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Marine Debris on the Coast of Southwest Nova Scotia: An Analysis

by Jacob LeBlanc

Abstract

This thesis analyzes the levels of marine debris on the coastline of Southwest Nova
Scotia and draws possible conclusions for the observed degree of pollution. The
plentiful stocks of lobster, scallop, herring, and other marine life in the Atlantic waters
surrounding Nova Scotia have led to the creation of multiple commercial fisheries in
the Atlantic Canadian region; in addition to the Indigenous fishery that has existed
predating Canadian federation. This research sought to identify explanatory variables
that could be used to explain the variances in debris levels at different beach sites. It
was found that factors relating to the commercial fishing industry may not be as
relevant to determining the debris levels as one may think.
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1: Introduction

According to the United States’ National Ocean Service, “Marine debris is defined as

any persistent solid material that is manufactured or processed and directly or

indirectly, intentionally or unintentionally, disposed of or abandoned into the marine

environment or the Great Lakes.” (US Department of Commerce, 2008). A review

written by Murray Gregory on the implications of plastic debris in marine settings

noted that prior to the 1950s, most fishing-related textiles such as rope were composed

of natural materials that would quickly biodegrade if lost at sea (Gregory, 2009). Over

the past ~70 years these materials have been replaced by more durable synthetics

including nylon, which will not break down after being left in the ocean for long

periods of time. This has implications related to ocean life, as Gregory stated there

have been numerous sightings of whales travelling with large entanglements of rope

and other debris attached to them (Gregory, 2009).

There has not been much literature published on the subject of marine debris on the

coast of Southwest Nova Scotia. However, if one were to seek out similar research

that has been conducted, Goodman et al. described a study that took place in the Bay

of Fundy where underwater marine debris levels were monitored throughout the bay

(Goodman et al., 2020). Goodman et al. holds relevance to this study, as at least two

of this study’s sites were located on the bay, with the rest of them being positioned

directly south of it. This study differs from Goodman et al. in the sense that it was

conducted with the purpose of measuring the debris levels on the coast.

The study of marine debris and its effects is important to any area that borders

waterways, especially the ocean. As outlined by Marin et al. in Regional Studies in

Marine Science, while the improper disposal of various types of debris leads to

5



environmental concerns, it can also lead to issues related to social and public health

(2019). This includes but is not limited to disease dissemination, transport of chemical

toxins, dispersal of invasive species and loss of biodiversity (Marin et al., 2019).

These factors can pose threats to fishing industries in any area, as their catches can be

threatened by these factors. As postulated by Antonelis et al. debris such as lost or

discarded traps were observed to have a 46% mortality rate for crustaceans that

became trapped within these remains (2011); in an economic sense, the fishing

industry can expect to see greater losses in their catches as the amounts of debris

increase in their fishing areas. This can be seen as an important matter for the fishing

industry, due to there being just over $700 million in landed catches that were

recorded in 2019 by the Department of Fisheries and Oceans in the Southwest region

of Nova Scotia alone.

In this thesis we will first take a look at some of the previous literature related to the

study of marine debris, and the possible related economic implications. We will then

examine the data collection process, as well as the data itself. This will lead into the

analysis of the data, and the model that was determined to be the best descriptor of the

dependent variables. In examining the data, it will be observed that there is a strong

correlation between the average individual income in the survey areas, and the DFO

district ID that they are located in. Possible reasons for this will be discussed further in

subsequent sections. We will then take a look at the findings and discuss possible

reasons for the conclusions that were drawn; we will be sure to note the need for

additional work in this area for the results to be more concrete.
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2: Literature

Due to the uniqueness of this research question, there is not a plethora of literature to

draw ideas from, therefore information was drawn from studies that shared similarities

to the work that was being done for this paper. The main concern was to find work

that had analyzed the economic impacts of marine debris, as well as the possible

adverse effects of pollution that could be observed in the fishing industry.

Antonelis et al.

An article published to the North American Journal of Fisheries Management by

Antonelis et al. was able to quantify some of the losses that come as a result of ‘ghost

fishing’ crab traps off the coast of Washington State (2011). The study measured 24

simulated lost traps and found a 46% mortality rate for those crabs that became

trapped; this translated to them making an estimate based off the number of traps that

were lost every year, which equaled a crab loss of about 4.5% of recent harvests

(Antonelis et al., 2011).

Goodman et al.

