	100.00																									100	121
5H-58 1906.89	28	8	Glt + HI +	54.64		23.09	12.98		1.99		1.92	4.56				0.82													100	99
5H-58 1906.89	28	9	Qz	100.00																									100	125
5H-58 1906.89	28	10	Qz	100.00																									100	117
5H-58 1906.89	28	11	Kln	49.04		36.96																							86	74
5H-58 1906.89	28	12	Qz	100.00																									100	116
5H-58 1906.89	28	13	Kts	66.70		17.92					1.45	13.94	I				I												100	113
5H-58 1906.89	28	14	Qz	100.00																									100	123
5H-58 1906.89	28	15	Git + HI	54.67		14.49	15.92		3.15		3.26	7.14				1.09	0.29												100	102
5H-58 1906.89	29	1	Qz	100.00			-				0.0-	10.0-				1						0.71							100	116
5H-58 1906.89	29	2	Kts	66.14		18.11					2.05	12.99					<u> </u>					0.71							100	117
5H-58 1906.89	29	3	Kin	48.81		36.74					0.46																		86	87

Table 1-9.1: EDS geochemical analyses of sample 5H-58 1906.89

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	OBM	CaO	Na2O	K2O	P205	SO3	ш	Ū	V205	Cr2O3	CuO	ZnO	ZrO2	BaO	La203	Ce203	Nd2O3	HfO2	WO3	B2O3	Total	Actual Total
5H-58 1906.89	29	4	Sd	0.53			43.28	1.82	4.01	6.36																			56	61
5H-58 1906.89	29	5	Cal				1.56	0.87	0.36	53.21																			56	56
5H-58 1906.89	29	6	Glt + HI	40.54		9.91	12.17		2.92		18.38	5.17				10.92													100	112
5H-58 1906.89	29	7	Qz	100.00																									100	120
5H-58 1906.89	29	8	Kfs	66.01		17.70					0.47	15.82																	100	116
5H-58 1906.89	29	9	Glt + HI	51.79		14.18	17.45		3.06		3.27	7.42				2.48	0.35												100	92
5H-58 1906.89	29	10	Kln	48.53		36.92	0.35									0.20													86	73
5H-58 1906.89	29	11	Qz	100.00																									100	118
5H-58 1906.89	29	12	Qz	99.72							0.28																		100	106
5H-58 1906.89	29	13	Glt	48.75		9.09	17.95		3.23		0.81	6.82				0.36													87	99
5H-58 1906.89	30	1	Qz	98.93		1.02						0.05																	100	119
5H-58 1906.89	30	2	Glt	45.70	0.49	11.32	17.72		3.81		1.04	6.51				0.42													87	101
5H-58 1906.89	30	3	Qz	99.65												0.35													100	122
5H-58 1906.89	30	4	Cal				1.99	0.98	0.48	52.55																			56	56
5H-58 1906.89	30	5	Kln +	44.47		32.02	0.35				4.83	0.10				4.22													86	97
5H-58 1906.89	30	6	Glt +	52.19	0.29	12,48	22.16		4.24		1.25	7.03			1	0.35							1	1					100	97
5H-58 1906.89	30	7	Qz	100.00																									100	119
5H-58 1906 89	30	8	Kin	48.55		37 45																							86	86
5H-58 1906 89	30	9	"llm"	1.68	75 43	0.75	19 11		0.56	0 41	0.52		1 07			0 47													100	76
5H-58 1906 89	30	10	Q7	100.00	10.10	0.10			0.00	0	0.02					0.11													100	125
5H-58 1906 89	30	11	Glt	48 52		12 48	15 18		2 92		0.78	640				0.42	0.30												87	95
5H-58 1906 89	31	1	07	100.00		12.40	10.10		2.02		0.70	0.40				0.42	0.00												100	118
5H-58 1906 89	31	2	Cal+	12 31		7 / 2	5 70	0.88	0.88	71 07	0.53	0.32																	100	57
5H-58 1906 89	31	2	Kin	49.67		35.97	5.70	0.00	0.00	11.51	0.33	0.52																	86	92
5H-58 1906 89	31	1	07	100.00		55.57					0.57																		100	120
5H-58 1906 89	31	- 5	Kfe Kfe	66.20		17 51					0.40	15.80																	100	116
5H-58 1906 89	31	6	llm	00.23	55 23	17.51	12 76	1 / 2			0.40	13.00																	100	102
5H-58 1906 89	31	7	07	100.00	33.23		42.70	1.42																					100	117
54-59 1006 90	21	0	GI#	100.00		12.45	15.05		2 09		0.07	6.41				0.41	0.22												87	01
5H-58 1906 89	31	0	Kfe	62.28		16.60	0.37		5.00	1 91	0.97	15 /1				0.41	0.52												100	86
54-59 1006 90	21	10	07.4	02.20		10.00	0.57			4.34	2.67	13.41				1 79													100	123
5H-58 1906 89	31	11	Kfe	66.48		17.60					1.60	14 14				1.70													100	110
54-59 1006 90	21	12	Kin	46.52	0.52	22.26	1 99		0.44		1.03	14.14				0.27													86	70
5H-58 1906 89	31	12		32.24	0.52	26.01	1 36	0.48	0.44	30.36	0.55					0.57													100	77
54-59 1006 90	21	14		100.00		20.01	1.50	0.40		55.50	0.55																		100	115
5H-58 1906 89	32	14	07	100.00																									100	120
54-59 1006 90	32	2		100.00			2.02	1 1 7	0.47	52.22																			56	55
5H-58 1906 89	32	2		98.51			2.03	1.17	0.47	52.55	0.84					0.65													100	112
511-58 1006 80	32	1		1.06			0.21				19 10	0.26				50.16													100	1/1
511-50 1900.09	32	4		1.00			0.31	0.00	0.40	ED 10	40.10	0.30				30.10													56	59
5H-58 1006 90	32	5	0ai	00.10			0.10	0.98	0.40	0 12	0.50																		100	124
5H-56 1900.69	32	7	QZ Kfo	99.19		17.01	0.19			0.12	0.50	15 56																	100	124
511-30 1900.89	32	0	Cal	00.07		17.91	2.10	0.00	0.24	52 10	0.00	10.00																	56	57
511-30 1900.89	32	0		00.54			2.18	0.99	0.34	52.49	0.70	I	I			0.77								<u> </u>					100	122
5H 59 1006 00	32	10	07	90.51							0.72					0.77													100	147
511 50 1906.89	32	10		47.00		22.42	0.47		0.57		0.40				<u> </u>	0.55				<u> </u>									100	61
5H 59 1006 00	32	10	NIII Sd i	47.80		33.13	3.47	2.14	1.57	0 70	0.42		1.00			0.55													100	61
511 50 1906.89	32	12	ou +	3.40			18.00	2.11	4.20	0.79	1.48		1.09		<u> </u>	0.82				0.00									100	01
511 59 4000 00	33	1	Q2 7m	99.74																0.26	<u></u>								100	119
511 50 4000 00	33	2		31.25						0.50			00.71		0.42					0.52	08.23		40.07	05.41	44.00		4.04		100	118
5H-58 1906.89	- 33	- 3	Monazite- (Ce)							0.59			36.71		-0.40					0.81			10.65	35.11	14.63		1.91		100	102

Table 1-9.1: EDS geochemical analyses of sample 5H-58 1906.89

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	OnM	MgO	CaO	Na2O	K2O	P205	SO3	Ŀ	CI	V205	Cr2O3	CuO	ZnO	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	HfO2	WO3	B2O3	Total	Actual Total
5H-58 1906.89	33	4	Cal				1.70	0.76	0.40	52.76										0.39									56	56
5H-58 1906.89	33	5	Glt + HI	54.92		11.46	21.05		3.49		1.27	7.45				0.36													100	88
5H-58 1906.89	33	6	Glt + HI	53.88		18.11	15.91		3.22		1.43	6.08				0.96	0.40												100	90
							Notes																							
							1. + in	dicate	s mor	e than	one mi	neral p	resent																	
							2. " " ir	ndicat	es alte	ared gra	ain																			
							3. Gly	refers	to the	ə mixtur	re glau	cony																		
		1																								1				

Table 1-9.1: EDS geochemical analyses of sample 5H-58 1906.89

Appendix 1-10: SEM-BSE images and EDS mineral analyses for sample O-47 1886.68. Sample O-47 1886.68: Fine-grained sandstone with thin mudstone intervals

Detrital Minerals: Albite, Chlorite, Biotite, Chromite, ?Fe-clay, Garnet, Illite, Ilmenite, K-feldspar, Muscovite, Oligoclase, Quartz, Zircon

Diagenetic Minerals: Anhydrite, Chlorite, Kaolinite, Pyrite, Siderite, Titania

Notes:

1. Quartz commonly displays suturing and overgrowths (Figs. 27,29,32,38).

2. Chlorite and muscovite are usually plastically deformed, causing them to expanded along cleavage planes, allowing for diagenetic minerals to precipitate (Figs. 7,23,36).

3. When looking at the photograph of the thin section (Fig. 1) the sample appears to be layered with fine sands and muddy intervals.

4. Anhydrite appears to be the latest cement (Figs. 11,24).

```
5. Paragenetic sequence:
Kaolin i Othelor Stiel Teitaniiat, Peyr,ite, Anhydrite
figs. 9,41 Figs. 11,23,34
```


Figure 1-10.1: Scanned thin section of O-47 1886.68 showing the location of analyzed sites.

Figure 1-10.2: Sample O-47 1886.68 (SEM) site 1. This site consists of detrital quartz (1,10-11,13-14,20), K-feldspar (2,6-9,19), and muscovite (4,12,17-18). The cement is made up of kaolinite (3) and chlorite (21). Suturing is common between grains (positions a). Quartz overgrowths (position b) are also present.

1:Kaolinite 2:Kaolinite

Figure 1-10.3: Sample O-47 1886.68 (SEM) site 1.1. This site is a zoom in of the cement in site 1. Kaolinite (1-2) booklets form between the detrital grains.

Figure 1-10.4: Sample O-47 1886.68 (SEM) site 2. This site consists of detrital quartz (4,6,11,14), K-feldspar (1), muscovite (12,17), chlorite (2,16), ilmenite (9), and albite (15). There is also diagenetic siderite (5,10) which probably partially fills porosity.

Figure 1-10.5: Sample O-47 1886.68 (SEM) site 3. This site is similar to site 1. There is also detrital Fe-rich chlorite (3-4), and probably diagenetic kaolinite (position a).

Figure 1-10.6: Sample O-47 1886.68 (SEM) site 4. This site consists of detrital quartz, K-feldspar, and Fe-chlorite (2). There is also probably kaolinite (positions a) cement.

