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Ocean-air N2O trace gas fluxes in Halifax Harbour derived from Open-Path FTIR measurements 

 

By Martin Hellmich 

 

Abstract 

Open-Path Fourier Transform Infrared (OP-FTIR) spectroscopy is an established technique 

for path-average measurements of atmospheric trace gas concentrations. We describe the novel 

application of OP-FTIR to measure ocean-air gas fluxes across 586 m of Halifax Harbour 

(northwest Atlantic coast), also using a 3-D sonic anemometer and two vertically separated 

retroreflector arrays. We present spectroscopic retrievals of nitrous oxide (N2O) concentration, 

micrometeorological data characteristics, and flux-gradient method calculations of ocean-air N2O 

flux. From Dec. 2020 to Apr. 2021 the calculated ocean sink of −10.81 kgN2Oha−1 agreed broadly 

with a global model of thermal (solubility-driven) N2O flux. A powerful short-term ocean source 

event observed on Dec. 15-17 (+2.00 kgN2Oha−1) correlated with high winds and strong ocean 

cooling that plausibly caused surface overturning and the upwelling of N2O-rich deeper waters. 

The method presented is well suited to high frequency monitoring of coastal N2O fluxes, necessary 

to resolve complex physical, chemical and biological processes. 
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1. Introduction 

1.1. N2O and the environment 

1.1.1. N2O emissions and climate change  

Due to an increasing concentration of greenhouse gases (GHG’s) the earth has been in 

radiative imbalance, with global heat content increasing since 1970 (Allen et al., 2014). Present 

day concentrations of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are greater 

than the past 800,000 years of measurements based on ice cores analysis (Allen et al., 2014). 

Atmospheric GHG and trace gas composition is influenced by biological, anthropogenic and 

physical mechanisms. People cause emissions through industrial, agricultural and transportation 

activities. Changes in atmospheric composition and global heat content affect biogeochemical 

cycles. Our understanding of the feedbacks between climate and biogeochemical cycles has large 

uncertainties, driven both by a lack of observations and by incomplete process knowledge. More 

local measurements can uncover detailed mechanisms that give us a better understanding of the 

interconnection between systems.  

N2O is the third most potent greenhouse gas but has not been studied as thoroughly as CO2 

and CH4.  N2O is a long-lived greenhouse gas emitted by human activities such as fertilizer use 

and fossil fuel burning as well as natural process in soils and oceans. N2O only accounts for around 

0.03 per cent of total GHG emissions by concentration (IPCC, 2007). Given its lifetime and 

radiative efficiency the global warming potential of N2O is 300 times that of CO2 (IPCC, 2007). 

The impact of individual GHGs on global warming can be expressed in CO2 equivalents, which is 

when N2O accounts for approximately 10 per cent of total emissions (Bates et al., 2008). The 

atmospheric lifetime of N2O is 114 years with the main sink being stratospheric processes.  

The ocean and coastal ecosystems are thought to play an important role in global budgets of 

atmospheric N2O. The magnitude of surface to air emissions are estimated at 18 Tg N2O yr-1 with 

a large uncertainty of 8-31 Tg N2O yr-1
, of which 4 [2-9] Tg N2O yr-1 is from the ocean (IPCC, 

2013). Approximately 62% of total global N2O emissions are emitted from natural and agricultural 

soils (Thomson et al., 2012). A third of N2O emissions comes from the ocean via nitrification and 

denitrification (Bange et al., 2010), making the ocean the second largest source of N2O. In the 

ocean N2O is involved in many biological, chemical and physical interactions which affect its flux 

to and from the atmosphere. These complex interactions make N2O transfer hard to predict and 

lead to uncertainties in climate models. Regular emissions monitoring in a variety of environments 
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around the world could improve predictions of global budgets when measurements are 

incorporated into models. This work explores a new measurement technique that could increase 

the accessibility of emission monitoring in coastal areas. 

Oceanic N2O emissions affect and are affected by various biogenic cycles. For example, N2O 

production in the ocean depends on microbial decay of organic matter which depends on oxygen 

content. High N2O productive regions are associated with low oxygen waters, and these regions 

have been expanding over the last 50 years (Arévalo-Martínez et al., 2019). This will have an 

impact on the production of N2O, and the resulting effect on N2O emissions should be monitored. 

How oceanic N2O emissions will evolve is unclear since mechanisms such as denitrification are 

not fully understood and are highly heterogenous (Freing et al., 2012; Thomson et al., 2012). Many 

processes are not yet represented in climate-biogeochemistry models. For processes that are 

represented, the nonlinear interactions are not well quantified. More emission measurement data 

is needed to resolve N2O sources and sinks which may vary spatially and temporally. Therefore, 

additional local monitoring of N2O will give insights into these biological mechanisms and as a 

result put better constraints on climate models. 

An example of changing physical processes affecting N2O emissions is ocean warming. The 

estimated global heating rate between 1971 and 2010 was 213 × 1012 W annually. Ocean warming 

accounts for about 93% of that total (Allen et al., 2014). Ocean warming might result in changes 

in the bacterial community which produces N2O (Thomson et al., 2012). Increases in ocean 

temperature decrease the solubility of N2O. As a result the storage capacity of N2O in the ocean is 

most likely being reduced (Thomson et al., 2012). Temperature change may also affect the path of 

currents, changing the location and size of upwelling and downwelling regions (Capone & 

Hutchins, 2013). The processes behind oceanic N2O sources are likely to vary as the ocean 

environment changes. To track these changes long term continuous measurements are needed. 

1.1.2. N2O sources in coastal ecosystems 

Coastal regions have recently been shown to be disproportionately significant to global N2O 

emissions given the small surface area they cover. Emission models of N2O underestimate the 

quantity of N2O ocean-air exchange in coastal regions (Freing et al., 2012; Arévalo-Martínez et 

al., 2019). Coastal regions and estuaries account for 10% of anthropogenic and 60% oceanic N2O 

emissions to the atmosphere (IPCC, 2013). Coastal ecosystems also help mitigate the impact of 

coastal erosion and flooding (Cao et al., 2018), and coastal ecosystems such as mangroves, 
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seagrass, and salt marshes are strong carbon sinks (McLeod et al., 2011). These systems are at the 

interface between land, ocean and atmosphere. They are sensitive to environmental influences such 

as fertilizer run-off from land, upwelling currents from the deep ocean, and the ocean-atmosphere 

interface conditions. The conditions affecting coastal waters vary greatly depending on location 

requiring dense measurement networks. While continental shelf areas account for a negligible 

fraction of N2O emissions, coastal regions such as estuaries, river plumes and upwelling zones are 

significant sources (Freing et al., 2012; Thomson et al., 2012). Emission models may have 

underestimated the potential of coastal regions due to data scarcity (Arévalo-Martínez et al., 2019). 

Further survey and continual monitoring of N2O emissions in a variety of coastal environments 

will no doubt lead to refinements of emission models through higher resolution measurements and 

better understanding of processes. 

Coastal ecosystems, due to their interface with land, deep ocean and atmosphere have 

multiple sources of organic matter which means the average ocean composition is perturbed. There 

are uncertainties in how the nitrogen cycle is affected by anthropogenic sources such as pollution 

from fossil fuel combustion and run-off of artificial fertilizers (Voss et al., 2013). It is clear that 

the natural amount of nitrogen entering coastal waters is being enhanced (Diaz & Rosenberg, 

2008). For example, a large fraction of nitrogen in estuaries comes from sedimentary sources. 

Estuaries are fertilized to an increasing degree by river run-off carrying high amounts of organic 

nitrogen (Freing et al., 2012). Fertilizer run-off leads to increased production and oxygen depleted 

areas in coastal waters. Unlike in the open ocean the shallow depths of coastal regions allow for 

N2O produced in the sediments to reach the atmosphere (Freing et al., 2012). Our impact on N2O 

emissions through these interactions has not been measured for many coastal settlements, estuaries 

or river mouths. 

The changes humans have made to the ocean environment are starting to emerge in coastal 

areas. Feedback effects from seemingly unrelated changes could start to cause changes in N2O 

emissions.  For example, increasing atmospheric CO2 is changing ocean chemistry in a way that 

could increase N2O emissions. The ocean is becoming more acidic from CO2 directly and more 

stratified due to heating, leading to reduced oxygen content in the water (Capone & Hutchins, 

2013). Microbial processes such as nitrification and denitrification that produce N2O are increased 

by low oxygen levels and increasing ocean acidity (Capone & Hutchins, 2013). Improving 
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understanding of how GHG’s interact in coastal environments is important for predicting 

secondary effects and decisions regarding climate change mitigation strategies. 

1.1.3. Ocean-air Flux of N2O 

This work has produced novel N2O ocean-air flux data for the coastal location of Halifax 

Harbour. Flux measurements can be influenced by physical, chemical or biological processes 

(Wanninkhof et al., 2009). Flux measurements can be used to characterize emission sources and 

sinks. Identification of negative fluxes (the ocean is a sink for atmospheric N2O) or positive fluxes 

(the ocean is a source of atmospheric N2O) as well as the seasonal rate of change can be directly 

compared to the global biogeochemical models that predict GHG budgets. Satellite technology is 

improving to give better space-based measurements, like the MIN2OS project that will fly in 2032 

and will provide emission estimates of N2O on a 10 x 10km2 scale (Ricaud et al., 2021). Ground 

based measurement will be important to provide finer scale measurements, calibrate biases in 

satellite measurements and investigate sources within the satellite footprint. Only a few such 

measurements have been carried out for N2O, especially in coastal areas. 

Surface based ocean-air flux measurements of N2O have involved vertical profiling of the 

ocean surface layer. This had been used in conjunction with atmospheric concentrations and ocean 

biogeochemical modelling to extrapolate globally from limited measurements. Some of the largest 

measurement campaigns consist of periodic samples from research vessels on cruise tracks 

spanning the north and south hemispheres in the Atlantic and Pacific. Figure 1-1 shows the sample 

points from two research vessel expeditions in the Atlantic (Forster et al., 2009). Similar 

expeditions have recently been completed in the Pacific (Zhan et al., 2017). These have provided 

a foundation for how oceanic N2O flux might vary with latitude. In general, in the northern 

hemisphere positive N2O fluxes were observed with some exceptions, so N2O is emitted from the 

ocean to the atmosphere. The magnitude of the flux tends to decrease with latitude, though it is 

hard to be sure as the measurements are collected at different times over the course of two months 

for each expedition. A single point measurement does not characterize the sources of the flux well. 

For example, extensive subsurface production at (100-500m depth) may not coincide with areas 

of large fluxes because of the effects of advection (Freing et al., 2012). There are too few 

measurements to account for all variables such as seasonal variation, wind and currents (Zhan et 

al., 2017).  Long term continuous observation in specific locations of interest, such as a harbour, 
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could help compensate for the weaknesses of the cruise type observations by measuring the 

temporal variability of N2O fluxes. 

 

Figure 1-1: Modified from Forster et al. (2009). Halifax (red circle) in relation to a previous 

cruise track measuring N2O flux. N2O flux sample points from research expeditions AMT12 

and AMT13 in 2003.  

In addition to cruise tracks there have recently been notable measurements in coastal areas 

in India and in Maryland USA (Hershey et al., 2019; Laperriere et al., 2019). In Chesapeake Bay 

a research vessel mounted ocean surface layer profiling method was used to measure N2O flux. 

The physical processes in the Bay have been shown to affect production of N2O making the Bay a 

highly variable source (into atmosphere) of N2O (Laperriere et al., 2019). Both the studies in 

Chesapeake Bay, US and to a greater extent in the Cochin estuary, India found large variation in 

N2O flux depending on location. In Cochin estuary N2O flux was higher in locations with increased 

organic matter due to anthropogenic disturbances (Hershey et al., 2019). Our current understanding 

is limited by sparse sampling with too few measurement locations being observed in the open 

ocean and in heterogenous coastal areas. Bedford Basin in Halifax has been identified as an ideal 

location for campaigns to understand environmental processes concerning ocean-air flux and to 

o Halifax, NS 
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improve representation in models (Shi & Wallace, 2018). Our project has provided an additional 

observation location to further elucidate the drivers of N2O flux on the Atlantic coast. 

While the ocean is a net source of N2O emissions, variable environmental conditions can 

result in areas acting as sinks for parts of the year. A biogeochemical model has been developed 

utilizing measurements to parameterize the prediction of total fluxes on a global scale (Manizza et 

al., 2012). Figure 1-2 shows a world map of annual mean N2O flux from that study. Their model 

combines an ocean circulation model with a biogeochemical module that represents the full cycles 

of O2 and N2O. Also included are thermal mixing, solubility changes, ventilation from subsurface 

mixing and biological production. It can be seen from the figure that North America’s eastern coast 

is an area of N2O emission from the ocean. The accuracy of models like this could be improved 

with more local measurements that capture the processes in unique areas and during seasonal 

changes. For example, hurricane season could be an important factor to consider for the Northwest 

Atlantic. When tropical cyclone Hudhud made landfall in 2014 in India, analysis of waters on the 

east coast of India showed that the ocean changed from a source of N2O before the storm to a sink 

which lasted for weeks post-storm (Kumari et al., 2019). Different locations could have 

unexpected responses to seasonal variation, anthropogenic forcing and weather patterns. Local 

flux measurements can provide the detail needed to identify and quantify sources and to 

parameterize the processes that modify them. 
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Figure 1-2: Modified from Manizza et al. (2012). Halifax location (black circle) in 

comparison to the annual mean of modelled N2O flux from the global ocean. Positive values 

are sources, from the ocean to the atmosphere.  

 

1.1.4. Frequency and scale of observable processes 

Figure 3 is a useful diagram for understanding and contextualizing this project’s N2O flux 

measurements in Halifax Harbour in relation to possible underlying processes. The figure is 

modified from Wilson et al. (2020) and shows the spatial and temporal scales of physical, 

biological, and climatological processes that could be influencing our measurements on the spatial 

scale of 500 meters, based on the approximate size of the OP-FTIR measurement footprint. Wind 

and concentration observations are made on 1- and 4-minute intervals, respectively, which are then 

averaged over 30 minutes for flux calculations. Fluxes were observed for a period of 5 months, so 

any scale up to that could potentially be investigated. This suggests that processes in the “high 

resolution” coastal and shallow waters box could be observed, with groundwater discharge and 

inertial and solitary waves being closest to our spatial scale of 500 m. Moreover, with data for a 

longer period our measurements cross over into the “low resolution” box, where mesoscale 

phenomena and phytoplankton blooms could be observable. It could also be argued that the 

observations must also include some average result of processes on scales smaller than 500 m. 

Halifax, NS ○ 

Ocean-air 
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Likewise scales larger than our measurement will be present but under sampled and could result 

in an undetectable bias in the results when compared to other similar scale measurements at 

different locations or different times. This diagram helps illustrate the benefits of having a variety 

of methods to compare different scales and the flexibility that comes from continuous observations 

for longer periods. This is where open-path spectroscopy and flux gradient method could excel in 

a coastal environment as the geometry and continual operation is very feasible compared to 

research vessel-mounted instruments or sample collecting devices. 

 

Figure 1-3: Modified from Wilson et al. (2020).  Time-space scale diagram for various 

physical processes involving marine CH4 and N2O. Measurements in this work lie in the 1-

minute to 5-month time range and the <500 m spatial scale (represented by the red box). 

Halifax Measurement 
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1.2. Overview of N2O flux measurement methods  

1.2.1. Previous flux measurement methods 

Concentration surveys are often used to indicate source locations, i.e., locations having 

elevated gas concentrations (compared to other locations) are assumed to correlate to locations of 

high gas fluxes. An example of this is found in the use of drones with laser-based spectroscopy to 

survey the Arctic coastline (Oberle et al., 2019). This method was able to identify hot spots of gas 

concentration in the laser path below the drone flight track, which then identified likely gas fluxes. 

The hot spots corresponded to areas of coastal erosion and accelerated melting of permafrost, i.e., 

CH4 production hotspots. Satellite observations have also been able to identify areas of elevated 

gas concentration while covering more ground than drones, but they are limited in spatial 

resolution and gas sensitivity (Oberle et al., 2019). Moreover, the whole air column is measured, 

making unambiguous surface attribution often impossible, and sources must be traced by also 

modelling transport in the atmosphere. These methods are complemented by vertical flux-gradient 

methods, as described in this project, which can observe the flux over time at locations of interest 

identified by a drone or a satellite survey. 

Local ocean-air fluxes have typically been estimated by 1) measuring the vertical gradient 

of gas concentration in the water in combination with some model of gas transfer velocity across 

the ocean surface, i.e., the flux-gradient (FG) method, or by 2) measuring the vertical flux of gas 

in the atmosphere immediately above the water or shore from combined high-frequency point 

measurements of concentration and vertical wind speed, i.e., the eddy covariance (EC) technique 

(Wanninkhof et al., 2009). An example of FG method vertical profiling of dissolved N2O 

concentrations in the ocean is described by Laperriere et al. (2019), where water samples were 

taken from 9 locations spanning 21 km x 6 km of Chesapeake Bay (northeast USA) at 3-4 depths 

ranging from the surface to 25 m. The samples were collected twice via research vessel, about two 

weeks apart (August and September 2013). N2O flux was calculated using a flux-gradient method 

like what is used in this work except for requiring a treatment of gas diffusivity specific to these 

ocean-side measurements. The main advantage of our air-side method (Section 1.2.2) when 

compared to this vertical concentration profile method is that deployment into the ocean is not 

required, which removes many logistical considerations and allows more easily for long-term and 

continuous observations.    
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In the EC technique the measured flux corresponds to the ocean-air flux within a “footprint” 

upwind of the measurement. While eddy covariance has been used in Nova Scotia to measure 

ocean-air CO2 flux as early as 1977 (Jones & Smith, 1977), its use for gases such as N2O is limited 

by the lack of fast-response sensors for these species. The experiment setup is also a limiting factor 

for ocean-air flux as the equipment ideally needs to be over the source, whereas measurements can 

only be taken a short distance from shore or from a boat; the variable footprint of the equipment 

further complicates the use of this method in complex environments. One benefit of our method 

(Section 1.2.2) when compared to eddy covariance is the ability to have more control of the 

measured area with a larger and arguably more customizable footprint.  The main benefit of our 

FG-based method over EC, however, is that the fast response of gas sensors is not required, and 

all FTIR-active gases can be measured together in principle, given the right signal conditions in 

practice. 

1.2.2. Novel N2O flux measurement method 

This work applies an atmospheric concentration gradient method to measure the flux of N2O 

above the water, which reflects the ocean-air flux underlying the measurement.  The gas flux is 

calculated by combining measurements of the vertical gradient of gas concentration with wind and 

turbulence measurements in the atmospheric surface layer. A diagram summarizing the elements 

related to this measurement method is shown in Figure 1-4. Concentration is measured using Open 

Path Fourier Transform Infrared (OP-FTIR) spectroscopy, which measures path-average 

concentrations between an OP-FTIR source (and co-located detector) and a distant reflector (more 

details in Section 2.1).  Two vertically separated concentrations (C1, C2) are measured at two 

heights (z1, z2) by aiming the OP-FTIR to reflectors at two heights. The gradient is proportional to 

the difference in concentration of these two paths and is used to calculate flux via the flux-gradient 

method, 

Flux = −K
C2−C1

z2−z1
 , 

 

where the constant K is a gas diffusivity that depends on wind speed and turbulence. 

