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Abstract

C-Statistic vs Bayesian: A Comparative Analysis of X-ray Spectral

Statistics

by David Koranteng

submitted on April 17, 2023:

The X-ray spectra of active galactic nuclei (AGN) contain many spectral features,

such as emission lines, that provide much insight into the inner workings of these

objects. In a class of AGN known as Narrow-Line Seyfert 1 (NLS1) galaxies,

analyzing these spectral features can provide especially useful insight into the

internal structure due to their orientation. Using two different statistical methods

(Bayesian X-ray Analysis and C-Statistic) to analyze the spectra of 21 NLS1

galaxies, it can be determined which method is superior at detecting emission lines

in the spectra. It is found that C-Statistic may be superior at detecting lines in

low-count spectra, but BXA has separate advantages that may lead to more success

at detecting lines in real sources.
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Chapter 1

Introduction

1.1 Active Galaxies

At the centre of all major galaxies lies a black hole, called a supermassive black

hole, or SMBH, which has a mass that can be millions to billions of times the mass of

the Sun. In galaxies such as our own, the central black hole is relatively dormant. It

can be observed in several wavelengths due to the process of the black hole accreting

surrounding in-falling material, but this accretion process is tame compared to other

central SMBHs. There is a classification of galaxies known as Active Galaxies that

are designated as such due to their central black holes being comparatively much

more active (Peterson, 2009).

The accretion process in the centre of these active galaxies is significantly more

violent, resulting in the emission of electromagnetic radiation across the entire EM

spectrum, often outshining stellar emission from the entire rest of the galaxy. Since

these highly energetic central engines are the main source of emission in these galaxies,

they are called Active Galactic Nuclei, or AGN.



Chapter 1. Introduction 2

1.1.1 Internal Structure

AGN have been observed in every band of the electromagnetic spectrum due to several

internal processes producing various types of EM emission. Therefore, by observing

and analyzing spectra in specific bands of light, a general description of the internal

structure of AGN can be determined.

AGN observation is particularly useful in X-ray due to the strength of the emission

in this band. As previously stated, AGN often outshine the stellar emission from

elsewhere in the galaxy. This is particularly notable when these active galaxies are

observed in X-ray. X-ray images of AGN often highlight a very bright central region

that is more difficult to discern from stellar light when viewed in optical. X-ray

spectra of AGN contain several features that provide insight into the structure of

AGN. In the 0.3-10 keV energy band of X-rays, the notable features include certain

emission lines and absorption edges. Additionally, the shape of the continuum in

these spectra also contains valuable information.

This continuum has three discernible trends. Beginning at 0.3 keV, there is a

bump in energy that starts to flatten around 2 keV and then steadily decreases in

the shape of a power law. This power law trend continues as the main continuum

until another bump in energy begins around 10 keV and continues to higher energies.

This initial bump from approximately 0.3-2 keV is known as the soft excess. The

bump in higher energies beginning around 10 keV is known as the Compton Hump.

The flat, power law-like portion of the continuum is important, as the slope of this

part can help attribute the emission to specific processes. The observed continuum is
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the result of two overlapping spectra: a primary emission spectrum and a reflection

spectrum (See Figure 1.1).

The primary spectrum is produced by a cloud of plasma surrounding the accretion

disk, known as the corona. The process of accretion creates emission in the UV portion

of the EM spectrum. This UV light is emitted away from the disk into the surrounding

corona, where it gains energy through a process called inverse Compton scattering, or

Comptonization. The UV photons collide with the electrons in the corona and take

energy from them in the collision. As a result of this process happening continuously
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Figure 1.1: An example of the continuum spectrum of an AGN viewed in the X-ray
band, represented as a combined spectrum (black) of two separate spectra, a primary
(red) spectrum and a reflected (blue) spectrum (Gallo, 2011).
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in the corona, the photons enter from the accretion disk as UV light and are up-

scattered to the X-rays that are observed as the primary spectrum. However, these

X-rays are re-emitted by the corona isotropically, and therefore some are emitted away

from the observer. These X-ray photons are emitted towards the accretion disk, and

are then reflected towards to observer as an altered reflection spectrum (See Figure

1.2). These two spectra combine when observed, and the result is the continuum

previously described.

The most notable feature present in the X-ray spectrum of an AGN is a spike in

the continuum around 6.4-7 keV, which matches a set of iron emission lines: Fe-Kα1,

Fe-Kα2, and Fe-Kβ. These emission lines indicate the presence of iron within the

system, and by analyzing the broadening of the emission line(s), the proximity of the

iron to the central black hole can be determined.

