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INTRODUCTION 

The changes in mathematics at the present time are so 

extensive, so far reaching in their implications, and so profound 

that they can be described as a revolution.1 

It is the object of this thesis to examine some of the 

causes of this revolution. The general public may be surprised to 

learn that mathematics is a live, active and growing subject. They 

may think that mathematics is complete and that there is no 

opportunity, need, or occasion for it to change. It is true that 

if a proposition is once true, it is always true. But propositions, 

like A-bombs, become obsolete as new and better ones are discovered. 

The twentieth century has been the golden age of 

mathematics, insofar as the "new developments have been extensive 

0 • • [and the] ••• bulk of current mathematical development is 

staggering.02 This revolution now in progress makes us wonder whether 

the new mathematics should be taught in our schools, whether there 

should be a shift of emphasis in the teaching of many subjects already 

included in our mathematics courses, and an increase in the production 

of mathematicians and mathematics teachers. 

1see Floyd G.Robinson, "New Dimensions in Mathematics Teaching," 
C-I-L Oval, (August, 1961), p. 14. 

2
Program for College Preparatory Mathematics, Report of the 

Commission on Mathematics, (New York: College Entrance Examination 
Board, 1959), p.lo 
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The purpose of this thesis is threefold: to examine the 

present mathematics curriculum of the secondary schools in Nova 

Scotla, to consider in detail some of the new concepts and recent 

developments in mathematics, and finally to draw certain conclusions 

suggesting a revision in the approach to mathematics for high schools 

in this province. 

In Chapter I the present mathematics curriculum in Nova 

Scotia from Grade IX to Grade XII will be discussed. The fact that 

the mathematics curriculum has changed very little in the past thirty 

years will be brought out, and an outline of the present mathematics 

curriculum of Nova Scotia is given in Appendix I for those not 

familiar with it. 

Chapter II will outline the historical development of modern 

mathematics beginning with the discovery of non-Euclidean geometry. 

In addition, recently developed concepts and techniques of mathematics 

will be discussed. 

In this connection, it should be observed that most, if not 

all, of the current programs to improve school mathematics avoid the 

presentation of new material as a string of unrelated topics. Indeed, 

they stress unifying themes or ideas in mathematics such as the 

following: extensive use of graphical representation, measurement, 

operations and their inverses, properties of numbers and the 

development of the real number system, language and elementary theory 

of sets, statistical inference and probability, structure, systems of 
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numeration, valid generalizations, and logical deduction. An 

excellent example of this new approach to mathematics is seen in 

the Report of the Commission on Mathematics, a document studied in 

detail in Chapter III. 

There have been several studies of mathematics made in 

Canada, but these have been on a relatively small scale, and detailed 

information on them is not readily available. With this in mind, the 

Commission on Mathematics Report, a representative study presenting 

recommendations for improvement of the mathematics curriculum 

without prescribing texts, was chosen for the case study in Chapter 

III . The Commission left it for others to write texts on its 

recommendations. Examination of the Commission findings will show 

that the Commission recommended revision of the present high school 

mathematics program to emphasize deductive reasoning in algebra, 

structure in mathematics, unifying ideas, treatment of inequalities, 

and incorporation of some coordinate geometry in the curriculum. A 

suggested sequence of topics for the high school curriculum is also 

included in the Commission's Report. 

Chapter IV contains recommendations for improving the 

mathematics program in the secondary schools of Nova Scotia, 

recommendations based on the application of the Commission of 

Mathematics findings to the mathematics curriculum in this province. 



CHAPTER I 

MATHEMATICS IN NOVA SCOTIA 

As this chapter will show, the mathematics curriculum 

in Nova Scotia has changed very little over the years. The 

texts and subject matter of the curriculum are outlined in the 

Nova Scotia Department of Education ' s Program of Studies and 

Handbook to the Course of Study. In addition there are two 

teaching guides; Mathematics (Grades 7-9) and Teaching the New 

Geometry Courses in Grades 10 and ll o An outline of the present 

mathematics curriculum in Nova Scotia is given in Appendix I, but 

for present purposes it is necessary to consider briefly each of 

the three branches of mathematics taught in Nova Scotian schools. 

- 4 -
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Algebra 

In Nova Scotia a student begins algebra in Grade IX 

and continues the study of this subject through to Grade XII. 

As can be seen from the outline of the courses in Appendix I, 

there is considerable overlap in the curriculum of this subject 

from grade to grade. 

The present Grade IX text was introduced in 1957, 

replacing a text that had been in use since 1935 and which 

covered much of the same material. The text f&r Grades X and 

XI has not changed since 1935. The text used in Grade XII after 

1937 was replaced in \957 with the present text. The new text, 

however, while it does not cover exactly the same material, exhibits 

the same basic approach to the subject matter. 
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Geometry1 

A new geometry course was introduced into the schools of 

Nova Scotia during the 1960-1961 school year. The previous course 

was not too satisfactory, with most of the criticism of it levelled 

at the type of instruction given, rather than at the content of the 

course. 

The main reason for teaching geometry is to give the students 

an understanding of the meaning of proof, that is, the proving of 

propositions from postulates, axioms and definitions. The best 

way to do this is by showing the students the various methods of 

proof, instead of solving the problem for them. 

The members of the Nova Scotia Department of Education 

Mathematics Committee feel that the new text is more suitable for 

this type of teaching than the former text, and emphasize the 

importance of developing the students' initiative to solve problems. 

In the new course more original work should be done by the 

students. Secondly, the proofs of all theorems are not required. 

Some theorems are to be accepted without proof, although the pupils 

should be shown that these appear to be true. Finally, the examinations 

should be such that a student who has done little more than memorize 

propositions from the book should not be able to pass. 

1The basis for this section is found in Robert Chafe, 
"Teaching of the New Geometry Courses in Grades 10 and 11," Education 
Office Gazette, (for Nova Scotia), March, 1961, ppo 57-58. 
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This new course should benefit all students to the extent 

that the new organization of subject matter provides increased 

opportunity for original thinking. 
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Trigonometry 

Playne and Fawdry: Practical Trigonometry is used 

as a text in Nova Scotia for Grade XII. This text has been on 

the course of study since 1934. In Chapter III it will be shown 

that this type of course, from a mathematical point of view, is 

out of date, and for this reason no further description of it is 

offered at this point. 



CHAPTER II 

NDDERN MATHEMATICS 

The last few years have seen the launching of a program 

to effect basic change in the mathematics programs of both the 

elementary school and the secondary school. The principles or 

assumptions bringing about this change are twofold in nature: 

modern mathematics may be characterized by a new point of view 

and ·a new subject matter. 

In this chapter the historical development of these 

points of view will be traced. Consideration will be given also 

to recently developed concepts and techniques of mathematics. 

- 9 -

~ 
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Modern Mathematics as a Point of View 

The origin of what might be called the modern point of 

view in mathematics can be traced to the pioneering efforts of 

Carl Friedrich Gass (1777-1855), Johann Bolyai (1802-1860), 

Nicolai Ivanovitch Lobachevski (1793-1856) and Bernhard Riemann 

(1826-1866) in the creation of non-Euclidean geometries. It took 

unusual im~gination to challenge what had been accepted as absolute 

for two thousand years, insofar as Euclid's geometry was widely 

accepted as the only true one . 

The modern postulational method of mathematics finds 

its source in the publ~cations by Lobachevski (1829) and Bolyai 

(1832) of a consistent geometric system which contradicted the 

Euclidean fifth postulate of parallelism while keeping all other 

postulates intact . It was further enhanced through the publication 

by Riemann (1854) of still another consistent non-Euclidean geometry 

based upon a still different contradictibn of the fifth postulate. 

Subsequent refinements by Moritz Pasch (1843-1931), Guiseppi Peano 

(1858-1932), and David Hilbert (1862-1943) succeeded in establishing 

the purely hypothetico-deductive nature of geometry. In fact it has 

been said that Hilbert 's work "firmly implanted the postulational 

method, not only in the field of geometry, but also in nearly every 
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other branch of mathematics of the twentieth century.
111 

This new method no longer recognizes axioms or postulates 

as "self-evident truths," but merely as "acceptable assumptions." 

The choice of axioms is to some extent arbitrary and, in particular, 

they should not be regarded as self-evident statements of fact. 

Once this point of view is adopted the subject matter of the axioms 

is then best regarded as consisting of undefined elements, or rather 

as being defined only implicitly by the axioms. Taking this point 

of view mathematics may be regarded simply as an arbitrary creation 

of mathematicians, an attitude widely accepted today. The 

mathematician may become interested in the possibility of existence 

of physical or social applications which would provide a context of 

"truth" for his assumptions. The validity -and consistency of results 

rather than the practicality of results, however, are his major 

concerns.2 

The new method also places emphasis on the necessity for 

clear distinctions between what is defined and what must remain 

undefined. If we examine Hilbert's fifteen postulates for plane 

3 geometry, it is immediately evident that certain basic terms are 

1Howard Eves and Carroll v. Newsom, An Introduction to the 
Foundations and Fundamental Concepts of Mathematics (New York: 
Rinehart and Company, Inc., 1958), p. 86. 

2cf., Dr. Paul R. Beesack, "Modern Mathematics Its Evolution, 
Logical Structure, and Subject Matter", New Thinking in School 
Mathematics, Report of a seminar held by the Canadian Teachers' 
Federation at Ottawa, April 28-30, 1960, p.73. 

3Eves and Newsom, PP• 87-88e 
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completely undefined. A moment's reflection shows this must 

necessarily be the case if circularity in the definitions is to 

be avoided. Similarly, certain statements (axioms) involving 

basic terms must be left unproved. With this in mind what is 
. 

regarded as the logical structure of a modern axiomatic system 

can be defined. It is a collection of statements beginning with 

some unproved statements (axioms, postulates) involving some 

undefined terms (basic terms, primitive terms), in which all 

further statements f ollow logically from the axioms and all new 

terms are defined in terms . of the undefined or previously defined 

4 ones. 

Another factor, besides the discovery of non-Euclidean 

geometry, greatly influenced the development of the mathematical 

method. This was the recognition, first offered by the English 

mathematician George Peacock (1791-1858) about 1830, of the 

existence of structure in algebra. This recognition of algebra 

as an abstract science was developed further in England by Duncan 

Farquharson Gregory (1813-1844) and Augustus DeMorgan (1806-1871), 

and in Germany by Hermann Hankel (1839-1873). The central thought 

of this development had its origin in the recognition and abstraction 

of the fundamental properties which characterize the algebra of natural 

numbers (positive integers). Such abstraction provided the 

4M. Richardson, Fundamentals of Mathematics (New York: 
The MacMillan Company, 1958), P• 27. 
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symbolization which led to the realization that these same 

properties could very well characterize operations with elements 

other than the positive integers.
5 

To illustrate this consider 

two binary operations, addition and multiplication, and if a, b, 

and c represent arbitrary natural numbers, distinct or not, then 

the properties may be stated as follows:
6 

Closure: If a and bare natural numbers, then a+b and ab are 

unique natural numbers. 

Associative: a+ (b + c) =(a+ b) + c 

ax (bx c) ~(ax b) x c 

Commutative: a+ b = b + a 

a x b = b x a 

Distributive: ax (b + c) =(ax b) +(ax c) 

Sir William Rowan Hamilton (1805-1865), a British 

mathematiciam, did for algebra what Lobachevski and Bolyai did for 

geometry. In 1843 he invented an algebra in which the commutative 

law of multiplication does not hold. In 1844 Germany's Hermann 

Grassmann (1809-1877) developed classes of algebras, and in 1857 

the English mathematician, Arthur Cayley (1821-1895), devised 

matric algebra. Both of these developments were noncommutative 

5Eves and Newsom, ppo 120-121. 

6For these laws see c. B. Allendoerfer and C. o. Oakley, 
Principles of Mathematics (Toronto: McGraw-Hill Book Company, Inc., 
1955), pp. 40-45; Eves and Newsom, pp. 118-119; and Richardson, 
PP• 43-51. 

l 
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algebras. Of more recent date are the nonassociative algebras 

such as those of C.Jordan (1838-1922) and M. So Lie (1842-1899). 

Postulate sets for fields, rings, integral domains, and groups 

have evolved from this consideration of algebraic structure. 

Another problem of major concern in any hypothetico­

deductive system is the question of consistency. The meaning of 

'consistency' is well expressed by Eves and Newsom in An Introduction 

to the Foundations and Fundamental Concepts of Mathematics. 

A postulate set is said to be consistent if contradictory 
statements are not implied by the set. This is the most 
important and most fundamental property of a postulate set; 
without this property the postulate set is worthless, and 
it is useless to consider any further properties of the set. 