The foundation of the flux-gradient method is Monin-Obukhov Similarity Theory (MOST).  

This theory relates atmospheric fluxes to concentration gradients and wind statistics, through 

relatively simple, empirically derived functional forms from decades of theoretical research and 

field measurements (Chapter 11, Arya, 2001). This methodology for deriving fluxes in the surface 
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layer of the atmosphere is widely accepted, and the equations and instrument data used to calculate 

the flux are explained in detail in Section 2.3. 

 

Figure 1-4: N2O flux is found by measuring the vertical concentration gradient of the gas in 

the atmosphere. The constant K depends on meteorological factors, with the dominant factors 

being windspeed and turbulence. In this example lower concentrations at higher altitude 

correspond to flux out of the ocean and into the atmosphere.  

1.2.2.1. Infrared spectroscopic N2O concentration measurements 

Open-Path Fourier Transform Infrared (OP-FTIR) spectroscopy is an established technique 

used to measure path-average atmospheric trace gas concentrations. It is useful for spanning over 

inaccessible areas, for example fence-line monitoring for refineries and factories or more recently 

to measure pollutant concentration changes due to shipping emissions from vessels passing 

through Halifax Harbor (Wiacek et al., 2018).  

The OP-FTIR measurement method is used in this research to obtain the gas concentrations 

at two heights to find the concentration difference required to calculate flux. As mentioned 

previously, the high sensor response rate of EC methods is not required. Many molecules that 

interact with infrared light, including N2O, are detectable simultaneously with FTIR spectroscopy 

(Wiacek et al., 2018). The open-path descriptor refers to the physical path along which spectral 

absorption measurements of actively emitted and transmitted IR light are made. A measurement 

path, see Figure 1-5 and Figure 1-6, unlike a measurement point, allows for the averaging of path-

dependant environmental variables. Small variations in air-sea fluxes can cause variability in air 

concentrations, which complicate point measurement techniques (Wanninkhof, 1992). Our path-
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average approach ensures that the N2O flux over water is favoured over other factors such as rush 

hour traffic N2O emissions that could overwhelm a point source measurement in an urban setting. 

Measurements in Halifax Harbour give a concentration average over the entire water surface 

producing a more representative sample. OP-FTIR works in most weather conditions, except 

during heavy rainfall or fog, which causes IR beam extinction. The experiment is setup on land to 

span over water, thus reducing the complications of making measurements on open water (see 

details in Section 2.1). The instruments can run continuously, which makes them ideal for time 

series measurements to capture short-term events and long-term evolution.  

The OP-FTIR technique has been previously applied to derivations of trace gas emissions 

using a flux-gradient approach. Flesch et al. (2016) used this approach to simultaneously measure 

both N2O and ammonia (NH3) fluxes from cattle overwintering areas in Alberta, Canada. This 

work is the first application of the OP-FTIR flux-gradient technique to estimate ocean-air flux. 

Exploratory OP-FTIR vertical concentration gradient measurements were carried out by the 

Wiacek Atmospheric Research Group (WARG) in Halifax Harbour in 2018. These measurements 

included an upper and lower path in the atmosphere (Figure 1-7).  The location of the setup, as 

was used in 2018, is shown in Figure 5 and 6, and this is also the location used for the main focus 

of this project in 2020-2021. While the exploratory 2018 measurements did not include a sonic 

anemometer, nearby 2-m and 10-m winds were used to make progress on an approximate 

quantification of flux from these 2018 data (Appendix B). 
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Figure 1-5: The measurement path location and length (magenta line) in Halifax Harbour, 

Nova Scotia. This was the location of both 2018 (no sonic) and 2020-2021 (sonic-

instrumented) measurements. NAPS refers to a National Air Pollution Survey observation 

station. 

 

• 10-meter wind 

• Shearwater Jetty 

• Windsor Park 

Bedford Basin 
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Figure 1-6: The measurement path, looking across the harbour from the Halifax side towards 

Dartmouth, is 98% over the ocean surface. 

 

Figures 5, 6, and 7 illustrate the experimental setup with the FTIR spectrometer on one side 

of the harbour (Halifax) and vertically separated retroreflectors on the other shore (Dartmouth). In 

summary, an IR beam makes a return trip between the spectrometer and alternating retroreflectors 

over the water of Halifax harbor (the detector is co-located with the IR source). The two-way path 

length of the IR beam is 1116 m. As it passes through the atmosphere, the energy spectrum of the 

beam captures the absorption signature of various gas molecules that make up the air, including 

N2O. Gas concentrations were retrieved from the measured atmospheric absorption spectra using 

non-linear least squares fitting in MALT software (Griffith, 1996) and molecule spectroscopic data 

from the HITRAN database (Gordon et al., 2017). This setup allows measurements of gas 

concentrations at two average path heights, which is necessary for the flux-gradient approach. 
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Figure 1-7: (Left) Two retroreflectors in a vertical configuration, with supervisor for scale. 

(Right) The OP-FTIR Spectrometer. These instruments are separated by the measurement 

path over water, which was 558 m (one way). The two-way absorption path length of the IR 

beam is thus 1116 m. 

 

1.2.2.2. Sonic anemometer and micrometeorological theory  

The flux-gradient method used to calculate N2O fluxes is explained in chapter 2.3. Below is 

a summary of the relevant theory. A 3-D sonic anemometer uses pulsed acoustics and outputs wind 

speeds, Ux, Uy and Uz, and the sonic acoustic temperature, Ts. The covariance of the wind and 

temperature components provides the friction velocity (u*) and the Obukhov stability length, L 

(this measures the thermal stratification of the atmosphere). For the atmospheric surface layer the 

classic logarithmic wind profile is found from the similarity hypothesis that the velocity 

distribution, ∂U/ ∂z is only dependant on the height z above the surface, the surface drag, τ0,  and 

the fluid density, ρ (Arya, 2001). This leads to a logarithmic velocity profile law for neutrally 

buoyant conditions, 

U(z) =
u∗

kv
ln (

z

z0
). 

z0 is defined as the roughness length and is related to the surface roughness characteristics. kv is 

the von Karman constant which is empirically derived. The characteristic velocity scale is 

defined as the friction velocity 

Spectrometer 

Auto Pan-tilt Head 

Retroreflectors 

IR Beam 

558 m separation 
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u∗ ≡ (
τ0

ρ
)

1

2
 . 

Monin-Obukhov Similarity Theory (MOST) adds two additional variables to the similarity 

hypothesis described above. ∂U/ ∂z still depends on height z, with τ0 and ρ, now represented as 

the kinematic momentum flux, 
τ0

ρ
. Additionally ∂U/ ∂z must also depend on the kinematic heat 

flux (
H0

ρCp
) and the buoyancy variable (

g

T0
) (Arya, 2001). H0  is the surface heat flux, Cp  is the 

specific heat capacity of the atmosphere at constant pressure, T0 is the temperature at the reference 

state, and g  is the gravitational acceleration. This leads to the stability-corrected logarithmic 

velocity profile, 

U(z) =
u∗

kv
[ln (

z

z0
) − ψm (

z

L
)]. 

This is a modification of the log wind profile, adding an additional stability correction term, ψm , 

which is a correction for atmospheric stability (i.e., the vertical temperature stratification). The 

Obukhov Length, L, is a characteristic length scale which is interpreted as the height at which the 

production of turbulent kinetic energy from wind shear equals that due to buoyancy (Arya, 2001). 

It can be shown that its formula is: 

L =
−u∗

3

kv(
g

T0
)(

H0
ρCp

)
  . 

The magnitude of the dimensionless stability parameter 
z

L
 indicates whether the production 

of turbulence is dominated by the effect of wind shear or by buoyancy. The stability parameter 

resulting from z << |L| (our case) means that turbulence production is dominated by wind shear. 

The sign of 
z

L
 determines the status of that stability where positive 

z

L
 represents stable conditions 

(e.g., stable nighttime conditions where turbulence is suppressed) and negative 
z

L
 represents 

unstable conditions (e.g., light wind daytime conditions with enhanced turbulence). A near-zero 
z

L
 

corresponds to well-mixed windy or cloudy conditions with moderate levels of turbulence. The 

calculation of the MOST stability correction function, ψm, is left for detailed explanation starting 

from measured data in Section 2.3. In Section 2.3 the stability corrected logarithmic velocity 

profile as well as a temperature profile of similar form are used to calculate the flux via the flux-

gradient method and to determine input temperatures for the spectroscopic retrievals. 
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Figure 1-8: Testing the Campbell Scientific CSAT3B 3-D sonic anemometer at the Saint 

Mary’s University (SMU) Atmospheric Observatory (SAO), pre-deployment in November 

2020. 

1.3. Scope of work 

The goal of this work is to demonstrate a novel method for calculating gas fluxes that is 

advantageous for coastal ocean-air measurements. The method combines vertical concentration 

difference measurements by OP-FTIR spectroscopy with a flux-gradient calculation. Chapter 2 

will outline the experiment design, give a summary of the measurement campaign in Halifax 

Harbour and review the method used to calculate ocean-air N2O flux from concentration 

measurements of the spectrometer and 3-D wind measurements of the sonic anemometer. This will 

include an overview of the applicable micrometeorology and sonic measurement characteristics as 

well as some details of spectroscopic retrievals, which were both a significant “background 

learning” component in the course of this project. Chapter 3 discusses results from the sonic 

anemometer and spectrometer more broadly and shows how those results are useful in a detailed 

error analysis of the flux calculations. Finally, flux data are explored on long- and short-time 

scales. Section 3.3.4 presents a case study where we observed a physical process (strong ocean 
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surface cooling and possible overturning) corresponding to a clear signal in terms of ocean-air flux 

of N2O. Finally, Chapter 4 summarizes the work and outcomes, reflects on successes and 

shortcomings of the experiment, and discusses possibilities for future study. 

The author led all work related to the project (sonic deployment and field data collection, 

OP-FTIR data processing, sonic data processing, flux calculations and error analysis, as well as 

flux data interpretation) except for OP-FTIR field maintenance, which was performed by A. 

Wiacek. The author wrote all scripts to process data in Python, except for modifying existing 

MATLAB scripts for OP-FTIR data processing. 

2. Methods and Analysis 

2.1. Experiment Design 

2.1.1. Location 

Two retroreflectors, the OP-FTIR spectrometer and a 3-D sonic anemometer were deployed 

together in Halifax Harbour from Dec 6th, 2020, until April 28th 2021. The measurement path was 

558 m one-way. Figure 2-1 shows the path, the jetty and the instruments on the jetty side (in 

Dartmouth) and the spectrometer in the Dockyards (in Halifax).  The location has open water to 

the northwest and southeast of the measurement path and urban environments including docks, 

buildings and hills to the northeast and southwest. The surface area over which the gas flux is 

“sampled” (the footprint) will depend on the wind direction relative to the OP-FTIR paths. 

Therefore, wind direction should be considered when deciding which measurements are 

representative of ocean-air gas flux, and this relationship was examined in Section 3.3.3.  
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Figure 2-1: a) Layout of the experiment in Halifax Harbour. The OP-FTIR spectrometer and 

retroreflector arrays were connected by the 558 m IR light path. The 3-D sonic anemometer 

was 50 meters to the northwest of the retroreflectors on the L-shaped jetty.  B) The 

retroreflector arrays included aluminum mounting plates for the cubes, which were fixed to 

a wooden structure that included plywood and plastic wind baffles, all tightly secured to 

anchor points that are part of the solid jetty structure c) The 3-D sonic anemometer was 

positioned as far over the edge of the jetty and as high as possible. The gas analyzer sample 

cell was used to measure barometric pressure and temperature (thermistor). A wooden beam 

had a temperature probe (Campbell Scientific 109; thermistor encapsulated in an epoxy-

filled aluminum housing) mounted to the end out over the water. 

 

2.1.2. Instrument deployment details 

The sonic anemometer (referred to as the “sonic”) was set up midway along the jetty (Figure 

2-1a), which juts out into the water ~100 meters from the Dartmouth coastline. This geometry is 

not dissimilar from research vessels, on which sonic anemometers are also mounted routinely. This 

deployment represents a reasonable compromise for location in terms of minimizing the affects of 

turbulent eddies and nearby obstructions to the wind flow as well as providing the best exposure 

to the large-scale flow conditions representative of the open water. Turbulence along the jetty was 

investigated qualitatively during strong wind conditions by walking the length and noting where 

flow differed significantly from prevailing flow. The ends of the jetty had eddies coming off them, 

as expected from building wake theory (Arya, 2001), therefore the middle of the jetty was selected 

for deployment as this area had wind characteristics closely resembling the strong and steady wind 

conditions present during scouting. The anemometer location was at least three times the height 
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away from each of the surrounding structures. We also did our best to set up the tower and arm of 

the sonic as far over the water as possible and as high as possible, while remaining stable against 

vibration, to put the measuring point furthest into undisturbed flow (Figure 2-1c). This placement, 

while not perfect, is likely the best that could be achieved in the busy harbour at the time, also 

considering pandemic restrictions and constraints. The jetty juts out into the water ~100 meters 

from the Dartmouth coastline. 

Figure 2-2 is a schematic of the experiment setup. Instruments were installed on two sides 

of the harbour. On the Halifax side the OP-FTIR spectrometer, telescope and electronic tripod 

mount was in a work trailer in the Dockyards, ~2m from the water’s edge. On the Dartmouth side 

the retroreflector arrays and the sonic anemometer were on the jetty, which is 15m wide. The 

heights for all instruments were measured based on a common point on each side; W1 is the 

common point on the Halifax side and W2 is the point on the Dartmouth side. For example, on the 

diagram it shows R2, the top retroreflector, at a height of W2 + 303 cm. The center of the top retro 

is about 3 meters from ground level when standing on the jetty. To get the full height from the 

water surface, a value for W2 was found using data from a nearby ocean observation platform at 

the Bedford Institute of Oceanography (BIO), which is described further in Section 2.2.3.  

 

Figure 2-2: Schematic of the experiment setup. The heights for all instruments were 

measured based on a common point on each side. W1 is the common point on the Halifax 

side and W2 is the point on the Dartmouth side. S is the common point for the instruments 
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on the same tower as the sonic anemometer. The retroreflectors are located ~15m from the 

jetty edge nearest to the open ocean. 

In order to directly use the height measurements from both locations in calculations, the 

offset between them is needed. To get the offset between the two locations, jetty (W2) and the 

dockyards (W1), the water level at each location was observed at the same time by two people. On 

Dec 4th at 10:39 W2 measured by the Hellmich on the Dartmouth jetty was 188 cm above water 

while at the same time W1 measured by Wiacek on the Halifax dock was 103 cm above water. 

Therefore, the height difference at the same time between reference points W2 and W1 was 85 cm. 

From measurements of retroreflector heights, the mean vertical path separation is found. 

With the water level, offset and OP-FTIR height being approximately constant at any chosen time, 

the beam path mean height difference is the mean difference of the retroreflector heights. The 

average vertical separation between the IR beam paths in 2018 was 1.38 meters. In 2020 the 

average vertical path separation with a purpose-built mounting was 1.39 meters. The retroreflector 

arrays were upgraded with additional new cubes, increasing the reflector area by 50% and 

returning more of the IR beam that was previously lost due to smaller retros and beam divergence 

(Power, 2021). This change increased the signal to noise ratio and improves the accuracy of N2O 

concentration retrievals. Part of the upgrade involved a stronger mounting, which also reduced 

shaking from wind and made array pointing adjustments easier to maximize the signal strength.  

Of note is the fact that we observed a greater sensitivity to non-orthogonal retroreflector array 

orientation towards the IR beam than what is expected from a cosine dependence of signal 

intensity; in other words, small adjustments to point the retros more directly at the IR beam resulted 

in larger than expected signal gains.  The reason for this is likely related to the 3-D structure of 

individual reflector cubes, which begin to self-shade at beam angles that are not perpendicular to 

the effective cube apertures. 

The mean heights of the top and bottom FTIR paths, as well as the instrument heights 

(required for calculation of the vertical temperature and wind profiles) vary with water level. All 

instrument heights were measured as height above the reference point W2. The total height is then 

calculated as a sum of the instrument height and the height of reference point W2 above the water 

surface, zw2 , shown in Table 1. We did infer a slight variation in these heights during 

measurements due to frost heave in the ground below the spectrometer (a gradual drift in the 

pointing of the IR beam was a symptom); however, this was not considered in the calculation of 
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heights as the change was likely of similar order as the uncertainty in the height measurements 

themselves, which was ~5 cm due to water wave motion and ground unevenness. 

Table 1: Heights of instruments relevant to calculations. The height of reference point W2 

above the water surface (zw2) accounts for the variable height of the experiment over water 

as the tides ebb and flow. 

Instrument Height above water surface (meters) 

OP-FTIR 0.65 + zw2 

Bottom retroreflector 0.26 + zw2 

Top retroreflector 3.03 + zw2 

Mean IR bottom path 0.46 + zw2 

Mean IR top path 1.84 + zw2 

Mean midpoint between paths 1.15 + zw2 

3-D sonic anemometer 2.70 + zw2 

Gas analyzer sample cell 1.42 + zw2 

Temperature probe -0.06 + zw2 

 

2.2. Measurement Campaign Overview 

The full campaign log in included is Appendix A. Some key events and observations are 

presented here. Figure 2-3 below shows an overview of when instruments were operating (and at 

what capacity) together with when flux calculations were possible and produced (green bands). 

All the instruments (the sonic anemometer, the retroreflector arrays and the OP-FTIR) experienced 

issues that we diagnosed and learned to correct in real time. 

2.2.1. Sonic status and events 

The sonic anemometer (blue bands in Figure 2-3) had four issues during the campaign. First 

and most frequent was that heavy rain would cause droplets to accumulate on the transducers that 

send the sound wave signal used to calculate the air velocity. This is unavoidable and only caused 

data loss in the heaviest rains at which point the OP-FTIR was also recording low quality spectra 

due to signal loss from all the water droplets in the beam path causing beam extinction. The second 

was an equipment limitation in the lack of a memory expansion add-on for the sonic data logger. 

This meant the data had to be downloaded every six days or records would begin to be over-

written. Due to illness, weather and schedule conflicts, between a few hours and a couple days of 
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sonic data were missed at various times. The third issue was technically insignificant for us and 

did not affect the crucial u* measurement we require. It was that the EC155 gas analyzer sensor 

windows need to be cleaned occasionally as condensation in an ocean environment leads to salt 

build up and drops the signal below tolerance. This is important if the system is used in the future 

to also gather CO2 and H2O concentration data for flux calculations, which we were not doing due 

to various pandemic-related strains on our time and access to zero and span calibration gases. The 

final issue that resulted in data loss was unanticipated. Military work crews were moving heavy 

equipment on the jetty and severed our power cable. While the sonic was powered by a UPS with 

some battery backup power, it was days before the problem was noticed and the cable was 

replaced, so power was lost to the instrument for 4 days (outages shown on Figure 2-3). This might 

have been mitigated by better signage or communication with work crews with which we shared 

the site. 