These conclusions can be drawn due to relativistic effects on the line profile that

would become apparent if the iron was in close proximity to the black hole. Knowing

Figure 1.2: X-rays produced in the corona are emitted in all directions. Emission sent
away from the observer and towards the accretion disk is then reflected back in the
direction of the observer. Left figure depicts a standard corona model. Right image
depicts a jet (See Figure 1.4) whose base acts as a corona (Wilkins, 2017).
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what an intrinsic Fe-Kα emission line looks like, it can then be compared to the

emission line present in the spectrum, and the differences can be attributed to physical

processes. Firstly, if the emitting iron is present in the accretion disk, it is expected

that the motion in the accretion disk would lead to the emission line undergoing

Doppler broadening. If the iron is closer to the black hole, its profile will be further

broadened due to special relativistic effects, such as beaming. (See Figure 1.3). Lastly,

if the iron is in extremely close proximity to the black hole, it will be subject to

extreme broadening, with a strong shift to low energy. This is due to gravitational

redshift, an effect where photons lose energy when escaping a gravitational well (Gallo,

2011).

AGN are also powerful radio sources, particularly due to synchrotron emission (Pe-

terson, 2009). Synchrotron emission is the emission produced by relativistic charged

particles being accelerated in a magnetic field and moving in a helical path. This

emission is beamed in the direction of motion of the charged particles. This radio

emission can often be observed in the shape of large collimated structures emerging

from the central engine of the active galaxy. (See Figure 1.4)

This type of radio emission is not always observed in AGN, however. When AGN

are observed to have excess radio emission compared to other bands, such as optical,

they are considered radio loud. Otherwise, they are designated as radio quiet if their

radio emission is not proportionately more luminous than their optical emission.

In order to account for observed differences in AGN spectra, the physical nature

of AGN is described using a single simple model (Sparke, 2007). The model, called

unification theory, describes AGN as one type of object that is viewed from different
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orientations, and these orientations cause spectral and observation differences.
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Figure 1.3: The original emission line is emitted at 6.4 keV (black). The line profile
gains a two-prong shape when subject to the Doppler effect (green). In closer prox-
imity to the black hole, the line broadens due to special relativistic effects, resulting
in the line profile becoming asymmetric (red). Lastly, the original line becomes ex-
tremely asymmetrically broadened due to general relativity (blue) (Gallo, 2011).

1.1.2 Narrow-Line Seyfert 1 Galaxies

Narrow-Line Seyfert 1 (NLS1 ) galaxies are a type of galaxy within the AGN

subclass known as Seyfert galaxies. Seyfert galaxies are active galaxies classified

by the X-ray luminosity of the nucleus. They have nuclei with luminosity values

within the range of 2 x 108L⊙ - 1011 L⊙. They also have optical spectra containing
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prominent emission lines, (Sparke, 2007). Seyferts are divided into two types based

on the profiles of these emission lines. Seyfert 1 galaxies display an assortment of

optical emission lines in their spectra that can be grouped into both narrow and

broad portions; Seyfert 2 galaxies, alternatively, only display narrow lines (Peterson,

2009).

As can be seen in Figure 1.5, Seyfert 1 galaxies display both narrow and broad

lines because they are observed from an orientation in which the broad-line region

is unobstructed. This means that Seyfert 1s provide an optimal viewing angle when

studying the internal accretion disk system of AGNs.

Narrow-Line Seyfert 1s are their own subclass of Seyfert 1s. This designation of

Figure 1.4: An optical image of galaxy Hercules A with a radio image overlayed in
pink. In radio band, large elongated jets become visible (NASA et al., 2012).



Chapter 1. Introduction 8

Figure 1.5: Unification Theory proposes that the classification of AGN is dependant
on the angle from which they are observed. Features such as jets are not present in
all sources. Seyfert type 1 galaxies can be seen identified in the top right corner with
a direct view of the central engine (Zackrisson, 2005).

Narrow-Line for objects defined by their broad lines may seem contradictory, but it

is actually referring to some of these broad lines being more narrow than expected.

More specifically, the hydrogen emission lines from the Balmer series present in the

broad-line region are more narrow than in other Seyfert 1 galaxies (Komossa, 2007).

Narrow-Line Seyfert 1 galaxies are useful to study because of the information

obtained from the accretion disk region. In particular, when NLS1 galaxies contain

the aforementioned radio jets, their spectral data could contain information regarding

the interaction between the in-flowing accretion region and the out-flowing jet region,

which, on the surface, appear to be two opposing processes. (See Section 1.5).
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1.2 Bayesian Statistics

Bayesian statistics is a method of determining statistical probabilities of events that

allows for one to take into account any prior knowledge or biases that one determines

might be impactful. Bayesian statistics acts as an alternative approach to the classical

frequentist statistics (Halls-Moore, 2022).

While frequentist statistics expresses probabilities as a function of previous out-

comes, Bayesian statistics allows for prior assumptions to be made, and then adjusted

and updated to a posterior conclusion in light of new evidence.