The most successful method so far invented for 
establishing con'sistency of a postulate set is the method 
0£ models. A model of a postulate set, it will be recalled, 
is obtained if we can assign meanings to the primitive terms 
of the set which convert the postulates into true statements 
about some concept. There are two types of models-concrete 
models and ideal models. A model is said to be concre~e if 
the meanings assigned to the primitive terms are objects and 
relations adapted from the real world, whereas a model is 
said to be ideal if the meanings assigned to the primitive 
terms are objects and relations adapted from some other 
postulate systemo 

Where a concrete model has been exhibited we feel that 
we have established the absolute consistence of our postulate 
system, for if contradictory theorems are implied by our 
postulates, then-the corresponding contradictory statements 
would hold in our concrete model. But contradictions in the 
real world we accept as being impossible. 7 

In 1868 E. Beltrami (1835-1900) brilliantly demonstrated: 

••• that plane hyperbolic geometry can be interpreted as 
that of the geodesics of a surface of constant negative 

7 
Eves and Newsom, pp. 163-165 
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curvature, and likewise for spherical geometry and a 
surface of constant positive curvature. Since pseudo­
spheres and spheres are familiar surfaces in Euclidean 
space, it was felt that the consistency of the classical 
non-Euclidean geometries had been demonstrated. 8 

Through nineteenth-century researches by Peano, Dedekind 

and Cantor, the consistency of the real number system was shown to 

depend on the system of natural numbers, thus giving 

••• the mathematician a considerable feeling of security 
concerning the consistency of most of mathematics. This 
attitude follows from the fact that the natural number 
system seems to have an intuitive simplicity lacking in 
most other mathematical systems, and the natural numbers 
have been very extensively handled over a long period ~f 
time without producing any known inner contradictions. 

The modern point of view in mathematics is described by 

Bell in these words: 

In precisely the same way that a novelist invents characters, 
dialogues, and situations of which he is both the author and 
master, the mathematician devises at will the postulates upon 
which he bases his mathematical systemso Both the novelist 
and the mathematician may be conditioned by their environments 
in the choice and treatment of their material; but neither 
is compelled by any extrahuman, external necessitC to create 
certain characters or to invent certain systems. 1 

8
E. T. Bell, The Development of Mathematics (New York: 

McGraw-Hill Book Company, Inc., 1945), p. 332. 

9Ibid., P• 195. 

lOibid., p. 330. 
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Modern Mathemati cs as New Subject Matter
11 

Modern mathematics as a new subject matter, like the 

modern point of view in mathematics, had its origin in the field of 

geometry. It has been said that the discovery of analytic geometry 

"marks a momentous epoch in the history of mathematical thought" .
12 

The analytic geometry of Pierre de Fermat (1601-1655, date of birth 

disputed) and Rent Descartes (1596-1650) remade geometry by breaking 

the hold of Greek classicism and making modern geometry possible. 

Though it was only a technique for geometric investigations, Cartesian 

geometry paved the way for modern mathematics . In 1637 Descartes 

published the work on which his greatness as a mathematician rests, 

his Discours de la Mtthode, the third appendix of whi ch contains his 

13 
theory of analysis. As a result of Descartes 'innovation, analysis 

became the characterizing technique of modern mathematics, displacing 

classical geometry 's emphasis on synthesis. This new geometry provided 

the basis for the differential and integral cal culus of Isaac Newton 

(1642-1727) and G. w. Leibniz (1646-1716). 

Fermat and B. Pascal (1623-1662) both published works in 1654 

11Bell, Chapter 7; and Appendices, Report of the Commission on 
Mathematics, (New York: College Entrance Examination Board, 1959) are 
the basis for this section. 

12-ifred North Whitehead, An Introduction to Mathematics 
(New York: Oxford University Press, 1958), p. 81. 

13 
Bell, P• 138. 

• 
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which reduced chance to law, and in this way they became the 

founders of mathematical probability. These men were inspired 

by a gambling problem which Chevalier de M'r' proposed to Pascal 

who, in turn, communicated it to Fermat. Each man solved it 

correctly, but by different reasoning. Thus the mathematics 

of chance originated. 

Three other developments in mathematics occurred in 

the seventeenth century: G.Desargues (1593-1662) and Pascal 

built a good foundation for synthetic projective geometry; Pascal 

at nineteen invented the adding machine, an instrument improved 

by Leibniz who extended its operations to multiplication; and 

Leibniz also laid the foundation for modern symbolic logic. 

So great were the significance and impact of coordinate 

geometry that the new projective geometry of Desargues and Pascal 

lapsed into temporary oblivion. There it remained until revived 

by the publications of L. N. M. Carnot (1753-1823) and J. V. 

Poncelet (1788-1867) in 1803. Mathematical investigation was given 

further incentive in l825-1827 with the announcement by J . D. Gergonne 

(1771-1859) of the principle of duality "which, with its 

generalizations, left as substantial a residue of new and useful 

methods, in geometry, algebra, and analysis as any mathematical 

invention of the nineteenth century. 014 

14 
Bell, p. 341. 
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In 1872 Felix Klein (1849-1925) announced his 

Erlanger program. In an address del i vered on acceptance of 

a chair at the University of Erlanger he incorporated a definition 

of geometry which appeared to r estore order to the confusion 

existing in this science. He defined a geometry as "the system 

of definitions and theorems whi ch express properties invariant 

under a given group of transformations." 15 

Probably the most significant and most basic of all 

the newer concepts of modern mathematics is that of set .
16

set 

(aggregate, ensemble, assemblage, family, or cl ass) is an undefined 

concept. However, a set can be thought of as a well-defined 

collection of obj ects. Ther e are two diff~rent ways of designating 

a set. One can give a complete list of all the elements of the set 

or one can give a rule by which it is determined whether or not an 

object is an element of the set. The former is designated a listing 

of the set, the latter a descr:iption of the set. 

It is customary to use a capital letter for the name of a 

set, small letters for its elements, and to use braces to surround 

15oswald Veblen and John Wesley Young, Projective Geometry, 
II (Boston: Ginn and Company , 1918), p . 71 . See also Eves and Newsom, 
p. 135. 

16For an excellent discussion of some of the basic concepts 
of set theory see John G. Kemeny, J. Laurie Snell, and Gerald L. 
Thompson, Introduction to Finite Mathematics, (Englewood Cliffs, 
N.J . Prentice Hall, Inc., 1956), Chapter II . Cf., Allendoerfer and 
Oakley, Chapter 5. 
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the listing of a set. For example: A = { 1, 2, 3, 4, 5 1 
or B = { x, such that x < 2 ] • The second set can also be 

written B = f x / x < 2 J , and it is read: "B is the set of 

x' s such that x < 2. 11 The vertical bar, "/" is read: "such that,." 

If all the members of a set A. are also members of a 

set B, A is called a subset of B. If B has members that are not 

in A, then A is a pr oper subset of Bg Sometimes we are interested 

in one or more subsets of one overall set called the universal 

set, U. The empty set,¢, is one that has no members. For examp le, 

the set of all perfect squares that end in 2, 3, 7 or 8 is¢. The 

unit set is a one element set, e.g. the set of all even one-digit 

prime numbers i s { 2 J • 
The intersect ion of two sets A and Bis the set composed 

of those elements that are in both A and B. The symbol for 

intersection is A . A A B is read: "the intersection of A and B," 

or "A cap B." 

The union of two sets A and Bis the set that contains 

those and only those elements that belong either to A or to B (or to 

both) . The symbol for union is V. A V Bis read: "the union 

of A and B," or "A cup B." 

If A is a given subset of the univer sal set U, we can 

define a new set A' called the complement of A as follows: A' is 

the set of all elements of U tnat are not contained in A. 

A' = f x /xis not a member of A} 

• I 
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Sets can be defined by equations. The equation 

x - 5 = O can be used to define tne set { X / X - 5 = 0} = 

f5J . Similarly, ,[ x/ x2 - 6x + 5 = 0 } = l 1, 5 J is 

defined by the equation x2 - 6x + 5 = o. In general, any 

equation involving x defines a set consisting of those values 

of x whi ch satisfy the equation. Hence we may speak of the 

set of solutions of an equation, or its solution set. 
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The Nature of Deductive Methods 

One of the most significant of all the new emphases 

affecting the modern program in mathematics directs attention 

to the axiomatic structure of mathematics . From the point of 

view of logic, the number of properties assumed should be minimized. 

Such a procedure maximizes the number to be proved. It is desirable 

at times,however, to relax this criterion in order to present an 

equivalent structure more readily comprehensible to the immature 

mind . 

For example, . a postulational basis for the natural 

numbers was first announced in 1889 by the Italian mathematician 

G. Peano (1858-1932). Eves and Newsom state Peano's theory as 

follows: 

For primitive terms Peano chose natural number, 
successor, and 1. About these primitive terms he postulated: 

N' l: 1 is a natural number. 
N'2: For each natural number x there exists exactly one 

natural number, called the successor of x, which will be 
denoted by x'. 

N'3: 1 is not the successor of any natural number. 
N1 4: if x•=y', then x=y. 
N'5(the postulate of finite induction): Let M be a 

set of natural numbers such that 
(1) M contains 1, 
(2) M contains x' whenever

1
~t contains x, then M 

contains all the natural numbers. 

From Peano 's postulates all the properties of the natural 

numbers can be deduced and, through proper extensions, the properties 

17 
Eves and Newsom, p. 203 . 
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of all integers, rational numbers, real numbers, and complex numbers 

can also be deduced. A less sophisticated, but equivalent, set of 

postulates which is more easily comprehended by the immature student 

is the following example from Eves and Newsom: 

For our primitive, or undefined, terms we take a set 
N of elements called natural numbers, together with two 
binary operations on the set, called addition and 
multiplication and denoted by+ and x, satisfying the 
following ten postulates. 

Nl: If a and bare in N, then a+b=b+-a. 
N2: If a and bare in N, then axb=bxa. 
N3: If a, b, care in N, then (a+b)+c=a+(b+-c). 
N4: If a, b, care in N, then (axb)xc=ax(bxc). 
N5: If a, b, care in N, then ax(b+-c)=(axb)+(axc). 
N6: There exists a natural number l such that axl=a for 

all a in N. 
N7: If a, b, care in N and if c+a=c+b, then a=b. 
N8: If a, b, care in N and if cxa=cxb, then a=b. 
N9: For a given a and bin N, one and only one of the 

following holds: a=b, a+x=b, a=b+-y, where x and y are in N. 
NlO:If Mis a set of natural numbers such that (1) M contains 

the natural number 1, (2) M contains 
the natural number k+l whenever it contains the natural 
number k, 18 

then M contains all the natural numbers. 

The rel ation of equality between two or more natural numbers 

in the above postulates is characterized by the fol.lowing properties: 

El. Reflexive Property. If a is in N, then a=a. 

E2. Symmetric Property. If a, bare in N and a=b, then b=a. 

E3. Transitive Property. If a, b, c are in N such that a=b and b=c, 
then a=c. 

E4. Additive Property. If a, b, care in N and a=b, then c+a=c+b. 

E5. Multiplication Property. If a, b, care in N and a=b, then 
ca=cb. 

18 Eves and Newsom, p. 195. 



- 23 -

The first five postulates (Nl-N5) are exact counterparts 
19 

of the first five postulates for the real number system. They 

postulate the commutativity and associativity of the two binary 

operations of addition and multiplication and the distributivity of 

multiplication over addition. N6 postulates the existence of a 

multiplicative identity, end N7 and N8 grant the cancellation laws 

for addition and multiplication. N9 introduces the idea of order 

among the natural numbers. This leads to three basic relationships 

between any two natural numbers a and b: a=b (a equals b), a) b, 

(a is greater than b), or a<b (a is less than b). NlO is known 

as the postulate of finite induction and leads to the theorem which 

is referred to as the principle of mathematical induction. 

The five properties (El-E5) characterize the ·relationship 

of equality between natural numbers. They also hold for equality 

between all numbers. The first three properties (El-E3) characterize 

the more general equivalence relation. 

From the ten postulates of the natural number system and 

the five characteristic properties of equality all the remaining 

properties of the natural number system can be deduc~d as theorems. 

(Definition of terms along the way will be necessary.) 

For example, consider the often quoted axiom of 

multiplication: if equals are multiplied by equals, the products 

19 Supra, p. 13. 
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are equal. We may now state it and prove it as follows: 

Theorem: If a, b, c, dare in N and if a=b and c=d, then ac=bd. 

Proof: ( 1) The product of any ( 1) Closure property. 

two of the elements 

a, b,c,d is in N. 

(2) a=b (2) Hypothesis. 

( 3) ac=ca ( 3) N2 

( 4) ca=cb ( 4) E5 and hypothesis. 

( 5) cb=bc ( 5) N2 

( 6) c=d ( 6) Hypothesis. 

(7) bc=bd ( 7) E4 

( 8) Therefore ac=bd ( 8) Steps 2,3,4,7 and E3. 

One of the simplest of all significant algebraic structures 

is that of a group. The idea of a group is due to E. Galois 

(1811 - 1832), who died in a duel at the age of twenty. Its structure 

follows: 

Undefined elements: a, b, c, ••• belonging to a set G. 