It is important to mention the Goodman et al. research that was conducted, due to the

proximity of their research sites to the ones visited in this study. “Benthic marine

debris in the Bay of Fundy, eastern Canada: Spatial distribution and categorization

using seafloor video footage” by Goodman et al. was published in 2010 to the Marine

Pollution Bulletin.

Goodman et al. recognized that marine debris worldwide is mainly composed of

single-use plastics, but in areas with high levels of commercial fishing activity, it is

likely that discarded fishing equipment makes up a large portion of the debris levels
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(2020). As previously mentioned, these pieces of debris pose entanglement risks to

local marine life.

The study measured the levels of marine debris in the benthic zone (the bottom) of the

Bay of Fundy, using a camera system that recorded the seafloor in order to count the

amount of debris that was present (Goodman et al., 2020). A total of 281 seafloor

video stations were observed over the course of the study (Goodman et al., 2020). The

mean estimated area of seafloor that was viewed by the stations is 0.342km² with an

estimated density of 137 pieces of debris per km² (Goodman et al., 2020). The

findings were that 51% of the debris was plastic, while 28% was fishing gear and the

other 21% was other human-made objects (Goodman et al., 2020).

Overall, it was determined that the observed fishing gear was not causing any

incidences of ghost fishing (entrapping marine life), but the issue was still a possibility

(Goodman et al., 2020). Goodman et al. recognized the mixed perceptions that fishers

have on their environmental impacts when gear is discarded or lost, and they noted

that perhaps better education on the subject would be a solution to the issue (2020).

Gregory

Murray R. Gregory published his review “Environmental Implications of Plastic

Debris in Marine Settings—Entanglement, Ingestion, Smothering, Hangers-On,

Hitch-Hiking and Alien Invasions” to the journal Philosophical Transactions:

Biological Sciences, in 2009.

In the review, Gregory states “Many marine animals (sea turtles, mammals, seabirds,

fish and crustaceans) are either drawn to or accidentally entangled in netting, rope and

monofilament lines that have their sources in discards and losses from commercial

fishing activities.” (2009). Gregory continued on to discuss masses of rope which
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were seen attached to whales swimming off the coast of New Zealand, which included

lobster traps in more than one instance, as well as buoys with marker flags (Gregory,

2009). This is especially relevant for the Lobster Fishing Area 34, due to the high

volume of lobster fishing that is conducted throughout the season. It is estimated that

5 to 10 percent of lobster traps are lost annually during the Maine lobster fishing

season (Canfield, 2009); assuming similar gear is used in Nova Scotia, one could

expect comparable percentages of lost traps.

While the Gregory review focused mainly on the biological significance of these ghost

traps, such as the possibility for invasive species to be introduced in areas from debris

that ‘hitchhiked’ along with migrating marine species (Gregory, 2009), it was

important to understand the effects that these larger pieces of debris can have on the

environment that they are discarded in.

Marin et al.

The Marin et al. study was included in this research partly due to the recognition of

economic activities that can be associated with the presence of marine debris in

certain areas. “Marine Debris and Pollution Indexes on the Beaches of Santa Catarina

State, Brazil” was published to Regional Studies in Marine Science (2019). One of the

main goals of the study was to determine the overall effectiveness of various indexes

that measure the effects of marine debris and beach cleanliness (Marin et al., 2019).

It was shown in the study that plastic was the most common type of debris, but

polystyrene foam was also very regularly being observed at beach sites, the authors

attributed these counts to the civil construction sector and the fishing activity, which

are both prevalent economic activities in the area (Marin et al., 2019). It was also

observed that beaches near ports were shown to accumulate more plastic pellets than
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those that were further away from ports, depending on the type of beach that was

being observed (Marin et al., 2019).

Newman et al.

“The Economics of Marine Litter” by Newman et al., addresses some of the same

issues observed in the previous studies but they take a more economic approach in

their analysis. They recognize that the fishing industry is commonly viewed as a

source of marine debris, but that the industry faces its own economic problems related

to the debris (Newman et al., 2015). These costs can include but are not limited to: the

need to repair or replace equipment that has been damaged or lost due to contact with

marine debris, damage to vessels when debris becomes entangled in propellers or

intake pipes, as well as a loss of earnings that is associated with catches that are

contaminated due to ingestion of plastics or other debris (Neman et al., 2015).

Newman’s study helps outline why it is not only important for those in the fishing

industry to realize the impacts of their debris, but also the effects that it may have on

their own livelihoods. As previously mentioned, Newman et al. address the problem

of ghost fishing and the problem with the increasingly durable materials used in the

gear, causing it to remain intact for much longer periods of time than in the past

(2015).