Bayesian statistics hinges on the theorem known as Bayes’ Rule. Bayes’ Rule

relates the probability of an outcome as a function of a condition to the probability

of that condition as a function of the outcome. It is derived using the definition of

conditional probability:

P (A|B) =
P (A ∩B)

P (B)
(1.1)

Equation 1.1 states that the probability of A occurring once B has occurred is

equal to the probability of them both occurring together divided by the probability

of B occurring. Combining this equation with the inverse equation, that is, the

equation for P(B|A), using algebra, Bayes’ Rule is derived:

P (A|B) =
P (B|A)P (A)

P (B)
(1.2)

One can view A and B as a prior belief and new evidence that is produced,
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respectively. With this interpretation, P(A|B) actually represents that probability

that the prior belief (called the prior) is true, given the new data that has come to

light. P(B|A) represents the probability that new evidence will be produced if the

prior is true. Therefore, equation 1.2 is ultimately representing the probability of a

prior being true given the data. This final probability is called the posterior.

1.3 Cash Statistic

Cash Statistic, or C-Statistic (not to be confused with the concordance statistic

often used in clinical studies), is a statistical method for determining the quality of

a fit, called the ”goodness of fit”, between a model and data, as well as determining

parameter values for a model fit to data. It is a method very similar to the more

familiar χ2 (or Chi-Squared) statistical method (Schmahl, 2005). The C-Statistic

method is one that is particularly useful in X-ray astronomy due to the prevalence of

low count rates, as it is successful at determining parameter estimations at low count

rates (Cash, 1979). The C-Statistic begins by defining the probability of obtaining a

result as:

P =
N∏
i=1

eni
i e−ei

ni!
(1.3)

where N is the number of bins, ei is the number of counts per bin, and ei is the end

result of counts in each bin. The C-Statistic is then calculated as a function of this

probability P:
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C = −2 lnP = −2
N∑
i=1

(ni ln ei − ei − lnni!) (1.4)

This is done in order to compute a confidence interval around a maximum like-

lihood value of P. In order to finally compute a C-Statistic that is a function of the

expected counts E =
∑

ei, the final equation becomes:

C = 2(E −
N∑
i=1

ni ln ei) (1.5)

This equation can be used to calculate confidence intervals for model parameters

when fitting a model to sources, even in the case when there are very few counts per

bin. Equation 1.5 is the final equation for determining the ideal parameter values.

This is used by XSPEC (see Section 1.4.1) to determine fit quality.

1.4 Bayesian X-ray Analysis

Bayesian X-ray Analysis, or BXA (Buchner et al., 2014), is a spectral analysis

software package that can be used in tandem with the spectral modelling software

XSPEC (Arnaud, 1996). It is designed to combine XSPEC with Ultranest (Buch-

ner, 2019), the nested sampling algorithm that uses Bayesian statistics to compare

user-defined mathematical models.

Since Bayesian statistics benefits from the use of priors and does not rely fully on

repeated trials like frequentist statistics (Halls-Moore, 2022), it can be beneficial to

use a Bayesian approach when dealing with limited data. In the example of spectral
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analysis, frequentist statistics can be valuable when dealing with spectra containing a

high number of source counts. However, when dealing with data with low count rates,

Bayesian statistics is beneficial because it can make use of the prior understandings

of the models.

1.4.1 XSPEC

XSPEC is a spectral modelling tool developed by Keith Arnaud, Craig Gordon, and

Ben Dorman with HEASARC Software Development in NASA’s Astrophysics Sci-

ence Division. XSPEC is designed to load in high energy spectra and fit them with

mathematical models. There are many options for models and the statistics used to

determine the quality of the fit between the data and the models.

In addition to its spectral modelling capabilities, XSPEC is also able to generate

simulated spectra based off input models. This simulation process effectively makes a

spectrum in the shape of an input model and adds noise to the spectrum to simulate

real data and uncertainties.

PyXspec is a programming package in the Python language designed to interface

with XSPEC, which is typically used with the language TCL. PyXspec is often used

for scripting processes in XSPEC, rather than creating scripts in BASH that use TCL.

BXA itself is a Python package, and therefore can only be used with PyXspec.
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1.4.2 UltraNest

UltraNest is a Python programming package that uses Bayesian statistics to find

optimal model parameters. This is done using a technique known as Nested Sam-

pling. Nested Sampling explores all possible values for parameters in a parameter

space using a user-defined prior distribution, and producing a posterior distribution of

parameter values that optimize a given model. This technique also produces a value

to assess the likelihood that the model is optimized, called Z. This Z value acts as

the evidence for improved fits, and can be used to compare and contrast models once

their posterior distributions have been calculated. UltraNest produces its posterior

distributions using the logZ value.

Bayesian evidence is considered decisive if it is above 100. That means that a

change in logZ of 2 would produce a decisively better model (Buchner, J. et al., 2014).