Undefined operation: o, used to pair two elements: a ob. 

Axioms: 
Gl. For each ordered pair, a and bin G, the combination 

a ob is a unique element c of G. (Axiom of closure.) 
G2. For each triple, a, b, and c in G: 

( a ob) o c = a o (b o c) 
(Asso ci ative axiom.) 

G3. There exists a unique element e of G having 
the property that for every a in G: 

aoe=eoa=a 
The element e is called the identity. 
(Identity axiom.) 
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G4 . Corresponding to each a in G there is a unique 
element a ' having the property that 

a o a ' =- a ' o a= e 
The element a ' is called the inverse of a. 

( Inverse axiom.) 
G5. For every a and bin G, 

aob=boa 
(Commutative axiom.) 

A group which also satisfies axiom G5 is called a 
commutative group . A group will not be assumed to 20 
be commutative unless we specifically say that it is. 

As an example of a finite group, the group of "symmetries" 

of an equilateral triangle can be considered. 21 

The symmetries of the triangle are motions that bring 

it into coincidence with itself. We shall consider two motions 

as being the same if they have the same effect . It is easily seen 

that this will result in a system consisting of six elements, 

I (no motion), P (rotate 120°clockwise), Q (rotate 240° clockwise), 

R (flip over, keeping top vertex fixed), S (flip over keeping left 

vertex fixed), and T (flip over keeping the right vertex fixed). 

Let us define a binary operation for this system as follows: 

If A and B represent any two of these motions, the product Ao Bis 

the motion that results when the two motions are performed one right 

after the other, with B performed fi rst , and A taking over where B 

20Allendoerfer and Oakley, p. 71 . 

21This illustration is found in Irving Adler, The New 
Mathematics, (New York: The John Day Company, 1958), pp. 55- 60; 
and for a similar illustration but with a square see George A. w. 
Boehm and the Editors of Fortune, The New World of Math, (New 
York: The Dial Press, 1959), pp . 24- 25. 
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Fir st Final 
Mot ion Symbol Po s ition Position 

No mot ion I D D C C 

Rotate 120° 
clockwise 

p LJ 6 
Rotate 240° ~ D clockwise Q 

Flip over, 

n 6 keeping t op R 
vertex fixed 

Flip over, I\ D keeping left s 
vertex fixed 

'-

Flip over, A 6 keeping right T 
vertex fixed 

/ 
l" 

Fig .1.--Motions of the triangle 
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I p Q R 

I p Q R 

p Q I s 

Q I p T 

R T s I 

s R T p 

T s R Q 

Fig.2.--Mul tipl icat i on table for 
symmetries of t he tr iangle 

s T 

s T 

T R 

R s 

Q p 

I Q 

p I 
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leaves off. If we pick-any two of the six motions at random, and 

we perform one right after the other, we find that the result is 

always one of the original six motions. The results of performing 

the various operations can be summarized in the multiplication 

table (Figure 2), where the motion performed first and written on 

the right side in a product is listed at the top of the table, and 

the motion performed second and written on the left side in a 

product is written at the left side. 

To ,show that the symmetries of the triangle form a group, 

we have to prove that the three requirements for a group are 

satisfied. (1) The operation o is associative. This can be 

verified from the table. (2) It is obvious from the table that I 

is the identity element. (3) Every element has an inverse element 

for P o Q = Q o P = I, I o I = I, R o R = I, S o S = I, and T o T = I. 

Therefore the symmetries of the triangle, with operation o as defined, 

form a group. 

The concept of a field is one of the most important of all 

the concepts of algebra. A field is an abstract mathematical system 

given by the following: 

Undefined terms: 
Elements: a, b, c, ••• of a set F. we ~assume that at 

least two elements exist. 
Operations: +; x. The product "axb11 will be frequently 

written "ab11 or "(a) (b) ." 
Axioms: 
Rl. The sum of a+b of each pair of elements of Fis a 

unique element c of F. (Closure.) 
R2. For any triple of elements of F, ( a+b)+c = a+(b+c) 

(Associative law.) 
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R3 . There exists a unique element of F, called zero, such 
that for every element a of F 

a+O = o+a = a 
The element zero is called the additive identity of F. 
(Existence of zero . ) 

R4 . Corresponding to each a of F there is a unique element 
-a in F such that a+( - a) = ( - a)+a = 0 
The element ( - a) is called the additive inverse of a . 
(Existence of additive inverse . ) 

R5. For every pair of elements of F, 
a+b = b+a 

(Commutative law. ) 
R6 . The product axb of each pair of elements of Fis a 

unique element of F. (Closure . } 
R7 . For any t riple of elements of F, 

(axb)xc = ax(bxc} 
(Associative law. ) 

R8 . There exists a unique element of F, called the unit 
element and wr itten 1, such that for every element 
a of F, 

axl :.::; lxa = a 
(Existence of the unit element . ) 

R9. Corresponding to each a of F (except zero) ther e is a 
unique element 1/a in F such that 

ax5 = }xa = 1 
The element 1/a is callGd the multiplicative inverse of 
a . (Existence of multiplicative inver se . ) 

RlO . For every pair of elements of F, 
axb = bxa 

(Commutative Law . ) 
Rll . For every triple of elements of F, 

ax(b+c) = (~xb)+(axc) 
(Distributive law . ) 2 

One or two simple illustrations will point up the basic 

significance of the concept of field . In the field of complex numbers 

both x2-y2=(x- y) (x+-y) and x2+y2=(xt-iy) (x- iy) are factorable; while 

in the field of real numbers only x2- y2 is factorable . The equation 

x2+1=0 has no solution in the field of real numbers but has two 

22 Allendoerfer and Oakley, pp . 83- 85 . 
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solutions, i and -i, in the field of complex numbers. In other 

words, in the field of real numbers the solution set for x2+1=0 

is the null set ¢ , while in the field of complex numbers it 

is fi,-iJ• 
An interesting example of finite geometry as a 

postulational system which exhibits absolute consistency can be 

constructed in the following manner:
23 

As undefined concepts we take the following and indicate 

the concrete notions from which these have been abstracted: 

Undefined Concepts Concrete Illustrations 

A set of elements A, B, C, A set of points in 

belonging to a class S a plane 

m-class a line 

belonging to an m-class a point lies on a line 

Use as the axioms of this system the following statements: 

FGl. If A and Bare distinct elements of S, there is at least one 

m-class to which both A and B belong . 

FG2. If A and Bare distinct elements of S, there is not more than 

one m-class to which both A and B belong . 

FG3. Any.·two rn-classes have at least one element of Sin common. 

FG4. There exists at least one m-class. 

FG5. Every m-class contains at least three distinct elements of s. 

23 Veblen and Young, I, pp. 1-7. 
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FG6. All the elements of S do not belong to the same m-class. 

FG7. No m-class contains more than three distinct elements of S. 

Before considering theorems in this system, let us first 

check to see that the axioms are consistent. Consider the array: 

A B 

B C 

D E 

C D E 

D E F 

F G A 

F G 

G A 

B C 

If the columns in this array represent m-classes, we see that this 

array satisfies all seven axioms. Hence the axioms are consistent. 

Let us consider some other interpretions of this system: 

Element m-class Belongs to 

person 

diameter of a sphere 

member of a lunch 

club 

committee 

great circle 

of a sphere 

luncheon 

is a member of 

the diameter is 

the diameter of 

the great circle 

ate at a 

particular 

luncheon. 

Each of these can be a concrete representation of our abstract 

system if they satisfy all the conditions, and the theorems stated 

beiow must then apply. These theorems are not hard to prove, and 

give good practice in the deductive method . 

FGTl. Any two distinct elements of S determine one and only one 

m-class containing both these elements. 
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FGT2. Any two m-classes have one and only one element of Sin 

common. 

FGT3. There exist three elements of S which are not all in the 

same m-class. 

FGf4. Any class S satisfying these axioms contains at least 

seven elements . 

While the above postulational system is orientated to 

geometry as to content, it can serve as a mathematical model for 

problems in distinctly different contents. Consider the following 

problem. What is the minimum number of airplanes necessary to 

stage a demonstration designed to meet the following specifications? 

Two planes are to fly together in one and only one formation. For 

any two formations there must be at least one plane in each of them. 

Exactly three planes are to fly in each formation. All planes 

cannot fly in the same formation . 

If "plane" is identified with "element", "formation" with 

"m-class", and "flies on" wi t h "belonging to an m.1.class", then it is 

evident that the specifications of this problem can be identified with 

FGl - 7. Therefore, the solution to the problem is given in FGT4 as 

seven, and the formation is given in the following figure. 

fl.,. Students' Library 
Saint Mary's U tiver, iry 

H2Jif.,,;x 
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Fig. 3.--The formation of the planes 
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Techniques of Deduction24 

The new emphasis on the axiomatic structure .of 

mathematics emphasizes the need for clearer understanding of 

the valid techniques of deductive thinking. This is essentially 

the combination of statements or propositions into still other 

propositions. There are five basic connectives in deduction, 

and the following t able expresses them symbolically. 

Name 

Conjunction 

Disjunctive 

Negation 

Implication 

Equivalence 

Symbol 

J\ 

V 

~ 

e 

Translated as 

"and" 

"or" 

"not" 

"if ••• then ••• " 

" ••• if and only if ••• 11 

A set of rules for the proper use of these connectives 

in valid deduction is called a truth table, examples of which are 

given below . The symbols p and q represent propositions, a sentence 

so clearly stated that it can be declared unequivo cally to be true 

or false. The letter T indicates that the proposition whose 

symbol is at the top of the column is true, while F designates a 

proposition as false in a similar manner. 

24
For a discussion of such techniques see Kemeny, Snell, 

and Thompson, Chapter l; Allendoerfer and Oakley , Chapter l; 
or Henry W.Johnstone, Jr ., Elementary Deductive Logic, (New York: 
Thomas Y. Crowell Company, 1954), Parts one and two. 
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p q p;\q pVq P• q p~q -P 

T T T T T T F 

T F F T F F F 

F T F T T F T 

F F F F T T T 
I 

One of the most important principles for the process of 

deductive reasoning is the law of the syllogism: If the proposition 

p implies the proposition q and the proposition q implies proposition 

r, then proposition p implies proposition r. Symbolically, 

({p->q)/\ (q->r)J -> (p->r). This proposition is a tautology. That 

is, it is true regardless of whether its component propositions are 

true or false. Its truth table follows: 

p q r p7q q• r ( p • q) /\ ( q,;. r) p• r t:(p-=,q)/\ (q~r)] ~ (p• r) 

T T T T T T T T 

T T F T F F F T 

T F T F T F T T 

T F F F T F F T 

F T T T T T T T 

F T F T F F T T 

F F T T T T T T 

F F F T T T T T 
1 , 

From a given implication, P • q, we can form a number of 

related implications which may or may not be true even if the given 

implication is true. Important ones are: 
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Converse: q • p 

Inverse: (- p) • (- q) 

Contrapositive: (-q) • (- pJ 

The following truth tables lead to these conclusionso 

(1) The converse of a true implication is not always true. 

(2) The inverse of a true implication is not always true . 

(3) An implication and its contraposit ive are simultaneously 

true or false; i.e., they are equivalent. 

Proposition Converse Inverse Contrapositive 
p q -p - q P• q q-)>p (-p) ~ {-q) (-q)7 (-p) 

T T F F T T T T 

T F F T F T T F 

F T T F T F F T 

F F T T T T T T 

Much can be said about the techniques of deduction; 

the foregoing merely points out some of its fundamental pattern 

and basic principles. 

That the logical character of deduction can be expressed 

as an algebraic structure is,however, quite clear. And in such a 

form of expression the f ollowing elements of structure are basic: 

The undefined terms and their symbols are: 

proposition 

true 

false 

P, q, • • • 

T 

F 



and 

or 

implies 

equivalent 

not 

- 37 -

The defined terms are: 

Conjunction 

disjunction 

implication 

equivalence 

negation 

The axioms are: 

/\ 

V 

• 
H 

p,'\q 

pyq 

P• q 

P#q 

-P 

(1) Every proposition is either true or false, 

but not both true and false. 

(2) The expressions given by our defined terms above 

are propositions. 

(3) The truth tables for conjunction, disjunction, 

implication, equivalence, and negation. 
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Methods of Proof 

Mathematics is primarily a deductive science in that 

propositions are proved by showing that they are implied by 

propositions already proved, definitions already stated, and 

axioms alr eady accepted . The definitions of fundamental terms 

should be clear, simple, and brief . And in addition normally 

there will be terms accepted as established elements of common 

knowledge . For example, there is no clarification of concepts 

gained by defining point, line and plane in Euclidean geometry. 