Widmer and Hennemann

The goal of Widmer and Hennemann’s study (2010) was to test several hypotheses;

including currents and wind can affect the levels of debris, plastic would be the most

prevalent debris, there would be around 10% biological colonization of the debris, and

there would be a negative correlation between the amount of debris found and the

number of observed ghost crab burrows.
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Data was collected from 5 beaches, from random sites measuring 100m² on the east

coast of the island of Santa Catarina in Brazil (Widmer and Hennemann, 2010). It was

decided that the supralittoral area (near the sand dunes) of the beaches would be the

area surveyed due to the belief that debris is more likely to collect in these zones

(Widmer and Hennemann, 2010). The results showed an average of 102 items per

100m², with plastic being the most significant type of debris (Widmer and

Hennemann, 2010). It was hypothesized that the absence of many glass objects, such

as bottles was due to the value that they hold when returned to recycling plants

(Widmer and Hennemann, 2010).

The conclusion recognizes the value of this data for beach management, and the

problems associated with the emerging economy in Brazil, where the debris levels will

likely continue to increase (Widmer and Hennemann, 2010). The evidence gathered

supports the theory that states the supralittoral zones of beaches are a common area for

debris to gather. This may contribute to damage of coastal vegetation, which could

then lead to increased coastal erosion (Widmer and Hennemann, 2010).

3: Data Collection, Data, and Empirical Methodology

This section outlines the methods used in the data collection, as well as the data itself,

and the statistical methods that were used to evaluate the data set.

3.1: Data Collection

The method for data collection was discussed extensively prior to commencing the

field work, which began with the selection of research sites. Google Earth was used to

select the sites that would be examined (see Figure 2), and the accessibility and safety
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concerns of each site were discussed before the list was finalized. A total of twenty

sites were selected, with each to have subsites ‘A’ and ‘B’. Wanting to work similarly

to the Widmer and Hennemann study, it was decided that each subsite would measure

50m in a straight line, with 1m of area on each side. The distance at each subsite was

measured using a laser rangefinder to ensure accuracy.
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Figure 1. Map showing the research area within the borders of the rectangle.
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Figure 2. Geolocations of each research site.
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Table 1. Legend for Figure 1.

Sites Label on Map

Bear Cove A

Belliveau’s Cove B

Blanche Cove C

Brighton Area D

Cameron’s Cove E

Cape Forchu F

Crow Neck G

Gulliver’s Cove H

Kelleys Cove Area I

Little Brook J

Pembroke Cove K

Pinkney’s Point Area L

Pubnico Windmills M

Salmon River N

Sandford O

Strickland Cove P

The Hawk Q

Wedgeport R

Whale Cove S

Once the sites were determined, a list for data collection was created that can be seen

in Figure 3. It was determined to be important that fishing equipment and

fishing-related textiles (ex. rope) would be given their own categories due to the

prevalence of the fishing industry in the area. In total, fourteen debris categories were

chosen (plastic, metal, glass, timber, paper, cigarette butts, textile, styrofoam, organic
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debris, marine species, fishing equipment, unknown, rubber, and fishing-related

textiles) in order to maintain some similarity with Widmer and Hennemann. Aside

from the debris categories, metrics were taken in order to measure the location as well

as weather that would be considered relevant to the research. The categories were the

coordinates of each site (taken from each end of the site), date, time, wind speed,

temperature, direction when facing the ocean, significant weather (whether or not the

site experienced wind gusts 60km/h or greater within the previous three days), and the

high and low tides for that day.

Figure 3. Checklist used to record data at each site visit.

Upon arrival at the sites, two subsites were randomly selected near the “supralittoral

zones” (Widmer and Hennemann, 2010), which are commonly known as the dunes

separating the coast and the mainland. Typically, four sites per week were visited

during the summer study period, and all data was recorded on-site. For the winter

study period, there was a much stricter time constraint placed on the data collection to
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ensure ample time would be available to analyze the data; the sites were divided into

Northern, Southern, and Western zones, and were counted over a period of three days

using the exact same method as the summer study.