Filtering of the sonic data was performed to ensure a realistic temperature profile was being 

used for T(z) propagated to the N2O retrieval process and the flux calculation. The amount of 

affected data was small and is also shown on Figure 2-3 in narrow yellow bands on top of the blue 

band. Further information about the sonic anemometer data filtering criteria is in Section 2.3.2.  
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Figure 2-3: Instrumentation status during Dec 2020 – Apr 2021 field campaign, along with 

data status, filtering and flux calculation (green). OP-FTIR instrument status tracks signal 

level and retrieval quality separately in top and bottom path spectra , which are subject to 

different environmental factors at times. Note that since retrievals used sonic temperature 

data, when sonic data is missing the top and bottom paths also show as missing. 
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2.2.2. FTIR status and events 

The FTIR encountered issues as well. During setup it took some time to get signal up to its 

best level as we adjusted the orientation of the retros to the telescope on the other side of the 

harbour. Signal refers to the IR peak level at 2500 cm-1. This (arbitrary and unitless) signal value 

was 0-1.10 for the top path and 0-0.95 for the bottom path during this experiment. Later analysis 

of the data (Section 2.4.3) shows a signal of 0.1 is the minimum threshold for useable data. The 

retroreflectors were moved and rotated twice (Dec 11 and Dec 18) to get them pointing directly 

towards the FTIR as best as possible. While this did improve IR signal level from 0.60 to ~1.0, the 

data from before the adjustments is still very useable; in fact, Section 3.2 results show the variance 

of concentrations measured during 0.50 signal was not adversely affected. The biggest concern for 

the flux calculations was when one path had a very different condition than the other. When the 

signal drops very low (less than 0.10) the N2O concentration retrieved tends to drift to unphysically 

low values (<< 330 ppb). There is more tolerance in the concentration difference if conditions are 

the same for both paths, but if only one path has issues affecting signal it can cause the appearance 

of a large spurious signal in the concentration difference, ∆C. The potential causes for false ∆C 

values are obstructions in the beam path or on the retroreflector surface as well as beam 

misalignment. Obstructions to the lower beam path included snow, traffic cones and parked 

vehicles that caused short-term issues. The mirror surface of the top and bottom retroreflector 

arrays encountered different rates of condensation, freezing and thawing but this was not seen to 

cause enough signal disagreement to be an issue. Similarly, fog/rain variation with height did not 

cause enough uneven obstruction between the two beam paths to be significant. 

The major source of signal loss during this study proved difficult to understand. The issue 

turned out to be due to frost heave during the spring thaw that gradually (~12 hours) moved the 

structure sheltering the OP-FTIR telescope ever so slightly such that the beam did not fully fill the 

retroreflector area. By the time the issue was properly diagnosed and corrected this resulted in the 

largest period of missing data, almost a month from Feb 14th to Mar 7th, while we struggled to 

explain the continual degradation of signal in the spectrometer for both paths. Attempts were made 

for example to clean the retros (as some ice had built up on them) and heat the OP-FTIR telescope 

(as dew sometimes turned to frost on the internal mirrors). These are good practices in general but 

the improvement to signal was insignificant to the recurring loss of signal due to systematic 

pointing issues. Attempts were in fact made to re-point the beam, which improved the signal but 
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only temporarily, as the ground continued to shift. The OP-FTIR pan-tilt was in a movable 

commissionaire’s shack on a paved dock next to a stable temperature ocean, so for ground freeze 

and thaw to have had this much effect was initially surprising but once this was discovered it 

became obvious. The area is shaded by buildings and thick sheets of ice were observed on the 

ground around the shack. As the ice melted the dock shifted, slowly but continually this changed 

the angle of our instrument with respect to the retroreflector arrays across the harbour. It is also 

possible that the shack itself was flexed out of shape by the freeze/thaw cycles; in 2018 it was 

observed that the floor stiffness was such that walking next to the spectrometer could significantly 

alter return signal levels from the retroreflectors 558 m away.  Once identified as a freeze/thaw 

issues, this was compensated for by increasing the frequency of pointing calibration to once a week 

to ensure the OP-FITR telescope was centered on the retroreflectors for the remainder of the 

campaign, however the transition to spring temperatures also eliminated this problem.  In future 

measurements, freeze/thaw pointing adjustments may be necessary on a daily basis.   

  

2.2.3. Water level status and usage 

Tidal water level measurements provided by the Canadian Hydrographic Service were 

located at the Bedford Institute of Oceanography (BIO). The tidal data was used to find the distance 

from the water surface to the instruments on the jetty. The data was available at a 1 min frequency 

(202359 total entries). The BIO is located 2.5 km NW from the measurement site further inside 

the harbour at the mouth of Bedford Basin. Additional observations were made for calibration of 

the water heights at BIO and W2 on the jetty. Periodic (~bi-weekly) water level measurements 

with respect to W2 were taken by tape measure at the jetty throughout the campaign. These 

measurements were used to calculate the height offset between our measurement reference point 

W2 and the one at BIO. 

The total number of matched water level observations with the sonic data (not including 

missing observations) is 176832, while 4877 valid sonic data entries do not have water level data 

(2.7% or approximately 3.4 days worth of data). Each instrument’s height (hins) was recorded with 

respect to a reference point on the jetty called W2 (previously discussed in section 2.1.2). The 

height of W2 above the water surface (zw2) was measured 12 times during the observation period. 
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An offset was found from the mean sum of observed water levels at BIO (zBIO) and zw2. The offset 

was calculated as: 

offset =  mean(z′
BIO

) + mean(z′
w2

) , 

 

where z′w2  refers to the calibration measurements made using a tape measure (with an 

estimated precision of 5 cm due wave action) and z′bio  refers to BIO data at corresponding 

observation times. Figure 2-4 shows a comparison of the z′bio and z′w2 data. The two data sets 

look like mirror images of each other; this is because they are very similar to each other apart from 

a constant offset and an x-axis reflection. The reflection about the x-axis is because the BIO 

measures water level above a reference point and the calibration measurements were from the 

reference point (above the water) to the water surface. The offset is applied to the BIO data to 

convert the observations to the reference point W2 as follows: 

Equation 1  zw2 = offset − zBIO , 

where zBIO is the full data set available for the measurement period. Having used the offset to 

convert BIO minutely water level measurements into the equivalent height at W2, the instrument 

height above the water level can now be calculated as: 

 

zins = hins + zw2 . 
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Figure 2-4: Comparison of the z′BIO and z′w2 water level data. For clarity, only points where 

calibration observations at the jetty are available are shown. 

 

It was assumed that the tidal measurements at BIO are located close enough to the jetty (2.5 

km) for the variation of tide arrival time to not influence the calculation of zw2. This was confirmed 

by the close agreement shown in Figure 2-5 between the observed z′w2 heights and the calculated 

zw2 values (from BIO values with the constant offset applied). The root mean square error (RMSE) 

between the two data sources is 1.8 cm or <1% of the mean tidal height. 
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Figure 2-5: Observed jetty height above water (z′w2) compared to calculated jetty height 

above water (zw2) using calibrated BIO Tidal Data (Equation 1). 

 

During the lowest tide the jetty surface was at zw2 = 3.93 m above the water surface, while 

during the highest tide the jetty was at zw2 = 1.15 m above the water surface. The mean height of 

the jetty above water level was zw2 = 2.51 m. 

2.2.4. Overall Data Completeness 

The data sets, including top and bottom path N2O concentrations, sonic anemometer and 

water level measurements, were merged into intervals of 4 min 19 s, which is the time it takes for 

the OP-FTIR to record a spectrum along the bottom path, move up, then repeat for the top path 

and move down to start again. The measurement observation times were centered on the middle 

of the observation, when the top path spectrum begins recording. Missing data from the sonic, 

FTIR, and BIO water level results in varying completeness of the final flux data set; Figure 2-3 

showed what that looks like on a timeline of produced flux (in green). The total number of 4 min 

19 s intervals that could have been observed between Dec 7th 2020 and April 28th 2021 is 47369, 
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but the number of actual observations at the end of the process was 25769, for a final data 

completeness of 54%. 

 

2.3. Micrometeorology 

2.3.1. Flux formula 

The concentration difference, ∆Cs = C(z2) − C(z1), for a gas, s, is found from the OP-FTIR 

measurement over a height difference, ∆z = z2 − z1, where z2 is the average top path height and 

z1 is the average bottom path height. ∆Cs is related to flux of the gas, Fs, via Equation 2 as shown 

in Flesch et al., (2016): 

 

Equation 2  Fs = −Ksρa
Ms

Ma

∆Cs

∆z
 . 

 

The density of dry air is ρa , while Ms  and Ma  are the molar masses of the gas s and dry air, 

respectively. The diffusivity of the gas, Ks, can be related to the momentum eddy diffusivity, Km, 

with Equation 3 (Flesch et al., 2016): 

 

Equation 3  Ks =
Km

Sc
=

u∗
2

Sc∆U
∆z . 

 

The turbulent Schmidt number, Sc, is estimated to be 0.64 (Flesch et al., 2002). The difference in 

average wind speed, ∆U, is found using the stability-corrected logarithmic wind profile, 

 

Equation 4 ∆U =
u∗

kv
[ln (

z2

z1
) − ψm (

z2

L
) + ψm (

z1

L
)] , 

 

where the von Karman constant is 0.4 and the MOST stability correction function, ψm, is described 

below. For the measurements in 2020-2021, we used a 3-D sonic anemometer, which measures 

the wind velocities (Ux, Uy, Uz) and the acoustic temperature, all sampled at 10 Hz.  The averages, 

variances, and covariances of these variables are used to calculate the average wind velocities, the 

average wind direction, the friction velocity, and the Obukhov stability length, with calculation 
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details shown below in Section 2.3.2. The outputs from the 3-D sonic anemometer are used in the 

flux calculation as well as to infer the vertical temperature gradient for FTIR retrievals (Section 

2.3.2).  As with Flesch et al. (2016), it is assumed that the acoustic temperature gradients (inferred 

from the sonic anemometer measurements) are equivalent to the actual temperature gradients (used 

for the FTIR retrievals). In 2018 the 3-D sonic anemometer was unavailable, and a method for 

approximating flux was developed, which is included in the Appendix Section B. 

The full flux formula is derived by substituting Equation 3 and Equation 4 into Equation 2 

and integrating over the OP-FTIR measurement path. The equation needs to be integrated over the 

measurement path, ℓpath, since height varies along the path horizontally from x1 to x2;  z1 and z2 

are heights on the bottom and top paths, respectively. The final formulation of Flesch et al., (2016) 

is shown in Equation 5. 

 

Equation 5 Fs = −
kvρau∗

Sc

Ms

Ma

ΔCs
1

ℓpath
∫ [ln(

z2
z1

)−ψm(
z2
L

)+ψm(
z1
L

)]
x2

x1
dx

  

 

 The MOST stability correction, ψm, is selected based on the value of the buoyancy parameter, 

z/L,  

 ψm (
z

L
) = −5

z

L
                                                                        (L > 0  Stable)  

ψm (
z

L
) = 2ln (

1+y

2
) + ln (

1+y2

2
) − 2 tan−1 y +

π

2
           (L < 0  Unstable) , 

 

where y = (1 − 16
z

L
)

1/4

. This numerical analysis was implemented in Python and the integral in 

the denominator of Equation 5 was solved numerically using the trapezoid rule. This formulation 

assumes that the surface is smooth to moderately rough (a safe assumption for the harbour water 

surface), the measurement height is in the constant flux surface layer and the measurement path is 

horizontally homogenous. Furthermore, since the surface is flat the functions z1(x) and z2(x) 

representing the beam paths are these linear functions, 

 

z1(x) =
zR1−zFTIR

ℓpath
x + zFTIR  
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z2(x) =
zR2−zFTIR

ℓpath
x + zFTIR , 

 

remembering that the height above the water surface of the instruments is for example, 

 

zFTIR = hFTIR + zW2 , 

 

as explained in section 2.2.3. The dry air density, ρa, was found using the retrieved concentration 

of H2O from OP-FTIR, converted to mmol, 

 

Equation 6  ρa =
Pcell

Rd T(zmid)Kelvin

1−[H2O]mmol

1000+[H2O]mmol
 , 

 

where T(zmid)Kelvin is the value of the vertical temperature profile (Equation 9 shown below in 

Section 2.3.2) at the mean midpoint height between the beam paths, and Rd is the gas constant for 

dry air,  2.867x10−4 kPa m3 kg−1. 

The Halifax Harbour ocean surface can be assumed to be aerodynamically smooth and flat 

even with small waves because the surface roughness is low compared to solid buildings or tall 

vegetation (Arya, 2001). Furthermore, in a smaller body of water like a harbour the waves are 

wind-waves (weak and generated nearby), which, unlike swell-waves (strong and generated far 

away), move in the same direction as wind in the harbour. Wind-waves have lower surface 

roughness because they travel with the wind and less momentum is transferred between the air and 

water. While large swell, when moving against the wind could have a higher surface roughness, 

in the harbour the waves are always small wind-waves. The biggest obstruction to flow is the 

dockyard and jetty at the edges of the path. These represent only 2% of the path for the IR beam. 

The jetty’s significance within the sonic anemometer footprint is examined further in the results 

(see Section 3.3.3). 

 

2.3.2. Sonic data processing and characteristics 

The total number of observations obtained during the period Dec 6th, 2020, to April 28th 2021 

was 181709. If data were being collected 100% of the time the potential observations would be 
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205920 at minutely sampling frequency, therefore the sonic was operating 88% of the time. The 

instrument operates at 10 Hz but was programmed to output minutely average values and 

calculated covariances. An observation is logged as incomplete if there are less than 50 samples 

out of a potential 600 per minute due to, for example, rain droplets on the sonic transducers. As 

discussed previously, there are also missing data chunks of about 8-10 days due to late downloads 

(holidays, illness) and a power outage; these are not recorded so they are not included in the 

incomplete observation fractions in Table 2. 

 

Table 2: Sonic anemometer data products 

Description Symbol Incomplete (Percentage) 

Friction velocity  u∗ 13407 (6.5%) 

Acoustic temperature Ts 12218 (5.9%) 

Covariance between Ts and Uz (vertical wind 

speed) 

〈Uz, Ts〉 13407 (6.5%) 

 

According to the method selected by the manufacturer described by Roland et al. (2006), u∗ 

is calculated from covariances of wind speed components Ux, Uy, and Uz (in instrument 

coordinate system bubble-levelled with surface): 

 

Equation 7  u∗ = (〈Ux, Uz〉2 + 〈Ux, Uy〉2)
1

4 . 

 

The Obukhov length, whose sign determines the form of the stability correction, is calculated from 

sonic outputs in Equation 8 as shown by Rebmann et al. (2012). 

 

Equation 8  L =
−u∗

3

gkv

TsKelvin

〈Uz,Ts〉
 

 

Some resulting statistics for 1/L (proportional to the water surface heat flux): the mean for 

the entire measurement period is -0.03 and over 75% of the data is negative, i.e., unstable surface 
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layer conditions prevail.  The unstable conditions are the result of the surface water temperature 

being greater than the air temperature. Figure 2-6 shows a time series of 1/L, while the histogram 

for 1/L is also shown in Figure 2-7.  

 

 

Figure 2-6: Time series of 1/L. 

 

Figure 2-7: Histogram of 1/L. Red line indicates 1/L = 0. The x-axis is limited to view only 

88% of the data so that the peak shape is visible. The mean of this selection of data is  

-0.018. The mean for the whole data set is -0.030 (indicated by blue line). 

Unstable Stable 
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Next, the temperature as a function of height is also represented by a stability-corrected log 

profile, similar to the velocity profile in the MOST formalism (Flesch et al., 2016). The 

temperature profile, T(z), at the sonic anemometer instrument location is calculated from the sonic 

temperature, the friction velocity, and the Obukhov length (Ts, u∗, L): 

Equation 9 T(z) ≅
u∗

2TsKelvin

kv
2gL

[ln (
z

zs
) − ΨH (

z

L
) + ΨH (

zs

L
)] + TsKelvin . 

    ΨH (
z

L
) = {

−5
z

L
                (L > 0)   Stable

2ln [
1+y2

2
]                (L < 0)   Unstable

 

 

The height of the sonic instrument’s measurement point is zs. The value of T(z) was calculated for 

the mean path height for the top and bottom paths using this formula, accounting for height 

variations due to tides, and those temperature values were used in the spectroscopic retrieval of 

concentrations. Resulting statistics for T(z) at the mean height (variable in time) of the bottom and 

top paths are shown in Table 3. 

Table 3: Statistics for T(z) at the time-variable mean height of the bottom and top paths. The 

total count is smaller than the total sonic data entries (181709) because this is now merged 

with water level data. 

 T(zbottom) T(ztop) 

count 161233 161233 

mean 2.55 2.55 

std 6.71 5.54 

min -1391.00 -537.00 

25% -1.05 -1.10 

50% 2.33 2.29 

75% 6.07 6.07 

max 21.94 21.81 
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The temperature calculation produced extremely negative temperatures (T(z) < -30°C), 

which were obviously not physical, for ~300 data points (0.19%). The temperature differences 

between calculated T(z) at the two mean path heights as well as the temperature measured from 

the gas analyzer sample cell (Tcell), since they are all with ~1 m of each other, should be within a 

reasonable range of the moist lapse rate of 6.5 °C/km, which over the mean path difference of 

1.385 m amounts to 0.01 °C. Allowing for instrumental bias between measured Ts and Tcell and 

potential uneven heating of the air near the jetty, as well as expected departures from the average 

lapse rate, the difference in temperatures should still be within a few degrees on average (as is 

clear from the statistics shown in Table 3). Figure 2-8 shows calculated T(ztop) compared to 

measured Tcell  for the month of January; Figure 2-9 shows the difference between calculated 

T(ztop) and measured Tcell, from now on referred to as Terror, over the same date range. Tcell is 

measured by the gas analyzer sample cell, which is located closer to the top path then the bottom 

path at 42 cm below the mean top path. It is expected that Terror should only be a few degrees. It 

is unclear if data points subject to artifacts from the T(z) calculation can be found by looking for 

unphysically negative temperatures alone. The solution to this was found by characterizing the 

data as a function of u∗ and L. 
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Figure 2-8: The temperature at the height of the mean top path, T(ztop), should be the closest 

to the temperature measured by the gas analyzer sample cell, Tcell. Plotted only for the month 

of January to show finer details. 

 

Figure 2-9: The temperature difference between T(ztop) and Tcell, from now on referred to 

as Terror. While anomalies on January 12th and 23rd certainly appear suspicious, it is not 

completely clear from Terror alone which data points are an artifact produced by the T(z) 

calculation. 
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To help identify where the T(z) calculation is causing errors due to the breakdown of MOST, 

u∗ versus Terrorwas plotted and this produced an elbow-shaped curve, shown in Figure 2-10. From 

this plot it is apparent that the breakdown in the T(z) calculation is contained below a u∗ of 0.2 

m/s. The most extreme discrepancies are below a cut-off of 0.05 m/s, but it is not clear how to 

become convinced of what precise u∗ cut-off is most appropriate such that all the points in this 

segment of data are biased in the same way. For example, there are still many reasonable 

temperatures at low u∗ values, even below 0.05 m/s. 