Similarly, there will be a list of axioms . It should 

be emphasized that these axioms are merely statements accepted 

as true because of their conformity with common experience and 

sound judgement and in no case should they be considered as 

"self evident truths." The principal characteristics of a set 

of axioms are: Consistency; there should be no contradictory 

statements in the list. Simplicity of statement; the axioms 

should be free from ambiguous statements and should be in a form 

that will permit ready deductions. The axioms should present no 

conflict with established knowledge or observable facts. 

When a mathemat ical system has been clearly structured 

by the selection of the undefined elements, the definition of basic 

terms, and the acceptance of a set of axioms, then the proving of 

theorems becomes the major concern. Every theorem has two 

characteristic properties,a hypothesis and a conclusion. 

~ 

I ~ 
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The hypothesis is a statement, simple or compound, of the 

accepted relationships existing between the elements of the 

given structure whi ch are to be used in the search for the 

new relationships which are summed up in the conclusion, again 

a simple or compound statement. The proof of the theorem 

consists in the establishment of the truth of the conclusion 

through implications and inferences that find their original 

source of justification in the hypothesis. There are three 

distinct processes to be used in establishing the proof of 

any given theorem. 

Synthetic Process The synthetic process consists 

of drawing a series of necessary conclusions until the desired 

conclusion is reached. Although this process is simple and 

elegant, it makes no provision for the pupil to understand the 

reason for making significant constructions or applying auxiliary 

theorems. 

Analytic Process The analytic process considers the 

desired conclusions and reasons that they are implied by the 

conclusions of some previous proposition. One follows such a chain 

of reasoning back to the hypothesis of the unproved theorem, thus 

closing the logical chain necessary to establish the validity of 

the desired conclusion. 

nalytic-Synthetic Process The analysis is the process 

of discovering ways and means of arriving at desired results. The 
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investigator considers the desired conclusion and raises the 

question: 11What relation or property is sufficient to justify 

the use of this conclusion as a true statement?11 Once this 

relation is found, he analyses it for the same purpose, with 

the hope in mind that finally he will arrive at the hypothesis 

of the theorem as the source of the chain of sufficient reasons. 

This process does not constitute a proof, however, until it has 

been established that the steps are reversible. The reverse 

argument is the synthesis. This analytic-synthetic process is 

an effective technique in guiding the immature student in the ways 

of discovery and validation of results. 

The two most important types of proof are direct proof 

and indirect proof. In a direct proof one starts with the 

hypothesis and proceeds through a chain of syllogistic reasoning 

to the implication of the desired conclusion. 

When we are unable to find a direct proof of a 

proposition, we frequently turn to the much misunderstood method 

of indirect proof. This method relies on the fact that if (-p) is 

false, then pis true. Hence to prove that pis true, we attempt to 

show that (-p) is false. The best way to accomplish this is to show 

that (-p) is not consistent with1he given proposition. In other 

words, we add (-p) to the list of given propositions and attempt 

to show that this augmented set of propositions leads to a 

contradi ction. When the contradiction is reached, we know that (-p) 
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is not consistent with our given true propositions and hence 

that it is false. Hence pis true. Indirect proof is a method 

of reaching a desired conclusion through the process of 

investigation and elimination of all other mutually exclusive 

possibilities. 

Two other forms of proof are the existence proof and 

the enumeration proof. The existence proof consists of setting 

up an example which establishes the truth of the proposition. 

The enumeration proof consists of checking each case for the 

truth of a proposition. This latter method of proof will work 

only when the number of cases is finite and reasonably small . 

A counterpart to proof is, of course, disproof, and 

the utility of a method of disproof lies in the fact that an 

unsuccessful attempt to prove a conjectured theorem leads naturally 

to the countering attempt to disprove it . One of the usual methods 

of disproof is to assume that the theorem is true and then derive 

consequences from this . If we succeed in arriving at a consequence 

which contradicts a known true theorem, we have shown that the 

conjectured theorem is false . This process is so similar to the 

method of indirect proof that no further remarks need be made ;bout 

it. 

The use of counterexamples is another effective method for 

disproving statements. For example, let m and n be arbitrary odd 

numbers. Then m+n is an odd number . The disproof is immediate from 
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the counterexample 1+5=6. 

A final point regarding disproof which is important 

to remember is that, although disproof by a single example is 

a valid method of procedure, theorems can be proven by considering 

particular cases only when the number of these is sufficiently 

finite that they can all be tested. 

Discussion of methods of mathematical proof would be 

incomplete without some referenee to induction, the process of 

discovering general laws by the observation and combination of 

particular instances. This method is used in all sciences, even 

in mathematics . Mathematical induction is used in mathemati cs alone 

to prove theorems of a certain kind. It is rather unfortunate that 

the word ' induction ' is used of both mathematics and other sciences, 

because there is very little logical connection between mathematical 

induction and induction in the other sciences . 

The principle of mathematical induction may be stated as 

follows: Let S(n) be a statement involving a variable n which 

becomes a sentence (true or false) whenever a natural number is put 

in place of n. If S(l) is true, and whenever S(n) is true S(n+l} is 

also true, then S(n) is true for every natural number n. 

Many dangers are involved in making use of the inductive 

process (as distinguished from mathematical induction). Consider 

the function F(n)=n2-n+41, each of the values of n, form l to 40 

will produce a value for F(n) whi ch is a prime number. The one 
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counterexample, n=41, however, destroys any conclusion one 

might be tempted to draw. 

Induction can be used only to lay the foundation for 

deductive demonstrations. It cannot be used, or even thought 

of, as a proof. 



CHAPTER III 

THE C.E.E.B. COMMISSION ON MATHEMATICS 

In the last ten years, several committees have been 

studying the secondary school mathematics program in North America 

and have published findings. Included among these are The School 

Mathematics Study Group which publishes a Newsletter from time to 

time on its work, 1 the Ball State Experimental Program2 which has 

recently published texts with a modern approach, 3 the University 

of Illinois Committee on School Mathematics, set up in 1952 by 

mathematician Dr. Max Beberman, which is still working on a high 

school mathematics program being taught in at least ninety-five 

schools of the United States, 4 and the Commission on Mathematics 

appointed in 1955 by the Mathematics Examiners of the College 

1These may be obtained by writing School Mathemati cs 
study Group, School of Education, Cedar Hall, Stanford University, 
Stanford, California. 

2see Charles Brumfiel, Robert Eicholz, and Merrill Shanks, 
"The Ball State Experimental Program," The Mathemati cs Teacher, 
LIII, 2, (February, 1960). 

3Brumfiel, Eicholz, and Shanks, Geometry (Reading, 
Massachusetts: Addison Wesley Publishing Company, Inc., 1960) 
and Brumfiel, Eicholz, and Shanks, Algebra I (Reading,Massachusetts: 
Addison Wesley Publishing Company, Inc., 1961). 

4see Max Beberman, An Emerging Program of Secondary 
School Mathematics (Cambridge, Massachusetts : Harvard University 
Press, 1958). 
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y; 



- 45 -

Entrance Examination Board to study the mathematics curriculum of 

the high schools in the U.S. A.
5 

In the present chapter the 

findings of this Commission will be studied at lengtp. 

The Commission came into being as a resul t of concern 

felt by the mathematics examiners of the Colla:}e Entrance 

Examination Board about the curriculum they wer e t es t i ng . It 

was formed to consider and make recommendations t owards the 

impr ovement, modernization and modification of the college 

preparatory courses of tne secondary schools in tne u. s. A• 

One of ±he basi c conclusions reached by the Commission 

is seen in its observation that mathematicians have changed in 

t heir approach to mathematics and the content of mathematics 

has changed. 
6 

The tradi tional secondary- school program in mathematics, 
made up of elementary algebra, plane geometry, intermediate 
algebra , solid geometry, trigonometry, and advanced algebra, 
consists almost entirely of mathematics developed over three 
hundred years ago, gradually introduced into the schools over 
the past one hundred and fifty years and crystallized into 
essentially its present form appr oximately sixty years ago. 
The subject matter was chosen and the presentation organized 
in accordance with an attitude toward mathematics that is 

5Albert E. Meder, Jr . , "Proposal s of the Commission 
on Mat hematics of the College Entrance Examination Board," New 
Developments in Secondary- School Mathematics, Reprinted 
from the Bulletin of the National Association of Secondary- School 
Principals No . 247 , May 1959 for the National Council of Teachers 
of Mathemat i cs, 1201 Sixteenth Street, N. w., Washington 6, D. c., 
p . 19. 

6 Meder, p. 19. 
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now antiquated and has been discarded by present day working 
mathematicians. The curriculum contains much obsolete 
material and, instead of being oriented to the needs of 
the second half of the twentieth century, is designed to 
meet the needs of science and technology as these needs 
existed some seventy five years ago. 7 

The Commission strongly recommended that the traditional 

requirements in elementary algebra, intermediate algebra, advanced 

algebra, plane and solid geometry, and trigonometry be replaced by 

a new formulation of college entrance requirements in mathematics. 

The new program would designate the new requirements in terms of 

length of time spent in study. The titles suggested for courses to 

be taught in four suc~essive high school years were Elementary 

Mathematics I, Elementary Mathematics II, Intermediate Mathematics, 

and Advanced Mathematics . The Commission defined in rather specific 

detail the content of each year ' s program. In order to help implement 

its recommendations for revised and renewed emphasis on the content 

of instruction, the Commission published a separate volume of appendices 

concurrently with its report. 

In one of its early publications, the Commission pointed out 

six specific areas in the present curriculum needing revision: 

(1) Too much attention is given, particularly in 
algebra, t o routine manipulation in artificial situations, 
and not enough emphasis is laid on fundamental concepts. 

(2) Deductive reasoning is taught chiefly in connection 
with plane and solid geometry, and its application to other 

7Modernizing the Mathematics Curriculum, (New York: 
Commission on Mathematics of the College Entrance Examination Board, 
1958), p.2 . 



- 47 -

parts of mat hemat i cs is l ar ge l y i gnored . Its use in algebra 
and trigonometry should be expanded. 

(3) Too often the usual geometry course consists of 
rote memorization of sequences of theorems and fails t o 
explain the deductive process clearly. 

(4) Many topics which are now i ncluded were important 
at one time for applied science , but have become obsolete. 
These should be replaced by topics of current i mportance. 
Examples of obsolete topics are extensive solution of 
triangles by logarithms,deductive methods in solid geometry, 
and Horner 's Method for finding roots of a polynomial. 

(5) Many newer topics of importance in mathematics and 
its applications have little or no place in the course of 
study. Examples of modern subj:cts which might be included 
are descriptive statistics, statistical inference, elementary 
property of sets, and the basic ideas of modern algebra. Many 
of these topics are more elementary than topics now in our 
secondary school curriculum. 

(6) Mathematics is too often presented as a series of 
isolated trick~, so that students get no view of the subj ect 
as a whole, and do not realize its position as a creative 
endeavor in our civilization.8 

The Commission was completely convinced that the following 

three principles are fundamental to the formulation of a high school 

mathemati cs curriculum orientated to the needs of the present and the 

future: 

(1) The proposals must be based on the existing 
curriculum, and must consist of modi fication, modernization, 
and improvement of the present pattern, rather than its 
discontinuance and repl acement by entirely new content. 

( 2) The point of view of modern mathemati cs ••• must 
be used as a guide in determining the modifications to be 

made. 
(3) Changes to be proposed must be sufficiently far 

reaching so that the modified curriculum is truly orientated 
to the present and future needs, but not so radical as to be 
beyond the competence of the available teaching staff. However, 
a willingness upon the part of school officials to participate 

8ob·ectives of the Commission on Mathemat ics of the Colle e 
Entrance Examination Board, (New York, 1957), pp. 6-7. 
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in programs of in-service education must be assumed. 9 

The Commission was equally convinced of the need for 

revision in the branches of mathematics presently taught in 

secondary schools and its views warrant examination in each of 

the three branches. Let us begin with algebra. 

If one were asked to give an example of rigorous 

mathematical reasoning, the most probable answer would be geometry 

rather than algebra. Euclid ' s Elements have stood for two thousand 

years as the supreme illustration of the mathematical manner of 

reasoning. Axiom, theorem, corollary; the defence of every 

statement by reference to a previously established truth -- this 

method of mathematical reasoning calls up in our minds a textbook 

in geometry, never a textbook in algebra. 

Indeed until recently, elementary algebra has been largely 

a miscellaneous collection of rules for the manipulation of algebraic 

expressions, and it is not the developed science that elementary 

geometry has been for many years. In fact, if it were not for the 

study of plane geometry in our schools, it is doubtful whether from 

their study of algebra alone, our students would ever derive any clear 

notion of what is meant by the mathematical method. 