Table 2. Sample of descriptive data collected at each site.
Site Belliveau's

Cove
Belliveau's
Cove

Pembroke
Cove

Pembroke
Cove

Sub-Site A B A B

Latitude 1 44º 23' 18'' 44º 23' 14'' 43º 53' 28'' 43º 53' 23''

Longitude 1 66º 03' 46'' 66º 03' 49'' 66º 09' 38'' 66º 09' 37''

Wind 14N 15N 11SW 11SW

Temperature 17º 18º 19º 19º

Coastline 300º 1º 262º 295º

Significant
Weather

1 1 0 0

3.2: Data

This section covers a breakdown of the debris counts, as well as the other data used in

the analysis. The data used aside from the marine debris counts, was drawn from two

sources: The Department of Fisheries and Oceans, and Statistics Canada.

3.2.1 Debris Data

For the breakdown of the debris counts, it is important to note that the summer count

included two more locations (four extra sites) due to them being inaccessible during

the winter count. Therefore when looking at the charts, place greater emphasis on the

percentages rather than the totals.
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Figure 4. Breakdown of the summer debris totals.
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Figure 5. Breakdown of the winter debris totals.
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It can be observed that fishing textile is the most observed type of debris in the winter,

while plastic is the most observed type of debris in the summer. Fishing textile was

mainly rope. It should be noted that the Whale Cove site saw counts nearly four times

larger than the next highest total from any of the other sites. Compared to Marin et al.,

the counts of plastic were proportionally much lower (17% and 34% to Marin et al.’s

69% of total debris counted); this could be due to the increased presence of fishing

materials in these counts, although Marin et al. do mention a fishing industry in the

area where their counts were conducted in 2019.

3.2.2 Fishery data

DFO was able to provide a statistical map that outlined the different district

boundaries in the Maritime Region, as well as spreadsheets that broke down the

landed quantities of catches in the different districts, along with their values in

Canadian dollars. The spreadsheets also included the vessel counts from each district,

and were comprehensive from 2015 to 2019.

Table 3. DFO-provided data.
Year District

ID
Vessel
Count

Sum of Landed
Quantity (kg)

Sum of Landed
Value (CAD$)

2015 31 192 23,466,258 108,057,143

32 390 13,462,369 162,135,665

33 321 33,813,636 140,903,164

34 273 39,349,681 102,241,096

36 136 5,439,683 36,600,964

37 116 2,668,147 34,537,654

38 144 13,302,275 57,449,352

2016 31 187 21,324,405 102,547,121

32 419 12,373,542 150,822,782
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33 317 30,619,804 131,008,670

34 268 39,585,361 86,132,226

36 143 6,936,416 41,036,588

37 129 3,137,619 35,804,234

38 155 13,288,651 55,639,459

2017 31 199 21,008,335 101,169,733

32 412 11,167,830 153,374,641

33 328 32,044,767 140,686,839

34 261 31,499,845 97,672,386

36 145 7,529,163 40,225,938

37 123 2,591,106 33,163,660

38 144 13,200,751 57,064,715

2018 31 192 21,341,677 116,312,185

32 420 9,053,886 131,637,702

33 341 30,605,358 139,367,180

34 286 31,091,713 106,399,765

36 140 9,407,045 37,312,034

37 124 2,287,443 30,473,052

38 140 12,002,678 56,860,985

2019 31 211 30,888,609 122,930,724

32 448 9,641,032 156,604,341

33 375 32,765,959 172,365,936

34 304 26,623,927 121,243,511

36 149 5,093,033 38,875,544

37 142 2,419,359 33,552,387

38 154 12,510,132 53,047,329
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Table 3 lists the data that was provided by DFO, which was used in the analysis.

Figures 6 & 7 show two separate charts that illustrate the changes between 2015 and

2019 of the vessel counts and catch quantities by district, respectively. It can be

observed in figure 6 that the trend lines for vessel counts in districts 31 & 34 are

growing, while that in district 38 is stagnant. When viewing the catch amounts in

figure 7, both districts 34 & 38 are seen to be diminishing, while district 31 continues

to grow.

Figure 6. Chart showing the changes over time in the amount of registered vessels
in districts 31, 34 & 38.

22



Figure 7. Chart showing the changes over time in the reported catch numbers in
districts 31, 34 & 38.

3.2.3 Population Data & Summary Statistics

As for the Statistics Canada data, we drew the population and average individual

income data from the 2016 Census for each of the Census subdivisions that had a data

collection site in them, as well as the next closest Census subdivision to the site.

Below we can see two tables: one showing the summary statistics for the independent

variables, and one showing a correlation matrix between the variables.