1:Muscovite 2:Fe-Chlorite + 3:Kaolinite + 4:K-feldspar 5:Pyrite

Figure 1-10.7: Sample O-47 1886.68 (SEM) site 4.1. This site consists of a detrital Fechlorite (2) grain that is partially deformed and has expanded along its cleavage plans allowing diagenetic pyrite to precipitate. There are also detrital grains of muscovite (1), altered K-feldspar (4) and a cement partially made up of kaolinite (3) in this site.

Figure 1-10.8: Sample O-47 1886.68 (SEM) site 5. This site is similar to site 2. Detrital muscovite (9), chlorite (3,12) appear to be plastically deformed. The cement in this site is made up of kaolinite (10). There is also a granitic lithic clast made up of K-feldspar (14) and quartz (15).

1:Fe-Chlorite 2:Kaolinite 3:Fe-clay

Figure 1-10.9: Sample O-47 1886.68 (SEM) site 5.1. This site consists of small kaolinite (2) booklets, Fe-chlorite (1), and Fe-clay (3), which make up the cement between grains filling primary porosity.

Figure 1-10.10: Sample O-47 1886.68 (SEM) site 6. This site is similar to site 5. Chlorite + Illite (12) make up the matrix and kaolinite (13) makes up the cement.

1:K-feldspar 2:Muscovite 3:Pyrite 4:K-feldspar 5:"Ilmenite" 6:Quartz 7:Quartz 8:Kaolinite + 9:K-feldspar 10:Albite 11:Albite 12:K-feldspar 13:Chlorite + 14:Anhydrite + 15:TiO₂ 16:Quartz

Figure 1-10.11: Sample O-47 1886.68 (SEM) site 7. This site consists of detrital quartz (6-7), K-feldspar (1,4,9,12), muscovite (2), chlorite (13), altered ilmenite (5), and albite (10-11). The cement between grains consists of kaolinite (8,position a), and anhydrite (14). Pyrite (3) and titania (15) are the latest minerals to form.

Figure 1-10.12: Sample O-47 1886.68 (SEM) site 8. This site consists of detrital quartz, K-feldspar, muscovite (7), and albite (8) grains. The cement is made up of kaolinite (11,15). Late diagenetic pyrite (4,13-14) and titania (3) are the latest mineral to form.

Figure 1-10.13: Sample O-47 1886.68 (SEM) site 9. This site is similar to site 2. It may contain microperthite (2). Diagenetic siderite (6) and pyrite (13,16) are the latest minerals to form.

Figure 1-10.14: Sample O-47 1886.68 (SEM) site 10. This site consists of mostly detrital quartz and K-feldspar grains. There is also detrital grains now of Fe-chlorite (3), chlorite + biotite (8), and ilmenite (11). Kaolinite (6) may be matrix or cement.

Figure 1-10.15: Sample O-47 1886.68 (SEM) site 10.1. This site consists of an Fe-rich clay that is between detrital quartz grains. This clay may be matrix or cement.

1:Fe-clay

Figure 1-10.16: Sample O-47 1886.68 (SEM) site 11. This site is similar to site 10. There is diagentic titania (3), pyrite (17), and siderite (15).

1:Kaolinite 2:K-feldspar 3:"Ilmenite" 4:Quartz 5:Quartz

Figure 1-10.17: Sample O-47 1886.68 (SEM) site 11.1. This site consists of a detrital grains of quartz (4-5), and K-feldspar (2). Kaolinite (1) appears to replace a detrital muscovite grain. There is also altered ilmenite (3).

Figure 1-10.18: Sample O-47 1886.68 (SEM) site 12. This site consists of detrital quartz (1,13), K-feldspar (2,8), Fe-chlorite (9), ilmenite (5,10), muscovite + chlorite (6), and titania (3-4,7,11-12). Pyrite (14) is diagenetic.

1:Siderite 2:TiO₂ 3:Garnet 4:Chlorite + Biotite 5:K-feldspar 6:Ilmenite 7:"Ilmenite" 8:Quartz 9:Quartz 10:TiO₂ 11:Quartz 12:Kaolinite + Chlorite 13:Quartz 14:Muscovite + Chlorite 15:Quartz

Figure 1-10.19: Sample O-47 1886.68 (SEM) site 13. This site consists of detrital quartz, K-feldspar, ilmenite (6-7), muscovite + chlorite (14), chlorite + biotite (4), and garnet (3). The cement is made up of kaolinite + chlorite (12). There is also diagenetic titania (2,10), siderite (1).

1:Kaolinite + 2:Glaucony ? 3:Kaolinite

Figure 1-10.20: Sample O-47 1886.68 (SEM) site 13.1. This site is a zoom in of the cement in site 13. The cement appears to mostly consist of kaolinite (1,3), with a small grain of ?glaucony (2).

Figure 1-10.21: Sample O-47 1886.68 (SEM) site 14. This site is similar to site 13, however there is also detrital zircon (3-4), and late diagenetic pyrite (12).

Figure 1-10.22: Sample O-47 1886.68 (SEM) site 15. This site is similar to site 14. The cement is made up of kaolinite (4). Titania (7) may be detrital. Suturing is common between quartz grains.

1:Muscovite 2:Quartz 3:Kaolinite 4:Fe-clay

Figure 1-10.23: Sample O-47 1886.68 (SEM) site 15.1. This site consists of a detrital muscovite (1) grain that is partly deformed and expanded along cleavage planes, allowing for a diagenetic mineral to form (probably ?siderite). Quartz (2) is the other detrital mineral present in this site. Kaolinite (3) makes up part of the cement.

2:Chlorite 5:Quartz 6:Kaolinite 7:Quartz 8:K-feldspar 9:Anhydrite + 10:Quartz 11:TiO₂ + 12:K-feldspar 13:Ilmenite 14:Illite + Chlorite 15:Muscovite

Figure 1-10.24: Sample O-47 1886.68 (SEM) site 16. This site is similar to site 12. The matrix is made up of illite + chlorite (14) and late diagenetic minerals such as pyrite (3). Anhydrite (9) appears to be cement.

1:TiO₂ 2:Quartz 3:Albite 4:K-feldspar 5:Ilmenite 6:Chlorite + 7:Quartz 8:Quartz 9:Fe-Clay? 10:Fe-Chlorite 11:Kaolinite

Figure 1-10.25: Sample O-47 1886.68 (SEM) site 17. This site consists of detrital quartz (2,7-8), K-feldspar (4), albite (3), ilmenite (5) and Fe-chlorite (10). The cement appears to be made up of an Fe-clay (9) and kaolinite (11).

Figure 1-10.26: Sample O-47 1886.68 (SEM) site 18. This site consists of detrital quartz (1,10-12), K-feldspar (2,5), chlorite (8), and titania (4) grains. There is a granitic lithic clast made up of albite (7) and K-feldspar (6). Pyrite (3) is the latest mineral to form.

1:Zircon 2:K-feldspar 3:Quartz 4:Quartz 5:Quartz 6:K-feldspar 7:Quartz 8:Fe-Clay 9:Quartz

Figure 1-10.27: Sample O-47 1886.68 (SEM) site 19. This site is similar to site 18. There is commonly suturing (positions a) and overgrowths (positions b) that occur in quartz grains. The cement consists of a Fe-rich clay (8). There is also late diagenetic frambodial pyrite grains (arrow).

1:Kaolinite

Figure 1-10.28: Sample O-47 1886.68 (SEM) site 19.1. This site consists of detrital grains with kaolinite (1) cement.

Figure 1-10.29: Sample O-47 1886.68 (SEM) site 20. This site is similar to site 19. Quartz commonly displays suturing (positions a) and overgrowths (positions b). Titania (2) and probably monazite (1) are diagenetic.

Figure 1-10.30: Sample O-47 1886.68 (SEM) site 21. This site consists of detrital quartz, K-feldspar, and ilmenite (3,5) grains. There is also an albitized K-feldspar (16) grain. The matrix is made up of illite + chlorite (6,14). Diagenetic titania (2,9) and pyrite (13) are the latest minerals to form.

1:Oligoclase 2:Kaolinite 3:K-feldspar 4:Quartz + Muscovite 5:K-feldspar 6:Quartz 7:Illite + Chlorite 8:Quartz 9:Illite + Chlorite 10:Quartz 11:Quartz 12:K-feldspar 13:K-feldspar 14:Quartz

Figure 1-10.31: Sample O-47 1886.68 (SEM) site 22. This site is similar to site 21.

Figure 1-10.32: Sample O-47 1886.68 (SEM) site 23. This site consists of detrital quartz (6-7,10,13), K-feldspar (4,11), muscovite (5), albite (9), and ilmenite (8). The matrix is made up of ?kaolinite + chlorite and diagenetic pyrite (1-3). Quartz overgrowths are common (positions b).

1:K-feldspar 2:Kaolinite + 3:Ilmenite 4:K-feldspar 5:Kaolinite $6:TiO_2$ + 7:Oligoclase 8:Illite + Chlorite 9:TiO_2 + 10:K-feldspar 11:Quartz 12:Quartz

Figure 1-10.33: Sample O-47 1886.68 (SEM) site 24. This site consists of detrital quartz (11-12), K-feldspar (1,4,10), ilmenite (3), oligoclase (7), and titania (9). The cement is made up of kaolinite (2,5), and the matrix is made up of illite + chlorite (8). Titania (6) appears as a veinlet cross-cutting kaolinite (5).

Figure 1-10.34: Sample O-47 1886.68 (SEM) site 25. This site consists of detrital quartz (3,5,9,15), K-feldspar (2), ilmenite with quartz inclusions (4), oligoclase (10), and chlorite + biotite (12). The matrix is made up of illite (8), and the cement is made up of kaolinite + chlorite (11,14) and kaolinite (6). Pyrite (1) and siderite (7) are the latest diagenetic minerals to form.

1:Quartz 2:K-feldspar 3:Ilmenite 4:Fe-Chlorite 5:K-feldspar 6:Quartz 7:Muscovite + Albite ? 8:Kaolinite + Chlorite 9:Kaolinite 10:TiO₂ + 11:Kaolinite + Chlorite 12:Quartz

Figure 1-10.35: Sample O-47 1886.68 (SEM) site 26. This site is similar to site 24 and 25. Kaolinite + chlorite (8,11) and kaolinite (9) make up the cement.

 SEM MAG: 917 x
 Date(m/d/y): 09/25/17
 Saint Mary's University

 Figure 1-10.36: Sample O-47 1886.68 (SEM) site 27. This site consists of detrital quartz (1,4,9,12,14-15), K-feldspar (11), muscovite (3,7), and chlorite + biotite (5). Chloritized biotite (5) appear to have expanded along cleavage planes allowing diagenetic siderite or pyrite to precipitate. Titania (6) appears to be diagenetic.