 

 

Figure 2-10: Plotting u∗ versus Terror produces an elbow-shaped curve that is suggestive of 

a breakdown point in the T(z) calculation. Red and yellow segments identify data with u∗ 

less than 0.05 m/s and 0.20 m/s, respectively.  
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It was shown in Table 3 that T(ztop) and T(zbottom) are very similar data sets. T(zbottom) 

is one meter below where Tcell  is measured. This is double the distance from Tcell  to T(ztop). 

T(ztop) was used to decide on a filtering method for the T(z) calculation, while T(zbottom) was 

used to test the method. Therefore, Table 4 shows statistics relating to T(zbottom)  when 

temperatures corresponding to the u∗ segments shown in Figure 2-10 are filtered out. Filtering u∗ 

too high, e.g., 0.2 m/s eliminates large numbers of data points unnecessarily (30%). Figure 2-11 

shows how u∗ filtering looks in the temperature time series. It is evident that the u∗ > 0.2 m/s 

filter removes temperatures that follow the temperature trend. Filtering at u∗ of 0.05 m/s removes 

only 3204 (2%) of the data points but still leaves unphysical temperatures as can be seen in the 

table where the minimum value is -74°C. There could be a middle-ground value of u∗ to use, 

however this seemed too arbitrary, and the investigation of L characteristics below provided a 

better solution. 

Table 4: Statistics of  T(zbottom) when temperatures corresponding to the u∗ segments are 

filtered out. Values in °C. 

 No u∗ filter u∗ > 0.05 m/s u∗ > 0.2 m/s 

count     161233 158537 113483 

% lost 0 2.0 29.7 

mean           2.55 2.57 2.89 

std            6.71 5.27 5.39 

min        -1391 -74.28 -11.86 

25%           -1.05 -1.06 -0.79 

50%            2.32 2.31 2.57 

75%            6.07 6.06 6.48 

max           21.94 21.94 21.94 
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Figure 2-11: u∗ filtering effects shown on the times series of T(zbottom). u∗ > 0.2 m/s 

removes points that follow the trend while u∗ > 0.05 m/s leaves points that are erratic. 

 

To look further into why low u∗ values are associated with the temperature errors, L (which 

is derived from u∗ ) and the covariances used to calculate u∗  were also plotted versus the 

temperature difference Terror . Figure 2-12 shows Terror  plotted against L, and the covariance 

between the pairs (Ts, Uz), (Ux, Uy) and (Ux, Uz). Near zero each of these parameters coincides 

with large negative values in the T(z) calculation, and therefore, in Terror as well. Wind speeds 

close to zero lead to the covariance parameters tending to zero and this causes nonphysical results 

in the T(z) calculation.  From the data it appears that the discontinuity in L tends to negative infinity 

from the positive L side, which is the stable case. On the unstable (L < 0) side it appears that the 

ln and 4th root functions in Equation 9 either slow or cancel out the 1/L discontinuity, at least 

enough to suppress it in the data. This agrees with expectations from MOST theory wherein the 

calculations break down due to near zero wind speeds, when stability correction terms become 

erroneous and sonic measurements can also become error prone (Arya, 2001). Therefore, an 

attempt was made to filter data points based on the discontinuity in L to see if it led to a more 

targeted way to flag and remove the artifacts in T(z). Figure 2-13 shows the elbow-shaped curve 

from Figure 2-10 now with a filter for L in the range of 0.0 < L < 2.0. This L filter range was 

chosen because it eliminates the discontinuity observed in L in Figure 2-12 (top-left plot). In Figure 

2-13 it is apparent that this L filter eliminates all the obvious high error temperatures while leaving 

more points intact at a range of lower u∗ values. Figure 2-14 is the temperature plot, as in Figure 
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2-11, this time with L filtering instead of u* filtering. It shows a more effective yet conservative 

filtering when based on L.  

 

Figure 2-12: Terror versus L (top-left) and versus the covariance between the pairs Ts & Uz 

(top-right), Ux & Uy (bottom-left) and Ux & Uz (bottom-right).  
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Figure 2-13:  u∗ versus Terror ‘elbow plot’. Green region shows the filtered data for an L 

filter with the range of 0.0 < L < 2.0. 
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Figure 2-14: L and u∗ filtering effects compared in the times series of T(zbottom). A filter 

of u∗ > 0.2 m/s removes too many points while the L filter is conservative of data but 

removes obvious regions where calculated T(z) has broken down. 

 

Filtering out data points where L is between 0 and 2.0 more specifically targets the data 

where T(z) calculation produces unphysical values but keeps many more data points intact. Table 

5 shows T(zbottom) statistics after L filtering, which only removes 648 points (0.4%) compared to 

3204 points (2.0%) with the weakest recommended u∗  filter that still does not remove many 

unphysical points. To remove all the unphysical points a u* more like 0.2 m/s could be used which 

eliminates 48445 points (30%), but many of those points are very likely mis-targeted and removed 

unnecessarily. Ultimately, the L filter was used to produce flux results, however further filtering 

with u* could be performed in future investigations if necessary. The FTIR retrievals were 

performed with unfiltered temperature data so that retrieval results could be fully analyzed with 

respect to these filtering methods as well. Finally, Figure 2-15 shows the filtering comparison for 

T(zbottom) during the entire measurement period. 
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Table 5: T(zbottom) statistics as a result of L filtering. Remaining points are all within a 

plausible range for the observation campaign. 

 Removed points (0 < L < 2.0) Remaining points (L < 0 or L > 2.0) 

count      648 160585 

% of total 0.4 % 99.6% 

mean        -4.90 2.58 

std         65.66 5.25 

min      -1391.09 -11.86 

25%         -3.25 -1.05 

50%          2.84 2.32 

75%          6.61 6.06 

max         15.05 21.94 

 

 

Figure 2-15: The temperature for T(zbottom) during the whole campaign with L and u∗ 

filtering effects compared. 

 

2.3.3. Surface roughness homogeneity 

In certain scenarios the assumption of a homogenous surface layer used in calculating the 

N2O fluxes (Section 2.3.1) may not be valid. Depending on wind direction, the topography and 

structures in the harbour may have an impact on air flow measured by the sonic anemometer, and 

thus be unrepresentative of the flow over open water. Wind flowing on the NW-SE axis is parallel 
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to the shore and the assumptions made about the homogeneity of the surface layer over the 

smooth/flat water surface are assumed to hold. However, for wind flowing on the SW-NE axis the 

instrument footprint includes the ocean surface, as well as the jetty and urban structures. On this 

axis, there are step changes in the surface roughness, zo, and surface temperature, which violate 

the homogenous surface layer assumption and may affect the flux calculation. Figure 2-16 shows 

the wind roses for 2- and 10- m measurements in the harbour during the 2018 campaign. The 2-m 

measurement is from a 2-D sonic anemometer on the jetty. The 10-m measurement is from a 

METOC station at CFB Halifax, 1.6 km away, very nearly at sea level. The measurement spans 

September 15th to October 20th. It is encouraging to see that the prominent wind direction is along 

the water, with the harbour likely behaving as a channel during this period. Wind direction is 

considered in the results of the 2020/2021 campaign and in Section 3.3.3. 

 

 

Figure 2-16: Wind roses for measurements at 2-m and 10-m heights above ground level, very 

near sea level. The 2-m measurement is from a 2-D sonic anemometer on the jetty. The 10-

m measurement is from a METOC station at CFB Halifax, 1.6 km away. The measurement 

spans September 15th to October 20th in 2018. Percent distribution is shown radially, angle 

represents wind direction and colour represents wind speed in ms -1.  

2-D sonic anemometer 2-m AGL CFB wind 10-m AGL 
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2.4. Spectroscopic Retrievals 

This section describes the work carried out to optimize the retrievals of N2O from IR 

absorption spectra recorded between the spectrometer and retroreflectors on the opposite side of 

the harbour. The ‘retrieval’ process involves simulating the absorption spectra of all significant 

gases within the spectral range where N2O is IR-active. The target (N2O) and interfering species 

(here H2O, CO2, and CO) concentrations are adjusted iteratively until the Root Mean Square 

(RMS) residual, i.e., the difference between the measured and simulated spectra, is minimized 

(Figure 2-17). The retrieval ‘window’ specific to the target gas (N2O), i.e., an optimized subset of 

the broadband measured spectral range, was selected based on an early work test over August 2 to 

September 14, 2018 (50,000 individual observations) to account for many environmental 

conditions. In the 2018 data set, each spectrum is a one-minute average of 240 IR spectra acquired 

at 4 Hz over the broadband IR range of 500-5000 cm−1 (2-20 μm).  In the 2020 data set, spectra 

were two-minute averages of 480 IR spectra, which resulted in improved spectral noise levels. 

2.4.1. Retrieval window width 

Early in the project, 2018 campaign data was used to compare the spectral fitting 

performance in a strong N2O absorption band to that in two weak bands. The weaker bands were 

at 2400-2500 cm−1 and 2500-2600 cm−1, as compared to the more standard window in the 2000-

2200 cm−1  range. Initially it was thought that since the weak band had almost no interfering 

species the fits would perform better, but even though the RMS residual was low, the retrieved 

concentration of N2O was unphysically high. The benefits of working with the strong band are a 

higher signal to noise ratio for the N2O absorption features; the trade off is that interfering H2O 

lines are always mis-fitted to an extent leading to systematic fit residual features.  

Further studies were performed to determine the most optimal spectral interval of the strong 

band. Windows used in previous studies were compared to a working window previously used by 

our research group. One window, 2080-2270 cm−1, was used in another OP-FTIR field study 

(Paton-Walsh et al., 2014). Another window, 2000-2240 cm−1, was the result of a study that 

sought to optimize FTIR retrieval windows through an iterative approach (Esler et al., 2000). From 

this work it was understood that depending on path length, the optimal window width is affected 

by N2O and interfering species absorption depth. In the strong N2O band, selecting a window that 

is too wide results in too many absorption lines of CO2 becoming saturated, which ill-conditions 

the spectroscopic retrievals due to signal levels dropping to zero. For H2O and CO2, it was also 
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found that selecting too narrow a window can reduce retrieval accuracy because of a lack of 

spectral features for the fit to work with. This information was used to select a window that had 

lines with ‘good’ signal levels for each species, without any saturation. An example of a fit using 

this optimized window is shown in Figure 2-17. 

 

Figure 2-17: Top panel: An example of a ‘retrieval’ fit (red) in the optimized N2O window 

of 2132.5-2235 cm−1 . The fit is the sum of component gas spectra. Bottom Panel: The 

residual is the difference between the fit and measurement. A single IR spectrum (1 min 

average of 240 spectra in 2018) provides one observation of the target gas concentration in 

the time series for the campaign. 

With new 2020/2021 data, test retrievals on a short time period were again performed to 

compare 2018 and 2020/2021 retrieval results given that the measurement system had changed. 

Mainly, the difference during the 2020/2021 campaign was the use 50% larger retroflectors to 

reduce IR beam loss from divergence. During this process, the previously optimized spectral 

window was adjusted slightly in several tests to see if any further improvements could be made. 

200 spectra were used from April 16th in the 2021 campaign and from October 3rd in the 2018 

campaign, as these date ranges where the best match for temperature and relative humidity, which 

strongly influence the spectrum transmittance and fits. Fit RMS for N2O retrievals in 2021 is half 

of what it was in 2018 due to the larger retroreflector arrays; this upgrade is described in detail by 

Power (2021), albeit for HCHO retrievals. Using the new 2021 data, starting from 2132.5 – 2235 

cm−1 the window was extended, narrowed, and shifted to try to include or exclude line features to 
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improve the fit RMS residual value. The conclusion of this re-investigation was that the previously 

determined window was still optimal. 

 

2.4.2. Interfering gas components and HITRAN 2016 spectral database 

The modelled gas components in the retrieval of N2O in the 2132.5 – 2235 cm−1  window 

are H2O, CO2, CO and N2O. In 2021 it was timely to check if updating the molecule spectroscopic 

database used by MALT, which is the HITRAN database, improves fit performance. The 

wavenumber region surrounding our favoured windows was reviewed to see if any components 

were missed that might have newly added lines in the HITRAN database. Since the residuals of 

fits became less noisy from 2018 to 2021 (see previous section), there was now some new structure 

discernible in the 2021 residuals that may have been caused by another interfering species. Ozone 

(O3) was added to the 200-spectrum ensemble of fits, but there was not enough O3 absorption for 

a good fit (negative O3 values were retrieved) and extending the window to try to cover more of 

the O3 spectrum led to the need of introducing new interfering species with not enough absorption 

and thus diminishing returns in terms of retrieval accuracy and stability. Even though it adds more 

data, a wider window is not always better due to fitting challenges. A wider window made it harder 

to fit the continuum of the spectrum, which is the background variation of the 100% transmission 

level determined by the spectrometer optics. 

The update to HITRAN 2016 spectroscopy (from 2012) was tested molecule by molecule 

using the same 200-spectrum ensemble from 2021 data as described above. The effect of the update 

of a single molecule on our fitting residuals was examined, and test retrievals were performed with 

various component combinations. The result of this analysis was that some molecules were 

updated while others were not. The principal interfering species H2O and CO2 were updated 

because there were clear and specific (physical) improvements to the fit. The update of H2O 

resulted in changes to the residual of ~1% for some affected H2O lines (Figure 2-18). The 

improvements in the fit due to updated lines of H2O and CO2 were above the instrumental SNR 

and resulted in an average improvement to the RMS residual of 7% across the 200-spectrum 

ensemble. The 2016 N2O HITRAN update was a partial band update that gave poorer accuracy of 

fit due to the transition between the updated and not updated regions falling within our window. 

As such, the original 2012 N2O spectroscopy was kept. For CO there was no change visible above 

noise, so the 2012 spectroscopy was kept. O3 was tested but results included poor band coverage 
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and non-physical fits. The effect of updating O3 on most of the residuals was close to the noise 

level and thus not significant enough for further investigation; in any case, O3 was not included in 

the final component list. 

 

 

 

Figure 2-18: Top: The spectroscopic fit residual transmittance (for one example spectral fit) 

when using the HITRAN 2012 database (blue) for all gas components when substituting only 

H2O from the HITRAN 2016 database (red). Bottom: The difference (2016 H2O updated 

spectroscopy minus original 2012 spectroscopy) between the absolute values of the two 

residuals, where negative values are improvements to the fit. Many more H2O lines are fit 

better than worse. 
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2.4.3. Fit residuals and data filtering 

After the obvious failed fits due to missing or erroneous pressure and temperature inputs 

were removed (some due to the divergent T(z) calculation as described in Section 2.3.2), a general 

analysis of the quality of the retrievals was performed. Figure 2-19 shows the IR signal level (at 

2500 cm-1) vs. RMS residual “elbow” plot for the entire ensemble of 2020-2021 data, unfiltered 

with respect to L. This plot always takes the shape of an elbow, below which the signal becomes 

insufficient to allow MALT to converge on a solution; the RMS residual increases exponentially 

from this point, which can be considered a minimum viable signal value. The plot reveals a sharp 

drop off in fit quality below 0.1 (~10% of maximum signal at the beginning of the campaign). The 

elbow is also a logical place to set a threshold of acceptance for the RMS residual as well. Using 

this plot, the data was filtered for any observation where either of the observation paths (top or 

bottom) had RMS residual above 0.012. The elbow starts to bend gradually sooner but below RMS 

of 0.012 it makes more sense to use the signal level to make a cut and preserve more data. This 

information was used to create a selection (Figure 2-19 Region (A)) of acceptable data that satisfies 

an RMS residual < 0.012 (red line) and an IR signal > 0.1. Region (A) filters out 20% of the data 

set. The ‘either’ conditional when processing the two paths is important because the conditions 

can vary between the bottom or top path acquisition. This represents the greatest risk for false 

concentration differences (∆C). There is a high tolerance in ∆C (since it is a subtraction) for varying 

conditions of both paths when in unison, however, if one individual path has severe and unique 

issues it can spuriously influence ∆C, i.e., not due to flux.  
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Figure 2-19: IR signal at 2500 cm−1 vs. the RMS residual. Acceptable data satisfies an RMS 

< 0.012 (red vertical line) and an IR signal > 0.1 (black horizontal line); this filtering forms 

the region in the dashed box (A). H2O concentrations are shown with a colour bar since they 

tend to have a correlation with RMS residual values. 

 

Figure 2-20 shows the individual N2O concentrations with and without a filter applied to 

keep only observations where the signal is above 0.1 for both paths. Again the “both” is crucial as 

can be seen in the figure at the end of February (circled in red), where only one path is functioning 

and retrieving physically possible N2O levels. The other path is retrieving unphysical values (<< 

280 ppbv) because the signal is so low during this time. This was due of the bottom beam path 

being obstructed by snow. This would have created an enormous false signal in ∆C if it was not 

filtered out. While 0.1 looks slightly too conservative on this plot as it keeps noticeable dips in 

N2O concentration, it is still in question weather some of those dips are physical, and, since both 

paths dip in unison, if the ∆C accuracy is affected. In Figure 2-19 above a signal of 0.1 does align 

with where RMS residual starts to noticeably decrease, so this is assumed to be a good starting 

point. As individual events of interest are examined, the logs and data quality for specific date 

ranges can be re-checked. 

(A)         
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Figure 2-20: Black and tan show the unfiltered N2O retrievals for top and bottom paths, 

respectively. Blue and orange (top and bottom) show only the data with IR signal > 0.1. 

Squares used for top paths and circles for bottom paths. Red oval highlights a region of 

interest where only the top path is functioning. 

 

2.4.4. Retrieval input temperature sensitivity study 

The 200 spectra from April 16th, 2021, used in other retrieval testing above where also used 

in an investigation of the sensitivity of ∆C to retrieval temperature error. The test spans from 12:00 

pm April 16th to 4:00 am April 17th. The retrievals are steady for the majority of this time range, 

then starting at 2 am, they become very noisy, which gives a good variety of data to test on. The 

first test was to examine the effect of varying the temperature by increments of 1∘C. For an 

individual retrieval this had the effect of misfitted lines in the retrieval window. The single-

spectrum fit residual shown in Figure 2-21 changes for individual lines by ~5% per ℃. The result 

of this on the ensemble of spectra, shown as a time series in Figure 2-22, is that the temperature 

offset appears to affect the concentration retrieved much like a constant offset. Therefore, if the 

temperature offset (or error) is in the same direction, e.g. positive temperature shift for both top 

and bottom paths in the experiment, the resulting offset in the retrieved N2O concentration nearly 

cancels out in the concentration difference, ∆C, which is the value needed for flux. The calculated 

∆C from retrievals varies by ~0.05 ppb for a 1∘C temperature error. This is shown in Figure 2-23. 
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Figure 2-21: Top panel: Bottom path residual compared for a single fit during a steady period 

on April 16th, 2021. The fit used either Tcell as input temperature in the retrieval (blue), or 

Tcell  +  1∘C (red), or Tcell  −  1∘C (yellow). Bottom panel: Shows the differences between 

retrieval residuals to see the change in spectral line fits when using Tcell  +  1∘C (red) or 

Tcell  −  1∘C (blue). 
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Figure 2-22: Time series of retrieved [N2O] from 200 spectra during 12:00 pm April 16th to 

4:00 am April 17th. Purple and blue: top and bottom path retrievals, respectively, using the 

temperature from the sample cell (Tcell). Green and red: top and bottom path retrievals using 

Tcell + 1∘C. Cyan and yellow: top and bottom path retrievals using Tcell  − 1∘C.  
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Figure 2-23: Top panel: ∆C calculated using [N2O] from the three temperature test retrievals 

using Tcell as input temperature (blue), or Tcell  +  1∘C (red), or Tcell  −  1∘C (Yellow). Bottom 

panel: Difference between ∆C values when using Tcell  −  1∘C (red) or Tcell  +  1∘C (blue). 