Furthermore, a change in logZ of 1 (Z = 10) would be considered ”strong evidence”,

though not definitive. These logZ values are used to determine the optimal model.

1.5 Thesis Overview

The goal of this thesis is to analyse spectra of multiple Narrow-Line Seyfert 1 galax-

ies that have been observed in X-ray bands and also have corresponding radio data

(Berton et al., 2018) using Bayesian X-ray Analysis and C-Statistics. More specif-

ically, the objective is to determine if Bayesian X-ray Analysis can provide unique

insight into these sources by producing results that the standard C-Statistic approach

to spectral modelling could not produce. By analyzing these source spectra, as well
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as simulated spectra, in both C-Statistic and BXA, the two statistical approaches can

be compared on their ability to consistently measure certain spectral features.

The sample being analysed includes 9 radio loud objects and 12 radio quiet objects.

Many of these objects also have multiple observations, resulting in several spectra to

analyse. Using XSPEC, these X-ray spectra have been fit with mathematical models

that focus on the prominence of the Fe-Kα line in the spectra. This same model is

applied to the simulated spectra. Comparing the data between BXA and C-Statistic

will demonstrate which approach is more effective at detecting Fe-Kα lines in X-ray

spectra.

This thesis will first describe the way spectra are simulated and then modelled

using both a C-Statistic and a Bayesian approach (See Chapter 2). Following that,

the previously used modelling techniques will be applied to the sample of real sources,

and the results from these models will be presented and discussed (See Chapter 3).

Lastly, the results will be summarized, final conclusions will be drawn, and areas of

future work will be discussed (See Chapter 4).
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Chapter 2

Simulations

In order to compare the effectiveness of C-Statistic and BXA at detecting certain

spectral features, specific features to search for must be chosen, and a mathematical

model to detect these features must be created. The procedure of this thesis involves

choosing a model to fit a specific energy band of the spectra (Section 2.1), then

creating thousands of simulated spectra to fit en masse (Section 2.2). The quality of

these fits will be analyzed separately, using both C-Statistic (Section 2.3) and BXA

(Section 2.4). Following this, the same models will be applied to real data, and the

quality of their fits will be analyzed and discussed.

2.1 Modelling Spectra

As previously stated, one of the most prominent features in AGN spectra is the

Fe-Kα line(s) around 6.4 keV. Additionally, it was noted that the continuum from

approximately 2-10 keV takes the shape of a simple power law. This combination of

a simple continuum and a prominent feature makes this 2-10 keV band of an X-ray

spectrum an ideal band to investigate the efficacy of two statistical approaches to

spectral modelling.

Therefore, the model chosen for this thesis is one that contains two main com-

ponents: a power law and a Gaussian profile. The former serves the purpose of
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modelling the continuum, and the latter fits the shape of an emission line breaching

the continuum. In XSPEC, these two components are listed as powerlaw and gauss,

respectively.

When modelling the simulated spectra, this is the complete model that is used.

When applying the model to real data, XSPEC provides model components for both

the power law and Gaussian profile that take into account the redshift of the source

being modelled. This allows the distance of the source to be accounted for when it

is modelled. These components are called zpowerlw and zgauss, respectively. The

individual parameters for the components of this model can be seen and described in

Table 2.1.

2.2 Simulating Spectra

As mentioned in Section 1.4.1, XSPEC has the capability to simulate spectral data

in the shape of a chosen input model. For instance, when given the aforementioned

Table 2.1: XSPEC Model Parameters

Component Name Parameter Name Definition
powerlaw, zpowerlw PhotonIndex (γ) Determines the slope of

the power law.
powerlaw, zpowerlw Norm Determines the normalization of the

power law.
gauss, zgauss LineE Determines the energy on which the

Gaussian will be centered.
gauss, zgauss Width (σ) Determines the width of the Gaussian

profile.
gauss, zgauss Norm Determines the normalization of the

Gaussian profile.
zpowerlw, zgauss z Determines the redshift by which to

calibrate the component.
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powerlaw + gauss model with certain parameters, XSPEC can simulate a spectrum

that takes the shape of that model and adds noise to it to resemble real data counts.

The parameters of the model, such as the normalization, can determine the source

counts in the simulated spectrum, as well as the strength of spectral features measured

by their equivalent width, or EQW.

Since the process of simulating spectra incorporates randomized noise, it is useful

to mass-produce these simulated spectra to determine how reliably certain features

are discernible from the noise. Observations can vary in terms of the quality of data

obtained due to different objects being observed for different durations. Therefore,

it is important to simulate spectra with a wide range of source counts. Additionally,

certain AGN have more prominent emission lines than others, so it is also important

to simulate spectra with a wide range of EQW values for the Fe-Kα line.