1:Quartz 2:Kaolinite 3:Muscovite 4:Quartz 5:Chlorite + Biotite 6:TiO₂ 7:Muscovite 8:Chlorite + 9:Quartz 10:Pyrite 11:K-feldspar 12:Quartz 13:Chlorite + 14:Quartz 15:Quartz

Figure 1-10.37: Sample O-47 1886.68 (SEM) site 28. This site consists of detrital quartz (2,11,13,15,17), K-feldspar (8), and ilmenite (3). The cement consists of Fe-chlorite (1), kaolinite (14).

Figure 1-10.38: Sample O-47 1886.68 (SEM) site 29. This site consists of detrital quartz (2,4,6,9,12,14-15), K-feldspar (3,10,13), ilmenite (5,7-8), and chromite (1). There is also diagenetic pyrite (11), and quartz overgrowths (positions b).

1:K-feldspar 2:Quartz 3:Chlorite

Figure 1-10.39: Sample O-47 1886.68 (SEM) site 29.1. This site consists of detrital quartz grains and a siltstone lithic clast made up of quartz (2), K-feldspar (1), and chlorite (3)

Figure 1-10.40: Sample O-47 1886.68 (SEM) site 30. This site consists of detrital quartz (2-3,7,11,14,16), K-feldspar (12), chlorite (9,15), and albite (7). The cement is made up of kaolinite (4,10, arrow), and chlorite (6,13).

Figure 1-10.41: Sample O-47 1886.68 (SEM) site 31. This site consists of detrital quartz, K-feldspar, muscovite (4), Fe-chlorite (3,14), and ilmenite (5). The cement is made up of chlorite (8), kaolinite (6), and late diagenetic pyrite (1-2,17).

Sample	Site	Position	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	F	CI	Sc2O3	Cr203	NiO	CuO	Y2O3	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	Gd2O3	Dy2O3	Er203	Yb2O3	HfO2	Total	Actual Total
O-47 1886.68	1	1 Qz	100.00																												100	119
O-47 1886.68	1	2 Kfs	66.04		17.80					0.41	15.74																				100	119
O-47 1886.68	1	3 Kln	47.39		35.71	1.81		0.40		0.40					0.29																86	94
0-47 1886.68	1	4 Ms	49.54	0.33	29.91	3.15		1.//		0.81	9.49																				95	110
0-47 1886.68	1	5 1102	1.43	97.13	0.59	0.85				0.72	15 20																				100	105
0.47 1000.00	1		66.19		17.01					0.72	15.30																				100	116
0-47 1886 68	1	8 Kfs	65.96		17.02					0.67	14 88											0.61									100	117
O-47 1886.68	1	9 Kfs	66.76		17.06	0.38		0.35		0.57	14.88											0.01									100	117
O-47 1886.68	1	10 Qz	100.00																												100	121
O-47 1886.68	1	11 Qz	100.00																												100	119
O-47 1886.68	1	12 Kln	46.02	0.33	32.68	4.34		1.18		0.58	0.66				0.21																86	98
O-47 1886.68	1	13 Qz	100.00																												100	123
0-47 1886.68	1	14 Qz	100.00																												100	121
0-47 1886.68	1	15 Xenotime-(Y)	9.27		10.00	4.00		0.00		0.00	44.00	35.97			0.00					43.15						1.52	3.72	3.31	3.07		100	121
0.47 1886.68	1	10 MIS	65.32	0.60	18.09	1.88		0.32	0.65	2.22	11.96		1.00		0.20																100	108
0-47 1886 69	1		49.01	0.06	29.36	3.05		3.05	0.05	0.51	8.45 8.27		1.29		0.17																95	100
0-47 1886 68	1	10 M/S	64.64		18.46	3.05		1.10		1 13	13.91											1 87									100	117
O-47 1886 68	1	20 07	100.00		10.40					1.10	10.01											1.07									100	121
O-47 1886.68	1	21 Chl +	39.69		19.23	25.56		11.40	0.56	1.33	1.68				0.55																100	90
O-47 1886.68	1.1	1 Kln	48.54		33.14	2.18		2.02			0.11																				86	79
O-47 1886.68	1.1	2 Kln	47.81		33.55	2.24		2.36			0.05																				86	83
O-47 1886.68	2	1 Kfs	66.45		17.84					0.87	14.84																				100	114
O-47 1886.68	2	2 Chl +	37.66	1.33	22.84	27.10	0.33	7.32	0.32	0.88	2.22																				100	96
O-47 1886.68	2	3 Chl	28.99		17.13	18.21		8.71	5.30	0.85	0.37	5.44																			85	97
O-47 1886.68	2	4 Qz	99.19		0.81																										100	118
0-47 1886.68	2	5 Sd	0.83			50.93	1.51		1.52			1.20																			56	60
0-47 1886.68	2	6 QZ	100.00	02.02	2.00	1 50			0.51	0.65		0.70			0.21																100	120
0-47 1886 68	2	8 Chl	26.51	92.02	22 33	22.86		13 30	0.51	0.65		0.76			0.31																85	90
O-47 1886 68	2	9 llm	5 40	56.30	1.57	33.89		0.49	0.52	0.43			1 12		0.28																100	103
O-47 1886.68	2	10 Sd	1.19		0.43	51.26	0.92		1.06			1.14			0.00																56	59
O-47 1886.68	2	11 Qz	100.00																												100	119
O-47 1886.68	2	12 Ms	47.55	0.51	31.15	4.50		1.42		0.32	9.55																				95	106
O-47 1886.68	2	13 TiO2 +	11.32	88.39		0.29																									100	108
0-47 1886.68	2	14 Qz	100.00		10.07																					<u> </u>					100	118
U-47 1886.68	2	15 Ab	69.19		18.86	05.55		0.00	0.39	11.56	0.07																				100	118
0.47 1886.68	2	16 Fe-Chi	27.11	0.00	22.27	25.58		9.82		0.45	0.22																				85	95
0-47 1886 69	2		48.38	0.82	0.84	1.0/		1.09		0.45	0.45		1 37						0.77												95	107
O-47 1886 68	3	2 Kfs	66.44		17 99	2.20				0.57	15.01		4.57						0.11												100	115
O-47 1886.68	3	3 Fe-Chl	29.26		22.17	28.29		4,44		0.48	0.37																				85	97
O-47 1886.68	3	4 Fe-Chl	26.15		22.50	29.02		7.33																							85	100
O-47 1886.68	3	5 Kfs	66.89		17.73					1.39	14.00																				100	115
O-47 1886.68	3	6 "llm"	32.61	64.63	1.08	1.68																									100	106
O-47 1886.68	3	7 Qz + Kfs	83.75	1.78	7.98	2.49		0.92	0.41		2.68																				100	113
O-47 1886.68	3	8 Ms	48.77		32.98	1.65		1.20			10.39																				95	108
0-47 1886.68	3	9 Qz	100.00		L																					L					100	119
U-47 1886.68	3	10 Qz	100.00		05.00	4.00																									100	120
0.47 1886.68	3	12 07	48.32		35.99	1.69																									100	96
0-47 1886 69	3	12 02	100.00																												100	119
0-47 1886 68	2	14 07	100.00																												100	122
			1 100.00	1	1																											

Sample	Site	Position	SiO2	Ti02	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	F	CI	Sc2O3	Cr203	NiO	CuO	Y203	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	Gd2O3	Dy203	Er203	Yb2O3	HfO2	Total	Actual Total
O-47 1886.68	4	1 Qz	100.00																												100	119
O-47 1886.68	4	2 Fe-Chl	30.63	1.87	18.00	24.42	0.38	7.77	0.81	0.77	0.36																				85	97
O-47 1886.68	4	3 Kfs	66.25		17.94					0.73	15.08																				100	117
0-47 1886.68	4	4 TiO2 +	1.35	97.00	0.63	1.02																									100	107
0-47 1886.68	4	5 Kts	66.40		17.65					0.70	15.95											0.75									100	118
0-47 1886.68	4		65.90		17.82					0.76	14.77											0.75									100	110
0-47 1886 68	4	7 QZ	100.00																												100	120
O-47 1886 68	4	9 07	100.00																												100	120
0-47 1886.68	4	10 Qz	100.00																												100	120
O-47 1886.68	4	11 Qz	99.80			0.20																									100	118
O-47 1886.68	4	12 Kfs + Py	51.08		16.92	9.86					9.85		12.29																		100	124
O-47 1886.68	4.1	1 Ms	44.16	0.33	31.54	1.61		0.46	2.82	0.80	8.59	0.86	3.84																		95	106
O-47 1886.68	4.1	2 Fe-Chl +	38.10	3.26	19.61	35.10		3.01		0.93																					100	96
0-47 1886.68	4.1	3 Kln +	53.99		37.40	5.80		0.43		0.56	0.20		0.81		0.81				L						<u> </u>	L					100	70
0-47 1886.68	4.1	4 Kfs	67.71		17.42	1.00				2.57	11.12		00.45		0.18				I												100	109
0.47 1886.68	4.1	5 Py	1.20		0.62	31.44				0.27			66.48						<u> </u>					-							100	204
0-47 1886.68	5	1 QZ	65.17		17.96					0.55	15 15											1 17									100	121
0-47 1886 68	5	2 NIS	36.95	1 47	23.00	25.03		11 /8	0.27	0.00	15.15											1.17									100	94
O-47 1886.68	5	4 Kfs	66.20	1.47	17.86	20.00		11.40	0.27	0.46	15.48																				100	117
0-47 1886.68	5	5 Kfs	66.29		17.85					0.46	15.40																				100	116
O-47 1886.68	5	6 Qz	99.58			0.42																									100	117
O-47 1886.68	5	7 Qz	100.00																												100	119
O-47 1886.68	5	8 Kfs	66.61		18.07						15.31																				100	114
O-47 1886.68	5	9 Ms +	53.23	0.31	33.99	2.20		1.64	0.93		6.34		1.19		0.17																100	102
0-47 1886.68	5	10 Kin	48.93		34.43	1.60		0.36		0.35					0.33																86	79
0-47 1886.68	5	11 "lim"	1.42	68.79	0.62	28.55		0.61	0.00	0.40	0.07	0.55	0.00																		100	95
0.47 1886.68	5	12 MIX	30.19	1.74	19.51	20.30		6.46	3.02	0.43	3.07	2.55	0.68																		100	110
0-47 1886 68	5	14 Kfs	66.65		17 62				4.55	0.90	14 96																				100	117
0-47 1886.68	5	15 Qz	100.00							0.11	1 1.00																				100	120
O-47 1886.68	5	16 "llm"	1.20	62.60	0.52	34.65		0.70							0.33																100	94
O-47 1886.68	5.1	1 Fe-Chl	36.64		17.40	26.54		3.15			1.28																				85	78
O-47 1886.68	5.1	2 Kln	46.86		32.92	5.13		0.88			0.22																				86	67
O-47 1886.68	5.1	3 Fe-Clay	41.51		27.26	27.35		2.89			1.00																				100	63
0-47 1886.68	6	1 Chl + Bt	41.79	3.06	20.35	19.52		9.75		0.63	4.89								L												100	103
0-47 1886.68	6	2 Kfs	66.08	04.00	18.07	0.00			0.45	0.64	15.21	0.00			0.01				I												100	115
0.47 1886.68	6	3 1102 +	1.45	91.06	1.91	3.63			0.42	0.49		0.82			0.21				<u> </u>												100	100
0-47 1886 69	6	4 QZ	100.00																												100	120
O-47 1886 68	6	6 Pv	0.70			32 01							67 20													-					100	188
0-47 1886,68	6	7 Chl + Bt	38.79	3.26	18.42	25.13		7.62	1.06	0.58	3.83	0.69	0.62																		100	100
O-47 1886.68	6	8 Qz	99.41		0.59						2.20	2.20																			100	119
O-47 1886.68	6	9 Kfs	66.44		17.75					1.18	14.63																				100	115
O-47 1886.68	6	10 Qz	100.00																												100	119
O-47 1886.68	6	11 Qz	100.00																												100	119
O-47 1886.68	6	12 Chl + III	54.75	1.21	29.97	9.08		1.04		0.65	2.65				0.65				L						L						100	83
0-47 1886.68	6	13 Kln	47.27		33.10	3.66		1.01		0.43	0.12				0.41				<u> </u>			4.50									86	84
0.47 1886.68		1 Kfs	65.31	0.05	18.04	0 77		0.40		1.49	13.58											1.59									100	117
0.47 1000.68		2 IVIS	47.92	0.85	34.95	20 04		0.48		1.92	8.11		70.95																		90	221
0-47 1886 68	7	4 Kfs	66 31		17 72	20.01				0.71	15 27		10.05																		100	116
O-47 1886.68	7	5 "llm"	2.80	60.54	2.13	32.38	0.42	1.26		0.47	.0.21																				100	92