 

Test retrievals where also performed with the temperature offset applied asymmetrically. For 

example, using Tcell  +  1∘C for the top path and Tcell  −  1∘C for the bottom path. The resulting 

time series of ∆C are shown in Figure 2-24. This results in a 5 ppb error in ∆C and represents the 

worst-case scenario wherein temperature errors are asymmetric for the top and bottom retrievals. 

This is a large enough error to potentially change the sign of the calculated flux. However, this 

scenario seems unlikely since the instrumental bias should be very similar for temperature 

observations taken with the same instrument within 2 minutes of each other (which for Ts is an 
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average of 1200 samples). The same process was repeated for an asymmetric offset of  ±0.05∘C, 

which is on the order of the mean temperature difference between the T(zbottom) and T(ztop) 

temperature profile calculations for the full campaign period (see Section 2.3.2). The result of that 

test is shown in Figure 2-25 where the error in ∆C is approximately 0.24 ppb. Further results 

looking at the error in ∆C  but using the retrieved values for the full observation period are 

examined in Section 3.2. 

 

 

Figure 2-24: ∆C  calculated using [N2O] from the three test retrievals with temperature 

offsets. Blue: Retrieval used Tcell for both paths as input temperatures. Red: Retrieval used 

asymmetric temperature perturbations with Tcell  +  1∘C used for the top path and Tcell  −  1∘C 

used for the bottom path. Yellow: Retrieval used the opposite temperature perturbations, 

with Tcell  −  1∘C used for the top path and Tcell  +  1∘C used for the bottom path. 
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Figure 2-25: Top panel: ∆C  calculated using [N2O] from the test retrievals with input 

temperature incremented by 0.05∘C . Blue: Retrieval used Tcell  for both paths as input 

temperatures. Red: retrieval used asymmetric temperature perturbation with Tcell  − 0.05∘C 

used for the top path and Tcell  +  0.05∘C used for the bottom path. Bottom panel: Difference 

between ∆C caused by the asymmetrical input temperature error. 

 

2.4.5. Dry mixing ratio correction 

The flux calculation of Flesch et al. (2016) requires ∆C to be in the form of a dry mixing 

ratio. Starting from the N2O concentration, CN2O, retrieved from FTIR observations in units of ppb, 

the dry mixing ratio is found as follows,  
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Equation 10  CN2O, dry =
1x10−9(CN2O)

1−1x10−2(CH2O)
 , 

where CH2O is the concentration of H2O retrieved from FTIR observations in units of percent. The 

correction from wet to dry mixing ratio results in a mean change of 1.7 ppb to a path-average N2O 

concentration. This is a 0.49% change, which is equal to the mean H2O concentration retrieved. 

The mean change in ∆C between the two paths is 0.01 ppb (mean difference is 0.17 ppb) so the 

impact of not making the correction is a 6% error in this data set. 

3. Results and Discussion 

3.1. Wind flow characteristics 

Figure 3-1 shows the wind roses for the entire measurement period (December 2020 to April 

2021) from the 3-D sonic anemometer and a nearby weather station (Shearwater jetty, 6 km away 

see Figure 1-5). It is encouraging to see good agreement in the prominent wind direction. 

Shearwater jetty is in a similar topography as our site: a shoreline location with nearby MacNab’s 

Island forming a channel with the mainland. The main difference at our study location is that the 

Halifax peninsula and Dartmouth waterfronts have a steeper elevation rise compared to the 

Shearwater area, together with taller buildings along the shoreline. This seems to block the flow 

of W-SW winds and possibly E-NE winds as well. The dominant and strongest winds at the Jetty 

were in the expected direction based on the water channel orientation, with 40% of data points 

showing wind direction as N-NW, which is also the direction of the fastest wind speeds. This was 

all the more expected since the channel opens to the Bedford Basin on this side (large open body 

of water). This is consistent with the exploratory work with 2018 wind data shown in Section 2.3.3. 

The instrument footprint that the sonic anemometer is measuring largely comes from over the 

water surface and travels parallel to the jetty obstruction, reinforcing the validity of the 

micrometeorological assumptions in this work. 
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Figure 3-1: Previous Page Map: Wind roses for two weather stations from December 2020 

to April 2021, overlaid on geographic locations of stations. Bottom Panel: Wind roses 

enlarged. Left: 3-D sonic Jetty at study location (elevation above mean sea level = 5.2 m) 

Right: Shearwater Jetty (elevation above mean sea level = 5.5 m). Percent distribution is 

shown radially, angle represents wind direction and colour represents wind speed in km/h. 

 

3.2. Retrieved concentration difference 

3.2.1. Concentration difference characteristics 

The concentration difference between the top and bottom OP-FTIR path measurements, 

(ΔC = Ctop– Cbottom) was used in the calculation of the concentration gradient. Table 6  and Figure 

3-2 show the complete statistics for the concentration difference, ∆C, after merging data sets and 

applying the filtering process described in Chapter 2. After filtering, the data set still contained a 

single ∆C  observation that is certainly an outlier with a value of -141 ppb. The next lowest 

minimum value is -23.6 ppb. The single remaining outlier was removed and the fact that there was 

only one is a good indicator that the previous filtering was optimal. Figure 3-3 shows the 

concentration differences ∆C over two days in January with three observation time lengths: the 

finest timescale possible (4m 19s), 30 min averaging bins, and a 3-hour moving average. The sonic 
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data is merged with the FTIR data where one observation (top and bottom paths) requires 4 minutes 

and 19 seconds. The uncertainty in ∆C is calculated below (Section 3.3.1) as part of the process of 

calculating flux, also using results from Sections 3.2.2 and 3.2.3, presented next. Uncertainty 

becomes a greater concern when the error bars cross ∆C = 0, as this means that the sign of the 

resulting flux is uncertain. Figure 3-4 shows the distribution of the ratio between ∆C and the 

uncertainty in ∆C. This ratio is >1 for 48% of the data set, meaning that the flux signal for those 

observations is not clearly in or out of the ocean. That percentage improves for the 30-minute bins, 

which is shown in Section 3.3 for final flux results. 

 

Table 6: Complete statistics for the concentration difference, ∆C, of N2O (dry mixing ratio 

difference in ppb) after merging FTRI and sonic data sets and filtering for outliers. December 

2020 to April 2021. 

Observation count 25768 

Mean 0.17 

Standard deviation 1.09 

Standard error (SE) 0.0068 

Minimum -23.43 

25th percentile -0.29 

50th percentile (Median) 0.13 

75th percentile 0.56 

Maximum 39.4 
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Figure 3-2: Histogram of the concentration difference, ∆C, of N2O (dry mixing ratio 

difference in ppb). December 2020 to April 2021. 

 

 

Figure 3-3: Concentration difference, ∆C, of N2O (dry mixing ratio difference in ppb) from 

January 5th to 7th. Black: finest acquisition timescale of 4 m 19 s. Green: 30-minute averaging 

bins. Red line: 3-hour moving average. 
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Figure 3-4: distribution of the ratio between ∆C and the error in ∆C (dry concentrations of 

N2O). Data to the right of x=1 (red line) has smaller error than the observed magnitude of 

∆C. 

 

3.2.2. Variance of retrieved concentration 

The variance of the retrieved concentration, σC, is used in flux uncertainty calculations to 

represent the random error of the OP-FTIR instrument and spectroscopic retrieval. Bai et al. (2011) 

have reported a variance of 0.3 ppb, whereas Flesch et al. (2016) used 0.4 ppb in their calculations. 

To get a comparison for σC from the Halifax Harbour campaign a 4-hour section of data with good 

signal levels and a smooth time variation was used to find the root mean square error (RMSE) to 

a best fit curve (2nd degree polynomial fit). This analysis assumes the concentration is not erratic 

(smooth curve) so that the RMSE approximates σC. However, the RMSE is a result of instrumental 

noise as well as changes in concentration due to environmental factors, such as wind speed; 

therefore, σC is likely smaller than the RMSE. Figure 3-5  shows the section and fit for spectra 

from the top path, for which the resulting RMSE was found to be 0.26 ppb. Therefore, under good 
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observation conditions our system can retrieve concentrations with similar noise as was observed 

in Bai et al. (2011). However, Figure 3-6 shows the same 4-hour section for the bottom path spectra 

where the RMSE was found to be 0.74 ppb, which is higher than the value used by Flesch et al. 

(2016). The bottom path is closer to the ground/water and is expected to be less precise because 

of the lower signal return from an array with more wear and tear, as well as possibly due to 

increased air scintillation effects (as observed by viewing the scene through the system telescope). 

These sections on January 1st, 2021, are during a time of excellent (campaign high) signal level 

(arbitrary IR signal intensity 0.87 – 1.08), and it was assumed that the random noise would be 

greater at lower IR signal levels, but, as shown below in Figure 3-7 and Figure 3-8, that is not 

necessarily the case. 

 

Figure 3-5: Retrieved concentration from top path spectra on Jan 1st, 2021. Blue line: Best 

fit polynomial with RMSE = 0.26 ppb. Colour bar: IR signal at peak of 2500 cm-1.  
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Figure 3-6: Retrieved concentration from bottom path spectra on Jan 1st, 2021. Blue line: 

Best fit polynomial with RMSE = 0.74 ppb. Colour bar: IR signal at peak of 2500 cm-1. 

 

The RMSE analysis was performed for a longer period of 12 hours on April 26th, 2021, near 

the end of the experiment. The signal level is now half that of the January time period used above, 

as cube corner coatings degraded and became coated with salt. Figure 3-7 shows the results for the 

top path. The RMSE was found to be 0.19 ppb, which was the best found during this analysis. 

Figure 3-8 is the result for the bottom path using the same time range, where the RMSE was found 

to be 0.25 ppb. These values were used as spot checks to determine that it is reasonable to use a 

variance of σC  =  0.3 ppb as reported in Bai et al. (2011). It also shows that σC is not adversely 

influenced by IR signal levels (> 0.1) in our experiment, most likely because N2O absorptions are 

still deep compared to instrumental noise levels, which matters most for the retrieval. 
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Figure 3-7: Retrieved concentration from top path spectra on April 26th, 2021. Blue line: Best 

fit polynomial with RMSE = 0.18 ppb. Colour Bar: IR signal at peak of 2500 cm-1. 

 

Figure 3-8: Retrieved concentration from bottom path spectra on April 26th, 2021. Blue line: 

Best fit polynomial with RMSE = 0.24 ppb. Colour Bar: IR signal at peak of 2500 cm-1. 

 

3.2.3. Sensitivity of concentrations to retrieval temperature differences  

The sensitivity analysis of Section 2.4.4 showed, based on a selection of 200 spectra, the 

impact of arbitrarily imposed 1℃ retrieval temperature errors on retrieved concentrations and 

concentration differences. Now, based on data for the entirety of the 2020/2021 campaign, and 

utilizing temperature inputs from two separate instruments, the sensitivity of concentrations to 

temperature is empirically characterized. More specifically, the error in the concentration 



73 

 

 

difference, ∆C, due a 1℃ error in the temperature input used in the retrieval process is estimated 

from a large ensemble of real-world data, as described below. It is important to characterize the 

error in ∆C and not just in individual single-path concentrations, because as seen in both simulation 

and real-world data, these error values are quite different. 

N2O concentration retrievals were performed with temperature inputs from two instruments 

at the sonic anemometer site. First, a single temperature (Tcell) from the sonic’s IR gas analyzer 

sample cell was used to retrieve both top and bottom path concentrations. Then, a separate retrieval 

was performed using two different temperatures, corresponding to the average height of the top 

and bottom beam paths (T(ztop), T(zbot)), respectively. These temperatures at heights ztop and zbot 

were calculated using the vertical temperature profile derived from the 3-D sonic anemometer data. 

In comparing the retrieval results that used these different temperature inputs it was found that the 

retrieved concentrations differed little for a given path. The mean difference between 

concentrations retrieved for the top path using Tcell versus T(ztop) was ~1 ppb (~0.3% for N2O). 

For the two retrieval configurations using different temperature inputs, the mean difference in ∆C 

is calculated as 

[d∆C]mean = [N2Otop(Tcell)– N2Obot(Tcell)]
mean

−

                                      [N2Otop (T(ztop)) – N2Obot(T(zbot))]
mean

 , 

and is equal to only 0.03 ppb. Thus, the top path concentration error of ~1ppb seems partially 

cancelled out by the subtraction of a similarly altered bottom path concentration in order to 

calculate ∆C. The RMS residuals of the spectral fits also show that MALT did not struggle to 

compute the retrievals with different temperature inputs, which could be the case if input 

temperatures were non-representative of true environmental conditions. The mean RMS residual 

for all the fits of top path spectra using T(ztop) was 0.006765 (0.6%), while using Tcell the mean 

RMS residual of the top path spectra only differed by 0.000041 (0.0041%), or a 0.6% difference. 

Similar small differences were found for the bottom path spectral retrievals using Tcell and T(zbot). 

The sensitivity of the retrieved concentration difference to retrieval input temperature, 

d∆C dT⁄ , is needed to calculate the uncertainty in flux; the two retrievals using different input 

temperatures were used to estimate this. First, we examine single path concentration temperature 

sensitivity, dC dT⁄ . Starting with the top path, T(ztop) was subtracted from Tcell to calculate the 
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input temperature differences (dT), here standing in for a true error in input temperature. The full 

(but filtered) measurement period covers a large real-world sample set and the temperature 

differences in the two retrieval inputs span a wide range with the majority falling between -8℃ 

and 5℃. The differences between the retrieved concentrations, dC, due to the input temperature 

differences ranged around -20 ppb to 20 ppb. Figure 3-9 shows dC plotted against dT with a linear 

fit used to determine dC dT = 2.21⁄ . Figure 3-10 shows the same analysis but for the bottom path 

where dC dT = 2.22⁄ . Therefore, a 1℃ error in temperature is estimated to cause an error of 2.22 

ppb in retrieved N2O concentration. The average N2O concentration retrieved during the 

measurement period was 346 ppb, therefore the percent error due to a 1℃ error in temperature is 

estimated as 0.6%. 
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Figure 3-9: dC, the difference in retrieved concentrations of N2O resulting from two unique 

input temperatures differing by dT, plotted against dT. Top path spectra analysed for the full 

measurement period from December 2020 to April 2021 (25768 data points). 
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Figure 3-10: dC, the difference in retrieved concentrations of N2O resulting from two unique 

input temperatures differing by dT, plotted against dT. Bottom path spectra analysed for the 

full measurement period from December 2020 to April 2021 (25768 data points).  

 

MALT simulations showed that for a concentration difference, ∆C , the error due to 

temperature depends on whether the temperature error for the two paths is in the same or opposite 

directions from a ‘true’ temperature. A systematic instrumental error that results in both top and 

bottom path input temperatures being 1 ℃ higher than the true value has little to no effect on ∆C, 

while a source of error (either systematic or random) that stretches or compresses the temperature 

gradient will affect ∆C significantly, and even has the potential to change the sign of the calculated 

flux. To estimate the real-world effect of this in the field, d∆C dT⁄  was examined for the two 
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different but reasonable retrieval input temperatures. Figure 3-11 shows the change in ∆C when 

using the two different temperature inputs. For dT in this case the average path height temperature 

of the T(ztop) and T(zbot) was subtracted from Tcell. The slope is d∆C dT⁄ = 0.16, which is 10-fold 

smaller then dC dT⁄ ; however, typical measured values of ∆C are also much smaller than single 

concentrations (∆Cmean = 0.17 ppb while N2Omean  =  346 ppb). The difference in retrieved ∆C 

can reach ~20-40 ppb, however, for 80% of the data the change to ∆C is less than 0.7 ppb and the 

mean change in ∆C is 0.06 ppb. Since u* is a key component in determining the T(z) profile, it 

will contribute to errors in T(z) and hence dT; u* is plotted in colour in Figure 3-11 and shows 

some weak correlation with dT, but does not show any obvious correlation with dΔC. It is unclear 

yet what is causing the occasional extreme effects on d∆C in this large ensemble retrieval input 

temperature test. Some of the higher d∆C values coincide with a larger temperature difference 

between ztop and zbot as shown in Figure 3-12. For some d∆C values of ~40 ppb, the difference 

between fit RMS residual from the two methods is higher than usual, which is shown in Figure 

3-13. This could be the case of those rare MALT retrievals that do not fit correctly due to some 

secondary effect of temperature in the fitting process, via spectral temperature dependencies. In 

the uncertainty analysis and calculations that follow, the value of d∆C dT⁄ = 0.16 ppb/℃ will be 

used (Section 3.3.1). The absolute value of ∆C was measured as 0.08-1.26 ppb (10th and 90th 

percentiles, respectively). Therefore, for every 1℃ error in input temperature the error in ∆C is 

estimated as 13-207% for 80% of the data. This seems very high; however, this value is multiplied 

in the flux uncertainty equation by variance in the temperature measurement, which is usually 

small (0.1~0.2 ℃ as expected from the moist lapse rate over a small height range).  A histogram 

of the ratio d∆C dT⁄  is shown in Figure 3-14 with a peak value at 0.09 ppb/℃, while the median 

of  d∆C dT⁄  is 0.11 ppb/℃, which makes the fitted value of 0.16 ppb/℃ be a conservative first 

approximation of the sensitivity of concentration differences to temperature errors. 
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Figure 3-11: The change in ∆C (d∆C) when using two different retrieval temperature inputs. 

For dT the average path height temperature of T(ztop) and T(zbot) was subtracted from Tcell. 

Displayed in colour is u* which has some correlation to dT expected from theory.  
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Figure 3-12: Same as Figure 44, with sonic-derived vertical temperature difference now 

plotted in color. Positive (red) values mean top path is predicted to be warmer than bottom 

path.  

 

Figure 3-13: Same as Figure 44, with difference in the top path RMS residuals now plotted 

in colour. Negative residual difference values mean that retrievals using T(ztop) had a slightly 

better fit than retrievals using Tcell. 
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Figure 3-14: Histogram of the ratio d∆C dT⁄  with the peak value at 0.09 ppb/℃. The absolute 

value for 90% of the data is less than 3.5 ppb/℃. 

 

3.3. Campaign N2O Flux Results 

3.3.1. Uncertainty calculation 

To find the uncertainty for the calculated flux the formulation presented by Flesch et al. 