In order to produce the most meaningful results, 1000 spectra were simulated

with a specific number of source counts and a specific EQW for the Fe-Kα line. This

process was then repeated with a different set of counts and EQW values with the

goal of populating a grid (See Figure 2.1a) in a plot of Counts vs EQW in order to

map out regions of reliable detectability (See Figure 2.1b) based on C-Statistic and

BXA.

Once a grid of simulated spectra has been created, each of these spectra can be fit

with the input model to detect the Fe-Kα line, using both a C-Statistic and a BXA

approach, and the detection rate at each point along the grid will be used to generate

confidence lines on the plot.
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(a) (b)

Figure 2.1: Figure 2.1a shows a blank EQW vs Counts plot to demonstrate how the
simulated spectra will be used to determine regions of reliable detectability. Each data
point represents 1000 simulated spectra. Figure 2.1b shows hypothetical confidence
lines that could be interpreted from detection rates of the simulated spectra.

2.3 C-Statistic Approach

Fitting a spectrum with a simple model using the C-Statistic approach is a relatively

quick process. In XSPEC, the spectrum is loaded in, and C-Statistic can be selected as

the fitting statistic using the statistic cstat command. A model can immediately

be defined to apply to the spectrum using the model powerlaw + gauss command.

The model parameters (See Table 2.1) must be input as starting points to begin

assessing the fit with. For the power law parameters, γ is estimated as a slope of 2,

and norm is estimated as 1. Regarding the gauss component, the LineE parameter is

estimated as 6.4 keV. The sigma value is selected to be 1 eV, and it is frozen at that

value. This ensures that the model is searching for narrow lines in all sources, while

the other parameters are allowed to vary. The normalization of the line is chosen

based on the EQW of the line in the simulated model (See Table 2.2). Once all the
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parameters are selected, the model is applied to the data using the fit command,

and a plot of the spectrum and model is output (see Figure 2.2).

Figure 2.2: Simulated spectrum of an AGN fit with a powerlaw + gauss model. The
bottom panel displays the ratio of the spectrum to the model.

XSPEC outputs the resulting fit statistics, including the optimal parameter values.

The final parameter values are recorded, as well as the C-Statistic value and the

number of PHA bins. The above process is then repeated on the same spectrum

with the gauss component removed. The fit is again assessed on just the powerlaw,

and the output values are recorded. In order to assess if the fit was a significant

improvement when the Gaussian was included, the change in the C-Statistic value is

calculated.
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Figure 2.3: This plot shows the ∆C value that would produce a fit improvement with
the inclusion of the Gaussian to model the Fe-Kα line at a 90% significance level. It is
shown as a function of the number of free parameters in the continuum model (Nfp)
and the number of binned counts in the spectrum (PHA bins). Figure provided by
Dr. Adam Gonzalez.

This change in the C-Statistic value is called the ∆C. In order to determine when

a fit is sufficiently improved, a threshold for ∆C must first be determined. This

was done using a correction to Akaike’s Information Criterion (AIC) to account for

small sample sizes (called AICc) (Sugiura, 1978). Figure 2.3, provided by Dr. Adam

Gonzalez, shows the ∆C values that meet the necessary threshold as a function of

the model parameters and number of data points, as per the AICc function.

The entire above process is then scripted to be done en masse to all 1000 spectra
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Table 2.2: Gaussian Normalization from Fe-Kα EQW

Fe-Kα EQW (eV) Normalization
10 0.00025
20 0.0005
30 0.00075
40 0.001
60 0.0015
100 0.0025
200 0.005
300 0.0075
400 0.01
500 0.0125
700 0.0175
1000 0.025

at a given combination of EQW and source counts. This process is then done at

each combination of EQW and source counts, and for each set of 1000 spectra, the

percentage of spectra with a sufficient ∆C is calculated. A line can then be drawn

connecting points on the resulting grid to determine at which values of EQW and

source counts a line can be reliably detected.

2.4 BXA Approach

Running BXA on a spectrum, or a set of spectra, is a lengthier process. For each

spectrum, the UltraNest algorithm steps through the full parameter space to find the

ideal fit and also produce posterior distributions for each parameter. Similarly to the

C-Statistic approach, the BXA approach involves analyzing the fit between the model

and the data using one model with the Gaussian component, and one without it.

Firstly, a python script is run that loads in a simulated spectrum as the input

spectrum, and then fits this spectrum with a powerlaw + gauss model. Priors are
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then selected for each of the parameters that are being varied: γ, LineE, and the

normalization of both components. As was the case with the C-Statistic approach,

the width (σ) parameter is kept frozen. The γ and LineE parameter spaces are

explored using uniform priors, with the slope ranging from 1-4, and the LineE value

ranging from 5-10 keV. The normalization parameter spaces are both explored using

Jeffery’s priors, which creates a uniform distribution in logarithmic space, each bound

between 10−3 and 1. The BXA package is then run on the spectrum, outputting

posterior distributions of all the parameters (see Figure 2.4), as well as logZ values.