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ш	CI	Sc2O3	Cr203	NiO	CuO	Y203	ZrO2	BaO	La203	Ce2O3	Nd2O3	Gd2O3	Dy2O3	Er203	Yb2O3	HfO2	Total	Actual Total
O-47 1886.68	7	6 Qz		100.00																												100	119
O-47 1886.68	7	7 Qz		100.00																												100	120
O-47 1886.68	7	8 Kln +		55.77		36.20	5.56		0.97		0.66	0.23				0.61																100	77
0-47 1886.68	7	9 Kfs		66.15		17.76					0.50	15.59																		⊢		100	116
0-47 1886.68		10 Ab		69.42		18.91				0.21	11.45																			\vdash	<u> </u>	100	114
0-47 1886.68	/	11 AD		69.09		19.00				0.41	11.50	45 44																		\vdash		100	120
0-47 1886.68	7	12 KIS		00.44		17.72	10.07		7.05	4 50	0.43	15.41	4.27																	⊢ →	<u> </u>	100	00
0-47 1000.00	7	13 Cni +		41.44		13.29	6.33		1.95	4.50	2.41	0.81	4.37	36.64																		100	108
O-47 1886 68	7	15 TiO2		0.60	99.06	13.20	0.33		1.00	13.00	2.41	0.01		50.04																		100	106
0-47 1886.68	7	16 Qz		100.00	00.00		0.04																									100	119
O-47 1886.68	8	1 Mix		34.80	1.60	20.05	25.52		8.54	2.69	0.81	1.79		4.20																		100	97
O-47 1886.68	8	2 Kfs		66.63		17.47						15.90																				100	116
O-47 1886.68	8	3 TiO2 +		1.20	93.39	1.38	2.24			0.70			0.78			0.31																100	100
O-47 1886.68	8	4 Py		0.22			28.80							70.99																		100	226
O-47 1886.68	8	5 Qz		99.79			0.21								<u> </u>															LЦ	μJ	100	123
O-47 1886.68	8	6 Kfs		66.14		18.13	0.59					15.14																		\vdash	ĻЦ	100	113
0-47 1886.68	8	7 Ms		47.89	0.48	35.25	0.92		0.58		1.45	8.42																		\vdash	$ \longrightarrow $	95	109
0-47 1886.68	8	8 Ab		69.38		19.03				0.35	11.24																			\vdash	<u> </u>	100	119
0-47 1886.68	8	9 QZ		99.74			0.25					0.01																		⊢ –		100	119
0-47 1886.68	8	10 QZ		100.00		25.02	1 50		0.54																					⊢	<u> </u>	100	122
0-47 1000.00	0	12 07		46.13		35.65	1.50		0.54																						$ \rightarrow$	100	110
0-47 1886 68	8	13 Pv		0.27			28.27	0.17						71 28																		100	230
0-47 1886 68	8	14 Pv		0.20			28.63	0.17						71.20																		100	228
O-47 1886.68	8	15 Kin		45.90		34.74	4.47		0.34		0.27					0.28																86	90
O-47 1886.68	9	1 Kln		49.24		33.61	1.68		0.54		0.39					0.54																86	85
O-47 1886.68	9	2 Kfs + Ab		68.03	0.28	17.18	0.97				5.85	7.68																				100	117
O-47 1886.68	9	3 Chl + Bt		41.71	2.13	18.47	19.39		12.35	0.25	0.66	5.05																				100	99
O-47 1886.68	9	4 Ab		69.89		18.60					11.51																					100	116
O-47 1886.68	9	5 Chl + Bt		40.01	1.53	18.87	25.49	0.34	8.23		0.64	4.89																		\square	\square	100	103
O-47 1886.68	9	6 Sd +		5.03		3.59	75.22	0.55		0.72	1.23	0.33	3.02	4.44		5.88																100	67
0-47 1886.68	9	7 lim		0.65	52.54	00.04	42.91	1.12	2.77		0.00																			⊢ →	\vdash	100	104
0-47 1886.68	9	8 Kin		47.99		36.61	1.13				0.28																			⊢ →		86	97
0-47 1000.00	9	10 Chloritize	d Me	50.86	0.36	26.97	9.54		1 97		0.32	0.07																				100	105
O-47 1886 68	a	11 07		99.80	0.50	20.37	0.20		1.57		0.52	3.31																				100	120
0-47 1886.68	9	12 Qz		99.26			0.31			0.44																					$ \rightarrow$	100	121
O-47 1886.68	9	13 Pv		0.26			28.65							71.09																		100	227
O-47 1886.68	9	14 Qz		100.00																												100	121
O-47 1886.68	9	15 Kfs		66.01		17.86					1.06	14.50											0.57									100	117
O-47 1886.68	9	16 Py		0.17			28.63							71.19																		100	226
O-47 1886.68	9	17 III + Chl +	-	53.92	2.54	22.62	9.47		4.09		0.61	6.56				0.18																100	100
O-47 1886.68	10	1 Qz		100.00																												100	121
0-47 1886.68	10	2 Kfs		66.47		17.80					0.38	15.35								L										⊢	\vdash	100	114
0-47 1886.68	10	3 Fe-Chl		30.15	1.12	15.98	26.97		6.95	0.65	0.46	1.81		0.70		0.22				I										\vdash	⊢−−┦	85	101
0.47 1886.68	10	4 QZ		99.70		17.00	0.30					15 40			-									-						┢──┤	\vdash	100	121
0.47 1000.68	10	5 KIS		47.69		17.90	1.61		0.52		0.40	10.46				0.24														┢━━┥	\vdash	86	110
0-47 1886 69	10	7 Kfe		66 10		17 60	1.01		0.52		0.40	2.07				0.34														┢──┤	<u> </u>	100	117
0-47 1886 68	10	8 Chl + Bt		39.97	2 54	22 48	23 45		6.30		0.50	4 04		0.52		0.19	-													<u> </u>	$ \rightarrow$	100	99
O-47 1886.68	10	9 Mix		51.15	6.68	16.79	14.33		1.84		1.67	6.28		0.55		0.70								1							$ \rightarrow$	100	91
O-47 1886.68	10	10 Qz		100.00	0.00		1					0.20		0.00		55															$ \neg $	100	120
O-47 1886.68	10	11 llm +		1.09	50.82	0.50	44.48	1.80	1.32																							100	102