(2016) was used. The campaign concentration data ensemble was used to refine and customize the 

d∆C dT⁄  and σC variables and that analysis was shown above (previous Sections 3.2.2 and 3.2.3). 

Other variables that are more established, which this project could not quantify in any case, were 

taken from literature (described below). The equation for error propagation in the flux calculation 

is shown in Equation 11 (Flesch et al., 2016).  

Equation 11  
δF

F
= √(

δSc

Sc
)

2

+ (
δ ∫ Km

∫ Km
)

2

+ (
δΔC

ΔC
)

2
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The first term is the relative uncertainty in the Schmidt number and is assumed to be 
δSc

Sc
 =  0.2 

(Flesch et al., 2016). The second term is the relative uncertainty of the integral over the FTIR path 

of eddy diffusivity of momentum (Equation 5).  The value of 
δ ∫ Km

∫ Km
 was empirically approximated 

by sonic anemometers at three heights on a tower by Flesch et al. (2014), where it was shown to 

be strongly dependant on u* with the relationship,  

Equation 12  
δ ∫ Km

∫ Km
≅ 0.009(u∗)−1.37 . 

Lastly, the uncertainty in the concentration gradient, ΔC, is expected to have two components: 

Equation 13  
δΔC

ΔC
=

√2σC
2

ΔC
+

dΔC

dT
σT

ΔC
 . 

The first component represents the quadrature sum of the variance of the top and bottom retrieved 

concentrations due to OP-FTIR instrumental precision. The value of σC  =  0.3 was used from 

(Bai et al., 2011), which was confirmed to broadly agree with values from this experiment (Section 

3.2.2). The second component accounts for uncertainty in the retrieved concentration difference 

due to uncertainty in the temperature input into the retrieval. Here a change was employed to the 

equation used in Flesch et al. (2016) where 
dΔC

dT
 was used instead of 

dC

dT
 . An analysis of values of 

dΔC

dT
 and  

dC

dT
 from this project is discussed in Section 3.2.3. The resultant uncertainty values thus 

calculated are compared to those calculated using the 
dC

dT
 value used in Flesch et al. (2016) in the 

following paragraph. Finally, the standard deviation of the temperature error, σT,  was also found 

to be strongly dependant on u* during the tower experiment in Flesch et al. (2014) and was 

modeled as, 

Equation 14  σT ≅ 0.045(u∗)−1.07 . 

 

In Flesch et al. (2016) a value of  
dC

dT
 =  0.0038(C) was used in Equation 13, where 0.0038 

is a ratio of the error in C to the measured C, or 0.38%. For the average measured concentration 

of 347 ppb this error amounts to 1.3 ppb, which is about half of our inferred value for a single path 
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concentration (2.2 ppb). In any case, the error propagation for a function ΔC(C1, C2, T) = C1(T) −

C2(T) implies the error in ΔC to be, 

δΔC =  √2σC
2  +  σT

dΔC

dT
 , 

which suggests that the value 
dΔC

dT
 should indeed be used instead of 

dC

dT
 (the former having a 10x 

smaller value of 0.16 ppb/℃ as inferred in Section 3.2.3). However, our error estimate is in fact 

larger than Flesch et al. (2016) since ΔC also has smaller values (then a single path concentration) 

in the observed data set (0.17 ppb, 0.13 ppb, 0.29 ppb, 0.56 ppb for mean, median, 25th and 75th 

percentiles, respectively, as shown in Table 6), then the relative ratio of 
dΔC

dT
 =  0.16 ppb/℃ to 

ΔC  is needed to give a sensitivity value in the same format as the 0.0038 value from Flesch et al. 

(2016). This ratio is 0.94, 1.23, 0.59 and 0.29 in the mean, median, 25th and 75th percentile sense. 

Therefore, 
dΔC

dT
 used in this project is 247x (0.94/0.0038) more sensitive to temperature error than 

in Flesch et al. (2016) – for a mean ΔC of 0.17 ppb.  

To summarize, the first term in Equation 11, representing the uncertainty in the Schmidt 

number is constant at 
δSc

Sc
 =  0.2. The second term for the uncertainty of the diffusivity integral 

has a median value for the data set of 
δ ∫ Km

∫ Km
 =  0.04. The third term for the uncertainty of the 

concentration difference has a median value for the data set of  
δΔC

ΔC
 =  1.07 (the median is used 

here because near zero ΔC values in the full data set skew the means of the ratios). The total 

uncertainty of the flux for the median value of the data set is 
δF

F
 =  1.09 or 109%. To compare 

these relative contributions for the range of values in the observed data set refer to Table 7. 
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Table 7: Contributions of uncertainty terms to final flux (relative) uncertainty. The 

uncertainty in the concentration difference, 
δΔC

ΔC
, is the dominant term for most of the data set. 

The extremely large maximum values in 
δΔC

ΔC
 are due to near zero ΔC values (minimum ΔC =

4x10−6 ppb).  

 δSc

Sc
 

δ ∫ Km

∫ Km

 
δΔC

ΔC
 

δF

F
 

Mean 0.20 0.07 11.33 11.36 

Median 0.20 0.04 1.07 1.09 

Min 0.20 0.01 0.01 0.20 

10% 0.20 0.02 0.37 0.44 

25% 0.20 0.03 0.58 0.63 

75% 0.20 0.08 2.29 2.30 

90% 0.20 0.14 5.88 5.88 

Max 0.20 12.80 134088.33 134088.33 

 

The previous analysis is for the finest time resolution available in the merged data set of 4 

m 19 s. It was assumed that the flux does not vary significantly for an interval up to 30 minutes. 

This allows for the resampling of the data for a mean flux in each 30-minute interval. To represent 

the standard error of the mean the average uncertainty during each 30-minute interval is reduced 

by a factor of 1
√n

⁄ , where n is the number of samples in the interval. The histogram in Figure 

3-15 shows the completeness of these 30-minute intervals, with 7 samples per bin being the 

maximum and 0 samples per bin being a missed observation. Over the ensemble, 70% of 30-minute 

averaging bins that had recorded data were complete with the maximum of 7 samples per 30 

minutes, 22% of intervals with observations in them had 6 samples, and 8% had less than 6 

samples. 
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Figure 3-15: Histogram of the number of 4 m 19 s observations in each 30-minute interval. 

A complete sampling interval has a maximum of 7 observations. 

 

Now that the flux data set is completed with uncertainty values, Figure 3-16 shows a 

histogram of the ratio of flux and to the error in flux (whereas Figure 3-4 used only the  

ΔC

δΔC
 portion of the uncertainty). This gives an approximation of the signal to noise ratio present 

in the calculated flux dataset. When this ratio is equal to one this represents a critical threshold 

where the flux is measured to be negative or positive but just at the noise level. For 4 m 19 s 

intervals 
F

δF
 >  1 for 46% of the data. Figure 3-17 shows the same ratio with the data set resampled 

to 30-minute intervals. Due to reduced uncertainty in the mean and smoothing of noisier 

measurement periods, 
F

δF
 >  1 for 69% of the data at 30-minute intervals. Note the change of x-

axis limits and the higher values of 
F

δF
 in Figure 3-17. 
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Figure 3-16: Histogram of the ratio of flux to error in flux (4 m 19 s intervals). Data to the 

right of x=1 (red line) represents 46% of data points and has smaller error than the observed 

magnitude of flux, so the direction of flux (source or sink) is predicted with more certainty. 

 

Figure 3-17: As in Figure 49, but in 30-minute intervals, with 69% of points above red line.   
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3.3.2. Flux result overview and seasonal values 

As an overview of the N2O ocean-air flux, data Table 8 shows the statistics for calculated 

fluxes in 30-minute intervals, as well as in daily means. The minimum daily flux was −50.78 ±

12.49 g
N2O

 ha−1 h−1, recorded on December 13, 2020. This negative flux means the ocean was a 

sink of atmospheric N2O. The error in daily means is calculated as the average of the error in the 

30-minute observations on that day. The daily error is not reduced by the square root of n, as would 

be the case with standard error in the mean, because the flux cannot be assumed to remain constant 

all day. The maximum daily flux was observed just 3 days after the minimum on December 16th, 

2020, with a value of +51.90 ± 15.79 g
N2O

 ha−1 h−1 .  Over the observation period, flux was 

negative for 61% of the time; using the mean flux and the total hours observed, the total measured 

N2O absorbed from the atmosphere by the ocean was −10.81  x 103 gN2Oha−1. Prior knowledge 

suggested the expectation of the ocean being a net source, as discussed in Chapter 1 (Thomson et 

al., 2012), however, that is not what was observed in Halifax harbour from December to April. 

There is certainly the possibility that if we had observed 100% of the time during the campaign, 

the mean flux could end up being very different, especially given the strong episodic events 

discussed in Section 3.3.4. 

Table 8: Statistics for calculated fluxes in 30-minute intervals and in daily means. 

 30-minute means (g
N2O

 ha−1 h−1) Daily means (g
N2O

 ha−1 h−1) 

Count 3895 100 

Mean -5.55 -5.17 

Standard deviation 28.23 16.81 

Standard error (SE) 0.45 1.68 

Minimum -253.2 -50.78 

25% -18.66 -16.98 

50% (Median) -4.44 -5.74 

75% 6.56 5.42 

Maximum 244.5 51.91 
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Figure 3-18 shows the 30-minute N2O ocean-air flux for an example four-day period from 

January 18th to 22nd plotted along with a 3-hour moving average, the tidal water level as well as 

the diurnal cycle. There is no significant correlation of flux to tidal or diurnal cycles. Figure 3-19 

shows the daily mean N2O fluxes for the full 5-month observation period together with the daily 

mean retrieved concentration differences, ΔC. Daily mean ΔC correlates very well to the flux (note 

the inverted y-axis to make it easier to compare), which is promising for additional usability of 

data collected when the 3-D sonic anemometer was not available, which includes September – 

October of 2018 and May – December of 2021. Daily mean ΔC can be used to qualitatively identify 

significant flux events because the sign of flux (capturing whether the ocean is a source or sink of 

N2O at a given time) is entirely due to (opposite of) the sign of ΔC. Much of the time even the 

relative scale of peaks in daily mean ΔC lines up with peaks in flux, so to quantify flux only a 

constant multiplier may suffice for certain scenarios.  

 

 

Figure 3-18: 30-minute N2O flux (orange, with uncertainty shading) during a four-day period 

from January 18th to 22nd, 2021. Black dashed line: 3-hour moving average. Blue line: Tidal 

height. Background blue and yellow bands: Diurnal cycle. Positive flux is out of the ocean. 
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Figure 3-19: Daily N2O fluxes (orange) and retrieved concentration differences (blue) for the 

full campaign period. Positive flux is out of the ocean.  Concentration differences shown 

reflected about x-axis to highlight correlation to flux. 

 

Returning to the work of Manizza et al. (2012), who modelled seasonal variation of ocean 

to atmosphere N2O flux, Figure 3-20 shows the model predictions, which are now divided into 

latitude bands as opposed to a global map (Section 1.1.3). The model has a simplified approach to 

N2O biological production controls and does not account for the variation in coastal ecosystems, 

in part due to the coarse resolution of 320 km by 320 km. However, it can serve as an order-of-

magnitude comparison between observations at Halifax Harbour and predicted global ocean-

atmosphere fluxes. In the geographic region north of 30°N the model predicts N2O fluxes of –0.2 

to 1.0  molN2Om−2yr−1 during the time of year that the Halifax observations were made. In the 

10-30°N region the model predicts smaller N2O fluxes of –0.1 to 0.2 molN2Om−2yr−1. Shown in 

Figure 3-21, the N2O flux measurements from Halifax harbour were converted to the same units 

of  molN2Om−2yr−1 and resampled to 15-day intervals (approximately bi-monthly) for an easier 

comparison to the model prediction. The magnitude of our total N2O flux observations is more 

similar in scale to the model prediction at 10-30°N, even though Halifax is at 45°N.  Also, 

similarities are not found between our observation and the model in the seasonal variation of total 

N2O flux at latitudes > 30°N, with the model predicting a transition from small negative to small 

positive total flux (blue line in Figure 3-20) in late fall to early winter, a peak positive flux in mid-
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winter and a diminishing flux into spring. Interestingly, the overall negative (in fall and winter) 

thermal N2O flux component (red line in Figure 3-20, panel b) does agree well with our 

observations in both scale and seasonal variation. Also interesting is the fact that the N2O flux due 

to ventilation (convective transport from deeper water) is positive, and we observed a strong albeit 

transient ocean-source event in December (Section 3.3.4).  It is conceivable that more of such 

events could have occurred during some of our missed observations in winter. Again, the 

comparison to the global model (320 km by 320 km resolution) zonal average for latitudes > 30°N 

can only serve as an order-of-magnitude verification of the validity of our measurement-derived 

flux in a coastal setting. 

  

Figure 3-20: Seasonal ocean-air flux model predictions modified from Manizza et al. (2012). 

Left panels:  zonal flux averages for 10-30°N.  Right panels:  zonal flux averages for >30°N.  

Note the change in y-axis scale for left vs. right panels. Panels (a): O2 flux with (blue) total 

flux, (red) thermal flux component, (dashed magenta) ventilation flux component and (green) 

production flux component. Panels (b): N2O flux in molN2Om−2yr−1 with (blue) total flux, 

(red) thermal flux component, and (dashed magenta) ventilation flux component. Panels (c): 

Heat flux. Blue highlighted area represents the Halifax Harbour measurement period from 

December 2020 to April 2021. Positive flux is out of the ocean.   

10-30°N > 30°N 
a) a) 

b) b) 

c) c) 
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Figure 3-21: Halifax Harbour ocean-air N2O flux in 15-day means and same units as the 

seasonal model prediction of Manizza et al. (2012). The error bars are the mean of the 30-

minute errors in each 15-day interval. The colour of each point is a measure of how 

completely each 15-day period was observed (fraction of time observed out of total possible 

measurement time) given various interruptions in data collection. 

 

3.3.3. Relationships between N2O flux and wind, tides and heat flux 

The placement of the 3-D sonic anemometer was a matter of some debate prior to instrument 

deployment in December 2020. The OP-FTIR measures average concentrations within a path 

across the water, with the shore assumed to have no significant impact on the measurements. The 

3-D sonic anemometer, however, is a measurement at a point, and the properties measured by the 

sonic (turbulence, heat flux) will correspond to the surface conditions within an upwind footprint. 

An optimal placement for the sonic was chosen as described in Section 2.1.2. Now, post 

experiment, a review of the data ensemble is possible to potentially expose any bias (e.g., flow 

being unrepresentative of the ocean area) caused by the influence of local physical structures near 

the 3-D sonic anemometer tower. If there is a bias it should primarily be related to wind direction, 

where if the wind encounters the length of the jetty structure at the water’s edge head-on it is 

expected to influence the wind properties more than if the wind is traveling parallel to the jetty. 

Figure 3-22 shows the friction velocity and the flux vs. wind direction with wind speed plotted in 

color. Wind directions of 0, 90, 180, 270 degrees are N, E, S, W respectively. As seen in the wind 

rose in Figure 3-1 (Section 3.1) the most frequent wind direction is from the N (0 deg) to NW (315 

deg), and these directions correspond to the highest wind speeds. More frequent wind directions 
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end up having more data points so a larger range of fluxes can be seen in these sectors. 

Additionally, it is true that higher wind speeds result in larger u*, which also results in a larger 

flux. The distribution of wind directions and speeds fits with the expected wind flow in a harbour 

channel for which the most unobstructed path is oriented from the NW to the SE, with prevailing 

winds coming from the NW during the time of year observed. There is no obvious bias with wind 

direction, but we now explore further.  

 

Figure 3-22: The friction velocity, u*, and the N2O flux vs wind direction, with wind speed 

plotted in color. For wind direction 0, 90, 180, 270 degrees are N, E, S, W respectively.  

 

To better inspect the distribution of the data for different wind directions Figure 3-23 and 

Figure 3-24 show “violin” plots with the data separated into wind direction bins each spanning 45 

degrees and centered on the cardinal direction labelled. If there is a bias in flux induced by the 

jetty structure affecting the sonic anemometer measurements, then a noticeable difference should 

be seen between less obstructed wind directions parallel to the jetty (NW to SE) and more 

obstructed wind directions perpendicular to the jetty (SW to NE). The data is further split into two 

tidal ranges with data above the mean water level labelled as “High” and data below the mean 

water level labelled as “Low”. Figure 3-24 uses only data above the 75th percentile for high tide 

and only below the 25th percentile for low tide, thus filtering out conditions at mid-tide. It is 

conceivable that a bias due to the jetty obstruction would affect the results differently depending 

on the tide. Perhaps for observation in the low tide bin, when the jetty is an average of 0.87 meters 
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higher above the water surface than in the high tide bin (1.3 meters when the mid tide is filtered 

out), the larger obstruction could introduce a more prominent step change in surface roughness 

leading to larger eddies and more vertical wind velocities and therefore increasing the range of 

calculated N2O fluxes. However, it is in fact the high tide bin that tends to have a larger range of 

fluxes (wider vertical distributions in Figure 3-23 and Figure 3-24), when the obstruction from the 

jetty is the smallest. This effect could potentially have a physical explanation related to either 

weather patterns or ΔC being affected by the mixing of deep and shallow ocean water as it flows 

into the harbour.  

 

 

Figure 3-23: Violin plot with N2O flux data separated into wind direction bins, each spanning 

45 degrees and centered on the cardinal direction labelled. The data is further split into two 

tidal ranges with data above the mean water level labelled as “High” and data below the 

mean water level labelled as “Low”. Directions highlighted by a blue circle are over open 

water and directions highlight by a grey square are over land and buildings. Dotted lines on 

the distributions represent the 25 th, 50th and 75th percentiles. 
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Figure 3-24: Same as Figure 3-23 except only tide levels from the 25th percentile and below 

are used for the “Low” bin and only tide levels from the 75 th percentile and above are used 

for the “High” bin. Effectively, Mid-tide” data is hidden in this plot. 

 

Figure 3-25 and Figure 3-26 show violin plots for the u* measurement. There are some 

differences between high and low tides, however, there are no stand-out features that are present 

depending on wind direction being perpendicular (SW-NE) or parallel (NW-SE) to the jetty. It is 

difficult to determine from this data what is physical to the harbour environment and what may be 

due to the placement of the sonic anemometer. Its is encouraging for the project that there is 

nothing obviously concerning showing up in these plots. In the end the sonic was placed in the 

best location that could be reasonably accessed in a working harbour and we do not discern 

noticeable issues with that placement. Consequently, the flux results were not filtered by wind 

direction and instead we opted to examine wind direction effects on a case-by-case basis. 
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Figure 3-25: Violin plot with u* data separated into wind direction bins, each spanning 45 

degrees and centered on the cardinal direction labelled. The data is further split into two tidal 

ranges, with data above the mean water level labelled as “High” and data below the mean 

water level labelled as “Low”. Directions highlighted by a blue circle are over open water 

and directions highlight by a grey square are over land and buildings. Dotted lines on the 

distributions represent the 25th, 50th and 75th percentiles. 
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Figure 3-26: Same as Figure 3-25 except only tide levels from the 25th percentile and below 

are used for the “Low” bin and only tide levels from the 75th percentile and above are used 

for the “High” bin. Effectively, “Mid-tide” data is hidden in this plot. 