This fact is more remarkable because algebra, dealing with 

concepts of a simpler nature, is better suited than geometry t o serve 

9Modernizing the Mathematics Curriculum, p. 7. 
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as an illustration of what is essentially involved in mathematical 

reasoning. In geometry the very concreteness and familiarity of 

the subject-matter is apt to obscure the logical structure of the 

science, while in algebra the more abstract character of the 

content of the theorems makes it easier to fix attention on their 

formal logical relations. The Commission recognized the introduction 

of structure as a necessary revision in algebra and," ••• while 

not discounting the manipulative skills necessary for efficient 

mathematical thought, puts chief emphasis on the structure or 

pattern of the system and on deductive thinking.
1110 

Turning to geometry the Commission noted that, while it 

is a common belief that plane geometry has remained unchanged since 

written by Euclid over two thousand years ago, this belief is really 

not true. The Elements contain many logical gaps, and means to 

remedy these have been known f or about sixty years. Indeed, it is 

not surprising that such an early and extensive application of the 

mathematical method as that of Euclid contains gaps.
11 

The greatest 

of these defects are tacit assumptions used in the proofs but not 

found in the earlier work. 

10Program for College Preparatory Mathematics, Report 
of the Commission on Mathematics, (New York: College Entrance 
Examination Board, 1959), p. 2. 

11 Supra~pp. 10-11. 
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D\ AV \I B E 

Fig .4.--Diagram for Book I Proposition l 
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An example of a tacit assumption by Euclid not contained 

in the first principles is the first propostion of the Elements. 

An examination of Proposition I of Book One will show wha t is 

meant. 

On a Given Finite Straight Line t o Construct an 
Equilateral Triangle 

Let AB be the given finite straight l ine . 
Thus it is required to construct an equilateral 

tri angle on the straight l i ne AB. 
With centre A and distance AB let the circle BCD 

be described; {post. ~ 
again, wit h centre Band distance BA let the ci rcle 
ACE be described; [Post. 3] 
and from t he point C, in whi ch the c i rcles cut one 
ano t her, to the points A, B let the straight lines 
CA, CB be joined. . [Post. 1] 

Now , since the point A is the centre of the 
circle CDB, AC is equal to AB . [Def. 15] 

Again, since the point Bis the centre of the 
circle CAE, BC is equal to BA . (pef. 1:g 

But CA wa s also proved equal to AB; therefore 
each of the straight l ines CA, CB is equal to AB . 

And th ings whi ch are equal to the same thing are 
also equal to one another; therefore CA is also eq_ual 
t o CB • R;. N. lj 

Therefore the t hree straight l i nes CA, AB, BC 
ar e equal to one another. 

Therefore t he triangle ABC is equilateral ; and 
it has been constructed on the given straight line AB . 

(Being) what it was required to do.12 

There is a difficulty in t he above proof and it is not, 

as might first be supposed, that t he two circles intersect at two 

points. Rather t he fl aw is in the assumption that the c i rcles 

12rhe Thirteen Books of Euclid's Elements, Great Books 
of the Western World, ed. Robert Maynard Hutchins, 11, (Toronto: 
Encyclopaedia Bri t anni ca, Inc., 1952), pp . 2-3. 
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intersect at all. This is not evident, nor does it always happen. 

Two circles in the same plane can lie entirely outside each other, 

or one may lie entirely inside the other. One might say t hat 

looking at them will show that they must intersect. This is what 

Euclid did and that evidence is not admissibl e in this court , for 

there is not any proposition which states this. 13 This is one of 

the t ypes of incompleteness in Euclidean geometry which clearly 

shows need for revision. However, only now are texts being printed 

which present plane geometry from an elementary approach and which 

are mathematically adequate.
14 

The Commi ssion f ound the same need for revision in 

trigonometry. The most oumerous and important applications of 

trigonometry to mathematics and to modern science and engineering 

are found not in the solution of tri angles but rather investors and 

their components. Unfortunately, the material taught in many high 

school s gives undue emphasis to the solution of triangles which is 

made obsolete by modern methods of computation employing calculating 

machines r ather than logarithms . Many students think that the prime 

13For a further discussion see Howard Eves and Carroll v. 
Newsom, An Introduction t o the Foundations and Fundamental Concepts 
of Mathematics ( New York: Rinehart and Company, Inc., 1958), PP• 
37-41. Albert E. Meder, Jr., What is Wrong with Euclid?, 11 The 
Mathematics Teacher, LI, 8 (December, 1958), pp. 578-584. Appendices, 
Report of the Commission on Mathematics, (New York: College Entrance 
Examination Board, 1959), pp. 109-111 and 166-174. 

1'13rumfiel, Eicholz, and Merrill, Geometry, p. ix. 
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objective of a course in trigonometry is the solution of tri angles.
15 

A careful criticism of the present status of trigonometry is offered 

by Richard V. Andree: 

Twenty-two hundred years ago, Erathosthenes calcul ated 
the earth's r adius, correct t o wi thin twenty-five miles, by 
measuring the angle that the sun's r ays made with a vert i cal 
r od at Alexandri a and at Aswan . At this time the most 
important aspect of trigonome~ry was the computation of the 
sides and angl es of triangles. Today , engineering still demands 
this numerical skill , but other phases of trigonometry have 
be come so important that the numerical solution of tri angles 
is only a minor section in a course in modern trigonometry. 
Some schools still spend a third or more of their t ime on 
logarithms and the solution of triangles. This is not in the 
best interests of students who plan to enter engineeri ng, 
science, or mat hemat i cs, and is certainly of little use to 
t he student seeking a general education. Today 's civili zat ion 
demands a careful study of f unctional graphs (harmonics) and 
t he dextrous use of identities, including the half-angle and 
double angl e forms. The solution of trigonometric equations 
and identities is vital in modern science. 

The engineer of t oday is busy with problems t hat were 
unthought of t wenty years ago. As a result of this, many shop 
techni~ians are doing work which was done by the engineer 
twenty years ago. The technic ian who is to get ahead today 
must be mathematically prepared to accept some of the 
responsibility which previously rested on the shoulders of the 
engineer. The engineer must be prepared to reach new:ihorizons •• o • 

After interviewing industrialists, scientists, engineers, 
technicians, and shop mechanics, my conclusion is that the 
trigonometry which is most needed by modern civ i lization is: 

(1) The graphs of trigonometric functions. The student 
must reali ze in graphing y=2x+7Cos5x that x need not be thought 
of as an angle. 

(2) Identities. Students should be given only one member 
of an identity such as (1 + Cos 2x) (Csc 2x - Cot 2x) to simpl i fy 
as much as possible, wi thout realizing that their goal is Sin 2x. 

(3) Tri~onometry equations, especially of higher degree. 
(4) The inverse trigonometri c functions. 
(5) Definitions and applications involving polar coordinates, 

De Moivre's theorem, and comp lex numbers. 

15cf., Modernizing the Mathematics Curriculum, p. 11. 
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(6) Practical problems involving equations and 
identities. 

(7) Electrical engi~eers an9 t echnici ans need the 
re~ation~hips Sine= ( e18 

- e - i e) /2i and cos e = 
( e l 8 + e 1 6 ) /2 afld their ramifications al ong with 
De Moivre 's theorem. 

If your school is still teaching trigonometry of 
250 B.C., then perhaps you should learn more about the 
trigonometric demands of modern civilization. Your school 
may use one of the sever al excellent texts on modern 
trigonometry and still be giving a 250 B. C. co urse by 
s lighting these important modern phases. I hope not, because 
much of the difficulty students encounter in calculus , 
me chanics, and industrial applications is traceable directly 
t o the l ack of dexterity in the manipulation of trigonometric 
equations and identities. 16 

Because of the general need for revising the mathematics 

pr ogram, the Commission on Mathemat ics was asked also to recommend and 

suggest changes in the college preparatory mathematics curriculum. It 

is therefore fitting that we should know the pr emises on which the 

recommendations for the new curriculum are based.
17 

Al though the Commission realized that the secondary school 

must serve all its students, it does not subscribe to the view that the 

entire school population should take exactly the same course. It 

believed that all ~econdary students need mathematics, but the 

Commission recommended all students need not take the recommended 

curriculum. It is designed for the students who can benefit from it. 

The Commi ssion realized that secondary schools must serve the 

16Richard V. Andree, "Modern Trigonometry," The 
Mathematics Teacher, XLVIII, 2 (Febr~+y,1955), pp. 82-83. 

17 
See Program for College Preparatory Mathematics, 

pp. 10-16. 
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needs of those students not going t o college, and indeed many 

aspects of the Commission 's program can be adapted to a progr am 

for general education for such st udent s . However, the pr ogram 

as set forth by the Commission was designed to meet the needs 

of t he "college-capable", t hose capable of college work . 

The Commission reported that it is of prime importance 

to t he school, as well as t he home, t o see t hat students wi th 

college pot ential t ackle this pr ogram for at least t hree years. 

The Commission continued, stating i ts belief t hat parents, t eacher s 

and counselor s have a duty t o see t hat as many as possible of the 

college-capable study high school ma t hemati cs for four years . The 

top students should attemptt the Advanced Pl acement Program of tne 

College Entrance Examination Board which offers these students college-

1 l . th . . 18 eve courses 1n e1r senior year. 

The Commission believed there are cogent r easons for 

recommending t hat college-capable students should study mathemat i cs 

for four years . Many high school st udent s do not know what career they 

would like to fol l ow, and wi thout mat hemati cs many careers are 

eliminated. Further, mathematics is more easily understood by the 

young, as experience pr oves that most of our gr eat mathematicians and 

scientists became inter ested in their f i eld in high school. 

Another finding of the Commission was t hat students of 

college preparatory ma t hematics should be t aught in gr oups with similar 

18 Ibid . , p. 15 . 
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interests and similar intellectual abilities. This type of 

instruction, it is contended, increases the challenge to the 

student and the likehood of his developing his talents and 

abi lity to the maximum. 

The Commission did not recommend "practical" courses 

such as consumer mathematics, instalment buying, principles of 

insurance to the college-capable students. It i s the belief 

of the Commission that these students have sufficient mathematical 

ability to acquire this information as the need for it arises 

without specific classroom instruct ion . 

nother conclusion of the Commission was that it is 

the responsibility of mathematicians and mathemati cs teachers 

to decide what subject-matter is important, what should be taught 

and what is obsolete . The philosophers of educat ion and 

psychologists, on the other hand, should decide the aims, learning 

theory, grade placement of material, methods and so on. 

The Commission was of the opinion that calculus is 

a subject best left to the colleges, except for its inclusion 

in the Advanced Placement Program . Students, however, should be 

given a complete pre-calculus program. 

The Commission stated that if curricular revision is 

t o take place in mathematics, then mathematics t eachers must take 

a lead in the revision. They must be aware of new developments 

and materials and with assistance can do much to improve the 
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curriculum. 

As well as its general suggestions for improvement, 

the Commission made specific recommendations for each branch 

of mathematics. In order t o improve the study of algebra the 

Commission recommended19 that more attention be given to algebra 

as a part of the secondary school curriculum and that it be 

presented from a contemporary point of view. The teaching of 

algebra, the Commission asserted, should not consist primarily 

in the teaching of manipulative skil ls . Although skills are 

necesspry, it i s much more important that students have a good 

understanding of the deductive reasoni ng involved. The teaching 

of algebra should be directed toward the development and 

understanding of a number field . Too often algebra is taught 

as a set of "rules". The Commission advocated establishing the 

"laws" of algebra (axioms of a number field) because algebra is 

then more easily understood and becomes more meaningful . 

Algebra has been largely transformed by mathematical 

research during the past quarter-century. The axiomatic development 

of algebras has brought new emphasis on the fundamental ideas and 

concepts of the subject . For this reason the Commission stressed 

emphasis on the nature of number systems and the laws for addition 

and mult ipli cation (commutative, associative and distributive), 

the meaning of conditional equations, identities and inequalities. 

19Ibid., pp. 20- 22 . 
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The natur e of a function--particularly the linear, quadr ati c , 

exponent ial, and logarithmetic functions-- should be included 

in the curriculum. 

If the above mentioned l aws are thoroughly understood 

as recommended by the Commi ssion, then the common "rules" for 

remov ing par entheses, factoring, multiplying polynomials and 

the manipulation of fracti ons are no longer ne cessar y . Ther efore, 

algebra should be presented as a deductive system with its 

defini t ions and axioms . This form of presentation will enable 

the student to understand more f ully the nature of the subject 

and will increase his abili t y to solve more pr oblems . This in 

turn will avoid solutions by rote methods or solutions by types. 

The Commission stated that t he t eaching of high school 

geometry has t hr ee main obj ect ives:
20 1) to acquir e infor mation 

about geometri c figures both in the plane and in space . Insofar 

as geometr y is a model of the physi cal world, ever y student needs 

the f acts of geometry to deal with the physi cal world, and further 

geometr y is a prer equisite to t r igonometry and cal culus; 2) t o 

develop an underst anding of the deductive met hod as a way of 

t hinking . It has already been pointed out that it is des i rabl e 

t o use the deductive met hod in al l mathemat i cal subjects, therefore 

the time devot ed to it in geometry can be reduced; 3) t o pr ov ide 

opportunit i es for or iginal and creative thinking by students. 