Sample	Site	Position	SiO2	TiO2	AI2O3	FeO	MnO	OgM	CaO	Na2O	K20	P205	SO3	ц	CI	Sc2O3	Cr203	NiO	CuO	Y203	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	Gd2O3	Dy203	Er203	Yb2O3	HfO2	Total	Actual Total
O-47 1886.68	10	12 Qz	100.00)																											100	120
O-47 1886.68	10	13 Qz	99.80)		0.20																									100	121
O-47 1886.68	10.1	1 Fe-Clay +	52.81		24.81	19.40		2.40			0.58																				100	64
0-47 1886.68	11	1 Kfs	65.79	1	17.85					0.97	14.47											0.92									100	115
0-47 1886.68	11	2 Chl + Bt	37.18	2.08	19.04	27.51		8.21	0.39	0.63	3.84		0.85		0.26																100	99
0-47 1886.68	11	3 1102	0.58	99.02	00.07	0.39		4.50		0.57	40.44																				100	107
0-47 1886.68	11	4 MS	48.41	0.67	32.07	1.58		1.59		0.57	10.11				0.20																95	106
0-47 1000.00	11	5 KIII	47.04	0.97	17 78	0.88		0.43		0.64	1/ 07				0.39																100	90
0-47 1886 68	11	7 Ab	68.88		19.11	0.00			0.54	11.32	0.15																				100	117
O-47 1886.68	11	8 Bt	40.19	2.56	16.69	15.62		12.20	0.01	0.44	8.30																				96	106
O-47 1886.68	11	9 Kfs	66.26	;	17.66					0.37	15.71																				100	116
O-47 1886.68	11	10 Qz	100.00)																											100	118
O-47 1886.68	11	11 Ab	68.54		19.44				0.83	11.19																					100	115
O-47 1886.68	11	12 Qz	100.00)																											100	121
0-47 1886.68	11	13 Kln	47.90)	33.90	2.69		0.70		0.34					0.47																86	84
0-47 1886.68	11	14 Kfs	64.09		18.77	2.14			0.11	0.40	14.60		7.07		1.07																100	114
0-47 1886.68	11	15 S0 + Py	1.58	61.09	0.77	80.93	1.06		2.44	2.11			7.97		4.97																100	/1
0-47 1886 68	11	17 Pv	2.01	01.90	0.77	39.10	1.06			0.44			56 73		1 38																100	139
0-47 1886 68	11 1	1 Kin	47.63		36.31	1.56				0.44			50.75		0.21																86	93
0-47 1886.68	11.1	2 Kfs	66.20)	17.73					0.59	15.47				0.21																100	116
O-47 1886.68	11.1	3 "llm"	1.56	77.57	0.99	18.67	0.41			0.54					0.27																100	97
O-47 1886.68	11.1	4 Qz	100.00)																											100	120
O-47 1886.68	11.1	5 Qz	100.00)																											100	120
O-47 1886.68	12	1 Qz	100.00)																											100	118
O-47 1886.68	12	2 Kfs	64.92	2	18.52					1.10	13.89											1.57									100	116
0-47 1886.68	12	3 TiO2	2.09	95.51	1.25	1.15																									100	105
0-47 1886.68	12	4 1102 +	2.14	96.19	1.07	0.61	0.00	0.00																							100	104
0.47 1886.68	12	5 IIM	51.61	51.24	20 62	45.42	0.69	2.00			10.07																				100	105
0-47 1886 68	12	7 TiO2 +	2 15	90.52	20.02	2.62		2.40	0.68	0.39	10.07	1 1 1			0 54		0.53														100	91
0-47 1886 68	12	8 Kfs	66.30	00.04	17.91	2.02			0.00	0.33	15.08	1.11			0.54		0.55														100	115
O-47 1886.68	12	9 Fe-Chl	24.37		23.43	29.16	0.47	7.57		0.10	10.00																				85	98
O-47 1886.68	12	10 llm	0.54	54.38		42.54	0.60	1.94																							100	104
O-47 1886.68	12	11 TiO2	0.66	97.12	8	2.22																									100	107
O-47 1886.68	12	12 TiO2 +	3.74	93.51	1.05	1.05					0.66																				100	106
O-47 1886.68	12	13 Qz	100.00	1	L	L													L						L						100	121
0-47 1886.68	12	14 Py	0.95		0.66	36.09		4.07	0.40	2.42	4.05		59.03		0.44										<u> </u>						100	171
0.47 1886.68	12	15 Chloritized Ms	42.93	, ,	29.65	17.94	0.90	4.85	264	0.54	4.09	0.70							-												100	105
0.47 1000.68	13	2 102	0.47	09 70	<u> </u>	0.20	0.89		2.04			0.79												1							00 100	107
0-47 1886 68	13	3 Grt	40.74	. 30.19	21 18	24 48	0.71	4 94	7 95					-					+												100	114
O-47 1886 68	13	4 Chl + Bt	41.00	4 4 3	18 17	19 43	0.40	10.34	1.00	0.75	5 40								1						-	-					100	101
O-47 1886.68	13	5 Kfs	66.04		18.20	10.10	50	. 0.04		1.08	14.69								1												100	116
O-47 1886.68	13	6 "Ilm"	3.72	58.50	2.00	34.63	0.34	0.81																							100	92
O-47 1886.68	13	7 "Ilm"	33.17	66.18	0.39	0.26																									100	107
O-47 1886.68	13	8 Qz	100.00																												100	119
O-47 1886.68	13	9 Qz	100.00																												100	119
0-47 1886.68	13	10 TiO2	0.63	97.92		1.45																									100	105
0-47 1886.68	13	11 Qz	100.00	0	00 -					0.05	0 - 1				0.01																100	121
0.47 1886.68	13	12 Kin + Chi	54.18	0.73	33.79	4.42		5.14		0.65	0.72				0.36									-							100	84
0-47 1886.68	13	14 Mail Chi	100.00		25 50	E / 4		2.50	0.07	0.47	7.00	0.65	0.50																		100	120
0-4/ 1000.08	13	1411/15 + 011	0.07		123.38	5.44		2.50	0.07	0.47	1.92	0.05	0.50	L				L	L						1	L					100	109

Sample	Site	Position	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	Ŀ	ō	Sc2O3	Cr203	OiN	CuO	Y203	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	Gd2O3	Dy203	Er203	Yb2O3	HfO2	Total	Actual Total
O-47 1886.68	13	15 Qz	100.00																												100	119
O-47 1886.68	13.1	1 Kin +	54.20		35.58	8.73		1.01			0.48																				100	64
O-47 1886.68	13.1	2 Gly ?	55.09		17.67	24.58		1.09			1.57																				100	38
0-47 1886.68	13.1	3 Kin	48.73		29.30	3.90		1.17			2.91																				86	85
0-47 1886.68	14	1 Qz	100.00	E4 4E		AE 40	0.00	1 76																							100	120
0-47 1886.68	14	2 IIM 2 Zm	20.02	51.45	0.96	45.48	0.80	1.76	0.02							0.01					66 16										100	105
0-47 1886 68	14	4 Zm	31 20		0.00	0.00			0.93							0.91					67.43									1 38	100	121
O-47 1886.68	14	5 Chl	30.95		18.60	24.28		9.64		0.61	0.93										01.40									1.00	85	97
O-47 1886.68	14	6 Ab	67.23		20.43	0.22			1.53	10.44	0.14																				100	118
O-47 1886.68	14	7 Kln +	51.45		35.72	4.17		1.17		0.66	6.65				0.18																100	101
O-47 1886.68	14	8 Qz	100.00																												100	121
0-47 1886.68	14	9 Chloritized Ms	50.31	0.76	35.81	9.35		2.48		0.46	0.84																				100	92
0-47 1886.68	14	10 Qz	100.00	0.00	00.40	0.00		0.04		0.44	10.00																				100	121
0-47 1886.68	14	11 MS	47.87	0.29	32.18	3.36		0.64		0.44	10.23		70.07																		95	107
0-47 1886 68	14	12 Py 13 Ms ± Oz	65.49		24.69	20.00		1.01		0.81	6 55		70.97																		100	112
O-47 1886 68	14	14 Kin	47 17		33.69	3.55		1 19		0.01	0.55																				86	93
O-47 1886.68	15	1 Ab	69.02		19.08	0.00			0.45	11.35	0.10																				100	118
O-47 1886.68	15	2 TiO2	0.60	98.80		0.60																									100	107
O-47 1886.68	15	3 Qz	100.00																												100	120
O-47 1886.68	15	4 Kin	46.59		30.74	6.08		1.33		0.63	0.13				0.50																86	78
O-47 1886.68	15	5 Zrn	31.23																		68.77										100	119
0-47 1886.68	15	6 Zrn	32.67	00.00	0.00	0.07			0.40						0.00						67.33										100	107
0-47 1886.68	15	7 1102	1.02	96.86	0.68	0.67			0.46						0.32																100	94
0-47 1886 68	15	o QZ	00.001		17.80					0.54	15 57																				100	116
0-47 1886 68	15	10 Qz	96.62		2.50	0.57				0.54	0.31																				100	119
O-47 1886.68	15	11 Qz	100.00		2.00	0.07					0.01																				100	120
O-47 1886.68	15.1	1 Ms	47.93	0.82	33.47	1.39		0.96		0.51	9.92																				95	108
O-47 1886.68	15.1	2 Qz	100.00																												100	119
O-47 1886.68	15.1	3 Kin	45.59		33.28	5.64		1.04			0.16				0.29																86	90
O-47 1886.68	15.1	4 Fe-Clay	42.22		28.10	25.82		3.08			0.78																				100	68
0-47 1886.68	16	1 Qz	100.00	0.05	40.00	04.55		5.05	0.40	0.70	0.00				0.00																100	119
0-47 1886.68	16	2 Chi 2 By	31.56	2.35	18.28	24.55		5.95	0.42	0.70	0.83		70.90		0.36																85	225
0-47 1886 68	16	4 TiO2	0.32	94 17	1 1 1	20.08			0.45			0.75	0.58		0.10			1													100	94
O-47 1886.68	16	5 Qz	99.43	34.17	0.35	0.22			0.45			0.75	0.50		0.13																100	121
O-47 1886.68	16	6 Kln	48.63		36.60	0.58					0.20																				86	85
O-47 1886.68	16	7 Qz	100.00																												100	121
O-47 1886.68	16	8 Kfs	66.20		17.79					0.70	15.30																			-	100	116
O-47 1886.68	16	9 Anh +	6.01		3.66	2.01			33.31	0.46	0.22		54.33																		100	111
O-47 1886.68	16	10 Qz	100.00																												100	120
U-47 1886.68	16	11 1102 +	1.53	95.72	0.78	1.97					45.75																				100	82
0.47 1886.68	16	12 KIS	66.45	61 7F	17.80	45 50	0.72	1 20			15.75																				100	118
0-47 1886 68	16	14 III + Chl	51.03	0.31	28.46	45.59	0.72	2 11		0.64	1.68				0.36																100	86
0-47 1886.68	16	15 Ms	46.98	0.46	33.71	2.30		0.62		0.95	9.23		0.75		0.00																95	108
O-47 1886,68	17	1 TiO2	0.50	99.14	301	0.37		0.02		0.00	0.20		00					1													100	107
O-47 1886.68	17	2 Qz	100.00																												100	120
O-47 1886.68	17	3 Ab	69.88		18.59					11.53																					100	118
O-47 1886.68	17	4 Kfs	66.29		17.81					0.64	15.27																				100	116
O-47 1886.68	17	5 llm	0.57	46.21	0.56	46.44	0.59	5.64																							100	98
O-47 1886.68	17	6 Chl +	36.42	0.44	23.71	24.72		2.36		1.74	1.84		7.95		0.82																100	76