The list of variables is as follows:

● income: the average individual income from the 2016 Census, for the Census

subdivision in which the side is located, in Canadian dollars

● income2: the average individual income from the 2016 Census, for the second

closest Census subdivision to the site’s location, in Canadian dollars
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● catch: the 2019 quantity of landed catches from the DFO district that the site is

located in, in kilograms

● pop: the population from the 2016 Census of the Census subdivision that the

site is located in

● prox: the proximity from the site locations to the nearest wharf in kilometres

● vessels: the number of vessels that were registered in each one of the DFO

districts

● ID: the DFO district ID

Table 4: Summary statistics for the data.
Statistic N Mean Std. Dev. Min Max

income 35 37,922 3,011 33,363 42,496

income2 35 35,157 3,620 30,700 42,496

catch 35 19,953,180 10,657,385 5,093,033 32,765,959

pop 35 8,108 1,231 6,646 9,845

prox 35 3.1 2.7 0.1 10.9

vessels 35 270 102 149 448

*note, ID was not included in this table due to the districts being arbitrarily numbered.
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Table 5: Correlation matrix for the independent variables.
income income2 catch pop prox vessels ID

income 1.000 0.575 0.382 -0.282 -0.434 0.632 -0.952

income2 0.575 1.000 0.288 -0.373 -0.231 0.497 -0.632

catch 0.382 0.288 1.000 0.313 -0.092 0.384 -0.567

pop -0.282 -0.373 0.313 1.000 -0.313 0.080 0.147

prox -0.434 -0.231 -0.092 -0.313 1.000 -0.476 0.477

vessels 0.632 0.497 0.384 0.080 -0.476 1.000 -0.649

ID -0.952 -0.632 -0.567 0.147 0.477 -0.649 1.000

Take note of the -0.952 correlation between income and district ID. It is hypothesized

that this correlation comes from the connection between the decreasing district ID

numbers as they move further south, and the various geographic factors that this

involves. These factors include closer proximity to more prosperous fishing grounds

such as George’s Bank as we move further south, as well as greater distance from the

abnormally large tidal fluctuations that are observed in the Bay of Fundy.

4: Analysis & Results

Analysis of the data began with plotting the different independent variables against the

dependent variables, in single variable regressions. Once variables of interest were

identified, their data was included in the multivariate regressions discussed in this

section.  Initially, a dummy variable was used to create a single set consisting of the

summer and winter totals, but it was deemed ineffective due to repeating values for

the Census variables.
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4.1: Summer Data

In preliminary analysis, the variables of interest that were identified included

proximity to wharf, vessel count, and income, which has been found to strongly

correlate to district ID. These variables were plotted against the debris totals, and the

charts are visible in the following 3 figures (figures 8, 9, & 10). The intuition behind

the selection of these 3 variables was that they would be suitable indicators of the

amounts of commercial fishing activity that was taking place near the sites.

Figure 8. Plotting proximity to the nearest wharf against the summer debris
totals.

Despite the low R² observed in Figure 8, proximity to wharf is the only variable from

these 3 figures that makes it into the adjusted model. This is due to the value that was

identified in the variable being used as a proxy for the distance from the Bay of

Fundy, reinforcing the previous findings in this thesis.
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Figure 9. Plotting the vessel count against the summer debris totals.

Figure 10. Plotting average individual income against the summer debris totals.

When viewing the previous figures, it is important to note that the low R² values can

be associated with the small size of the data set. If the population were larger, it may

have been easier for these variables to explain the variances observed in the debris

totals from the coastal sites.
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The data was analyzed using R Software (Version 4.0.3), where a model was

constructed with the six variables that seemed to be of the greatest importance based

on the single variable plots, and the main hypothesis of this paper. The model was

then refined to find the two variables with the greatest statistical significance. Only the

adjusted models will be shown, as it was deemed unnecessary to display the

six-variable models due to them being overfitted for such a small data set.

Before looking at the results of the regressions it should be mentioned that while the

model was able to describe the summer data set to an extent, it was not nearly as

effective when examining the winter data. These results will be shown after the results

of the summer regressions, and possible conclusions will be discussed in Section 5.

Table 6. The adjusted summer model.
Adjusted Model Dependent Variable: Summer Total

Constants:

prox -4.5747***

ID 6.8215***

Constant -187.0456***

N 35

R² 0.3253

Adjusted R² 0.2831

Residual Std. Error 20.3858 (df = 32)

F Statistic 7.7125*** (df = 2; 32)

Note: *p<0.1; **p<0.05; ***p<0.01

It was observed that district ID and proximity to the nearest wharf were the two

variables with the greatest statistical significance (p-values less than 0.01). It is shown
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that as the sites become closer to a wharf the debris totals increase, and as the district

ID lowers (moves further south) the debris count decreases.