 

Another relationship that is interesting is between u* and the flux of N2O. Higher u* values 

are seen to correlate with a larger range of values in N2O flux for a given set of ∆C values, which 

is shown in Figure 3-27. The limiting factor for N2O flux during the observations in Halifax 

Harbour may be aerodynamic resistance of the boundary layer (rather than the internal rate of N2O 

production/consumption or storage rate). Heat flux also has a similar relationship with N2O flux 

and ∆C, with the sensible heat flux component, Hs, shown in Figure 3-28 calculated from the air 

density, ρa , heat capacity, cp , and covariance of sonic temperature and the vertical wind 

component, (Ts, Uz)cov, as: 

   

Hs = ρacp〈Ts, Uz〉 (Rebmann et al., 2012). 

 

The latent heat flux component, Le, shown in Figure 3-29 was calculated from the latent heat of 

vaporization, Lv, and covariance of the mass density of H2O and the vertical wind component Uz 

as: 
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Le = Lv〈[H2O], Uz〉 (Rebmann et al., 2012). 

 

Positive heat fluxes correspond to heat transport from the ocean surface to the atmosphere and 

large out of ocean (positive) heat fluxes are seen to correspond to both large into ocean N2O fluxes 

(negative) and large out of ocean N2O fluxes (positive). These possibly point to the wind (and heat 

flux) conditions driving a convective overturning of water in the Bedford Basin. Wind (through 

the mechanism of driving ocean currents) and/or heat flux (through the mechanism of ocean 

surface cooling affecting water density) could increase convective overturning, bringing deeper 

anoxic and N2O-rich (N2O supersaturated) waters to the surface.  Another process operating in 

parallel is that ocean cooling affects not only water density but also gas solubility, so strong ocean 

surface cooling could also lead to N2O fluxes into the ocean, discussed further in Section 3.3.4.  

 

 

Figure 3-27: N2O ocean-air flux plotted against the concentration difference, ∆C, with 

friction velocity, u* overlaid in color. 
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Figure 3-28: N2O ocean-air flux plotted against the concentration difference, ∆C, with 

sensible heat flux, Hs, overlaid in colour. Postive Hs is out of ocean. 

 

Figure 3-29: Figure 3-30: N2O ocean-air flux plotted against the concentration difference, 

∆C, with latent heat flux, Le overlaid in colour. Postive Le is out of ocean. 
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3.3.4. N2O ocean source event case study 

This section focuses on an event that was observed between December 15th and 17th 2020. 

Figure 3-31 and Figure 3-32 are an overview of several variables during the time of the event. In 

panel A, individual top and bottom path concentrations, IR signal levels, spectral fit RMS residuals 

from retrievals and ∆C are plotted as a function of time. These help identify any false signals that 

may have been missed by the filtering process. For example, if the signal levels are severely mis-

matched, where one path dips below 0.1 while the other stays high, this will result in a false signal 

for ∆C. For this time range the signal of both paths tracks together very well and the December 

19th to 21st period with signals differing by a maximum of ~0.25 does not show any sign of a false 

∆C  signal forming. The retrieval fit RMS residuals also track and are stable for both paths, 

confirming the retrieval process is not in a period of mis-fitting due to, e.g., too much beam 

extinction due to excessive atmospheric water vapour. N2O concentrations for both paths are also 

reasonable and track together closely. All this to say that the December 16th event is a real 

environmental event and not an artifact of the OP-FTIR system.  

Panel B shows the N2O flux and further parameters to aid in the analysis of this event.  The 

flux spike starting on December 15th and lasting until 12:00 noon on December 17th represents a 

total source of 2.00 KgN2Oha−1 released by the ocean surface. Precipitation data from two nearby 

weather stations is included (Windsor Park and Shearwater Jetty), as well as the sonic 

anemometers diagnostic flag, which corresponds to heavier rain events where droplets obstruct the 

transducers. Freshwater flux is of interest as a driver of flux outside of biological 

production/consumption of N2O. Freshwater flux onto the ocean surface could affect gas solubility 

via reduced surface N2O concentration to sub-saturated levels, effectively lowering the N2O fluxes 

observed given a set amount of internal production. Alternatively, a lack of freshwater flux rules 

out this mechanism as a contributor to the observed fluxes. Unfortunately, we have not been able 

to witness such an effect as our instruments only function intermittently during heavy continuous 

rainfall. Two options were to look before and after rain events, or more interestingly, during heavy 

snow fall, which does not necessarily stop our instruments from recording useful data. Regardless, 

this N2O ocean source event is not during heavy continuous rain, which is known even though the 

weather station data is intermittent because the sonic diagnostic flag is “on” only intermittently 
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meaning there was some intermittent rain but not heavy or long enough to affect the transducers 

continuously. There was no new snow reported during the event, however there may have been 

some snow melt of the previous snow fall.  

A second mechanism that affects flux in addition to internal production/consumption is 

thermal changes of the ocean surface that could affect the storage capacity of N2O. Thermal 

changes might influence flux via changes to the solubility of N2O in seawater. Panel C shows some 

relevant weather measurements and tide levels. Of note is the drop in temperature and elevated u* 

during the N2O source event. Panel D shows the wind direction and speed. The source event 

coincides with high wind speeds from the northwest. Winds from that direction during winter, over 

land and from the north, are usually cold compared to temperatures on the eastern coast of Nova 

Scotia.  
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Figure 3-31: Ocean source event overview part 1. Panel A: 30-minute mean ∆C values in black, 3-hour moving average in blue. 

Individual path N2O concentrations in orange and yellow (yellow is the top path in each color pair); IR signal level at 2500 cm-

1 in green and yellow, and fit RMS residual from MALT in red and yellow. Panel B: Flux (black with orange moving average); 

precipitation data from two nearby weather stations (dark and light purple); new reported snow (teal); sonic diagnostic flag 

(orange). 
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Figure 3-32: Ocean source event overview part 2. Panel C: Sonic temperature (black); gas analyzer sample cell pressure (red); 

tide height (blue); u* (purple) Panel D: Wind vectors (arrow points in the direction wind is travelling), and wind speed (color 

bar). 
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As a coupled measurement of wind and temperature covariance, heat flux is a parameter that 

clearly correlates well with the N2O ocean source event as well as some smaller flux events during 

this time period. The sensible and latent heat fluxes are shown in Figure 3-33. Between December 

15th and 12:00 noon on December 17th the total energy lost from the ocean surface was 

37.24 MJ m−2, which is consistent with other measurements indicating a colder airmass flowing 

quickly over a warmer ocean. This heat loss is expected to cool the ocean and increase gas 

solubility, which creates conditions where N2O is subsaturated and a negative flux of N2O (into 

the ocean) is expected.  In fact, a positive (out of ocean) N2O flux was observed. 

 



103 

 

 

 

 

Figure 3-33: Top: N2O ocean source event peaking on December 16th. Flux (black) correlates well with sensible (blue) and latent 

(red) heat flux. ∆C (green) also traces the shape of the flux peaks well. 
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Using the heat flux measurement from the 3-D sonic anemometer, an estimate of the ocean 

surface temperature change was calculated for a set of assumed mixed layer thicknesses being 

affected by the cooling. We assume all the heat moving away from the ocean surface is cooling a 

slab of the ocean to a fixed depth, d, so that the rate of temperature change is: 

ΔTslab =  
−(Hs + Le)(3600)(24)

d∗ρslab∗Cpslab
 , 

where Hs and Le are in units of Wm−2, d is in meters and ΔTslab is the sea surface cooling rate in 

℃ day−1 . The sea surface specific heat, Cpslab , was assumed to be 4000 Jkg−1K−1 , and the 

density, ρslab,  was assumed to be 1028 kgm−3. As the extent of heat transfer to lower depths of 

the ocean was uncertain, we assumed a set of thicknesses being influenced by the strong surface 

cooling via wind-driven mixing and wave action. Figure 3-34 shows the estimated sea surface 

cooling for slab thicknesses of 0.01 m, 0.1 m, 1 m and 10 m. The 1-meter thickness shows cooling 

results (10°C / day) closest to the air temperature measurements from the jetty site and seems 

consistent with the order of magnitude expected for mixing depth with high winds (assuming no 

large-scale convective overturning). During the full length of the ocean source event, the mean 

cooling of the ocean surface for a 1-meter thickness was −3.67 ℃ day−1, and the total cooling 

during the event, which lasted 2.5 days, was −9.15 ℃. Assuming a surface salinity of around 30‰ 

at this time of year (Shi & Wallace, 2018), the solubility of N2O during a sea surface cooling from 

8 to -1 ℃  would increase from 3.511 x 10−2 molkg−1atm−1  to 4.989 x 10−2 molkg−1atm−1 

(Weiss et al., 1980). A 42% increase in the solubility of N2O in the ocean surface layer during this 

time suggests that the different cause of the N2O ocean source event observed must indeed be very 

dominant over this solubility increase, which favours an ocean sink. 
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Figure 3-34: Estimated sea surface cooling rates for surface ocean slab thicknesses of 0.01 

m, 0.1 m, 1 m and 10 m. 

 

From Section 3.3.3 we saw that u* correlated well with the N2O flux, with a possible 

explanation being that the limiting factor for gas transport from the surface is the aerodynamic 

resistance of the boundary layer (rather than the internal rate of gas production/consumption rate, 

or storage rate). Therefore, processes enhanced by high u* (possibly convection, buoyancy and/or 

surface waves) are a likely candidate for the driver of positive N2O flux in Halifax Harbour during 

our observations. High wind inducing currents and mixing in the ocean surface could affect 

overturning of basin water and bring anoxic, N2O-rich (N2O supersaturated) waters to the surface. 

The rapid cooling of the ocean surface could also impact convection through buoyancy driven 

overturning of the slightly denser surface water (0.1% increased density for a 10℃ decrease in 

water temperature). Figure 3-35 shows a plot with N2O flux, heat flux, and the concentration 

difference in the top panel, but for a different time period in spring 2021 (April 7th – April 13th), 

when buoy sea surface temperate (SST) data was available in Halifax Harbour (measured every 

hour). The bottom panel shows the sonic temperature, buoy SST as well as wind speed and u*. 

There are a series of smaller N2O flux oscillations, there are negative (into ocean) dips that 

correlate well with wind speeds and u* as well as heat flux peaks (outlined in light blue on Figure 

3-35). These dips also seem to correlate with diurnal peaks in air temperature which are also 
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somewhat visible in SST, though are lagged slightly later than the flux dips and wind peaks. These 

results motivate further analysis and study with regards to dynamical drivers of N2O in the ocean 

surface, especially in a coastal environment. If wind is indeed a limiting factor of N2O flux in 

Halifax Harbour, long-term continuous measurements with a high temporal frequency that 

captures short-term events will be needed to estimate annual totals. The ability to uncover 

information about subsurface production/consumption, whether measuring seasonal cycles or 

multi-year climate forcing effects, will also require high frequency measurements. 

 

Figure 3-35: Top: N2O flux (black), heat flux (purple) and ∆C (green). Bottom: Sonic 

temperature (black), Halifax Harbour buoy SST (blue), wind speed (orange) and u* (red). 

Peak features of interest are outlined (light blue). 
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4. Conclusion 

4.1. Key results 

In the course of this work, we derived N2O fluxes using the flux-gradient approach, based 

on spectral FTIR gas measurements and 3-D sonic anemometer measurements in Halifax Harbour, 

spanning December 7th, 2020, to April 28th, 2021. The data completeness for the measurement 

period was 57% in 30-min observation bins, of which 69% revealed N2O flux signals larger than 

their calculated uncertainties. During the observation period the ocean behaved as a net sink of 

N2O and the sum of flux for the observed duration was −10.81  kgN2Oha−1 (into ocean). The 

average N2O flux was characterized by a similar magnitude and seasonal sign as the thermal N2O 

flux component in a global ocean-atmosphere gas flux model of Manizza et al. (2012). Moreover, 

we found that powerful short-term emission and absorption events exist, which strongly motivate 

high frequency monitoring of gas flux. One such event was observed from December 15th to 17th 

2020, when the ocean emitted +2.00 KgN2Oha−1 in the span of 2.5 days (a large portion of the 

total flux during the entire observation period). This ocean N2O source event was shown to be 

consistent with high-frequency ocean surface dynamics, i.e., high winds cooling the harbour 

surface waters and driving the overturning of N2O-saturated deeper waters in Bedford Basin. These 

types of events, if unobserved, appear to result in large errors in annual N2O ocean emission totals, 

which reinforces the need for continuous monitoring in coastal environments. Finally, since 

physical processes will also be affected by rising temperatures and related climatic changes, this 

also motivates long-term observations to monitor the response of ocean-air N2O exchange. 

 

4.2. Achievements and reflections for improvements 

The goal of this project was to demonstrate the performance of an OP-FTIR system used 

with the flux-gradient method to measure ocean-air fluxes of N2O. This was accomplished and the 

process of doing so was very informative of what future work and further measurements may 

entail. Starting in September 2019, the OP-FTIR-FG method was first studied for application to 

ocean-air fluxes, focusing on preliminary data previously gathered in 2018 (without 3-D sonic 

measurements). I studied micrometeorological theory so as to be able to correctly adapt the 

instrumentation and flux formulation of Flesch et al. (2016) for the coastal location of Halifax 

Harbour. I tested for the optimal process to retrieve N2O gas concentrations from spectra produced 
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by the OP-FTIR system. I also learned to use the 3-D sonic anemometer, customized the 

meteorological tower setup, and programmed the instrument for our experiment’s particular 

requirements. In December 2020 we deployed the experiment for a fully-instrumented 

measurement campaign that lasted 5 months until the end of April 2021. I wrote extensive Python 

code and revised MATLAB code to analyze and reduce the concentration and wind data to produce 

reliable flux calculations, with rigorous uncertainties. From the data collected it is evident that the 

method’s signal to noise ratio is sufficient to derive N2O fluxes in Halifax Harbour. The results 

have given insight into the direction and magnitude of N2O exchange at the ocean-atmosphere 

interface in this costal environment in winter and early spring. 

We learned many details about the deployment of the equipment that can help future 

experiments run continuously and collect more complete data sets.  We encountered frost heave in 

the ground below our spectrometer during extreme cold weather events. It is important to monitor 

for slowly degenerating IR signals in both paths (~12 h), which can be a sign of frost heave. Even 

on the waterfront, where the ocean regulates temperatures, there was enough shifting of shore 

structures due to ice to move our spectrometer out of alignment every few days in late winter. In 

future deployments it would be best to implement a regular schedule of alignment checks; it is 

worth exploring automation of the motorized tripod head’s checking and centering of the beam on 

the highest return signal periodically. The usefulness of such automation would be applicable to 

many northern environments with freezing and thawing ground, as well as areas with significant 

erosion. For example, if our experiment were deployed to measure CH4 fluxes on an Arctic 

coastline with melting permafrost, then the IR beam would likely need frequent re-aiming at the 

retroreflectors. 

During analysis post experiment it became apparent that it would have been useful to collect 

two additional measurements that would be valuable in the future. The first is sea surface 

temperature at the measurement site. We had the capability to do this as we had an additional 

temperature probe, which in the end served a function that was not as useful as predicted in 

measuring temperature with a 3rd instrument at a lower height for approximating the temperature 

gradient. Sea surface temperature would have been much more valuable as it would have helped 

link the effects of gas solubility changes on gas fluxes due to sea surface cooling or heating (using 

the heat fluxes that we measured with the sonic anemometer). The second measurement that would 

be useful is a local log of weather, to help discern the amount of freshwater flux into the ocean; 
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this could include rain, snow or even snow melt, as snow-related parameters are not readily 

available from public sources – certainly not continuously nor co-located. In addition to a simple 

weather station like a Davis Vantage Pro Plus, which has a rain bucket, a well-positioned webcam 

could track snowfall as well as snow melt, although the measurement of surface salinity at the site 

(comprising a third useful measurement) would alleviate the complication of tracking and 

interpreting snow melt.  While freshwater flux does influence gas solubility and therefore gas 

fluxes, the exact times of heavy rain are a blind spot when our instruments do not function. 

Therefore, the ability to flag alternative freshwater flux events (snow melt or post storm run-off) 

when the instruments do function could be an asset to future studies. 

During my learning and use of the 3-D sonic anemometer I learned of further techniques that 

would help characterize the data, but these were not implemented due to time constraints. For eddy 

covariance measurements in urban locations with step changes in surface roughness it would be 

informative to model the footprint of the sonic instrument, or factor the step change itself into the 

calculations. In this project I only went as far as comparing sonic and flux results to wind direction 

and wind speed, as well as friction velocity, tide height and heat flux. Further insight may be gained 

using the high frequency sampling (10 Hz) of the sonic anemometer (as compared to the 4 m 19 s 

acquisition time of the spectrometer) to inverse-model the measurement fetch area for a better 

understanding of where the momentum flux is being measured and if obstructions could be 

interfering with flow. Another approach could be to model the surrounding structures and create 

CFD flow simulations for a set of regional wind directions and speeds. This would give an 

overview of where the flow is disturbed and no longer representative of the flow directly over 

water alone. It could also be possible to model the step change in surface roughness and, using 

measurements from a second anemometer tower in a different location, account for any 

perturbation to the flux calculation if one exists. For this project, where initial exploration was the 

goal, it was not feasible to dedicate the time or resources required to implement these ideas. 

Instead, a best guess for the deployment location of the sonic was made from visual observations 

on the jetty. However, for a future long-term experiment one, or a combination of these methods 

would ensure a truly optimal placement and processing of data from the instruments, safeguarding 

against discovering sampling bias issues after a lot of time and resources have been spent.  
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4.3. Future work 

There are numerous paths to explore further with this project. The most obvious is a longer 

measurement period to capture both long-term trends and more short-term events. With setup 

details now familiar, the instruments could run continuously except during heavy rain and fog. A 

multi-year observation could have large implications for annual budgets and for predicting the 

effects of climate change on coastal N2O flux.  

OP-FTIR N2O concentration difference data was also collected in September and October 

of 2018 and, as an extension to this measurement campaign, from May to December 2021 (albeit 

without the 3-D sonic anemometer). A method to approximately quantify the flux using available 

weather station data in the absence of a 3-D sonic anemometer was developed early in this work 

(Appendix B). This method is yet to be tested for accuracy using 2020/2021 sonic-instrumented 

data (when weather station data is also available) but could potentially be applied to the additional 

2018 and 2021 (sonic-less) data.  

There may be possibilities for simplifications to our experiment setup by sacrificing some 

accuracy and versatility that may lead to advantages such as ease of use, adoption in more 

locations, and redundancy when used along side OP-FTIR. The concentration difference, ∆C, was 

shown to be an excellent qualitative predictor of flux events. It could be worthwhile to look further 

into the data where ∆C and flux deviate from each other. Perhaps there is an approximation that 

could be used to roughly quantify flux in other measurement locations with simpler (non-sonic) 

instrumentation. The equipment could also be simplified if the target is only one specific gas, as 

opposed to the (multi-species) OP-FTIR measurement that requires complex spectral processing. 