Sample	Site	Position Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	F	ū	Sc203	Cr203	NiO	CuO	Y203	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	Gd2O3	Dy203	Er203	Yb2O3	HfO2	Total	Actual Total
O-47 1886.68	17	7 Qz	100.00																												100	121
O-47 1886.68	17	8 Qz	97.89		1.46	0.48					0.17																				100	119
O-47 1886.68	17	9 Fe-Clay ?	42.29	0.33	22.41	28.93		2.53		0.81	0.64		1.30		0.76																100	71
0-47 1886.68	17	10 Fe-Chl	25.77		22.33	26.21		10.69																							85	94
0-47 1886.68	1/	11 Kin	48.99		32.63	2.61		0.67		0.48	0.22				0.40																86	121
0.47 1886.68	10	1 QZ	100.00		17 72					1 21	14.61																				100	121
0-47 1886 68	18	3 Pv	0.43		17.72	28 55				1.21	14.01		71 17																		100	224
O-47 1886.68	18	4 TiO2 +	1.42	90.82	1.57	5.47							1 1.17		0.27		0.46														100	96
O-47 1886.68	18	5 Kfs	65.88		17.86					0.36	15.41											0.49									100	116
O-47 1886.68	18	6 Kfs	66.26		17.71					0.31	15.71																				100	115
O-47 1886.68	18	7 Ab	69.35		18.74	0.51				11.27	0.12																				100	115
O-47 1886.68	18	8 Chl	31.78	0.46	16.93	17.26	0.26	12.67	2.07	0.85	0.29	1.52	0.89																		85	97
O-47 1886.68	18	9 Py	0.25			28.33							71.42																		100	228
0-47 1886.68	18	10 Qz	100.00																												100	119
0-47 1886.68	18	11 QZ	72.96		16.02	2.14		0.62		E 96	1.00				0.01																100	119
0-47 1886.68	10	12 QZ + Feld	72.80		16.03	3.14		0.62		5.80	1.28				0.21						68 66										100	97
O-47 1886 68	19	2 Kfs	65.97		17 98					0.53	15.52										00.00										100	116
O-47 1886.68	19	3 Qz	100.00							0.00	10.02																				100	120
O-47 1886.68	19	4 Qz	100.00																												100	121
O-47 1886.68	19	5 Qz	100.00																												100	119
O-47 1886.68	19	6 Kfs	66.15		17.86					0.58	15.41																				100	115
O-47 1886.68	19	7 Qz	100.00																												100	120
O-47 1886.68	19	8 Fe-Clay	46.25		32.03	18.56		1.76		0.56					0.84																100	65
O-47 1886.68	19	9 Qz	100.00																												100	120
0-47 1886.68	19.1	1 Kin	48.48		34.91	2.22		0.39			0.01	24.07		0.04									04 70	22.00	0.07						86	95
0-47 1886.68	20	1 Monazite-(Ce)	0.50	00.40								34.87		0.91									21.78	33.28	9.27						100	107
0-47 1886 68	20	3 07	100.00	99.40																											100	121
O-47 1886 68	20	4 07	100.00																												100	120
O-47 1886.68	20	5 Qz	100.00																												100	121
O-47 1886.68	20	6 Kfs	66.32		18.04					0.91	14.72																				100	115
O-47 1886.68	20	7 Qz	100.00																												100	120
O-47 1886.68	20	8 Qz	100.00																												100	120
O-47 1886.68	21	1 Qz	100.00																												100	120
0-47 1886.68	21	2 TiO2	0.97	98.57		0.46																			<u> </u>	<u> </u>					100	107
0-47 1886.68	21	3 "llm"	1.02	79.40	17.00	19.58				0.00	45.45								I												100	101
0.47 1886.68	21	4 KIS	66.26	50.00	17.66	45.00	0.54	1 50		0.63	15.45								<u> </u>												100	117
0-47 1886.68	21		52.66	0.42	31.02	45.03	0.54	1.53		0.60	1 02				0.78				<u> </u>												100	77
0-47 1886 68	21	7 Kfs + Δh	68.17	0.42	18 22	0.40		2.00		7 10	6.02				0.70				<u> </u>	1											100	116
O-47 1886 68	21	8 07	100.00		10.22	0.43				7.10	0.02																				100	119
O-47 1886.68	21	9 TiO2	0.46	98.84		0.71																									100	108
O-47 1886.68	21	10 Qz	100.00	20.04		01																									100	119
O-47 1886.68	21	11 Qz	100.00																												100	121
O-47 1886.68	21	12 Qz	100.00																												100	121
O-47 1886.68	21	13 Py	0.95		0.54	34.58							63.09		0.83																100	162
O-47 1886.68	21	14 III + Chl	47.59	0.50	27.23	19.06		2.62		0.66	1.21				1.12																100	76
O-47 1886.68	21	15 Kfs	66.78		17.85					2.26	13.10																				100	116
0-47 1886.68	21	16 Kfs + Ab	67.21		18.19				0.57	4.65	9.95																				100	118
U-47 1886.68	22	1 Uligo	66.67		20.73	0.74			2.22	10.28	0.09																				100	11/
0-47 1886.68	22		43.74		34.32	0.74				6.4/	0.74																				86	109
U-4/ 1886.68	22	JINIS	66.39		17.89					0.89	14.83														1	1					100	115

Table 1-10.1: EDS geochemical analyses of sample O-47 1886.6	38.
--	-----

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	Ч	G	Sc2O3	Cr203	NiO	CuO	Y203	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	Gd2O3	Dy203	Er203	Yb2O3	HfO2	Total	Actual Total
O-47 1886.68	22	4	Qz + Ms	79.50		13.76	0.82		1.37			4.56																				100	109
O-47 1886.68	22	5	Kfs	66.40		17.65						15.95																				100	116
0-47 1886.68	22	6	Qz	100.00					1.00																							100	121
0-47 1886.68	22	7	III + Chl	46.49		32.17	17.88		1.62		0.57					1.28																100	53
0-47 1886.68	22	8	QZ	100.00	0.40	00.70	40.00		0.40		0.70	0.00		0.75		0.07																100	120
0.47 1000.00	22	10		100.00	0.42	20.79	12.29		2.49		0.79	2.20		0.75		0.97																100	120
0-47 1886 68	22	11	07	100.00																												100	120
O-47 1886.68	22	12	Kfs	65.79		18.14	0.55				0.64	14.88																				100	116
O-47 1886.68	22	13	Kfs	64.83		18.42					1.02	14.00											1.74									100	115
O-47 1886.68	22	14	Qz	100.00																												100	121
O-47 1886.68	23	1	Py	0.23			28.68							71.09																		100	223
O-47 1886.68	23	2	Ру	0.25			29.01							70.74																		100	224
O-47 1886.68	23	3	Py				28.91							71.09																		100	226
0-47 1886.68	23	4	Kfs	65.61	0.70	18.15	0.47		4.07		1.00	14.58											0.67									100	117
0-47 1886.68	23	5		48.44	0.79	31.68	2.17		1.27		0.62	10.04																				95	109
0-47 1886 68	23	7	07	100.00																												100	110
O-47 1886 68	23	8	llm?	0.81	48 73	3.09	38.37	0.72	8.05							0.22																100	79
O-47 1886.68	23	9	Ab	69.46	10.10	19.00	00.07	0.72	0.00		11.55					0.22																100	117
O-47 1886.68	23	10	Qz	100.00																												100	120
O-47 1886.68	23	11	Kfs	66.39		17.80					0.87	14.94																				100	115
O-47 1886.68	23	12	?Kln + Chl	37.79	0.64	25.83	30.25		3.29		0.64	0.53				1.04																100	66
O-47 1886.68	23	13	Qz	100.00																												100	120
O-47 1886.68	24	1	Kfs	66.32		17.77					0.71	15.20																				100	116
0-47 1886.68	24	2	Kln +	53.01		36.74	1.97		0.86		3.23	4.19																				100	103
0-47 1886.68	24	3	lim Kfo	65.01	51.90	10 10	44.68	0.72	2.70		1.00	14 12											1.64									100	105
0-47 1886.68	24	4	KIS	46.67	0.46	18.13	1 75		0.20		1.09	14.13											1.64									100	07
0-47 1886 68	24	6	TiO2 +	7 01	86.00	4 70	1.75		0.50			1 28																				100	105
O-47 1886.68	24	7	Oligo	64.70	00.00	22.13				3.96	8.87	0.33																				100	111
O-47 1886.68	24	8	III + Chl	50.99	1.76	34.44	9.50		1.28		0.44	0.95				0.64																100	73
O-47 1886.68	24	9	TiO2 +	1.29	92.14	2.47	1.71			0.74			1.01			0.64																100	80
O-47 1886.68	24	10	Kfs	66.67		17.59					1.15	14.59																				100	117
O-47 1886.68	24	11	Qz	98.02		1.60						0.38																				100	117
O-47 1886.68	24	12	Qz	100.00																												100	120
0.47 1886.68	25	1	Py Kfo	GE AF		10.00	28.51				0.33	14 50	-	/1.17				-					0.74	-								100	224
0.47 1000.68	25	2		00.45		18.23					1.10	14.50									1		0.71									100	115
0-47 1886 68	25	3	$lm + \Omega z$	18.65	65 38	10.29	2 08		0.53		1 20	0.52				0.21			-		1							-				100	100
O-47 1886.68	25	5	Qz	99.62	0.38	10.44	2.30		0.00		1.23	0.52				0.21				1												100	118
O-47 1886.68	25	6	Kln	47.09	2.00	35.04	2.92		0.57		0.38									1												86	95
O-47 1886.68	25	7	Sd	0.68	1		54.93	0.39												1												56	59
O-47 1886.68	25	8	III	50.72		27.76	3.00		1.92		0.77	5.58		_		0.26																90	97
O-47 1886.68	25	9	Qz	100.00																												100	119
O-47 1886.68	25	10	Oligo	64.40		22.33				3.99	9.18	0.10								<u> </u>												100	115
0-47 1886.68	25	11	Kln + Chl	54.03		36.03	6.56		1.11		0.94	0.19		L		1.14				<u> </u>							L					100	75
0-47 1886.68	25	12	Chi + Bt	40.36	3.20	18.29	22.82	0.31	8.75		0.83	5.43																				100	99
0.47 1886.68	25	13	UZ Klast Chlst	100.00		25.75	10.07		1 0 0		0.57	1.10	-			0.65																100	119
0-47 1886 69	25	14		49.98		35.75	10.07		1.82		0.57	1.16				0.05																100	03 110
0-47 1886 68	25	10	07	100.00															-		1											100	120
0-47 1886.68	26	2	Kfs	66.21		17.83					0.60	15.36								1												100	114
O-47 1886.68	26	3	llm	0.65	54.31		41.78	0.95	2.32																							100	102