This process is then repeated without the gauss component, and the logZ values

are compared. As mentioned in Section 1.4.2, a ∆logZ value of 1 or more is considered

strong evidence for fit improvement, and is therefore the threshold used in this thesis.

All the simulated spectra are fit with this process and then the ∆logZ values

are compared. The percentage of simulated spectra that have sufficient ∆logZ are

recorded. Ultimately, the results from the simulated spectra allow a grid of detectabil-

ity to be produced from BXA, and the results from the real data allow the real spectra

to be compared between the two statistical methods (see Section 3.3).

2.5 Simulation Results

The first result is obtained by running a C-Statistic fit on all of the simulated spectra

and recording the rate of detection of the Fe-Kα line. Then, plotting these detection

rates as a function of the source counts in the spectra and the EQW of the Gaus-

sian line, a line can be drawn to connect the points on this plot that were detected
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Figure 2.4: Corner plot displaying the posterior distributions of all model parameters,
output by BXA.

approximately 50% of the time. Next, the results from running a BXA fit on all of

the simulated data are plotted in the same manner (See Figure 2.5). These two con-

fidence lines can be contrasted and the general trends of their detection capabilities

as a function of source counts and emission feature EQW can be compared.

This result directly contrasts how reliable C-Statistic and BXA are at detecting
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Figure 2.5: Plot of Fe-Kα EQW against source counts with the 50% detection rate
lines from both BXA and C-Statistic compared.

the presence of an Fe-Kα emission line in a spectrum, given a certain prominence

of the feature and a number of source counts. From Figure 2.5, it seems that at

any given equivalent width or number of source counts that C-Statistic can detect

emission features more reliably. The C-Statistic method produces higher detection

rates at lower source counts and at lower equivalent widths. Alternatively, this result

could also imply that the 90% significance criterion used in the C-Statistic approach
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is a less strict criterion than that of the BXA approach.

Proceeding with modelling real sources, this data will help explain any null de-

tections in certain sources with low count rates. From this result, it is expected that

sources with count rates far below both 50% confidence lines will not produce an

Fe-Kα emission line, and that this is not evidence for the absence of an emission

line in that spectrum. Furthermore, it is expected that the C-Statistic method will

detect Fe-Kα emission lines in more of the sources with lower counts than the BXA

approach.
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Chapter 3

Testing AGN Data

After testing both the C-Statistic and BXA approach on several thousand simulated

spectra, these models must now be applied to real data. Using a sample of 21 objects

(Section 3.1), the previously described methods will be used to search for Fe-Kα

emission lines in the spectra of these objects using both C-Statistic and BXA (Section

3.2). The results from fitting these models will then be presented and discussed

(Section 3.3).

3.1 Sample

As mentioned in Section 1.5, the sample of real data is a set of Narrow-Line Seyfert

1 galaxies that were previously analyzed in the radio band (Berton et al., 2018). The

X-ray spectra of all the sources have been obtained by the XMM-Newton Telescope.

By separating the sources into radio loud and radio quiet designations, any further

trends seen between these two types of objects could be attributed to radio-related

processes, which would be an interesting secondary conclusion drawn from the sample.

Table 3.1 contains a list of all the used sources and their observations IDs, as well as

their designation in terms of their radio loudness, simply as radio loud or radio quiet.
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Table 3.1: Source Observations and Information

Source Name Observation ID Radio Loud/Quiet
FBQSJ07580039202 0406740101 Loud
IRAS 17020+4544 0206860101 Loud
IRAS 17020+4544 0206860201 Loud
IRAS 17020+4544 0721220101 Loud
IRAS 17020+4544 0721220301 Loud
IRAS 16319+4725 0673270101 Loud
IRAS 16319+4725 0673270201 Loud
IRAS 16319+4725 0673270301 Loud
IRAS 16319+4725 0673270401 Loud
IRAS 06269-0543 0153100601 Loud

SDSS J124634.65+023809.0 0690090201 Loud
PKS 1502+036 0690090101 Loud

FBQS J1102+2239 0690090301 Loud
FBQS J154817.9+351128 0674320301 Loud
FBQS J154817.9+351128 0674320401 Loud

RE J1034+396 0561580201 Loud
RE J1034+396 0655310101 Loud
RE J1034+396 0655310201 Loud
RE J1034+396 0675440101 Loud
RE J1034+396 0675440201 Loud
RE J1034+396 0675440301 Loud
RE J1034+396 0824030101 Loud