201bid., pp. 20- 28 . 
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Since geometry can be easily grasped by all students and is 

a challenge to all, no matter how intelligent, a large part 

of the course can be devoted to the solution of original 

exercises, and to discovering and proving relations. 

Since recent developments in geometric thinking 

have disclosed grave faults in the logical structure of 

Euclid, 21 the traditional approach to high school geometry 

must be modified. · 

Since both algebra and geometry are mathematical 

models, consideration must be given to this important system 

of mathematics . A mathemati cal model consists of a set of 

undefined terms (basic definitions) and unproved propositions 

(axioms). All other concepts are defined in terms of these and 

all other propositions are proved by means of these. Further, 

the undefined and unproved elements should be as few as possible . 

The Commission stated that for high school purposes 

it is not necessary that these unproved propositions be as few 

as possible, s,o long as they are consistent. This will permit 

the number of proved theorems to be reduced and thus remove 

certain difficulties . It will- also permit t he student to spend 

more time on original exercises, time previously devoted to 

learning theorems. 

Coordinate geometry should be introduced early in the 

21 See supra, footnote 13, P• 52. 



- 60 -

course, preferably after the first sequence of theorems, asserted 

the Commission. The student will then be able to combine geometric 

facts and graphical algebra. Furthermore, he will receive a good 

beginning in work he will need later, for mathemati cs from calculus 

on employs geometric material in analytic form. 

Whitehead points out the importance of coordinat e 

geometry in his Introduction to Mathemati cs. 

No one can have studied even the elements of elementary 
geometry without feeling the lack of some guidwng method. 
Every proposition has to be proved by a fresh display of 
ingenuity; and a science for whi ch this is true lacks 
the great requisite of scientific thought, namely, method. 
Now the essential point of coordinate geometry is that for 
the first time it introduced method. • • • frt] relates 
together geometry, which started as t he science of space, 
and algebra, which has its origin in the science of 
number. 22 

Further, the geometry course should not be divided into 

parts on the basis of dimensi onality. It is desirable, the 

Commission believed, to teach plane and solid geometry together. 

For example, the sphere can be considered along with the circle. 

The object of solid geometry is to teach spatial relations and 

spatial perception . Theorems in spherical geometry are good 

material insofar as they can be contrasted with plane geometry. 

The material of solid geometry should include the basic 

facts about lines, planes, angles, dihedral angles, and spheres, 

22Alfred North Whitehead, Introduction to Mathematics 
( New York: Oxford University Press, 1958), pp . 83-84. 
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according to the Commission. These need not be established 

deductively, although a clear understanding of the relationships 

is necessary. 

Students should also be aware that there ;re other 

•tnon-Euclidean" geometries, stated the Commission. Al though 

they need not study any of these, they should know that they 

are "true" in their own field. They should know, for example, 

that on a sphere (Riemannian geometry) the sum of the three 

angles of a triangle always exceeds two right angles . 

The Commission recommended a complete revision and 

reorganization of the trigonometry course • . Trigonometry is the 

branch of secondary mat hematics most clearly related t o technical 

applications. In the past these wer e mainly concerned with 

navigation and surveying. Now the fields of statics and dynami cs , 

electromagnetic waves, and vibration problems pr esent challenging 

applications. 

Therefore, according to the Commission, the trigonometry 

course must be reorganized. Further, the stress previously given 

to the solution of triangles and identities must be r eplaced by 

attention to vectors and functional propertie s . This does not 

mean that the solution of triangles is no longer important . Rather, 

it accepts the f act that new means of handling them have appeared, 

namely computing machines and special tables . 

The Commission recommended that the following units be 
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incorporated into the secondary school trigonometry course: 

(1) Rudimentary trigonometry of right angles. (2) Trigonometry 

of x, y, r, 8, --- coordinates, vectors, complex numbers. 

(3) Cosine and Sine laws, addition theorems, identities. 

(4) Circular measure, circular functions and their wave nature.
23 

The following nine-point program for college-capable 

students in the Commission's view will summarize appropriately 

what has been said. 

(1) Strong preparation, both in concepts and in skills, 
for college mathematics at the level of calculus and 
analytic geometry 

(2) Understanding of the nature and role of deductive 
reasoning-in a1gebra, as well as in geometry 

( 3) Applications of mathematical structure ("patterns") 
-for example, properties of natural, rational, real, and 
complex numbers 

(4) Judicious use of unifying ideas-sets, variables, 
functions, and relations 

(5) Treatment of inequalities along with equations 
(6) Incorporation with plane geometry of some coordinate 

geometry, and essentials of solid geometry and space perception 
(7) Introduction in grade 11 of fundamental trigonometry­

centered on coordinates, vectors, and complex numbers 
(8) Emphasis in grade 12 on elementary functi ons 

(polynomial, exponential, circular) 
(9) Recommendation of additional alternative units for 

grade 12: either introductory probability with statistical 
applications or an introduction to modern algebra . 24 

23rrogram f or College Preparatory Mathematics, pp. 28- 30 . 

24Ibid., PP• 33-34. 



CHAPTER IV 

RECOMMENDATIONS FOR THE NOVA SCOTIA CURRICULUN', 

Every student, whatever his capabilities should be given 

opport unity and encouragement to develop his talents. It must be 

conceded, of course, that administrative provisions f or the pupil 

of mathematics depend largely on t he size of the school. In t he 

small high school, where ability grouping is not practical, 

enrichment procedures must be developed by the mathematics staff 

to meet the unique needs of the academically t alented pupils. 

Recommendation 1 Students should be grouped in mathemat i cs 

classes accor ding t o ability in mathematics . 

This type of grouping is not the same as acros s-the-board grouping 

where the student is grouped according to general ability. 1 

Dr . Harry D. Lead made the following comments on ability 

grouping at a seminar held by the Canadian Teachers' Federation: 

It seems that the tremendous growth in school population 
has caused an even greater range of abi l ities in mathematics 
and, as a result, our teaching, which is directed at the 
average pupil, is missing both the slow learner and the 
very capable studente Homogeneous gr ouping can permit 
teaching at several levels--the more levels the better! 
Some schools could have slow, low aver age, high average 
and advanced groups . Homogeneous grouping along with 
subject pr omotion permits the grouping by subject without 

1see James Bryant Conant, The American High School Today 
(Toronto: McGraw- Hill Book Company, Inc., 1959), p . 49 . 
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the stigma of being a "bobo"t The home room has a 
miscellaneous heterogeneous group but they sub­
divide for individual subj ects. In this way many 
students in the advanced maths group might be in 
the below:..average History or English group, or vice­
versa, so the problems of individu11 differences are 
ta ken care of within each subj ect. 

Ability grouping, however, should not be considered 

an end in itsel f. It becomes justified only as it makes f or 

a better curriculum and more productive methods of teaching for 

all pupils. 

There are several recommendations that apply to the 

teacher of mathematics, the crucial element in providing a 

suitable program for the college-capabl e student. Ideally, the 

teacher of mathematics, besi des possessing the characterist i cs of 

a good teacher, must have a rich and recently refreshed background 

in mathematics. There are schools f ortunate enough t o have such 

staff members; and they will, therefore, have no serious problems 

in i nitiating, maintaining, and constantly improving their programs. 

In other schools, t oo, there will be teachers who are 

enthusiastically willing to undertake such a program. They should 

be encouraged to do so, but provisions must be made t o make it 

possible f or t hem to prepare themselves for the job . 

In still other schools, there may be need, first of all, 

2Dr. Harry D. Lead, "Who Should Study Mathemati cs--
And How Much?," New Thinking in School Mathematics, Report of a 
seminar held by the Canadian Teachers' Federation at Ottawa, April 
28-30, 1960, p. 144. 
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for laying a foundation for the introduction of the program. 

To this end the f ollowi ng r ecommendations are made: 

Recommendation 2 Teachers of mathematics should learn t hei r 

mathemati cs from the mathematic ians, t heir 

methodology from t he faculty of education, and should get further 

''on-the- jo~• ttaining by talking things over wi t h other classroom 

teachers. 

This point is made by R. E. K.Rourke, an Executive 

Director of the Commission on Mat hematics, in t he f ollowing words: 

Teacher education in mathematics should have t hree 
objectives: f i rst, t o develop in the teacher a valid and 
effect ive understanding of the nat ure of mat hemat i cs; 
second, to familiari ze him adequately with the subject 
matter of the f ield, particularly with those parts he will 
be called upon t o teach; and finally, t o equip him with 
a sound and effective methodology and teaching techniques . 
In other words, teacher education must deal with philosophy, 
subject - matter and methodology . 

No t the least importan~ of t hese is philosophy. One 
of the major shortcomings of mathemati cal instruction at 
present i s the inadequate understanding of the nat ur e of 
mathemat i cs held by many t eachers. 

The popular conception of mathematics, probably shared 
by most teachers, is well epitomized by the catch-phrase, 
"Two and t wo ar e f our, " proverbially cited as an example of 
a t ypical mathemati cal trut h . But in fact t his phrase is 
an extremely poor illustration of a mathemat i cal trut h, and 
reflects a me chani cal, computat ional view of the nature of 
mathemati cs t hat is both erroneous and harmf ul. 

The essence of mathematics is not computation, and the 
nature of mathematics is anyt hing but me chanical . 
Mathematicians do not spend t heir time grinding out specific 
facts nor r out ine deductions . Imagination, abstraction, and 
generalization are characteristic of the nat ur e of mathematics; 
as a philosopher of a bygone gener ation once observed, 
deductive r easoning is but the pavement on whi ch the chariot 
of the mathematician rolls. 
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. . . . . 
If mathematics on any level is cenceived of as a 

purely mechani cal skill, like t ypewriting, that can be 
learned by pr actice and drill, and can be transmitted 
by anyone who knows it to a neophyte by showing him the 
procedure and drilling him, no effective pr ogram of 
teacher education can be constructed . 

Too often the natur e of arithmeti c has been so 
conceived; the multiplication tables are to be learned 
by rote, just as the proper finger for each letter on a 
typewriter is to be no t ed and its use made habitual by 
meaningless drills such as asdfg hjkl ;. (This analogy 
may be unfair to the study of typewriting, for even here 
relationships are emphasized in a limited way . ) Anyone 
who has lear ned to compute can,with proper met hodology, 
teach others to compute; no background of understanding 
is required . 

Similarly, algebra has been t hought of as a collection 
of computational tricks or manipulative devices, with the 
result that the outcome of instruction in algebra has mer ely 
been t o enable the pupil to solve prob lems that resemble 
sufficiently closely the typical examples solved in the text­
book or the classroom . Even geometry has been reduced, in 
too many instances, t o r ote memorization of theroms and 
their proofs . 

The first requisite for an adequate and effective 
program of teacher education is the complete abandonment 
of such views with respect t o any level of educat ion whatever, 
from kindergarten to graduate school, A teacher of mathemati cs 
must understand the nature of the subject whet her he is teaching 
" counting numbers" t o fi r st- grade pupils or linear algebras t o 
graduate students. Mathematics is not the study and 
memorization of computational or ot her tri cks once for all 
worked out in the past and transmitted from generation to 
gener ation. It is tne imaginative, creative study of "pattern," 
of regularity in phenomena that can be r ecognized by the 
human mind; it involves abstr act ion and general ization. 
One must understand the nature of the subje ct befor e he can 
teach it. This is the first great task of teacher education 
in mathematics. 

The second is easier: to give the prospective teacher 
knowledge of subj ect matter. Here we must only agree how 
much background knowledge is neces sar y in order that one may 
teach effectively at any specified level, and then provide 
the necessary time and appropriate courses in which this 
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knowledge may be acquired . 
Finally, adequat e and effective teacher education must 

deal with the pr oblem of the learner; how pupils grow and 
develop; how they ( or adults) learn; how t o select 
appropriate material f or appropriate objectives; how to 
present it; how to evaluate what has been done; and the 
like. No one can teach effectively if he does not 
understand the psychological nature of learning nor how 
the obj ectives he seeks may be attained. 3 

Recommendation 3 The Canadian Mathematical Congress summer 

school should be strengthened by more financial 

support to it and t o the teachers attending, this support to come 

from industry, the Department of Education and the school boards. 

Recommendation 4 The Department of Education should issue 

specialist licences t o teachers who have reached 

a determined proficiency in a particular subject, and school boards 

should be encouraged t o have their staff teach their specialty. 

This point is stressed by Howard F. Fehr: 

In fact, t he teacher of mathematics should teach as 
B. v. Gredenko recently said the USSR demands that its 
teachers do. 