Sample	Site	Position	Mineral	SiO2	ТіО2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K20	P205	SO3	F	C	Sc2O3	Cr203	NiO	CuO	Y2O3	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	Gd2O3	Dy2O3	Er2O3	Yb2O3	HfO2	Total	Actual Total
O-47 1886.68	26	4	Fe-Chl	24.70		23.26	28.59		8.45																							85	96
O-47 1886.68	26	5	Kfs	66.42		17.83					1.37	14.37																				100	115
0-47 1886.68	26	6	Qz	100.00																												100	119
0-47 1886.68	26	/	Ms + Ab ?	58.25		29.47	0.48		0.37		4.16	1.21																				100	111
0-47 1886.68	26	8	Kin + Chi	45.17		30.55	20.34		2.00		0.51	0.29				1.14																100	55
0-47 1886.68	26	9	KIN Tion	48.43	00.04	33.50	1.87		0.58		0.35	0.95				0.25																86	85
0-47 1886.68	20	10	HOZ +	0.48	1 22	3.80	2.88		1 20		0.72	0.56				0.21																100	103
0-47 1886 68	20	12		40.02	1.22	30.13	14.21		1.29		0.72	3.40				0.21																100	90
0-47 1886 68	20	1	07	100.00																												100	117
0-47 1886 68	27	2	Kin	47 47		36.37	1 10				0.37			0.48		0.21																86	92
0-47 1886.68	27	3	Ms	47.24	0.46	34.07	1.35		0.75		0.71	9.66		0.76		0.2.																95	109
O-47 1886.68	27	4	Qz	100.00																												100	120
O-47 1886.68	27	5	Chl + Bt	40.06	0.95	26.85	22.69		3.78	1.12	0.57	2.32	1.37			0.30																100	87
O-47 1886.68	27	6	TiO2	0.46	99.54																											100	106
O-47 1886.68	27	7	Ms	46.02		29.36	6.94		2.07	0.55	0.41	8.45		1.21																		95	103
O-47 1886.68	27	8	Chl +	29.19		16.81	22.13	0.31	5.01	8.65	1.27			16.20		0.43																100	89
O-47 1886.68	27	9	Qz	100.00																												100	118
O-47 1886.68	27	10	Ру	0.83		0.25	29.57				0.30	0.14		68.91																		100	203
O-47 1886.68	27	11	Kfs	66.09		17.83					0.51	15.57																				100	115
O-47 1886.68	27	12	Qz	98.89		1.11																										100	117
0-47 1886.68	27	13	Chl +	44.29		15.16	13.59		22.99	0.23	1.85			1.08		0.82																100	79
0-47 1886.68	27	14	Qz	100.00																												100	120
0-47 1886.68	27	15	Qz	100.00		40.47	07.05		0.00		1.05	0.00				0.04																100	120
0-47 1886.68	28	1	Fe-Chi	33.44		18.47	27.65		3.08		1.05	0.68				0.64																85	110
0.47 1000.00	20	2	QZ IIm	100.00	52.57		42.27	0.72	2 14																							100	105
0-47 1886 68	20	- 3	Pv	0.49	52.57		28 35	0.72	3.44	0.15	0.60			70.41																		100	211
0-47 1886 68	20	5	07	100.00			20.55			0.15	0.00			70.41																		100	118
0-47 1886 68	28	6	Kfs + Ab	67.69		18 68				0.40	6.55	6.68																				100	116
O-47 1886.68	28	7	Kfs + Ab	67.92		17.97	0.46			0.10	5.89	7.76																				100	119
O-47 1886.68	28	8	Kfs	66.14		17.88					0.43	15.55																				100	116
O-47 1886.68	28	9	Chl + III	48.70	0.63	31.85	12.25		1.63		0.91	0.70		2.57		0.76																100	68
O-47 1886.68	28	10	TiO2	0.58	99.05		0.37																									100	106
O-47 1886.68	28	11	Qz +	76.88	1.66	14.55	1.03		1.10			4.79																				100	118
O-47 1886.68	28	12	Kfs + Ab	60.13	1.02	16.37	4.06		0.46		3.01	8.36										6.59										100	105
O-47 1886.68	28	13	Qz	99.80			0.20																									100	120
0-47 1886.68	28	14	Kin	45.33	0.32	31.98	5.27		1.62		0.34	0.93				0.21																86	87
0-47 1886.68	28	15	Qz	96.98		2.48	0.55																									100	121
0-47 1886.68	28	16	Mix	66.00	0.29	20.88	3.62		2.06		0.38	6.53				0.25																100	104
0.47 1886.68	28	17	QZ Chr	100.00	0.00	20.70	05.44	0.00	16.00									25 44		I												100	105
0.47 1000.00	29	2		100.00	0.00	20.76	25.11	0.00	10.39									35.44														100	103
0 47 1996 69	29	2	QZ Kfc	66.16		17 92					0.42	15 50																				100	114
0-47 1886 68	20	4	07	100.00		17.02					0.45	15.55																				100	118
0-47 1886.68	29	5	"llm"	33.01	66.72		0.27													1												100	113
Q-47 1886.68	29	6	Qz	99.77	0.23		0.21																									100	117
O-47 1886.68	29	7	llm	1.28	51.50	0.41	37.93	1.84	7.04																							100	102
O-47 1886.68	29	8	llm		53.48		44.11	0.59	1.81																							100	103
O-47 1886.68	29	9	Qz	100.00																												100	119
O-47 1886.68	29	10	Kfs	66.22		17.68						16.10																				100	115
O-47 1886.68	29	11	Py	0.29		0.46	30.90				0.61			67.74																		100	208
O-47 1886.68	29	12	Qz	100.00																												100	119
O-47 1886.68	29	13	Kfs	66.38		17.68					0.40	15.53																				100	114

Table 1-10.1: EDS	geochemical	analyses of	sample O-47	1886.68.

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ш	ū	Sc2O3	Cr203	NiO	CuO	Y203	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	Gd2O3	Dy2O3	Er203	Yb2O3	Hf02	Total	Actual Total
O-47 1886.68	29	14	Qz	99.57		0.43																										100	118
O-47 1886.68	29	15	Qz	100.00																												100	118
O-47 1886.68	29.1	1	Kfs	65.40		18.08					0.36	14.92											1.24									100	115
O-47 1886.68	29.1	2	Qz	99.30		0.70																										100	118
O-47 1886.68	29.1	3	Chl	31.50		17.64	10.44		25.11		0.31																					85	98
O-47 1886.68	30	1	Kfs + Ab	67.99		18.04					5.17	8.80																				100	117
O-47 1886.68	30	2	Qz	100.00																												100	120
O-47 1886.68	30	3	Qz	100.00																												100	119
O-47 1886.68	30	4	Kln	47.21		34.92	2.53		0.59		0.43					0.33																86	84
O-47 1886.68	30	5	Ab	69.71		18.59	0.27				11.44																					100	117
O-47 1886.68	30	6	Chl	35.98		21.12	10.10	0.45	16.26		0.61					0.47																85	87
O-47 1886.68	30	7	Qz	99.48		0.52																										100	120
O-47 1886.68	30	8	Qz +	76.23	0.25	13.78	3.30		1.22	0.77	0.32	3.56	0.58																			100	113
O-47 1886.68	30	9	Chl	35.40		22.36	18.01		6.04	1.33	0.56	0.21	1.10																			85	92
O-47 1886.68	30	10	Kln	48.78		34.06	1.81		0.37		0.44					0.54																86	74
O-47 1886.68	30	11	Qz	100.00																												100	118
O-47 1886.68	30	12	Kfs	65.61		17.80					0.62	15.07											0.90									100	115
O-47 1886.68	30	13	Chl	37.24	6.55	25.78	12.42		1.60		0.71					0.71																85	73
O-47 1886.68	30	14	Qz	99.72			0.28																									100	120
O-47 1886.68	30	15	Chl	31.85		18.38	24.74		8.89	0.27	0.53					0.34																85	87
O-47 1886.68	30	16	Qz	100.00																												100	121
O-47 1886.68	30	17	TiO2 +	1.31	96.33	0.46	1.71					0.19																				100	106
O-47 1886.68	30	18	Qz +	88.81		6.67	2.49		0.89			1.13																				100	116
O-47 1886.68	31	1	Py	0.20			28.45							71.35																		100	223
O-47 1886.68	31	2	Py	0.26			28.63							71.11																		100	222
O-47 1886.68	31	3	Fe-Chl +	36.96	1.74	21.19	29.71	0.29	8.43	0.55	0.63	0.20				0.30																100	91
O-47 1886.68	31	4	Ms +	49.78	1.45	35.78	1.61		0.79		0.98	9.61																				100	106
O-47 1886.68	31	5	llm		56.10		41.38	0.74	1.78																							100	103
O-47 1886.68	31	6	Kln	48.48		34.56	1.86		0.63							0.47																86	87
O-47 1886.68	31	7	Qz	100.00																												100	121
O-47 1886.68	31	8	Chl +	38.70		23.56	12.66		8.62	7.61	0.67		7.05			1.13															1	100	81
O-47 1886.68	31	9	Qz	100.00																												100	120
O-47 1886.68	31	10	Qz	100.00																												100	118
O-47 1886.68	31	11	Kfs	66.31		17.59					0.30	15.81																				100	114
O-47 1886.68	31	12	Qz	100.00																												100	118
O-47 1886.68	31	13	Qz	100.00														-							-							100	118

Sample	Site	Position	Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P205	SO3	ш	ū	Sc2O3	Cr203	OiN	CuO	Y203	ZrO2	BaO	La2O3	Ce2O3	Nd2O3	Gd2O3	Dy203	Er203	Yb2O3	HfO2	Total	Actual Total
O-47 1886.68	31	14	Fe-Chl	24.88		22.11	29.27	0.25	8.50																							85	97
O-47 1886.68	31	15	Qz	100.00																												100	120
O-47 1886.68	31	16	Qz + Chl	94.61		2.93	1.68		0.42			0.36																				100	120
O-47 1886.68	31	17	Py	0.43			28.64							70.92																		100	226
										Notes																							
										1. + inc	licates	more t	nan on	e miner	al pre	sent																	
										2. " " in	dicates	s altere	d grain																				
										3. Gly I	efers to	o the m	ixture	glaucor	iy																		

Table 1-10.1: EDS geochemical analyses of sample O-47 1886.68.

Appendix 2-1: Whole rock analysis of selected mudstone samples.