ARK 564 0006810101 Quiet
ARK 564 0006810301 Quiet
ARK 564 0206400101 Quiet
ARK 564 0670130201 Quiet
ARK 564 0670130301 Quiet
ARK 564 0670130401 Quiet
Mrk766 0096020101 Quiet
Mrk766 0109141301 Quiet
Mrk766 0304030101 Quiet
Mrk766 0304030301 Quiet
Mrk766 0304030401 Quiet
Mrk766 0304030501 Quiet

FBQSJ16294007 0784521301 Quiet
UGC3478 0654800401 Quiet
Mrk493 0852060201 Quiet
WAS61 0843020601 Quiet

SBS1118541 0741031301 Quiet
Mrk705 0783270401 Quiet
Mrk110 0201130501 Quiet
Mrk335 0306870101 Quiet

PG1244026 0675320101 Quiet
IRAS133492438 0852390101 Quiet
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3.2 Modelling Real Data

The process of modelling real data using XSPEC, both in the C-Statistic and BXA

approach, is fundamentally the same as explained in Sections 2.3 and 2.4. The key

difference is that real data are found at a variety of distances and, consequently, a

variety of redshifts. XSPEC contains variations of the model components with an

added parameter to account for the redshift of a source (shown in Table 2.1).

When modelling the real sources, these altered model components must be used.

Therefore, rather than using a powerlaw + gauss model, a zpowerlw + zgauss

model is used, where the z represents the redshift parameter. This in an input param-

eter that is not given the freedom to vary, and it depends on each individual source’s

redshift.

After adjusting for the redshift in each source, the procedure is the same as pre-

viously explained: The sources are fit using both the C-Statistic and BXA approach,

and the significance of any detected Fe-Kα line is determined by each approach’s

significance threshold.

3.3 AGN Results

In the first result obtained by fitting the real AGN data, the results from running a

C-Statistic fit on all of the real observations are plotted as a function of each source’s

number of source counts and the EQW of the emission feature. The confidence line

obtained in the previous chapter by using C-Statistic on the sources is overlaid with

the data (see Figure 3.1). Using the same criteria for detection as mentioned in
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Section 2.3, the real data display whether or not they contain an Fe-Kα line that

was detected by C-Statistic. Hollow points on the figure designate objects where a

Gaussian line was fit in the model, but it was not found to be significant.

Next, the same results are plotted with the BXA 50% confidence line overlaid (see

Figure 3.2). This result offers an alternative comparison between the detection rate

of the sources and that of the simulated data.

Figure 3.1: Plot of Fe-Kα EQW against source counts with the 50% detection rate
determined from the simulated spectra using C-Statistic. Detection data from real
sources overlaid.
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Lastly, the key model parameter from both the BXA and C-Statistic approach

can be compared directly (See Figure 3.3). The central energy of the zgauss model

component was recorded for each observation and they can both be plotted simulta-

neously. Note that any observations that were found to not detect an Fe-Kα emission

line in both BXA and C-Statistic are removed to make the plot easier to read, as the

Figure 3.2: Plot of Fe-Kα EQW against source counts with the 50% detection rate
determined from the simulated spectra using BXA. Detection data from real sources
overlaid.
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Figure 3.3: Plot of the LineE parameter for the Fe-Kα line in both C-Statistic and
BXA, with a line showing the 1 to 1 trend. This is not a line of best fit.

error bars on these insignificant detections are much larger than the others. A line

showing a 1 to 1 trend is also displayed in order to show how correlated the emission

lines are between the two methods of detection.
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Chapter 4

Discussion

The result produced by the C-Statistic trials on the simulated data demonstrates

that, at a certain number of source counts, an Fe-Kα emission line of a certain strength

may not be reliably detectable. On Figure 3.1 it can be assumed that any objects

falling along that 50% confidence line can not have a Fe-Kα line reliably detected,

if one is present. The general trend of increased detectability increases towards the

upper right portion of the plot, which is an area that is more populated by sources

that have had Fe-Kα lines detected. In the upper right portion of the plot, relative to

the confidence line, there are only four observations that did not have lines detected

to a 90% significance. Two of these observations lie in very close proximity to the

50% confidence line, so it can safely be assumed that these observations have a 50/50

chance having their Fe-Kα line detected by this C-Statistic approach, if it is present.

It is also worth noting that the only noticeable difference between the radio loud

and radio quiet sources in this plot seems to be that the sample of radio quiet sources

is made up of better data. That is to say that the radio quiet sources appear to have

higher source counts on average, which is likely due to them being observed for longer

durations.

When analyzing Figure 3.2, it can be seen that the approximate 50% confidence

line produced by running the BXA fit on all the simulated spectra results in a smaller
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area of reliable detectability. It is also worth noting that this line cuts between data

points that had lines found to be significant.