A Variance Inflation Factor test was run, which did not detect multicollinearity due to

VIF values below 5. White’s Test for heteroskedasticity did not detect signs of

heteroskedasticity due to the calculated p-value being greater than 0.05, which led to

the rejection of the null hypothesis that heteroskedasticity exists within the model. It is

important to remember that these tests are not to be taken with absolute certainty, due

to the small population size.

4.2: Winter Data

As previously mentioned, the independent variables were far less capable of

describing the variances in the winter totals. Therefore, this section will be much

shorter than the section on the summer data.

Table 6. The adjusted winter model.
Adjusted Model Dependent Variable: Summer Total

Constants:

prox -2.6036

ID 8.7898**

Constant -253.8428**

N 31

R² 0.1674

Adjusted R² 0.1079

Residual Std. Error 37.0243 (df = 28)

F Statistic 2.8151* (df = 2; 28)

Note: *p<0.1; **p<0.05; ***p<0.01
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Taking a look at the table above, we can see that proximity remained statistically

insignificant, and income is only significant at the p-value less than 0.1 level. Taking a

look at the R² and the adjusted R² values, we see that this model is not a good fit. It

was unnecessary to run the tests for multicollinearity and heteroskedasticity in this

case, as we already conclude that the model is ineffective at describing the winter

data.

The main hypotheses behind proximity and district ID being the two most statistically

significant variables are as follows; for proximity, it is believed that the proximity to

wharves plays a larger role in the summer due to the increase in leisure boating

activity that is associated with the season. While there is obviously fishing-related

activity taking place at these wharves year-round, there is an increase in activity

during the summer of these wharves being used for recreational purposes. As for the

district ID, it is believed that this variable acts as a proxy for open ocean compared to

the more enclosed areas near, or within the Bay of Fundy, where they are subject to

large tidal fluctuations. These areas within the Bay are also further away from fishing

areas that are generally seen as more desirable, such as George’s Bank which is further

south.

5: Conclusions and Future Possibilities

This thesis sought to find an explanation for the variances observed in the amounts of

debris that were found on the shores of Lobster Fishing Area 34 in Southwest Nova

Scotia; keeping this goal in mind, we examined data from two different time periods

in order to determine whether or not we could find explanatory power stemming from

data that was collected from various sources including DFO and Statistics Canada. An

attempt was made to unify the data from the two different seasons using a dummy

variable, but it was found to be less effective than keeping the two sets separate; this
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perhaps could have been due to the poor explanatory power that the independent

variables have over the winter set, or it could stem from the values repeating in the

Census data when the dummy is integrated.

One of the reasons that was hypothesized for why the summer counts could be

explained by proximity is due to the increase in boating activity and general beach

activity that is associated with the season, however this is simply anecdotal. Further

data such as a list of boating associations and registered pleasure crafts in the area

would be needed to perform such an analysis.

Unexpectedly, the DFO-provided data such as the vessel counts and landed quantities

did not prove to be strong predictors of the debris counts. One important relationship

that was noted in the data, was the strong negative correlation between district ID and

income. This means that as we move further south (district ID numbers decreasing),

the income increases. It is also worth mentioning that this comes with increasing

vessel counts as we move closer to more prosperous fishing grounds (such as

George’s Bank), and further away from the abnormally large tides that are observed in

the Bay of Fundy. It is our belief that the district ID variable from the regressions acts

as a proxy for the aforementioned theories.

Due to the hypothesis of this thesis regarding the fishing industry, some data that was

collected at the sites was not used in the regressions due to it being unrelated. This

opens up the possibility for future studies to take a closer look at some of these

variables for which data was collected. It was discussed that the tides, direction of the

coastline, wind speed and direction, and significant weather within the days preceding

the data collection could all be significant factors in explaining the observed amounts

of debris.
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Dr. Raymond and I have discussed our desire to continue this study in the future, in

order to collect a more comprehensive set of data that can be used to further our

understanding in this area. This thesis will be shared with the Department of Fisheries

and Oceans in hopes of receiving further support in our endeavours.
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6: Appendix

Image 1. Lobster traps observed at one of the data collection sites.

Image 2. Various debris types including plastic, rope, and timber.
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Image 3. An entanglement of fishing gear, rope and other types of debris.
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