Sample	1A-A41 1616.39a	1A-A41 1616.39b	1A-A41 1620.49	1A-A41 1623.34	3H-58 1618.73	3H-58 1804.26	3H-58 1994.66a	3H-58 1994.66b	3H-58 1996.11	3H-58 1998.03	3H-58 1999.72	3H-58 2001.33	5H-58 1469.12	5H-58 1903.66	5H-58 1905.15	E-48 2246.46	E-48 2249.39	O-47 1890.17	
SiO ₂	24.72	25.5	48.05	61.24	69.19	80.52	53.78	52.35	54.75	81.26	49.43	56.48	76.39	90.58	56.91	84.36	84.18	53.26	
AI_2O_3	9.38	10.12	19.6	15.44	5.85	7.62	19.22	22.55	20.73	8.24	19.94	3.79	5.36	3.91	19.65	5.87	4.98	20.8	
Fe ₂ O _{3(T)}	2.87	2.91	5.14	5.64	12.11	4.03	7.6	7.74	7.61	2.99	9.52	8.71	7.35	1.04	5.14	1.69	5.08	8.34	
MnO	0.052	0.051	0.02	0.033	0.123	0.024	0.058	0.066	0.063	0.023	0.048	0.301	0.151	0.012	0.035	0.022	0.025	0.032	
MgO	0.8	0.81	0.97	0.93	0.87	0.44	1.4	1.49	1.45	0.49	1.38	0.96	0.58	0.1	1.11	0.26	0.63	1.44	
CaO	30.67	29.74	5.26	0.91	0.97	0.15	0.25	0.27	0.27	0.23	0.2	12.81	0.43	0.2	0.2	1.04	0.31	0.26	
Na ₂ O	0.45	0.43	0.69	0.68	0.67	0.63	0.77	0.85	0.79	0.81	0.75	0.53	0.49	0.38	0.75	0.7	0.7	0.84	
K ₂ O	1.45	1.5	1.86	2.16	1.56	2.12	2.57	2.63	2.56	1.62	2.22	1.38	1.46	1.86	2.35	1.72	1.41	2.25	
TiO ₂	0.413	0.41	0.935	1.003	0.477	0.887	1.054	1.163	1.119	1.063	1.107	0.424	0.744	0.326	1.35	0.465	0.431	1.315	
P_2O_5	0.2	0.18	0.12	0.08	0.11	0.03	0.05	0.05	0.05	0.03	0.05	0.04	0.03		0.09	0.05	0.03	0.11	
LOI	27.76	27.06	16.41	10.89	7.17	3.84	12.09	11.09	11.08	3.15	14.32	15.07	5.54	1.02	11.29	2.64	2.61	11.8	
Total	98.77	98.73	99.05	99.01	99.1	100.3	98.85	100.3	100.5	99.9	98.97	100.5	98.53	99.43	98.88	98.82	100.4	100.4	
Analyte Symbol	Analysis Method	1A-A41 1616.39a	1A-A41 1616.39b	1A-A41 1620.49	1A-A41 1623.34	3H-58 1618.73	3H-58 1804.26	3H-58 1994.66a	3H-58 1994.66b	3H-58 1996.11	3H-58 1998.03	3H-58 1999.72	3H-58 2001.33	5H-58 1469.12	5H-58 1903.66	5H-58 1905.15	E-48 2246.46	E-48 2249.39	O-47 1890.17
Sc	FUS-ICP	9	9	17	15	11	8	21	22	21	8	20	8	8	2	21	4	4	22
Be	FUS-ICP	2	2	3	2	1	2	3	3	3	1	3	1	1		3			4
V	FUS-ICP	72	76	131	114	173	55	157	162	150	56	165	92	44	16	157	38	43	174
Cr	FUS-MS	70	70	140	150	140	190	160	160	160	150	160	110	150	100	150	190	250	150
Co	FUS-MS	8	9	16	18	17	10	28	25	26	12	34	12	8	2	34	6	7	26
Ni	FUS-MS	40	40	60	60	30	20	90	80	80	30	90	30			100		30	80
Cu	FUS-MS	20	20	20	20	10	10	30	30	30	10	30		10	10	30	10		30
Zn	FUS-MS	50	60	90	90	50	50	90	90	90	50	90	30	40		110	50	40	90
Ga	FUS-MS	11	12	21	18	8	10	24	26	25	9	23	5	5	4	24	5	5	25
Ge	FUS-MS	0.9	1	1.7	1.2	1	1	1.1	1.3	1.1	1.2	1.3	0.7	0.8	0.8	0.7	0.7	0.8	1.2
As	FUS-MS			8		18	6	6	12	7	12	80				13		8	7
Rb	FUS-MS	75	77	90	94	52	69	137	143	133	56	127	41	47	44	117	42	37	116
Sr	FUS-ICP	760	724	371	133	116	97	135	157	142	68	115	436	72	100	123	112	65	138
Y	FUS-MS	18.6	17.9	28.2	31.4	28.9	27.2	30.6	31.7	29.9	30.3	29.5	19	26.8	6.8	41	11.6	9.1	38.2
Zr	FUS-ICP	91	89	159	302	356	736	228	212	216	508	229	129	672	127	268	177	284	240
Nb	FUS-MS	7.8	8.1	15.7	16.8	6.3	11.6	19.1	19.4	18.5	15.6	20.9	8	10.4	5.6	25.6	11.2	10	25.2
Mo	FUS-MS					4										9			
Ag	FUS-MS				0.7	0.8	2				1.3	0.5		1.7		0.6		0.8	0.6
In	FUS-MS				0.1				0.1			0.1				0.1			
Sn	FUS-MS		2	2	2	1		3	3	3	2	2				3			3
Sb	FUS-MS					0.3			0.3										
Cs	FUS-MS	4.6	4.9	5.5	5.4	1.6	2.1	8.3	8.6	8	2.1	7.8	0.8	1.4	0.6	6.8	0.7	0.5	7.3
Ba	FUS-ICP	169	178	299	326	379	536	387	398	388	358	351	341	692	2538	379	2844	551	360
La	FUS-MS	22.3	22.1	46.2	43.3	44.2	38.7	51.3	53.6	50.5	30.3	50.7	28.7	24.4	9.68	63.8	18.6	13.6	58.3
4 ^{Ce}	FUS-MS	52.5	51.8	102	94.3	104	86.2	105	109	103	65.2	105	71.1	52	19.6	136	37.7	32.2	122
ω _{Pr}	FUS-MS	5.49	5.38	11.4	10.6	11.8	9.88	12	12.4	11.9	7.43	11.7	7.56	5.96	2.18	15.4	4.38	3.21	13.9
Nd	FUS-MS	19.9	20.2	40.4	38	43	35.5	43	44.1	42.4	26.8	42.1	27.1	21.7	7.67	56.8	15.3	11.1	51.5

Analyte Symbol	Analysis Method	1A-A41 1616.39a	1A-A41 1616.39b	1A-A41 1620.49	1A-A41 1623.34	3H-58 1618.73	3H-58 1804.26	3H-58 1994.66a	3H-58 1994.66b	3H-58 1996.11	3H-58 1998.03	3H-58 1999.72	3H-58 2001.33	5H-58 1469.12	5H-58 1903.66	5H-58 1905.15	E-48 2246.46	E-48 2249.39	O-47 1890.17
Sm	FUS-MS	4.35	3.98	7.65	7.25	8.71	6.78	8.08	8.27	8.03	5.3	7.65	5.19	4.21	1.48	10.7	3.03	1.91	9.75
Eu	FUS-MS	0.881	0.853	1.63	1.55	1.83	1.32	1.7	1.72	1.68	1.09	1.61	1.1	0.863	0.328	2.38	0.749	0.437	2.09
Gd	FUS-MS	3.61	3.41	5.95	6.15	7.22	5.34	6.45	6.57	6.17	4.74	6.08	4.14	3.88	1.24	9.01	2.35	1.43	8.08
Tb	FUS-MS	0.61	0.57	1.01	1.05	1.11	0.87	1.05	1.07	1.04	0.89	0.99	0.67	0.74	0.21	1.53	0.4	0.27	1.37
Dy	FUS-MS	3.52	3.32	5.81	6.36	6.07	5.12	6.11	6.44	6.06	5.52	5.98	4.05	4.54	1.22	8.62	2.3	1.65	7.8
Ho	FUS-MS	0.66	0.64	1.09	1.19	1.13	0.97	1.19	1.24	1.16	1.11	1.13	0.76	0.93	0.25	1.63	0.46	0.35	1.47
Er	FUS-MS	1.93	1.86	3.26	3.46	3.24	3.05	3.46	3.65	3.56	3.36	3.32	2.17	2.82	0.79	4.71	1.39	1.09	4.2
Tm	FUS-MS	0.269	0.269	0.452	0.501	0.479	0.45	0.524	0.52	0.48	0.504	0.478	0.314	0.433	0.115	0.67	0.204	0.169	0.604
Yb	FUS-MS	1.85	1.74	2.92	3.32	3.05	2.99	3.56	3.35	3.39	3.43	3.33	1.98	2.95	0.76	4.22	1.35	1.17	3.8
Lu	FUS-MS	0.282	0.267	0.449	0.533	0.48	0.489	0.524	0.548	0.505	0.554	0.507	0.294	0.471	0.122	0.64	0.219	0.189	0.581
Hf	FUS-MS	2.2	2.2	3.7	6.7	7.7	16.1	5.6	4.9	4.9	10.9	5.1	2.7	13.9	2.9	6.3	4	6.3	5.4
Та	FUS-MS	0.63	0.62	1.25	1.32	0.57	0.98	1.46	1.48	1.41	1.35	1.45	0.55	0.96	0.5	1.96	0.98	0.78	1.83
W	FUS-MS	1.8	1.1	9.9	1.5	3.9	2.3	3.7	4.1	1.7	3.8	2.6		0.9	2.2	3.1		0.8	1.2
TI	FUS-MS	0.17	0.18	0.26	0.32			0.42	0.46	0.4		0.36				0.41			0.38
Pb	FUS-MS	9	10	10	11	17	13	15	20	18	13	12	13	9	12	20	20	9	18
Bi	FUS-MS					0.1													
Th	FUS-MS	7.13	7.31	12.4	11.9	10.4	8.68	14.1	14.8	13.8	8.58	14.9	6.08	7.32	2.45	15.4	4.19	4.67	14.2
U	FUS-MS	2.12	2.07	2.89	2.64	1.5	2.77	2.87	2.96	2.91	2.63	2.98	0.71	2.37	0.81	3.85	1.29	1.07	3.28

Appendix 3: X-ray maps of analyzed glaucony / glauconite.

Appendix 3-1: BSE images of analyzed glaucony / glauconite sites.

Figure 3-1.1: BSE image of analyzed glaucony / glauconite of Figure 5.1.9A.

Figure 3-1.2: BSE image of analyzed glaucony / glauconite of Figure 5.1.9B.

Figure 3-1.3: BSE image of analyzed glaucony / glauconite of Figure 5.1.9C.

Figure 3-1.4: BSE image of analyzed glaucony / glauconite of Figure 5.1.9D.

Figure 3-1.5: BSE image of analyzed glaucony / glauconite of Figure 5.1.9E.

Appendix 3-2: X-ray maps of glaucony / glauconite.

Figure 3-2.1: Peak area X-ray map for site 21.2 sample 3H-58 1613.63.

Figure 3-2.1.1: Normalized weight % oxide X-ray map for site 21.2 sample 3H-58 1613.63.

Figure 3-2.2: Compound % X-ray map for site 22.3 sample 3H-58 1613.63.

Figure 3-2.2.1: Peak area X-ray map for site 22.3 sample 3H-58 1613.63.

Figure 3-2.3: Zoomout of X-ray map location in site 4 sample 5H-58 1906.89.

Figure 3-2.3.1: Peak area X-ray map for site 4 sample 5H-58 1903.89.

Figure 3-2.3.2: Compound % X-ray map for site 4 sample 5H-58 1903.89.

Figure 3-2.4: Zoomout of X-ray map location in site 4 sample 5H-58 1906.89.

Figure 3-2.4.1: Normalized weight % oxide X-ray map for site 4 sample 5H-58 1903.89.

Figure 3-2.4.2: Peak area X-ray map for site 4 sample 5H-58 1903.89.

Figure 3-2.5: Zoomout of X-ray map location in site 14 sample 5H-58 1906.89.

Figure 3-2.5.1: Peak area X-ray map for site 14 sample 5H-58 1906.89.

Figure 3-2.5.2: Normalized weight % oxide X-ray map for site 14 sample 5H-58 1903.89.