This could potentially point to the idea that some of the lines that were detected

in some of the sources were false positives, although this is likely not the case, due

to a result from Figure 3.3: None of the observations that had lines detected by

the C-Statistic approach failed to have lines detected by BXA. This means that all

the objects that appear to be detected in Figure 3.2 were detected in BXA and C-

Statistic. Since these observations were reliably further to the upper right portion

of the plot than the confidence line in the previous figure (Figure 3.1), it is unlikely

these are false positives in BXA, though it is still a possibility.

Nonetheless, the difference in the reliability of detecting various emission features

between BXA and C-Statistic can be seen more clearly in Figure 2.5, and there is a

notable difference. This plot on its own would appear to demonstrate that C-Statistic

is more effective at detecting spectral features for low-count observations, and even

for weaker features.

The two lines appear to be similar in shape, with neither one showing a prefer-

ence for lower counts or lower EQW. This is also an interesting result, because it

shows that, ultimately, neither source counts nor feature strength appear to be more

important than the other in terms of detectability.

As previously noted, Figure 2.5 would appear to demonstrate C-Statistics’ su-

periority when measuring emission lines for low-count sources. However, Figure 3.3

demonstrates the opposite. This result shows, firstly, that all sources that contained

lines detected by C-Statistic also had their lines detected by BXA. Furthermore, there
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were 3 observations that had lines detected from the BXA approach that were not

detected in the C-Statistic approach. When the LineE parameter of all the obser-

vations are analyzed, it appears that these 3 observations, that were only detected

using BXA, deviate from the general linear correlation the rest of the observations

tend to follow. The vast majority of the observations that had lines detected follow

a nearly 1 to 1 line.

There is one observation in particular that stands out the most from the trend.

The one null detection with a BXA LineE value around 8 is attributed to the source

REJ1034+396, observation 0824030101 (See Table 3.1). Considering that this one

observation is only one of 7 available for this object, there is no clear reasoning as to

why this one particular observation was best fit with a very different Gaussian line

than the other objects, or even the other observations of the same object.

Furthermore, it is worth noting the size of the error bars obtained by the BXA

approach on the objects that were not significantly detected using C-Statistic. While

these observations were found to contain significant Fe-Kα emission lines, there is

notably less certainty in their measurement than those that were detected using both

methods.

The general results from both the simulated data and the real data also lead

to the questioning of any differences in the conditions for fit improvement. For C-

Statistic, the chosen threshold was a ∆C that would correlate to a 90% significant

improvement of the overall fit. Using a Bayesian approach, the chosen threshold was

that the change in Bayesian evidence had to be sufficient to produce ”strong evidence”

of a fit improvement. If these two thresholds are notably different, it could be the
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reasoning behind the difference in detection rate in both the simulations and the real

data. This can be further exemplified in the size of the error bars, as previously

mentioned. The size of the error bars on the 3 sources that favoured BXA implies

that these sources may have nearly not reached the Bayesian significance threshold,

and they evidently did not meet the significance threshold for C-Statistic either. The

ways in which these 3 sources are outliers of the rest of the sample also indicate that

they may be false-positive detections, not by chance, but by measuring a different

feature in the spectrum that is unrelated to the Fe-Kα line.

The contradicting results between the simulated data and the real data, however,

suggest also that there may be a hidden variable that resulted in BXA measuring

lines more effectively in the real data. It is possible that BXA is less effective at

finding low-strength lines in low-count data than C-Statistic, but more effective at

detecting features in spectra with an unknown trend.
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Chapter 5

Conclusion

After using C-Statistic and BXA to fit spectral models to thousands of simulated

spectra and 21 real Narrow-Line Seyfert 1 sources, the following conclusions were

drawn:

• C-Statistic is more effective at finding low-strength emission features in low-

count spectra than BXA.

• This effectiveness was not apparent when testing real data, as BXA found emis-

sion features more frequently, although these detections could be false-positives.

• There may be more relevant variables than feature EQW and source counts

when searching for emission features.

• BXA’s ’strong evidence’ criterion may differ from C-Statistics’ 90% significance

criterion, and one may be less precise than the other.

With further research, this difference in the significance threshold for the two

methods can be investigated. Rather than using a binary approach of designating

detections as either significant or insignificant, each detection can be plotted as a

function of their ∆logZ and ∆C values. This could produce an interesting result

regarding how the significance thresholds of each approach align with one another.

Additionally, by running more simulations at different values of source counts and
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EQW, the resolution of the grids can be improved, and further confidence lines (such

as 90%) can be plotted. If other confidence lines of the two approaches align differently

than the 50% lines, this could be another interesting result.

To investigate the presence of hidden variables in the sample, it would be useful

to extract further data from the models and look for correlations between the model

parameters of the objects and the detection of lines. This thesis investigated the

correlation between line-detectability and data quality, but there may be further

correlations found in the model parameters themselves. This could be investigated

using Principle Component Analysis.
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