For example, using two low-cost purpose built N2O concentration sensors on a tower to get ∆C, 

would sacrifice the benefits of open path measurements but could then be deployed to more 

locations and potentially work in the rain as well. It may also be worth exploring different 

instruments for measuring the momentum flux, the vertical temperature profile and heat flux; 

perhaps a low cost 3-D anemometer or a tower of two cheap 2-D anemometers would do just as 

well for our needs as the Campbell Scientific 3-D sonic anemometer.  

One major benefit of the data gathered with the OP-FTIR in this project has remained 

untapped, which is the ability to retroactively retrieve the concentrations for a variety of gasses 

encoded in the IR absorption spectra. Related to this, further retrievals of important interfering 
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species such as H2O or even retrievals of temperature can in turn improve retrievals of N2O. 

Methane (CH4) is our next likely target for study using the data from the 2020/2021 campaign. 

After adjusting the parameters for retrieving methane and re-processing the spectra, CH4 

concentration differences can be used to calculate flux using the same sonic anemometer data. At 

the very least, this will answer what signal to noise ratio can be expected for methane fluxes 

derived using this setup, which would be useful for planning deployment to other locations, e.g., 

salt marshes. Successfully analyzing methane (and other gas fluxes) would also add to the 

understanding of mechanisms taking place in Bedford Basin. 

Now that the air-side measurement of ocean-atmosphere N2O flux is tested and 

demonstrated, a promising next step is to deploy our technique together with sea-side 

measurements. In fact, our work has already spurred further discussion with Dalhousie 

Oceanography about physical processes linking the atmospheric conditions to microbial 

communities in the depths of the Bedford basin, as well as provided motivation for further 

continual monitoring, in combination with expanded sea-side measurements by Dalhousie 

Oceanography. Through the design, deployment and analysis of this experiment, vital knowledge 

has been gained that will aid future measurement campaigns by reducing uncertainty around setup 

and expected results, while also flagging several pitfalls that can now be avoided.  
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Appendix 

A. Logs 

A.1. Campaign Log - Martin 

November 23rd. 
-Retros and movirda built and ratchet secured 
-mobile battery stored in shed 
-Heavy SW winds  
-Sonic position determined by walking the jetty and flow around obstruction principles 

• Instead of putting it at one end facing the predominant wind direction a position 
near the middle of the jetty was chosen 

• The furthest away from obstacles and edge effects of the end of the jetty 

 
 
Nov 26 
-Setup spectrometer at DND 
-Need car pass and Padlock key to access 
-Found retros are angled ~20 degrees away from container causing obstruction 
-Measured offset and water level at two times 
 
Dec 4 
voltage at battery 116V 
 
Dec 7 sonic running 
-Water level at both sides at the same time 
-offset to retros at jetty 
-calculated path heights for instruments 
-sonic orientation input 252deg W (true north setting) 
 - using phone, photos, building across the water and checked in maps 
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Dec 11 

• Download 1 
• Water jetty calibration level taken 
• sonic time 1 hour ahead of pc time, not going to change it (laptop was in AST at this time 

in dec, so that would be AST +1, which is ADT, makes sense because I would have 
synced to laptop in November while getting the sonic ready and it was still ADT)  

• retro moved between 12-2pm 

 
Dec 16 

• Download 2 
• Temp probe discovered damaged and repaired temporarily (Martin July 20th, 2022: 

remember distinctly that the probe was hanging close to the ocean surface when found 
at low tide and at higher tide would have been underwater. Didn't seem important to 
mention until now.) 

• Water level data downloaded caught up (ast+4 time zone) 

 
Dec 18 

• repaired/shortened temp probe mounting, bad temp data around 14:30 
• moved retros at 15:30 

 
Dec 22 
download 3 
 
dec 29 
download 4 (one day late) 

• noticing that irga also has errors when the weather is very bad, not outside the region 
where the sonic stops working though and works fine after, humidity related? 

• found out FTS hasn’t been running last 6 days 
• weather has been SW to NW wind flips, weekly cycles, temps ranging up to 12C lots of 

rainfall to -5 on the flip with light flurries  
jan5 download 
Jan 11 download 

• bent back temp probe shield (license plate) 
• there are differences in the accuracy of temp sampling 

o the temp probe is exposed to sunlight in the morning and evening, and reflected 
sunlight all day 

o outdoor calibration run would be good 
o indoor calibration regardless  

 
Jan 26 measure sonic ins heights from tidal offset point 
temp probe: 0cm 
gas cell: 148cm 
sonic: 128+148 = 276 
 
progress report to committee  

• site photos/setup 
o paths/heights 

• water level calibration 
o tidal data 
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• temperature readings 
o calibration notes measurement in same room 

• u* findings 
o weather dropouts and ftir similarity  

• stray light spectrum 
• 2018 approx flux plot 

 

Feb 2 download - something obstructed the ir path 
Took images of the harbour 
 
Feb 8,12 downloads without reset - hike in so kept it short so the laptop wouldn't be damaged in 
the cold 

• This means that the record numbers will be continuous from feb 2nd  
• I don’t think is an issue unless rec num gets too high, will keep an eye on it 

 
Feb 18 

• download 
• pump filter has ice in it 
• work crew on jetty 

 
feb 24  

• walked the jetty again 14:00-15:00 
• NW winds steady winds 22km 
• winds similar laminar and fast at both ends of the jetty 

o low pressure flow around the obstacles, possibly the less true option if so 
• where the sonic is it is close but slightly lighter and more intermittent 

o could be dockside creating eddy 
• not sure which is more representative of the water 

 
Mar 04 

• the gas analyzer signal level went below tolerance for a couple days  
• at 1:45-2:15pm I turned the sonic off to clean the windows 
• H2O signal increased from 0.78 to 0.89 

o cut off is 0.8 
Mar 12 

• 15:00 walked the jetty again 
• dock is warmer than the water 
• wind off the water is cold 
• think I expect an upward component of the jetty 

o hand test over the edge 
• and a turbulent component 
• check 

o cfd simulations 
o recommended height of instruments over surface features 

April 12 
 

 
• download  
• cone in front of lower retro  
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• likely obstruction by work crews past week 
April 22 

• short rain, intermittent sun, high wind 
• transducer clear while raining could be an interesting time to look at 

April 28 
• look at temp grad vs sun 

o jetty will heat up faster than water 
o temp probe closest to water 
o sample cell closest too jetty 
o sonic furthest from both 
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Table 9: Download log 

Datetime 

Checked 
instrument  
(Cables, rigging 
secure, green 
lights) transducers 

Pump 
condition 

Download and 
Backup: 
Laptop,USB,OneDriv
e 

Check 
data  
table 
updated 
on 
laptop 
(dates) 

Cleared 
program
, 
table 
data 

resend
/run 
all,  
check 
pump 
flow 
(7),  
sonic 
az 
(252) 

data 
gap data notes 

Dec 11, 
10:30 y clear 

light 
debris, no 
water y,y,y y y y,y,y 10min 

bad/no data on dec 10 6-15:00 due to 
weather rain and sleet snow, u* looks good 
for flux most of the time 

Dec 16, 
12:37 

temp probe bashed 
off, cable intact, 
still measuring, it 
was hanging down 
about 1m so 
probably didn't 
touch water at high 
tide clear 

no 
change y,y,y y y y,y,y 15min 

temp probe inverts with cell temp on dec 15 
8:00am, might be when the probe fell down.  
Data loss 00:00 dec 13- 00:00 dec14 looks like a 
storm (high rains, snow, wind recently),  
high momentum flux on dec 15 

Dec 22, 
9:24 y y 

no 
change y,y,y y y y,y,y 12min 

dec 21 11:00 brief diag irga, big sonic drop out 
dec 21 6:00 to dec 22 6:00 

Dec 29 
12:00 

y, wood might be 
wearing but probe 
looks okay y 

no 
change y,y,y y y y,y,y 15 

late download lost dec 22 10:14 to dec 23 12:59 
(max records 8639), weather losses on dec 26 
15-21:00, 29 7:30-9:30 

Jan 5 
13:00 

y,floats higher than 
probe but no 
damage y 

no 
change y,y,y y y y,y,y 15 

weather drop outs 12:00 dec 31, 12:00 jan2 to 
12:00 jan3, missed 12hours on dec 29 due to late 
back up 

Jan 11 
11:00 y y 

no 
change y,y,y y y y,y,y 12 

light intermittent losses, 1400 jan 5, 00:00-03:00 
jan 7 

Jan 15 
11:30 y y 

no 
change y,y,y y y y,y,y 15 rain event jan 14 16:00 to 15 10:00 

Jan 21 y y 
no 
change y,y,y y y y,y,y 15  
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Jan 27 
11:45 y y 

no 
change  y,y,y y y y,y,y 15  

Feb 2 
14:00 

heavy weather not 
checked heavy rain 

no 
opened y,y,y y y yyy 15 White caps in harbour, heavy wind and rain 

Feb 8 y y 
no 
change y,y,y y n n,y,y 0 

hiked in due to snow, kept time short so laptop 
wasnt damaged by cold 

Feb 12 y y 
no 
change y,y,y y n n,y,y 0 

hiked in due to snow, kept time short so laptop 
wasnt damaged by cold 

Feb 18 y y 
ice build 
up y,y,y y y y,y,y 15 

workers on jetty, potential blocked signal 
intermittent, weather drop out feb 10,14 

Feb 24 y y 

ice 
decrease
d y,y,y y y yyy 15 steady data, co flux corr with rain events too? 

Mar 3 y y 

ice still 
there, 
maybe 
less? y,y,y y y yyy 15 h2o signal too low, window cleaning needed 

Mar 12 y y 

a small 
amount 
of ice left yyy y y yyy 15  

Mar 22 y y 
no 
change y,y,y y y yyy 15  

Mar 29 y n rain 
not 
checked yyy y y yyy 15 rainy, sonic diag 1,9 

Apr 6 
13:56 y y 

little 
water ice yyy y y yyy 15 miss days due to holiday, sonic cable cut 

Apr 12 
2:13 PM y y 

less 
water yyy y y yyy 10 

time is back to the station time, 30 sec ahead of 
pc server 

Apr 16 
12:13 y y 

not 
checked yyy y y yyy 10  

Apr 22 
14:38 y y 

no 
change yyy y y yyy 10  

Apr 28 
11:47 y y 

clear of 
water yytodo y y yyy 10  
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Table 10: Water Level Log 

Date DND Time DND dnd (cm) Date Jetty Time jetty jetty    

offset offset spect:+150 offset offset bott:+26 top:+303   

Nov 26 11:30 245       

Nov 26 14:27 208       

Dec 4 10:39 103 Dec 4 10:39 188 sonic 182 sonic alt offest = -6  

   Dec11 13:13 311    

Dec 18 16:15 222 Dec 18 14:42 276    

   Dec22 9:40 277    

   Dec 29 11:46 305    

   Jan 5 12:42 160    

   Jan 11 10:49 310    

   Jan 15 11:12 205    

   Jan 27 12:23 308    

   feb 2 too wavy      

   Feb 12 14:51 344    

   Feb 18 15:00 246    

   Mar 4 14:24 229    

   Apr 6 14:35 237  ~240 slipping tape measure end  
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B. Flux approximation for 2018 data 

 Measurements in 2018 were done with dedicated wind measurements at a 2-meter height. 

Later we were able to source measurements at 10 meters for the time period from a nearby METOC 

station at CFB Halifax. Allowing for the same assumptions as above Km can be approximated as 

follows. The first step is finding the gradient Richardson number using the following equation 

from (Arya, 2001). 

Rim =
g

T0

ΔΘZm

(ΔU)2 ln
z2

z1
   

This is at the geometric mean height zm = √z1z2 which in this case is 4.5 meters. Ri is related to 

the M-O stability parameter as, 

ζ = Ri                         Ri < 0   

 

ζ =
Ri

1 − 5Ri
              0 ≤ Ri ≤ 0.2  . 

 

These relations are only valid for a moderate stability range for example: -2 < ζ < 0.2. The 

Obukhov Length is then L =  z/ζ . From which the M-O flux profile similarity relation for 

momentum is found as, 

ϕm = (1 − 15ζ)−1/2        ζ < 0 

ϕm = 1 + 5ζ                      ζ ≥ 0 . 

Which can then be used to find the friction velocity u∗: 

u∗ =
kvΔU

(ϕmln
z2

z1
)

⁄  . 

 

The eddy diffusivity of momentum is then: 

Km

kvzu∗
= {

(1 − 15Ri)1/4          Ri < 0
1 − 5Ri               0 ≤ Ri ≤ 0.2

 . 

Which can be input into the flux gradient equations. 
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A preliminary estimate of N2O flux for the 2018 measurements using the derivation above. 

 

C. Additional Retrieval Sensitivity Testing 

C.1. Retrieval test with O3 component 

Additional figures from the test retrievals performed including O3. 
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Effect on residuals of adding O3 and extending the retrieval window. 

 

Effect on residual difference of adding O3 and extending the retrieval window.  
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C.2. Retrieval sensitivity to H2O  

From retrievals for the date range of August 2 to September 14, 2018 the fit RMS was also 

found previously. These dates are from the longest phase of the campaign before the setup was 

changed to accommodate the vertically separated retroreflectors for two measurement paths. I did 

several investigations using fit RMS to understand if different conditions affected the retrievals in 

anyway. I compared all of instrument’s parameters and retrieved gasses to fit RMS as well as N2O 

concentration from another instrument. One result of this was that the retrievals in the selected 

window are affected by the presence of H2O. With higher humidity conditions reducing fit 

accuracy by up to 15%. 

 

Show the relation between H2O concentration (y axis) the difference between our OP-FTIR 

instrument (FTS) and another collocated instrument (Picaro) measuring the point 

concentration of N2O (x axis). The colour axis represents Fit RMS. 

Another potentially useful discovery is that the fit RMS drops to as much as 50% of the typical 

value when compared to the later vertical campaign phase. Figure 2-16 shows the rms vs time for the 

single path campaign. Some clumped date ranges jump between fit RMS values of 0.07, 0.1 and 0.14. 

In the later vertical campaign fit RMS values for all dates are ~ 0.14. These clumps also show up in 
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different windows being used for the retrieval of other species. I compared every parameter 

individually against these clumps, but none could explain the step changes seen in rms at these times. 

There are two paths of investigation yet to be attempted that could help understand why this is 

happening and if future measurements could be improved by controlling for the cause of these events. 

Looking at the correlation between fit parameters to see if any co-varying relationships explain the 

step changes. Separating the fit RMS calculation to use two sub-windows to see if the fit RMS from 

one absorption line group has more significance to these events than the other. 

 

Fit RMS over time with signal strength at the 2500 cm -1 line. High RMS can be explained by 

low signal most of the time. However, for certain date ranges, such as around August 28, 

there is a step change where the Fit RMS doubles and signal strength remains unchanged. 

C.3. FOV simulation 

In the process of retrieving the vertical concentration difference I also investigated the retrieval 

method. The goal was to get familiar with all the factors involved, to check that the method was 

appropriate and find out if there are improvements that could be made. I simulated spectra to check 

the sensitivity of the retrievals to varying parameters. An example is shown in Error! Reference 

source not found. and 10 where I was looking at an instrument parameter called field of view 

(FOV). The question here was whether small inaccuracies in FOV could affect the gas spectra 
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fitting accuracy and weather fitting that parameter would be effective. Since the derived 

concentration of the gas would not change, even with much larger inaccuracies in FOV than are 

possible, it was decided that fitting this parameter would be an inefficient use of the parameter 

space. 

 

The simulated spectrum of N2O for varying values of FOV (1,8,15,22,29,35,43). The 

discrepancy between fitted FOV and the calculated FOV for the instrument was of the order 

0.1. 
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The mean transmittance is proportional to area under the spectrum and the concentration of 

N2O. It changes an insignificant amount over a large range of FOV. 

D. Note on temperature probe during the December 16th event 

The high winds and wind waves during this event damaged the mounting for a temperature 

probe at the 3-D sonic anemometer tower site. Originally the probe was at the same height as the 

jetty, however during the period between 7:00 am on December 15th and 12:30 pm on December 

16th the probe was hanging near the water surface and likely experienced some sea spray. A picture 

of the jetty edge on the same day as the source event is shown in the photo below during a site 

visit when it was discovered that the probe had fallen off and was retrieved. On the figure below 

the temperature of the probe, sample cell and 3-D sonic are compared. The probe is thought to 

have fallen close to the water on 7:00 am on December 15th because its temperature reading, which 

is lower than the other two instruments, suddenly became higher, again dropping lower after the 

mounting was repaired at 12:30 pm on December 16th. During the time when the probe was 
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dangling above the water, its temperature drops at the same rate as the air temperature. This 

accident has gives a small clue that rapid cooling was taking place even very close to the sea 

surface. During this time of year the average ocean surface temperature in the Bedford Basin is 

around 10℃ (Shi & Wallace, 2018). During the source event the probe temperature   starts at ~10℃ 

only 24 hours before reaching a minimum of ~-7.5℃.   

 

Temperature probe (blue), sample cell (orange) and 3-D sonic (green) are compared. Red 

lines show when the probe is thought to have fallen from its mounting at 7:00 am on 

December 15th and when the probe was retrieved from near the water surface (during low 

tide) at 12:30 pm on December 16th. 
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Photo from December 16th at 1:05 pm, sunny mid-day, in between the two main flux peaks in the 

N2O source event. A temperature probe was originally mounted at the end of the 2x4’ plank with 

approximately 1.8 meters of slack on the cable. It is thought to have been knocked from the 

mounting by the floating fence bobbing in the water. High tides reached 1.57 m below the jetty 

during this time. The probe likely experienced sea spray after it came loose and dangled near the 

water surface at 7:00 am on December 15th.  At 12:30 pm on December 15th the probe was pulled 

up, its functioning inspected, and taped back on the 2x4’ and later fixed more permanently at 2:30 

pm on December 18th. 

E. Note on L and potential virtual temperature 

Regarding the L and T(z) formulas which are dealing with different temperature 

measures in the various calculations.  In the strict definition of L, the temperature is a 

"potential virtual temperature", which we assume is reasonably well represented by the 

"acoustic temperature" (from the sonic). These are both different from the standard air 

temperature (maybe a few degrees). So, there were several temperatures to choose for 

FTIR retrieval input along with the option to correct the acoustic temperature using our 

H2O concentration measurement.  I opted to follow the method of Flesch et al. (2016) 
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which uses the acoustic temperature, Ts, uncorrected. I did some testing and a 

symmetrical temperature offset of 2℃ (top and bottom values offset in the same 

direction), i.e., a calibration offset between different instruments, had negligible effect on 

the retrieved concentration gradient. It is worth exploring if correcting Ts for water 

vapour improves the retrieval quality though this would have required more equipment 

that was not available for our experiment. We only had water concentration 

measurements from the retrieval process itself and an iterative analysis would have 

used too much computing time. If the CPEC200 eddy covariance kit is used in the future 

the gas capsules for zero and span may be a useful addition so that the entire kit is 

operational allowing for H2O concentration measurements. However, that is only at one 

height in which case the correction would likely be cancelled out in the retrieved 

concentration difference. 

 