"A teacher who reduces his task t o the point that he 
only communicates to the pupil the sum of knowledge 
specified in the curriculum, and merely teaches the pupil 
to deal with r outine problems, r arely achieves any success. 
From the teacher is demanded enthusiasm for his subject 
and the conviction that his subject is one of the most 
important affairs of the nation. From the teacher is 
demanded that he implant in the students a love for 
mathematics and a conviction of their creative powers in 
the subject; that he describe, in gener al outline before 
their intellectual gaze, the impressive picture of the 

¾. E. K. Rourke, "The Commission on Mathematics of 
the CEEB and Teacher Education," New Developments in Secondary­
School Mathematics, PP• 173- 175. 
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uninterrupted development of mathematics with its 
limitless connections with technology, the natural 
sciences, and all the other manifestations of human 
activity." 

We cannot demand this from our teachers, but we can 
h~ they will achieve a similar point of view. We 
need quality teachers. 4 

Further, every effort must be made t o improve 

articulation between elementary and secondary programs of 

instruction in mathematics. This can be stated as 

Recommendation 5 Fundamental concepts and principles of 

mathematics must be more thoroughly taught 

in the elementary schoo l as well as in the secondary school. 

Some of these concepts pervading elementary and 

secondary school mathematics are described in detail by 

H. Van Engen: 

Enumeration Systems. One of the first things a child 
learns i n school and in the home is how t o enumerate a 
group of objects. At first he does this by assigning 
individual names to collections ; that is, one, two, three, 
etc. The child is soon taught that it is best t o adopt a 
base (ten) for his enumeration scheme in order t o simplify 
the system. 

As he progresses in his learning, he finds out that a 
base other than ten can be used t o systemize counting. 
This opens the way f or an extensive study of enumeration 
systems in the elementary and secondary school. Such a 
study would include the binary system which has assumed 
an ever greater ~mportance in the past decade due to the 
extensive development of digital computers. 

The Number System. Oflee the child learns that the 
symbol '3' can be applied to a particular group of apples, 
grapes, dogs, planes, and so on ad infinitum, he has a 

Future," 
169- 170 . 

.11 .. oward F. Fehr, "The Mathematics Teacher, Present and 
New Developments in Secondary-School Mathematics, pp • 
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foundatio n for a major abstraction ; namely, that 1 3 1 

is attached t o t hat whi ch is common to all t he above 
mentioned groups. Of course, t hi s idea is never 
verbalized in the lower grades. Whi le the germ of 
the idea is dominant at this stage , later it can be 
11 removed" from the object for its full abstract value. 
Of course, the same process occurs for all numbers. 

Soon after his f i rst experiences with arithmetic 
operations, the pupil should be introduced t o those 
properties which are common t o all those things we call 
numbers. Let us assume that the pupil is studying whole 
numbers (positive) and has not, as yet, thought of 
fractions as m\Jmbers. At this stage he should learn that: 

1. When we add or multiply any two whole numbers, 
we always get another whole number. (This doesn't happen 
f or subtraction and division. Thus 16 ! 5 is not a who le 
number.) 

2. The numbers are interchangeable for addi t i on and 
mul tiplication. For example, 2 x 3 = 3 x 2 and 3 + 2 = 2 + 3. 

3. Grouping numbers by twos in any order is always 
permissible in multiplication and addition. For example, 
3 x (2 x 4) = (3 x 2) x 4 and (3+ 2) + 4= 3+ (2+ 4). 

4. The operation of mul t i pli cation may be "distributed" 
over the operation of addition, f or example, 
2( 6 +4) = 2 X 6 + 2 X 4. 

Having learned these f undamental principles in the 
elementar y school, the pupil learns t o develop a general 
way by which t o state these principles in the secondary school 
and he learns t hat any col l ect ion of mathemat i cal entities 
which possess tne pr opert i es listed above will be cal led 
numbers. Thus he finds t hat fractions, positive numbers, 
negative numbers, and complex numbers all po ssess these 
pr operties. Of course , t hey possess others as well, but 
such things as 3 + i and 2 - 5i ar e numbers because they 
can be manipulated in t he same way the whole numbers were 
manipulated in the above examples. 

Number Pairs and Sets of Number Pairs. The elementary 
school pupil soon learns t hat it t akes t wo or more numbers 
used as pairs t o describe some physical s i tuations. He 
learns t o use the form a/bas a pair of whole numbers t o 
describe situations involving fract ion ideas , and he learns 
to use this same for m t o describe r atio situat ions. 

Late in the elementary school, the pupil works wi t h 
sets of number pairs. Thus he might make up a table of 
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number pairs showing how much 1, 2, 3, 4, ••• 12 tickets 
to the school circus will cost at 25 cents each. This is 
a number-pairing activity. A number representing the 
number of tickets purchased is paired with the number 
representing the cost of the tickets. In an arithmetic 
class, the pairs may be graphed to obtain a visual way 
of reading the pairs or to see the general trend of 
increased cost versus increased number of tickets purchased. 

In the secondary school, pupils learn to write a rule 
(C = 25n) showing how the numbers are to be paired. Such 
activities serve as an introduction to the idea of variable, 
formula, set of numbers and a set of number pairs, and 
generally to the subject of algebra itself. Advanced work 
will introduce such topics as relations, functions, and 
set-functions, all of which are based on the pairing of 
numbers, writing rules to enable one to pair numbers, and 
similar activities. 

Geometric Concepts. The study of geometrical forms and 
their properties is an integral part of mathematics. As 
with number ideas, certain very important geometric ideas 
have their origins in the elementary schools. . . . . 

These ideas must be emphasized in elementary instruction. 
Too freguently elementary (and secondary) instruction ignores 
fundamental concepts and places its emphasis on memorization 
of facts without providing the cement t o make the facts bind 
into a whole. This is why some feel that the elementary 
school stunts the mathematical growth of children. Children 
can grasp abstract ideas; in fact, they enjoy them. The 
forward movement in mathematics can only come if we learn 
how to teach abstractions and how far pupils of varyigg 
abilities can go in making mathematical abstractionso 

The demand for scientists and engineers, all of whom must 

have a sound knowledge and understanding of mathematics, is growing. 

New applications of mathematics in industry and in other branches 

of economic activity are leading to a demand for more mathematicians 

5H. Van Engen, "Concepts Pervading Elementary and Secondary 
Mathemati cs," New Developments in Secondary-School Mathematics, 
PP• 116-118. 
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wi th new kinds of skills . All these demands are creating a need 

for a re-appraisal of the content and methods of school mathematics . 

Despite the great amount of discussion and study of the 

problems of mathemat i cs teaching, much of it is not having t he 

desired impact on the schools . In fact in Canada, as stated in 

New Thinking in School Mathematics (a report of the Organization 

for Eui:.opean Economic Co-Operation), "there is no trend towards 

change. resent programme was established in 1900 . No national 

movement to r e- examine the pr ogramme . lfli<u Several committees are 

studying possible reforms for the programme. 116 This report goes 

on to say that Canada and the Uni ted St ates " are the only two 

countties {9f the twenty reportini) which have no distinct 

mathematics programmes for col lege- preparatory students of vary ing 

7 

the light of these fa cts the f ollowing recommendations 

are 

··--- --··-- -~-.. 6 A committee consist i ng of mathematicians ( univers i t y 

t e 

lig. 

Pe 

----­pro f essors or ot her professi onal mathemati ci ans) and 

athematics should be established t o examine the Nova 

tics curri culum with a view to its r evision in the 

evelopments . 

hinking in School Mathematics, Organisation for 
i c Co-Operation, Office for Scientific and Technical 
81 . 

p . 194. 
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Recommendation 7 summer school should be established to offer 

courses not only f or those students who need 

remedia r k in mathematics, but also for bright and ambitious 

o wish to use the summer t o broaden their horizons in students 

.. ...... v.._ .... u""""'- ... v .. 8 Extra-curricular activities f or above average 

These 

students of mathematics should be encouraged. 

ies might include such things as mathematics clubs, 

tests, mathematics f ield days, exhibits and fairs. 

Rec~enca't:!>n 9 The provincial examination system should be 

reviewed in the light of the following remarks 

0 - of centrali zed examinations: 

-~-ugh a centralised system of examination has the 
age of maintaining a fixed common standard in a 

e body of knowledge, it al so has disadvantages. 
first place, most countries develop a certain 
of examination questions, and teachers spend much 

aining their pupils how to answer t hese examinations­
·ch could better be spent on teaching more mathematics. 
these examinations become intelligence and endurance 
ather than tests of mathematical r easoning and 

r:?nension . 
?u=thermore, it is exceedingly difficult to get a central 
~fional agency t o adapt its examinations to experimental 

rm.ents in the teaching of mathematics. It is di fficult 
-E~ an examination when t wo or more radi cally different 

c~es to a subject must be covered-for exampl e, t wo 
c:--::::,t<=-~ely different axiomatic treatments of plane geometry. 
~.~~;r.-tions tend to standardise teaching, thus reducing 

opportunity or desire t o show originality i n cl ass- ~ 
r 1e. 8 

pp . 97-98. 
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Conclus ion 

atever t he results of the mathematics' cur ri cul um 

r evision due to t he new developments may be,it is safe to say 

defini 

bette 

a b 

e immedi ate ef fe cts will be a gr eatly increased 

uct ure, a r econsider ation-and r efinement of 

clearer att ention to t he deductive process, a 

-~ce in the treatment of equations and i nequalities, 

f the concepts of algebra and geometry, a r evi sed 

x igonometr i c f unctions and techni ques , a 

treatment of probability and statistical inference, 

uation of the s ignifi cance of many of t he manipul ative 

pr " c'=c!":.:.=~s at all levels of teaching . 

i 

eacners must keep in mi nd that t here is good and bad 

-~~ 01d and the new in mathemati cs. The possible 

of each to the mathematics pr ograms of our schools 

don the scales of effective and efficient training 

in an era when technological patterns are subject 

'·- ast i c change. Such change can outmode in rapid and 

mere manipulat ive procedures, but the basi c 

thematical systems is f ree from alteration or 

his significant fact ver y possibly may serve as 

all future cur riculum planning in both t he 

econdary schools . If this should be the case, 
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then the impact of modern mathematics on the cur ri cul um of our 

secondary schools will be tremendous . 



APPENDIX I 

OUTLINE OF PRESENT NOVA SCOTIA !v,ATHEMATICS CURRICULU/vi 

Algebra 

Grade IX Text: Petr ie, et al . : Intermediate Mathematics 

Book Three . 

I Algebraic notation 

II Operations with signed numbers 

III Simple equations 

IV Speriial products 

V Factor ing (a) tr inornials 

(b) difference of two square s 

VI Simplifi cation of fractions 

VII Multipli catfon and division of fractions 

VIII Addition and subtraction of fr act ions 

Grade X Text: ':Jells and Hart: Modern Second Course in Algebra 

IX Fundamental operations 

X Special pr oducts 

XI Factoring 

(a) Highest common f actor 

(b) Difference of two squares 

(c) Difference of t wo cubes 

(d) Sum of t wo cubes 
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Grade XI 
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(e) Trinomials 

( f) Grouping 

XII Simplifi cation of frac t ions 

XIII Mul t ipli cat ion and division of fractions 

XIV Addit ion and subtr act ion of fract i ons 

Xv Fract ional equations 

XvI Pr oblems 

XvII Graphs of linear equations 

- XVIII Algebraic and graphical solutions for linear 

systems of equations 

XIX Simplification of radicals 

XX Simple r adical equations 

Text: Wells and Har t: .2.2 · cit. 

XXI Solutions of quadrati c equations 

(a) f actoring 

(b) completing t he square 

( c) formula 

(d) graphi cal 

XXII Fract ional equations r educible t o quadr ati cs 

XXIII Imaginar y numbers 

XXIV Graphs of 

(a) c i r cle with cent re at origin 

(b) ellipse with centre at or igin 

( c) parabola 
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XXV Algebraic and graphical solution of systems 

involving quadratics 

XXVI Exponents and radicals 

XXVII Radical equations 

XXVIII Logarithms 

XXIX Trigonometry of right triangle 

XXX Arithmetic and geometric progressions 

XXXI Ratio and Proportion 

XXXII Variation 

Grade XII Text: Petrie, et. al.: Algebra A Senior Course 

XXXIII Factoring 

XXXIV Surds and indices 

XXXV Ratio and proportion 

XXXVI Equations 

XX.XVII Progressions 

XXXVIII Variation 

XXXIX Functions 

XL Permutations 

XLI Binomial theorem with positive integral exponents 
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Geometry 

Grade X Text: Oliver, Winters and Hodgkinson: A First 

Course in Plane Geometry. 

I Axioms and definitions 

II Congruent triangles 

III Constructions 

IV Parallel lines 

V Parallelograms 

Grade XI Text: Oliver, Winters and Hodgkinson: QE• cit. 

VI Areas of polygons 

VII Loci 

VIII Circles 

IX Ratio and proportion 
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Trigonometry 

Grade XII Text: Playne and Fawdry: Practical Trigonometry 

I Solution of right triangles 

II Area of triangles and pentagons 

III Solution of triangles 

IV Trigonometric equations 

V Derivations and identities 

VI Inscribed, escribed, and circumscribed circles 

VII Graphs of trigonometric functions 

VIII Dis.tance between points on the surface of 

the earth 

IX Di stance and dip to the horizon 



APPENDIX II 

GLOSSARY OF TERMS 

Analyti c geometry: The essence of analytic geometry is that to 
every ordered pair of real numbers there corresponds 
a unique point in the plane, and that every point in 
the plane can be uniquely identified by an ordered pair 
of real number s . 

Analytic process: considers the desired conclusion and reasons 
t hat it is implied by the conclusion of some proposition. 

*Associative: Addition is asso ciat i ve if (a+b)+c=a(b+c). 
Multipli cat ion is asso ciat ive if (axb)xc=ax(bxc) . 

Axiom: A statement that is accepted as valid and in no case 
should be considered as a " self evident trut h" . 

Binar y operation: A binary operation on a set Sis a 
correspondence whi ch associates wi th each ordered pair 
of elements of S, a unique element which is also an 
element of the same set S. 

Cartesian geometry: See analytic geometry. 

Closure: A set is closed with respect t o an operation if, when 
any two members of the set are combined by the operation, 
a member of the set is produced. 

*Commutative: Addition is commutative if a+b=b+a. Mul tiplication 
is commutative if axb=bxa. 

Complement of a set A: A complement of a set A with respect to 
a universal set, U, is the set of all elements of U that 
are not contained in A. (Symbol A' ). 

-lfConjunction: PA q. Translated as "p and q" . (Symbol/\). 

*These terms are basi c mat hemat i cal t er ms and as such 
are undefined . Only an explanation is attempt ed in t his glossary. 

- 80 -
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Consistent: A set of axioms are said to be consistent if 
contradictory statements are not implied by the set. 

Contrapositive: The contrapositive of p • q is (-q) • (-p). 

Conver se: The converse of p ~ q is q • p. 

Coordinate geometry: See analytic geometry. 

Direct proof: A direct proof starts with the hypothesis and 
proceeds through a chain of syllogistic r easoning to 
the implication of the desired conclusion . 

*Disjunctive : The disjunctive is p V q. This is translated 
as "p or q". (Symbol V ) . 

*Distributive: Multiplication is distributive with respect to 
addi tion if ax(b+c)~axb+axc. 

Empty set: A set that has no members. (Symbol¢}. 

*Equivalence: p ~ q. Translated as "p if and only if q" . 
(Symbol ~). 

Field: Any set of elements or any :Jstem of numbers which exhibits 
eleven special properties Lsee pp. 28-29 . for t hese 
propertiei} is known as a number field, and the properties 
are called the field properties. 

Finite geometry: A geometry, whi ch, by the nature of the 
assumptions on whi ch it is based, deals with a finite 
number of points and lines. 

Group: set of elements to gether with t he specified rules of 
operating with those elements. [see pp. 24- 25 . for these 
rule~. 

*Implication: p • q. Translated as "if p then q" . (Symbol-?"). 

Indirect proof: An indirect proof is based on the f act that if 
(-p) is false, then pis true. Hence to prove that p 
is true, we attempt to show that (-p) is false. 

Integral domain: An integral domain is a set of elements 
together with the specified rules of operating with 
these elements. [1 f we replace R9 of the set of field 
properties on pp. 28-29. by the cancellation property if 
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axb=axc and a=O, then b=c the resulting system i s an 
integral domain ~ 

Intersection of t wo sets: The intersection of t he sets A and B 
is the set composed of those elements t ha t are in bo t h 
A and B. (Symbol r'\ ) . 

*Inverse: The inverse of p • q is (-p) • (- q) . 

Law of the syllogism: If t he pr oposition p i mplies the 
pr oposit ion q and t he pr oposi tion q i mpl ies the 
proposition r, then pr opo s ition p implies proposition 
r. 

Mat hematical i nduction: Let S(n) be a statement involving a 
variable n whi ch becomes a sentence (true or f alse) 
whenever a nat ur al number is put in pla ce of n. If S(l) 
is true, and whenever S(n) is true S(n+l) is al so true, 
t hen S(n) is true for every nat ur al number. 

Mathematical method: It considers mathematics as a collection 
of statements beginning with some unpr oved statements 
(axi oms) involving some undefined terms (bas i c terms) 
in whi ch all fur t her statements follow logical ly from 
the axioms and all new terms are defined in terms of the 
undefined ones . 

Modern ma themati cs : This is t he axiomati c or postulati ona l method 
whi ch is character ist i c of so much of t he mat hematical 
activity of this century. 

Nat ur al numbers : are the po s i t ive integer s . 

*Negation: ( - p) . Translated as "not p" . 

Non- Euclidean geometry: A non-Euclidean geometry is one which 
contradicts Euclid's par alle l postul ate. 

Pr oper subset: If all the members of a set A are also members of 
a set B, A is called a s ubse t of B. I f B has members 
t hat are not in A, t hen.A is a pr oper subset of B. 

Ri ng: ring is a not empt y set , S, on whi ch t wo binary operations 
ar e de f ined , and which has t he f ollowing propert i es. 
(1) a+b=b+a; (2) (a+b)+c=a+(b+c); (3) For ever y elemen.t 
a in S t here exists an element O, such t hat a+O=a; 
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(4) If a is an element in S, then there is an 
element x in S such that a+x=O; (5) (ab)c=a(bc); 
and (6) a(b+c)=ab+ac, (b+c)a=ba+ca. 

-If-Set: Set is an undefined concept, but it can be thought of 
as a collection of objects. 

Set of solutions: The set of solutions of an equation is 
the set of values which satisfy the variable of the 
equation. 

Subset: If all the members of a set A are also members of a 
set B, A is called a subset of B. 

Solution set of an equation: See set of solutions . 

Synthetic process: This consists of drawing a series of 
necessary conclusions until the desired conclusion 
is reached. 

Tautology: A proposition that is true regardless of whether 
its component propositions are true or false . 

Union of two sets: The union of two sets A and Bis the set 
that contains those and only those elements that 
belong either to A or to B (or to both). (Symbol V ) . 

Unit set: A set of only one element. 

Universal set: An overall set from which one or more subsets 
are chosen is an universal set. (Symbol U). 



BIBLIOGl.APHY 

Books 

Adler, Irving. The New Mathematics. New York: The John 
Day Company, 1958. 

Allendoerfer, C.R., and Oakley, C. O • . Fundamentals of 
Freshman Mathematics. New York: McGraw-Hill Book 
Company, Inc., 1959. 

---• Principles of Mathematics. New York: McGraw-Hill 
Book Company, Inc., 1955. 

rcher, Allene . Number Principles and Patterns. Toronto: 
Ginn and Co_mpany, 1961. 

Banks, J . Houston. Elements of Mathematics . Second edition. 
Boston: Allyn and Bacon, Inc., 1961. 

Beberman, Max. An Emerging Program of Secondary School 
Mathematics. Cambridge, Ma ssachusetts: Harvard 
University Press, 1958. 

Bell, E.T. The Development of Mathematics. Second edit ion . 
New York: McGraw-Hill Book Company, Inc., 1945. 

Birkhoff, Garrett, and Ma cLane, Saunders. A Survey of Modern 
Algebra. Revised. New York: The MacMillan Company, 
1953. 

Boehm, George A. w., and the Editors of Fortune. The New World 
of Math. New York: The Dial Press, 1959. 

Brumfiel, Charles F., Eicholz, Robert E., and Shanks, Merrill EQ 
Algebra I. Reading, Massachusetts, u. s. A.: Addison­
Wesley Publishing Company, Inc., 1961. 

---g Geometry. Reading, Massachussets, u. s. A.: Addi son­
Wesley Publishing Company,Inc., 1960. 

Conant, James Bryant. The American High School Today. Toronto: 
McGraw-Hill Book Company, Inc., 1959. 

- 84 -



- 85 -

• 
Courant, Richard, and Robbins, Herbert. What is Mathematics? 

Toronto: Oxford University Press, 1941. 

Eves, Howard, and Newsom, Carroll V. An Introduction to the 
Foundations and Fundamental Concepts of Mathematics. 
New York: Rinehart and Company, Inc., 1958. 

Johnstone, Henry w., J r. Elementary Deductive Logic. New York: 
Thomas Y. Crowell Company, 1954. 

Kemeny, John G., Snell, J . Laurie, and Thompson, Gerald L. 
Introduction to Finite Mathematics . Englewood Cliffs, 
N. J.: Prentice Hall, Inc., 1956. 

Oliver, w.J., Winters, P . F., and Hodgkinson, F. A. A First 
Course in Plane Geometry. Toronto: School Aids and 
Text Book Publishing Co. Ltd., 1954. 

Petrie, P.A., Baker, v. E., Darbyshire, w., Levitt, J. R., 
and MacLean, w. B. Intermediate Mathemati cs Book Three. 
Toronto: The Copp Clark Publishing Co. Limited, 1953. 

Petrie, P. A., Baker, V. E., Levitt, J . R. and MacLean, W. B. 
lgebra a Senior Course. Toronto: The Copp Clark 

Publishing Co. Limited, 1946. 

Playne, H. c., and Fawdry, R. C. Practical Trigonometry. 
Toronto: The Copp Clark Co. Limited. 

Polya, G. How to Solve It . Princeton, New Jersey: Princeton 
University Press, 1945. 

Ri chardson, M. Fundamentals of Mathematics. Rev. ed. New York: 
The MacMilfan Company, 1958. 

Sullivan, Jo w. N. The Hist ory of Mathematics in Europe. London: 
Oxford University Press, 1925. 

"The Thirteen Books of Euclid's Elements," Great Books of the 
West ern World, vol. 11, ed. Robert Maynard Hutchins. 
Toronto: Encyclopaedia Britannica, Inc., 1952. 

Veblen , Oswald, and Young, John Wesley. Projective Geometry, 
Vols I and II. Bost on: Ginn and Company, 1918. 

Well s, Webster, and Hart, Walter w. Modern Second Course in 
lgebra. Rev. Toronto: The Copp Clark Publishing 



- 86 -

• 
Co. Limited, 19~9. 

Whitehead, Alfred Nort h . An Introduction to Mathematics. 
New York: Oxford University Press, 1958. 

Wilder, Raymond L. Introduction to t he Foundations of 
Mathematics. New York: John Wil ey and Sons , Inc., 
1952. 

Reports 

Appendices, Report of t he Commission on Mathemati cs. New 
York: College Entrance Examination Board, 1959. 

Handbook to the Course of Study . Halifax: Department of 
Education, Province of Nova Scot ia, 1935. 

Insights Into Modern Mathematics. Twenty-Third Yearbook, 
The National Council of Teachers of Mathemat i cs. 
Washington, D. C., 1957. 

Mathemat ics (Grades 7-9 ) A Teaching Guide . Tentative Edition. 
Halifax: Department of Education, Province of Nova 
Scotia, 1957. 

Modernizing the Ma t hemati cs Curriculum. New York: Commission 
on Mathematics of the College Entrance Examination 
Board, 1958 . 

New Developments in Secondary-School Mathematics. (Reprinted 
from the Bulletin of the National Association of 
Secondary-School Principal~~ Washington, 1959. 

New Thinking in School Mat hematics. Organization f or European 
Economic Co-Operation, Office for Scientific and 
Technical Personnel, May 1961. 

New Thinking in School Mathemat i cs. (Report of a Seminar held 
by t he Canadian Teachers' Federation). Ottawa, 1960. 

Objectives of t he Commission on Mathematics of the College 
Entrance Examination Board . New York, 1957. 

Program for College Preparatory Mathematics. Report of the 
Commission on Mathematics. New York: College Entrance 



- 87 -

Examination Board, 1959. 

Pr ovincial Examinations. Halifax: Department of Education, 
Pr ovi nce of Nova Scotia, 1947-1960. 

School Mat hemat ics St udy Group News l etters . Nos . 1-10. 
St anford, Cal ifornia: School of Education -
Cedar Hall, Stanfor d Uni vers i t y, 1959-1961. 

Synopses f or Moder n Secondar y School Mat hemat ics . 
Organization for European Economic Co-Operation, 
Offi ce for Scient ifi c and Technical Personnel, 1961 . 

rticles 

Andree, Ri chard V. "Modern Tr igonometry," The Mathemat i cs 
Teacher, XLVIII, 2(Febr uary, 1955), pp . 82- 83 . 

Chafe, Robert. "Teaching the New Geometry Courses in Grades 
10 and 11," Education Office Gazette ( for the Prov i nce 
of Nova Scoti a), vol . 10 (March, 1961), pp . 57- 58 . 

Meder, Albert E. "What is Wro ng wi t h Euclid?," The Mathemati cs 
Teacher, LI, 8(December, 1958), pp . 578- 584. 

Robinson, Fl oyd G. " New Dimensions in Mathematics Teaching," 
C- I - L Oval, vol 30, no 4 (August, 1961), pp . 14-17. 


